Coverage Report

Created: 2024-04-23 06:32

/src/testdir/build/lua-master/source/ltable.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
** $Id: ltable.c $
3
** Lua tables (hash)
4
** See Copyright Notice in lua.h
5
*/
6
7
#define ltable_c
8
#define LUA_CORE
9
10
#include "lprefix.h"
11
12
13
/*
14
** Implementation of tables (aka arrays, objects, or hash tables).
15
** Tables keep its elements in two parts: an array part and a hash part.
16
** Non-negative integer keys are all candidates to be kept in the array
17
** part. The actual size of the array is the largest 'n' such that
18
** more than half the slots between 1 and n are in use.
19
** Hash uses a mix of chained scatter table with Brent's variation.
20
** A main invariant of these tables is that, if an element is not
21
** in its main position (i.e. the 'original' position that its hash gives
22
** to it), then the colliding element is in its own main position.
23
** Hence even when the load factor reaches 100%, performance remains good.
24
*/
25
26
#include <math.h>
27
#include <limits.h>
28
#include <string.h>
29
30
#include "lua.h"
31
32
#include "ldebug.h"
33
#include "ldo.h"
34
#include "lgc.h"
35
#include "lmem.h"
36
#include "lobject.h"
37
#include "lstate.h"
38
#include "lstring.h"
39
#include "ltable.h"
40
#include "lvm.h"
41
42
43
/*
44
** Only tables with hash parts larger than 2^LIMFORLAST has a 'lastfree'
45
** field that optimizes finding a free slot. That field is stored just
46
** before the array of nodes, in the same block. Smaller tables do a
47
** complete search when looking for a free slot.
48
*/
49
678k
#define LIMFORLAST    2  /* log2 of real limit */
50
51
/*
52
** The union 'Limbox' stores 'lastfree' and ensures that what follows it
53
** is properly aligned to store a Node.
54
*/
55
typedef struct { Node *dummy; Node follows_pNode; } Limbox_aux;
56
57
typedef union {
58
  Node *lastfree;
59
  char padding[offsetof(Limbox_aux, follows_pNode)];
60
} Limbox;
61
62
529k
#define haslastfree(t)     ((t)->lsizenode > LIMFORLAST)
63
518k
#define getlastfree(t)     ((cast(Limbox *, (t)->node) - 1)->lastfree)
64
65
66
/*
67
** MAXABITS is the largest integer such that 2^MAXABITS fits in an
68
** unsigned int.
69
*/
70
6.52M
#define MAXABITS  cast_int(sizeof(int) * CHAR_BIT - 1)
71
72
73
/*
74
** MAXASIZEB is the maximum number of elements in the array part such
75
** that the size of the array fits in 'size_t'.
76
*/
77
404k
#define MAXASIZEB (MAX_SIZET/(sizeof(Value) + 1))
78
79
80
/*
81
** MAXASIZE is the maximum size of the array part. It is the minimum
82
** between 2^MAXABITS and MAXASIZEB.
83
*/
84
#define MAXASIZE  \
85
404k
    (((1u << MAXABITS) < MAXASIZEB) ? (1u << MAXABITS) : cast_uint(MAXASIZEB))
86
87
/*
88
** MAXHBITS is the largest integer such that 2^MAXHBITS fits in a
89
** signed int.
90
*/
91
298k
#define MAXHBITS  (MAXABITS - 1)
92
93
94
/*
95
** MAXHSIZE is the maximum size of the hash part. It is the minimum
96
** between 2^MAXHBITS and the maximum size such that, measured in bytes,
97
** it fits in a 'size_t'.
98
*/
99
149k
#define MAXHSIZE  luaM_limitN(1u << MAXHBITS, Node)
100
101
102
/*
103
** When the original hash value is good, hashing by a power of 2
104
** avoids the cost of '%'.
105
*/
106
58.8M
#define hashpow2(t,n)   (gnode(t, lmod((n), sizenode(t))))
107
108
/*
109
** for other types, it is better to avoid modulo by power of 2, as
110
** they can have many 2 factors.
111
*/
112
1.33M
#define hashmod(t,n)  (gnode(t, ((n) % ((sizenode(t)-1)|1))))
113
114
115
58.6M
#define hashstr(t,str)    hashpow2(t, (str)->hash)
116
1.89k
#define hashboolean(t,p)  hashpow2(t, p)
117
118
119
517
#define hashpointer(t,p)  hashmod(t, point2uint(p))
120
121
122
#define dummynode   (&dummynode_)
123
124
static const Node dummynode_ = {
125
  {{NULL}, LUA_VEMPTY,  /* value's value and type */
126
   LUA_VNIL, 0, {NULL}}  /* key type, next, and key value */
127
};
128
129
130
static const TValue absentkey = {ABSTKEYCONSTANT};
131
132
133
/*
134
** Hash for integers. To allow a good hash, use the remainder operator
135
** ('%'). If integer fits as a non-negative int, compute an int
136
** remainder, which is faster. Otherwise, use an unsigned-integer
137
** remainder, which uses all bits and ensures a non-negative result.
138
*/
139
1.14M
static Node *hashint (const Table *t, lua_Integer i) {
140
1.14M
  lua_Unsigned ui = l_castS2U(i);
141
1.14M
  if (ui <= cast_uint(INT_MAX))
142
751k
    return hashmod(t, cast_int(ui));
143
394k
  else
144
394k
    return hashmod(t, ui);
145
1.14M
}
146
147
148
/*
149
** Hash for floating-point numbers.
150
** The main computation should be just
151
**     n = frexp(n, &i); return (n * INT_MAX) + i
152
** but there are some numerical subtleties.
153
** In a two-complement representation, INT_MAX does not has an exact
154
** representation as a float, but INT_MIN does; because the absolute
155
** value of 'frexp' is smaller than 1 (unless 'n' is inf/NaN), the
156
** absolute value of the product 'frexp * -INT_MIN' is smaller or equal
157
** to INT_MAX. Next, the use of 'unsigned int' avoids overflows when
158
** adding 'i'; the use of '~u' (instead of '-u') avoids problems with
159
** INT_MIN.
160
*/
161
#if !defined(l_hashfloat)
162
192k
static int l_hashfloat (lua_Number n) {
163
192k
  int i;
164
192k
  lua_Integer ni;
165
192k
  n = l_mathop(frexp)(n, &i) * -cast_num(INT_MIN);
166
192k
  if (!lua_numbertointeger(n, &ni)) {  /* is 'n' inf/-inf/NaN? */
167
11.2k
    lua_assert(luai_numisnan(n) || l_mathop(fabs)(n) == cast_num(HUGE_VAL));
168
11.2k
    return 0;
169
11.2k
  }
170
181k
  else {  /* normal case */
171
181k
    unsigned int u = cast_uint(i) + cast_uint(ni);
172
181k
    return cast_int(u <= cast_uint(INT_MAX) ? u : ~u);
