Coverage Report

Created: 2025-08-28 06:25

/src/testdir/build/lua-master/source/lcode.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
** $Id: lcode.c $
3
** Code generator for Lua
4
** See Copyright Notice in lua.h
5
*/
6
7
#define lcode_c
8
#define LUA_CORE
9
10
#include "lprefix.h"
11
12
13
#include <float.h>
14
#include <limits.h>
15
#include <math.h>
16
#include <stdlib.h>
17
18
#include "lua.h"
19
20
#include "lcode.h"
21
#include "ldebug.h"
22
#include "ldo.h"
23
#include "lgc.h"
24
#include "llex.h"
25
#include "lmem.h"
26
#include "lobject.h"
27
#include "lopcodes.h"
28
#include "lparser.h"
29
#include "lstring.h"
30
#include "ltable.h"
31
#include "lvm.h"
32
33
34
/* (note that expressions VJMP also have jumps.) */
35
168M
#define hasjumps(e) ((e)->t != (e)->f)
36
37
38
static int codesJ (FuncState *fs, OpCode o, int sj, int k);
39
40
41
42
/* semantic error */
43
0
l_noret luaK_semerror (LexState *ls, const char *fmt, ...) {
44
0
  const char *msg;
45
0
  va_list argp;
46
0
  pushvfstring(ls->L, argp, fmt, msg);
47
0
  ls->t.token = 0;  /* remove "near <token>" from final message */
48
0
  luaX_syntaxerror(ls, msg);
49
0
}
50
51
52
/*
53
** If expression is a numeric constant, fills 'v' with its value
54
** and returns 1. Otherwise, returns 0.
55
*/
56
5.78M
static int tonumeral (const expdesc *e, TValue *v) {
57
5.78M
  if (hasjumps(e))
58
2.90k
    return 0;  /* not a numeral */
59
5.78M
  switch (e->k) {
60
754k
    case VKINT:
61
754k
      if (v) setivalue(v, e->u.ival);
62
754k
      return 1;
63
46.8k
    case VKFLT:
64
46.8k
      if (v) setfltvalue(v, e->u.nval);
65
46.8k
      return 1;
66
4.98M
    default: return 0;
67
5.78M
  }
68
5.78M
}
69
70
71
/*
72
** Get the constant value from a constant expression
73
*/
74
8.46M
static TValue *const2val (FuncState *fs, const expdesc *e) {
75
8.46M
  lua_assert(e->k == VCONST);
76
8.46M
  return &fs->ls->dyd->actvar.arr[e->u.info].k;
77
8.46M
}
78
79
80
/*
81
** If expression is a constant, fills 'v' with its value
82
** and returns 1. Otherwise, returns 0.
83
*/
84
808
int luaK_exp2const (FuncState *fs, const expdesc *e, TValue *v) {
85
808
  if (hasjumps(e))
86
0
    return 0;  /* not a constant */
87
808
  switch (e->k) {
88
37
    case VFALSE:
89
37
      setbfvalue(v);
90
37
      return 1;
91
0
    case VTRUE:
92
0
      setbtvalue(v);
93
0
      return 1;
94
27
    case VNIL:
95
27
      setnilvalue(v);
96
27
      return 1;
97
0
    case VKSTR: {
98
0
      setsvalue(fs->ls->L, v, e->u.strval);
99
0
      return 1;
100
0
    }
101
108
    case VCONST: {
102
108
      setobj(fs->ls->L, v, const2val(fs, e));
103
108
      return 1;
104
108
    }
105
636
    default: return tonumeral(e, v);
106
808
  }
107
808
}
108
109
110
/*
111
** Return the previous instruction of the current code. If there
112
** may be a jump target between the current instruction and the
113
** previous one, return an invalid instruction (to avoid wrong
114
** optimizations).
115
*/
116
9.28k
static Instruction *previousinstruction (FuncState *fs) {
117
9.28k
  static const Instruction invalidinstruction = ~(Instruction)0;
118
9.28k
  if (fs->pc > fs->lasttarget)
119
4.70k
    return &fs->f->code[fs->pc - 1];  /* previous instruction */
120
4.58k
  else
121
4.58k
    return cast(Instruction*, &invalidinstruction);
122
9.28k
}
123
124
125
/*
126
** Create a OP_LOADNIL instruction, but try to optimize: if the previous
127
** instruction is also OP_LOADNIL and ranges are compatible, adjust
128
** range of previous instruction instead of emitting a new one. (For
129
** instance, 'local a; local b' will generate a single opcode.)
130
*/
131
5.86k
void luaK_nil (FuncState *fs, int from, int n) {
132
5.86k
  int l = from + n - 1;  /* last register to set nil */
133
5.86k
  Instruction *previous = previousinstruction(fs);
134
5.86k
  if (GET_OPCODE(*previous) == OP_LOADNIL) {  /* previous is LOADNIL? */
135
0
    int pfrom = GETARG_A(*previous);  /* get previous range */
136
0
    int pl = pfrom + GETARG_B(*previous);
137
0
    if ((pfrom <= from && from <= pl + 1) ||
138
0
        (from <= pfrom && pfrom <= l + 1)) {  /* can connect both? */
139
0
      if (pfrom < from) from = pfrom;  /* from = min(from, pfrom) */
140
0
      if (pl > l) l = pl;  /* l = max(l, pl) */
141
0
      SETARG_A(*previous, from);
142
0
      SETARG_B(*previous, l - from);
143
0
      return;
144
0
    }  /* else go through */
145
0
  }
146
5.86k
  luaK_codeABC(fs, OP_LOADNIL, from, n - 1, 0);  /* else no optimization */
147
5.86k
}
148
149
150
/*
151
** Gets the destination address of a jump instruction. Used to traverse
152
** a list of jumps.
153
*/
154
20.5M
static int getjump (FuncState *fs, int pc) {
155
20.5M
  int offset = GETARG_sJ(fs->f->code[pc]);
156
20.5M
  if (offset == NO_JUMP)  /* point to itself represents end of list */
157
19.9M
    return NO_JUMP;  /* end of list */
158
584k
  else
159
584k
    return (pc+1)+offset;  /* turn offset into absolute position */
160
20.5M
}
161
162
163
/*
164
** Fix jump instruction at position 'pc' to jump to 'dest'.
165
** (Jump addresses are relative in Lua)
166
*/
167
27.7M
static void fixjump (FuncState *fs, int pc, int dest) {
168
27.7M
  Instruction *jmp = &fs->f->code[pc];
169
27.7M
  int offset = dest - (pc + 1);
170
27.7M
  lua_assert(dest != NO_JUMP);
171
27.7M
  if (!(-OFFSET_sJ <= offset && offset <= MAXARG_sJ - OFFSET_sJ))
172
0
    luaX_syntaxerror(fs->ls, "control structure too long");
173
27.7M
  lua_assert(GET_OPCODE(*jmp) == OP_JMP);
174
27.7M
  SETARG_sJ(*jmp, offset);
175
27.7M
}
176
177
178
/*
179
** Concatenate jump-list 'l2' into jump-list 'l1'
180
*/
181
19.9M
void luaK_concat (FuncState *fs, int *l1, int l2) {
182
19.9M
  if (l2 == NO_JUMP) return;  /* nothing to concatenate? */
183
19.9M
  else if (*l1 == NO_JUMP)  /* no original list? */
184
19.9M
    *l1 = l2;  /* 'l1' points to 'l2' */
185
13.5k
  else {
186
13.5k
    int list = *l1;
187
13.5k
    int next;
188
582k
    while ((next = getjump(fs, list)) != NO_JUMP)  /* find last element */
189
569k
      list = next;
190
13.5k
    fixjump(fs, list, l2);  /* last element links to 'l2' */
191
13.5k
  }
192
19.9M
}
193
194
195
/*
196
** Create a jump instruction and return its position, so its destination
197
** can be fixed later (with 'fixjump').
198
*/
199
19.9M
int luaK_jump (FuncState *fs) {
200
19.9M
  return codesJ(fs, OP_JMP, NO_JUMP, 0);
201
19.9M
}
202
203
204
/*
205
** Code a 'return' instruction
206
*/
207
1.09k
void luaK_ret (FuncState *fs, int first, int nret) {
208
1.09k
  OpCode op;
209
1.09k
  switch (nret) {
210
893
    case 0: op = OP_RETURN0; break;
211
68
    case 1: op = OP_RETURN1; break;
212
135
    default: op = OP_RETURN; break;
213
1.09k
  }
214
1.09k
  luaY_checklimit(fs, nret + 1, MAXARG_B, "returns");
215
1.09k
  luaK_codeABC(fs, op, first, nret + 1, 0);
216
1.09k
}
217
218
219
/*
220
** Code a "conditional jump", that is, a test or comparison opcode
221
** followed by a jump. Return jump position.
222
*/
223
19.9M
static int condjump (FuncState *fs, OpCode op, int A, int B, int C, int k) {
224
19.9M
  luaK_codeABCk(fs, op, A, B, C, k);
225
19.9M
  return luaK_jump(fs);
226
19.9M
}
227
228
229
/*
230
** returns current 'pc' and marks it as a jump target (to avoid wrong
231
** optimizations with consecutive instructions not in the same basic block).
232
*/
233
79.7M
int luaK_getlabel (FuncState *fs) {
234
79.7M
  fs->lasttarget = fs->pc;
235
79.7M
  return fs->pc;
236
79.7M
}
237
238
239
/*
240
** Returns the position of the instruction "controlling" a given
241
** jump (that is, its condition), or the jump itself if it is
242
** unconditional.
243
*/
244
39.9M
static Instruction *getjumpcontrol (FuncState *fs, int pc) {
245
39.9M
  Instruction *pi = &fs->f->code[pc];
246
39.9M
  if (pc >= 1 && testTMode(GET_OPCODE(*(pi-1))))
247
39.9M
    return pi-1;
248
3.94k
  else
249
3.94k
    return pi;
250
39.9M
}
251
252
253
/*
254
** Patch destination register for a TESTSET instruction.
255
** If instruction in position 'node' is not a TESTSET, return 0 ("fails").
256
** Otherwise, if 'reg' is not 'NO_REG', set it as the destination
257
** register. Otherwise, change instruction to a simple 'TEST' (produces
258
** no register value)
259
*/
260
19.9M
static int patchtestreg (FuncState *fs, int node, int reg) {
261
19.9M
  Instruction *i = getjumpcontrol(fs, node);
262
19.9M
  if (GET_OPCODE(*i) != OP_TESTSET)
263
19.9M
    return 0;  /* cannot patch other instructions */
264
10.7k
  if (reg != NO_REG && reg != GETARG_B(*i))
265
10.7k
    SETARG_A(*i, reg);
266
10.7k
  else {
267
     /* no register to put value or register already has the value;
268
        change instruction to simple test */
269
10.7k
    *i = CREATE_ABCk(OP_TEST, GETARG_B(*i), 0, 0, GETARG_k(*i));
270
10.7k
  }
271
10.7k
  return 1;
272
10.7k
}
273
274
275
/*
276
** Traverse a list of tests ensuring no one produces a value
277
*/
278
4.17k
static void removevalues (FuncState *fs, int list) {
279
5.73k
  for (; list != NO_JUMP; list = getjump(fs, list))
280
1.56k
      patchtestreg(fs, list, NO_REG);
