/src/testdir/build/lua-master/source/lmathlib.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | ** $Id: lmathlib.c $ |
3 | | ** Standard mathematical library |
4 | | ** See Copyright Notice in lua.h |
5 | | */ |
6 | | |
7 | | #define lmathlib_c |
8 | | #define LUA_LIB |
9 | | |
10 | | #include "lprefix.h" |
11 | | |
12 | | |
13 | | #include <float.h> |
14 | | #include <limits.h> |
15 | | #include <math.h> |
16 | | #include <stdlib.h> |
17 | | #include <time.h> |
18 | | |
19 | | #include "lua.h" |
20 | | |
21 | | #include "lauxlib.h" |
22 | | #include "lualib.h" |
23 | | |
24 | | |
25 | | #undef PI |
26 | 3.20k | #define PI (l_mathop(3.141592653589793238462643383279502884)) |
27 | | |
28 | | |
29 | 0 | static int math_abs (lua_State *L) { |
30 | 0 | if (lua_isinteger(L, 1)) { |
31 | 0 | lua_Integer n = lua_tointeger(L, 1); |
32 | 0 | if (n < 0) n = (lua_Integer)(0u - (lua_Unsigned)n); |
33 | 0 | lua_pushinteger(L, n); |
34 | 0 | } |
35 | 0 | else |
36 | 0 | lua_pushnumber(L, l_mathop(fabs)(luaL_checknumber(L, 1))); |
37 | 0 | return 1; |
38 | 0 | } |
39 | | |
40 | 0 | static int math_sin (lua_State *L) { |
41 | 0 | lua_pushnumber(L, l_mathop(sin)(luaL_checknumber(L, 1))); |
42 | 0 | return 1; |
43 | 0 | } |
44 | | |
45 | 0 | static int math_cos (lua_State *L) { |
46 | 0 | lua_pushnumber(L, l_mathop(cos)(luaL_checknumber(L, 1))); |
47 | 0 | return 1; |
48 | 0 | } |
49 | | |
50 | 0 | static int math_tan (lua_State *L) { |
51 | 0 | lua_pushnumber(L, l_mathop(tan)(luaL_checknumber(L, 1))); |
52 | 0 | return 1; |
53 | 0 | } |
54 | | |
55 | 0 | static int math_asin (lua_State *L) { |
56 | 0 | lua_pushnumber(L, l_mathop(asin)(luaL_checknumber(L, 1))); |
57 | 0 | return 1; |
58 | 0 | } |
59 | | |
60 | 0 | static int math_acos (lua_State *L) { |
61 | 0 | lua_pushnumber(L, l_mathop(acos)(luaL_checknumber(L, 1))); |
62 | 0 | return 1; |
63 | 0 | } |
64 | | |
65 | 0 | static int math_atan (lua_State *L) { |
66 | 0 | lua_Number y = luaL_checknumber(L, 1); |
67 | 0 | lua_Number x = luaL_optnumber(L, 2, 1); |
68 | 0 | lua_pushnumber(L, l_mathop(atan2)(y, x)); |
69 | 0 | return 1; |
70 | 0 | } |
71 | | |
72 | | |
73 | 0 | static int math_toint (lua_State *L) { |
74 | 0 | int valid; |
75 | 0 | lua_Integer n = lua_tointegerx(L, 1, &valid); |
76 | 0 | if (l_likely(valid)) |
77 | 0 | lua_pushinteger(L, n); |
78 | 0 | else { |
79 | 0 | luaL_checkany(L, 1); |
80 | 0 | luaL_pushfail(L); /* value is not convertible to integer */ |
81 | 0 | } |
82 | 0 | return 1; |
83 | 0 | } |
84 | | |
85 | | |
86 | 0 | static void pushnumint (lua_State *L, lua_Number d) { |
87 | 0 | lua_Integer n; |
88 | 0 | if (lua_numbertointeger(d, &n)) /* does 'd' fit in an integer? */ |
89 | 0 | lua_pushinteger(L, n); /* result is integer */ |
90 | 0 | else |
91 | 0 | lua_pushnumber(L, d); /* result is float */ |
92 | 0 | } |
93 | | |
94 | | |
95 | 0 | static int math_floor (lua_State *L) { |
96 | 0 | if (lua_isinteger(L, 1)) |
97 | 0 | lua_settop(L, 1); /* integer is its own floor */ |
98 | 0 | else { |
99 | 0 | lua_Number d = l_mathop(floor)(luaL_checknumber(L, 1)); |
100 | 0 | pushnumint(L, d); |
101 | 0 | } |
102 | 0 | return 1; |
103 | 0 | } |
104 | | |
105 | | |
106 | 0 | static int math_ceil (lua_State *L) { |
107 | 0 | if (lua_isinteger(L, 1)) |
108 | 0 | lua_settop(L, 1); /* integer is its own ceil */ |
109 | 0 | else { |
