/src/testdir/build/lua-master/source/lmathlib.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | ** $Id: lmathlib.c $ |
3 | | ** Standard mathematical library |
4 | | ** See Copyright Notice in lua.h |
5 | | */ |
6 | | |
7 | | #define lmathlib_c |
8 | | #define LUA_LIB |
9 | | |
10 | | #include "lprefix.h" |
11 | | |
12 | | |
13 | | #include <float.h> |
14 | | #include <limits.h> |
15 | | #include <math.h> |
16 | | #include <stdlib.h> |
17 | | #include <time.h> |
18 | | |
19 | | #include "lua.h" |
20 | | |
21 | | #include "lauxlib.h" |
22 | | #include "lualib.h" |
23 | | |
24 | | |
25 | | #undef PI |
26 | 2.65k | #define PI (l_mathop(3.141592653589793238462643383279502884)) |
27 | | |
28 | | |
29 | 0 | static int math_abs (lua_State *L) { |
30 | 0 | if (lua_isinteger(L, 1)) { |
31 | 0 | lua_Integer n = lua_tointeger(L, 1); |
32 | 0 | if (n < 0) n = (lua_Integer)(0u - (lua_Unsigned)n); |
33 | 0 | lua_pushinteger(L, n); |
34 | 0 | } |
35 | 0 | else |
36 | 0 | lua_pushnumber(L, l_mathop(fabs)(luaL_checknumber(L, 1))); |
37 | 0 | return 1; |
38 | 0 | } |
39 | | |
40 | 0 | static int math_sin (lua_State *L) { |
41 | 0 | lua_pushnumber(L, l_mathop(sin)(luaL_checknumber(L, 1))); |
42 | 0 | return 1; |
43 | 0 | } |
44 | | |
45 | 0 | static int math_cos (lua_State *L) { |
46 | 0 | lua_pushnumber(L, l_mathop(cos)(luaL_checknumber(L, 1))); |
47 | 0 | return 1; |
48 | 0 | } |
49 | | |
50 | 0 | static int math_tan (lua_State *L) { |
51 | 0 | lua_pushnumber(L, l_mathop(tan)(luaL_checknumber(L, 1))); |
52 | 0 | return 1; |
53 | 0 | } |
54 | | |
55 | 0 | static int math_asin (lua_State *L) { |
56 | 0 | lua_pushnumber(L, l_mathop(asin)(luaL_checknumber(L, 1))); |
57 | 0 | return 1; |
58 | 0 | } |
59 | | |
60 | 0 | static int math_acos (lua_State *L) { |
61 | 0 | lua_pushnumber(L, l_mathop(acos)(luaL_checknumber(L, 1))); |
62 | 0 | return 1; |
63 | 0 | } |
64 | | |
65 | 0 | static int math_atan (lua_State *L) { |
66 | 0 | lua_Number y = luaL_checknumber(L, 1); |
67 | 0 | lua_Number x = luaL_optnumber(L, 2, 1); |
68 | 0 | lua_pushnumber(L, l_mathop(atan2)(y, x)); |
69 | 0 | return 1; |
70 | 0 | } |
71 | | |
72 | | |
73 | 0 | static int math_toint (lua_State *L) { |
74 | 0 | int valid; |
75 | 0 | lua_Integer n = lua_tointegerx(L, 1, &valid); |
76 | 0 | if (l_likely(valid)) |
77 | 0 | lua_pushinteger(L, n); |
78 | 0 | else { |
79 | 0 | luaL_checkany(L, 1); |
80 | 0 | luaL_pushfail(L); /* value is not convertible to integer */ |
81 | 0 | } |
82 | 0 | return 1; |
83 | 0 | } |
84 | | |
85 | | |
86 | 0 | static void pushnumint (lua_State *L, lua_Number d) { |
87 | 0 | lua_Integer n; |
88 | 0 | if (lua_numbertointeger(d, &n)) /* does 'd' fit in an integer? */ |
89 | 0 | lua_pushinteger(L, n); /* result is integer */ |
90 | 0 | else |
91 | 0 | lua_pushnumber(L, d); /* result is float */ |
92 | 0 | } |
93 | | |
94 | | |
95 | 0 | static int math_floor (lua_State *L) { |
96 | 0 | if (lua_isinteger(L, 1)) |
97 | 0 | lua_settop(L, 1); /* integer is its own floor */ |
98 | 0 | else { |
99 | 0 | lua_Number d = l_mathop(floor)(luaL_checknumber(L, 1)); |
100 | 0 | pushnumint(L, d); |
101 | 0 | } |
102 | 0 | return 1; |
103 | 0 | } |
104 | | |
105 | | |
106 | 0 | static int math_ceil (lua_State *L) { |
107 | 0 | if (lua_isinteger(L, 1)) |
