/src/testdir/build/lua-master/source/ltable.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | ** $Id: ltable.c $ |
3 | | ** Lua tables (hash) |
4 | | ** See Copyright Notice in lua.h |
5 | | */ |
6 | | |
7 | | #define ltable_c |
8 | | #define LUA_CORE |
9 | | |
10 | | #include "lprefix.h" |
11 | | |
12 | | |
13 | | /* |
14 | | ** Implementation of tables (aka arrays, objects, or hash tables). |
15 | | ** Tables keep its elements in two parts: an array part and a hash part. |
16 | | ** Non-negative integer keys are all candidates to be kept in the array |
17 | | ** part. The actual size of the array is the largest 'n' such that |
18 | | ** more than half the slots between 1 and n are in use. |
19 | | ** Hash uses a mix of chained scatter table with Brent's variation. |
20 | | ** A main invariant of these tables is that, if an element is not |
21 | | ** in its main position (i.e. the 'original' position that its hash gives |
22 | | ** to it), then the colliding element is in its own main position. |
23 | | ** Hence even when the load factor reaches 100%, performance remains good. |
24 | | */ |
25 | | |
26 | | #include <math.h> |
27 | | #include <limits.h> |
28 | | #include <string.h> |
29 | | |
30 | | #include "lua.h" |
31 | | |
32 | | #include "ldebug.h" |
33 | | #include "ldo.h" |
34 | | #include "lgc.h" |
35 | | #include "lmem.h" |
36 | | #include "lobject.h" |
37 | | #include "lstate.h" |
38 | | #include "lstring.h" |
39 | | #include "ltable.h" |
40 | | #include "lvm.h" |
41 | | |
42 | | |
43 | | /* |
44 | | ** Only hash parts with at least 2^LIMFORLAST have a 'lastfree' field |
45 | | ** that optimizes finding a free slot. That field is stored just before |
46 | | ** the array of nodes, in the same block. Smaller tables do a complete |
47 | | ** search when looking for a free slot. |
48 | | */ |
49 | 92.6k | #define LIMFORLAST 3 /* log2 of real limit (8) */ |
50 | | |
51 | | /* |
52 | | ** The union 'Limbox' stores 'lastfree' and ensures that what follows it |
53 | | ** is properly aligned to store a Node. |
54 | | */ |
55 | | typedef struct { Node *dummy; Node follows_pNode; } Limbox_aux; |
56 | | |
57 | | typedef union { |
58 | | Node *lastfree; |
59 | | char padding[offsetof(Limbox_aux, follows_pNode)]; |
60 | | } Limbox; |
61 | | |
62 | 86.1k | #define haslastfree(t) ((t)->lsizenode >= LIMFORLAST) |
63 | 222k | #define getlastfree(t) ((cast(Limbox *, (t)->node) - 1)->lastfree) |
64 | | |
65 | | |
66 | | /* |
67 | | ** MAXABITS is the largest integer such that 2^MAXABITS fits in an |
68 | | ** unsigned int. |
69 | | */ |
70 | 254k | #define MAXABITS (l_numbits(int) - 1) |
71 | | |
72 | | |
73 | | /* |
74 | | ** MAXASIZEB is the maximum number of elements in the array part such |
75 | | ** that the size of the array fits in 'size_t'. |
76 | | */ |
77 | 15.6k | #define MAXASIZEB (MAX_SIZET/(sizeof(Value) + 1)) |
78 | | |
79 | | |
80 | | /* |
81 | | ** MAXASIZE is the maximum size of the array part. It is the minimum |
82 | | ** between 2^MAXABITS and MAXASIZEB. |
83 | | */ |
84 | | #define MAXASIZE \ |
85 | 15.6k | (((1u << MAXABITS) < MAXASIZEB) ? (1u << MAXABITS) : cast_uint(MAXASIZEB)) |
86 | | |
87 | | /* |
88 | | ** MAXHBITS is the largest integer such that 2^MAXHBITS fits in a |
89 | | ** signed int. |
90 | | */ |
91 | 13.0k | #define MAXHBITS (MAXABITS - 1) |
92 | | |
93 | | |
94 | | /* |
95 | | ** MAXHSIZE is the maximum size of the hash part. It is the minimum |
96 | | ** between 2^MAXHBITS and the maximum size such that, measured in bytes, |
97 | | ** it fits in a 'size_t'. |
98 | | */ |
99 | 6.54k | #define MAXHSIZE luaM_limitN(1 << MAXHBITS, Node) |
100 | | |
101 | | |
102 | | /* |
103 | | ** When the original hash value is good, hashing by a power of 2 |
104 | | ** avoids the cost of '%'. |
105 | | */ |
106 | 49.9M | #define hashpow2(t,n) (gnode(t, lmod((n), sizenode(t)))) |
107 | | |
108 | | /* |
109 | | ** for other types, it is better to avoid modulo by power of 2, as |
110 | | ** they can have many 2 factors. |
111 | | */ |
112 | 76.2k | #define hashmod(t,n) (gnode(t, ((n) % ((sizenode(t)-1u)|1u)))) |
113 | | |
114 | | |
115 | 49.8M | #define hashstr(t,str) hashpow2(t, (str)->hash) |
116 | 555 | #define hashboolean(t,p) hashpow2(t, p) |
117 | | |
118 | | |
119 | 431 | #define hashpointer(t,p) hashmod(t, point2uint(p)) |
120 | | |
121 | | |
122 | | #define dummynode (&dummynode_) |
123 | | |
124 | | /* |
125 | | ** Common hash part for tables with empty hash parts. That allows all |
126 | | ** tables to have a hash part, avoiding an extra check ("is there a hash |
127 | | ** part?") when indexing. Its sole node has an empty value and a key |
128 | | ** (DEADKEY, NULL) that is different from any valid TValue. |
129 | | */ |
130 | | static const Node dummynode_ = { |
131 | | {{NULL}, LUA_VEMPTY, /* value's value and type */ |
132 | | LUA_TDEADKEY, 0, {NULL}} /* key type, next, and key value */ |
133 | | }; |
134 | | |
135 | | |
136 | | static const TValue absentkey = {ABSTKEYCONSTANT}; |
137 | | |
138 | | |
139 | | /* |
140 | | ** Hash for integers. To allow a good hash, use the remainder operator |
141 | | ** ('%'). If integer fits as a non-negative int, compute an int |
142 | | ** remainder, which is faster. Otherwise, use an unsigned-integer |
143 | | ** remainder, which uses all bits and ensures a non-negative result. |
144 | | */ |
145 | 107k | static Node *hashint (const Table *t, lua_Integer i) { |
146 | 107k | lua_Unsigned ui = l_castS2U(i); |
147 | 107k | if (ui <= cast_uint(INT_MAX)) |
148 | 80.5k | return gnode(t, cast_int(ui) % cast_int((sizenode(t)-1) | 1)); |
149 | 27.0k | else |
150 | 27.0k | return hashmod(t, ui); |
151 | 107k | } |
152 | | |
153 | | |
154 | | /* |
155 | | ** Hash for floating-point numbers. |
156 | | ** The main computation should be just |
157 | | ** n = frexp(n, &i); return (n * INT_MAX) + i |
158 | | ** but there are some numerical subtleties. |
159 | | ** In a two-complement representation, INT_MAX does not has an exact |
160 | | ** representation as a float, but INT_MIN does; because the absolute |
161 | | ** value of 'frexp' is smaller than 1 (unless 'n' is inf/NaN), the |
162 | | ** absolute value of the product 'frexp * -INT_MIN' is smaller or equal |
163 | | ** to INT_MAX. Next, the use of 'unsigned int' avoids overflows when |
164 | | ** adding 'i'; the use of '~u' (instead of '-u') avoids problems with |
165 | | ** INT_MIN. |
166 | | */ |
167 | | #if !defined(l_hashfloat) |
168 | 48.7k | static unsigned l_hashfloat (lua_Number n) { |
169 | 48.7k | int i; |
170 | 48.7k | lua_Integer ni; |
171 | 48.7k | n = l_mathop(frexp)(n, &i) * -cast_num(INT_MIN); |
172 | 48.7k | if (!lua_numbertointeger(n, &ni)) { /* is 'n' inf/-inf/NaN? */ |
173 | 2.40k | lua_assert(luai_numisnan(n) || l_mathop(fabs)(n) == cast_num(HUGE_VAL)); |
174 | 2.40k | return 0; |
175 | 2.40k | } |
176 | 46.3k | else { /* normal case */ |
177 | 46.3k | unsigned int u = cast_uint(i) + cast_uint(ni); |
178 | 46.3k | return (u <= cast_uint(INT_MAX) ? u : ~u); |
179 | 46.3k | } |
180 | 48.7k | } |
181 | | #endif |
182 | | |
183 | | |
184 | | /* |
185 | | ** returns the 'main' position of an element in a table (that is, |