110 | 0 | lua_Number d = l_mathop(ceil)(luaL_checknumber(L, 1)); |
111 | 0 | pushnumint(L, d); |
112 | 0 | } |
113 | 0 | return 1; |
114 | 0 | } |
115 | | |
116 | | |
117 | 0 | static int math_fmod (lua_State *L) { |
118 | 0 | if (lua_isinteger(L, 1) && lua_isinteger(L, 2)) { |
119 | 0 | lua_Integer d = lua_tointeger(L, 2); |
120 | 0 | if ((lua_Unsigned)d + 1u <= 1u) { /* special cases: -1 or 0 */ |
121 | 0 | luaL_argcheck(L, d != 0, 2, "zero"); |
122 | 0 | lua_pushinteger(L, 0); /* avoid overflow with 0x80000... / -1 */ |
123 | 0 | } |
124 | 0 | else |
125 | 0 | lua_pushinteger(L, lua_tointeger(L, 1) % d); |
126 | 0 | } |
127 | 0 | else |
128 | 0 | lua_pushnumber(L, l_mathop(fmod)(luaL_checknumber(L, 1), |
129 | 0 | luaL_checknumber(L, 2))); |
130 | 0 | return 1; |
131 | 0 | } |
132 | | |
133 | | |
134 | | /* |
135 | | ** next function does not use 'modf', avoiding problems with 'double*' |
136 | | ** (which is not compatible with 'float*') when lua_Number is not |
137 | | ** 'double'. |
138 | | */ |
139 | 0 | static int math_modf (lua_State *L) { |
140 | 0 | if (lua_isinteger(L ,1)) { |
141 | 0 | lua_settop(L, 1); /* number is its own integer part */ |
142 | 0 | lua_pushnumber(L, 0); /* no fractional part */ |
143 | 0 | } |
144 | 0 | else { |
145 | 0 | lua_Number n = luaL_checknumber(L, 1); |
146 | | /* integer part (rounds toward zero) */ |
147 | 0 | lua_Number ip = (n < 0) ? l_mathop(ceil)(n) : l_mathop(floor)(n); |
148 | 0 | pushnumint(L, ip); |
149 | | /* fractional part (test needed for inf/-inf) */ |
150 | 0 | lua_pushnumber(L, (n == ip) ? l_mathop(0.0) : (n - ip)); |
151 | 0 | } |
152 | 0 | return 2; |
153 | 0 | } |
154 | | |
155 | | |
156 | 0 | static int math_sqrt (lua_State *L) { |
157 | 0 | lua_pushnumber(L, l_mathop(sqrt)(luaL_checknumber(L, 1))); |
158 | 0 | return 1; |
159 | 0 | } |
160 | | |
161 | | |
162 | 0 | static int math_ult (lua_State *L) { |
163 | 0 | lua_Integer a = luaL_checkinteger(L, 1); |
164 | 0 | lua_Integer b = luaL_checkinteger(L, 2); |
165 | 0 | lua_pushboolean(L, (lua_Unsigned)a < (lua_Unsigned)b); |
166 | 0 | return 1; |
167 | 0 | } |
168 | | |
169 | 0 | static int math_log (lua_State *L) { |
170 | 0 | lua_Number x = luaL_checknumber(L, 1); |
171 | 0 | lua_Number res; |
172 | 0 | if (lua_isnoneornil(L, 2)) |
173 | 0 | res = l_mathop(log)(x); |
174 | 0 | else { |
175 | 0 | lua_Number base = luaL_checknumber(L, 2); |
176 | 0 | #if !defined(LUA_USE_C89) |
177 | 0 | if (base == l_mathop(2.0)) |
178 | 0 | res = l_mathop(log2)(x); |
179 | 0 | else |
180 | 0 | #endif |
181 | 0 | if (base == l_mathop(10.0)) |
182 | 0 | res = l_mathop(log10)(x); |
183 | 0 | else |
184 | 0 | res = l_mathop(log)(x)/l_mathop(log)(base); |
185 | 0 | } |
186 | 0 | lua_pushnumber(L, res); |
187 | 0 | return 1; |
188 | 0 | } |
189 | | |
190 | 0 | static int math_exp (lua_State *L) { |
191 | 0 | lua_pushnumber(L, l_mathop(exp)(luaL_checknumber(L, 1))); |
192 | 0 | return 1; |
193 | 0 | } |
194 | | |
195 | 0 | static int math_deg (lua_State *L) { |
196 | 0 | lua_pushnumber(L, luaL_checknumber(L, 1) * (l_mathop(180.0) / PI)); |
197 | 0 | return 1; |
198 | 0 | } |
199 | | |
200 | 0 | static int math_rad (lua_State *L) { |
201 | 0 | lua_pushnumber(L, luaL_checknumber(L, 1) * (PI / l_mathop(180.0))); |
202 | 0 | return 1; |
203 | 0 | } |
204 | | |
205 | | |
206 | 0 | static int math_min (lua_State *L) { |