108 | 0 | lua_settop(L, 1); /* integer is its own ceil */ |
109 | 0 | else { |
110 | 0 | lua_Number d = l_mathop(ceil)(luaL_checknumber(L, 1)); |
111 | 0 | pushnumint(L, d); |
112 | 0 | } |
113 | 0 | return 1; |
114 | 0 | } |
115 | | |
116 | | |
117 | 0 | static int math_fmod (lua_State *L) { |
118 | 0 | if (lua_isinteger(L, 1) && lua_isinteger(L, 2)) { |
119 | 0 | lua_Integer d = lua_tointeger(L, 2); |
120 | 0 | if ((lua_Unsigned)d + 1u <= 1u) { /* special cases: -1 or 0 */ |
121 | 0 | luaL_argcheck(L, d != 0, 2, "zero"); |
122 | 0 | lua_pushinteger(L, 0); /* avoid overflow with 0x80000... / -1 */ |
123 | 0 | } |
124 | 0 | else |
125 | 0 | lua_pushinteger(L, lua_tointeger(L, 1) % d); |
126 | 0 | } |
127 | 0 | else |
128 | 0 | lua_pushnumber(L, l_mathop(fmod)(luaL_checknumber(L, 1), |
129 | 0 | luaL_checknumber(L, 2))); |
130 | 0 | return 1; |
131 | 0 | } |
132 | | |
133 | | |
134 | | /* |
135 | | ** next function does not use 'modf', avoiding problems with 'double*' |
136 | | ** (which is not compatible with 'float*') when lua_Number is not |
137 | | ** 'double'. |
138 | | */ |
139 | 0 | static int math_modf (lua_State *L) { |
140 | 0 | if (lua_isinteger(L ,1)) { |
141 | 0 | lua_settop(L, 1); /* number is its own integer part */ |
142 | 0 | lua_pushnumber(L, 0); /* no fractional part */ |
143 | 0 | } |
144 | 0 | else { |
145 | 0 | lua_Number n = luaL_checknumber(L, 1); |
146 | | /* integer part (rounds toward zero) */ |
147 | 0 | lua_Number ip = (n < 0) ? l_mathop(ceil)(n) : l_mathop(floor)(n); |
148 | 0 | pushnumint(L, ip); |
149 | | /* fractional part (test needed for inf/-inf) */ |
150 | 0 | lua_pushnumber(L, (n == ip) ? l_mathop(0.0) : (n - ip)); |
151 | 0 | } |
152 | 0 | return 2; |
153 | 0 | } |
154 | | |
155 | | |
156 | 0 | static int math_sqrt (lua_State *L) { |
157 | 0 | lua_pushnumber(L, l_mathop(sqrt)(luaL_checknumber(L, 1))); |
158 | 0 | return 1; |
159 | 0 | } |
160 | | |
161 | | |
162 | 0 | static int math_ult (lua_State *L) { |
163 | 0 | lua_Integer a = luaL_checkinteger(L, 1); |
164 | 0 | lua_Integer b = luaL_checkinteger(L, 2); |
165 | 0 | lua_pushboolean(L, (lua_Unsigned)a < (lua_Unsigned)b); |
166 | 0 | return 1; |
167 | 0 | } |
168 | | |
169 | 0 | static int math_log (lua_State *L) { |
170 | 0 | lua_Number x = luaL_checknumber(L, 1); |
171 | 0 | lua_Number res; |
172 | 0 | if (lua_isnoneornil(L, 2)) |
173 | 0 | res = l_mathop(log)(x); |
174 | 0 | else { |
175 | 0 | lua_Number base = luaL_checknumber(L, 2); |
176 | 0 | #if !defined(LUA_USE_C89) |
177 | 0 | if (base == l_mathop(2.0)) |
178 | 0 | res = l_mathop(log2)(x); |
179 | 0 | else |
180 | 0 | #endif |
181 | 0 | if (base == l_mathop(10.0)) |
182 | 0 | res = l_mathop(log10)(x); |
183 | 0 | else |
184 | 0 | res = l_mathop(log)(x)/l_mathop(log)(base); |
185 | 0 | } |
186 | 0 | lua_pushnumber(L, res); |
187 | 0 | return 1; |
188 | 0 | } |
189 | | |
190 | 0 | static int math_exp (lua_State *L) { |
191 | 0 | lua_pushnumber(L, l_mathop(exp)(luaL_checknumber(L, 1))); |
192 | 0 | return 1; |
193 | 0 | } |
194 | | |
195 | 0 | static int math_deg (lua_State *L) { |
196 | 0 | lua_pushnumber(L, luaL_checknumber(L, 1) * (l_mathop(180.0) / PI)); |
197 | 0 | return 1; |
198 | 0 | } |
199 | | |
200 | 0 | static int math_rad (lua_State *L) { |