173
181k
  }
174
192k
}
175
#endif
176
177
178
/*
179
** returns the 'main' position of an element in a table (that is,
180
** the index of its hash value).
181
*/
182
1.31M
static Node *mainpositionTV (const Table *t, const TValue *key) {
183
1.31M
  switch (ttypetag(key)) {
184
370k
    case LUA_VNUMINT: {
185
370k
      lua_Integer i = ivalue(key);
186
0
      return hashint(t, i);
187
370k
    }
188
192k
    case LUA_VNUMFLT: {
189
192k
      lua_Number n = fltvalue(key);
190
192k
      return hashmod(t, l_hashfloat(n));
191
192k
    }
192
549k
    case LUA_VSHRSTR: {
193
1.09M
      TString *ts = tsvalue(key);
194
1.09M
      return hashstr(t, ts);
195
1.09M
    }
196
203k
    case LUA_VLNGSTR: {
197
407k
      TString *ts = tsvalue(key);
198
407k
      return hashpow2(t, luaS_hashlongstr(ts));
199
407k
    }
200
21
    case LUA_VFALSE:
201
21
      return hashboolean(t, 0);
202
1.87k
    case LUA_VTRUE:
203
1.87k
      return hashboolean(t, 1);
204
0
    case LUA_VLIGHTUSERDATA: {
205
0
      void *p = pvalue(key);
206
0
      return hashpointer(t, p);
207
0
    }
208
0
    case LUA_VLCF: {
209
0
      lua_CFunction f = fvalue(key);
210
0
      return hashpointer(t, f);
211
0
    }
212
517
    default: {
213
517
      GCObject *o = gcvalue(key);
214
517
      return hashpointer(t, o);
215
517
    }
216
1.31M
  }
217
1.31M
}
218
219
220
230k
l_sinline Node *mainpositionfromnode (const Table *t, Node *nd) {
221
230k
  TValue key;
222
230k
  getnodekey(cast(lua_State *, NULL), &key, nd);
223
230k
  return mainpositionTV(t, &key);
224
230k
}
225
226
227
/*
228
** Check whether key 'k1' is equal to the key in node 'n2'. This
229
** equality is raw, so there are no metamethods. Floats with integer
230
** values have been normalized, so integers cannot be equal to
231
** floats. It is assumed that 'eqshrstr' is simply pointer equality, so
232
** that short strings are handled in the default case.
233
** A true 'deadok' means to accept dead keys as equal to their original
234
** values. All dead keys are compared in the default case, by pointer
235
** identity. (Only collectable objects can produce dead keys.) Note that
236
** dead long strings are also compared by identity.
237
** Once a key is dead, its corresponding value may be collected, and
238
** then another value can be created with the same address. If this
239
** other value is given to 'next', 'equalkey' will signal a false
240
** positive. In a regular traversal, this situation should never happen,
241
** as all keys given to 'next' came from the table itself, and therefore
242
** could not have been collected. Outside a regular traversal, we
243
** have garbage in, garbage out. What is relevant is that this false
244
** positive does not break anything.  (In particular, 'next' will return
245
** some other valid item on the table or nil.)
246
*/
247
512k
static int equalkey (const TValue *k1, const Node *n2, int deadok) {
248
512k
  if ((rawtt(k1) != keytt(n2)) &&  /* not the same variants? */
249
512k
       !(deadok && keyisdead(n2) && iscollectable(k1)))
250
128k
   return 0;  /* cannot be same key */
251
384k
  switch (keytt(n2)) {
252
980
    case LUA_VNIL: case LUA_VFALSE: case LUA_VTRUE:
253
980
      return 1;
254
0
    case LUA_VNUMINT:
255
0
      return (ivalue(k1) == keyival(n2));
256
181k
    case LUA_VNUMFLT:
257
181k
      return luai_numeq(fltvalue(k1), fltvalueraw(keyval(n2)));
258
0
    case LUA_VLIGHTUSERDATA:
259
0
      return pvalue(k1) == pvalueraw(keyval(n2));
260
0
    case LUA_VLCF:
261
0
      return fvalue(k1) == fvalueraw(keyval(n2));
262
201k
    case ctb(LUA_VLNGSTR):
263
403k
      return luaS_eqlngstr(tsvalue(k1), keystrval(n2));
264
463
    default:
265
463
      return gcvalue(k1) == gcvalueraw(keyval(n2));
266
384k
  }
267
384k
}
268
269
270
/*
271
** True if value of 'alimit' is equal to the real size of the array
272
** part of table 't'. (Otherwise, the array part must be larger than
273
** 'alimit'.)
274
*/
275
1.64M
#define limitequalsasize(t) (isrealasize(t) || ispow2((t)->alimit))
276
277
278
/*
279
** Returns the real size of the 'array' array
280
*/
281
1.55M
LUAI_FUNC unsigned int luaH_realasize (const Table *t) {
282
1.55M
  if (limitequalsasize(t))
283
1.20M
    return t->alimit;  /* this is the size */
284
347k
  else {
285
347k
    unsigned int size = t->alimit;
286
    /* compute the smallest power of 2 not smaller than 'size' */
287
347k
    size |= (size >> 1);
288
347k
    size |= (size >> 2);
289
347k
    size |= (size >> 4);
290
347k
    size |= (size >> 8);
291
347k
#if (UINT_MAX >> 14) > 3  /* unsigned int has more than 16 bits */
292
347k
    size |= (size >> 16);
293
#if (UINT_MAX >> 30) > 3
294
    size |= (size >> 32);  /* unsigned int has more than 32 bits */
295
#endif
296
347k
#endif
297
347k
    size++;
298
347k
    lua_assert(ispow2(size) && size/2 < t->alimit && t->alimit < size);
299
347k
    return size;
300
347k
  }
301
1.55M
}
302
303
304
/*
305
** Check whether real size of the array is a power of 2.
306
** (If it is not, 'alimit' cannot be changed to any other value
307
** without changing the real size.)
308
*/
309
100k
static int ispow2realasize (const Table *t) {
310
100k
  return (!isrealasize(t) || ispow2(t->alimit));
311
100k
}
312
313
314
353k
static unsigned int setlimittosize (Table *t) {
315
353k
  t->alimit = luaH_realasize(t);
316
353k
  setrealasize(t);
317
353k
  return t->alimit;
318
353k
}
319
320
321
149k
#define limitasasize(t) check_exp(isrealasize(t), t->alimit)
322
323
324
325
/*
326
** "Generic" get version. (Not that generic: not valid for integers,
327
** which may be in array part, nor for floats with integral values.)
328
** See explanation about 'deadok' in function 'equalkey'.
329
*/
330
358k
static const TValue *getgeneric (Table *t, const TValue *key, int deadok) {
331
358k
  Node *n = mainpositionTV(t, key);
332
512k
  for (;;) {  /* check whether 'key' is somewhere in the chain */
333
512k
    if (equalkey(key, n, deadok))
334
320k
      return gval(n);  /* that's it */
335
191k
    else {
336
191k
      int nx = gnext(n);
337
191k
      if (nx == 0)
338
38.1k
        return &absentkey;  /* not found */
339
153k
      n += nx;
340
153k
    }
341
512k
  }
342
358k
}
343
344
345
/*
346
** returns the index for 'k' if 'k' is an appropriate key to live in
347
** the array part of a table, 0 otherwise.
348
*/
349
200k
static unsigned int arrayindex (lua_Integer k) {
350
200k
  if (l_castS2U(k) - 1u < MAXASIZE)  /* 'k' in [1, MAXASIZE]? */
351
154k
    return cast_uint(k);  /* 'key' is an appropriate array index */
352
46.1k
  else
353
46.1k
    return 0;
