Coverage Report

Created: 2023-09-15 06:20

/src/testdir/build/lua-master/source/lmathlib.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
** $Id: lmathlib.c $
3
** Standard mathematical library
4
** See Copyright Notice in lua.h
5
*/
6
7
#define lmathlib_c
8
#define LUA_LIB
9
10
#include "lprefix.h"
11
12
13
#include <float.h>
14
#include <limits.h>
15
#include <math.h>
16
#include <stdlib.h>
17
#include <time.h>
18
19
#include "lua.h"
20
21
#include "lauxlib.h"
22
#include "lualib.h"
23
24
25
#undef PI
26
3.20k
#define PI  (l_mathop(3.141592653589793238462643383279502884))
27
28
29
0
static int math_abs (lua_State *L) {
30
0
  if (lua_isinteger(L, 1)) {
31
0
    lua_Integer n = lua_tointeger(L, 1);
32
0
    if (n < 0) n = (lua_Integer)(0u - (lua_Unsigned)n);
33
0
    lua_pushinteger(L, n);
34
0
  }
35
0
  else
36
0
    lua_pushnumber(L, l_mathop(fabs)(luaL_checknumber(L, 1)));
37
0
  return 1;
38
0
}
39
40
0
static int math_sin (lua_State *L) {
41
0
  lua_pushnumber(L, l_mathop(sin)(luaL_checknumber(L, 1)));
42
0
  return 1;
43
0
}
44
45
0
static int math_cos (lua_State *L) {
46
0
  lua_pushnumber(L, l_mathop(cos)(luaL_checknumber(L, 1)));
47
0
  return 1;
48
0
}
49
50
0
static int math_tan (lua_State *L) {
51
0
  lua_pushnumber(L, l_mathop(tan)(luaL_checknumber(L, 1)));
52
0
  return 1;
53
0
}
54
55
0
static int math_asin (lua_State *L) {
56
0
  lua_pushnumber(L, l_mathop(asin)(luaL_checknumber(L, 1)));
57
0
  return 1;
58
0
}
59
60
0
static int math_acos (lua_State *L) {
61
0
  lua_pushnumber(L, l_mathop(acos)(luaL_checknumber(L, 1)));
62
0
  return 1;
63
0
}
64
65
0
static int math_atan (lua_State *L) {
66
0
  lua_Number y = luaL_checknumber(L, 1);
67
0
  lua_Number x = luaL_optnumber(L, 2, 1);
68
0
  lua_pushnumber(L, l_mathop(atan2)(y, x));
69
0
  return 1;
70
0
}
71
72
73
0
static int math_toint (lua_State *L) {
74
0
  int valid;
75
0
  lua_Integer n = lua_tointegerx(L, 1, &valid);
76
0
  if (l_likely(valid))
77
0
    lua_pushinteger(L, n);
78
0
  else {
79
0
    luaL_checkany(L, 1);
80
0
    luaL_pushfail(L);  /* value is not convertible to integer */
81
0
  }
82
0
  return 1;
83
0
}
84
85
86
0
static void pushnumint (lua_State *L, lua_Number d) {
87
0
  lua_Integer n;
88
0
  if (lua_numbertointeger(d, &n))  /* does 'd' fit in an integer? */
89
0
    lua_pushinteger(L, n);  /* result is integer */
90
0
  else
91
0
    lua_pushnumber(L, d);  /* result is float */
92
0
}
93
94
95
0
static int math_floor (lua_State *L) {
96
0
  if (lua_isinteger(L, 1))
97
0
    lua_settop(L, 1);  /* integer is its own floor */
98
0
  else {
99
0
    lua_Number d = l_mathop(floor)(luaL_checknumber(L, 1));
100
0
    pushnumint(L, d);
101
0
  }
102
0
  return 1;
103
0
}
104
105
106
0
static int math_ceil (lua_State *L) {
107
0
  if (lua_isinteger(L, 1))
108
0
    lua_settop(L, 1);  /* integer is its own ceil */
109
0
  else {
110
0
    lua_Number d = l_mathop(ceil)(luaL_checknumber(L, 1));
111
0
    pushnumint(L, d);
112
0
  }
113
0
  return 1;
114
0
}
115
116
117
0
static int math_fmod (lua_State *L) {
118
0
  if (lua_isinteger(L, 1) && lua_isinteger(L, 2)) {
119
0
    lua_Integer d = lua_tointeger(L, 2);
120
0
    if ((lua_Unsigned)d + 1u <= 1u) {  /* special cases: -1 or 0 */
121
0
      luaL_argcheck(L, d != 0, 2, "zero");
122
0
      lua_pushinteger(L, 0);  /* avoid overflow with 0x80000... / -1 */
123
0
    }
124
0
    else
125
0
      lua_pushinteger(L, lua_tointeger(L, 1) % d);
126
0
  }
127
0
  else
128
0
    lua_pushnumber(L, l_mathop(fmod)(luaL_checknumber(L, 1),
129
0
                                     luaL_checknumber(L, 2)));
130
0
  return 1;
