Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * xxHash - Fast Hash algorithm |
3 | | * Copyright (C) 2012-2016, Yann Collet |
4 | | * |
5 | | * BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php) |
6 | | * |
7 | | * Redistribution and use in source and binary forms, with or without |
8 | | * modification, are permitted provided that the following conditions are |
9 | | * met: |
10 | | * |
11 | | * * Redistributions of source code must retain the above copyright |
12 | | * notice, this list of conditions and the following disclaimer. |
13 | | * * Redistributions in binary form must reproduce the above |
14 | | * copyright notice, this list of conditions and the following disclaimer |
15 | | * in the documentation and/or other materials provided with the |
16 | | * distribution. |
17 | | * |
18 | | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
19 | | * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
20 | | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
21 | | * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
22 | | * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
23 | | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
24 | | * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
25 | | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
26 | | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
27 | | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
28 | | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
29 | | * |
30 | | * You can contact the author at : |
31 | | * - xxHash homepage: http://www.xxhash.com |
32 | | * - xxHash source repository : https://github.com/Cyan4973/xxHash |
33 | | */ |
34 | | |
35 | | |
36 | | /* ************************************* |
37 | | * Tuning parameters |
38 | | ***************************************/ |
39 | | /*!XXH_FORCE_MEMORY_ACCESS : |
40 | | * By default, access to unaligned memory is controlled by `memcpy()`, which is safe and portable. |
41 | | * Unfortunately, on some target/compiler combinations, the generated assembly is sub-optimal. |
42 | | * The below switch allow to select different access method for improved performance. |
43 | | * Method 0 (default) : use `memcpy()`. Safe and portable. |
44 | | * Method 1 : `__packed` statement. It depends on compiler extension (ie, not portable). |
45 | | * This method is safe if your compiler supports it, and *generally* as fast or faster than `memcpy`. |
46 | | * Method 2 : direct access. This method doesn't depend on compiler but violate C standard. |
47 | | * It can generate buggy code on targets which do not support unaligned memory accesses. |
48 | | * But in some circumstances, it's the only known way to get the most performance (ie GCC + ARMv6) |
49 | | * See http://stackoverflow.com/a/32095106/646947 for details. |
50 | | * Prefer these methods in priority order (0 > 1 > 2) |
51 | | */ |
52 | | #ifndef XXH_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */ |
53 | | # if defined(__GNUC__) && ( defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) \ |
54 | | || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) \ |
55 | | || defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) ) |
56 | | # define XXH_FORCE_MEMORY_ACCESS 2 |
57 | | # elif (defined(__INTEL_COMPILER) && !defined(_WIN32)) || \ |
58 | | (defined(__GNUC__) && ( defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) \ |
59 | | || defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) \ |
60 | | || defined(__ARM_ARCH_7S__) )) |
61 | | # define XXH_FORCE_MEMORY_ACCESS 1 |
62 | | # endif |
63 | | #endif |
64 | | |
65 | | /*!XXH_ACCEPT_NULL_INPUT_POINTER : |
66 | | * If input pointer is NULL, xxHash default behavior is to dereference it, triggering a segfault. |
67 | | * When this macro is enabled, xxHash actively checks input for null pointer. |
68 | | * It it is, result for null input pointers is the same as a null-length input. |
69 | | */ |
70 | | #ifndef XXH_ACCEPT_NULL_INPUT_POINTER /* can be defined externally */ |
71 | | # define XXH_ACCEPT_NULL_INPUT_POINTER 0 |
72 | | #endif |
73 | | |
74 | | /*!XXH_FORCE_NATIVE_FORMAT : |
75 | | * By default, xxHash library provides endian-independent Hash values, based on little-endian convention. |
76 | | * Results are therefore identical for little-endian and big-endian CPU. |
77 | | * This comes at a performance cost for big-endian CPU, since some swapping is required to emulate little-endian format. |
78 | | * Should endian-independence be of no importance for your application, you may set the #define below to 1, |
79 | | * to improve speed for Big-endian CPU. |
80 | | * This option has no impact on Little_Endian CPU. |
81 | | */ |
82 | | #ifndef XXH_FORCE_NATIVE_FORMAT /* can be defined externally */ |
83 | 0 | # define XXH_FORCE_NATIVE_FORMAT 0 |
84 | | #endif |
85 | | |
86 | | /*!XXH_FORCE_ALIGN_CHECK : |
87 | | * This is a minor performance trick, only useful with lots of very small keys. |