186 | | ** the index of its hash value). |
187 | | */ |
188 | 395k | static Node *mainpositionTV (const Table *t, const TValue *key) { |
189 | 395k | switch (ttypetag(key)) { |
190 | 29.8k | case LUA_VNUMINT: { |
191 | 29.8k | lua_Integer i = ivalue(key); |
192 | 0 | return hashint(t, i); |
193 | 29.8k | } |
194 | 48.7k | case LUA_VNUMFLT: { |
195 | 48.7k | lua_Number n = fltvalue(key); |
196 | 48.7k | return hashmod(t, l_hashfloat(n)); |
197 | 48.7k | } |
198 | 287k | case LUA_VSHRSTR: { |
199 | 574k | TString *ts = tsvalue(key); |
200 | 574k | return hashstr(t, ts); |
201 | 574k | } |
202 | 28.4k | case LUA_VLNGSTR: { |
203 | 56.8k | TString *ts = tsvalue(key); |
204 | 56.8k | return hashpow2(t, luaS_hashlongstr(ts)); |
205 | 56.8k | } |
206 | 31 | case LUA_VFALSE: |
207 | 31 | return hashboolean(t, 0); |
208 | 524 | case LUA_VTRUE: |
209 | 524 | return hashboolean(t, 1); |
210 | 431 | case LUA_VLIGHTUSERDATA: { |
211 | 431 | void *p = pvalue(key); |
212 | 431 | return hashpointer(t, p); |
213 | 431 | } |
214 | 0 | case LUA_VLCF: { |
215 | 0 | lua_CFunction f = fvalue(key); |
216 | 0 | return hashpointer(t, f); |
217 | 0 | } |
218 | 0 | default: { |
219 | 0 | GCObject *o = gcvalue(key); |
220 | 0 | return hashpointer(t, o); |
221 | 0 | } |
222 | 395k | } |
223 | 395k | } |
224 | | |
225 | | |
226 | 57.9k | l_sinline Node *mainpositionfromnode (const Table *t, Node *nd) { |
227 | 57.9k | TValue key; |
228 | 57.9k | getnodekey(cast(lua_State *, NULL), &key, nd); |
229 | 57.9k | return mainpositionTV(t, &key); |
230 | 57.9k | } |
231 | | |
232 | | |
233 | | /* |
234 | | ** Check whether key 'k1' is equal to the key in node 'n2'. This |
235 | | ** equality is raw, so there are no metamethods. Floats with integer |
236 | | ** values have been normalized, so integers cannot be equal to |
237 | | ** floats. It is assumed that 'eqshrstr' is simply pointer equality, |
238 | | ** so that short strings are handled in the default case. The flag |
239 | | ** 'deadok' means to accept dead keys as equal to their original values. |
240 | | ** (Only collectable objects can produce dead keys.) Note that dead |
241 | | ** long strings are also compared by identity. Once a key is dead, |
242 | | ** its corresponding value may be collected, and then another value |
243 | | ** can be created with the same address. If this other value is given |
244 | | ** to 'next', 'equalkey' will signal a false positive. In a regular |
245 | | ** traversal, this situation should never happen, as all keys given to |
246 | | ** 'next' came from the table itself, and therefore could not have been |
247 | | ** collected. Outside a regular traversal, we have garbage in, garbage |
248 | | ** out. What is relevant is that this false positive does not break |
249 | | ** anything. (In particular, 'next' will return some other valid item |
250 | | ** on the table or nil.) |
251 | | */ |
252 | 229k | static int equalkey (const TValue *k1, const Node *n2, int deadok) { |
253 | 229k | if (rawtt(k1) != keytt(n2)) { /* not the same variants? */ |
254 | 124k | if (keyisshrstr(n2) && ttislngstring(k1)) { |
255 | | /* an external string can be equal to a short-string key */ |
256 | 15.1k | return luaS_eqstr(tsvalue(k1), keystrval(n2)); |
257 | 15.1k | } |
258 | 116k | else if (deadok && keyisdead(n2) && iscollectable(k1)) { |
259 | | /* a collectable value can be equal to a dead key */ |
260 | 0 | return gcvalue(k1) == gcvalueraw(keyval(n2)); |
261 | 0 | } |
262 | 116k | else |
263 | 116k | return 0; /* otherwise, different variants cannot be equal */ |
264 | 124k | } |
265 | 104k | else { /* equal variants */ |
266 | 104k | switch (keytt(n2)) { |
267 | 86 | case LUA_VNIL: case LUA_VFALSE: case LUA_VTRUE: |
268 | 86 | return 1; |
269 | 1.26k | case LUA_VNUMINT: |
270 | 1.26k | return (ivalue(k1) == keyival(n2)); |
271 | 32.3k | case LUA_VNUMFLT: |
272 | 32.3k | return luai_numeq(fltvalue(k1), fltvalueraw(keyval(n2))); |
273 | 84 | case LUA_VLIGHTUSERDATA: |
274 | 84 | return pvalue(k1) == pvalueraw(keyval(n2)); |
275 | 0 | case LUA_VLCF: |
276 | 0 | return fvalue(k1) == fvalueraw(keyval(n2)); |
277 | 11.2k | case ctb(LUA_VLNGSTR): |
278 | 22.4k | return luaS_eqstr(tsvalue(k1), keystrval(n2)); |
279 | 59.6k | default: |
280 | 59.6k | return gcvalue(k1) == gcvalueraw(keyval(n2)); |
281 | 104k | } |
282 | 104k | } |
283 | 229k | } |
284 | | |
285 | | |
286 | | /* |
287 | | ** "Generic" get version. (Not that generic: not valid for integers, |
288 | | ** which may be in array part, nor for floats with integral values.) |
289 | | ** See explanation about 'deadok' in function 'equalkey'. |
290 | | */ |
291 | 191k | static const TValue *getgeneric (Table *t, const TValue *key, int deadok) { |
292 | 191k | Node *n = mainpositionTV(t, key); |
293 | 229k | for (;;) { /* check whether 'key' is somewhere in the chain */ |
294 | 229k | if (equalkey(key, n, deadok)) |
295 | 34.8k | return gval(n); /* that's it */ |
296 | 194k | else { |
297 | 194k | int nx = gnext(n); |
298 | 194k | if (nx == 0) |
299 | 156k | return &absentkey; /* not found */ |
300 | 38.0k | n += nx; |
301 | 38.0k | } |
302 | 229k | } |
303 | 191k | } |
304 | | |
305 | | |
306 | | /* |
307 | | ** Return the index 'k' (converted to an unsigned) if it is inside |
308 | | ** the range [1, limit]. |
309 | | */ |
310 | 229k | static unsigned checkrange (lua_Integer k, unsigned limit) { |
311 | 229k | return (l_castS2U(k) - 1u < limit) ? cast_uint(k) : 0; |
312 | 229k | } |
313 | | |
314 | | |
315 | | /* |
316 | | ** Return the index 'k' if 'k' is an appropriate key to live in the |
317 | | ** array part of a table, 0 otherwise. |
318 | | */ |
319 | 8.62k | #define arrayindex(k) checkrange(k, MAXASIZE) |
320 | | |
321 | | |
322 | | /* |
323 | | ** Check whether an integer key is in the array part of a table and |
324 | | ** return its index there, or zero. |
325 | | */ |
326 | 138k | #define ikeyinarray(t,k) checkrange(k, t->asize) |
327 | | |
328 | | |
329 | | /* |
330 | | ** Check whether a key is in the array part of a table and return its |
331 | | ** index there, or zero. |
332 | | */ |
333 | 93.7k | static unsigned keyinarray (Table *t, const TValue *key) { |
334 | 93.7k | return (ttisinteger(key)) ? ikeyinarray(t, ivalue(key)) : 0; |
335 | 93.7k | } |
336 | | |
337 | | |
338 | | /* |
339 | | ** returns the index of a 'key' for table traversals. First goes all |
340 | | ** elements in the array part, then elements in the hash part. The |
341 | | ** beginning of a traversal is signaled by 0. |
342 | | */ |
343 | | static unsigned findindex (lua_State *L, Table *t, TValue *key, |
344 | 0 | unsigned asize) { |
345 | 0 | unsigned int i; |
346 | 0 | if (ttisnil(key)) return 0; /* first iteration */ |
347 | 0 | i = keyinarray(t, key); |
348 | 0 | if (i != 0) /* is 'key' inside array part? */ |
349 | 0 | return i; /* yes; that's the index */ |
350 | 0 | else { |
351 | 0 | const TValue *n = getgeneric(t, key, 1); |
352 | 0 | if (l_unlikely(isabstkey(n))) |
353 | 0 | luaG_runerror(L, "invalid key to 'next'"); /* key not found */ |
354 | 0 | i = cast_uint(nodefromval(n) - gnode(t, 0)); /* key index in hash table */ |
355 | | /* hash elements are numbered after array ones */ |