131
0
}
132
133
134
/*
135
** next function does not use 'modf', avoiding problems with 'double*'
136
** (which is not compatible with 'float*') when lua_Number is not
137
** 'double'.
138
*/
139
0
static int math_modf (lua_State *L) {
140
0
  if (lua_isinteger(L ,1)) {
141
0
    lua_settop(L, 1);  /* number is its own integer part */
142
0
    lua_pushnumber(L, 0);  /* no fractional part */
143
0
  }
144
0
  else {
145
0
    lua_Number n = luaL_checknumber(L, 1);
146
    /* integer part (rounds toward zero) */
147
0
    lua_Number ip = (n < 0) ? l_mathop(ceil)(n) : l_mathop(floor)(n);
148
0
    pushnumint(L, ip);
149
    /* fractional part (test needed for inf/-inf) */
150
0
    lua_pushnumber(L, (n == ip) ? l_mathop(0.0) : (n - ip));
151
0
  }
152
0
  return 2;
153
0
}
154
155
156
0
static int math_sqrt (lua_State *L) {
157
0
  lua_pushnumber(L, l_mathop(sqrt)(luaL_checknumber(L, 1)));
158
0
  return 1;
159
0
}
160
161
162
0
static int math_ult (lua_State *L) {
163
0
  lua_Integer a = luaL_checkinteger(L, 1);
164
0
  lua_Integer b = luaL_checkinteger(L, 2);
165
0
  lua_pushboolean(L, (lua_Unsigned)a < (lua_Unsigned)b);
166
0
  return 1;
167
0
}
168
169
0
static int math_log (lua_State *L) {
170
0
  lua_Number x = luaL_checknumber(L, 1);
171
0
  lua_Number res;
172
0
  if (lua_isnoneornil(L, 2))
173
0
    res = l_mathop(log)(x);
174
0
  else {
175
0
    lua_Number base = luaL_checknumber(L, 2);
176
0
#if !defined(LUA_USE_C89)
177
0
    if (base == l_mathop(2.0))
178
0
      res = l_mathop(log2)(x);
179
0
    else
180
0
#endif
181
0
    if (base == l_mathop(10.0))
182
0
      res = l_mathop(log10)(x);
183
0
    else
184
0
      res = l_mathop(log)(x)/l_mathop(log)(base);
185
0
  }
186
0
  lua_pushnumber(L, res);
187
0
  return 1;
188
0
}
189
190
0
static int math_exp (lua_State *L) {
191
0
  lua_pushnumber(L, l_mathop(exp)(luaL_checknumber(L, 1)));
192
0
  return 1;
193
0
}
194
195
0
static int math_deg (lua_State *L) {
196
0
  lua_pushnumber(L, luaL_checknumber(L, 1) * (l_mathop(180.0) / PI));
197
0
  return 1;
198
0
}
199
200
0
static int math_rad (lua_State *L) {
201
0
  lua_pushnumber(L, luaL_checknumber(L, 1) * (PI / l_mathop(180.0)));
202
0
  return 1;
203
0
}
204
205
206
0
static int math_min (lua_State *L) {
207
0
  int n = lua_gettop(L);  /* number of arguments */
208
0
  int imin = 1;  /* index of current minimum value */
209
0
  int i;
210
0
  luaL_argcheck(L, n >= 1, 1, "value expected");
211
0
  for (i = 2; i <= n; i++) {
212
0
    if (lua_compare(L, i, imin, LUA_OPLT))
213
0
      imin = i;
214
0
  }
215
0
  lua_pushvalue(L, imin);
216
0
  return 1;
217
0
}
218
219
220
0
static int math_max (lua_State *L) {
221
0
  int n = lua_gettop(L);  /* number of arguments */
222
0
  int imax = 1;  /* index of current maximum value */
223
0
  int i;
224
0
  luaL_argcheck(L, n >= 1, 1, "value expected");
225
0
  for (i = 2; i <= n; i++) {
226
0
    if (lua_compare(L, imax, i, LUA_OPLT))
227
0
      imax = i;
228
0
  }
229
0
  lua_pushvalue(L, imax);
230
0
  return 1;
231
0
}
232
233
234
0
static int math_type (lua_State *L) {
235
0
  if (lua_type(L, 1) == LUA_TNUMBER)
236
0
    lua_pushstring(L, (lua_isinteger(L, 1)) ? "integer" : "float");
237
0
  else {
238
0
    luaL_checkany(L, 1);
239
0
    luaL_pushfail(L);
240
0
  }
241
0
  return 1;