88 | | * It means : check for aligned/unaligned input. |
89 | | * The check costs one initial branch per hash; |
90 | | * set it to 0 when the input is guaranteed to be aligned, |
91 | | * or when alignment doesn't matter for performance. |
92 | | */ |
93 | | #ifndef XXH_FORCE_ALIGN_CHECK /* can be defined externally */ |
94 | | # if defined(__i386) || defined(_M_IX86) || defined(__x86_64__) || defined(_M_X64) |
95 | 0 | # define XXH_FORCE_ALIGN_CHECK 0 |
96 | | # else |
97 | | # define XXH_FORCE_ALIGN_CHECK 1 |
98 | | # endif |
99 | | #endif |
100 | | |
101 | | |
102 | | /* ************************************* |
103 | | * Includes & Memory related functions |
104 | | ***************************************/ |
105 | | /*! Modify the local functions below should you wish to use some other memory routines |
106 | | * for malloc(), free() */ |
107 | | #include <stdlib.h> |
108 | 0 | static void* XXH_malloc(size_t s) { return malloc(s); } |
109 | 0 | static void XXH_free (void* p) { free(p); } |
110 | | /*! and for memcpy() */ |
111 | | #include <string.h> |
112 | 0 | static void* XXH_memcpy(void* dest, const void* src, size_t size) { return memcpy(dest,src,size); } |
113 | | |
114 | | #include <assert.h> /* assert */ |
115 | | |
116 | | #define XXH_STATIC_LINKING_ONLY |
117 | | #include "xxhash.h" |
118 | | |
119 | | |
120 | | /* ************************************* |
121 | | * Compiler Specific Options |
122 | | ***************************************/ |
123 | | #if defined (_MSC_VER) && !defined (__clang__) /* MSVC */ |
124 | | # pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */ |
125 | | # define FORCE_INLINE static __forceinline |
126 | | #else |
127 | | # if defined (__cplusplus) || defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* C99 */ |
128 | | # if defined (__GNUC__) || defined (__clang__) |
129 | | # define FORCE_INLINE static inline __attribute__((always_inline)) |
130 | | # else |
131 | | # define FORCE_INLINE static inline |
132 | | # endif |
133 | | # else |
134 | | # define FORCE_INLINE static |
135 | | # endif /* __STDC_VERSION__ */ |
136 | | #endif |
137 | | |
138 | | |
139 | | /* ************************************* |
140 | | * Basic Types |
141 | | ***************************************/ |
142 | | #ifndef MEM_MODULE |
143 | | # if !defined (__VMS) \ |
144 | | && (defined (__cplusplus) \ |
145 | | || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) ) |
146 | | # include <stdint.h> |
147 | | typedef uint8_t BYTE; |
148 | | typedef uint16_t U16; |
149 | | typedef uint32_t U32; |
150 | | # else |
151 | | typedef unsigned char BYTE; |
152 | | typedef unsigned short U16; |
153 | | typedef unsigned int U32; |
154 | | # endif |
155 | | #endif |
156 | | |
157 | | #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2)) |
158 | | |
159 | | /* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */ |
160 | | static U32 XXH_read32(const void* memPtr) { return *(const U32*) memPtr; } |
161 | | |
162 | | #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1)) |
163 | | |
164 | | /* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */ |
165 | | /* currently only defined for gcc and icc */ |
166 | | typedef union { U32 u32; } __attribute__((packed)) unalign; |
167 | | static U32 XXH_read32(const void* ptr) { return ((const unalign*)ptr)->u32; } |
168 | | |
169 | | #else |
170 | | |
171 | | /* portable and safe solution. Generally efficient. |
172 | | * see : http://stackoverflow.com/a/32095106/646947 |
173 | | */ |
174 | | static U32 XXH_read32(const void* memPtr) |
175 | 0 | { |
176 | 0 | U32 val; |
177 | 0 | memcpy(&val, memPtr, sizeof(val)); |
178 | 0 | return val; |
179 | 0 | } |
180 | | |
181 | | #endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */ |
182 | | |
183 | | |
184 | | /* **************************************** |
185 | | * Compiler-specific Functions and Macros |
186 | | ******************************************/ |
187 | | #define XXH_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__) |
188 | | |
189 | | /* Note : although _rotl exists for minGW (GCC under windows), performance seems poor */ |
190 | | #if defined(_MSC_VER) |
191 | | # define XXH_rotl32(x,r) _rotl(x,r) |
192 | | # define XXH_rotl64(x,r) _rotl64(x,r) |
193 | | #else |
194 | 0 | # define XXH_rotl32(x,r) ((x << r) | (x >> (32 - r))) |
195 | 0 | # define XXH_rotl64(x,r) ((x << r) | (x >> (64 - r))) |
196 | | #endif |
197 | | |
198 | | #if defined(_MSC_VER) /* Visual Studio */ |
199 | | # define XXH_swap32 _byteswap_ulong |
200 | | #elif XXH_GCC_VERSION >= 403 |
201 | | # define XXH_swap32 __builtin_bswap32 |
202 | | #else |
203 | | static U32 XXH_swap32 (U32 x) |
204 | 0 | { |
205 | 0 | return ((x << 24) & 0xff000000 ) | |
206 | 0 | ((x << 8) & 0x00ff0000 ) | |
207 | 0 | ((x >> 8) & 0x0000ff00 ) | |
208 | 0 | ((x >> 24) & 0x000000ff ); |
209 | 0 | } |
210 | | #endif |
211 | | |
212 | | |
213 | | /* ************************************* |
214 | | * Architecture Macros |