281
4.17k
}
282
283
284
/*
285
** Traverse a list of tests, patching their destination address and
286
** registers: tests producing values jump to 'vtarget' (and put their
287
** values in 'reg'), other tests jump to 'dtarget'.
288
*/
289
static void patchlistaux (FuncState *fs, int list, int vtarget, int reg,
290
59.8M
                          int dtarget) {
291
79.8M
  while (list != NO_JUMP) {
292
19.9M
    int next = getjump(fs, list);
293
19.9M
    if (patchtestreg(fs, list, reg))
294
10.3k
      fixjump(fs, list, vtarget);
295
19.9M
    else
296
19.9M
      fixjump(fs, list, dtarget);  /* jump to default target */
297
19.9M
    list = next;
298
19.9M
  }
299
59.8M
}
300
301
302
/*
303
** Path all jumps in 'list' to jump to 'target'.
304
** (The assert means that we cannot fix a jump to a forward address
305
** because we only know addresses once code is generated.)
306
*/
307
19.9M
void luaK_patchlist (FuncState *fs, int list, int target) {
308
19.9M
  lua_assert(target <= fs->pc);
309
19.9M
  patchlistaux(fs, list, target, NO_REG, target);
310
19.9M
}
311
312
313
19.9M
void luaK_patchtohere (FuncState *fs, int list) {
314
19.9M
  int hr = luaK_getlabel(fs);  /* mark "here" as a jump target */
315
19.9M
  luaK_patchlist(fs, list, hr);
316
19.9M
}
317
318
319
/* limit for difference between lines in relative line info. */
320
249M
#define LIMLINEDIFF 0x80
321
322
323
/*
324
** Save line info for a new instruction. If difference from last line
325
** does not fit in a byte, of after that many instructions, save a new
326
** absolute line info; (in that case, the special value 'ABSLINEINFO'
327
** in 'lineinfo' signals the existence of this absolute information.)
328
** Otherwise, store the difference from last line in 'lineinfo'.
329
*/
330
124M
static void savelineinfo (FuncState *fs, Proto *f, int line) {
331
124M
  int linedif = line - fs->previousline;
332
124M
  int pc = fs->pc - 1;  /* last instruction coded */
333
124M
  if (abs(linedif) >= LIMLINEDIFF || fs->iwthabs++ >= MAXIWTHABS) {
334
973k
    luaM_growvector(fs->ls->L, f->abslineinfo, fs->nabslineinfo,
335
973k
                    f->sizeabslineinfo, AbsLineInfo, INT_MAX, "lines");
336
973k
    f->abslineinfo[fs->nabslineinfo].pc = pc;
337
973k
    f->abslineinfo[fs->nabslineinfo++].line = line;
338
973k
    linedif = ABSLINEINFO;  /* signal that there is absolute information */
339
973k
    fs->iwthabs = 1;  /* restart counter */
340
973k
  }
341
124M
  luaM_growvector(fs->ls->L, f->lineinfo, pc, f->sizelineinfo, ls_byte,
342
124M
                  INT_MAX, "opcodes");
343
124M
  f->lineinfo[pc] = cast(ls_byte, linedif);
344
124M
  fs->previousline = line;  /* last line saved */
345
124M
}
346
347
348
/*
349
** Remove line information from the last instruction.
350
** If line information for that instruction is absolute, set 'iwthabs'
351
** above its max to force the new (replacing) instruction to have
352
** absolute line info, too.
353
*/
354
3.94M
static void removelastlineinfo (FuncState *fs) {
355
3.94M
  Proto *f = fs->f;
356
3.94M
  int pc = fs->pc - 1;  /* last instruction coded */
357
3.94M
  if (f->lineinfo[pc] != ABSLINEINFO) {  /* relative line info? */
358
3.91M
    fs->previousline -= f->lineinfo[pc];  /* correct last line saved */
359
3.91M
    fs->iwthabs--;  /* undo previous increment */
360
3.91M
  }
361
30.6k
  else {  /* absolute line information */
362
30.6k
    lua_assert(f->abslineinfo[fs->nabslineinfo - 1].pc == pc);
363
30.6k
    fs->nabslineinfo--;  /* remove it */
364
30.6k
    fs->iwthabs = MAXIWTHABS + 1;  /* force next line info to be absolute */
365
30.6k
  }
366
3.94M
}
367
368
369
/*
370
** Remove the last instruction created, correcting line information
371
** accordingly.
372
*/
373
31
static void removelastinstruction (FuncState *fs) {
374
31
  removelastlineinfo(fs);
375
31
  fs->pc--;
376
31
}
377
378
379
/*
380
** Emit instruction 'i', checking for array sizes and saving also its
381
** line information. Return 'i' position.
382
*/
383
120M
int luaK_code (FuncState *fs, Instruction i) {
384
120M
  Proto *f = fs->f;
385
  /* put new instruction in code array */
386
120M
  luaM_growvector(fs->ls->L, f->code, fs->pc, f->sizecode, Instruction,
387
120M
                  INT_MAX, "opcodes");
388
120M
  f->code[fs->pc++] = i;
389
120M
  savelineinfo(fs, f, fs->ls->lastline);
390
120M
  return fs->pc - 1;  /* index of new instruction */
391
120M
}
392
393
394
/*
395
** Format and emit an 'iABC' instruction. (Assertions check consistency
396
** of parameters versus opcode.)
397
*/
398
89.6M
int luaK_codeABCk (FuncState *fs, OpCode o, int A, int B, int C, int k) {
399
89.6M
  lua_assert(getOpMode(o) == iABC);
400
89.6M
  lua_assert(A <= MAXARG_A && B <= MAXARG_B &&
401
89.6M
             C <= MAXARG_C && (k & ~1) == 0);
402
89.6M
  return luaK_code(fs, CREATE_ABCk(o, A, B, C, k));
403
89.6M
}
404
405
406
18.4k
int luaK_codevABCk (FuncState *fs, OpCode o, int A, int B, int C, int k) {
407
18.4k
  lua_assert(getOpMode(o) == ivABC);
408
18.4k
  lua_assert(A <= MAXARG_A && B <= MAXARG_vB &&
409
18.4k
             C <= MAXARG_vC && (k & ~1) == 0);
410
18.4k
  return luaK_code(fs, CREATE_vABCk(o, A, B, C, k));
411
18.4k
}
412
413
414
/*
415
** Format and emit an 'iABx' instruction.
416
*/
417
8.93M
int luaK_codeABx (FuncState *fs, OpCode o, int A, int Bc) {
418
8.93M
  lua_assert(getOpMode(o) == iABx);
419
8.93M
  lua_assert(A <= MAXARG_A && Bc <= MAXARG_Bx);
420
8.93M
  return luaK_code(fs, CREATE_ABx(o, A, Bc));
421
8.93M
}
422
423
424
/*
425
** Format and emit an 'iAsBx' instruction.
426
*/
427
223k
static int codeAsBx (FuncState *fs, OpCode o, int A, int Bc) {
428
223k
  int b = Bc + OFFSET_sBx;
429
223k
  lua_assert(getOpMode(o) == iAsBx);
430
223k
  lua_assert(A <= MAXARG_A && b <= MAXARG_Bx);
431
223k
  return luaK_code(fs, CREATE_ABx(o, A, b));
432
223k
}
433
434
435
/*
436
** Format and emit an 'isJ' instruction.
437
*/
438
19.9M
static int codesJ (FuncState *fs, OpCode o, int sj, int k) {
439
19.9M
  int j = sj + OFFSET_sJ;
440
19.9M
  lua_assert(getOpMode(o) == isJ);
441
19.9M
  lua_assert(j <= MAXARG_sJ && (k & ~1) == 0);
442
19.9M
  return luaK_code(fs, CREATE_sJ(o, j, k));
443
19.9M
}
444
445
446
/*
447
** Emit an "extra argument" instruction (format 'iAx')
448
*/
449
1.85M
static int codeextraarg (FuncState *fs, int A) {
450
1.85M
  lua_assert(A <= MAXARG_Ax);
451
1.85M
  return luaK_code(fs, CREATE_Ax(OP_EXTRAARG, A));
452
1.85M
}
453
454
455
/*
456
** Emit a "load constant" instruction, using either 'OP_LOADK'
457
** (if constant index 'k' fits in 18 bits) or an 'OP_LOADKX'
458
** instruction with "extra argument".
459
*/
460
8.92M
static int luaK_codek (FuncState *fs, int reg, int k) {
461
8.92M
  if (k <= MAXARG_Bx)
462
7.08M
    return luaK_codeABx(fs, OP_LOADK, reg, k);
463
1.84M
  else {
464
1.84M
    int p = luaK_codeABx(fs, OP_LOADKX, reg, 0);
465
1.84M
    codeextraarg(fs, k);
466
1.84M
    return p;
467
1.84M
  }
468
8.92M
}
469
470
471
/*
472
** Check register-stack level, keeping track of its maximum size
473
** in field 'maxstacksize'
474
*/
475
56.9M
void luaK_checkstack (FuncState *fs, int n) {
476
56.9M
  int newstack = fs->freereg + n;
477
56.9M
  if (newstack > fs->f->maxstacksize) {
478
7.81k
    luaY_checklimit(fs, newstack, MAX_FSTACK, "registers");
479
7.81k
    fs->f->maxstacksize = cast_byte(newstack);
480
7.81k
  }
481
56.9M
}
482
483
484
/*
485
** Reserve 'n' registers in register stack
486
*/
487
56.9M
void luaK_reserveregs (FuncState *fs, int n) {
488
56.9M
  luaK_checkstack(fs, n);
489
56.9M
  fs->freereg =  cast_byte(fs->freereg + n);
490
56.9M
}
491
492
493
/*
494
** Free register 'reg', if it is neither a constant index nor
495
** a local variable.
496
)
497
*/
498
56.7M
static void freereg (FuncState *fs, int reg) {
499
56.7M
  if (reg >= luaY_nvarstack(fs)) {
500
56.1M
    fs->freereg--;
501
56.1M
    lua_assert(reg == fs->freereg);
502
56.1M
  }
503
56.7M
}
504
505
506
/*
507
** Free two registers in proper order
508
*/
509
24.2M
static void freeregs (FuncState *fs, int r1, int r2) {
510
24.2M
  if (r1 > r2) {
511
19.6M
    freereg(fs, r1);
512
19.6M
    freereg(fs, r2);
513
19.6M
  }
514
4.61M
  else {
515
4.61M
    freereg(fs, r2);
516
4.61M
    freereg(fs, r1);
517
4.61M
  }
518
24.2M
}
519
520
521
/*
522
** Free register used by expression 'e' (if any)
523
*/
524
56.9M
static void freeexp (FuncState *fs, expdesc *e) {
525
56.9M
  if (e->k == VNONRELOC)
526
69.3k
    freereg(fs, e->u.info);
527
56.9M
}
528
529
530
/*
531
** Free registers used by expressions 'e1' and 'e2' (if any) in proper
532
** order.
533
*/
534
21.8M
static void freeexps (FuncState *fs, expdesc *e1, expdesc *e2) {
535
21.8M
  int r1 = (e1->k == VNONRELOC) ? e1->u.info : -1;
536
21.8M
  int r2 = (e2->k == VNONRELOC) ? e2->u.info : -1;
537
21.8M
  freeregs(fs, r1, r2);