242
0
}
243
244
245
246
/*
247
** {==================================================================
248
** Pseudo-Random Number Generator based on 'xoshiro256**'.
249
** ===================================================================
250
*/
251
252
/*
253
** This code uses lots of shifts. ANSI C does not allow shifts greater
254
** than or equal to the width of the type being shifted, so some shifts
255
** are written in convoluted ways to match that restriction. For
256
** preprocessor tests, it assumes a width of 32 bits, so the maximum
257
** shift there is 31 bits.
258
*/
259
260
261
/* number of binary digits in the mantissa of a float */
262
0
#define FIGS  l_floatatt(MANT_DIG)
263
264
#if FIGS > 64
265
/* there are only 64 random bits; use them all */
266
#undef FIGS
267
#define FIGS  64
268
#endif
269
270
271
/*
272
** LUA_RAND32 forces the use of 32-bit integers in the implementation
273
** of the PRN generator (mainly for testing).
274
*/
275
#if !defined(LUA_RAND32) && !defined(Rand64)
276
277
/* try to find an integer type with at least 64 bits */
278
279
#if ((ULONG_MAX >> 31) >> 31) >= 3
280
281
/* 'long' has at least 64 bits */
282
256k
#define Rand64    unsigned long
283
0
#define SRand64   long
284
285
#elif !defined(LUA_USE_C89) && defined(LLONG_MAX)
286
287
/* there is a 'long long' type (which must have at least 64 bits) */
288
#define Rand64    unsigned long long
289
#define SRand64   long long
290
291
#elif ((LUA_MAXUNSIGNED >> 31) >> 31) >= 3
292
293
/* 'lua_Unsigned' has at least 64 bits */
294
#define Rand64    lua_Unsigned
295
#define SRand64   lua_Integer
296
297
#endif
298
299
#endif
300
301
302
#if defined(Rand64)  /* { */
303
304
/*
305
** Standard implementation, using 64-bit integers.
306
** If 'Rand64' has more than 64 bits, the extra bits do not interfere
307
** with the 64 initial bits, except in a right shift. Moreover, the
308
** final result has to discard the extra bits.
309
*/
310
311
/* avoid using extra bits when needed */
312
102k
#define trim64(x) ((x) & 0xffffffffffffffffu)
313
314
315
/* rotate left 'x' by 'n' bits */
316
102k
static Rand64 rotl (Rand64 x, int n) {
317
102k
  return (x << n) | (trim64(x) >> (64 - n));
318
102k
}
319
320
51.2k
static Rand64 nextrand (Rand64 *state) {
321
51.2k
  Rand64 state0 = state[0];
322
51.2k
  Rand64 state1 = state[1];
323
51.2k
  Rand64 state2 = state[2] ^ state0;
324
51.2k
  Rand64 state3 = state[3] ^ state1;
325
51.2k
  Rand64 res = rotl(state1 * 5, 7) * 9;
326
51.2k
  state[0] = state0 ^ state3;
327
51.2k
  state[1] = state1 ^ state2;
328
51.2k
  state[2] = state2 ^ (state1 << 17);
329
51.2k
  state[3] = rotl(state3, 45);
330
51.2k
  return res;