207 | 0 | int n = lua_gettop(L); /* number of arguments */ |
208 | 0 | int imin = 1; /* index of current minimum value */ |
209 | 0 | int i; |
210 | 0 | luaL_argcheck(L, n >= 1, 1, "value expected"); |
211 | 0 | for (i = 2; i <= n; i++) { |
212 | 0 | if (lua_compare(L, i, imin, LUA_OPLT)) |
213 | 0 | imin = i; |
214 | 0 | } |
215 | 0 | lua_pushvalue(L, imin); |
216 | 0 | return 1; |
217 | 0 | } |
218 | | |
219 | | |
220 | 0 | static int math_max (lua_State *L) { |
221 | 0 | int n = lua_gettop(L); /* number of arguments */ |
222 | 0 | int imax = 1; /* index of current maximum value */ |
223 | 0 | int i; |
224 | 0 | luaL_argcheck(L, n >= 1, 1, "value expected"); |
225 | 0 | for (i = 2; i <= n; i++) { |
226 | 0 | if (lua_compare(L, imax, i, LUA_OPLT)) |
227 | 0 | imax = i; |
228 | 0 | } |
229 | 0 | lua_pushvalue(L, imax); |
230 | 0 | return 1; |
231 | 0 | } |
232 | | |
233 | | |
234 | 0 | static int math_type (lua_State *L) { |
235 | 0 | if (lua_type(L, 1) == LUA_TNUMBER) |
236 | 0 | lua_pushstring(L, (lua_isinteger(L, 1)) ? "integer" : "float"); |
237 | 0 | else { |
238 | 0 | luaL_checkany(L, 1); |
239 | 0 | luaL_pushfail(L); |
240 | 0 | } |
241 | 0 | return 1; |
242 | 0 | } |
243 | | |
244 | | |
245 | | |
246 | | /* |
247 | | ** {================================================================== |
248 | | ** Pseudo-Random Number Generator based on 'xoshiro256**'. |
249 | | ** =================================================================== |
250 | | */ |
251 | | |
252 | | /* |
253 | | ** This code uses lots of shifts. ANSI C does not allow shifts greater |
254 | | ** than or equal to the width of the type being shifted, so some shifts |
255 | | ** are written in convoluted ways to match that restriction. For |
256 | | ** preprocessor tests, it assumes a width of 32 bits, so the maximum |
257 | | ** shift there is 31 bits. |
258 | | */ |
259 | | |
260 | | |
261 | | /* number of binary digits in the mantissa of a float */ |
262 | 0 | #define FIGS l_floatatt(MANT_DIG) |
263 | | |
264 | | #if FIGS > 64 |
265 | | /* there are only 64 random bits; use them all */ |
266 | | #undef FIGS |
267 | | #define FIGS 64 |
268 | | #endif |
269 | | |
270 | | |
271 | | /* |
272 | | ** LUA_RAND32 forces the use of 32-bit integers in the implementation |
273 | | ** of the PRN generator (mainly for testing). |
274 | | */ |
275 | | #if !defined(LUA_RAND32) && !defined(Rand64) |
276 | | |
277 | | /* try to find an integer type with at least 64 bits */ |
278 | | |
279 | | #if ((ULONG_MAX >> 31) >> 31) >= 3 |
280 | | |
281 | | /* 'long' has at least 64 bits */ |
282 | 256k | #define Rand64 unsigned long |
283 | 0 | #define SRand64 long |
284 | | |
285 | | #elif !defined(LUA_USE_C89) && defined(LLONG_MAX) |
286 | | |
287 | | /* there is a 'long long' type (which must have at least 64 bits) */ |
288 | | #define Rand64 unsigned long long |
289 | | #define SRand64 long long |
290 | | |
291 | | #elif ((LUA_MAXUNSIGNED >> 31) >> 31) >= 3 |
292 | | |
293 | | /* 'lua_Unsigned' has at least 64 bits */ |
294 | | #define Rand64 lua_Unsigned |
295 | | #define SRand64 lua_Integer |
296 | | |
297 | | #endif |
298 | | |
299 | | #endif |
300 | | |
301 | | |
302 | | #if defined(Rand64) /* { */ |
303 | | |
304 | | /* |
305 | | ** Standard implementation, using 64-bit integers. |
306 | | ** If 'Rand64' has more than 64 bits, the extra bits do not interfere |