538
21.8M
}
539
540
541
/*
542
** Add constant 'v' to prototype's list of constants (field 'k').
543
*/
544
6.58M
static int addk (FuncState *fs, Proto *f, TValue *v) {
545
6.58M
  lua_State *L = fs->ls->L;
546
6.58M
  int oldsize = f->sizek;
547
6.58M
  int k = fs->nk;
548
6.58M
  luaM_growvector(L, f->k, k, f->sizek, TValue, MAXARG_Ax, "constants");
549
17.3M
  while (oldsize < f->sizek)
550
10.7M
    setnilvalue(&f->k[oldsize++]);
551
6.58M
  setobj(L, &f->k[k], v);
552
6.58M
  fs->nk++;
553
6.58M
  luaC_barrier(L, f, v);
554
6.58M
  return k;
555
6.58M
}
556
557
558
/*
559
** Use scanner's table to cache position of constants in constant list
560
** and try to reuse constants. Because some values should not be used
561
** as keys (nil cannot be a key, integer keys can collapse with float
562
** keys), the caller must provide a useful 'key' for indexing the cache.
563
*/
564
21.7M
static int k2proto (FuncState *fs, TValue *key, TValue *v) {
565
21.7M
  TValue val;
566
21.7M
  Proto *f = fs->f;
567
21.7M
  int tag = luaH_get(fs->kcache, key, &val);  /* query scanner table */
568
21.7M
  if (!tagisempty(tag)) {  /* is there an index there? */
569
21.7M
    int k = cast_int(ivalue(&val));
570
    /* collisions can happen only for float keys */
571
21.7M
    lua_assert(ttisfloat(key) || luaV_rawequalobj(&f->k[k], v));
572
21.7M
    return k;  /* reuse index */
573
21.7M
  }
574
26.4k
  else {  /* constant not found; create a new entry */
575
26.4k
    int k = addk(fs, f, v);
576
    /* cache it for reuse; numerical value does not need GC barrier;
577
       table is not a metatable, so it does not need to invalidate cache */
578
26.4k
    setivalue(&val, k);
579
26.4k
    luaH_set(fs->ls->L, fs->kcache, key, &val);
580
26.4k
    return k;
581
26.4k
  }
582
21.7M
}
583
584
585
/*
586
** Add a string to list of constants and return its index.
587
*/
588
21.6M
static int stringK (FuncState *fs, TString *s) {
589
21.6M
  TValue o;
590
21.6M
  setsvalue(fs->ls->L, &o, s);
591
21.6M
  return k2proto(fs, &o, &o);  /* use string itself as key */
592
21.6M
}
593
594
595
/*
596
** Add an integer to list of constants and return its index.
597
*/
598
114k
static int luaK_intK (FuncState *fs, lua_Integer n) {
599
114k
  TValue o;
600
114k
  setivalue(&o, n);
601
114k
  return k2proto(fs, &o, &o);  /* use integer itself as key */
602
114k
}
603
604
/*
605
** Add a float to list of constants and return its index. Floats
606
** with integral values need a different key, to avoid collision
607
** with actual integers. To that end, we add to the number its smaller
608
** power-of-two fraction that is still significant in its scale.
609
** (For doubles, the fraction would be 2^-52).
610
** This method is not bulletproof: different numbers may generate the
611
** same key (e.g., very large numbers will overflow to 'inf') and for
612
** floats larger than 2^53 the result is still an integer. For those
613
** cases, just generate a new entry. At worst, this only wastes an entry
614
** with a duplicate.
615
*/
616
6.58M
static int luaK_numberK (FuncState *fs, lua_Number r) {
617
6.58M
  TValue o, kv;
618
6.58M
  setfltvalue(&o, r);  /* value as a TValue */
619
6.58M
  if (r == 0) {  /* handle zero as a special case */
620
89
    setpvalue(&kv, fs);  /* use FuncState as index */
621
89
    return k2proto(fs, &kv, &o);  /* cannot collide */
622
89
  }
623
6.58M
  else {
624
6.58M
    const int nbm = l_floatatt(MANT_DIG);
625
6.58M
    const lua_Number q = l_mathop(ldexp)(l_mathop(1.0), -nbm + 1);
626
6.58M
    const lua_Number k =  r * (1 + q);  /* key */
627
6.58M
    lua_Integer ik;
628
6.58M
    setfltvalue(&kv, k);  /* key as a TValue */
629
6.58M
    if (!luaV_flttointeger(k, &ik, F2Ieq)) {  /* not an integer value? */
630
25.6k
      int n = k2proto(fs, &kv, &o);  /* use key */
631
25.6k
      if (luaV_rawequalobj(&fs->f->k[n], &o))  /* correct value? */
632
25.6k
        return n;
633
25.6k
    }
634
    /* else, either key is still an integer or there was a collision;
635
       anyway, do not try to reuse constant; instead, create a new one */
636
6.56M
    return addk(fs, fs->f, &o);
637
6.58M
  }
638
6.58M
}
639
640
641
/*
642
** Add a false to list of constants and return its index.
643
*/
644
15
static int boolF (FuncState *fs) {
645
15
  TValue o;
646
15
  setbfvalue(&o);
647
15
  return k2proto(fs, &o, &o);  /* use boolean itself as key */
648
15
}
649
650
651
/*
652
** Add a true to list of constants and return its index.
653
*/
654
92
static int boolT (FuncState *fs) {
655
92
  TValue o;
656
92
  setbtvalue(&o);
657
92
  return k2proto(fs, &o, &o);  /* use boolean itself as key */
658
92
}
659
660
661
/*
662
** Add nil to list of constants and return its index.
663
*/
664
0
static int nilK (FuncState *fs) {
665
0
  TValue k, v;
666
0
  setnilvalue(&v);
667
  /* cannot use nil as key; instead use table itself */
668
0
  sethvalue(fs->ls->L, &k, fs->kcache);
669
0
  return k2proto(fs, &k, &v);
670
0
}
671
672
673
/*
674
** Check whether 'i' can be stored in an 'sC' operand. Equivalent to
675
** (0 <= int2sC(i) && int2sC(i) <= MAXARG_C) but without risk of
676
** overflows in the hidden addition inside 'int2sC'.
677
*/
678
540k
static int fitsC (lua_Integer i) {
679
540k
  return (l_castS2U(i) + OFFSET_sC <= cast_uint(MAXARG_C));
680
540k
}
681
682
683
/*
684
** Check whether 'i' can be stored in an 'sBx' operand.
685
*/
686
6.79M
static int fitsBx (lua_Integer i) {
687
6.79M
  return (-OFFSET_sBx <= i && i <= MAXARG_Bx - OFFSET_sBx);
688
6.79M
}
689
690
691
225k
void luaK_int (FuncState *fs, int reg, lua_Integer i) {
692
225k
  if (fitsBx(i))
693
220k
    codeAsBx(fs, OP_LOADI, reg, cast_int(i));
694
4.72k
  else
695
4.72k
    luaK_codek(fs, reg, luaK_intK(fs, i));
696
225k
}
697
698
699
6.57M
static void luaK_float (FuncState *fs, int reg, lua_Number f) {
700
6.57M
  lua_Integer fi;
701
6.57M
  if (luaV_flttointeger(f, &fi, F2Ieq) && fitsBx(fi))
702
3.44k
    codeAsBx(fs, OP_LOADF, reg, cast_int(fi));
703
6.57M
  else
704
6.57M
    luaK_codek(fs, reg, luaK_numberK(fs, f));
705
6.57M
}
706
707
708
/*
709
** Convert a constant in 'v' into an expression description 'e'
710
*/
711
8.46M
static void const2exp (TValue *v, expdesc *e) {
712
8.46M
  switch (ttypetag(v)) {
713
18.3k
    case LUA_VNUMINT:
714
18.3k
      e->k = VKINT; e->u.ival = ivalue(v);
715
0
      break;
716
6.56M
    case LUA_VNUMFLT:
717
6.56M
      e->k = VKFLT; e->u.nval = fltvalue(v);
718
0
      break;
719
1.88M
    case LUA_VFALSE:
720
1.88M
      e->k = VFALSE;
721
1.88M
      break;
722
0
    case LUA_VTRUE:
723
0
      e->k = VTRUE;
724
0
      break;
725
87
    case LUA_VNIL:
726
87
      e->k = VNIL;
727
87
      break;
728
0
    case LUA_VSHRSTR:  case LUA_VLNGSTR:
729
0
      e->k = VKSTR; e->u.strval = tsvalue(v);
730
0
      break;
731
0
    default: lua_assert(0);
732
8.46M
  }
733
8.46M
}
734
735
736
/*
737
** Fix an expression to return the number of results 'nresults'.
738
** 'e' must be a multi-ret expression (function call or vararg).
739
*/
740
899
void luaK_setreturns (FuncState *fs, expdesc *e, int nresults) {
741
899
  Instruction *pc = &getinstruction(fs, e);
742
899
  luaY_checklimit(fs, nresults + 1, MAXARG_C, "multiple results");
743
899
  if (e->k == VCALL)  /* expression is an open function call? */
744
899
    SETARG_C(*pc, nresults + 1);
745
537
  else {
746
537
    lua_assert(e->k == VVARARG);
747
537
    SETARG_C(*pc, nresults + 1);
748
537
    SETARG_A(*pc, fs->freereg);
749
537
    luaK_reserveregs(fs, 1);
750
537
  }
751
899
}
752
753
754
/*
755
** Convert a VKSTR to a VK
756
*/
757
21.6M
static int str2K (FuncState *fs, expdesc *e) {
758
21.6M
  lua_assert(e->k == VKSTR);
759
21.6M
  e->u.info = stringK(fs, e->u.strval);
760
21.6M
  e->k = VK;
761
21.6M
  return e->u.info;
762
21.6M
}
763
764
765
/*
766
** Fix an expression to return one result.
767
** If expression is not a multi-ret expression (function call or
768
** vararg), it already returns one result, so nothing needs to be done.
769
** Function calls become VNONRELOC expressions (as its result comes
770
** fixed in the base register of the call), while vararg expressions
771
** become VRELOC (as OP_VARARG puts its results where it wants).
772
** (Calls are created returning one result, so that does not need
773
** to be fixed.)
774
*/
775
30.3k
void luaK_setoneret (FuncState *fs, expdesc *e) {
776
30.3k
  if (e->k == VCALL) {  /* expression is an open function call? */
777
    /* already returns 1 value */
778
19.2k
    lua_assert(GETARG_C(getinstruction(fs, e)) == 2);
779
19.2k
    e->k = VNONRELOC;  /* result has fixed position */
780
19.2k
    e->u.info = GETARG_A(getinstruction(fs, e));
781
19.2k
  }
782
11.0k
  else if (e->k == VVARARG) {
783
3.39k
    SETARG_C(getinstruction(fs, e), 2);