215 | | ***************************************/ |
216 | | typedef enum { XXH_bigEndian=0, XXH_littleEndian=1 } XXH_endianness; |
217 | | |
218 | | /* XXH_CPU_LITTLE_ENDIAN can be defined externally, for example on the compiler command line */ |
219 | | #ifndef XXH_CPU_LITTLE_ENDIAN |
220 | | static int XXH_isLittleEndian(void) |
221 | 0 | { |
222 | 0 | const union { U32 u; BYTE c[4]; } one = { 1 }; /* don't use static : performance detrimental */ |
223 | 0 | return one.c[0]; |
224 | 0 | } |
225 | 0 | # define XXH_CPU_LITTLE_ENDIAN XXH_isLittleEndian() |
226 | | #endif |
227 | | |
228 | | |
229 | | /* *************************** |
230 | | * Memory reads |
231 | | *****************************/ |
232 | | typedef enum { XXH_aligned, XXH_unaligned } XXH_alignment; |
233 | | |
234 | | FORCE_INLINE U32 XXH_readLE32_align(const void* ptr, XXH_endianness endian, XXH_alignment align) |
235 | 0 | { |
236 | 0 | if (align==XXH_unaligned) |
237 | 0 | return endian==XXH_littleEndian ? XXH_read32(ptr) : XXH_swap32(XXH_read32(ptr)); |
238 | 0 | else |
239 | 0 | return endian==XXH_littleEndian ? *(const U32*)ptr : XXH_swap32(*(const U32*)ptr); |
240 | 0 | } |
241 | | |
242 | | FORCE_INLINE U32 XXH_readLE32(const void* ptr, XXH_endianness endian) |
243 | 0 | { |
244 | 0 | return XXH_readLE32_align(ptr, endian, XXH_unaligned); |
245 | 0 | } |
246 | | |
247 | | static U32 XXH_readBE32(const void* ptr) |
248 | 0 | { |
249 | 0 | return XXH_CPU_LITTLE_ENDIAN ? XXH_swap32(XXH_read32(ptr)) : XXH_read32(ptr); |
250 | 0 | } |
251 | | |
252 | | |
253 | | /* ************************************* |
254 | | * Macros |
255 | | ***************************************/ |
256 | 0 | #define XXH_STATIC_ASSERT(c) { enum { XXH_sa = 1/(int)(!!(c)) }; } /* use after variable declarations */ |
257 | 0 | XXH_PUBLIC_API unsigned XXH_versionNumber (void) { return XXH_VERSION_NUMBER; } |
258 | | |
259 | | |
260 | | /* ******************************************************************* |
261 | | * 32-bit hash functions |
262 | | *********************************************************************/ |
263 | | static const U32 PRIME32_1 = 2654435761U; |
264 | | static const U32 PRIME32_2 = 2246822519U; |
265 | | static const U32 PRIME32_3 = 3266489917U; |
266 | | static const U32 PRIME32_4 = 668265263U; |
267 | | static const U32 PRIME32_5 = 374761393U; |
268 | | |
269 | | static U32 XXH32_round(U32 seed, U32 input) |
270 | 0 | { |
271 | 0 | seed += input * PRIME32_2; |
272 | 0 | seed = XXH_rotl32(seed, 13); |
273 | 0 | seed *= PRIME32_1; |
274 | 0 | return seed; |
275 | 0 | } |
276 | | |
277 | | /* mix all bits */ |
278 | | static U32 XXH32_avalanche(U32 h32) |
279 | 0 | { |
280 | 0 | h32 ^= h32 >> 15; |
281 | 0 | h32 *= PRIME32_2; |
282 | 0 | h32 ^= h32 >> 13; |
283 | 0 | h32 *= PRIME32_3; |
284 | 0 | h32 ^= h32 >> 16; |
285 | 0 | return(h32); |
286 | 0 | } |
287 | | |
288 | 0 | #define XXH_get32bits(p) XXH_readLE32_align(p, endian, align) |
289 | | |
290 | | static U32 |
291 | | XXH32_finalize(U32 h32, const void* ptr, size_t len, |
292 | | XXH_endianness endian, XXH_alignment align) |
293 | | |
294 | 0 | { |
295 | 0 | const BYTE* p = (const BYTE*)ptr; |
296 | |
|
297 | 0 | #define PROCESS1 \ |
298 | 0 | h32 += (*p++) * PRIME32_5; \ |
299 | 0 | h32 = XXH_rotl32(h32, 11) * PRIME32_1 ; |
300 | |
|
301 | 0 | #define PROCESS4 \ |
302 | 0 | h32 += XXH_get32bits(p) * PRIME32_3; \ |
303 | 0 | p+=4; \ |
304 | 0 | h32 = XXH_rotl32(h32, 17) * PRIME32_4 ; |
305 | |
|
306 | 0 | switch(len&15) /* or switch(bEnd - p) */ |
307 | 0 | { |
308 | 0 | case 12: PROCESS4; |
309 | | /* fallthrough */ |
310 | 0 | case 8: PROCESS4; |
311 | | /* fallthrough */ |
312 | 0 | case 4: PROCESS4; |
313 | 0 | return XXH32_avalanche(h32); |
314 | | |
315 | 0 | case 13: PROCESS4; |
316 | | /* fallthrough */ |
317 | 0 | case 9: PROCESS4; |
318 | | /* fallthrough */ |
319 | 0 | case 5: PROCESS4; |
320 | 0 | PROCESS1; |
321 | 0 | return XXH32_avalanche(h32); |
322 | | |
323 | 0 | case 14: PROCESS4; |
324 | | /* fallthrough */ |
325 | 0 | case 10: PROCESS4; |
326 | | /* fallthrough */ |
327 | 0 | case 6: PROCESS4; |
328 | 0 | PROCESS1; |
329 | 0 | PROCESS1; |
330 | 0 | return XXH32_avalanche(h32); |
331 | | |
332 | 0 | case 15: PROCESS4; |
333 | | /* fallthrough */ |
334 | 0 | case 11: PROCESS4; |
335 | | /* fallthrough */ |
336 | 0 | case 7: PROCESS4; |
337 | | /* fallthrough */ |
338 | 0 | case 3: PROCESS1; |
339 | | /* fallthrough */ |
340 | 0 | case 2: PROCESS1; |
341 | | /* fallthrough */ |
342 | 0 | case 1: PROCESS1; |
343 | | /* fallthrough */ |
344 | 0 | case 0: return XXH32_avalanche(h32); |
345 | 0 | } |
346 | 0 | assert(0); |
347 | 0 | return h32; /* reaching this point is deemed impossible */ |
348 | 0 | } |
349 | | |
350 | | |
351 | | FORCE_INLINE U32 |
352 | | XXH32_endian_align(const void* input, size_t len, U32 seed, |
353 | | XXH_endianness endian, XXH_alignment align) |
354 | 0 | { |
355 | 0 | const BYTE* p = (const BYTE*)input; |
356 | 0 | const BYTE* bEnd = p + len; |