201 | 0 | lua_pushnumber(L, luaL_checknumber(L, 1) * (PI / l_mathop(180.0))); |
202 | 0 | return 1; |
203 | 0 | } |
204 | | |
205 | | |
206 | 0 | static int math_min (lua_State *L) { |
207 | 0 | int n = lua_gettop(L); /* number of arguments */ |
208 | 0 | int imin = 1; /* index of current minimum value */ |
209 | 0 | int i; |
210 | 0 | luaL_argcheck(L, n >= 1, 1, "value expected"); |
211 | 0 | for (i = 2; i <= n; i++) { |
212 | 0 | if (lua_compare(L, i, imin, LUA_OPLT)) |
213 | 0 | imin = i; |
214 | 0 | } |
215 | 0 | lua_pushvalue(L, imin); |
216 | 0 | return 1; |
217 | 0 | } |
218 | | |
219 | | |
220 | 0 | static int math_max (lua_State *L) { |
221 | 0 | int n = lua_gettop(L); /* number of arguments */ |
222 | 0 | int imax = 1; /* index of current maximum value */ |
223 | 0 | int i; |
224 | 0 | luaL_argcheck(L, n >= 1, 1, "value expected"); |
225 | 0 | for (i = 2; i <= n; i++) { |
226 | 0 | if (lua_compare(L, imax, i, LUA_OPLT)) |
227 | 0 | imax = i; |
228 | 0 | } |
229 | 0 | lua_pushvalue(L, imax); |
230 | 0 | return 1; |
231 | 0 | } |
232 | | |
233 | | |
234 | 0 | static int math_type (lua_State *L) { |
235 | 0 | if (lua_type(L, 1) == LUA_TNUMBER) |
236 | 0 | lua_pushstring(L, (lua_isinteger(L, 1)) ? "integer" : "float"); |
237 | 0 | else { |
238 | 0 | luaL_checkany(L, 1); |
239 | 0 | luaL_pushfail(L); |
240 | 0 | } |
241 | 0 | return 1; |
242 | 0 | } |
243 | | |
244 | | |
245 | | |
246 | | /* |
247 | | ** {================================================================== |
248 | | ** Pseudo-Random Number Generator based on 'xoshiro256**'. |
249 | | ** =================================================================== |
250 | | */ |
251 | | |
252 | | /* number of binary digits in the mantissa of a float */ |
253 | 0 | #define FIGS l_floatatt(MANT_DIG) |
254 | | |
255 | | #if FIGS > 64 |
256 | | /* there are only 64 random bits; use them all */ |
257 | | #undef FIGS |
258 | | #define FIGS 64 |
259 | | #endif |
260 | | |
261 | | |
262 | | /* |
263 | | ** LUA_RAND32 forces the use of 32-bit integers in the implementation |
264 | | ** of the PRN generator (mainly for testing). |
265 | | */ |
266 | | #if !defined(LUA_RAND32) && !defined(Rand64) |
267 | | |
268 | | /* try to find an integer type with at least 64 bits */ |
269 | | |
270 | | #if ((ULONG_MAX >> 31) >> 31) >= 3 |
271 | | |
272 | | /* 'long' has at least 64 bits */ |
273 | 212k | #define Rand64 unsigned long |
274 | | |
275 | | #elif !defined(LUA_USE_C89) && defined(LLONG_MAX) |
276 | | |
277 | | /* there is a 'long long' type (which must have at least 64 bits) */ |
278 | | #define Rand64 unsigned long long |
279 | | |
280 | | #elif ((LUA_MAXUNSIGNED >> 31) >> 31) >= 3 |
281 | | |
282 | | /* 'lua_Unsigned' has at least 64 bits */ |
283 | | #define Rand64 lua_Unsigned |
284 | | |
285 | | #endif |
286 | | |
287 | | #endif |
288 | | |
289 | | |
290 | | #if defined(Rand64) /* { */ |
291 | | |
292 | | /* |
293 | | ** Standard implementation, using 64-bit integers. |
294 | | ** If 'Rand64' has more than 64 bits, the extra bits do not interfere |
295 | | ** with the 64 initial bits, except in a right shift. Moreover, the |
296 | | ** final result has to discard the extra bits. |
297 | | */ |
298 | | |
299 | | /* avoid using extra bits when needed */ |