784
3.39k
    e->k = VRELOC;  /* can relocate its simple result */
785
3.39k
  }
786
30.3k
}
787
788
789
/*
790
** Ensure that expression 'e' is not a variable (nor a <const>).
791
** (Expression still may have jump lists.)
792
*/
793
235M
void luaK_dischargevars (FuncState *fs, expdesc *e) {
794
235M
  switch (e->k) {
795
8.46M
    case VCONST: {
796
8.46M
      const2exp(const2val(fs, e), e);
797
8.46M
      break;
798
0
    }
799
2.70k
    case VLOCAL: {  /* already in a register */
800
2.70k
      int temp = e->u.var.ridx;
801
2.70k
      e->u.info = temp;  /* (can't do a direct assignment; values overlap) */
802
2.70k
      e->k = VNONRELOC;  /* becomes a non-relocatable value */
803
2.70k
      break;
804
0
    }
805
2.32M
    case VUPVAL: {  /* move value to some (pending) register */
806
2.32M
      e->u.info = luaK_codeABC(fs, OP_GETUPVAL, 0, e->u.info, 0);
807
2.32M
      e->k = VRELOC;
808
2.32M
      break;
809
0
    }
810
11.0M
    case VINDEXUP: {
811
11.0M
      e->u.info = luaK_codeABC(fs, OP_GETTABUP, 0, e->u.ind.t, e->u.ind.idx);
812
11.0M
      e->k = VRELOC;
813
11.0M
      break;
814
0
    }
815
0
    case VINDEXI: {
816
0
      freereg(fs, e->u.ind.t);
817
0
      e->u.info = luaK_codeABC(fs, OP_GETI, 0, e->u.ind.t, e->u.ind.idx);
818
0
      e->k = VRELOC;
819
0
      break;
820
0
    }
821
8.24M
    case VINDEXSTR: {
822
8.24M
      freereg(fs, e->u.ind.t);
823
8.24M
      e->u.info = luaK_codeABC(fs, OP_GETFIELD, 0, e->u.ind.t, e->u.ind.idx);
824
8.24M
      e->k = VRELOC;
825
8.24M
      break;
826
0
    }
827
2.33M
    case VINDEXED: {
828
2.33M
      freeregs(fs, e->u.ind.t, e->u.ind.idx);
829
2.33M
      e->u.info = luaK_codeABC(fs, OP_GETTABLE, 0, e->u.ind.t, e->u.ind.idx);
830
2.33M
      e->k = VRELOC;
831
2.33M
      break;
832
0
    }
833
21.7k
    case VVARARG: case VCALL: {
834
21.7k
      luaK_setoneret(fs, e);
835
21.7k
      break;
836
3.39k
    }
837
203M
    default: break;  /* there is one value available (somewhere) */
838
235M
  }
839
235M
}
840
841
842
/*
843
** Ensure expression value is in register 'reg', making 'e' a
844
** non-relocatable expression.
845
** (Expression still may have jump lists.)
846
*/
847
56.9M
static void discharge2reg (FuncState *fs, expdesc *e, int reg) {
848
56.9M
  luaK_dischargevars(fs, e);
849
56.9M
  switch (e->k) {
850
4.66k
    case VNIL: {
851
4.66k
      luaK_nil(fs, reg, 1);
852
4.66k
      break;
853
0
    }
854
1.88M
    case VFALSE: {
855
1.88M
      luaK_codeABC(fs, OP_LOADFALSE, reg, 0, 0);
856
1.88M
      break;
857
0
    }
858
18
    case VTRUE: {
859
18
      luaK_codeABC(fs, OP_LOADTRUE, reg, 0, 0);
860
18
      break;
861
0
    }
862
19.1k
    case VKSTR: {
863
19.1k
      str2K(fs, e);
864
19.1k
    }  /* FALLTHROUGH */
865
2.35M
    case VK: {
866
2.35M
      luaK_codek(fs, reg, e->u.info);
867
2.35M
      break;
868
19.1k
    }
869
6.57M
    case VKFLT: {
870
6.57M
      luaK_float(fs, reg, e->u.nval);
871
6.57M
      break;
872
19.1k
    }
873
225k
    case VKINT: {
874
225k
      luaK_int(fs, reg, e->u.ival);
875
225k
      break;
876
19.1k
    }
877
25.9M
    case VRELOC: {
878
25.9M
      Instruction *pc = &getinstruction(fs, e);
879
25.9M
      SETARG_A(*pc, reg);  /* instruction will put result in 'reg' */
880
25.9M
      break;
881
19.1k
    }
882
10.4k
    case VNONRELOC: {
883
10.4k
      if (reg != e->u.info)
884
1.04k
        luaK_codeABC(fs, OP_MOVE, reg, e->u.info, 0);
885
10.4k
      break;
886
19.1k
    }
887
19.9M
    default: {
888
19.9M
      lua_assert(e->k == VJMP);
889
19.9M
      return;  /* nothing to do... */
890
19.9M
    }
891
56.9M
  }
892
36.9M
  e->u.info = reg;
893
36.9M
  e->k = VNONRELOC;
894
36.9M
}
895
896
897
/*
898
** Ensure expression value is in a register, making 'e' a
899
** non-relocatable expression.
900
** (Expression still may have jump lists.)
901
*/
902
12.8k
static void discharge2anyreg (FuncState *fs, expdesc *e) {
903
12.8k
  if (e->k != VNONRELOC) {  /* no fixed register yet? */
904
10.8k
    luaK_reserveregs(fs, 1);  /* get a register */
905
10.8k
    discharge2reg(fs, e, fs->freereg-1);  /* put value there */
906
10.8k
  }
907
12.8k
}
908
909
910
39.8M
static int code_loadbool (FuncState *fs, int A, OpCode op) {
911
39.8M
  luaK_getlabel(fs);  /* those instructions may be jump targets */
912
39.8M
  return luaK_codeABC(fs, op, A, 0, 0);
913
39.8M
}
914
915
916
/*
917
** check whether list has any jump that do not produce a value
918
** or produce an inverted value
919
*/
920
19.9M
static int need_value (FuncState *fs, int list) {
921
19.9M
  for (; list != NO_JUMP; list = getjump(fs, list)) {
922
19.9M
    Instruction i = *getjumpcontrol(fs, list);
923
19.9M
    if (GET_OPCODE(i) != OP_TESTSET) return 1;
924
19.9M
  }
925
13.7k
  return 0;  /* not found */
926
19.9M
}
927
928
929
/*
930
** Ensures final expression result (which includes results from its
931
** jump lists) is in register 'reg'.
932
** If expression has jumps, need to patch these jumps either to
933
** its final position or to "load" instructions (for those tests
934
** that do not produce values).
935
*/
936
56.8M
static void exp2reg (FuncState *fs, expdesc *e, int reg) {
937
56.8M
  discharge2reg(fs, e, reg);
938
56.8M
  if (e->k == VJMP)  /* expression itself is a test? */
939
19.9M
    luaK_concat(fs, &e->t, e->u.info);  /* put this jump in 't' list */
940
56.8M
  if (hasjumps(e)) {
941
19.9M
    int final;  /* position after whole expression */
942
19.9M
    int p_f = NO_JUMP;  /* position of an eventual LOAD false */
943
19.9M
    int p_t = NO_JUMP;  /* position of an eventual LOAD true */
944
19.9M
    if (need_value(fs, e->t) || need_value(fs, e->f)) {
945
19.9M
      int fj = (e->k == VJMP) ? NO_JUMP : luaK_jump(fs);
946
19.9M
      p_f = code_loadbool(fs, reg, OP_LFALSESKIP);  /* skip next inst. */
947
19.9M
      p_t = code_loadbool(fs, reg, OP_LOADTRUE);
948
      /* jump around these booleans if 'e' is not a test */
949
19.9M
      luaK_patchtohere(fs, fj);
950
19.9M
    }
951
19.9M
    final = luaK_getlabel(fs);
952
19.9M
    patchlistaux(fs, e->f, final, reg, p_f);
953
19.9M
    patchlistaux(fs, e->t, final, reg, p_t);
954
19.9M
  }
955
56.8M
  e->f = e->t = NO_JUMP;
956
56.8M
  e->u.info = reg;
957
56.8M
  e->k = VNONRELOC;
958
56.8M
}
959
960
961
/*
962
** Ensures final expression result is in next available register.
963
*/
964
56.8M
void luaK_exp2nextreg (FuncState *fs, expdesc *e) {
965
56.8M
  luaK_dischargevars(fs, e);
966
56.8M
  freeexp(fs, e);
967
56.8M
  luaK_reserveregs(fs, 1);
968
56.8M
  exp2reg(fs, e, fs->freereg - 1);
969
56.8M
}
970
971
972
/*
973
** Ensures final expression result is in some (any) register
974
** and return that register.
975
*/
976
77.7M
int luaK_exp2anyreg (FuncState *fs, expdesc *e) {
977
77.7M
  luaK_dischargevars(fs, e);
978
77.7M
  if (e->k == VNONRELOC) {  /* expression already has a register? */
979
21.6M
    if (!hasjumps(e))  /* no jumps? */
980
21.6M
      return e->u.info;  /* result is already in a register */
981
5.12k
    if (e->u.info >= luaY_nvarstack(fs)) {  /* reg. is not a local? */
982
4.92k
      exp2reg(fs, e, e->u.info);  /* put final result in it */
983
4.92k
      return e->u.info;
984
4.92k
    }
985
    /* else expression has jumps and cannot change its register
986
       to hold the jump values, because it is a local variable.
987
       Go through to the default case. */
988
5.12k
  }
989
56.0M
  luaK_exp2nextreg(fs, e);  /* default: use next available register */
990
56.0M
  return e->u.info;
991
77.7M
}
992
993
994
/*
995
** Ensures final expression result is either in a register
996
** or in an upvalue.
997
*/
998
21.6M
void luaK_exp2anyregup (FuncState *fs, expdesc *e) {
999
21.6M
  if (e->k != VUPVAL || hasjumps(e))
1000
8.46M
    luaK_exp2anyreg(fs, e);
1001
21.6M
}
1002
1003
1004
/*
1005
** Ensures final expression result is either in a register
1006
** or it is a constant.
1007
*/
1008
1.00k
void luaK_exp2val (FuncState *fs, expdesc *e) {
1009
1.00k
  if (e->k == VJMP || hasjumps(e))
1010
58
    luaK_exp2anyreg(fs, e);
1011
945
  else
1012
945
    luaK_dischargevars(fs, e);
1013
1.00k
}
1014
1015
1016
/*
1017
** Try to make 'e' a K expression with an index in the range of R/K
1018
** indices. Return true iff succeeded.
1019
*/
1020
136k
static int luaK_exp2K (FuncState *fs, expdesc *e) {
1021
136k
  if (!hasjumps(e)) {
1022
135k
    int info;
1023
135k
    switch (e->k) {  /* move constants to 'k' */
1024
92
      case VTRUE: info = boolT(fs); break;
1025
15
      case VFALSE: info = boolF(fs); break;
1026
0
      case VNIL: info = nilK(fs); break;
1027
109k
      case VKINT: info = luaK_intK(fs, e->u.ival); break;
1028
14.7k
      case VKFLT: info = luaK_numberK(fs, e->u.nval); break;
1029
820
      case VKSTR: info = stringK(fs, e->u.strval); break;
1030
1
      case VK: info = e->u.info; break;
1031
9.97k
      default: return 0;  /* not a constant */
1032
135k
    }
1033
125k
    if (info <= MAXINDEXRK) {  /* does constant fit in 'argC'? */
1034
115k
      e->k = VK;  /* make expression a 'K' expression */
1035
115k
      e->u.info = info;
1036
115k
      return 1;
1037
115k
    }
1038
125k
  }
1039
  /* else, expression doesn't fit; leave it unchanged */
1040
11.0k
  return 0;