307 | | ** with the 64 initial bits, except in a right shift. Moreover, the |
308 | | ** final result has to discard the extra bits. |
309 | | */ |
310 | | |
311 | | /* avoid using extra bits when needed */ |
312 | 102k | #define trim64(x) ((x) & 0xffffffffffffffffu) |
313 | | |
314 | | |
315 | | /* rotate left 'x' by 'n' bits */ |
316 | 102k | static Rand64 rotl (Rand64 x, int n) { |
317 | 102k | return (x << n) | (trim64(x) >> (64 - n)); |
318 | 102k | } |
319 | | |
320 | 51.2k | static Rand64 nextrand (Rand64 *state) { |
321 | 51.2k | Rand64 state0 = state[0]; |
322 | 51.2k | Rand64 state1 = state[1]; |
323 | 51.2k | Rand64 state2 = state[2] ^ state0; |
324 | 51.2k | Rand64 state3 = state[3] ^ state1; |
325 | 51.2k | Rand64 res = rotl(state1 * 5, 7) * 9; |
326 | 51.2k | state[0] = state0 ^ state3; |
327 | 51.2k | state[1] = state1 ^ state2; |
328 | 51.2k | state[2] = state2 ^ (state1 << 17); |
329 | 51.2k | state[3] = rotl(state3, 45); |
330 | 51.2k | return res; |
331 | 51.2k | } |
332 | | |
333 | | |
334 | | /* |
335 | | ** Convert bits from a random integer into a float in the |
336 | | ** interval [0,1), getting the higher FIG bits from the |
337 | | ** random unsigned integer and converting that to a float. |
338 | | ** Some old Microsoft compilers cannot cast an unsigned long |
339 | | ** to a floating-point number, so we use a signed long as an |
340 | | ** intermediary. When lua_Number is float or double, the shift ensures |
341 | | ** that 'sx' is non negative; in that case, a good compiler will remove |
342 | | ** the correction. |
343 | | */ |
344 | | |
345 | | /* must throw out the extra (64 - FIGS) bits */ |
346 | 0 | #define shift64_FIG (64 - FIGS) |
347 | | |
348 | | /* 2^(-FIGS) == 2^-1 / 2^(FIGS-1) */ |
349 | 0 | #define scaleFIG (l_mathop(0.5) / ((Rand64)1 << (FIGS - 1))) |
350 | | |
351 | 0 | static lua_Number I2d (Rand64 x) { |
352 | 0 | SRand64 sx = (SRand64)(trim64(x) >> shift64_FIG); |
353 | 0 | lua_Number res = (lua_Number)(sx) * scaleFIG; |
354 | 0 | if (sx < 0) |
355 | 0 | res += 1.0; /* correct the two's complement if negative */ |
356 | 0 | lua_assert(0 <= res && res < 1); |
357 | 0 | return res; |
358 | 0 | } |
359 | | |
360 | | /* convert a 'Rand64' to a 'lua_Unsigned' */ |
361 | 0 | #define I2UInt(x) ((lua_Unsigned)trim64(x)) |
362 | | |
363 | | /* convert a 'lua_Unsigned' to a 'Rand64' */ |
364 | 12.8k | #define Int2I(x) ((Rand64)(x)) |
365 | | |
366 | | |
367 | | #else /* no 'Rand64' }{ */ |
368 | | |
369 | | /* get an integer with at least 32 bits */ |
370 | | #if LUAI_IS32INT |
371 | | typedef unsigned int lu_int32; |
372 | | #else |
373 | | typedef unsigned long lu_int32; |
374 | | #endif |
375 | | |
376 | | |
377 | | /* |
378 | | ** Use two 32-bit integers to represent a 64-bit quantity. |
379 | | */ |
380 | | typedef struct Rand64 { |
381 | | lu_int32 h; /* higher half */ |
382 | | lu_int32 l; /* lower half */ |
383 | | } Rand64; |
384 | | |
385 | | |
386 | | /* |
387 | | ** If 'lu_int32' has more than 32 bits, the extra bits do not interfere |
388 | | ** with the 32 initial bits, except in a right shift and comparisons. |
389 | | ** Moreover, the final result has to discard the extra bits. |
390 | | */ |
391 | | |
392 | | /* avoid using extra bits when needed */ |
393 | | #define trim32(x) ((x) & 0xffffffffu) |
394 | | |
395 | | |
396 | | /* |
397 | | ** basic operations on 'Rand64' values |