300 | 85.0k | #define trim64(x) ((x) & 0xffffffffffffffffu) |
301 | | |
302 | | |
303 | | /* rotate left 'x' by 'n' bits */ |
304 | 85.0k | static Rand64 rotl (Rand64 x, int n) { |
305 | 85.0k | return (x << n) | (trim64(x) >> (64 - n)); |
306 | 85.0k | } |
307 | | |
308 | 42.5k | static Rand64 nextrand (Rand64 *state) { |
309 | 42.5k | Rand64 state0 = state[0]; |
310 | 42.5k | Rand64 state1 = state[1]; |
311 | 42.5k | Rand64 state2 = state[2] ^ state0; |
312 | 42.5k | Rand64 state3 = state[3] ^ state1; |
313 | 42.5k | Rand64 res = rotl(state1 * 5, 7) * 9; |
314 | 42.5k | state[0] = state0 ^ state3; |
315 | 42.5k | state[1] = state1 ^ state2; |
316 | 42.5k | state[2] = state2 ^ (state1 << 17); |
317 | 42.5k | state[3] = rotl(state3, 45); |
318 | 42.5k | return res; |
319 | 42.5k | } |
320 | | |
321 | | |
322 | | /* must take care to not shift stuff by more than 63 slots */ |
323 | | |
324 | | |
325 | | /* |
326 | | ** Convert bits from a random integer into a float in the |
327 | | ** interval [0,1), getting the higher FIG bits from the |
328 | | ** random unsigned integer and converting that to a float. |
329 | | */ |
330 | | |
331 | | /* must throw out the extra (64 - FIGS) bits */ |
332 | 0 | #define shift64_FIG (64 - FIGS) |
333 | | |
334 | | /* to scale to [0, 1), multiply by scaleFIG = 2^(-FIGS) */ |
335 | 0 | #define scaleFIG (l_mathop(0.5) / ((Rand64)1 << (FIGS - 1))) |
336 | | |
337 | 0 | static lua_Number I2d (Rand64 x) { |
338 | 0 | return (lua_Number)(trim64(x) >> shift64_FIG) * scaleFIG; |
339 | 0 | } |
340 | | |
341 | | /* convert a 'Rand64' to a 'lua_Unsigned' */ |
342 | 0 | #define I2UInt(x) ((lua_Unsigned)trim64(x)) |
343 | | |
344 | | /* convert a 'lua_Unsigned' to a 'Rand64' */ |
345 | 10.6k | #define Int2I(x) ((Rand64)(x)) |
346 | | |
347 | | |
348 | | #else /* no 'Rand64' }{ */ |
349 | | |
350 | | /* get an integer with at least 32 bits */ |
351 | | #if LUAI_IS32INT |
352 | | typedef unsigned int lu_int32; |
353 | | #else |
354 | | typedef unsigned long lu_int32; |
355 | | #endif |
356 | | |
357 | | |
358 | | /* |
359 | | ** Use two 32-bit integers to represent a 64-bit quantity. |
360 | | */ |
361 | | typedef struct Rand64 { |
362 | | lu_int32 h; /* higher half */ |
363 | | lu_int32 l; /* lower half */ |
364 | | } Rand64; |
365 | | |
366 | | |
367 | | /* |
368 | | ** If 'lu_int32' has more than 32 bits, the extra bits do not interfere |
369 | | ** with the 32 initial bits, except in a right shift and comparisons. |
370 | | ** Moreover, the final result has to discard the extra bits. |
371 | | */ |
372 | | |
373 | | /* avoid using extra bits when needed */ |
374 | | #define trim32(x) ((x) & 0xffffffffu) |
375 | | |
376 | | |
377 | | /* |
378 | | ** basic operations on 'Rand64' values |
379 | | */ |
380 | | |
381 | | /* build a new Rand64 value */ |
382 | | static Rand64 packI (lu_int32 h, lu_int32 l) { |
383 | | Rand64 result; |
384 | | result.h = h; |
385 | | result.l = l; |
386 | | return result; |
387 | | } |
388 | | |
389 | | /* return i << n */ |
390 | | static Rand64 Ishl (Rand64 i, int n) { |
391 | | lua_assert(n > 0 && n < 32); |
392 | | return packI((i.h << n) | (trim32(i.l) >> (32 - n)), i.l << n); |
393 | | } |
394 | | |
395 | | /* i1 ^= i2 */ |
396 | | static void Ixor (Rand64 *i1, Rand64 i2) { |