1041
136k
}
1042
1043
1044
/*
1045
** Ensures final expression result is in a valid R/K index
1046
** (that is, it is either in a register or in 'k' with an index
1047
** in the range of R/K indices).
1048
** Returns 1 iff expression is K.
1049
*/
1050
13.1k
static int exp2RK (FuncState *fs, expdesc *e) {
1051
13.1k
  if (luaK_exp2K(fs, e))
1052
2.03k
    return 1;
1053
11.1k
  else {  /* not a constant in the right range: put it in a register */
1054
11.1k
    luaK_exp2anyreg(fs, e);
1055
11.1k
    return 0;
1056
11.1k
  }
1057
13.1k
}
1058
1059
1060
static void codeABRK (FuncState *fs, OpCode o, int A, int B,
1061
9.82k
                      expdesc *ec) {
1062
9.82k
  int k = exp2RK(fs, ec);
1063
9.82k
  luaK_codeABCk(fs, o, A, B, ec->u.info, k);
1064
9.82k
}
1065
1066
1067
/*
1068
** Generate code to store result of expression 'ex' into variable 'var'.
1069
*/
1070
12.8k
void luaK_storevar (FuncState *fs, expdesc *var, expdesc *ex) {
1071
12.8k
  switch (var->k) {
1072
258
    case VLOCAL: {
1073
258
      freeexp(fs, ex);
1074
258
      exp2reg(fs, ex, var->u.var.ridx);  /* compute 'ex' into proper place */
1075
258
      return;
1076
0
    }
1077
2.78k
    case VUPVAL: {
1078
2.78k
      int e = luaK_exp2anyreg(fs, ex);
1079
2.78k
      luaK_codeABC(fs, OP_SETUPVAL, e, var->u.info, 0);
1080
2.78k
      break;
1081
0
    }
1082
8.28k
    case VINDEXUP: {
1083
8.28k
      codeABRK(fs, OP_SETTABUP, var->u.ind.t, var->u.ind.idx, ex);
1084
8.28k
      break;
1085
0
    }
1086
1
    case VINDEXI: {
1087
1
      codeABRK(fs, OP_SETI, var->u.ind.t, var->u.ind.idx, ex);
1088
1
      break;
1089
0
    }
1090
916
    case VINDEXSTR: {
1091
916
      codeABRK(fs, OP_SETFIELD, var->u.ind.t, var->u.ind.idx, ex);
1092
916
      break;
1093
0
    }
1094
617
    case VINDEXED: {
1095
617
      codeABRK(fs, OP_SETTABLE, var->u.ind.t, var->u.ind.idx, ex);
1096
617
      break;
1097
0
    }
1098
0
    default: lua_assert(0);  /* invalid var kind to store */
1099
12.8k
  }
1100
12.6k
  freeexp(fs, ex);
1101
12.6k
}
1102
1103
1104
/*
1105
** Negate condition 'e' (where 'e' is a comparison).
1106
*/
1107
2.07k
static void negatecondition (FuncState *fs, expdesc *e) {
1108
2.07k
  Instruction *pc = getjumpcontrol(fs, e->u.info);
1109
2.07k
  lua_assert(testTMode(GET_OPCODE(*pc)) && GET_OPCODE(*pc) != OP_TESTSET &&
1110
2.07k
                                           GET_OPCODE(*pc) != OP_TEST);
1111
2.07k
  SETARG_k(*pc, (GETARG_k(*pc) ^ 1));
1112
2.07k
}
1113
1114
1115
/*
1116
** Emit instruction to jump if 'e' is 'cond' (that is, if 'cond'
1117
** is true, code will jump if 'e' is true.) Return jump position.
1118
** Optimize when 'e' is 'not' something, inverting the condition
1119
** and removing the 'not'.
1120
*/
1121
11.3k
static int jumponcond (FuncState *fs, expdesc *e, int cond) {
1122
11.3k
  if (e->k == VRELOC) {
1123
8.78k
    Instruction ie = getinstruction(fs, e);
1124
8.78k
    if (GET_OPCODE(ie) == OP_NOT) {
1125
31
      removelastinstruction(fs);  /* remove previous OP_NOT */
1126
31
      return condjump(fs, OP_TEST, GETARG_B(ie), 0, 0, !cond);
1127
31
    }
1128
    /* else go through */
1129
8.78k
  }
1130
11.3k
  discharge2anyreg(fs, e);
1131
11.3k
  freeexp(fs, e);
1132
11.3k
  return condjump(fs, OP_TESTSET, NO_REG, e->u.info, 0, cond);
1133
11.3k
}
1134
1135
1136
/*
1137
** Emit code to go through if 'e' is true, jump otherwise.
1138
*/
1139
7.01k
void luaK_goiftrue (FuncState *fs, expdesc *e) {
1140
7.01k
  int pc;  /* pc of new jump */
1141
7.01k
  luaK_dischargevars(fs, e);
1142
7.01k
  switch (e->k) {
1143
1.55k
    case VJMP: {  /* condition? */
1144
1.55k
      negatecondition(fs, e);  /* jump when it is false */
1145
1.55k
      pc = e->u.info;  /* save jump position */
1146
1.55k
      break;
1147
0
    }
1148
351
    case VK: case VKFLT: case VKINT: case VKSTR: case VTRUE: {
1149
351
      pc = NO_JUMP;  /* always true; do nothing */
1150
351
      break;
1151
139
    }
1152
5.11k
    default: {
1153
5.11k
      pc = jumponcond(fs, e, 0);  /* jump when false */
1154
5.11k
      break;
1155
139
    }
1156
7.01k
  }
1157
7.01k
  luaK_concat(fs, &e->f, pc);  /* insert new jump in false list */
1158
7.01k
  luaK_patchtohere(fs, e->t);  /* true list jumps to here (to go through) */
1159
7.01k
  e->t = NO_JUMP;
1160
7.01k
}
1161
1162
1163
/*
1164
** Emit code to go through if 'e' is false, jump otherwise.
1165
*/
1166
21.3k
void luaK_goiffalse (FuncState *fs, expdesc *e) {
1167
21.3k
  int pc;  /* pc of new jump */
1168
21.3k
  luaK_dischargevars(fs, e);
1169
21.3k
  switch (e->k) {
1170
15.1k
    case VJMP: {
1171
15.1k
      pc = e->u.info;  /* already jump if true */
1172
15.1k
      break;
1173
0
    }
1174
0
    case VNIL: case VFALSE: {
1175
0
      pc = NO_JUMP;  /* always false; do nothing */
1176
0
      break;
1177
0
    }
1178
6.23k
    default: {
1179
6.23k
      pc = jumponcond(fs, e, 1);  /* jump if true */
1180
6.23k
      break;
1181
0
    }
1182
21.3k
  }
1183
21.3k
  luaK_concat(fs, &e->t, pc);  /* insert new jump in 't' list */
1184
21.3k
  luaK_patchtohere(fs, e->f);  /* false list jumps to here (to go through) */
1185
21.3k
  e->f = NO_JUMP;
1186
21.3k
}
1187
1188
1189
/*
1190
** Code 'not e', doing constant folding.
1191
*/
1192
2.08k
static void codenot (FuncState *fs, expdesc *e) {
1193
2.08k
  switch (e->k) {
1194
0
    case VNIL: case VFALSE: {
1195
0
      e->k = VTRUE;  /* true == not nil == not false */
1196
0
      break;
1197
0
    }
1198
58
    case VK: case VKFLT: case VKINT: case VKSTR: case VTRUE: {
1199
58
      e->k = VFALSE;  /* false == not "x" == not 0.5 == not 1 == not true */
1200
58
      break;
1201
21
    }
1202
522
    case VJMP: {
1203
522
      negatecondition(fs, e);
1204
522
      break;
1205
21
    }
1206
639
    case VRELOC:
1207
1.50k
    case VNONRELOC: {
1208
1.50k
      discharge2anyreg(fs, e);
1209
1.50k
      freeexp(fs, e);
1210
1.50k
      e->u.info = luaK_codeABC(fs, OP_NOT, 0, e->u.info, 0);
1211
1.50k
      e->k = VRELOC;
1212
1.50k
      break;
1213
639
    }
1214
0
    default: lua_assert(0);  /* cannot happen */
1215
2.08k
  }
1216
  /* interchange true and false lists */
1217
2.08k
  { int temp = e->f; e->f = e->t; e->t = temp; }
1218
2.08k
  removevalues(fs, e->f);  /* values are useless when negated */
1219
2.08k
  removevalues(fs, e->t);
1220
2.08k
}
1221
1222
1223
/*
1224
** Check whether expression 'e' is a short literal string
1225
*/
1226
34.7M
static int isKstr (FuncState *fs, expdesc *e) {
1227
34.7M
  return (e->k == VK && !hasjumps(e) && e->u.info <= MAXARG_B &&
1228
34.7M
          ttisshrstring(&fs->f->k[e->u.info]));
1229
34.7M
}
1230
1231
/*
1232
** Check whether expression 'e' is a literal integer.
1233
*/
1234
2.75M
static int isKint (expdesc *e) {
1235
2.75M
  return (e->k == VKINT && !hasjumps(e));
1236
2.75M
}
1237
1238
1239
/*
1240
** Check whether expression 'e' is a literal integer in
1241
** proper range to fit in register C
1242
*/
1243
2.33M
static int isCint (expdesc *e) {
1244
2.33M
  return isKint(e) && (l_castS2U(e->u.ival) <= l_castS2U(MAXARG_C));
1245
2.33M
}
1246
1247
1248
/*
1249
** Check whether expression 'e' is a literal integer in
1250
** proper range to fit in register sC
1251
*/
1252
358k
static int isSCint (expdesc *e) {
1253
358k
  return isKint(e) && fitsC(e->u.ival);
1254
358k
}
1255
1256
1257
/*
1258
** Check whether expression 'e' is a literal integer or float in
1259
** proper range to fit in a register (sB or sC).
1260
*/
1261
59.8M
static int isSCnumber (expdesc *e, int *pi, int *isfloat) {
1262
59.8M
  lua_Integer i;
1263
59.8M
  if (e->k == VKINT)
1264
371k
    i = e->u.ival;
1265
59.4M
  else if (e->k == VKFLT && luaV_flttointeger(e->u.nval, &i, F2Ieq))
1266
2.48k
    *isfloat = 1;
1267
59.4M
  else
1268
59.4M
    return 0;  /* not a number */
1269
374k
  if (!hasjumps(e) && fitsC(i)) {
1270
367k
    *pi = int2sC(cast_int(i));
1271
367k
    return 1;
1272
367k
  }
1273
7.17k
  else
1274
7.17k
    return 0;