398 | | */ |
399 | | |
400 | | /* build a new Rand64 value */ |
401 | | static Rand64 packI (lu_int32 h, lu_int32 l) { |
402 | | Rand64 result; |
403 | | result.h = h; |
404 | | result.l = l; |
405 | | return result; |
406 | | } |
407 | | |
408 | | /* return i << n */ |
409 | | static Rand64 Ishl (Rand64 i, int n) { |
410 | | lua_assert(n > 0 && n < 32); |
411 | | return packI((i.h << n) | (trim32(i.l) >> (32 - n)), i.l << n); |
412 | | } |
413 | | |
414 | | /* i1 ^= i2 */ |
415 | | static void Ixor (Rand64 *i1, Rand64 i2) { |
416 | | i1->h ^= i2.h; |
417 | | i1->l ^= i2.l; |
418 | | } |
419 | | |
420 | | /* return i1 + i2 */ |
421 | | static Rand64 Iadd (Rand64 i1, Rand64 i2) { |
422 | | Rand64 result = packI(i1.h + i2.h, i1.l + i2.l); |
423 | | if (trim32(result.l) < trim32(i1.l)) /* carry? */ |
424 | | result.h++; |
425 | | return result; |
426 | | } |
427 | | |
428 | | /* return i * 5 */ |
429 | | static Rand64 times5 (Rand64 i) { |
430 | | return Iadd(Ishl(i, 2), i); /* i * 5 == (i << 2) + i */ |
431 | | } |
432 | | |
433 | | /* return i * 9 */ |
434 | | static Rand64 times9 (Rand64 i) { |
435 | | return Iadd(Ishl(i, 3), i); /* i * 9 == (i << 3) + i */ |
436 | | } |
437 | | |
438 | | /* return 'i' rotated left 'n' bits */ |
439 | | static Rand64 rotl (Rand64 i, int n) { |
440 | | lua_assert(n > 0 && n < 32); |
441 | | return packI((i.h << n) | (trim32(i.l) >> (32 - n)), |
442 | | (trim32(i.h) >> (32 - n)) | (i.l << n)); |
443 | | } |
444 | | |
445 | | /* for offsets larger than 32, rotate right by 64 - offset */ |
446 | | static Rand64 rotl1 (Rand64 i, int n) { |
447 | | lua_assert(n > 32 && n < 64); |
448 | | n = 64 - n; |
449 | | return packI((trim32(i.h) >> n) | (i.l << (32 - n)), |
450 | | (i.h << (32 - n)) | (trim32(i.l) >> n)); |
451 | | } |
452 | | |
453 | | /* |
454 | | ** implementation of 'xoshiro256**' algorithm on 'Rand64' values |
455 | | */ |
456 | | static Rand64 nextrand (Rand64 *state) { |
457 | | Rand64 res = times9(rotl(times5(state[1]), 7)); |
458 | | Rand64 t = Ishl(state[1], 17); |
459 | | Ixor(&state[2], state[0]); |
460 | | Ixor(&state[3], state[1]); |
461 | | Ixor(&state[1], state[2]); |
462 | | Ixor(&state[0], state[3]); |
463 | | Ixor(&state[2], t); |
464 | | state[3] = rotl1(state[3], 45); |
465 | | return res; |
466 | | } |
467 | | |
468 | | |
469 | | /* |
470 | | ** Converts a 'Rand64' into a float. |
471 | | */ |
472 | | |
473 | | /* an unsigned 1 with proper type */ |
474 | | #define UONE ((lu_int32)1) |
475 | | |
476 | | |
477 | | #if FIGS <= 32 |
478 | | |
479 | | /* 2^(-FIGS) */ |
480 | | #define scaleFIG (l_mathop(0.5) / (UONE << (FIGS - 1))) |
481 | | |
482 | | /* |
483 | | ** get up to 32 bits from higher half, shifting right to |
484 | | ** throw out the extra bits. |
485 | | */ |
486 | | static lua_Number I2d (Rand64 x) { |
487 | | lua_Number h = (lua_Number)(trim32(x.h) >> (32 - FIGS)); |
488 | | return h * scaleFIG; |
489 | | } |
490 | | |
491 | | #else /* 32 < FIGS <= 64 */ |
492 | | |
493 | | /* 2^(-FIGS) = 1.0 / 2^30 / 2^3 / 2^(FIGS-33) */ |
494 | | #define scaleFIG \ |
495 | | (l_mathop(1.0) / (UONE << 30) / l_mathop(8.0) / (UONE << (FIGS - 33))) |
496 | | |
497 | | /* |
498 | | ** use FIGS - 32 bits from lower half, throwing out the other |
499 | | ** (32 - (FIGS - 32)) = (64 - FIGS) bits |
500 | | */ |
501 | | #define shiftLOW (64 - FIGS) |
502 | | |