397 | | i1->h ^= i2.h; |
398 | | i1->l ^= i2.l; |
399 | | } |
400 | | |
401 | | /* return i1 + i2 */ |
402 | | static Rand64 Iadd (Rand64 i1, Rand64 i2) { |
403 | | Rand64 result = packI(i1.h + i2.h, i1.l + i2.l); |
404 | | if (trim32(result.l) < trim32(i1.l)) /* carry? */ |
405 | | result.h++; |
406 | | return result; |
407 | | } |
408 | | |
409 | | /* return i * 5 */ |
410 | | static Rand64 times5 (Rand64 i) { |
411 | | return Iadd(Ishl(i, 2), i); /* i * 5 == (i << 2) + i */ |
412 | | } |
413 | | |
414 | | /* return i * 9 */ |
415 | | static Rand64 times9 (Rand64 i) { |
416 | | return Iadd(Ishl(i, 3), i); /* i * 9 == (i << 3) + i */ |
417 | | } |
418 | | |
419 | | /* return 'i' rotated left 'n' bits */ |
420 | | static Rand64 rotl (Rand64 i, int n) { |
421 | | lua_assert(n > 0 && n < 32); |
422 | | return packI((i.h << n) | (trim32(i.l) >> (32 - n)), |
423 | | (trim32(i.h) >> (32 - n)) | (i.l << n)); |
424 | | } |
425 | | |
426 | | /* for offsets larger than 32, rotate right by 64 - offset */ |
427 | | static Rand64 rotl1 (Rand64 i, int n) { |
428 | | lua_assert(n > 32 && n < 64); |
429 | | n = 64 - n; |
430 | | return packI((trim32(i.h) >> n) | (i.l << (32 - n)), |
431 | | (i.h << (32 - n)) | (trim32(i.l) >> n)); |
432 | | } |
433 | | |
434 | | /* |
435 | | ** implementation of 'xoshiro256**' algorithm on 'Rand64' values |
436 | | */ |
437 | | static Rand64 nextrand (Rand64 *state) { |
438 | | Rand64 res = times9(rotl(times5(state[1]), 7)); |
439 | | Rand64 t = Ishl(state[1], 17); |
440 | | Ixor(&state[2], state[0]); |
441 | | Ixor(&state[3], state[1]); |
442 | | Ixor(&state[1], state[2]); |
443 | | Ixor(&state[0], state[3]); |
444 | | Ixor(&state[2], t); |
445 | | state[3] = rotl1(state[3], 45); |
446 | | return res; |
447 | | } |
448 | | |
449 | | |
450 | | /* |
451 | | ** Converts a 'Rand64' into a float. |
452 | | */ |
453 | | |
454 | | /* an unsigned 1 with proper type */ |
455 | | #define UONE ((lu_int32)1) |
456 | | |
457 | | |
458 | | #if FIGS <= 32 |
459 | | |
460 | | /* 2^(-FIGS) */ |
461 | | #define scaleFIG (l_mathop(0.5) / (UONE << (FIGS - 1))) |
462 | | |
463 | | /* |
464 | | ** get up to 32 bits from higher half, shifting right to |
465 | | ** throw out the extra bits. |
466 | | */ |
467 | | static lua_Number I2d (Rand64 x) { |
468 | | lua_Number h = (lua_Number)(trim32(x.h) >> (32 - FIGS)); |
469 | | return h * scaleFIG; |
470 | | } |
471 | | |
472 | | #else /* 32 < FIGS <= 64 */ |
473 | | |
474 | | /* must take care to not shift stuff by more than 31 slots */ |
475 | | |
476 | | /* 2^(-FIGS) = 1.0 / 2^30 / 2^3 / 2^(FIGS-33) */ |
477 | | #define scaleFIG \ |
478 | | (l_mathop(1.0) / (UONE << 30) / l_mathop(8.0) / (UONE << (FIGS - 33))) |
479 | | |
480 | | /* |
481 | | ** use FIGS - 32 bits from lower half, throwing out the other |
482 | | ** (32 - (FIGS - 32)) = (64 - FIGS) bits |
483 | | */ |
484 | | #define shiftLOW (64 - FIGS) |
485 | | |
486 | | /* |
487 | | ** higher 32 bits go after those (FIGS - 32) bits: shiftHI = 2^(FIGS - 32) |
488 | | */ |
489 | | #define shiftHI ((lua_Number)(UONE << (FIGS - 33)) * l_mathop(2.0)) |
490 | | |
491 | | |
492 | | static lua_Number I2d (Rand64 x) { |
493 | | lua_Number h = (lua_Number)trim32(x.h) * shiftHI; |