356 | 0 | return (i + 1) + asize; |
357 | 0 | } |
358 | 0 | } |
359 | | |
360 | | |
361 | 0 | int luaH_next (lua_State *L, Table *t, StkId key) { |
362 | 0 | unsigned int asize = t->asize; |
363 | 0 | unsigned int i = findindex(L, t, s2v(key), asize); /* find original key */ |
364 | 0 | for (; i < asize; i++) { /* try first array part */ |
365 | 0 | lu_byte tag = *getArrTag(t, i); |
366 | 0 | if (!tagisempty(tag)) { /* a non-empty entry? */ |
367 | 0 | setivalue(s2v(key), cast_int(i) + 1); |
368 | 0 | farr2val(t, i, tag, s2v(key + 1)); |
369 | 0 | return 1; |
370 | 0 | } |
371 | 0 | } |
372 | 0 | for (i -= asize; i < sizenode(t); i++) { /* hash part */ |
373 | 0 | if (!isempty(gval(gnode(t, i)))) { /* a non-empty entry? */ |
374 | 0 | Node *n = gnode(t, i); |
375 | 0 | getnodekey(L, s2v(key), n); |
376 | 0 | setobj2s(L, key + 1, gval(n)); |
377 | 0 | return 1; |
378 | 0 | } |
379 | 0 | } |
380 | 0 | return 0; /* no more elements */ |
381 | 0 | } |
382 | | |
383 | | |
384 | | /* Extra space in Node array if it has a lastfree entry */ |
385 | 16.8k | #define extraLastfree(t) (haslastfree(t) ? sizeof(Limbox) : 0) |
386 | | |
387 | | /* 'node' size in bytes */ |
388 | 10.3k | static size_t sizehash (Table *t) { |
389 | 10.3k | return cast_sizet(sizenode(t)) * sizeof(Node) + extraLastfree(t); |
390 | 10.3k | } |
391 | | |
392 | | |
393 | 9.52k | static void freehash (lua_State *L, Table *t) { |
394 | 9.52k | if (!isdummy(t)) { |
395 | | /* get pointer to the beginning of Node array */ |
396 | 6.54k | char *arr = cast_charp(t->node) - extraLastfree(t); |
397 | 6.54k | luaM_freearray(L, arr, sizehash(t)); |
398 | 6.54k | } |
399 | 9.52k | } |
400 | | |
401 | | |
402 | | /* |
403 | | ** {============================================================= |
404 | | ** Rehash |
405 | | ** ============================================================== |
406 | | */ |
407 | | |
408 | | static int insertkey (Table *t, const TValue *key, TValue *value); |
409 | | static void newcheckedkey (Table *t, const TValue *key, TValue *value); |
410 | | |
411 | | |
412 | | /* |
413 | | ** Structure to count the keys in a table. |
414 | | ** 'total' is the total number of keys in the table. |
415 | | ** 'na' is the number of *array indices* in the table (see 'arrayindex'). |
416 | | ** 'deleted' is true if there are deleted nodes in the hash part. |
417 | | ** 'nums' is a "count array" where 'nums[i]' is the number of integer |
418 | | ** keys between 2^(i - 1) + 1 and 2^i. Note that 'na' is the summation |
419 | | ** of 'nums'. |
420 | | */ |
421 | | typedef struct { |
422 | | unsigned total; |
423 | | unsigned na; |
424 | | int deleted; |
425 | | unsigned nums[MAXABITS + 1]; |
426 | | } Counters; |
427 | | |
428 | | |
429 | | /* |
430 | | ** Check whether it is worth to use 'na' array entries instead of 'nh' |
431 | | ** hash nodes. (A hash node uses ~3 times more memory than an array |
432 | | ** entry: Two values plus 'next' versus one value.) Evaluate with size_t |
433 | | ** to avoid overflows. |
434 | | */ |
435 | 8.05k | #define arrayXhash(na,nh) (cast_sizet(na) <= cast_sizet(nh) * 3) |
436 | | |
437 | | /* |
438 | | ** Compute the optimal size for the array part of table 't'. |
439 | | ** This size maximizes the number of elements going to the array part |
440 | | ** while satisfying the condition 'arrayXhash' with the use of memory if |
441 | | ** all those elements went to the hash part. |
442 | | ** 'ct->na' enters with the total number of array indices in the table |
443 | | ** and leaves with the number of keys that will go to the array part; |
444 | | ** return the optimal size for the array part. |
445 | | */ |
446 | 1.13k | static unsigned computesizes (Counters *ct) { |
447 | 1.13k | int i; |
448 | 1.13k | unsigned int twotoi; /* 2^i (candidate for optimal size) */ |
449 | 1.13k | unsigned int a = 0; /* number of elements smaller than 2^i */ |
450 | 1.13k | unsigned int na = 0; /* number of elements to go to array part */ |
451 | 1.13k | unsigned int optimal = 0; /* optimal size for array part */ |
452 | | /* traverse slices while 'twotoi' does not overflow and total of array |
453 | | indices still can satisfy 'arrayXhash' against the array size */ |
454 | 1.13k | for (i = 0, twotoi = 1; |
455 | 5.69k | twotoi > 0 && arrayXhash(twotoi, ct->na); |
456 | 4.56k | i++, twotoi *= 2) { |
457 | 4.56k | unsigned nums = ct->nums[i]; |
458 | 4.56k | a += nums; |
459 | 4.56k | if (nums > 0 && /* grows array only if it gets more elements... */ |
460 | 4.56k | arrayXhash(twotoi, a)) { /* ...while using "less memory" */ |
461 | 2.02k | optimal = twotoi; /* optimal size (till now) */ |
462 | 2.02k | na = a; /* all elements up to 'optimal' will go to array part */ |
463 | 2.02k | } |
464 | 4.56k | } |
465 | 1.13k | ct->na = na; |
466 | 1.13k | return optimal; |
467 | 1.13k | } |
468 | | |
469 | | |
470 | 8.62k | static void countint (lua_Integer key, Counters *ct) { |
471 | 8.62k | unsigned int k = arrayindex(key); |
472 | 8.62k | if (k != 0) { /* is 'key' an array index? */ |
473 | 5.84k | ct->nums[luaO_ceillog2(k)]++; /* count as such */ |
474 | 5.84k | ct->na++; |
475 | 5.84k | } |
476 | 8.62k | } |
477 | | |
478 | | |
479 | 3.07k | l_sinline int arraykeyisempty (const Table *t, unsigned key) { |
480 | 3.07k | int tag = *getArrTag(t, key - 1); |
481 | 3.07k | return tagisempty(tag); |
482 | 3.07k | } |
483 | | |
484 | | |
485 | | /* |
486 | | ** Count keys in array part of table 't'. |
487 | | */ |
488 | 1.13k | static void numusearray (const Table *t, Counters *ct) { |
489 | 1.13k | int lg; |
490 | 1.13k | unsigned int ttlg; /* 2^lg */ |
491 | 1.13k | unsigned int ause = 0; /* summation of 'nums' */ |
492 | 1.13k | unsigned int i = 1; /* index to traverse all array keys */ |
493 | 1.13k | unsigned int asize = t->asize; |
494 | | /* traverse each slice */ |
495 | 2.77k | for (lg = 0, ttlg = 1; lg <= MAXABITS; lg++, ttlg *= 2) { |
496 | 2.77k | unsigned int lc = 0; /* counter */ |
497 | 2.77k | unsigned int lim = ttlg; |
498 | 2.77k | if (lim > asize) { |
499 | 1.13k | lim = asize; /* adjust upper limit */ |
500 | 1.13k | if (i > lim) |
501 | 1.13k | break; /* no more elements to count */ |
502 | 1.13k | } |
503 | | /* count elements in range (2^(lg - 1), 2^lg] */ |
504 | 4.71k | for (; i <= lim; i++) { |
505 | 3.07k | if (!arraykeyisempty(t, i)) |
506 | 1.62k | lc++; |
507 | 3.07k | } |
508 | 1.64k | ct->nums[lg] += lc; |
509 | 1.64k | ause += lc; |
510 | 1.64k | } |
511 | 1.13k | ct->total += ause; |
512 | 1.13k | ct->na += ause; |
513 | 1.13k | } |
514 | | |
515 | | |
516 | | /* |
517 | | ** Count keys in hash part of table 't'. As this only happens during |
518 | | ** a rehash, all nodes have been used. A node can have a nil value only |
519 | | ** if it was deleted after being created. |
520 | | */ |
521 | 6.49k | static void numusehash (const Table *t, Counters *ct) { |
522 | 6.49k | unsigned i = sizenode(t); |
523 | 6.49k | unsigned total = 0; |
524 | 95.0k | while (i--) { |
525 | 88.5k | Node *n = &t->node[i]; |
526 | 88.5k | if (isempty(gval(n))) { |
527 | 1.28k | lua_assert(!keyisnil(n)); /* entry was deleted; key cannot be nil */ |