354
200k
}
355
356
357
/*
358
** returns the index of a 'key' for table traversals. First goes all
359
** elements in the array part, then elements in the hash part. The
360
** beginning of a traversal is signaled by 0.
361
*/
362
static unsigned findindex (lua_State *L, Table *t, TValue *key,
363
0
                               unsigned asize) {
364
0
  unsigned int i;
365
0
  if (ttisnil(key)) return 0;  /* first iteration */
366
0
  i = ttisinteger(key) ? arrayindex(ivalue(key)) : 0;
367
0
  if (i - 1u < asize)  /* is 'key' inside array part? */
368
0
    return i;  /* yes; that's the index */
369
0
  else {
370
0
    const TValue *n = getgeneric(t, key, 1);
371
0
    if (l_unlikely(isabstkey(n)))
372
0
      luaG_runerror(L, "invalid key to 'next'");  /* key not found */
373
0
    i = cast_int(nodefromval(n) - gnode(t, 0));  /* key index in hash table */
374
    /* hash elements are numbered after array ones */
375
0
    return (i + 1) + asize;
376
0
  }
377
0
}
378
379
380
0
int luaH_next (lua_State *L, Table *t, StkId key) {
381
0
  unsigned int asize = luaH_realasize(t);
382
0
  unsigned int i = findindex(L, t, s2v(key), asize);  /* find original key */
383
0
  for (; i < asize; i++) {  /* try first array part */
384
0
    int tag = *getArrTag(t, i);
385
0
    if (!tagisempty(tag)) {  /* a non-empty entry? */
386
0
      setivalue(s2v(key), i + 1);
387
0
      farr2val(t, i + 1, tag, s2v(key + 1));
388
0
      return 1;
389
0
    }
390
0
  }
391
0
  for (i -= asize; cast_int(i) < sizenode(t); i++) {  /* hash part */
392
0
    if (!isempty(gval(gnode(t, i)))) {  /* a non-empty entry? */
393
0
      Node *n = gnode(t, i);
394
0
      getnodekey(L, s2v(key), n);
395
0
      setobj2s(L, key + 1, gval(n));
396
0
      return 1;
397
0
    }
398
0
  }
399
0
  return 0;  /* no more elements */
400
0
}
401
402
403
330k
static void freehash (lua_State *L, Table *t) {
404
330k
  if (!isdummy(t)) {
405
149k
    size_t bsize = sizenode(t) * sizeof(Node);  /* 'node' size in bytes */
406
149k
    char *arr = cast_charp(t->node);
407
149k
    if (haslastfree(t)) {
408
30.3k
      bsize += sizeof(Limbox);
409
30.3k
      arr -= sizeof(Limbox);
410
30.3k
    }
411
149k
    luaM_freearray(L, arr, bsize);
412
149k
  }
413
330k
}
414
415
416
/*
417
** Check whether an integer key is in the array part. If 'alimit' is
418
** not the real size of the array, the key still can be in the array
419
** part.  In this case, do the "Xmilia trick" to check whether 'key-1'
420
** is smaller than the real size.
421
** The trick works as follow: let 'p' be the integer such that
422
** '2^(p+1) >= alimit > 2^p', or '2^(p+1) > alimit-1 >= 2^p'.  That is,
423
** 'p' is the highest 1-bit in 'alimit-1', and 2^(p+1) is the real size
424
** of the array. What we have to check becomes 'key-1 < 2^(p+1)'.  We
425
** compute '(key-1) & ~(alimit-1)', which we call 'res'; it will have
426
** the 'p' bit cleared. (It may also clear other bits smaller than 'p',
427
** but no bit higher than 'p'.) If the key is outside the array, that
428
** is, 'key-1 >= 2^(p+1)', then 'res' will have some 1-bit higher than
429
** 'p', therefore it will be larger or equal to 'alimit', and the check
430
** will fail. If 'key-1 < 2^(p+1)', then 'res' has no 1-bit higher than
431
** 'p', and as the bit 'p' itself was cleared, 'res' will be smaller
432
** than 2^p, therefore smaller than 'alimit', and the check succeeds.
433
** As special cases, when 'alimit' is 0 the condition is trivially false,
434
** and when 'alimit' is 1 the condition simplifies to 'key-1 < alimit'.
435
** If key is 0 or negative, 'res' will have its higher bit on, so that
436
** it cannot be smaller than 'alimit'.
437
*/
438
889k
static int keyinarray (Table *t, lua_Integer key) {
439
889k
  lua_Unsigned alimit = t->alimit;
440
889k
  if (l_castS2U(key) - 1u < alimit)  /* 'key' in [1, t->alimit]? */
441
127k
    return 1;
442
761k
  else if (!isrealasize(t) &&  /* key still may be in the array part? */
443
761k
           (((l_castS2U(key) - 1u) & ~(alimit - 1u)) < alimit)) {
444
547
    t->alimit = cast_uint(key);  /* probably '#t' is here now */
445
547
    return 1;
446
547
  }
447
761k
  else
448
761k
    return 0;
449
889k
}
450
451
452
/*
453
** {=============================================================
454
** Rehash
455
** ==============================================================
456
*/
457
458
/*
459
** Compute the optimal size for the array part of table 't'. 'nums' is a
460
** "count array" where 'nums[i]' is the number of integers in the table
461
** between 2^(i - 1) + 1 and 2^i. 'pna' enters with the total number of
462
** integer keys in the table and leaves with the number of keys that
463
** will go to the array part; return the optimal size.  (The condition
464
** 'twotoi > 0' in the for loop stops the loop if 'twotoi' overflows.)
465
*/
466
149k
static unsigned computesizes (unsigned nums[], unsigned *pna) {
467
149k
  int i;
468
149k
  unsigned int twotoi;  /* 2^i (candidate for optimal size) */
469
149k
  unsigned int a = 0;  /* number of elements smaller than 2^i */
470
149k
  unsigned int na = 0;  /* number of elements to go to array part */
471
149k
  unsigned int optimal = 0;  /* optimal size for array part */
472
  /* loop while keys can fill more than half of total size */
473
149k
  for (i = 0, twotoi = 1;
474
592k
       twotoi > 0 && *pna > twotoi / 2;
475
443k
       i++, twotoi *= 2) {
476
443k
    a += nums[i];
477
443k
    if (a > twotoi/2) {  /* more than half elements present? */
478
439k
      optimal = twotoi;  /* optimal size (till now) */
479
439k
      na = a;  /* all elements up to 'optimal' will go to array part */
480
439k
    }
481
443k
  }
482
149k
  lua_assert((optimal == 0 || optimal / 2 < na) && na <= optimal);
483
149k
  *pna = na;
484
149k
  return optimal;
485
149k
}
486
487
488
200k
static int countint (lua_Integer key, unsigned int *nums) {
489
200k
  unsigned int k = arrayindex(key);
490
200k
  if (k != 0) {  /* is 'key' an appropriate array index? */
491
154k
    nums[luaO_ceillog2(k)]++;  /* count as such */
492
154k
    return 1;
493
154k
  }
494
46.1k
  else
495
46.1k
    return 0;
496
200k
}
497
498
499
1.00M
l_sinline int arraykeyisempty (const Table *t, lua_Integer key) {
500
1.00M
  int tag = *getArrTag(t, key - 1);
501
1.00M
  return tagisempty(tag);