494 | | lua_Number l = (lua_Number)(trim32(x.l) >> shiftLOW); |
495 | | return (h + l) * scaleFIG; |
496 | | } |
497 | | |
498 | | #endif |
499 | | |
500 | | |
501 | | /* convert a 'Rand64' to a 'lua_Unsigned' */ |
502 | | static lua_Unsigned I2UInt (Rand64 x) { |
503 | | return (((lua_Unsigned)trim32(x.h) << 31) << 1) | (lua_Unsigned)trim32(x.l); |
504 | | } |
505 | | |
506 | | /* convert a 'lua_Unsigned' to a 'Rand64' */ |
507 | | static Rand64 Int2I (lua_Unsigned n) { |
508 | | return packI((lu_int32)((n >> 31) >> 1), (lu_int32)n); |
509 | | } |
510 | | |
511 | | #endif /* } */ |
512 | | |
513 | | |
514 | | /* |
515 | | ** A state uses four 'Rand64' values. |
516 | | */ |
517 | | typedef struct { |
518 | | Rand64 s[4]; |
519 | | } RanState; |
520 | | |
521 | | |
522 | | /* |
523 | | ** Project the random integer 'ran' into the interval [0, n]. |
524 | | ** Because 'ran' has 2^B possible values, the projection can only be |
525 | | ** uniform when the size of the interval is a power of 2 (exact |
526 | | ** division). Otherwise, to get a uniform projection into [0, n], we |
527 | | ** first compute 'lim', the smallest Mersenne number not smaller than |
528 | | ** 'n'. We then project 'ran' into the interval [0, lim]. If the result |
529 | | ** is inside [0, n], we are done. Otherwise, we try with another 'ran', |
530 | | ** until we have a result inside the interval. |
531 | | */ |
532 | | static lua_Unsigned project (lua_Unsigned ran, lua_Unsigned n, |
533 | 0 | RanState *state) { |
534 | 0 | if ((n & (n + 1)) == 0) /* is 'n + 1' a power of 2? */ |
535 | 0 | return ran & n; /* no bias */ |
536 | 0 | else { |
537 | 0 | lua_Unsigned lim = n; |
538 | | /* compute the smallest (2^b - 1) not smaller than 'n' */ |
539 | 0 | lim |= (lim >> 1); |
540 | 0 | lim |= (lim >> 2); |
541 | 0 | lim |= (lim >> 4); |
542 | 0 | lim |= (lim >> 8); |
543 | 0 | lim |= (lim >> 16); |
544 | 0 | #if (LUA_MAXUNSIGNED >> 31) >= 3 |
545 | 0 | lim |= (lim >> 32); /* integer type has more than 32 bits */ |
546 | 0 | #endif |
547 | 0 | lua_assert((lim & (lim + 1)) == 0 /* 'lim + 1' is a power of 2, */ |
548 | 0 | && lim >= n /* not smaller than 'n', */ |
549 | 0 | && (lim >> 1) < n); /* and it is the smallest one */ |
550 | 0 | while ((ran &= lim) > n) /* project 'ran' into [0..lim] */ |
551 | 0 | ran = I2UInt(nextrand(state->s)); /* not inside [0..n]? try again */ |
552 | 0 | return ran; |
553 | 0 | } |
554 | 0 | } |
555 | | |
556 | | |
557 | 0 | static int math_random (lua_State *L) { |
558 | 0 | lua_Integer low, up; |
559 | 0 | lua_Unsigned p; |
560 | 0 | RanState *state = (RanState *)lua_touserdata(L, lua_upvalueindex(1)); |
561 | 0 | Rand64 rv = nextrand(state->s); /* next pseudo-random value */ |
562 | 0 | switch (lua_gettop(L)) { /* check number of arguments */ |
563 | 0 | case 0: { /* no arguments */ |
564 | 0 | lua_pushnumber(L, I2d(rv)); /* float between 0 and 1 */ |
565 | 0 | return 1; |
566 | 0 | } |
567 | 0 | case 1: { /* only upper limit */ |
568 | 0 | low = 1; |
569 | 0 | up = luaL_checkinteger(L, 1); |
570 | 0 | if (up == 0) { /* single 0 as argument? */ |
571 | 0 | lua_pushinteger(L, I2UInt(rv)); /* full random integer */ |
572 | 0 | return 1; |
573 | 0 | } |
574 | 0 | break; |
575 | 0 | } |
576 | 0 | case 2: { /* lower and upper limits */ |