503 | | /* |
504 | | ** higher 32 bits go after those (FIGS - 32) bits: shiftHI = 2^(FIGS - 32) |
505 | | */ |
506 | | #define shiftHI ((lua_Number)(UONE << (FIGS - 33)) * l_mathop(2.0)) |
507 | | |
508 | | |
509 | | static lua_Number I2d (Rand64 x) { |
510 | | lua_Number h = (lua_Number)trim32(x.h) * shiftHI; |
511 | | lua_Number l = (lua_Number)(trim32(x.l) >> shiftLOW); |
512 | | return (h + l) * scaleFIG; |
513 | | } |
514 | | |
515 | | #endif |
516 | | |
517 | | |
518 | | /* convert a 'Rand64' to a 'lua_Unsigned' */ |
519 | | static lua_Unsigned I2UInt (Rand64 x) { |
520 | | return (((lua_Unsigned)trim32(x.h) << 31) << 1) | (lua_Unsigned)trim32(x.l); |
521 | | } |
522 | | |
523 | | /* convert a 'lua_Unsigned' to a 'Rand64' */ |
524 | | static Rand64 Int2I (lua_Unsigned n) { |
525 | | return packI((lu_int32)((n >> 31) >> 1), (lu_int32)n); |
526 | | } |
527 | | |
528 | | #endif /* } */ |
529 | | |
530 | | |
531 | | /* |
532 | | ** A state uses four 'Rand64' values. |
533 | | */ |
534 | | typedef struct { |
535 | | Rand64 s[4]; |
536 | | } RanState; |
537 | | |
538 | | |
539 | | /* |
540 | | ** Project the random integer 'ran' into the interval [0, n]. |
541 | | ** Because 'ran' has 2^B possible values, the projection can only be |
542 | | ** uniform when the size of the interval is a power of 2 (exact |
543 | | ** division). Otherwise, to get a uniform projection into [0, n], we |
544 | | ** first compute 'lim', the smallest Mersenne number not smaller than |
545 | | ** 'n'. We then project 'ran' into the interval [0, lim]. If the result |
546 | | ** is inside [0, n], we are done. Otherwise, we try with another 'ran', |
547 | | ** until we have a result inside the interval. |
548 | | */ |
549 | | static lua_Unsigned project (lua_Unsigned ran, lua_Unsigned n, |
550 | 0 | RanState *state) { |
551 | 0 | if ((n & (n + 1)) == 0) /* is 'n + 1' a power of 2? */ |
552 | 0 | return ran & n; /* no bias */ |
553 | 0 | else { |
554 | 0 | lua_Unsigned lim = n; |
555 | | /* compute the smallest (2^b - 1) not smaller than 'n' */ |
556 | 0 | lim |= (lim >> 1); |
557 | 0 | lim |= (lim >> 2); |
558 | 0 | lim |= (lim >> 4); |
559 | 0 | lim |= (lim >> 8); |
560 | 0 | lim |= (lim >> 16); |
561 | 0 | #if (LUA_MAXUNSIGNED >> 31) >= 3 |
562 | 0 | lim |= (lim >> 32); /* integer type has more than 32 bits */ |
563 | 0 | #endif |
564 | 0 | lua_assert((lim & (lim + 1)) == 0 /* 'lim + 1' is a power of 2, */ |
565 | 0 | && lim >= n /* not smaller than 'n', */ |
566 | 0 | && (lim >> 1) < n); /* and it is the smallest one */ |
567 | 0 | while ((ran &= lim) > n) /* project 'ran' into [0..lim] */ |
568 | 0 | ran = I2UInt(nextrand(state->s)); /* not inside [0..n]? try again */ |
569 | 0 | return ran; |
570 | 0 | } |
571 | 0 | } |
572 | | |
573 | | |
574 | 0 | static int math_random (lua_State *L) { |
575 | 0 | lua_Integer low, up; |
576 | 0 | lua_Unsigned p; |
577 | 0 | RanState *state = (RanState *)lua_touserdata(L, lua_upvalueindex(1)); |
578 | 0 | Rand64 rv = nextrand(state->s); /* next pseudo-random value */ |
579 | 0 | switch (lua_gettop(L)) { /* check number of arguments */ |
580 | 0 | case 0: { /* no arguments */ |
581 | 0 | lua_pushnumber(L, I2d(rv)); /* float between 0 and 1 */ |
582 | 0 | return 1; |
583 | 0 | } |
584 | 0 | case 1: { /* only upper limit */ |
585 | 0 | low = 1; |
586 | 0 | up = luaL_checkinteger(L, 1); |