528 | 1.28k | ct->deleted = 1; |
529 | 1.28k | } |
530 | 87.2k | else { |
531 | 87.2k | total++; |
532 | 87.2k | if (keyisinteger(n)) |
533 | 8.28k | countint(keyival(n), ct); |
534 | 87.2k | } |
535 | 88.5k | } |
536 | 6.49k | ct->total += total; |
537 | 6.49k | } |
538 | | |
539 | | |
540 | | /* |
541 | | ** Convert an "abstract size" (number of slots in an array) to |
542 | | ** "concrete size" (number of bytes in the array). |
543 | | */ |
544 | 9.74k | static size_t concretesize (unsigned int size) { |
545 | 9.74k | if (size == 0) |
546 | 5.50k | return 0; |
547 | 4.24k | else /* space for the two arrays plus an unsigned in between */ |
548 | 4.24k | return size * (sizeof(Value) + 1) + sizeof(unsigned); |
549 | 9.74k | } |
550 | | |
551 | | |
552 | | /* |
553 | | ** Resize the array part of a table. If new size is equal to the old, |
554 | | ** do nothing. Else, if new size is zero, free the old array. (It must |
555 | | ** be present, as the sizes are different.) Otherwise, allocate a new |
556 | | ** array, move the common elements to new proper position, and then |
557 | | ** frees the old array. |
558 | | ** We could reallocate the array, but we still would need to move the |
559 | | ** elements to their new position, so the copy implicit in realloc is a |
560 | | ** waste. Moreover, most allocators will move the array anyway when the |
561 | | ** new size is double the old one (the most common case). |
562 | | */ |
563 | | static Value *resizearray (lua_State *L , Table *t, |
564 | | unsigned oldasize, |
565 | 9.52k | unsigned newasize) { |
566 | 9.52k | if (oldasize == newasize) |
567 | 8.02k | return t->array; /* nothing to be done */ |
568 | 1.50k | else if (newasize == 0) { /* erasing array? */ |
569 | 705 | Value *op = t->array - oldasize; /* original array's real address */ |
570 | 705 | luaM_freemem(L, op, concretesize(oldasize)); /* free it */ |
571 | 705 | return NULL; |
572 | 705 | } |
573 | 795 | else { |
574 | 795 | size_t newasizeb = concretesize(newasize); |
575 | 795 | Value *np = cast(Value *, |
576 | 795 | luaM_reallocvector(L, NULL, 0, newasizeb, lu_byte)); |
577 | 795 | if (np == NULL) /* allocation error? */ |
578 | 0 | return NULL; |
579 | 795 | np += newasize; /* shift pointer to the end of value segment */ |
580 | 795 | if (oldasize > 0) { |
581 | | /* move common elements to new position */ |
582 | 90 | size_t oldasizeb = concretesize(oldasize); |
583 | 90 | Value *op = t->array; /* original array */ |
584 | 90 | unsigned tomove = (oldasize < newasize) ? oldasize : newasize; |
585 | 90 | size_t tomoveb = (oldasize < newasize) ? oldasizeb : newasizeb; |
586 | 90 | lua_assert(tomoveb > 0); |
587 | 90 | memcpy(np - tomove, op - tomove, tomoveb); |
588 | 90 | luaM_freemem(L, op - oldasize, oldasizeb); /* free old block */ |
589 | 90 | } |
590 | 795 | return np; |
591 | 795 | } |
592 | 9.52k | } |
593 | | |
594 | | |
595 | | /* |
596 | | ** Creates an array for the hash part of a table with the given |
597 | | ** size, or reuses the dummy node if size is zero. |
598 | | ** The computation for size overflow is in two steps: the first |
599 | | ** comparison ensures that the shift in the second one does not |
600 | | ** overflow. |
601 | | */ |
602 | 9.52k | static void setnodevector (lua_State *L, Table *t, unsigned size) { |
603 | 9.52k | if (size == 0) { /* no elements to hash part? */ |
604 | 2.98k | t->node = cast(Node *, dummynode); /* use common 'dummynode' */ |
605 | 2.98k | t->lsizenode = 0; |
606 | 2.98k | setdummy(t); /* signal that it is using dummy node */ |
607 | 2.98k | } |
608 | 6.54k | else { |
609 | 6.54k | int i; |
610 | 6.54k | int lsize = luaO_ceillog2(size); |
611 | 6.54k | if (lsize > MAXHBITS || (1 << lsize) > MAXHSIZE) |
612 | 0 | luaG_runerror(L, "table overflow"); |
613 | 6.54k | size = twoto(lsize); |
614 | 6.54k | if (lsize < LIMFORLAST) /* no 'lastfree' field? */ |
615 | 3.29k | t->node = luaM_newvector(L, size, Node); |
616 | 3.25k | else { |
617 | 3.25k | size_t bsize = size * sizeof(Node) + sizeof(Limbox); |
618 | 3.25k | char *node = luaM_newblock(L, bsize); |
619 | 3.25k | t->node = cast(Node *, node + sizeof(Limbox)); |
620 | 3.25k | getlastfree(t) = gnode(t, size); /* all positions are free */ |
621 | 3.25k | } |
622 | 6.54k | t->lsizenode = cast_byte(lsize); |
623 | 6.54k | setnodummy(t); |
624 | 165k | for (i = 0; i < cast_int(size); i++) { |
625 | 158k | Node *n = gnode(t, i); |
626 | 158k | gnext(n) = 0; |
627 | 158k | setnilkey(n); |
628 | 158k | setempty(gval(n)); |
629 | 158k | } |
630 | 6.54k | } |
631 | 9.52k | } |
632 | | |
633 | | |
634 | | /* |
635 | | ** (Re)insert all elements from the hash part of 'ot' into table 't'. |
636 | | */ |
637 | 7.01k | static void reinserthash (lua_State *L, Table *ot, Table *t) { |
638 | 7.01k | unsigned j; |
639 | 7.01k | unsigned size = sizenode(ot); |
640 | 96.0k | for (j = 0; j < size; j++) { |
641 | 89.0k | Node *old = gnode(ot, j); |
642 | 89.0k | if (!isempty(gval(old))) { |
643 | | /* doesn't need barrier/invalidate cache, as entry was |
644 | | already present in the table */ |
645 | 87.2k | TValue k; |
646 | 87.2k | getnodekey(L, &k, old); |
647 | 87.2k | newcheckedkey(t, &k, gval(old)); |
648 | 87.2k | } |
649 | 89.0k | } |
650 | 7.01k | } |
651 | | |
652 | | |
653 | | /* |
654 | | ** Exchange the hash part of 't1' and 't2'. (In 'flags', only the |
655 | | ** dummy bit must be exchanged: The 'isrealasize' is not related |
656 | | ** to the hash part, and the metamethod bits do not change during |
657 | | ** a resize, so the "real" table can keep their values.) |
658 | | */ |
659 | 7.03k | static void exchangehashpart (Table *t1, Table *t2) { |
660 | 7.03k | lu_byte lsizenode = t1->lsizenode; |
661 | 7.03k | Node *node = t1->node; |
662 | 7.03k | int bitdummy1 = t1->flags & BITDUMMY; |
663 | 7.03k | t1->lsizenode = t2->lsizenode; |
664 | 7.03k | t1->node = t2->node; |
665 | 7.03k | t1->flags = cast_byte((t1->flags & NOTBITDUMMY) | (t2->flags & BITDUMMY)); |
666 | 7.03k | t2->lsizenode = lsizenode; |
667 | 7.03k | t2->node = node; |
668 | 7.03k | t2->flags = cast_byte((t2->flags & NOTBITDUMMY) | bitdummy1); |
669 | 7.03k | } |
670 | | |
671 | | |
672 | | /* |
673 | | ** Re-insert into the new hash part of a table the elements from the |
674 | | ** vanishing slice of the array part. |
675 | | */ |
676 | | static void reinsertOldSlice (Table *t, unsigned oldasize, |
677 | 10 | unsigned newasize) { |
678 | 10 | unsigned i; |
679 | 20 | for (i = newasize; i < oldasize; i++) { /* traverse vanishing slice */ |
680 | 10 | lu_byte tag = *getArrTag(t, i); |
681 | 10 | if (!tagisempty(tag)) { /* a non-empty entry? */ |
682 | 0 | TValue key, aux; |
683 | 0 | setivalue(&key, l_castU2S(i) + 1); /* make the key */ |
684 | 0 | farr2val(t, i, tag, &aux); /* copy value into 'aux' */ |
685 | 0 | insertkey(t, &key, &aux); /* insert entry into the hash part */ |
686 | 0 | } |
687 | 10 | } |
688 | 10 | } |
689 | | |
690 | | |
691 | | /* |
692 | | ** Clear new slice of the array. |
693 | | */ |
694 | 7.01k | static void clearNewSlice (Table *t, unsigned oldasize, unsigned newasize) { |
695 | 907k | for (; oldasize < newasize; oldasize++) |