331
51.2k
}
332
333
334
/*
335
** Convert bits from a random integer into a float in the
336
** interval [0,1), getting the higher FIG bits from the
337
** random unsigned integer and converting that to a float.
338
** Some old Microsoft compilers cannot cast an unsigned long
339
** to a floating-point number, so we use a signed long as an
340
** intermediary. When lua_Number is float or double, the shift ensures
341
** that 'sx' is non negative; in that case, a good compiler will remove
342
** the correction.
343
*/
344
345
/* must throw out the extra (64 - FIGS) bits */
346
0
#define shift64_FIG (64 - FIGS)
347
348
/* 2^(-FIGS) == 2^-1 / 2^(FIGS-1) */
349
0
#define scaleFIG  (l_mathop(0.5) / ((Rand64)1 << (FIGS - 1)))
350
351
0
static lua_Number I2d (Rand64 x) {
352
0
  SRand64 sx = (SRand64)(trim64(x) >> shift64_FIG);
353
0
  lua_Number res = (lua_Number)(sx) * scaleFIG;
354
0
  if (sx < 0)
355
0
    res += 1.0;  /* correct the two's complement if negative */
356
0
  lua_assert(0 <= res && res < 1);
357
0
  return res;
358
0
}
359
360
/* convert a 'Rand64' to a 'lua_Unsigned' */
361
0
#define I2UInt(x) ((lua_Unsigned)trim64(x))
362
363
/* convert a 'lua_Unsigned' to a 'Rand64' */
364
12.8k
#define Int2I(x)  ((Rand64)(x))
365
366
367
#else /* no 'Rand64'   }{ */
368
369
/* get an integer with at least 32 bits */
370
#if LUAI_IS32INT
371
typedef unsigned int lu_int32;
372
#else
373
typedef unsigned long lu_int32;
374
#endif
375
376
377
/*
378
** Use two 32-bit integers to represent a 64-bit quantity.
379
*/
380
typedef struct Rand64 {
381
  lu_int32 h;  /* higher half */
382
  lu_int32 l;  /* lower half */
383
} Rand64;
384
385
386
/*
387
** If 'lu_int32' has more than 32 bits, the extra bits do not interfere
388
** with the 32 initial bits, except in a right shift and comparisons.
389
** Moreover, the final result has to discard the extra bits.
390
*/
391
392
/* avoid using extra bits when needed */
393
#define trim32(x) ((x) & 0xffffffffu)
394
395
396
/*
397
** basic operations on 'Rand64' values
398
*/
399
400
/* build a new Rand64 value */
401
static Rand64 packI (lu_int32 h, lu_int32 l) {
402
  Rand64 result;
403
  result.h = h;
404
  result.l = l;
405
  return result;
406
}
407
408
/* return i << n */
409
static Rand64 Ishl (Rand64 i, int n) {
410
  lua_assert(n > 0 && n < 32);
411
  return packI((i.h << n) | (trim32(i.l) >> (32 - n)), i.l << n);
412
}
413
414
/* i1 ^= i2 */
415
static void Ixor (Rand64 *i1, Rand64 i2) {
416
  i1->h ^= i2.h;
417
  i1->l ^= i2.l;
418
}
419
420
/* return i1 + i2 */
421
static Rand64 Iadd (Rand64 i1, Rand64 i2) {
422
  Rand64 result = packI(i1.h + i2.h, i1.l + i2.l);
423
  if (trim32(result.l) < trim32(i1.l))  /* carry? */
424
    result.h++;
425
  return result;
426
}
427
428
/* return i * 5 */
429
static Rand64 times5 (Rand64 i) {
430
  return Iadd(Ishl(i, 2), i);  /* i * 5 == (i << 2) + i */
431
}
432
433
/* return i * 9 */
434
static Rand64 times9 (Rand64 i) {
435
  return Iadd(Ishl(i, 3), i);  /* i * 9 == (i << 3) + i */
436
}
437
438
/* return 'i' rotated left 'n' bits */
439
static Rand64 rotl (Rand64 i, int n) {
440
  lua_assert(n > 0 && n < 32);
441
  return packI((i.h << n) | (trim32(i.l) >> (32 - n)),
442
               (trim32(i.h) >> (32 - n)) | (i.l << n));
443
}
444
445
/* for offsets larger than 32, rotate right by 64 - offset */
446
static Rand64 rotl1 (Rand64 i, int n) {
447
  lua_assert(n > 32 && n < 64);
448
  n = 64 - n;
449
  return packI((trim32(i.h) >> n) | (i.l << (32 - n)),
450
               (i.h << (32 - n)) | (trim32(i.l) >> n));
451
}
452
453
/*
454
** implementation of 'xoshiro256**' algorithm on 'Rand64' values
455
*/
456
static Rand64 nextrand (Rand64 *state) {
457
  Rand64 res = times9(rotl(times5(state[1]), 7));
458
  Rand64 t = Ishl(state[1], 17);
459
  Ixor(&state[2], state[0]);
460
  Ixor(&state[3], state[1]);
461
  Ixor(&state[1], state[2]);
462
  Ixor(&state[0], state[3]);
463
  Ixor(&state[2], t);
464
  state[3] = rotl1(state[3], 45);
465
  return res;