502
1.00M
}
503
504
505
/*
506
** Count keys in array part of table 't': Fill 'nums[i]' with
507
** number of keys that will go into corresponding slice and return
508
** total number of non-nil keys.
509
*/
510
149k
static unsigned numusearray (const Table *t, unsigned *nums) {
511
149k
  int lg;
512
149k
  unsigned int ttlg;  /* 2^lg */
513
149k
  unsigned int ause = 0;  /* summation of 'nums' */
514
149k
  unsigned int i = 1;  /* count to traverse all array keys */
515
149k
  unsigned int asize = limitasasize(t);  /* real array size */
516
  /* traverse each slice */
517
631k
  for (lg = 0, ttlg = 1; lg <= MAXABITS; lg++, ttlg *= 2) {
518
631k
    unsigned int lc = 0;  /* counter */
519
631k
    unsigned int lim = ttlg;
520
631k
    if (lim > asize) {
521
193k
      lim = asize;  /* adjust upper limit */
522
193k
      if (i > lim)
523
149k
        break;  /* no more elements to count */
524
193k
    }
525
    /* count elements in range (2^(lg - 1), 2^lg] */
526
1.12M
    for (; i <= lim; i++) {
527
641k
      if (!arraykeyisempty(t, i))
528
451k
        lc++;
529
641k
    }
530
482k
    nums[lg] += lc;
531
482k
    ause += lc;
532
482k
  }
533
149k
  return ause;
534
149k
}
535
536
537
149k
static int numusehash (const Table *t, unsigned *nums, unsigned *pna) {
538
149k
  int totaluse = 0;  /* total number of elements */
539
149k
  int ause = 0;  /* elements added to 'nums' (can go to array part) */
540
149k
  int i = sizenode(t);
541
512k
  while (i--) {
542
363k
    Node *n = &t->node[i];
543
363k
    if (!isempty(gval(n))) {
544
318k
      if (keyisinteger(n))
545
135k
        ause += countint(keyival(n), nums);
546
318k
      totaluse++;
547
318k
    }
548
363k
  }
549
149k
  *pna += ause;
550
149k
  return totaluse;
551
149k
}
552
553
554
/*
555
** Convert an "abstract size" (number of slots in an array) to
556
** "concrete size" (number of bytes in the array).
557
*/
558
243k
static size_t concretesize (unsigned int size) {
559
243k
  return size * sizeof(Value) + size;  /* space for the two arrays */
560
243k
}
561
562
563
/*
564
** Resize the array part of a table. If new size is equal to the old,
565
** do nothing. Else, if new size is zero, free the old array. (It must
566
** be present, as the sizes are different.) Otherwise, allocate a new
567
** array, move the common elements to new proper position, and then
568
** frees old array.
569
** When array grows, we could reallocate it, but we still would need
570
** to move the elements to their new position, so the copy implicit
571
** in realloc is a waste.  When array shrinks, it always erases some
572
** elements that should still be in the array, so we must reallocate in
573
** two steps anyway. It is simpler to always reallocate in two steps.
574
*/
575
static Value *resizearray (lua_State *L , Table *t,
576
                               unsigned oldasize,
577
330k
                               unsigned newasize) {
578
330k
  if (oldasize == newasize)
579
175k
    return t->array;  /* nothing to be done */
580
154k
  else if (newasize == 0) {  /* erasing array? */
581
55.1k
    Value *op = t->array - oldasize;  /* original array's real address */
582
55.1k
    luaM_freemem(L, op, concretesize(oldasize));  /* free it */
583
55.1k
    return NULL;
584
55.1k
  }
585
99.5k
  else {
586
99.5k
    size_t newasizeb = concretesize(newasize);
587
99.5k
    Value *np = cast(Value *,
588
99.5k
                  luaM_reallocvector(L, NULL, 0, newasizeb, lu_byte));
589
99.5k
    if (np == NULL)  /* allocation error? */
590
0
      return NULL;
591
99.5k
    if (oldasize > 0) {
592
44.3k
      Value *op = t->array - oldasize;  /* real original array */
593
44.3k
      unsigned tomove = (oldasize < newasize) ? oldasize : newasize;
594
44.3k
      lua_assert(tomove > 0);
595
      /* move common elements to new position */
596
44.3k
      memcpy(np + newasize - tomove,
597
44.3k
             op + oldasize - tomove,
598
44.3k
             concretesize(tomove));
599
44.3k
      luaM_freemem(L, op, concretesize(oldasize));
600
44.3k
    }
601
99.5k
    return np + newasize;  /* shift pointer to the end of value segment */
602
99.5k
  }
603
330k
}
604
605
606
/*
607
** Creates an array for the hash part of a table with the given
608
** size, or reuses the dummy node if size is zero.
609
** The computation for size overflow is in two steps: the first
610
** comparison ensures that the shift in the second one does not
611
** overflow.
612
*/
613
330k
static void setnodevector (lua_State *L, Table *t, unsigned size) {
614
330k
  if (size == 0) {  /* no elements to hash part? */
615
180k
    t->node = cast(Node *, dummynode);  /* use common 'dummynode' */
616
180k
    t->lsizenode = 0;
617
180k
    setdummy(t);  /* signal that it is using dummy node */
618
180k
  }
619
149k
  else {
620
149k
    int i;
621
149k
    int lsize = luaO_ceillog2(size);
622
149k
    if (lsize > MAXHBITS || (1u << lsize) > MAXHSIZE)
623
0
      luaG_runerror(L, "table overflow");
624
149k
    size = twoto(lsize);
625
149k
    if (lsize <= LIMFORLAST)  /* no 'lastfree' field? */
626
119k
      t->node = luaM_newvector(L, size, Node);
627
30.3k
    else {
628
30.3k
      size_t bsize = size * sizeof(Node) + sizeof(Limbox);
629
30.3k
      char *node = luaM_newblock(L, bsize);
630
30.3k
      t->node = cast(Node *, node + sizeof(Limbox));
631
30.3k
      getlastfree(t) = gnode(t, size);  /* all positions are free */
632
30.3k
    }
633
149k
    t->lsizenode = cast_byte(lsize);
634
149k
    setnodummy(t);
635
807k
    for (i = 0; i < cast_int(size); i++) {
636
658k
      Node *n = gnode(t, i);
637
658k
      gnext(n) = 0;
638
658k
      setnilkey(n);
639
658k
      setempty(gval(n));
640
658k
    }
641
149k
  }
642
330k
}
643
644
645
/*
646
** (Re)insert all elements from the hash part of 'ot' into table 't'.
647
*/
648
204k
static void reinsert (lua_State *L, Table *ot, Table *t) {
649
204k
  int j;
650
204k
  int size = sizenode(ot);
651
622k
  for (j = 0; j < size; j++) {
652
418k
    Node *old = gnode(ot, j);
653
418k
    if (!isempty(gval(old))) {
654
      /* doesn't need barrier/invalidate cache, as entry was
655
         already present in the table */
656
318k
      TValue k;
657
318k
      getnodekey(L, &k, old);
658
318k
      luaH_set(L, t, &k, gval(old));