357 | 0 | U32 h32; |
358 | |
|
359 | | #if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1) |
360 | | if (p==NULL) { |
361 | | len=0; |
362 | | bEnd=p=(const BYTE*)(size_t)16; |
363 | | } |
364 | | #endif |
365 | |
|
366 | 0 | if (len>=16) { |
367 | 0 | const BYTE* const limit = bEnd - 15; |
368 | 0 | U32 v1 = seed + PRIME32_1 + PRIME32_2; |
369 | 0 | U32 v2 = seed + PRIME32_2; |
370 | 0 | U32 v3 = seed + 0; |
371 | 0 | U32 v4 = seed - PRIME32_1; |
372 | |
|
373 | 0 | do { |
374 | 0 | v1 = XXH32_round(v1, XXH_get32bits(p)); p+=4; |
375 | 0 | v2 = XXH32_round(v2, XXH_get32bits(p)); p+=4; |
376 | 0 | v3 = XXH32_round(v3, XXH_get32bits(p)); p+=4; |
377 | 0 | v4 = XXH32_round(v4, XXH_get32bits(p)); p+=4; |
378 | 0 | } while (p < limit); |
379 | |
|
380 | 0 | h32 = XXH_rotl32(v1, 1) + XXH_rotl32(v2, 7) |
381 | 0 | + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18); |
382 | 0 | } else { |
383 | 0 | h32 = seed + PRIME32_5; |
384 | 0 | } |
385 | |
|
386 | 0 | h32 += (U32)len; |
387 | |
|
388 | 0 | return XXH32_finalize(h32, p, len&15, endian, align); |
389 | 0 | } |
390 | | |
391 | | |
392 | | XXH_PUBLIC_API unsigned int XXH32 (const void* input, size_t len, unsigned int seed) |
393 | 0 | { |
394 | | #if 0 |
395 | | /* Simple version, good for code maintenance, but unfortunately slow for small inputs */ |
396 | | XXH32_state_t state; |
397 | | XXH32_reset(&state, seed); |
398 | | XXH32_update(&state, input, len); |
399 | | return XXH32_digest(&state); |
400 | | #else |
401 | 0 | XXH_endianness endian_detected = (XXH_endianness)XXH_CPU_LITTLE_ENDIAN; |
402 | |
|
403 | 0 | if (XXH_FORCE_ALIGN_CHECK) { |
404 | 0 | if ((((size_t)input) & 3) == 0) { /* Input is 4-bytes aligned, leverage the speed benefit */ |
405 | 0 | if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) |
406 | 0 | return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned); |
407 | 0 | else |
408 | 0 | return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned); |
409 | 0 | } } |
410 | | |
411 | 0 | if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) |
412 | 0 | return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned); |
413 | 0 | else |
414 | 0 | return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned); |
415 | 0 | #endif |
416 | 0 | } |
417 | | |
418 | | |
419 | | |
420 | | /*====== Hash streaming ======*/ |
421 | | |
422 | | XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void) |
423 | 0 | { |
424 | 0 | return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t)); |
425 | 0 | } |
426 | | XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr) |
427 | 0 | { |
428 | 0 | XXH_free(statePtr); |
429 | 0 | return XXH_OK; |
430 | 0 | } |
431 | | |
432 | | XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* dstState, const XXH32_state_t* srcState) |
433 | 0 | { |
434 | 0 | memcpy(dstState, srcState, sizeof(*dstState)); |
435 | 0 | } |
436 | | |
437 | | XXH_PUBLIC_API XXH_errorcode XXH32_reset(XXH32_state_t* statePtr, unsigned int seed) |
438 | 0 | { |
439 | 0 | XXH32_state_t state; /* using a local state to memcpy() in order to avoid strict-aliasing warnings */ |
440 | 0 | memset(&state, 0, sizeof(state)); |
441 | 0 | state.v1 = seed + PRIME32_1 + PRIME32_2; |
442 | 0 | state.v2 = seed + PRIME32_2; |
443 | 0 | state.v3 = seed + 0; |
444 | 0 | state.v4 = seed - PRIME32_1; |
445 | | /* do not write into reserved, planned to be removed in a future version */ |
446 | 0 | memcpy(statePtr, &state, sizeof(state) - sizeof(state.reserved)); |
447 | 0 | return XXH_OK; |
448 | 0 | } |
449 | | |
450 | | |
451 | | FORCE_INLINE XXH_errorcode |
452 | | XXH32_update_endian(XXH32_state_t* state, const void* input, size_t len, XXH_endianness endian) |
453 | 0 | { |
454 | 0 | if (input==NULL) |
455 | | #if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1) |
456 | | return XXH_OK; |
457 | | #else |
458 | 0 | return XXH_ERROR; |
459 | 0 | #endif |
460 | | |
461 | 0 | { const BYTE* p = (const BYTE*)input; |
462 | 0 | const BYTE* const bEnd = p + len; |
463 | |
|
464 | 0 | state->total_len_32 += (unsigned)len; |
465 | 0 | state->large_len |= (len>=16) | (state->total_len_32>=16); |
466 | |
|
467 | 0 | if (state->memsize + len < 16) { /* fill in tmp buffer */ |
468 | 0 | XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, len); |
469 | 0 | state->memsize += (unsigned)len; |
470 | 0 | return XXH_OK; |
471 | 0 | } |
472 | | |
473 | 0 | if (state->memsize) { /* some data left from previous update */ |
474 | 0 | XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, 16-state->memsize); |
475 | 0 | { const U32* p32 = state->mem32; |
476 | 0 | state->v1 = XXH32_round(state->v1, XXH_readLE32(p32, endian)); p32++; |
477 | 0 | state->v2 = XXH32_round(state->v2, XXH_readLE32(p32, endian)); p32++; |
478 | 0 | state->v3 = XXH32_round(state->v3, XXH_readLE32(p32, endian)); p32++; |
479 | 0 | state->v4 = XXH32_round(state->v4, XXH_readLE32(p32, endian)); |
480 | 0 | } |