466
}
467
468
469
/*
470
** Converts a 'Rand64' into a float.
471
*/
472
473
/* an unsigned 1 with proper type */
474
#define UONE    ((lu_int32)1)
475
476
477
#if FIGS <= 32
478
479
/* 2^(-FIGS) */
480
#define scaleFIG       (l_mathop(0.5) / (UONE << (FIGS - 1)))
481
482
/*
483
** get up to 32 bits from higher half, shifting right to
484
** throw out the extra bits.
485
*/
486
static lua_Number I2d (Rand64 x) {
487
  lua_Number h = (lua_Number)(trim32(x.h) >> (32 - FIGS));
488
  return h * scaleFIG;
489
}
490
491
#else /* 32 < FIGS <= 64 */
492
493
/* 2^(-FIGS) = 1.0 / 2^30 / 2^3 / 2^(FIGS-33) */
494
#define scaleFIG  \
495
    (l_mathop(1.0) / (UONE << 30) / l_mathop(8.0) / (UONE << (FIGS - 33)))
496
497
/*
498
** use FIGS - 32 bits from lower half, throwing out the other
499
** (32 - (FIGS - 32)) = (64 - FIGS) bits
500
*/
501
#define shiftLOW  (64 - FIGS)
502
503
/*
504
** higher 32 bits go after those (FIGS - 32) bits: shiftHI = 2^(FIGS - 32)
505
*/
506
#define shiftHI   ((lua_Number)(UONE << (FIGS - 33)) * l_mathop(2.0))
507
508
509
static lua_Number I2d (Rand64 x) {
510
  lua_Number h = (lua_Number)trim32(x.h) * shiftHI;
511
  lua_Number l = (lua_Number)(trim32(x.l) >> shiftLOW);
512
  return (h + l) * scaleFIG;
513
}
514
515
#endif
516
517
518
/* convert a 'Rand64' to a 'lua_Unsigned' */
519
static lua_Unsigned I2UInt (Rand64 x) {
520
  return (((lua_Unsigned)trim32(x.h) << 31) << 1) | (lua_Unsigned)trim32(x.l);
521
}
522
523
/* convert a 'lua_Unsigned' to a 'Rand64' */
524
static Rand64 Int2I (lua_Unsigned n) {
525
  return packI((lu_int32)((n >> 31) >> 1), (lu_int32)n);
526
}
527
528
#endif  /* } */
529
530
531
/*
532
** A state uses four 'Rand64' values.
533
*/
534
typedef struct {
535
  Rand64 s[4];
536
} RanState;