659
318k
    }
660
418k
  }
661
204k
}
662
663
664
/*
665
** Exchange the hash part of 't1' and 't2'. (In 'flags', only the
666
** dummy bit must be exchanged: The 'isrealasize' is not related
667
** to the hash part, and the metamethod bits do not change during
668
** a resize, so the "real" table can keep their values.)
669
*/
670
292k
static void exchangehashpart (Table *t1, Table *t2) {
671
292k
  lu_byte lsizenode = t1->lsizenode;
672
292k
  Node *node = t1->node;
673
292k
  int bitdummy1 = t1->flags & BITDUMMY;
674
292k
  t1->lsizenode = t2->lsizenode;
675
292k
  t1->node = t2->node;
676
292k
  t1->flags = (t1->flags & NOTBITDUMMY) | (t2->flags & BITDUMMY);
677
292k
  t2->lsizenode = lsizenode;
678
292k
  t2->node = node;
679
292k
  t2->flags = (t2->flags & NOTBITDUMMY) | bitdummy1;
680
292k
}
681
682
683
/*
684
** Re-insert into the new hash part of a table the elements from the
685
** vanishing slice of the array part.
686
*/
687
static void reinsertOldSlice (lua_State *L, Table *t, unsigned oldasize,
688
44.1k
                                            unsigned newasize) {
689
44.1k
  unsigned i;
690
44.1k
  t->alimit = newasize;  /* pretend array has new size... */
691
88.3k
  for (i = newasize; i < oldasize; i++) {  /* traverse vanishing slice */
692
44.1k
    int tag = *getArrTag(t, i);
693
44.1k
    if (!tagisempty(tag)) {  /* a non-empty entry? */
694
42
      TValue aux;
695
42
      farr2val(t, i + 1, tag, &aux);  /* copy entry into 'aux' */
696
42
      luaH_setint(L, t, i + 1, &aux);  /* re-insert it into the table */
697
42
    }
698
44.1k
  }
699
44.1k
  t->alimit = oldasize;  /* restore current size... */
700
44.1k
}
701
702
703
/*
704
** Clear new slice of the array.
705
*/
706
204k
static void clearNewSlice (Table *t, unsigned oldasize, unsigned newasize) {
707
2.11M
  for (; oldasize < newasize; oldasize++)
708
1.90M
    *getArrTag(t, oldasize) = LUA_VEMPTY;
709
204k
}
710
711
712
/*
713
** Resize table 't' for the new given sizes. Both allocations (for
714
** the hash part and for the array part) can fail, which creates some
715
** subtleties. If the first allocation, for the hash part, fails, an
716
** error is raised and that is it. Otherwise, it copies the elements from
717
** the shrinking part of the array (if it is shrinking) into the new
718
** hash. Then it reallocates the array part.  If that fails, the table
719
** is in its original state; the function frees the new hash part and then
720
** raises the allocation error. Otherwise, it sets the new hash part
721
** into the table, initializes the new part of the array (if any) with
722
** nils and reinserts the elements of the old hash back into the new
723
** parts of the table.
724
*/
725
void luaH_resize (lua_State *L, Table *t, unsigned newasize,
726
204k
                                          unsigned nhsize) {
727
204k
  Table newt;  /* to keep the new hash part */
728
204k
  unsigned int oldasize = setlimittosize(t);
729
204k
  Value *newarray;
730
204k
  if (newasize > MAXASIZE)
731
0
    luaG_runerror(L, "table overflow");
732
  /* create new hash part with appropriate size into 'newt' */
733
204k
  newt.flags = 0;
734
204k
  setnodevector(L, &newt, nhsize);
735
204k
  if (newasize < oldasize) {  /* will array shrink? */
736
    /* re-insert into the new hash the elements from vanishing slice */
737
44.1k
    exchangehashpart(t, &newt);  /* pretend table has new hash */
738
44.1k
    reinsertOldSlice(L, t, oldasize, newasize);
739
44.1k
    exchangehashpart(t, &newt);  /* restore old hash (in case of errors) */
740
44.1k
  }
741
  /* allocate new array */
742
204k
  newarray = resizearray(L, t, oldasize, newasize);
743
204k
  if (l_unlikely(newarray == NULL && newasize > 0)) {  /* allocation failed? */
744
0
    freehash(L, &newt);  /* release new hash part */
745
0
    luaM_error(L);  /* raise error (with array unchanged) */
746
0
  }
747
  /* allocation ok; initialize new part of the array */
748
204k
  exchangehashpart(t, &newt);  /* 't' has the new hash ('newt' has the old) */
749
204k
  t->array = newarray;  /* set new array part */
750
204k
  t->alimit = newasize;
751
204k
  clearNewSlice(t, oldasize, newasize);
752
  /* re-insert elements from old hash part into new parts */
753
204k
  reinsert(L, &newt, t);  /* 'newt' now has the old hash */
754
204k
  freehash(L, &newt);  /* free old hash part */
755
204k
}
756
757
758
10.1k
void luaH_resizearray (lua_State *L, Table *t, unsigned int nasize) {
759
10.1k
  int nsize = allocsizenode(t);
760
10.1k
  luaH_resize(L, t, nasize, nsize);
761
10.1k
}
762
763
/*
764
** nums[i] = number of keys 'k' where 2^(i - 1) < k <= 2^i
765
*/
766
149k
static void rehash (lua_State *L, Table *t, const TValue *ek) {
767
149k
  unsigned int asize;  /* optimal size for array part */
768
149k
  unsigned int na;  /* number of keys in the array part */
769
149k
  unsigned int nums[MAXABITS + 1];
770
149k
  int i;
771
149k
  int totaluse;
772
4.92M
  for (i = 0; i <= MAXABITS; i++) nums[i] = 0;  /* reset counts */
773
149k
  setlimittosize(t);
774
149k
  na = numusearray(t, nums);  /* count keys in array part */
775
149k
  totaluse = na;  /* all those keys are integer keys */
776
149k
  totaluse += numusehash(t, nums, &na);  /* count keys in hash part */
777
  /* count extra key */
778
149k
  if (ttisinteger(ek))
779
64.6k
    na += countint(ivalue(ek), nums);
780
149k
  totaluse++;
781
  /* compute new size for array part */
782
149k
  asize = computesizes(nums, &na);
783
  /* resize the table to new computed sizes */
784
149k
  luaH_resize(L, t, asize, totaluse - na);
785
149k
}
786
787
788
789
/*
790
** }=============================================================
791
*/
792
793
794
125k
Table *luaH_new (lua_State *L) {
795
125k
  GCObject *o = luaC_newobj(L, LUA_VTABLE, sizeof(Table));
796
125k
  Table *t = gco2t(o);
797
0
  t->metatable = NULL;
798
125k
  t->flags = cast_byte(maskflags);  /* table has no metamethod fields */
799
125k
  t->array = NULL;
800
125k
  t->alimit = 0;
801
125k
  setnodevector(L, t, 0);
802
125k
  return t;