696 | 900k | *getArrTag(t, oldasize) = LUA_VEMPTY; |
697 | 7.01k | } |
698 | | |
699 | | |
700 | | /* |
701 | | ** Resize table 't' for the new given sizes. Both allocations (for |
702 | | ** the hash part and for the array part) can fail, which creates some |
703 | | ** subtleties. If the first allocation, for the hash part, fails, an |
704 | | ** error is raised and that is it. Otherwise, it copies the elements from |
705 | | ** the shrinking part of the array (if it is shrinking) into the new |
706 | | ** hash. Then it reallocates the array part. If that fails, the table |
707 | | ** is in its original state; the function frees the new hash part and then |
708 | | ** raises the allocation error. Otherwise, it sets the new hash part |
709 | | ** into the table, initializes the new part of the array (if any) with |
710 | | ** nils and reinserts the elements of the old hash back into the new |
711 | | ** parts of the table. |
712 | | ** Note that if the new size for the array part ('newasize') is equal to |
713 | | ** the old one ('oldasize'), this function will do nothing with that |
714 | | ** part. |
715 | | */ |
716 | | void luaH_resize (lua_State *L, Table *t, unsigned newasize, |
717 | 7.01k | unsigned nhsize) { |
718 | 7.01k | Table newt; /* to keep the new hash part */ |
719 | 7.01k | unsigned oldasize = t->asize; |
720 | 7.01k | Value *newarray; |
721 | 7.01k | if (newasize > MAXASIZE) |
722 | 0 | luaG_runerror(L, "table overflow"); |
723 | | /* create new hash part with appropriate size into 'newt' */ |
724 | 7.01k | newt.flags = 0; |
725 | 7.01k | setnodevector(L, &newt, nhsize); |
726 | 7.01k | if (newasize < oldasize) { /* will array shrink? */ |
727 | | /* re-insert into the new hash the elements from vanishing slice */ |
728 | 10 | exchangehashpart(t, &newt); /* pretend table has new hash */ |
729 | 10 | reinsertOldSlice(t, oldasize, newasize); |
730 | 10 | exchangehashpart(t, &newt); /* restore old hash (in case of errors) */ |
731 | 10 | } |
732 | | /* allocate new array */ |
733 | 7.01k | newarray = resizearray(L, t, oldasize, newasize); |
734 | 7.01k | if (l_unlikely(newarray == NULL && newasize > 0)) { /* allocation failed? */ |
735 | 0 | freehash(L, &newt); /* release new hash part */ |
736 | 0 | luaM_error(L); /* raise error (with array unchanged) */ |
737 | 0 | } |
738 | | /* allocation ok; initialize new part of the array */ |
739 | 7.01k | exchangehashpart(t, &newt); /* 't' has the new hash ('newt' has the old) */ |
740 | 7.01k | t->array = newarray; /* set new array part */ |
741 | 7.01k | t->asize = newasize; |
742 | 7.01k | if (newarray != NULL) |
743 | 1.33k | *lenhint(t) = newasize / 2u; /* set an initial hint */ |
744 | 7.01k | clearNewSlice(t, oldasize, newasize); |
745 | | /* re-insert elements from old hash part into new parts */ |
746 | 7.01k | reinserthash(L, &newt, t); /* 'newt' now has the old hash */ |
747 | 7.01k | freehash(L, &newt); /* free old hash part */ |
748 | 7.01k | } |
749 | | |
750 | | |
751 | 0 | void luaH_resizearray (lua_State *L, Table *t, unsigned int nasize) { |
752 | 0 | unsigned nsize = allocsizenode(t); |
753 | 0 | luaH_resize(L, t, nasize, nsize); |
754 | 0 | } |
755 | | |
756 | | |
757 | | /* |
758 | | ** Rehash a table. First, count its keys. If there are array indices |
759 | | ** outside the array part, compute the new best size for that part. |
760 | | ** Then, resize the table. |
761 | | */ |
762 | 6.49k | static void rehash (lua_State *L, Table *t, const TValue *ek) { |
763 | 6.49k | unsigned asize; /* optimal size for array part */ |
764 | 6.49k | Counters ct; |
765 | 6.49k | unsigned i; |
766 | 6.49k | unsigned nsize; /* size for the hash part */ |
767 | | /* reset counts */ |
768 | 214k | for (i = 0; i <= MAXABITS; i++) ct.nums[i] = 0; |
769 | 6.49k | ct.na = 0; |
770 | 6.49k | ct.deleted = 0; |
771 | 6.49k | ct.total = 1; /* count extra key */ |
772 | 6.49k | if (ttisinteger(ek)) |
773 | 342 | countint(ivalue(ek), &ct); /* extra key may go to array */ |
774 | 6.49k | numusehash(t, &ct); /* count keys in hash part */ |
775 | 6.49k | if (ct.na == 0) { |
776 | | /* no new keys to enter array part; keep it with the same size */ |
777 | 5.36k | asize = t->asize; |
778 | 5.36k | } |
779 | 1.13k | else { /* compute best size for array part */ |
780 | 1.13k | numusearray(t, &ct); /* count keys in array part */ |
781 | 1.13k | asize = computesizes(&ct); /* compute new size for array part */ |
782 | 1.13k | } |
783 | | /* all keys not in the array part go to the hash part */ |
784 | 6.49k | nsize = ct.total - ct.na; |
785 | 6.49k | if (ct.deleted) { /* table has deleted entries? */ |
786 | | /* insertion-deletion-insertion: give hash some extra size to |
787 | | avoid repeated resizings */ |
788 | 1.28k | nsize += nsize >> 2; |
789 | 1.28k | } |
790 | | /* resize the table to new computed sizes */ |
791 | 6.49k | luaH_resize(L, t, asize, nsize); |
792 | 6.49k | } |
793 | | |
794 | | /* |
795 | | ** }============================================================= |
796 | | */ |
797 | | |
798 | | |
799 | 2.51k | Table *luaH_new (lua_State *L) { |
800 | 2.51k | GCObject *o = luaC_newobj(L, LUA_VTABLE, sizeof(Table)); |
801 | 2.51k | Table *t = gco2t(o); |
802 | 0 | t->metatable = NULL; |
803 | 2.51k | t->flags = maskflags; /* table has no metamethod fields */ |
804 | 2.51k | t->array = NULL; |
805 | 2.51k | t->asize = 0; |
806 | 2.51k | setnodevector(L, t, 0); |
807 | 2.51k | return t; |
808 | 2.51k | } |
809 | | |
810 | | |
811 | 8.15k | lu_mem luaH_size (Table *t) { |
812 | 8.15k | lu_mem sz = cast(lu_mem, sizeof(Table)) + concretesize(t->asize); |
813 | 8.15k | if (!isdummy(t)) |
814 | 3.80k | sz += sizehash(t); |
815 | 8.15k | return sz; |
816 | 8.15k | } |
817 | | |
818 | | |
819 | | /* |
820 | | ** Frees a table. |
821 | | */ |
822 | 2.51k | void luaH_free (lua_State *L, Table *t) { |
823 | 2.51k | freehash(L, t); |
824 | 2.51k | resizearray(L, t, t->asize, 0); |
825 | 2.51k | luaM_free(L, t); |
826 | 2.51k | } |
827 | | |
828 | | |
829 | 69.2k | static Node *getfreepos (Table *t) { |
830 | 69.2k | if (haslastfree(t)) { /* does it have 'lastfree' information? */ |
831 | | /* look for a spot before 'lastfree', updating 'lastfree' */ |
832 | 111k | while (getlastfree(t) > t->node) { |
833 | 107k | Node *free = --getlastfree(t); |
834 | 107k | if (keyisnil(free)) |
835 | 55.8k | return free; |
836 | 107k | } |
837 | 60.1k | } |
838 | 9.08k | else { /* no 'lastfree' information */ |
839 | 9.08k | unsigned i = sizenode(t); |
840 | 24.8k | while (i--) { /* do a linear search */ |
841 | 17.7k | Node *free = gnode(t, i); |
842 | 17.7k | if (keyisnil(free)) |
843 | 2.03k | return free; |
844 | 17.7k | } |
845 | 9.08k | } |
846 | 11.3k | return NULL; /* could not find a free place */ |
847 | 69.2k | } |
848 | | |
849 | | |
850 | | |
851 | | /* |
852 | | ** Inserts a new key into a hash table; first, check whether key's main |
853 | | ** position is free. If not, check whether colliding node is in its main |
854 | | ** position or not: if it is not, move colliding node to an empty place |
855 | | ** and put new key in its main position; otherwise (colliding node is in |