1275
374k
}
1276
1277
1278
/*
1279
** Emit SELF instruction or equivalent: the code will convert
1280
** expression 'e' into 'e.key(e,'.
1281
*/
1282
465
void luaK_self (FuncState *fs, expdesc *e, expdesc *key) {
1283
465
  int ereg, base;
1284
465
  luaK_exp2anyreg(fs, e);
1285
465
  ereg = e->u.info;  /* register where 'e' (the receiver) was placed */
1286
465
  freeexp(fs, e);
1287
465
  base = e->u.info = fs->freereg;  /* base register for op_self */
1288
465
  e->k = VNONRELOC;  /* self expression has a fixed register */
1289
465
  luaK_reserveregs(fs, 2);  /* method and 'self' produced by op_self */
1290
465
  lua_assert(key->k == VKSTR);
1291
  /* is method name a short string in a valid K index? */
1292
465
  if (strisshr(key->u.strval) && luaK_exp2K(fs, key)) {
1293
    /* can use 'self' opcode */
1294
461
    luaK_codeABCk(fs, OP_SELF, base, ereg, key->u.info, 0);
1295
461
  }
1296
4
  else {  /* cannot use 'self' opcode; use move+gettable */
1297
4
    luaK_exp2anyreg(fs, key);  /* put method name in a register */
1298
4
    luaK_codeABC(fs, OP_MOVE, base + 1, ereg, 0);  /* copy self to base+1 */
1299
4
    luaK_codeABC(fs, OP_GETTABLE, base, ereg, key->u.info);  /* get method */
1300
4
  }
1301
465
  freeexp(fs, key);
1302
465
}
1303
1304
1305
/*
1306
** Create expression 't[k]'. 't' must have its final result already in a
1307
** register or upvalue. Upvalues can only be indexed by literal strings.
1308
** Keys can be literal strings in the constant table or arbitrary
1309
** values in registers.
1310
*/
1311
21.6M
void luaK_indexed (FuncState *fs, expdesc *t, expdesc *k) {
1312
21.6M
  int keystr = -1;
1313
21.6M
  if (k->k == VKSTR)
1314
21.6M
    keystr = str2K(fs, k);
1315
21.6M
  lua_assert(!hasjumps(t) &&
1316
21.6M
             (t->k == VLOCAL || t->k == VNONRELOC || t->k == VUPVAL));
1317
21.6M
  if (t->k == VUPVAL && !isKstr(fs, k))  /* upvalue indexed by non 'Kstr'? */
1318
2.11M
    luaK_exp2anyreg(fs, t);  /* put it in a register */
1319
21.6M
  if (t->k == VUPVAL) {
1320
11.0M
    lu_byte temp = cast_byte(t->u.info);  /* upvalue index */
1321
11.0M
    t->u.ind.t = temp;  /* (can't do a direct assignment; values overlap) */
1322
11.0M
    lua_assert(isKstr(fs, k));
1323
11.0M
    t->u.ind.idx = cast_short(k->u.info);  /* literal short string */
1324
11.0M
    t->k = VINDEXUP;
1325
11.0M
  }
1326
10.5M
  else {
1327
    /* register index of the table */
1328
10.5M
    t->u.ind.t = cast_byte((t->k == VLOCAL) ? t->u.var.ridx: t->u.info);
1329
10.5M
    if (isKstr(fs, k)) {
1330
8.24M
      t->u.ind.idx = cast_short(k->u.info);  /* literal short string */
1331
8.24M
      t->k = VINDEXSTR;
1332
8.24M
    }
1333
2.33M
    else if (isCint(k)) {  /* int. constant in proper range? */
1334
1
      t->u.ind.idx = cast_short(k->u.ival);
1335
1
      t->k = VINDEXI;
1336
1
    }
1337
2.33M
    else {
1338
2.33M
      t->u.ind.idx = cast_short(luaK_exp2anyreg(fs, k));  /* register */
1339
2.33M
      t->k = VINDEXED;
1340
2.33M
    }
1341
10.5M
  }
1342
21.6M
  t->u.ind.keystr = keystr;  /* string index in 'k' */
1343
21.6M
  t->u.ind.ro = 0;  /* by default, not read-only */
1344
21.6M
}
1345
1346
1347
/*
1348
** Return false if folding can raise an error.
1349
** Bitwise operations need operands convertible to integers; division
1350
** operations cannot have 0 as divisor.
1351
*/
1352
150k
static int validop (int op, TValue *v1, TValue *v2) {
1353
150k
  switch (op) {
1354
2.06k
    case LUA_OPBAND: case LUA_OPBOR: case LUA_OPBXOR:
1355
27.6k
    case LUA_OPSHL: case LUA_OPSHR: case LUA_OPBNOT: {  /* conversion errors */
1356
27.6k
      lua_Integer i;
1357
27.6k
      return (luaV_tointegerns(v1, &i, LUA_FLOORN2I) &&
1358
27.6k
              luaV_tointegerns(v2, &i, LUA_FLOORN2I));
1359
3.84k
    }
1360
18.2k
    case LUA_OPDIV: case LUA_OPIDIV: case LUA_OPMOD:  /* division by 0 */
1361
18.2k
      return (nvalue(v2) != 0);
1362
104k
    default: return 1;  /* everything else is valid */
1363
150k
  }
1364
150k
}
1365
1366
1367
/*
1368
** Try to "constant-fold" an operation; return 1 iff successful.
1369
** (In this case, 'e1' has the final result.)
1370
*/
1371
static int constfolding (FuncState *fs, int op, expdesc *e1,
1372
2.04M
                                        const expdesc *e2) {
1373
2.04M
  TValue v1, v2, res;
1374
2.04M
  if (!tonumeral(e1, &v1) || !tonumeral(e2, &v2) || !validop(op, &v1, &v2))
1375
1.89M
    return 0;  /* non-numeric operands or not safe to fold */
1376
148k
  luaO_rawarith(fs->ls->L, op, &v1, &v2, &res);  /* does operation */
1377
148k
  if (ttisinteger(&res)) {
1378
41.7k
    e1->k = VKINT;
1379
41.7k
    e1->u.ival = ivalue(&res);
1380
41.7k
  }
1381
106k
  else {  /* folds neither NaN nor 0.0 (to avoid problems with -0.0) */
1382
106k
    lua_Number n = fltvalue(&res);
1383
106k
    if (luai_numisnan(n) || n == 0)
1384
79.6k
      return 0;
1385
27.0k
    e1->k = VKFLT;
1386
27.0k
    e1->u.nval = n;
1387
27.0k
  }
1388
68.7k
  return 1;
1389
148k
}
1390
1391
1392
/*
1393
** Convert a BinOpr to an OpCode  (ORDER OPR - ORDER OP)
1394
*/
1395
21.7M
l_sinline OpCode binopr2op (BinOpr opr, BinOpr baser, OpCode base) {
1396
21.7M
  lua_assert(baser <= opr &&
1397
21.7M
            ((baser == OPR_ADD && opr <= OPR_SHR) ||
1398
21.7M
             (baser == OPR_LT && opr <= OPR_LE)));
1399
21.7M
  return cast(OpCode, (cast_int(opr) - cast_int(baser)) + cast_int(base));
1400
21.7M
}
1401
1402
1403
/*
1404
** Convert a UnOpr to an OpCode  (ORDER OPR - ORDER OP)
1405
*/
1406
35.6k
l_sinline OpCode unopr2op (UnOpr opr) {
1407
35.6k
  return cast(OpCode, (cast_int(opr) - cast_int(OPR_MINUS)) +
1408
35.6k
                                       cast_int(OP_UNM));
1409
35.6k
}
1410
1411
1412
/*
1413
** Convert a BinOpr to a tag method  (ORDER OPR - ORDER TM)
1414
*/
1415
1.80M
l_sinline TMS binopr2TM (BinOpr opr) {
1416
1.80M
  lua_assert(OPR_ADD <= opr && opr <= OPR_SHR);
1417
1.80M
  return cast(TMS, (cast_int(opr) - cast_int(OPR_ADD)) + cast_int(TM_ADD));
1418
1.80M
}
1419
1420
1421
/*
1422
** Emit code for unary expressions that "produce values"
1423
** (everything but 'not').
1424
** Expression to produce final result will be encoded in 'e'.
1425
*/
1426
35.6k
static void codeunexpval (FuncState *fs, OpCode op, expdesc *e, int line) {
1427
35.6k
  int r = luaK_exp2anyreg(fs, e);  /* opcodes operate only on registers */
1428
35.6k
  freeexp(fs, e);
1429
35.6k
  e->u.info = luaK_codeABC(fs, op, 0, r, 0);  /* generate opcode */
1430
35.6k
  e->k = VRELOC;  /* all those operations are relocatable */
1431
35.6k
  luaK_fixline(fs, line);
1432
35.6k
}
1433
1434
1435
/*
1436
** Emit code for binary expressions that "produce values"
1437
** (everything but logical operators 'and'/'or' and comparison
1438
** operators).
1439
** Expression to produce final result will be encoded in 'e1'.
1440
*/
1441
static void finishbinexpval (FuncState *fs, expdesc *e1, expdesc *e2,
1442
                             OpCode op, int v2, int flip, int line,
1443
1.93M
                             OpCode mmop, TMS event) {
1444
1.93M
  int v1 = luaK_exp2anyreg(fs, e1);
1445
1.93M
  int pc = luaK_codeABCk(fs, op, 0, v1, v2, 0);
1446
1.93M
  freeexps(fs, e1, e2);
1447
1.93M
  e1->u.info = pc;
1448
1.93M
  e1->k = VRELOC;  /* all those operations are relocatable */
1449
1.93M
  luaK_fixline(fs, line);
1450
1.93M
  luaK_codeABCk(fs, mmop, v1, v2, cast_int(event), flip);  /* metamethod */
1451
1.93M
  luaK_fixline(fs, line);
1452
1.93M
}
1453
1454
1455
/*
1456
** Emit code for binary expressions that "produce values" over
1457
** two registers.
1458
*/
1459
static void codebinexpval (FuncState *fs, BinOpr opr,
1460
1.69M
                           expdesc *e1, expdesc *e2, int line) {
1461
1.69M
  OpCode op = binopr2op(opr, OPR_ADD, OP_ADD);
1462
1.69M
  int v2 = luaK_exp2anyreg(fs, e2);  /* make sure 'e2' is in a register */
1463
  /* 'e1' must be already in a register or it is a constant */
1464
1.69M
  lua_assert((VNIL <= e1->k && e1->k <= VKSTR) ||
1465
1.69M
             e1->k == VNONRELOC || e1->k == VRELOC);
1466
1.69M
  lua_assert(OP_ADD <= op && op <= OP_SHR);
1467
1.69M
  finishbinexpval(fs, e1, e2, op, v2, 0, line, OP_MMBIN, binopr2TM(opr));
1468
1.69M
}
1469
1470
1471
/*
1472
** Code binary operators with immediate operands.
1473
*/
1474
static void codebini (FuncState *fs, OpCode op,
1475
                       expdesc *e1, expdesc *e2, int flip, int line,
1476
104k
                       TMS event) {
1477
104k
  int v2 = int2sC(cast_int(e2->u.ival));  /* immediate operand */
1478
104k
  lua_assert(e2->k == VKINT);
1479
104k
  finishbinexpval(fs, e1, e2, op, v2, flip, line, OP_MMBINI, event);
1480
104k
}
1481
1482
1483
/*
1484
** Code binary operators with K operand.
1485
*/
1486
static void codebinK (FuncState *fs, BinOpr opr,
1487
112k
                      expdesc *e1, expdesc *e2, int flip, int line) {
1488
112k
  TMS event = binopr2TM(opr);
1489
112k
  int v2 = e2->u.info;  /* K index */
1490
112k
  OpCode op = binopr2op(opr, OPR_ADD, OP_ADDK);
1491
112k
  finishbinexpval(fs, e1, e2, op, v2, flip, line, OP_MMBINK, event);
1492
112k
}
1493
1494
1495
/* Try to code a binary operator negating its second operand.