803
125k
}
804
805
806
/*
807
** Frees a table.
808
*/
809
125k
void luaH_free (lua_State *L, Table *t) {
810
125k
  unsigned int realsize = luaH_realasize(t);
811
125k
  freehash(L, t);
812
125k
  resizearray(L, t, realsize, 0);
813
125k
  luaM_free(L, t);
814
125k
}
815
816
817
380k
static Node *getfreepos (Table *t) {
818
380k
  if (haslastfree(t)) {  /* does it have 'lastfree' information? */
819
    /* look for a spot before 'lastfree', updating 'lastfree' */
820
246k
    while (getlastfree(t) > t->node) {
821
241k
      Node *free = --getlastfree(t);
822
241k
      if (keyisnil(free))
823
138k
        return free;
824
241k
    }
825
143k
  }
826
236k
  else {  /* no 'lastfree' information */
827
236k
    if (!isdummy(t)) {
828
191k
      int i = sizenode(t);
829
448k
      while (i--) {  /* do a linear search */
830
348k
        Node *free = gnode(t, i);
831
348k
        if (keyisnil(free))
832
92.2k
          return free;
833
348k
      }
834
191k
    }
835
236k
  }
836
149k
  return NULL;  /* could not find a free place */
837
380k
}
838
839
840
841
/*
842
** Inserts a new key into a hash table; first, check whether key's main
843
** position is free. If not, check whether colliding node is in its main
844
** position or not: if it is not, move colliding node to an empty place
845
** and put new key in its main position; otherwise (colliding node is in
846
** its main position), new key goes to an empty position.
847
*/
848
static void luaH_newkey (lua_State *L, Table *t, const TValue *key,
849
1.10M
                                                 TValue *value) {
850
1.10M
  Node *mp;
851
1.10M
  TValue aux;
852
1.10M
  if (l_unlikely(ttisnil(key)))
853
0
    luaG_runerror(L, "table index is nil");
854
1.10M
  else if (ttisfloat(key)) {
855
37.4k
    lua_Number f = fltvalue(key);
856
0
    lua_Integer k;
857
37.4k
    if (luaV_flttointeger(f, &k, F2Ieq)) {  /* does key fit in an integer? */
858
24.1k
      setivalue(&aux, k);
859
24.1k
      key = &aux;  /* insert it as an integer */
860
24.1k
    }
861
13.2k
    else if (l_unlikely(luai_numisnan(f)))
862
0
      luaG_runerror(L, "table index is NaN");
863
37.4k
  }
864
1.10M
  if (ttisnil(value))
865
375k
    return;  /* do not insert nil values */
866
729k
  mp = mainpositionTV(t, key);
867
729k
  if (!isempty(gval(mp)) || isdummy(t)) {  /* main position is taken? */
868
380k
    Node *othern;
869
380k
    Node *f = getfreepos(t);  /* get a free place */
870
380k
    if (f == NULL) {  /* cannot find a free place? */
871
149k
      rehash(L, t, key);  /* grow table */
872
      /* whatever called 'newkey' takes care of TM cache */
873
149k
      luaH_set(L, t, key, value);  /* insert key into grown table */
874
149k
      return;
875
149k
    }
876
230k
    lua_assert(!isdummy(t));
877
230k
    othern = mainpositionfromnode(t, mp);
878
230k
    if (othern != mp) {  /* is colliding node out of its main position? */
879
      /* yes; move colliding node into free position */
880
55.2k
      while (othern + gnext(othern) != mp)  /* find previous */
881
12.1k
        othern += gnext(othern);
882
43.0k
      gnext(othern) = cast_int(f - othern);  /* rechain to point to 'f' */
883
43.0k
      *f = *mp;  /* copy colliding node into free pos. (mp->next also goes) */
884
43.0k
      if (gnext(mp) != 0) {
885
5.77k
        gnext(f) += cast_int(mp - f);  /* correct 'next' */
886
5.77k
        gnext(mp) = 0;  /* now 'mp' is free */
887
5.77k
      }
888
43.0k
      setempty(gval(mp));
889
43.0k
    }
890
187k
    else {  /* colliding node is in its own main position */
891
      /* new node will go into free position */
892
187k
      if (gnext(mp) != 0)
893
37.4k
        gnext(f) = cast_int((mp + gnext(mp)) - f);  /* chain new position */
894
187k
      else lua_assert(gnext(f) == 0);
895
187k
      gnext(mp) = cast_int(f - mp);
896
187k
      mp = f;
897
187k
    }
898
230k
  }
899
580k
  setnodekey(L, mp, key);
900
580k
  luaC_barrierback(L, obj2gco(t), key);
901
580k
  lua_assert(isempty(gval(mp)));
902
580k
  setobj2t(L, gval(mp), value);
903
580k
}
904
905
906
776k
static const TValue *getintfromhash (Table *t, lua_Integer key) {
907
776k
  Node *n = hashint(t, key);
908
776k
  lua_assert(l_castS2U(key) - 1u >= luaH_realasize(t));
909
961k
  for (;;) {  /* check whether 'key' is somewhere in the chain */
910
961k
    if (keyisinteger(n) && keyival(n) == key)
911
475k
      return gval(n);  /* that's it */
912
485k
    else {
913
485k
      int nx = gnext(n);
914
485k
      if (nx == 0) break;
915
184k
      n += nx;
916
184k
    }
917
961k
  }
918
300k
  return &absentkey;
919
776k
}
920
921
922
14.7k
static int hashkeyisempty (Table *t, lua_Integer key) {
923
14.7k
  const TValue *val = getintfromhash(t, key);
924
14.7k
  return isempty(val);
925
14.7k
}
926
927
928
29.0M
static int finishnodeget (const TValue *val, TValue *res) {
929
29.0M
  if (!ttisnil(val)) {
930
27.7M
    setobj(((lua_State*)NULL), res, val);
931
27.7M
  }
932
29.0M
  return ttypetag(val);
933
29.0M
}
934
935
936
314k
int luaH_getint (Table *t, lua_Integer key, TValue *res) {
937
314k
  if (keyinarray(t, key)) {
938
116k
    int tag = *getArrTag(t, key - 1);
939
116k
    if (!tagisempty(tag))
940
116k
      farr2val(t, key, tag, res);
941
116k
    return tag;
942
116k
  }
943
197k
  else
944
197k
    return finishnodeget(getintfromhash(t, key), res);
945
314k
}
946
947
948
/*
949
** search function for short strings
950
*/
951
58.1M
const TValue *luaH_Hgetshortstr (Table *t, TString *key) {
952
58.1M
  Node *n = hashstr(t, key);
953
58.1M
  lua_assert(key->tt == LUA_VSHRSTR);
954
70.2M
  for (;;) {  /* check whether 'key' is somewhere in the chain */
955
70.2M
    if (keyisshrstr(n) && eqshrstr(keystrval(n), key))
956
56.1M
      return gval(n);  /* that's it */
957
14.0M
    else {
958
14.0M
      int nx = gnext(n);
959
14.0M
      if (nx == 0)
960
2.01M
        return &absentkey;  /* not found */
961
12.0M
      n += nx;
962
12.0M
    }
963
70.2M
  }
964
58.1M
}
965
966
967
2.23M