577 | 0 | low = luaL_checkinteger(L, 1); |
578 | 0 | up = luaL_checkinteger(L, 2); |
579 | 0 | break; |
580 | 0 | } |
581 | 0 | default: return luaL_error(L, "wrong number of arguments"); |
582 | 0 | } |
583 | | /* random integer in the interval [low, up] */ |
584 | 0 | luaL_argcheck(L, low <= up, 1, "interval is empty"); |
585 | | /* project random integer into the interval [0, up - low] */ |
586 | 0 | p = project(I2UInt(rv), (lua_Unsigned)up - (lua_Unsigned)low, state); |
587 | 0 | lua_pushinteger(L, p + (lua_Unsigned)low); |
588 | 0 | return 1; |
589 | 0 | } |
590 | | |
591 | | |
592 | | static void setseed (lua_State *L, Rand64 *state, |
593 | 2.65k | lua_Unsigned n1, lua_Unsigned n2) { |
594 | 2.65k | int i; |
595 | 2.65k | state[0] = Int2I(n1); |
596 | 2.65k | state[1] = Int2I(0xff); /* avoid a zero state */ |
597 | 2.65k | state[2] = Int2I(n2); |
598 | 2.65k | state[3] = Int2I(0); |
599 | 45.2k | for (i = 0; i < 16; i++) |
600 | 42.5k | nextrand(state); /* discard initial values to "spread" seed */ |
601 | 2.65k | lua_pushinteger(L, n1); |
602 | 2.65k | lua_pushinteger(L, n2); |
603 | 2.65k | } |
604 | | |
605 | | |
606 | | /* |
607 | | ** Set a "random" seed. To get some randomness, use the current time |
608 | | ** and the address of 'L' (in case the machine does address space layout |
609 | | ** randomization). |
610 | | */ |
611 | 2.65k | static void randseed (lua_State *L, RanState *state) { |
612 | 2.65k | lua_Unsigned seed1 = (lua_Unsigned)time(NULL); |
613 | 2.65k | lua_Unsigned seed2 = (lua_Unsigned)(size_t)L; |
614 | 2.65k | setseed(L, state->s, seed1, seed2); |
615 | 2.65k | } |
616 | | |
617 | | |
618 | 0 | static int math_randomseed (lua_State *L) { |
619 | 0 | RanState *state = (RanState *)lua_touserdata(L, lua_upvalueindex(1)); |
620 | 0 | if (lua_isnone(L, 1)) { |
621 | 0 | randseed(L, state); |
622 | 0 | } |
623 | 0 | else { |
624 | 0 | lua_Integer n1 = luaL_checkinteger(L, 1); |
625 | 0 | lua_Integer n2 = luaL_optinteger(L, 2, 0); |
626 | 0 | setseed(L, state->s, n1, n2); |
627 | 0 | } |
628 | 0 | return 2; /* return seeds */ |
629 | 0 | } |
630 | | |
631 | | |
632 | | static const luaL_Reg randfuncs[] = { |
633 | | {"random", math_random}, |
634 | | {"randomseed", math_randomseed}, |
635 | | {NULL, NULL} |
636 | | }; |
637 | | |
638 | | |
639 | | /* |
640 | | ** Register the random functions and initialize their state. |
641 | | */ |
642 | 2.65k | static void setrandfunc (lua_State *L) { |
643 | 2.65k | RanState *state = (RanState *)lua_newuserdatauv(L, sizeof(RanState), 0); |
644 | 2.65k | randseed(L, state); /* initialize with a "random" seed */ |
645 | 2.65k | lua_pop(L, 2); /* remove pushed seeds */ |
646 | 2.65k | luaL_setfuncs(L, randfuncs, 1); |
647 | 2.65k | } |
648 | | |
649 | | /* }================================================================== */ |
650 | | |
651 | | |
652 | | /* |
653 | | ** {================================================================== |
654 | | ** Deprecated functions (for compatibility only) |
655 | | ** =================================================================== |
656 | | */ |
657 | | #if defined(LUA_COMPAT_MATHLIB) |
658 | | |
659 | | static int math_cosh (lua_State *L) { |
660 | | lua_pushnumber(L, l_mathop(cosh)(luaL_checknumber(L, 1))); |