481 | 0 | p += 16-state->memsize; |
482 | 0 | state->memsize = 0; |
483 | 0 | } |
484 | |
|
485 | 0 | if (p <= bEnd-16) { |
486 | 0 | const BYTE* const limit = bEnd - 16; |
487 | 0 | U32 v1 = state->v1; |
488 | 0 | U32 v2 = state->v2; |
489 | 0 | U32 v3 = state->v3; |
490 | 0 | U32 v4 = state->v4; |
491 | |
|
492 | 0 | do { |
493 | 0 | v1 = XXH32_round(v1, XXH_readLE32(p, endian)); p+=4; |
494 | 0 | v2 = XXH32_round(v2, XXH_readLE32(p, endian)); p+=4; |
495 | 0 | v3 = XXH32_round(v3, XXH_readLE32(p, endian)); p+=4; |
496 | 0 | v4 = XXH32_round(v4, XXH_readLE32(p, endian)); p+=4; |
497 | 0 | } while (p<=limit); |
498 | |
|
499 | 0 | state->v1 = v1; |
500 | 0 | state->v2 = v2; |
501 | 0 | state->v3 = v3; |
502 | 0 | state->v4 = v4; |
503 | 0 | } |
504 | |
|
505 | 0 | if (p < bEnd) { |
506 | 0 | XXH_memcpy(state->mem32, p, (size_t)(bEnd-p)); |
507 | 0 | state->memsize = (unsigned)(bEnd-p); |
508 | 0 | } |
509 | 0 | } |
510 | | |
511 | 0 | return XXH_OK; |
512 | 0 | } |
513 | | |
514 | | |
515 | | XXH_PUBLIC_API XXH_errorcode XXH32_update (XXH32_state_t* state_in, const void* input, size_t len) |
516 | 0 | { |
517 | 0 | XXH_endianness endian_detected = (XXH_endianness)XXH_CPU_LITTLE_ENDIAN; |
518 | |
|
519 | 0 | if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) |
520 | 0 | return XXH32_update_endian(state_in, input, len, XXH_littleEndian); |
521 | 0 | else |
522 | 0 | return XXH32_update_endian(state_in, input, len, XXH_bigEndian); |
523 | 0 | } |
524 | | |
525 | | |
526 | | FORCE_INLINE U32 |
527 | | XXH32_digest_endian (const XXH32_state_t* state, XXH_endianness endian) |
528 | 0 | { |
529 | 0 | U32 h32; |
530 | |
|
531 | 0 | if (state->large_len) { |
532 | 0 | h32 = XXH_rotl32(state->v1, 1) |
533 | 0 | + XXH_rotl32(state->v2, 7) |
534 | 0 | + XXH_rotl32(state->v3, 12) |
535 | 0 | + XXH_rotl32(state->v4, 18); |
536 | 0 | } else { |
537 | 0 | h32 = state->v3 /* == seed */ + PRIME32_5; |
538 | 0 | } |
539 | |
|
540 | 0 | h32 += state->total_len_32; |
541 | |
|
542 | 0 | return XXH32_finalize(h32, state->mem32, state->memsize, endian, XXH_aligned); |
543 | 0 | } |
544 | | |
545 | | |
546 | | XXH_PUBLIC_API unsigned int XXH32_digest (const XXH32_state_t* state_in) |
547 | 0 | { |
548 | 0 | XXH_endianness endian_detected = (XXH_endianness)XXH_CPU_LITTLE_ENDIAN; |
549 | |
|
550 | 0 | if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) |
551 | 0 | return XXH32_digest_endian(state_in, XXH_littleEndian); |
552 | 0 | else |
553 | 0 | return XXH32_digest_endian(state_in, XXH_bigEndian); |
554 | 0 | } |
555 | | |
556 | | |
557 | | /*====== Canonical representation ======*/ |
558 | | |
559 | | /*! Default XXH result types are basic unsigned 32 and 64 bits. |
560 | | * The canonical representation follows human-readable write convention, aka big-endian (large digits first). |
561 | | * These functions allow transformation of hash result into and from its canonical format. |
562 | | * This way, hash values can be written into a file or buffer, remaining comparable across different systems. |
563 | | */ |
564 | | |
565 | | XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash) |
566 | 0 | { |
567 | 0 | XXH_STATIC_ASSERT(sizeof(XXH32_canonical_t) == sizeof(XXH32_hash_t)); |
568 | 0 | if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap32(hash); |
569 | 0 | memcpy(dst, &hash, sizeof(*dst)); |
570 | 0 | } |
571 | | |
572 | | XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src) |
573 | 0 | { |
574 | 0 | return XXH_readBE32(src); |
575 | 0 | } |
576 | | |
577 | | |
578 | | #ifndef XXH_NO_LONG_LONG |
579 | | |
580 | | /* ******************************************************************* |
581 | | * 64-bit hash functions |
582 | | *********************************************************************/ |
583 | | |
584 | | /*====== Memory access ======*/ |
585 | | |
586 | | #ifndef MEM_MODULE |
587 | | # define MEM_MODULE |
588 | | # if !defined (__VMS) \ |
589 | | && (defined (__cplusplus) \ |
590 | | || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) ) |
591 | | # include <stdint.h> |
592 | | typedef uint64_t U64; |
593 | | # else |
594 | | /* if compiler doesn't support unsigned long long, replace by another 64-bit type */ |
595 | | typedef unsigned long long U64; |
596 | | # endif |
597 | | #endif |
598 | | |
599 | | |
600 | | #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2)) |
601 | | |
602 | | /* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */ |
603 | | static U64 XXH_read64(const void* memPtr) { return *(const U64*) memPtr; } |
604 | | |
605 | | #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1)) |
606 | | |
607 | | /* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */ |
608 | | /* currently only defined for gcc and icc */ |
609 | | typedef union { U32 u32; U64 u64; } __attribute__((packed)) unalign64; |
610 | | static U64 XXH_read64(const void* ptr) { return ((const unalign64*)ptr)->u64; } |
611 | | |
612 | | #else |
613 | | |
614 | | /* portable and safe solution. Generally efficient. |