1496
** For the metamethod, 2nd operand must keep its original value.
1497
*/
1498
static int finishbinexpneg (FuncState *fs, expdesc *e1, expdesc *e2,
1499
62.6k
                             OpCode op, int line, TMS event) {
1500
62.6k
  if (!isKint(e2))
1501
30.9k
    return 0;  /* not an integer constant */
1502
31.6k
  else {
1503
31.6k
    lua_Integer i2 = e2->u.ival;
1504
31.6k
    if (!(fitsC(i2) && fitsC(-i2)))
1505
318
      return 0;  /* not in the proper range */
1506
31.3k
    else {  /* operating a small integer constant */
1507
31.3k
      int v2 = cast_int(i2);
1508
31.3k
      finishbinexpval(fs, e1, e2, op, int2sC(-v2), 0, line, OP_MMBINI, event);
1509
      /* correct metamethod argument */
1510
31.3k
      SETARG_B(fs->f->code[fs->pc - 1], int2sC(v2));
1511
31.3k
      return 1;  /* successfully coded */
1512
31.3k
    }
1513
31.6k
  }
1514
62.6k
}
1515
1516
1517
19.5M
static void swapexps (expdesc *e1, expdesc *e2) {
1518
19.5M
  expdesc temp = *e1; *e1 = *e2; *e2 = temp;  /* swap 'e1' and 'e2' */
1519
19.5M
}
1520
1521
1522
/*
1523
** Code binary operators with no constant operand.
1524
*/
1525
static void codebinNoK (FuncState *fs, BinOpr opr,
1526
1.43M
                        expdesc *e1, expdesc *e2, int flip, int line) {
1527
1.43M
  if (flip)
1528
927
    swapexps(e1, e2);  /* back to original order */
1529
1.43M
  codebinexpval(fs, opr, e1, e2, line);  /* use standard operators */
1530
1.43M
}
1531
1532
1533
/*
1534
** Code arithmetic operators ('+', '-', ...). If second operand is a
1535
** constant in the proper range, use variant opcodes with K operands.
1536
*/
1537
static void codearith (FuncState *fs, BinOpr opr,
1538
1.45M
                       expdesc *e1, expdesc *e2, int flip, int line) {
1539
1.45M
  if (tonumeral(e2, NULL) && luaK_exp2K(fs, e2))  /* K operand? */
1540
93.1k
    codebinK(fs, opr, e1, e2, flip, line);
1541
1.36M
  else  /* 'e2' is neither an immediate nor a K operand */
1542
1.36M
    codebinNoK(fs, opr, e1, e2, flip, line);
1543
1.45M
}
1544
1545
1546
/*
1547
** Code commutative operators ('+', '*'). If first operand is a
1548
** numeric constant, change order of operands to try to use an
1549
** immediate or K operator.
1550
*/
1551
static void codecommutative (FuncState *fs, BinOpr op,
1552
18.9k
                             expdesc *e1, expdesc *e2, int line) {
1553
18.9k
  int flip = 0;
1554
18.9k
  if (tonumeral(e1, NULL)) {  /* is first operand a numeric constant? */
1555
1.44k
    swapexps(e1, e2);  /* change order */
1556
1.44k
    flip = 1;
1557
1.44k
  }
1558
18.9k
  if (op == OPR_ADD && isSCint(e2))  /* immediate operand? */
1559
199
    codebini(fs, OP_ADDI, e1, e2, flip, line, TM_ADD);
1560
18.7k
  else
1561
18.7k
    codearith(fs, op, e1, e2, flip, line);
1562
18.9k
}
1563
1564
1565
/*
1566
** Code bitwise operations; they are all commutative, so the function
1567
** tries to put an integer constant as the 2nd operand (a K operand).
1568
*/
1569
static void codebitwise (FuncState *fs, BinOpr opr,
1570
97.4k
                         expdesc *e1, expdesc *e2, int line) {
1571
97.4k
  int flip = 0;
1572
97.4k
  if (e1->k == VKINT) {
1573
7.40k
    swapexps(e1, e2);  /* 'e2' will be the constant operand */
1574
7.40k
    flip = 1;
1575
7.40k
  }
1576
97.4k
  if (e2->k == VKINT && luaK_exp2K(fs, e2))  /* K operand? */
1577
19.7k
    codebinK(fs, opr, e1, e2, flip, line);
1578
77.7k
  else  /* no constants */
1579
77.7k
    codebinNoK(fs, opr, e1, e2, flip, line);
1580
97.4k
}
1581
1582
1583
/*
1584
** Emit code for order comparisons. When using an immediate operand,
1585
** 'isfloat' tells whether the original value was a float.
1586
*/
1587
19.9M
static void codeorder (FuncState *fs, BinOpr opr, expdesc *e1, expdesc *e2) {
1588
19.9M
  int r1, r2;
1589
19.9M
  int im;
1590
19.9M
  int isfloat = 0;
1591
19.9M
  OpCode op;
1592
19.9M
  if (isSCnumber(e2, &im, &isfloat)) {
1593
    /* use immediate operand */
1594
3.76k
    r1 = luaK_exp2anyreg(fs, e1);
1595
3.76k
    r2 = im;
1596
3.76k
    op = binopr2op(opr, OPR_LT, OP_LTI);
1597
3.76k
  }
1598
19.9M
  else if (isSCnumber(e1, &im, &isfloat)) {
1599
    /* transform (A < B) to (B > A) and (A <= B) to (B >= A) */
1600
359k
    r1 = luaK_exp2anyreg(fs, e2);
1601
359k
    r2 = im;
1602
359k
    op = binopr2op(opr, OPR_LT, OP_GTI);
1603
359k
  }
1604
19.5M
  else {  /* regular case, compare two registers */
1605
19.5M
    r1 = luaK_exp2anyreg(fs, e1);
1606
19.5M
    r2 = luaK_exp2anyreg(fs, e2);
1607
19.5M
    op = binopr2op(opr, OPR_LT, OP_LT);
1608
19.5M
  }
1609
19.9M
  freeexps(fs, e1, e2);
1610
19.9M
  e1->u.info = condjump(fs, op, r1, r2, isfloat, 1);
1611
19.9M
  e1->k = VJMP;
1612
19.9M
}
1613
1614
1615
/*
1616
** Emit code for equality comparisons ('==', '~=').
1617
** 'e1' was already put as RK by 'luaK_infix'.
1618
*/
1619
2.66k
static void codeeq (FuncState *fs, BinOpr opr, expdesc *e1, expdesc *e2) {
1620
2.66k
  int r1, r2;
1621
2.66k
  int im;
1622
2.66k
  int isfloat = 0;  /* not needed here, but kept for symmetry */
1623
2.66k
  OpCode op;
1624
2.66k
  if (e1->k != VNONRELOC) {
1625
1.09k
    lua_assert(e1->k == VK || e1->k == VKINT || e1->k == VKFLT);
1626
1.09k
    swapexps(e1, e2);
1627
1.09k
  }
1628
2.66k
  r1 = luaK_exp2anyreg(fs, e1);  /* 1st expression must be in register */
1629
2.66k
  if (isSCnumber(e2, &im, &isfloat)) {
1630
903
    op = OP_EQI;
1631
903
    r2 = im;  /* immediate operand */
1632
903
  }
1633
1.76k
  else if (exp2RK(fs, e2)) {  /* 2nd expression is constant? */
1634
896
    op = OP_EQK;
1635
896
    r2 = e2->u.info;  /* constant index */
1636
896
  }
1637
869
  else {
1638
869
    op = OP_EQ;  /* will compare two registers */
1639
869
    r2 = luaK_exp2anyreg(fs, e2);
1640
869
  }
1641
2.66k
  freeexps(fs, e1, e2);
1642
2.66k
  e1->u.info = condjump(fs, op, r1, r2, isfloat, (opr == OPR_EQ));
1643
2.66k
  e1->k = VJMP;
1644
2.66k
}
1645
1646
1647
/*
1648
** Apply prefix operation 'op' to expression 'e'.
1649
*/
1650
67.5k
void luaK_prefix (FuncState *fs, UnOpr opr, expdesc *e, int line) {
1651
67.5k
  static const expdesc ef = {VKINT, {0}, NO_JUMP, NO_JUMP};
1652
67.5k
  luaK_dischargevars(fs, e);
1653
67.5k
  switch (opr) {
1654
64.4k
    case OPR_MINUS: case OPR_BNOT:  /* use 'ef' as fake 2nd operand */
1655
64.4k
      if (constfolding(fs, cast_int(opr + LUA_OPUNM), e, &ef))
1656
29.8k
        break;
1657
      /* else */ /* FALLTHROUGH */
1658
35.6k
    case OPR_LEN:
1659
35.6k
      codeunexpval(fs, unopr2op(opr), e, line);
1660
35.6k
      break;
1661
2.08k
    case OPR_NOT: codenot(fs, e); break;
1662
0
    default: lua_assert(0);
1663
67.5k
  }
1664
67.5k
}
1665
1666
1667
/*
1668
** Process 1st operand 'v' of binary operation 'op' before reading
1669
** 2nd operand.
1670
*/
1671
21.9M
void luaK_infix (FuncState *fs, BinOpr op, expdesc *v) {
1672
21.9M
  luaK_dischargevars(fs, v);
1673
21.9M
  switch (op) {
1674
6.47k
    case OPR_AND: {
1675
6.47k
      luaK_goiftrue(fs, v);  /* go ahead only if 'v' is true */
1676
6.47k
      break;
1677
0
    }
1678
21.3k
    case OPR_OR: {
1679
21.3k
      luaK_goiffalse(fs, v);  /* go ahead only if 'v' is false */
1680
21.3k
      break;
1681
0
    }
1682
3.55k
    case OPR_CONCAT: {
1683
3.55k
      luaK_exp2nextreg(fs, v);  /* operand must be on the stack */
1684
3.55k
      break;
1685
0
    }
1686
43.1k
    case OPR_ADD: case OPR_SUB:
1687
1.25M
    case OPR_MUL: case OPR_DIV: case OPR_IDIV:
1688
1.52M
    case OPR_MOD: case OPR_POW:
1689
1.62M
    case OPR_BAND: case OPR_BOR: case OPR_BXOR:
1690
1.97M
    case OPR_SHL: case OPR_SHR: {
1691
1.97M
      if (!tonumeral(v, NULL))
1692
1.72M
        luaK_exp2anyreg(fs, v);
1693
      /* else keep numeral, which may be folded or used as an immediate
1694
         operand */
1695
1.97M
      break;
1696
1.64M
    }
1697
2.69k
    case OPR_EQ: case OPR_NE: {
1698
2.69k
      if (!tonumeral(v, NULL))
1699
1.60k
        exp2RK(fs, v);
1700
      /* else keep numeral, which may be an immediate operand */
1701
2.69k
      break;
1702
1.94k
    }
1703
376k
    case OPR_LT: case OPR_LE:
1704
19.9M
    case OPR_GT: case OPR_GE: {
1705
19.9M
      int dummy, dummy2;
1706
19.9M
      if (!isSCnumber(v, &dummy, &dummy2))
1707
19.9M
        luaK_exp2anyreg(fs, v);
1708
      /* else keep numeral, which may be an immediate operand */
1709
19.9M
      break;
1710
19.9M
    }
1711
0
    default: lua_assert(0);