587 | 0 | if (up == 0) { /* single 0 as argument? */ |
588 | 0 | lua_pushinteger(L, I2UInt(rv)); /* full random integer */ |
589 | 0 | return 1; |
590 | 0 | } |
591 | 0 | break; |
592 | 0 | } |
593 | 0 | case 2: { /* lower and upper limits */ |
594 | 0 | low = luaL_checkinteger(L, 1); |
595 | 0 | up = luaL_checkinteger(L, 2); |
596 | 0 | break; |
597 | 0 | } |
598 | 0 | default: return luaL_error(L, "wrong number of arguments"); |
599 | 0 | } |
600 | | /* random integer in the interval [low, up] */ |
601 | 0 | luaL_argcheck(L, low <= up, 1, "interval is empty"); |
602 | | /* project random integer into the interval [0, up - low] */ |
603 | 0 | p = project(I2UInt(rv), (lua_Unsigned)up - (lua_Unsigned)low, state); |
604 | 0 | lua_pushinteger(L, p + (lua_Unsigned)low); |
605 | 0 | return 1; |
606 | 0 | } |
607 | | |
608 | | |
609 | | static void setseed (lua_State *L, Rand64 *state, |
610 | 3.20k | lua_Unsigned n1, lua_Unsigned n2) { |
611 | 3.20k | int i; |
612 | 3.20k | state[0] = Int2I(n1); |
613 | 3.20k | state[1] = Int2I(0xff); /* avoid a zero state */ |
614 | 3.20k | state[2] = Int2I(n2); |
615 | 3.20k | state[3] = Int2I(0); |
616 | 54.4k | for (i = 0; i < 16; i++) |
617 | 51.2k | nextrand(state); /* discard initial values to "spread" seed */ |
618 | 3.20k | lua_pushinteger(L, n1); |
619 | 3.20k | lua_pushinteger(L, n2); |
620 | 3.20k | } |
621 | | |
622 | | |
623 | | /* |
624 | | ** Set a "random" seed. To get some randomness, use the current time |
625 | | ** and the address of 'L' (in case the machine does address space layout |
626 | | ** randomization). |
627 | | */ |
628 | 3.20k | static void randseed (lua_State *L, RanState *state) { |
629 | 3.20k | lua_Unsigned seed1 = (lua_Unsigned)time(NULL); |
630 | 3.20k | lua_Unsigned seed2 = (lua_Unsigned)(size_t)L; |
631 | 3.20k | setseed(L, state->s, seed1, seed2); |
632 | 3.20k | } |
633 | | |
634 | | |
635 | 0 | static int math_randomseed (lua_State *L) { |
636 | 0 | RanState *state = (RanState *)lua_touserdata(L, lua_upvalueindex(1)); |
637 | 0 | if (lua_isnone(L, 1)) { |
638 | 0 | randseed(L, state); |
639 | 0 | } |
640 | 0 | else { |
641 | 0 | lua_Integer n1 = luaL_checkinteger(L, 1); |
642 | 0 | lua_Integer n2 = luaL_optinteger(L, 2, 0); |
643 | 0 | setseed(L, state->s, n1, n2); |
644 | 0 | } |
645 | 0 | return 2; /* return seeds */ |
646 | 0 | } |
647 | | |
648 | | |
649 | | static const luaL_Reg randfuncs[] = { |
650 | | {"random", math_random}, |
651 | | {"randomseed", math_randomseed}, |
652 | | {NULL, NULL} |
653 | | }; |
654 | | |
655 | | |
656 | | /* |
657 | | ** Register the random functions and initialize their state. |
658 | | */ |
659 | 3.20k | static void setrandfunc (lua_State *L) { |
660 | 3.20k | RanState *state = (RanState *)lua_newuserdatauv(L, sizeof(RanState), 0); |
661 | 3.20k | randseed(L, state); /* initialize with a "random" seed */ |
662 | 3.20k | lua_pop(L, 2); /* remove pushed seeds */ |
663 | 3.20k | luaL_setfuncs(L, randfuncs, 1); |
664 | 3.20k | } |
665 | | |
666 | | /* }================================================================== */ |
667 | | |
668 | | |
669 | | /* |
670 | | ** {================================================================== |
671 | | ** Deprecated functions (for compatibility only) |
672 | | ** =================================================================== |
673 | | */ |
674 | | #if defined(LUA_COMPAT_MATHLIB) |