856 | | ** its main position), new key goes to an empty position. Return 0 if |
857 | | ** could not insert key (could not find a free space). |
858 | | */ |
859 | 146k | static int insertkey (Table *t, const TValue *key, TValue *value) { |
860 | 146k | Node *mp = mainpositionTV(t, key); |
861 | | /* table cannot already contain the key */ |
862 | 146k | lua_assert(isabstkey(getgeneric(t, key, 0))); |
863 | 146k | if (!isempty(gval(mp)) || isdummy(t)) { /* main position is taken? */ |
864 | 69.2k | Node *othern; |
865 | 69.2k | Node *f = getfreepos(t); /* get a free place */ |
866 | 69.2k | if (f == NULL) /* cannot find a free place? */ |
867 | 11.3k | return 0; |
868 | 57.9k | lua_assert(!isdummy(t)); |
869 | 57.9k | othern = mainpositionfromnode(t, mp); |
870 | 57.9k | if (othern != mp) { /* is colliding node out of its main position? */ |
871 | | /* yes; move colliding node into free position */ |
872 | 18.0k | while (othern + gnext(othern) != mp) /* find previous */ |
873 | 3.54k | othern += gnext(othern); |
874 | 14.4k | gnext(othern) = cast_int(f - othern); /* rechain to point to 'f' */ |
875 | 14.4k | *f = *mp; /* copy colliding node into free pos. (mp->next also goes) */ |
876 | 14.4k | if (gnext(mp) != 0) { |
877 | 2.60k | gnext(f) += cast_int(mp - f); /* correct 'next' */ |
878 | 2.60k | gnext(mp) = 0; /* now 'mp' is free */ |
879 | 2.60k | } |
880 | 14.4k | setempty(gval(mp)); |
881 | 14.4k | } |
882 | 43.4k | else { /* colliding node is in its own main position */ |
883 | | /* new node will go into free position */ |
884 | 43.4k | if (gnext(mp) != 0) |
885 | 10.6k | gnext(f) = cast_int((mp + gnext(mp)) - f); /* chain new position */ |
886 | 43.4k | else lua_assert(gnext(f) == 0); |
887 | 43.4k | gnext(mp) = cast_int(f - mp); |
888 | 43.4k | mp = f; |
889 | 43.4k | } |
890 | 57.9k | } |
891 | 135k | setnodekey(mp, key); |
892 | 135k | lua_assert(isempty(gval(mp))); |
893 | 270k | setobj2t(cast(lua_State *, 0), gval(mp), value); |
894 | 135k | return 1; |
895 | 270k | } |
896 | | |
897 | | |
898 | | /* |
899 | | ** Insert a key in a table where there is space for that key, the |
900 | | ** key is valid, and the value is not nil. |
901 | | */ |
902 | 93.7k | static void newcheckedkey (Table *t, const TValue *key, TValue *value) { |
903 | 93.7k | unsigned i = keyinarray(t, key); |
904 | 93.7k | if (i > 0) /* is key in the array part? */ |
905 | 737 | obj2arr(t, i - 1, value); /* set value in the array */ |
906 | 93.0k | else { |
907 | 93.0k | int done = insertkey(t, key, value); /* insert key in the hash part */ |
908 | 93.0k | lua_assert(done); /* it cannot fail */ |
909 | 93.0k | cast(void, done); /* to avoid warnings */ |
910 | 93.0k | } |
911 | 93.7k | } |
912 | | |
913 | | |
914 | | static void luaH_newkey (lua_State *L, Table *t, const TValue *key, |
915 | 16.6k | TValue *value) { |
916 | 16.6k | if (!ttisnil(value)) { /* do not insert nil values */ |
917 | 16.6k | int done = insertkey(t, key, value); |
918 | 16.6k | if (!done) { /* could not find a free place? */ |
919 | 6.49k | rehash(L, t, key); /* grow table */ |
920 | 6.49k | newcheckedkey(t, key, value); /* insert key in grown table */ |
921 | 6.49k | } |
922 | 16.6k | luaC_barrierback(L, obj2gco(t), key); |
923 | | /* for debugging only: any new key may force an emergency collection */ |
924 | 16.6k | condchangemem(L, (void)0, (void)0, 1); |
925 | 16.6k | } |
926 | 16.6k | } |
927 | | |
928 | | |
929 | 77.6k | static const TValue *getintfromhash (Table *t, lua_Integer key) { |
930 | 77.6k | Node *n = hashint(t, key); |
931 | 77.6k | lua_assert(!ikeyinarray(t, key)); |
932 | 106k | for (;;) { /* check whether 'key' is somewhere in the chain */ |
933 | 106k | if (keyisinteger(n) && keyival(n) == key) |
934 | 68.5k | return gval(n); /* that's it */ |
935 | 38.3k | else { |
936 | 38.3k | int nx = gnext(n); |
937 | 38.3k | if (nx == 0) break; |
938 | 29.1k | n += nx; |
939 | 29.1k | } |
940 | 106k | } |
941 | 9.19k | return &absentkey; |
942 | 77.6k | } |
943 | | |
944 | | |
945 | 81 | static int hashkeyisempty (Table *t, lua_Unsigned key) { |
946 | 81 | const TValue *val = getintfromhash(t, l_castU2S(key)); |
947 | 81 | return isempty(val); |
948 | 81 | } |
949 | | |
950 | | |
951 | 49.6M | static lu_byte finishnodeget (const TValue *val, TValue *res) { |
952 | 49.6M | if (!ttisnil(val)) { |
953 | 49.0M | setobj(((lua_State*)NULL), res, val); |
954 | 49.0M | } |
955 | 49.6M | return ttypetag(val); |
956 | 49.6M | } |
957 | | |
958 | | |
959 | 128k | lu_byte luaH_getint (Table *t, lua_Integer key, TValue *res) { |
960 | 128k | unsigned k = ikeyinarray(t, key); |
961 | 128k | if (k > 0) { |
962 | 55.2k | lu_byte tag = *getArrTag(t, k - 1); |
963 | 55.2k | if (!tagisempty(tag)) |
964 | 55.0k | farr2val(t, k - 1, tag, res); |
965 | 55.2k | return tag; |
966 | 55.2k | } |
967 | 72.8k | else |
968 | 72.8k | return finishnodeget(getintfromhash(t, key), res); |
969 | 128k | } |
970 | | |
971 | | |
972 | | /* |
973 | | ** search function for short strings |
974 | | */ |
975 | 49.5M | const TValue *luaH_Hgetshortstr (Table *t, TString *key) { |
976 | 49.5M | Node *n = hashstr(t, key); |
977 | 49.5M | lua_assert(strisshr(key)); |
978 | 68.3M | for (;;) { /* check whether 'key' is somewhere in the chain */ |
979 | 68.3M | if (keyisshrstr(n) && eqshrstr(keystrval(n), key)) |
980 | 48.9M | return gval(n); /* that's it */ |
981 | 19.3M | else { |
982 | 19.3M | int nx = gnext(n); |
983 | 19.3M | if (nx == 0) |
984 | 616k | return &absentkey; /* not found */ |
985 | 18.7M | n += nx; |
986 | 18.7M | } |
987 | 68.3M | } |
988 | 49.5M | } |
989 | | |
990 | | |
991 | 537k | lu_byte luaH_getshortstr (Table *t, TString *key, TValue *res) { |
992 | 537k | return finishnodeget(luaH_Hgetshortstr(t, key), res); |
993 | 537k | } |
994 | | |
995 | | |
996 | 5.54k | static const TValue *Hgetlongstr (Table *t, TString *key) { |
997 | 5.54k | TValue ko; |
998 | 5.54k | lua_assert(!strisshr(key)); |
999 | 11.0k | setsvalue(cast(lua_State *, NULL), &ko, key); |
1000 | 5.54k | return getgeneric(t, &ko, 0); /* for long strings, use generic case */ |
1001 | 11.0k | } |
1002 | | |
1003 | | |
1004 | 24.6M | static const TValue *Hgetstr (Table *t, TString *key) { |
1005 | 24.6M | if (strisshr(key)) |
1006 | 24.6M | return luaH_Hgetshortstr(t, key); |
1007 | 5.54k | else |
1008 | 5.54k | return Hgetlongstr(t, key); |
1009 | 24.6M | } |
1010 | | |
1011 | | |
1012 | 24.6M | lu_byte luaH_getstr (Table *t, TString *key, TValue *res) { |
1013 | 24.6M | return finishnodeget(Hgetstr(t, key), res); |
1014 | 24.6M | } |
1015 | | |
1016 | | |
1017 | | /* |
1018 | | ** main search function |
1019 | | */ |
1020 | 24.5M | lu_byte luaH_get (Table *t, const TValue *key, TValue *res) { |
1021 | 24.5M | const TValue *slot; |
1022 | 24.5M | switch (ttypetag(key)) { |
1023 | 24.3M | case LUA_VSHRSTR: |
1024 | 24.3M | slot = luaH_Hgetshortstr(t, tsvalue(key)); |
1025 | 0 | break; |
1026 | 127k | case LUA_VNUMINT: |
1027 | 127k | return luaH_getint(t, ivalue(key), res); |
1028 | 0 | case LUA_VNIL: |
1029 | 0 | slot = &absentkey; |
1030 | 0 | break; |
1031 | 28.3k | case LUA_VNUMFLT: { |
1032 | 28.3k | lua_Integer k; |
1033 | 28.3k | if (luaV_flttointeger(fltvalue(key), &k, F2Ieq)) /* integral index? */ |