int luaH_getshortstr (Table *t, TString *key, TValue *res) {
968
2.23M
  return finishnodeget(luaH_Hgetshortstr(t, key), res);
969
2.23M
}
970
971
972
26.8M
static const TValue *Hgetstr (Table *t, TString *key) {
973
26.8M
  if (key->tt == LUA_VSHRSTR)
974
26.8M
    return luaH_Hgetshortstr(t, key);
975
80.3k
  else {  /* for long strings, use generic case */
976
80.3k
    TValue ko;
977
80.3k
    setsvalue(cast(lua_State *, NULL), &ko, key);
978
80.3k
    return getgeneric(t, &ko, 0);
979
80.3k
  }
980
26.8M
}
981
982
983
246
int luaH_getstr (Table *t, TString *key, TValue *res) {
984
246
  return finishnodeget(Hgetstr(t, key), res);
985
246
}
986
987
988
26.8M
TString *luaH_getstrkey (Table *t, TString *key) {
989
26.8M
  const TValue *o = Hgetstr(t, key);
990
26.8M
  if (!isabstkey(o))  /* string already present? */
991
26.8M
    return keystrval(nodefromval(o));  /* get saved copy */
992
32.1k
  else
993
32.1k
    return NULL;
994
26.8M
}
995
996
997
/*
998
** main search function
999
*/
1000
26.8M
int luaH_get (Table *t, const TValue *key, TValue *res) {
1001
26.8M
  const TValue *slot;
1002
26.8M
  switch (ttypetag(key)) {
1003
26.3M
    case LUA_VSHRSTR:
1004
26.3M
      slot = luaH_Hgetshortstr(t, tsvalue(key));
1005
0
      break;
1006
229k
    case LUA_VNUMINT:
1007
229k
      return luaH_getint(t, ivalue(key), res);
1008
30.3k
    case LUA_VNIL:
1009
30.3k
      slot = &absentkey;
1010
30.3k
      break;
1011
127k
    case LUA_VNUMFLT: {
1012
127k
      lua_Integer k;
1013
127k
      if (luaV_flttointeger(fltvalue(key), &k, F2Ieq)) /* integral index? */
1014
8.53k
        return luaH_getint(t, k, res);  /* use specialized version */
1015
      /* else... */
1016
127k
    }  /* FALLTHROUGH */
1017
201k
    default:
1018
201k
      slot = getgeneric(t, key, 0);
1019
201k
      break;
1020
26.8M
  }
1021
26.5M
  return finishnodeget(slot, res);
1022
26.8M
}
1023
1024
1025
3.39M
static int finishnodeset (Table *t, const TValue *slot, TValue *val) {
1026
3.39M
  if (!ttisnil(slot)) {
1027
2.18M
    setobj(((lua_State*)NULL), cast(TValue*, slot), val);
1028
2.18M
    return HOK;  /* success */
1029
2.18M
  }
1030
1.20M
  else if (isabstkey(slot))
1031
1.10M
    return HNOTFOUND;  /* no slot with that key */
1032
104k
  else  /* return node encoded */
1033
104k
    return cast_int((cast(Node*, slot) - t->node)) + HFIRSTNODE;
1034
3.39M
}
1035
1036
1037
42
static int rawfinishnodeset (const TValue *slot, TValue *val) {
1038
42
  if (isabstkey(slot))
1039
42
    return 0;  /* no slot with that key */
1040
0
  else {
1041
0
    setobj(((lua_State*)NULL), cast(TValue*, slot), val);
1042
0
    return 1;  /* success */
1043
0
  }
1044
42
}
1045
1046
1047
573k
int luaH_psetint (Table *t, lua_Integer key, TValue *val) {
1048
573k
  if (keyinarray(t, key)) {
1049
10.3k
    lu_byte *tag = getArrTag(t, key - 1);
1050
10.3k
    if (!tagisempty(*tag) || checknoTM(t->metatable, TM_NEWINDEX)) {
1051
10.3k
      fval2arr(t, key, tag, val);
1052
10.3k
      return HOK;  /* success */
1053
10.3k
    }
1054
0
    else
1055
0
      return ~cast_int(key);  /* empty slot in the array part */
1056
10.3k
  }
1057
563k
  else
1058
563k
    return finishnodeset(t, getintfromhash(t, key), val);
1059
573k
}
1060
1061
1062
2.75M
int luaH_psetshortstr (Table *t, TString *key, TValue *val) {
1063
2.75M
  return finishnodeset(t, luaH_Hgetshortstr(t, key), val);
1064
2.75M
}
1065
1066
1067
180
int luaH_psetstr (Table *t, TString *key, TValue *val) {
1068
180
  return finishnodeset(t, Hgetstr(t, key), val);
1069
180
}
1070
1071
1072
715k
int luaH_pset (Table *t, const TValue *key, TValue *val) {
1073
715k
  switch (ttypetag(key)) {
1074
378k
    case LUA_VSHRSTR: return luaH_psetshortstr(t, tsvalue(key), val);
1075
209k
    case LUA_VNUMINT: return luaH_psetint(t, ivalue(key), val);
1076
0
    case LUA_VNIL: return HNOTFOUND;
1077
103k
    case LUA_VNUMFLT: {
1078
103k
      lua_Integer k;
1079
103k
      if (luaV_flttointeger(fltvalue(key), &k, F2Ieq)) /* integral index? */
1080
49.4k
        return luaH_psetint(t, k, val);  /* use specialized version */
1081
      /* else... */
1082
103k
    }  /* FALLTHROUGH */
1083
77.3k
    default:
1084
77.3k
      return finishnodeset(t, getgeneric(t, key, 0), val);
1085
715k
  }
1086
715k
}
1087
1088
/*
1089
** Finish a raw "set table" operation, where 'slot' is where the value
1090
** should have been (the result of a previous "get table").
1091
** Beware: when using this function you probably need to check a GC
1092
** barrier and invalidate the TM cache.
1093
*/
1094
1095
1096
void luaH_finishset (lua_State *L, Table *t, const TValue *key,
1097
1.23M
                                    TValue *value, int hres) {
1098
1.23M
  lua_assert(hres != HOK);
1099
1.23M
  if (hres == HNOTFOUND) {
1100
1.10M
    luaH_newkey(L, t, key, value);
1101
1.10M
  }
1102
133k
  else if (hres > 0) {  /* regular Node? */
1103
104k
    setobj2t(L, gval(gnode(t, hres - HFIRSTNODE)), value);
1104
104k
  }
1105
28.8k
  else {  /* array entry */
1106
28.8k
    hres = ~hres;  /* real index */
1107
28.8k
    obj2arr(t, hres, value);
1108
28.8k
  }
1109
1.23M
}
1110
1111
1112
/*
1113
** beware: when using this function you probably need to check a GC
1114
** barrier and invalidate the TM cache.
1115
*/
1116
662k
void luaH_set (lua_State *L, Table *t, const TValue *key, TValue *value) {
1117
662k
  int hres = luaH_pset(t, key, value);
1118
662k
  if (hres != HOK)
1119
508k
    luaH_finishset(L, t, key, value, hres);
1120
662k
}
1121
1122
1123
/*
1124
** Ditto for a GC barrier. (No need to invalidate the TM cache, as
1125
** integers cannot be keys to metamethods.)
1126
*/
1127
1.72k
void luaH_setint (lua_State *L, Table *t, lua_Integer key, TValue *value) {
1128
1.72k
  if (keyinarray(t, key))
1129
1.68k
    obj2arr(t, key, value);
1130
42
  else {
1131
42
    int ok = rawfinishnodeset(getintfromhash(t, key), value);
1132
42
    if (!ok) {
1133
42
      TValue k;
1134
42
      setivalue(&k, key);
1135
42
      luaH_newkey(L, t, &k, value);