675 | | |
676 | | static int math_cosh (lua_State *L) { |
677 | | lua_pushnumber(L, l_mathop(cosh)(luaL_checknumber(L, 1))); |
678 | | return 1; |
679 | | } |
680 | | |
681 | | static int math_sinh (lua_State *L) { |
682 | | lua_pushnumber(L, l_mathop(sinh)(luaL_checknumber(L, 1))); |
683 | | return 1; |
684 | | } |
685 | | |
686 | | static int math_tanh (lua_State *L) { |
687 | | lua_pushnumber(L, l_mathop(tanh)(luaL_checknumber(L, 1))); |
688 | | return 1; |
689 | | } |
690 | | |
691 | | static int math_pow (lua_State *L) { |
692 | | lua_Number x = luaL_checknumber(L, 1); |
693 | | lua_Number y = luaL_checknumber(L, 2); |
694 | | lua_pushnumber(L, l_mathop(pow)(x, y)); |
695 | | return 1; |
696 | | } |
697 | | |
698 | | static int math_frexp (lua_State *L) { |
699 | | int e; |
700 | | lua_pushnumber(L, l_mathop(frexp)(luaL_checknumber(L, 1), &e)); |
701 | | lua_pushinteger(L, e); |
702 | | return 2; |
703 | | } |
704 | | |
705 | | static int math_ldexp (lua_State *L) { |
706 | | lua_Number x = luaL_checknumber(L, 1); |
707 | | int ep = (int)luaL_checkinteger(L, 2); |
708 | | lua_pushnumber(L, l_mathop(ldexp)(x, ep)); |
709 | | return 1; |
710 | | } |
711 | | |
712 | | static int math_log10 (lua_State *L) { |
713 | | lua_pushnumber(L, l_mathop(log10)(luaL_checknumber(L, 1))); |
714 | | return 1; |
715 | | } |
716 | | |
717 | | #endif |
718 | | /* }================================================================== */ |
719 | | |
720 | | |
721 | | |
722 | | static const luaL_Reg mathlib[] = { |
723 | | {"abs", math_abs}, |
724 | | {"acos", math_acos}, |
725 | | {"asin", math_asin}, |
726 | | {"atan", math_atan}, |
727 | | {"ceil", math_ceil}, |
728 | | {"cos", math_cos}, |
729 | | {"deg", math_deg}, |
730 | | {"exp", math_exp}, |
731 | | {"tointeger", math_toint}, |
732 | | {"floor", math_floor}, |
733 | | {"fmod", math_fmod}, |
734 | | {"ult", math_ult}, |
735 | | {"log", math_log}, |
736 | | {"max", math_max}, |
737 | | {"min", math_min}, |
738 | | {"modf", math_modf}, |
739 | | {"rad", math_rad}, |
740 | | {"sin", math_sin}, |
741 | | {"sqrt", math_sqrt}, |
742 | | {"tan", math_tan}, |
743 | | {"type", math_type}, |
744 | | #if defined(LUA_COMPAT_MATHLIB) |
745 | | {"atan2", math_atan}, |
746 | | {"cosh", math_cosh}, |
747 | | {"sinh", math_sinh}, |
748 | | {"tanh", math_tanh}, |
749 | | {"pow", math_pow}, |
750 | | {"frexp", math_frexp}, |
751 | | {"ldexp", math_ldexp}, |
752 | | {"log10", math_log10}, |
753 | | #endif |
754 | | /* placeholders */ |
755 | | {"random", NULL}, |
756 | | {"randomseed", NULL}, |
757 | | {"pi", NULL}, |
758 | | {"huge", NULL}, |
759 | | {"maxinteger", NULL}, |
760 | | {"mininteger", NULL}, |
761 | | {NULL, NULL} |
762 | | }; |
763 | | |
764 | | |
765 | | /* |
766 | | ** Open math library |
767 | | */ |
768 | 3.20k | LUAMOD_API int luaopen_math (lua_State *L) { |
769 | 3.20k | luaL_newlib(L, mathlib); |
770 | 3.20k | lua_pushnumber(L, PI); |
771 | 3.20k | lua_setfield(L, -2, "pi"); |
772 | 3.20k | lua_pushnumber(L, (lua_Number)HUGE_VAL); |
773 | 3.20k | lua_setfield(L, -2, "huge"); |
774 | 3.20k | lua_pushinteger(L, LUA_MAXINTEGER); |
775 | 3.20k | lua_setfield(L, -2, "maxinteger"); |
776 | 3.20k | lua_pushinteger(L, LUA_MININTEGER); |
777 | 3.20k | lua_setfield(L, -2, "mininteger"); |
778 | 3.20k | setrandfunc(L); |
779 | 3.20k | return 1; |
780 | 3.20k | } |
781 | | |