615 | | * see : http://stackoverflow.com/a/32095106/646947 |
616 | | */ |
617 | | |
618 | | static U64 XXH_read64(const void* memPtr) |
619 | 0 | { |
620 | 0 | U64 val; |
621 | 0 | memcpy(&val, memPtr, sizeof(val)); |
622 | 0 | return val; |
623 | 0 | } |
624 | | |
625 | | #endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */ |
626 | | |
627 | | #if defined(_MSC_VER) /* Visual Studio */ |
628 | | # define XXH_swap64 _byteswap_uint64 |
629 | | #elif XXH_GCC_VERSION >= 403 |
630 | | # define XXH_swap64 __builtin_bswap64 |
631 | | #else |
632 | | static U64 XXH_swap64 (U64 x) |
633 | 0 | { |
634 | 0 | return ((x << 56) & 0xff00000000000000ULL) | |
635 | 0 | ((x << 40) & 0x00ff000000000000ULL) | |
636 | 0 | ((x << 24) & 0x0000ff0000000000ULL) | |
637 | 0 | ((x << 8) & 0x000000ff00000000ULL) | |
638 | 0 | ((x >> 8) & 0x00000000ff000000ULL) | |
639 | 0 | ((x >> 24) & 0x0000000000ff0000ULL) | |
640 | 0 | ((x >> 40) & 0x000000000000ff00ULL) | |
641 | 0 | ((x >> 56) & 0x00000000000000ffULL); |
642 | 0 | } |
643 | | #endif |
644 | | |
645 | | FORCE_INLINE U64 XXH_readLE64_align(const void* ptr, XXH_endianness endian, XXH_alignment align) |
646 | 0 | { |
647 | 0 | if (align==XXH_unaligned) |
648 | 0 | return endian==XXH_littleEndian ? XXH_read64(ptr) : XXH_swap64(XXH_read64(ptr)); |
649 | 0 | else |
650 | 0 | return endian==XXH_littleEndian ? *(const U64*)ptr : XXH_swap64(*(const U64*)ptr); |
651 | 0 | } |
652 | | |
653 | | FORCE_INLINE U64 XXH_readLE64(const void* ptr, XXH_endianness endian) |
654 | 0 | { |
655 | 0 | return XXH_readLE64_align(ptr, endian, XXH_unaligned); |
656 | 0 | } |
657 | | |
658 | | static U64 XXH_readBE64(const void* ptr) |
659 | 0 | { |
660 | 0 | return XXH_CPU_LITTLE_ENDIAN ? XXH_swap64(XXH_read64(ptr)) : XXH_read64(ptr); |
661 | 0 | } |
662 | | |
663 | | |
664 | | /*====== xxh64 ======*/ |
665 | | |
666 | | static const U64 PRIME64_1 = 11400714785074694791ULL; |
667 | | static const U64 PRIME64_2 = 14029467366897019727ULL; |
668 | | static const U64 PRIME64_3 = 1609587929392839161ULL; |
669 | | static const U64 PRIME64_4 = 9650029242287828579ULL; |
670 | | static const U64 PRIME64_5 = 2870177450012600261ULL; |
671 | | |
672 | | static U64 XXH64_round(U64 acc, U64 input) |
673 | 0 | { |
674 | 0 | acc += input * PRIME64_2; |
675 | 0 | acc = XXH_rotl64(acc, 31); |
676 | 0 | acc *= PRIME64_1; |
677 | 0 | return acc; |
678 | 0 | } |
679 | | |
680 | | static U64 XXH64_mergeRound(U64 acc, U64 val) |
681 | 0 | { |
682 | 0 | val = XXH64_round(0, val); |
683 | 0 | acc ^= val; |
684 | 0 | acc = acc * PRIME64_1 + PRIME64_4; |
685 | 0 | return acc; |
686 | 0 | } |
687 | | |
688 | | static U64 XXH64_avalanche(U64 h64) |
689 | 0 | { |
690 | 0 | h64 ^= h64 >> 33; |
691 | 0 | h64 *= PRIME64_2; |
692 | 0 | h64 ^= h64 >> 29; |
693 | 0 | h64 *= PRIME64_3; |
694 | 0 | h64 ^= h64 >> 32; |
695 | 0 | return h64; |
696 | 0 | } |
697 | | |
698 | | |
699 | 0 | #define XXH_get64bits(p) XXH_readLE64_align(p, endian, align) |
700 | | |
701 | | static U64 |
702 | | XXH64_finalize(U64 h64, const void* ptr, size_t len, |
703 | | XXH_endianness endian, XXH_alignment align) |
704 | 0 | { |
705 | 0 | const BYTE* p = (const BYTE*)ptr; |
706 | |
|
707 | 0 | #define PROCESS1_64 \ |
708 | 0 | h64 ^= (*p++) * PRIME64_5; \ |
709 | 0 | h64 = XXH_rotl64(h64, 11) * PRIME64_1; |
710 | |
|
711 | 0 | #define PROCESS4_64 \ |
712 | 0 | h64 ^= (U64)(XXH_get32bits(p)) * PRIME64_1; \ |
713 | 0 | p+=4; \ |
714 | 0 | h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3; |
715 | |
|
716 | 0 | #define PROCESS8_64 { \ |
717 | 0 | U64 const k1 = XXH64_round(0, XXH_get64bits(p)); \ |
718 | 0 | p+=8; \ |
719 | 0 | h64 ^= k1; \ |
720 | 0 | h64 = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4; \ |
721 | 0 | } |
722 | |
|
723 | 0 | switch(len&31) { |
724 | 0 | case 24: PROCESS8_64; |
725 | | /* fallthrough */ |
726 | 0 | case 16: PROCESS8_64; |
727 | | /* fallthrough */ |
728 | 0 | case 8: PROCESS8_64; |
729 | 0 | return XXH64_avalanche(h64); |
730 | | |
731 | 0 | case 28: PROCESS8_64; |
732 | | /* fallthrough */ |
733 | 0 | case 20: PROCESS8_64; |
734 | | /* fallthrough */ |
735 | 0 | case 12: PROCESS8_64; |
736 | | /* fallthrough */ |
737 | 0 | case 4: PROCESS4_64; |
738 | 0 | return XXH64_avalanche(h64); |
739 | | |
740 | 0 | case 25: PROCESS8_64; |
741 | | /* fallthrough */ |
742 | 0 | case 17: PROCESS8_64; |
743 | | /* fallthrough */ |
744 | 0 | case 9: PROCESS8_64; |
745 | 0 | PROCESS1_64; |
746 | 0 | return XXH64_avalanche(h64); |
747 | | |
748 | 0 | case 29: PROCESS8_64; |
749 | | /* fallthrough */ |
750 | 0 | case 21: PROCESS8_64; |
751 | | /* fallthrough */ |
752 | 0 | case 13: PROCESS8_64; |
753 | | /* fallthrough */ |
754 | 0 | case 5: PROCESS4_64; |
755 | 0 | PROCESS1_64; |
756 | 0 | return XXH64_avalanche(h64); |
757 | | |
758 | 0 | case 26: PROCESS8_64; |
759 | | /* fallthrough */ |
760 | 0 | case 18: PROCESS8_64; |
761 | | /* fallthrough */ |
762 | 0 | case 10: PROCESS8_64; |