1712
21.9M
  }
1713
21.9M
}
1714
1715
/*
1716
** Create code for '(e1 .. e2)'.
1717
** For '(e1 .. e2.1 .. e2.2)' (which is '(e1 .. (e2.1 .. e2.2))',
1718
** because concatenation is right associative), merge both CONCATs.
1719
*/
1720
3.42k
static void codeconcat (FuncState *fs, expdesc *e1, expdesc *e2, int line) {
1721
3.42k
  Instruction *ie2 = previousinstruction(fs);
1722
3.42k
  if (GET_OPCODE(*ie2) == OP_CONCAT) {  /* is 'e2' a concatenation? */
1723
889
    int n = GETARG_B(*ie2);  /* # of elements concatenated in 'e2' */
1724
889
    lua_assert(e1->u.info + 1 == GETARG_A(*ie2));
1725
889
    freeexp(fs, e2);
1726
889
    SETARG_A(*ie2, e1->u.info);  /* correct first element ('e1') */
1727
889
    SETARG_B(*ie2, n + 1);  /* will concatenate one more element */
1728
889
  }
1729
2.53k
  else {  /* 'e2' is not a concatenation */
1730
2.53k
    luaK_codeABC(fs, OP_CONCAT, e1->u.info, 2, 0);  /* new concat opcode */
1731
2.53k
    freeexp(fs, e2);
1732
2.53k
    luaK_fixline(fs, line);
1733
2.53k
  }
1734
3.42k
}
1735
1736
1737
/*
1738
** Finalize code for binary operation, after reading 2nd operand.
1739
*/
1740
void luaK_posfix (FuncState *fs, BinOpr opr,
1741
21.9M
                  expdesc *e1, expdesc *e2, int line) {
1742
21.9M
  luaK_dischargevars(fs, e2);
1743
21.9M
  if (foldbinop(opr) && constfolding(fs, cast_int(opr + LUA_OPADD), e1, e2))
1744
38.9k
    return;  /* done by folding */
1745
21.9M
  switch (opr) {
1746
6.11k
    case OPR_AND: {
1747
6.11k
      lua_assert(e1->t == NO_JUMP);  /* list closed by 'luaK_infix' */
1748
6.11k
      luaK_concat(fs, &e2->f, e1->f);
1749
6.11k
      *e1 = *e2;
1750
6.11k
      break;
1751
6.11k
    }
1752
21.1k
    case OPR_OR: {
1753
21.1k
      lua_assert(e1->f == NO_JUMP);  /* list closed by 'luaK_infix' */
1754
21.1k
      luaK_concat(fs, &e2->t, e1->t);
1755
21.1k
      *e1 = *e2;
1756
21.1k
      break;
1757
21.1k
    }
1758
3.42k
    case OPR_CONCAT: {  /* e1 .. e2 */
1759
3.42k
      luaK_exp2nextreg(fs, e2);
1760
3.42k
      codeconcat(fs, e1, e2, line);
1761
3.42k
      break;
1762
21.1k
    }
1763
18.9k
    case OPR_ADD: case OPR_MUL: {
1764
18.9k
      codecommutative(fs, opr, e1, e2, line);
1765
18.9k
      break;
1766
2.01k
    }
1767
37.7k
    case OPR_SUB: {
1768
37.7k
      if (finishbinexpneg(fs, e1, e2, OP_ADDI, line, TM_SUB))
1769
29.9k
        break; /* coded as (r1 + -I) */
1770
      /* ELSE */
1771
37.7k
    }  /* FALLTHROUGH */
1772
1.43M
    case OPR_DIV: case OPR_IDIV: case OPR_MOD: case OPR_POW: {
1773
1.43M
      codearith(fs, opr, e1, e2, 0, line);
1774
1.43M
      break;
1775
1.26M
    }
1776
97.4k
    case OPR_BAND: case OPR_BOR: case OPR_BXOR: {
1777
97.4k
      codebitwise(fs, opr, e1, e2, line);
1778
97.4k
      break;
1779
13.1k
    }
1780
26.7k
    case OPR_SHL: {
1781
26.7k
      if (isSCint(e1)) {
1782
1.84k
        swapexps(e1, e2);
1783
1.84k
        codebini(fs, OP_SHLI, e1, e2, 1, line, TM_SHL);  /* I << r2 */
1784
1.84k
      }
1785
24.8k
      else if (finishbinexpneg(fs, e1, e2, OP_SHRI, line, TM_SHL)) {
1786
1.38k
        /* coded as (r1 >> -I) */;
1787
1.38k
      }
1788
23.4k
      else  /* regular case (two registers) */
1789
23.4k
       codebinexpval(fs, opr, e1, e2, line);
1790
26.7k
      break;
1791
13.1k
    }
1792
330k
    case OPR_SHR: {
1793
330k
      if (isSCint(e2))
1794
102k
        codebini(fs, OP_SHRI, e1, e2, 0, line, TM_SHR);  /* r1 >> I */
1795
228k
      else  /* regular case (two registers) */
1796
228k
        codebinexpval(fs, opr, e1, e2, line);
1797
330k
      break;
1798
13.1k
    }
1799
2.66k
    case OPR_EQ: case OPR_NE: {
1800
2.66k
      codeeq(fs, opr, e1, e2);
1801
2.66k
      break;
1802
1.93k
    }
1803
19.5M
    case OPR_GT: case OPR_GE: {
1804
      /* '(a > b)' <=> '(b < a)';  '(a >= b)' <=> '(b <= a)' */
1805
19.5M
      swapexps(e1, e2);
1806
19.5M
      opr = cast(BinOpr, (opr - OPR_GT) + OPR_LT);
1807
19.5M
    }  /* FALLTHROUGH */
1808
19.9M
    case OPR_LT: case OPR_LE: {
1809
19.9M
      codeorder(fs, opr, e1, e2);
1810
19.9M
      break;
1811
19.9M
    }
1812
0
    default: lua_assert(0);
1813
21.9M
  }
1814
21.9M
}
1815
1816
1817
/*
1818
** Change line information associated with current position, by removing
1819
** previous info and adding it again with new line.
1820
*/
1821
3.94M
void luaK_fixline (FuncState *fs, int line) {
1822
3.94M
  removelastlineinfo(fs);
1823
3.94M
  savelineinfo(fs, fs->f, line);
1824
3.94M
}
1825
1826
1827
3.68k
void luaK_settablesize (FuncState *fs, int pc, int ra, int asize, int hsize) {
1828
3.68k
  Instruction *inst = &fs->f->code[pc];
1829
3.68k
  int extra = asize / (MAXARG_vC + 1);  /* higher bits of array size */
1830
3.68k
  int rc = asize % (MAXARG_vC + 1);  /* lower bits of array size */
1831
3.68k
  int k = (extra > 0);  /* true iff needs extra argument */
1832
3.68k
  hsize = (hsize != 0) ? luaO_ceillog2(cast_uint(hsize)) + 1 : 0;
1833
3.68k
  *inst = CREATE_vABCk(OP_NEWTABLE, ra, hsize, rc, k);
1834
3.68k
  *(inst + 1) = CREATE_Ax(OP_EXTRAARG, extra);
1835
3.68k
}
1836
1837
1838
/*
1839
** Emit a SETLIST instruction.
1840
** 'base' is register that keeps table;
1841
** 'nelems' is #table plus those to be stored now;
1842
** 'tostore' is number of values (in registers 'base + 1',...) to add to
1843
** table (or LUA_MULTRET to add up to stack top).
1844
*/
1845
14.6k
void luaK_setlist (FuncState *fs, int base, int nelems, int tostore) {
1846
14.6k
  lua_assert(tostore != 0);
1847
14.6k
  if (tostore == LUA_MULTRET)
1848
5
    tostore = 0;
1849
14.6k
  if (nelems <= MAXARG_vC)
1850
418
    luaK_codevABCk(fs, OP_SETLIST, base, tostore, nelems, 0);
1851
14.1k
  else {
1852
14.1k
    int extra = nelems / (MAXARG_vC + 1);
1853
14.1k
    nelems %= (MAXARG_vC + 1);
1854
14.1k
    luaK_codevABCk(fs, OP_SETLIST, base, tostore, nelems, 1);
1855
14.1k
    codeextraarg(fs, extra);
1856
14.1k
  }
1857
14.6k
  fs->freereg = cast_byte(base + 1);  /* free registers with list values */
1858
14.6k
}
1859
1860
1861
/*
1862
** return the final target of a jump (skipping jumps to jumps)
1863
*/
1864
7.74M
static int finaltarget (Instruction *code, int i) {
1865
7.74M
  int count;
1866
15.5M
  for (count = 0; count < 100; count++) {  /* avoid infinite loops */
1867
15.5M
    Instruction pc = code[i];
1868
15.5M
    if (GET_OPCODE(pc) != OP_JMP)
1869
7.74M
      break;
1870
7.76M
    else
1871
7.76M
      i += GETARG_sJ(pc) + 1;
1872
15.5M
  }
1873
7.74M
  return i;
1874
7.74M
}
1875
1876
1877
/*
1878
** Do a final pass over the code of a function, doing small peephole
1879
** optimizations and adjustments.
1880
*/
1881
#include "lopnames.h"
1882
536
void luaK_finish (FuncState *fs) {
1883
536
  int i;
1884
536
  Proto *p = fs->f;
1885
40.1M
  for (i = 0; i < fs->pc; i++) {
1886
40.1M
    Instruction *pc = &p->code[i];
1887
    /* avoid "not used" warnings when assert is off (for 'onelua.c') */
1888
40.1M
    (void)luaP_isOT; (void)luaP_isIT;
1889
40.1M
    lua_assert(i == 0 || luaP_isOT(*(pc - 1)) == luaP_isIT(*pc));
1890
40.1M
    switch (GET_OPCODE(*pc)) {
1891
541
      case OP_RETURN0: case OP_RETURN1: {
1892
541
        if (!(fs->needclose || (p->flag & PF_ISVARARG)))
1893
337
          break;  /* no extra work */
1894
        /* else use OP_RETURN to do the extra work */
1895
204
        SET_OPCODE(*pc, OP_RETURN);
1896
204
      }  /* FALLTHROUGH */
1897
204
      case OP_RETURN: case OP_TAILCALL: {
1898
204
        if (fs->needclose)
1899
204
          SETARG_k(*pc, 1);  /* signal that it needs to close */
1900
204
        if (p->flag & PF_ISVARARG)
1901
204
          SETARG_C(*pc, p->numparams + 1);  /* signal that it is vararg */
1902
204
        break;
1903
204
      }
1904
7.74M
      case OP_JMP: {
1905
7.74M
        int target = finaltarget(p->code, i);
1906
7.74M
        fixjump(fs, i, target);
1907
7.74M
        break;
1908
204
      }
1909
32.4M
      default: break;
1910
40.1M
    }
1911
40.1M
  }
1912
536
}