1136
42
    }
1137
42
  }
1138
1.72k
}
1139
1140
1141
/*
1142
** Try to find a boundary in the hash part of table 't'. From the
1143
** caller, we know that 'j' is zero or present and that 'j + 1' is
1144
** present. We want to find a larger key that is absent from the
1145
** table, so that we can do a binary search between the two keys to
1146
** find a boundary. We keep doubling 'j' until we get an absent index.
1147
** If the doubling would overflow, we try LUA_MAXINTEGER. If it is
1148
** absent, we are ready for the binary search. ('j', being max integer,
1149
** is larger or equal to 'i', but it cannot be equal because it is
1150
** absent while 'i' is present; so 'j > i'.) Otherwise, 'j' is a
1151
** boundary. ('j + 1' cannot be a present integer key because it is
1152
** not a valid integer in Lua.)
1153
*/
1154
1.99k
static lua_Unsigned hash_search (Table *t, lua_Unsigned j) {
1155
1.99k
  lua_Unsigned i;
1156
1.99k
  if (j == 0) j++;  /* the caller ensures 'j + 1' is present */
1157
2.26k
  do {
1158
2.26k
    i = j;  /* 'i' is a present index */
1159
2.26k
    if (j <= l_castS2U(LUA_MAXINTEGER) / 2)
1160
2.26k
      j *= 2;
1161
0
    else {
1162
0
      j = LUA_MAXINTEGER;
1163
0
      if (hashkeyisempty(t, j))  /* t[j] not present? */
1164
0
        break;  /* 'j' now is an absent index */
1165
0
      else  /* weird case */
1166
0
        return j;  /* well, max integer is a boundary... */
1167
0
    }
1168
2.26k
  } while (!hashkeyisempty(t, j));  /* repeat until an absent t[j] */
1169
  /* i < j  &&  t[i] present  &&  t[j] absent */
1170
11.9k
  while (j - i > 1u) {  /* do a binary search between them */
1171
9.90k
    lua_Unsigned m = (i + j) / 2;
1172
9.90k
    if (hashkeyisempty(t, m)) j = m;
1173
3.29k
    else i = m;
1174
9.90k
  }
1175
1.99k
  return i;
1176
1.99k
}
1177
1178
1179
15.2k
static unsigned int binsearch (Table *array, unsigned int i, unsigned int j) {
1180
74.0k
  while (j - i > 1u) {  /* binary search */
1181
58.8k
    unsigned int m = (i + j) / 2;
1182
58.8k
    if (arraykeyisempty(array, m)) j = m;
1183
10.3k
    else i = m;
1184
58.8k
  }
1185
15.2k
  return i;
1186
15.2k
}
1187
1188
1189
/*
1190
** Try to find a boundary in table 't'. (A 'boundary' is an integer index
1191
** such that t[i] is present and t[i+1] is absent, or 0 if t[1] is absent
1192
** and 'maxinteger' if t[maxinteger] is present.)
1193
** (In the next explanation, we use Lua indices, that is, with base 1.
1194
** The code itself uses base 0 when indexing the array part of the table.)
1195
** The code starts with 'limit = t->alimit', a position in the array
1196
** part that may be a boundary.
1197
**
1198
** (1) If 't[limit]' is empty, there must be a boundary before it.
1199
** As a common case (e.g., after 't[#t]=nil'), check whether 'limit-1'
1200
** is present. If so, it is a boundary. Otherwise, do a binary search
1201
** between 0 and limit to find a boundary. In both cases, try to
1202
** use this boundary as the new 'alimit', as a hint for the next call.
1203
**
1204
** (2) If 't[limit]' is not empty and the array has more elements
1205
** after 'limit', try to find a boundary there. Again, try first
1206
** the special case (which should be quite frequent) where 'limit+1'
1207
** is empty, so that 'limit' is a boundary. Otherwise, check the
1208
** last element of the array part. If it is empty, there must be a
1209
** boundary between the old limit (present) and the last element
1210
** (absent), which is found with a binary search. (This boundary always
1211
** can be a new limit.)
1212
**
1213
** (3) The last case is when there are no elements in the array part
1214
** (limit == 0) or its last element (the new limit) is present.
1215
** In this case, must check the hash part. If there is no hash part
1216
** or 'limit+1' is absent, 'limit' is a boundary.  Otherwise, call
1217
** 'hash_search' to find a boundary in the hash part of the table.
1218
** (In those cases, the boundary is not inside the array part, and
1219
** therefore cannot be used as a new limit.)
1220
*/
1221
187k
lua_Unsigned luaH_getn (Table *t) {
1222
187k
  unsigned int limit = t->alimit;
1223
187k
  if (limit > 0 && arraykeyisempty(t, limit)) {  /* (1)? */
1224
    /* there must be a boundary before 'limit' */
1225
100k
    if (limit >= 2 && !arraykeyisempty(t, limit - 1)) {
1226
      /* 'limit - 1' is a boundary; can it be a new limit? */
1227
85.2k
      if (ispow2realasize(t) && !ispow2(limit - 1)) {
1228
85.1k
        t->alimit = limit - 1;
1229
85.1k
        setnorealasize(t);  /* now 'alimit' is not the real size */
1230
85.1k
      }
1231
85.2k
      return limit - 1;
1232
85.2k
    }
1233
15.2k
    else {  /* must search for a boundary in [0, limit] */
1234
15.2k
      unsigned int boundary = binsearch(t, 0, limit);
1235
      /* can this boundary represent the real size of the array? */
1236
15.2k
      if (ispow2realasize(t) && boundary > luaH_realasize(t) / 2) {
1237
19
        t->alimit = boundary;  /* use it as the new limit */
1238
19
        setnorealasize(t);
1239
19
      }
1240
15.2k
      return boundary;
1241
15.2k
    }
1242
100k
  }
1243
  /* 'limit' is zero or present in table */
1244
87.4k
  if (!limitequalsasize(t)) {  /* (2)? */
1245
    /* 'limit' > 0 and array has more elements after 'limit' */
1246
48.2k
    if (arraykeyisempty(t, limit + 1))  /* 'limit + 1' is empty? */
1247
48.2k
      return limit;  /* this is the boundary */
1248
    /* else, try last element in the array */
1249
0
    limit = luaH_realasize(t);
1250
0
    if (arraykeyisempty(t, limit)) {  /* empty? */
1251
      /* there must be a boundary in the array after old limit,
1252
         and it must be a valid new limit */
1253
0
      unsigned int boundary = binsearch(t, t->alimit, limit);
1254
0
      t->alimit = boundary;
1255
0
      return boundary;
1256
0
    }
1257
    /* else, new limit is present in the table; check the hash part */
1258
0
  }
1259
  /* (3) 'limit' is the last element and either is zero or present in table */
1260
39.1k
  lua_assert(limit == luaH_realasize(t) &&
1261
39.1k
             (limit == 0 || !arraykeyisempty(t, limit)));
1262
39.1k
  if (isdummy(t) || hashkeyisempty(t, cast(lua_Integer, limit + 1)))
1263
37.1k
    return limit;  /* 'limit + 1' is absent */
1264
1.99k
  else  /* 'limit + 1' is also present */
1265
1.99k
    return hash_search(t, limit);
1266
39.1k
}
1267
1268
1269
1270
#if defined(LUA_DEBUG)
1271
1272
/* export these functions for the test library */
1273
1274
Node *luaH_mainposition (const Table *t, const TValue *key) {
1275
  return mainpositionTV(t, key);
1276
}
1277
1278
#endif