1034 | 0 | return luaH_getint(t, k, res); /* use specialized version */ |
1035 | | /* else... */ |
1036 | 28.3k | } /* FALLTHROUGH */ |
1037 | 34.1k | default: |
1038 | 34.1k | slot = getgeneric(t, key, 0); |
1039 | 34.1k | break; |
1040 | 24.5M | } |
1041 | 24.4M | return finishnodeget(slot, res); |
1042 | 24.5M | } |
1043 | | |
1044 | | |
1045 | | /* |
1046 | | ** When a 'pset' cannot be completed, this function returns an encoding |
1047 | | ** of its result, to be used by 'luaH_finishset'. |
1048 | | */ |
1049 | 16.6k | static int retpsetcode (Table *t, const TValue *slot) { |
1050 | 16.6k | if (isabstkey(slot)) |
1051 | 16.6k | return HNOTFOUND; /* no slot with that key */ |
1052 | 0 | else /* return node encoded */ |
1053 | 0 | return cast_int((cast(Node*, slot) - t->node)) + HFIRSTNODE; |
1054 | 16.6k | } |
1055 | | |
1056 | | |
1057 | 9.58k | static int finishnodeset (Table *t, const TValue *slot, TValue *val) { |
1058 | 9.58k | if (!ttisnil(slot)) { |
1059 | 148 | setobj(((lua_State*)NULL), cast(TValue*, slot), val); |
1060 | 148 | return HOK; /* success */ |
1061 | 148 | } |
1062 | 9.43k | else |
1063 | 9.43k | return retpsetcode(t, slot); |
1064 | 9.58k | } |
1065 | | |
1066 | | |
1067 | 0 | static int rawfinishnodeset (const TValue *slot, TValue *val) { |
1068 | 0 | if (isabstkey(slot)) |
1069 | 0 | return 0; /* no slot with that key */ |
1070 | 0 | else { |
1071 | 0 | setobj(((lua_State*)NULL), cast(TValue*, slot), val); |
1072 | 0 | return 1; /* success */ |
1073 | 0 | } |
1074 | 0 | } |
1075 | | |
1076 | | |
1077 | 4.71k | int luaH_psetint (Table *t, lua_Integer key, TValue *val) { |
1078 | 4.71k | lua_assert(!ikeyinarray(t, key)); |
1079 | 4.71k | return finishnodeset(t, getintfromhash(t, key), val); |
1080 | 4.71k | } |
1081 | | |
1082 | | |
1083 | 4.75k | static int psetint (Table *t, lua_Integer key, TValue *val) { |
1084 | 4.75k | int hres; |
1085 | 4.75k | luaH_fastseti(t, key, val, hres); |
1086 | 4.75k | return hres; |
1087 | 4.75k | } |
1088 | | |
1089 | | |
1090 | | /* |
1091 | | ** This function could be just this: |
1092 | | ** return finishnodeset(t, luaH_Hgetshortstr(t, key), val); |
1093 | | ** However, it optimizes the common case created by constructors (e.g., |
1094 | | ** {x=1, y=2}), which creates a key in a table that has no metatable, |
1095 | | ** it is not old/black, and it already has space for the key. |
1096 | | */ |
1097 | | |
1098 | 40.3k | int luaH_psetshortstr (Table *t, TString *key, TValue *val) { |
1099 | 40.3k | const TValue *slot = luaH_Hgetshortstr(t, key); |
1100 | 40.3k | if (!ttisnil(slot)) { /* key already has a value? (all too common) */ |
1101 | 481 | setobj(((lua_State*)NULL), cast(TValue*, slot), val); /* update it */ |
1102 | 481 | return HOK; /* done */ |
1103 | 481 | } |
1104 | 39.9k | else if (checknoTM(t->metatable, TM_NEWINDEX)) { /* no metamethod? */ |
1105 | 39.9k | if (ttisnil(val)) /* new value is nil? */ |
1106 | 716 | return HOK; /* done (value is already nil/absent) */ |
1107 | 39.2k | if (isabstkey(slot) && /* key is absent? */ |
1108 | 39.2k | !(isblack(t) && iswhite(key))) { /* and don't need barrier? */ |
1109 | 36.8k | TValue tk; /* key as a TValue */ |
1110 | 36.8k | setsvalue(cast(lua_State *, NULL), &tk, key); |
1111 | 36.8k | if (insertkey(t, &tk, val)) { /* insert key, if there is space */ |
1112 | 32.0k | invalidateTMcache(t); |
1113 | 32.0k | return HOK; |
1114 | 32.0k | } |
1115 | 36.8k | } |
1116 | 39.2k | } |
1117 | | /* Else, either table has new-index metamethod, or it needs barrier, |
1118 | | or it needs to rehash for the new key. In any of these cases, the |
1119 | | operation cannot be completed here. Return a code for the caller. */ |
1120 | 7.19k | return retpsetcode(t, slot); |
1121 | 40.3k | } |
1122 | | |
1123 | | |
1124 | 200 | int luaH_psetstr (Table *t, TString *key, TValue *val) { |
1125 | 200 | if (strisshr(key)) |
1126 | 200 | return luaH_psetshortstr(t, key, val); |
1127 | 0 | else |
1128 | 0 | return finishnodeset(t, Hgetlongstr(t, key), val); |
1129 | 200 | } |
1130 | | |
1131 | | |
1132 | 48.6k | int luaH_pset (Table *t, const TValue *key, TValue *val) { |
1133 | 48.6k | switch (ttypetag(key)) { |
1134 | 38.9k | case LUA_VSHRSTR: return luaH_psetshortstr(t, tsvalue(key), val); |
1135 | 4.75k | case LUA_VNUMINT: return psetint(t, ivalue(key), val); |
1136 | 0 | case LUA_VNIL: return HNOTFOUND; |
1137 | 2.35k | case LUA_VNUMFLT: { |
1138 | 2.35k | lua_Integer k; |
1139 | 2.35k | if (luaV_flttointeger(fltvalue(key), &k, F2Ieq)) /* integral index? */ |
1140 | 0 | return psetint(t, k, val); /* use specialized version */ |
1141 | | /* else... */ |
1142 | 2.35k | } /* FALLTHROUGH */ |
1143 | 4.86k | default: |
1144 | 4.86k | return finishnodeset(t, getgeneric(t, key, 0), val); |
1145 | 48.6k | } |
1146 | 48.6k | } |
1147 | | |
1148 | | /* |
1149 | | ** Finish a raw "set table" operation, where 'hres' encodes where the |
1150 | | ** value should have been (the result of a previous 'pset' operation). |
1151 | | ** Beware: when using this function the caller probably need to check a |
1152 | | ** GC barrier and invalidate the TM cache. |
1153 | | */ |
1154 | | void luaH_finishset (lua_State *L, Table *t, const TValue *key, |
1155 | 16.6k | TValue *value, int hres) { |
1156 | 16.6k | lua_assert(hres != HOK); |
1157 | 16.6k | if (hres == HNOTFOUND) { |
1158 | 16.6k | TValue aux; |
1159 | 16.6k | if (l_unlikely(ttisnil(key))) |
1160 | 0 | luaG_runerror(L, "table index is nil"); |
1161 | 16.6k | else if (ttisfloat(key)) { |
1162 | 2.35k | lua_Number f = fltvalue(key); |
1163 | 0 | lua_Integer k; |
1164 | 2.35k | if (luaV_flttointeger(f, &k, F2Ieq)) { |
1165 | 0 | setivalue(&aux, k); /* key is equal to an integer */ |
1166 | 0 | key = &aux; /* insert it as an integer */ |
1167 | 0 | } |
1168 | 2.35k | else if (l_unlikely(luai_numisnan(f))) |
1169 | 0 | luaG_runerror(L, "table index is NaN"); |
1170 | 2.35k | } |
1171 | 14.2k | else if (isextstr(key)) { /* external string? */ |
1172 | | /* If string is short, must internalize it to be used as table key */ |
1173 | 0 | TString *ts = luaS_normstr(L, tsvalue(key)); |
1174 | 0 | setsvalue2s(L, L->top.p++, ts); /* anchor 'ts' (EXTRA_STACK) */ |
1175 | 0 | luaH_newkey(L, t, s2v(L->top.p - 1), value); |
1176 | 0 | L->top.p--; |
1177 | 0 | return; |
1178 | 0 | } |
1179 | 16.6k | luaH_newkey(L, t, key, value); |
1180 | 16.6k | } |
1181 | 0 | else if (hres > 0) { /* regular Node? */ |
1182 | 0 | setobj2t(L, gval(gnode(t, hres - HFIRSTNODE)), value); |
1183 | 0 | } |
1184 | 0 | else { /* array entry */ |
1185 | 0 | hres = ~hres; /* real index */ |
1186 | 0 | obj2arr(t, cast_uint(hres), value); |
1187 | 0 | } |
1188 | 16.6k | } |
1189 | | |
1190 | | |
1191 | | /* |
1192 | | ** beware: when using this function you probably need to check a GC |
1193 | | ** barrier and invalidate the TM cache. |
1194 | | */ |
1195 | 48.6k | void luaH_set (lua_State *L, Table *t, const TValue *key, TValue *value) { |
1196 | 48.6k | int hres = luaH_pset(t, key, value); |
1197 | 48.6k | if (hres != HOK) |
1198 | 16.4k | luaH_finishset(L, t, key, value, hres); |
1199 | 48.6k | } |
1200 | | |
1201 | | |