537
538
539
/*
540
** Project the random integer 'ran' into the interval [0, n].
541
** Because 'ran' has 2^B possible values, the projection can only be
542
** uniform when the size of the interval is a power of 2 (exact
543
** division). Otherwise, to get a uniform projection into [0, n], we
544
** first compute 'lim', the smallest Mersenne number not smaller than
545
** 'n'. We then project 'ran' into the interval [0, lim].  If the result
546
** is inside [0, n], we are done. Otherwise, we try with another 'ran',
547
** until we have a result inside the interval.
548
*/
549
static lua_Unsigned project (lua_Unsigned ran, lua_Unsigned n,
550
0
                             RanState *state) {
551
0
  if ((n & (n + 1)) == 0)  /* is 'n + 1' a power of 2? */
552
0
    return ran & n;  /* no bias */
553
0
  else {
554
0
    lua_Unsigned lim = n;
555
    /* compute the smallest (2^b - 1) not smaller than 'n' */
556
0
    lim |= (lim >> 1);
557
0
    lim |= (lim >> 2);
558
0
    lim |= (lim >> 4);
559
0
    lim |= (lim >> 8);
560
0
    lim |= (lim >> 16);
561
0
#if (LUA_MAXUNSIGNED >> 31) >= 3
562
0
    lim |= (lim >> 32);  /* integer type has more than 32 bits */
563
0
#endif
564
0
    lua_assert((lim & (lim + 1)) == 0  /* 'lim + 1' is a power of 2, */
565
0
      && lim >= n  /* not smaller than 'n', */
566
0
      && (lim >> 1) < n);  /* and it is the smallest one */
567
0
    while ((ran &= lim) > n)  /* project 'ran' into [0..lim] */
568
0
      ran = I2UInt(nextrand(state->s));  /* not inside [0..n]? try again */
569
0
    return ran;
570
0
  }
571
0
}
572
573
574
0
static int math_random (lua_State *L) {
575
0
  lua_Integer low, up;
576
0
  lua_Unsigned p;
577
0
  RanState *state = (RanState *)lua_touserdata(L, lua_upvalueindex(1));
578
0
  Rand64 rv = nextrand(state->s);  /* next pseudo-random value */
579
0
  switch (lua_gettop(L)) {  /* check number of arguments */
580
0
    case 0: {  /* no arguments */
581
0
      lua_pushnumber(L, I2d(rv));  /* float between 0 and 1 */
582
0
      return 1;
583
0
    }
584
0
    case 1: {  /* only upper limit */
585
0
      low = 1;
586
0
      up = luaL_checkinteger(L, 1);
587
0
      if (up == 0) {  /* single 0 as argument? */
588
0
        lua_pushinteger(L, I2UInt(rv));  /* full random integer */
589
0
        return 1;
590
0
      }
591
0
      break;
592
0
    }
593
0
    case 2: {  /* lower and upper limits */
594
0
      low = luaL_checkinteger(L, 1);
595
0
      up = luaL_checkinteger(L, 2);
596
0
      break;
597
0
    }
598
0
    default: return luaL_error(L, "wrong number of arguments");
599
0
  }
600
  /* random integer in the interval [low, up] */
601
0
  luaL_argcheck(L, low <= up, 1, "interval is empty");
602
  /* project random integer into the interval [0, up - low] */
603
0
  p = project(I2UInt(rv), (lua_Unsigned)up - (lua_Unsigned)low, state);
604
0
  lua_pushinteger(L, p + (lua_Unsigned)low);
605
0
  return 1;
606
0
}
607
608
609
static void setseed (lua_State *L, Rand64 *state,
610
3.20k
                     lua_Unsigned n1, lua_Unsigned n2) {
611
3.20k
  int i;
612
3.20k
  state[0] = Int2I(n1);
613
3.20k
  state[1] = Int2I(0xff);  /* avoid a zero state */
614
3.20k
  state[2] = Int2I(n2);
615
3.20k
  state[3] = Int2I(0);
616
54.4k
  for (i = 0; i < 16; i++)
617
51.2k
    nextrand(state);  /* discard initial values to "spread" seed */
618
3.20k
  lua_pushinteger(L, n1);
619
3.20k
  lua_pushinteger(L, n2);
620
3.20k
}
621
622
623
/*
624
** Set a "random" seed. To get some randomness, use the current time
625
** and the address of 'L' (in case the machine does address space layout
626
** randomization).
627
*/
628
3.20k
static void randseed (lua_State *L, RanState *state) {
629
3.20k
  lua_Unsigned seed1 = (lua_Unsigned)time(NULL);
630
3.20k
  lua_Unsigned seed2 = (lua_Unsigned)(size_t)L;
631
3.20k
  setseed(L, state->s, seed1, seed2);
632
3.20k
}
633
634
635
0
static int math_randomseed (lua_State *L) {
636
0
  RanState *state = (RanState *)lua_touserdata(L, lua_upvalueindex(1));
637
0
  if (lua_isnone(L, 1)) {
638
0
    randseed(L, state);
639
0
  }
640
0
  else {
641
0
    lua_Integer n1 = luaL_checkinteger(L, 1);
642
0
    lua_Integer n2 = luaL_optinteger(L, 2, 0);
643
0
    setseed(L, state->s, n1, n2);
644
0
  }
645
0
  return 2;  /* return seeds */
646
0
}
647
648
649
static const luaL_Reg randfuncs[] = {
650
  {"random", math_random},
651
  {"randomseed", math_randomseed},
652
  {NULL, NULL}
653
};