763 | 0 | PROCESS1_64; |
764 | 0 | PROCESS1_64; |
765 | 0 | return XXH64_avalanche(h64); |
766 | | |
767 | 0 | case 30: PROCESS8_64; |
768 | | /* fallthrough */ |
769 | 0 | case 22: PROCESS8_64; |
770 | | /* fallthrough */ |
771 | 0 | case 14: PROCESS8_64; |
772 | | /* fallthrough */ |
773 | 0 | case 6: PROCESS4_64; |
774 | 0 | PROCESS1_64; |
775 | 0 | PROCESS1_64; |
776 | 0 | return XXH64_avalanche(h64); |
777 | | |
778 | 0 | case 27: PROCESS8_64; |
779 | | /* fallthrough */ |
780 | 0 | case 19: PROCESS8_64; |
781 | | /* fallthrough */ |
782 | 0 | case 11: PROCESS8_64; |
783 | 0 | PROCESS1_64; |
784 | 0 | PROCESS1_64; |
785 | 0 | PROCESS1_64; |
786 | 0 | return XXH64_avalanche(h64); |
787 | | |
788 | 0 | case 31: PROCESS8_64; |
789 | | /* fallthrough */ |
790 | 0 | case 23: PROCESS8_64; |
791 | | /* fallthrough */ |
792 | 0 | case 15: PROCESS8_64; |
793 | | /* fallthrough */ |
794 | 0 | case 7: PROCESS4_64; |
795 | | /* fallthrough */ |
796 | 0 | case 3: PROCESS1_64; |
797 | | /* fallthrough */ |
798 | 0 | case 2: PROCESS1_64; |
799 | | /* fallthrough */ |
800 | 0 | case 1: PROCESS1_64; |
801 | | /* fallthrough */ |
802 | 0 | case 0: return XXH64_avalanche(h64); |
803 | 0 | } |
804 | | |
805 | | /* impossible to reach */ |
806 | 0 | assert(0); |
807 | 0 | return 0; /* unreachable, but some compilers complain without it */ |
808 | 0 | } |
809 | | |
810 | | FORCE_INLINE U64 |
811 | | XXH64_endian_align(const void* input, size_t len, U64 seed, |
812 | | XXH_endianness endian, XXH_alignment align) |
813 | 0 | { |
814 | 0 | const BYTE* p = (const BYTE*)input; |
815 | 0 | const BYTE* bEnd = p + len; |
816 | 0 | U64 h64; |
817 | |
|
818 | | #if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1) |
819 | | if (p==NULL) { |
820 | | len=0; |
821 | | bEnd=p=(const BYTE*)(size_t)32; |
822 | | } |
823 | | #endif |
824 | |
|
825 | 0 | if (len>=32) { |
826 | 0 | const BYTE* const limit = bEnd - 32; |
827 | 0 | U64 v1 = seed + PRIME64_1 + PRIME64_2; |
828 | 0 | U64 v2 = seed + PRIME64_2; |
829 | 0 | U64 v3 = seed + 0; |
830 | 0 | U64 v4 = seed - PRIME64_1; |
831 | |
|
832 | 0 | do { |
833 | 0 | v1 = XXH64_round(v1, XXH_get64bits(p)); p+=8; |
834 | 0 | v2 = XXH64_round(v2, XXH_get64bits(p)); p+=8; |
835 | 0 | v3 = XXH64_round(v3, XXH_get64bits(p)); p+=8; |
836 | 0 | v4 = XXH64_round(v4, XXH_get64bits(p)); p+=8; |
837 | 0 | } while (p<=limit); |
838 | |
|
839 | 0 | h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18); |
840 | 0 | h64 = XXH64_mergeRound(h64, v1); |
841 | 0 | h64 = XXH64_mergeRound(h64, v2); |
842 | 0 | h64 = XXH64_mergeRound(h64, v3); |
843 | 0 | h64 = XXH64_mergeRound(h64, v4); |
844 | |
|
845 | 0 | } else { |
846 | 0 | h64 = seed + PRIME64_5; |
847 | 0 | } |
848 | |
|
849 | 0 | h64 += (U64) len; |
850 | |
|
851 | 0 | return XXH64_finalize(h64, p, len, endian, align); |
852 | 0 | } |
853 | | |
854 | | |
855 | | XXH_PUBLIC_API unsigned long long XXH64 (const void* input, size_t len, unsigned long long seed) |
856 | 0 | { |
857 | | #if 0 |
858 | | /* Simple version, good for code maintenance, but unfortunately slow for small inputs */ |
859 | | XXH64_state_t state; |
860 | | XXH64_reset(&state, seed); |
861 | | XXH64_update(&state, input, len); |
862 | | return XXH64_digest(&state); |
863 | | #else |
864 | 0 | XXH_endianness endian_detected = (XXH_endianness)XXH_CPU_LITTLE_ENDIAN; |
865 | |
|
866 | 0 | if (XXH_FORCE_ALIGN_CHECK) { |
867 | 0 | if ((((size_t)input) & 7)==0) { /* Input is aligned, let's leverage the speed advantage */ |
868 | 0 | if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) |
869 | 0 | return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned); |
870 | 0 | else |
871 | 0 | return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned); |
872 | 0 | } } |
873 | | |
874 | 0 | if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) |
875 | 0 | return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned); |
876 | 0 | else |
877 | 0 | return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned); |
878 | 0 | #endif |
879 | 0 | } |
880 | | |
881 | | /*====== Hash Streaming ======*/ |
882 | | |
883 | | XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void) |
884 | 0 | { |
885 | 0 | return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t)); |
886 | 0 | } |
887 | | XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr) |
888 | 0 | { |
889 | 0 | XXH_free(statePtr); |
890 | 0 | return XXH_OK; |
891 | 0 | } |
892 | | |
893 | | XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* dstState, const XXH64_state_t* srcState) |
894 | 0 | { |
895 | 0 | memcpy(dstState, srcState, sizeof(*dstState)); |
896 | 0 | } |
897 | | |
898 | | XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH64_state_t* statePtr, unsigned long long seed) |
899 | 0 | { |
900 | 0 | XXH64_state_t state; /* using a local state to memcpy() in order to avoid strict-aliasing warnings */ |
901 | 0 | memset(&state, 0, sizeof(state)); |
902 | 0 | state.v1 = seed + PRIME64_1 + PRIME64_2; |