661 | | return 1; |
662 | | } |
663 | | |
664 | | static int math_sinh (lua_State *L) { |
665 | | lua_pushnumber(L, l_mathop(sinh)(luaL_checknumber(L, 1))); |
666 | | return 1; |
667 | | } |
668 | | |
669 | | static int math_tanh (lua_State *L) { |
670 | | lua_pushnumber(L, l_mathop(tanh)(luaL_checknumber(L, 1))); |
671 | | return 1; |
672 | | } |
673 | | |
674 | | static int math_pow (lua_State *L) { |
675 | | lua_Number x = luaL_checknumber(L, 1); |
676 | | lua_Number y = luaL_checknumber(L, 2); |
677 | | lua_pushnumber(L, l_mathop(pow)(x, y)); |
678 | | return 1; |
679 | | } |
680 | | |
681 | | static int math_frexp (lua_State *L) { |
682 | | int e; |
683 | | lua_pushnumber(L, l_mathop(frexp)(luaL_checknumber(L, 1), &e)); |
684 | | lua_pushinteger(L, e); |
685 | | return 2; |
686 | | } |
687 | | |
688 | | static int math_ldexp (lua_State *L) { |
689 | | lua_Number x = luaL_checknumber(L, 1); |
690 | | int ep = (int)luaL_checkinteger(L, 2); |
691 | | lua_pushnumber(L, l_mathop(ldexp)(x, ep)); |
692 | | return 1; |
693 | | } |
694 | | |
695 | | static int math_log10 (lua_State *L) { |
696 | | lua_pushnumber(L, l_mathop(log10)(luaL_checknumber(L, 1))); |
697 | | return 1; |
698 | | } |
699 | | |
700 | | #endif |
701 | | /* }================================================================== */ |
702 | | |
703 | | |
704 | | |
705 | | static const luaL_Reg mathlib[] = { |
706 | | {"abs", math_abs}, |
707 | | {"acos", math_acos}, |
708 | | {"asin", math_asin}, |
709 | | {"atan", math_atan}, |
710 | | {"ceil", math_ceil}, |
711 | | {"cos", math_cos}, |
712 | | {"deg", math_deg}, |
713 | | {"exp", math_exp}, |
714 | | {"tointeger", math_toint}, |
715 | | {"floor", math_floor}, |
716 | | {"fmod", math_fmod}, |
717 | | {"ult", math_ult}, |
718 | | {"log", math_log}, |
719 | | {"max", math_max}, |
720 | | {"min", math_min}, |
721 | | {"modf", math_modf}, |
722 | | {"rad", math_rad}, |
723 | | {"sin", math_sin}, |
724 | | {"sqrt", math_sqrt}, |
725 | | {"tan", math_tan}, |
726 | | {"type", math_type}, |
727 | | #if defined(LUA_COMPAT_MATHLIB) |
728 | | {"atan2", math_atan}, |
729 | | {"cosh", math_cosh}, |
730 | | {"sinh", math_sinh}, |
731 | | {"tanh", math_tanh}, |
732 | | {"pow", math_pow}, |
733 | | {"frexp", math_frexp}, |
734 | | {"ldexp", math_ldexp}, |
735 | | {"log10", math_log10}, |
736 | | #endif |
737 | | /* placeholders */ |
738 | | {"random", NULL}, |
739 | | {"randomseed", NULL}, |
740 | | {"pi", NULL}, |
741 | | {"huge", NULL}, |
742 | | {"maxinteger", NULL}, |
743 | | {"mininteger", NULL}, |
744 | | {NULL, NULL} |
745 | | }; |
746 | | |
747 | | |
748 | | /* |
749 | | ** Open math library |
750 | | */ |
751 | 2.65k | LUAMOD_API int luaopen_math (lua_State *L) { |
752 | 2.65k | luaL_newlib(L, mathlib); |
753 | 2.65k | lua_pushnumber(L, PI); |
754 | 2.65k | lua_setfield(L, -2, "pi"); |
755 | 2.65k | lua_pushnumber(L, (lua_Number)HUGE_VAL); |
756 | 2.65k | lua_setfield(L, -2, "huge"); |
757 | 2.65k | lua_pushinteger(L, LUA_MAXINTEGER); |
758 | 2.65k | lua_setfield(L, -2, "maxinteger"); |
759 | 2.65k | lua_pushinteger(L, LUA_MININTEGER); |
760 | 2.65k | lua_setfield(L, -2, "mininteger"); |
761 | 2.65k | setrandfunc(L); |
762 | 2.65k | return 1; |
763 | 2.65k | } |
764 | | |