654
655
656
/*
657
** Register the random functions and initialize their state.
658
*/
659
3.20k
static void setrandfunc (lua_State *L) {
660
3.20k
  RanState *state = (RanState *)lua_newuserdatauv(L, sizeof(RanState), 0);
661
3.20k
  randseed(L, state);  /* initialize with a "random" seed */
662
3.20k
  lua_pop(L, 2);  /* remove pushed seeds */
663
3.20k
  luaL_setfuncs(L, randfuncs, 1);
664
3.20k
}
665
666
/* }================================================================== */
667
668
669
/*
670
** {==================================================================
671
** Deprecated functions (for compatibility only)
672
** ===================================================================
673
*/
674
#if defined(LUA_COMPAT_MATHLIB)
675
676
static int math_cosh (lua_State *L) {
677
  lua_pushnumber(L, l_mathop(cosh)(luaL_checknumber(L, 1)));
678
  return 1;
679
}
680
681
static int math_sinh (lua_State *L) {
682
  lua_pushnumber(L, l_mathop(sinh)(luaL_checknumber(L, 1)));
683
  return 1;
684
}
685
686
static int math_tanh (lua_State *L) {
687
  lua_pushnumber(L, l_mathop(tanh)(luaL_checknumber(L, 1)));
688
  return 1;
689
}
690
691
static int math_pow (lua_State *L) {
692
  lua_Number x = luaL_checknumber(L, 1);
693
  lua_Number y = luaL_checknumber(L, 2);
694
  lua_pushnumber(L, l_mathop(pow)(x, y));
695
  return 1;
696
}
697
698
static int math_frexp (lua_State *L) {
699
  int e;
700
  lua_pushnumber(L, l_mathop(frexp)(luaL_checknumber(L, 1), &e));
701
  lua_pushinteger(L, e);
702
  return 2;
703
}
704
705
static int math_ldexp (lua_State *L) {
706
  lua_Number x = luaL_checknumber(L, 1);
707
  int ep = (int)luaL_checkinteger(L, 2);
708
  lua_pushnumber(L, l_mathop(ldexp)(x, ep));
709
  return 1;
710
}
711
712
static int math_log10 (lua_State *L) {
713
  lua_pushnumber(L, l_mathop(log10)(luaL_checknumber(L, 1)));
714
  return 1;
715
}
716
717
#endif
718
/* }================================================================== */
719
720
721
722
static const luaL_Reg mathlib[] = {
723
  {"abs",   math_abs},
724
  {"acos",  math_acos},
725
  {"asin",  math_asin},
726
  {"atan",  math_atan},
727
  {"ceil",  math_ceil},
728
  {"cos",   math_cos},
729
  {"deg",   math_deg},
730
  {"exp",   math_exp},
731
  {"tointeger", math_toint},
732
  {"floor", math_floor},
733
  {"fmod",   math_fmod},
734
  {"ult",   math_ult},
735
  {"log",   math_log},
736
  {"max",   math_max},
737
  {"min",   math_min},
738
  {"modf",   math_modf},
739
  {"rad",   math_rad},
740
  {"sin",   math_sin},
741
  {"sqrt",  math_sqrt},
742
  {"tan",   math_tan},
743
  {"type", math_type},
744
#if defined(LUA_COMPAT_MATHLIB)
745
  {"atan2", math_atan},
746
  {"cosh",   math_cosh},
747
  {"sinh",   math_sinh},
748
  {"tanh",   math_tanh},
749
  {"pow",   math_pow},
750
  {"frexp", math_frexp},
751
  {"ldexp", math_ldexp},
752
  {"log10", math_log10},
753
#endif
754
  /* placeholders */
755
  {"random", NULL},
756
  {"randomseed", NULL},
757
  {"pi", NULL},
758
  {"huge", NULL},
759
  {"maxinteger", NULL},
760
  {"mininteger", NULL},
761
  {NULL, NULL}
762
};
763
764
765
/*
766
** Open math library
767
*/
768
3.20k
LUAMOD_API int luaopen_math (lua_State *L) {
769
3.20k
  luaL_newlib(L, mathlib);
770
3.20k
  lua_pushnumber(L, PI);
771
3.20k
  lua_setfield(L, -2, "pi");
772
3.20k
  lua_pushnumber(L, (lua_Number)HUGE_VAL);
773
3.20k
  lua_setfield(L, -2, "huge");
774
3.20k
  lua_pushinteger(L, LUA_MAXINTEGER);
775
3.20k
  lua_setfield(L, -2, "maxinteger");
776
3.20k
  lua_pushinteger(L, LUA_MININTEGER);
777
3.20k
  lua_setfield(L, -2, "mininteger");
778
3.20k
  setrandfunc(L);
779
3.20k
  return 1;
780
3.20k
}
781