1202 | | /* |
1203 | | ** Ditto for a GC barrier. (No need to invalidate the TM cache, as |
1204 | | ** integers cannot be keys to metamethods.) |
1205 | | */ |
1206 | 1.32k | void luaH_setint (lua_State *L, Table *t, lua_Integer key, TValue *value) { |
1207 | 1.32k | unsigned ik = ikeyinarray(t, key); |
1208 | 1.32k | if (ik > 0) |
1209 | 1.32k | obj2arr(t, ik - 1, value); |
1210 | 0 | else { |
1211 | 0 | int ok = rawfinishnodeset(getintfromhash(t, key), value); |
1212 | 0 | if (!ok) { |
1213 | 0 | TValue k; |
1214 | 0 | setivalue(&k, key); |
1215 | 0 | luaH_newkey(L, t, &k, value); |
1216 | 0 | } |
1217 | 0 | } |
1218 | 1.32k | } |
1219 | | |
1220 | | |
1221 | | /* |
1222 | | ** Try to find a boundary in the hash part of table 't'. From the |
1223 | | ** caller, we know that 'asize + 1' is present. We want to find a larger |
1224 | | ** key that is absent from the table, so that we can do a binary search |
1225 | | ** between the two keys to find a boundary. We keep doubling 'j' until |
1226 | | ** we get an absent index. If the doubling would overflow, we try |
1227 | | ** LUA_MAXINTEGER. If it is absent, we are ready for the binary search. |
1228 | | ** ('j', being max integer, is larger or equal to 'i', but it cannot be |
1229 | | ** equal because it is absent while 'i' is present.) Otherwise, 'j' is a |
1230 | | ** boundary. ('j + 1' cannot be a present integer key because it is not |
1231 | | ** a valid integer in Lua.) |
1232 | | ** About 'rnd': If we used a fixed algorithm, a bad actor could fill |
1233 | | ** a table with only the keys that would be probed, in such a way that |
1234 | | ** a small table could result in a huge length. To avoid that, we use |
1235 | | ** the state's seed as a source of randomness. For the first probe, |
1236 | | ** we "randomly double" 'i' by adding to it a random number roughly its |
1237 | | ** width. |
1238 | | */ |
1239 | 0 | static lua_Unsigned hash_search (lua_State *L, Table *t, unsigned asize) { |
1240 | 0 | lua_Unsigned i = asize + 1; /* caller ensures t[i] is present */ |
1241 | 0 | unsigned rnd = G(L)->seed; |
1242 | 0 | int n = (asize > 0) ? luaO_ceillog2(asize) : 0; /* width of 'asize' */ |
1243 | 0 | unsigned mask = (1u << n) - 1; /* 11...111 with the width of 'asize' */ |
1244 | 0 | unsigned incr = (rnd & mask) + 1; /* first increment (at least 1) */ |
1245 | 0 | lua_Unsigned j = (incr <= l_castS2U(LUA_MAXINTEGER) - i) ? i + incr : i + 1; |
1246 | 0 | rnd >>= n; /* used 'n' bits from 'rnd' */ |
1247 | 0 | while (!hashkeyisempty(t, j)) { /* repeat until an absent t[j] */ |
1248 | 0 | i = j; /* 'i' is a present index */ |
1249 | 0 | if (j <= l_castS2U(LUA_MAXINTEGER)/2 - 1) { |
1250 | 0 | j = j*2 + (rnd & 1); /* try again with 2j or 2j+1 */ |
1251 | 0 | rnd >>= 1; |
1252 | 0 | } |
1253 | 0 | else { |
1254 | 0 | j = LUA_MAXINTEGER; |
1255 | 0 | if (hashkeyisempty(t, j)) /* t[j] not present? */ |
1256 | 0 | break; /* 'j' now is an absent index */ |
1257 | 0 | else /* weird case */ |
1258 | 0 | return j; /* well, max integer is a boundary... */ |
1259 | 0 | } |
1260 | 0 | } |
1261 | | /* i < j && t[i] present && t[j] absent */ |
1262 | 0 | while (j - i > 1u) { /* do a binary search between them */ |
1263 | 0 | lua_Unsigned m = (i + j) / 2; |
1264 | 0 | if (hashkeyisempty(t, m)) j = m; |
1265 | 0 | else i = m; |
1266 | 0 | } |
1267 | 0 | return i; |
1268 | 0 | } |
1269 | | |
1270 | | |
1271 | 0 | static unsigned int binsearch (Table *array, unsigned int i, unsigned int j) { |
1272 | 0 | lua_assert(i <= j); |
1273 | 0 | while (j - i > 1u) { /* binary search */ |
1274 | 0 | unsigned int m = (i + j) / 2; |
1275 | 0 | if (arraykeyisempty(array, m)) j = m; |
1276 | 0 | else i = m; |
1277 | 0 | } |
1278 | 0 | return i; |
1279 | 0 | } |
1280 | | |
1281 | | |
1282 | | /* return a border, saving it as a hint for next call */ |
1283 | 0 | static lua_Unsigned newhint (Table *t, unsigned hint) { |
1284 | 0 | lua_assert(hint <= t->asize); |
1285 | 0 | *lenhint(t) = hint; |
1286 | 0 | return hint; |
1287 | 0 | } |
1288 | | |
1289 | | |
1290 | | /* |
1291 | | ** Try to find a border in table 't'. (A 'border' is an integer index |
1292 | | ** such that t[i] is present and t[i+1] is absent, or 0 if t[1] is absent, |
1293 | | ** or 'maxinteger' if t[maxinteger] is present.) |
1294 | | ** If there is an array part, try to find a border there. First try |
1295 | | ** to find it in the vicinity of the previous result (hint), to handle |
1296 | | ** cases like 't[#t + 1] = val' or 't[#t] = nil', that move the border |
1297 | | ** by one entry. Otherwise, do a binary search to find the border. |
1298 | | ** If there is no array part, or its last element is non empty, the |
1299 | | ** border may be in the hash part. |
1300 | | */ |
1301 | 81 | lua_Unsigned luaH_getn (lua_State *L, Table *t) { |
1302 | 81 | unsigned asize = t->asize; |
1303 | 81 | if (asize > 0) { /* is there an array part? */ |
1304 | 0 | const unsigned maxvicinity = 4; |
1305 | 0 | unsigned limit = *lenhint(t); /* start with the hint */ |
1306 | 0 | if (limit == 0) |
1307 | 0 | limit = 1; /* make limit a valid index in the array */ |
1308 | 0 | if (arraykeyisempty(t, limit)) { /* t[limit] empty? */ |
1309 | | /* there must be a border before 'limit' */ |
1310 | 0 | unsigned i; |
1311 | | /* look for a border in the vicinity of the hint */ |
1312 | 0 | for (i = 0; i < maxvicinity && limit > 1; i++) { |
1313 | 0 | limit--; |
1314 | 0 | if (!arraykeyisempty(t, limit)) |
1315 | 0 | return newhint(t, limit); /* 'limit' is a border */ |
1316 | 0 | } |
1317 | | /* t[limit] still empty; search for a border in [0, limit) */ |
1318 | 0 | return newhint(t, binsearch(t, 0, limit)); |
1319 | 0 | } |
1320 | 0 | else { /* 'limit' is present in table; look for a border after it */ |
1321 | 0 | unsigned i; |
1322 | | /* look for a border in the vicinity of the hint */ |
1323 | 0 | for (i = 0; i < maxvicinity && limit < asize; i++) { |
1324 | 0 | limit++; |
1325 | 0 | if (arraykeyisempty(t, limit)) |
1326 | 0 | return newhint(t, limit - 1); /* 'limit - 1' is a border */ |
1327 | 0 | } |
1328 | 0 | if (arraykeyisempty(t, asize)) { /* last element empty? */ |
1329 | | /* t[limit] not empty; search for a border in [limit, asize) */ |
1330 | 0 | return newhint(t, binsearch(t, limit, asize)); |
1331 | 0 | } |
1332 | 0 | } |
1333 | | /* last element non empty; set a hint to speed up finding that again */ |
1334 | | /* (keys in the hash part cannot be hints) */ |
1335 | 0 | *lenhint(t) = asize; |
1336 | 0 | } |
1337 | | /* no array part or t[asize] is not empty; check the hash part */ |
1338 | 81 | lua_assert(asize == 0 || !arraykeyisempty(t, asize)); |
1339 | 81 | if (isdummy(t) || hashkeyisempty(t, asize + 1)) |
1340 | 81 | return asize; /* 'asize + 1' is empty */ |
1341 | 0 | else /* 'asize + 1' is also non empty */ |
1342 | 0 | return hash_search(L, t, asize); |
1343 | 81 | } |
1344 | | |
1345 | | |
1346 | | |
1347 | | #if defined(LUA_DEBUG) |
1348 | | |
1349 | | /* export this function for the test library */ |
1350 | | |
1351 | | Node *luaH_mainposition (const Table *t, const TValue *key) { |
1352 | | return mainpositionTV(t, key); |
1353 | | } |
1354 | | |
1355 | | #endif |