903 | 0 | state.v2 = seed + PRIME64_2; |
904 | 0 | state.v3 = seed + 0; |
905 | 0 | state.v4 = seed - PRIME64_1; |
906 | | /* do not write into reserved, planned to be removed in a future version */ |
907 | 0 | memcpy(statePtr, &state, sizeof(state) - sizeof(state.reserved)); |
908 | 0 | return XXH_OK; |
909 | 0 | } |
910 | | |
911 | | FORCE_INLINE XXH_errorcode |
912 | | XXH64_update_endian (XXH64_state_t* state, const void* input, size_t len, XXH_endianness endian) |
913 | 0 | { |
914 | 0 | if (input==NULL) |
915 | | #if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1) |
916 | | return XXH_OK; |
917 | | #else |
918 | 0 | return XXH_ERROR; |
919 | 0 | #endif |
920 | | |
921 | 0 | { const BYTE* p = (const BYTE*)input; |
922 | 0 | const BYTE* const bEnd = p + len; |
923 | |
|
924 | 0 | state->total_len += len; |
925 | |
|
926 | 0 | if (state->memsize + len < 32) { /* fill in tmp buffer */ |
927 | 0 | XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, len); |
928 | 0 | state->memsize += (U32)len; |
929 | 0 | return XXH_OK; |
930 | 0 | } |
931 | | |
932 | 0 | if (state->memsize) { /* tmp buffer is full */ |
933 | 0 | XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, 32-state->memsize); |
934 | 0 | state->v1 = XXH64_round(state->v1, XXH_readLE64(state->mem64+0, endian)); |
935 | 0 | state->v2 = XXH64_round(state->v2, XXH_readLE64(state->mem64+1, endian)); |
936 | 0 | state->v3 = XXH64_round(state->v3, XXH_readLE64(state->mem64+2, endian)); |
937 | 0 | state->v4 = XXH64_round(state->v4, XXH_readLE64(state->mem64+3, endian)); |
938 | 0 | p += 32-state->memsize; |
939 | 0 | state->memsize = 0; |
940 | 0 | } |
941 | |
|
942 | 0 | if (p+32 <= bEnd) { |
943 | 0 | const BYTE* const limit = bEnd - 32; |
944 | 0 | U64 v1 = state->v1; |
945 | 0 | U64 v2 = state->v2; |
946 | 0 | U64 v3 = state->v3; |
947 | 0 | U64 v4 = state->v4; |
948 | |
|
949 | 0 | do { |
950 | 0 | v1 = XXH64_round(v1, XXH_readLE64(p, endian)); p+=8; |
951 | 0 | v2 = XXH64_round(v2, XXH_readLE64(p, endian)); p+=8; |
952 | 0 | v3 = XXH64_round(v3, XXH_readLE64(p, endian)); p+=8; |
953 | 0 | v4 = XXH64_round(v4, XXH_readLE64(p, endian)); p+=8; |
954 | 0 | } while (p<=limit); |
955 | |
|
956 | 0 | state->v1 = v1; |
957 | 0 | state->v2 = v2; |
958 | 0 | state->v3 = v3; |
959 | 0 | state->v4 = v4; |
960 | 0 | } |
961 | |
|
962 | 0 | if (p < bEnd) { |
963 | 0 | XXH_memcpy(state->mem64, p, (size_t)(bEnd-p)); |
964 | 0 | state->memsize = (unsigned)(bEnd-p); |
965 | 0 | } |
966 | 0 | } |
967 | | |
968 | 0 | return XXH_OK; |
969 | 0 | } |
970 | | |
971 | | XXH_PUBLIC_API XXH_errorcode XXH64_update (XXH64_state_t* state_in, const void* input, size_t len) |
972 | 0 | { |
973 | 0 | XXH_endianness endian_detected = (XXH_endianness)XXH_CPU_LITTLE_ENDIAN; |
974 | |
|
975 | 0 | if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) |
976 | 0 | return XXH64_update_endian(state_in, input, len, XXH_littleEndian); |
977 | 0 | else |
978 | 0 | return XXH64_update_endian(state_in, input, len, XXH_bigEndian); |
979 | 0 | } |
980 | | |
981 | | FORCE_INLINE U64 XXH64_digest_endian (const XXH64_state_t* state, XXH_endianness endian) |
982 | 0 | { |
983 | 0 | U64 h64; |
984 | |
|
985 | 0 | if (state->total_len >= 32) { |
986 | 0 | U64 const v1 = state->v1; |
987 | 0 | U64 const v2 = state->v2; |
988 | 0 | U64 const v3 = state->v3; |
989 | 0 | U64 const v4 = state->v4; |
990 | |
|
991 | 0 | h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18); |
992 | 0 | h64 = XXH64_mergeRound(h64, v1); |
993 | 0 | h64 = XXH64_mergeRound(h64, v2); |
994 | 0 | h64 = XXH64_mergeRound(h64, v3); |
995 | 0 | h64 = XXH64_mergeRound(h64, v4); |
996 | 0 | } else { |
997 | 0 | h64 = state->v3 /*seed*/ + PRIME64_5; |
998 | 0 | } |
999 | |
|
1000 | 0 | h64 += (U64) state->total_len; |
1001 | |
|
1002 | 0 | return XXH64_finalize(h64, state->mem64, (size_t)state->total_len, endian, XXH_aligned); |
1003 | 0 | } |
1004 | | |
1005 | | XXH_PUBLIC_API unsigned long long XXH64_digest (const XXH64_state_t* state_in) |
1006 | 0 | { |
1007 | 0 | XXH_endianness endian_detected = (XXH_endianness)XXH_CPU_LITTLE_ENDIAN; |
1008 | |
|
1009 | 0 | if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) |
1010 | 0 | return XXH64_digest_endian(state_in, XXH_littleEndian); |
1011 | 0 | else |
1012 | 0 | return XXH64_digest_endian(state_in, XXH_bigEndian); |
1013 | 0 | } |
1014 | | |
1015 | | |
1016 | | /*====== Canonical representation ======*/ |
1017 | | |
1018 | | XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash) |
1019 | 0 | { |
1020 | 0 | XXH_STATIC_ASSERT(sizeof(XXH64_canonical_t) == sizeof(XXH64_hash_t)); |
1021 | 0 | if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap64(hash); |
1022 | 0 | memcpy(dst, &hash, sizeof(*dst)); |
1023 | 0 | } |
1024 | | |
1025 | | XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src) |
1026 | 0 | { |
1027 | 0 | return XXH_readBE64(src); |
1028 | 0 | } |
1029 | | |
1030 | | #endif /* XXH_NO_LONG_LONG */ |