Coverage Report

Created: 2025-07-12 06:31

/src/lz4/lib/lz4frame.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * LZ4 auto-framing library
3
 * Copyright (c) Yann Collet. All rights reserved.
4
 *
5
 * BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
6
 *
7
 * Redistribution and use in source and binary forms, with or without
8
 * modification, are permitted provided that the following conditions are
9
 * met:
10
 *
11
 * - Redistributions of source code must retain the above copyright
12
 *   notice, this list of conditions and the following disclaimer.
13
 * - Redistributions in binary form must reproduce the above
14
 *   copyright notice, this list of conditions and the following disclaimer
15
 *   in the documentation and/or other materials provided with the
16
 *   distribution.
17
 *
18
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29
 *
30
 * You can contact the author at :
31
 * - LZ4 homepage : http://www.lz4.org
32
 * - LZ4 source repository : https://github.com/lz4/lz4
33
 */
34
35
/* LZ4F is a stand-alone API to create LZ4-compressed Frames
36
 * in full conformance with specification v1.6.1 .
37
 * This library rely upon memory management capabilities (malloc, free)
38
 * provided either by <stdlib.h>,
39
 * or redirected towards another library of user's choice
40
 * (see Memory Routines below).
41
 */
42
43
44
/*-************************************
45
*  Compiler Options
46
**************************************/
47
#include <limits.h>
48
#ifdef _MSC_VER    /* Visual Studio */
49
#  pragma warning(disable : 4127)   /* disable: C4127: conditional expression is constant */
50
#endif
51
52
53
/*-************************************
54
*  Tuning parameters
55
**************************************/
56
/*
57
 * LZ4F_HEAPMODE :
58
 * Control how LZ4F_compressFrame allocates the Compression State,
59
 * either on stack (0:default, fastest), or in memory heap (1:requires malloc()).
60
 */
61
#ifndef LZ4F_HEAPMODE
62
#  define LZ4F_HEAPMODE 0
63
#endif
64
65
66
/*-************************************
67
*  Library declarations
68
**************************************/
69
#define LZ4F_STATIC_LINKING_ONLY
70
#include "lz4frame.h"
71
#define LZ4_STATIC_LINKING_ONLY
72
#include "lz4.h"
73
#define LZ4_HC_STATIC_LINKING_ONLY
74
#include "lz4hc.h"
75
#define XXH_STATIC_LINKING_ONLY
76
#include "xxhash.h"
77
78
79
/*-************************************
80
*  Memory routines
81
**************************************/
82
/*
83
 * User may redirect invocations of
84
 * malloc(), calloc() and free()
85
 * towards another library or solution of their choice
86
 * by modifying below section.
87
**/
88
89
#include <string.h>   /* memset, memcpy, memmove */
90
#ifndef LZ4_SRC_INCLUDED  /* avoid redefinition when sources are coalesced */
91
0
#  define MEM_INIT(p,v,s)   memset((p),(v),(s))
92
#endif
93
94
#ifndef LZ4_SRC_INCLUDED   /* avoid redefinition when sources are coalesced */
95
#  include <stdlib.h>   /* malloc, calloc, free */
96
0
#  define ALLOC(s)          malloc(s)
97
0
#  define ALLOC_AND_ZERO(s) calloc(1,(s))
98
0
#  define FREEMEM(p)        free(p)
99
#endif
100
101
static void* LZ4F_calloc(size_t s, LZ4F_CustomMem cmem)
102
0
{
103
    /* custom calloc defined : use it */
104
0
    if (cmem.customCalloc != NULL) {
105
0
        return cmem.customCalloc(cmem.opaqueState, s);
106
0
    }
107
    /* nothing defined : use default <stdlib.h>'s calloc() */
108
0
    if (cmem.customAlloc == NULL) {
109
0
        return ALLOC_AND_ZERO(s);
110
0
    }
111
    /* only custom alloc defined : use it, and combine it with memset() */
112
0
    {   void* const p = cmem.customAlloc(cmem.opaqueState, s);
113
0
        if (p != NULL) MEM_INIT(p, 0, s);
114
0
        return p;
115
0
}   }
116
117
static void* LZ4F_malloc(size_t s, LZ4F_CustomMem cmem)
118
0
{
119
    /* custom malloc defined : use it */
120
0
    if (cmem.customAlloc != NULL) {
121
0
        return cmem.customAlloc(cmem.opaqueState, s);
122
0
    }
123
    /* nothing defined : use default <stdlib.h>'s malloc() */
124
0
    return ALLOC(s);
125
0
}
126
127
static void LZ4F_free(void* p, LZ4F_CustomMem cmem)
128
0
{
129
0
    if (p == NULL) return;
130
0
    if (cmem.customFree != NULL) {
131
        /* custom allocation defined : use it */
132
0
        cmem.customFree(cmem.opaqueState, p);
133
0
        return;
134
0
    }
135
    /* nothing defined : use default <stdlib.h>'s free() */
136
0
    FREEMEM(p);
137
0
}
138
139
140
/*-************************************
141
*  Debug
142
**************************************/
143
#if defined(LZ4_DEBUG) && (LZ4_DEBUG>=1)
144
#  include <assert.h>
145
#else
146
#  ifndef assert
147
#    define assert(condition) ((void)0)
148
#  endif
149
#endif
150
151
0
#define LZ4F_STATIC_ASSERT(c)    { enum { LZ4F_static_assert = 1/(int)(!!(c)) }; }   /* use only *after* variable declarations */
152
153
#if defined(LZ4_DEBUG) && (LZ4_DEBUG>=2) && !defined(DEBUGLOG)
154
#  include <stdio.h>
155
static int g_debuglog_enable = 1;
156
#  define DEBUGLOG(l, ...) {                                  \
157
                if ((g_debuglog_enable) && (l<=LZ4_DEBUG)) {  \
158
                    fprintf(stderr, __FILE__ " %i: ", __LINE__ );  \
159
                    fprintf(stderr, __VA_ARGS__);             \
160
                    fprintf(stderr, " \n");                   \
161
            }   }
162
#else
163
0
#  define DEBUGLOG(l, ...)      {}    /* disabled */
164
#endif
165
166
167
/*-************************************
168
*  Basic Types
169
**************************************/
170
#if !defined (__VMS) && (defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
171
# include <stdint.h>
172
  typedef  uint8_t BYTE;
173
  typedef uint16_t U16;
174
  typedef uint32_t U32;
175
  typedef  int32_t S32;
176
  typedef uint64_t U64;
177
#else
178
  typedef unsigned char       BYTE;
179
  typedef unsigned short      U16;
180
  typedef unsigned int        U32;
181
  typedef   signed int        S32;
182
  typedef unsigned long long  U64;
183
#endif
184
185
186
/* unoptimized version; solves endianness & alignment issues */
187
static U32 LZ4F_readLE32 (const void* src)
188
0
{
189
0
    const BYTE* const srcPtr = (const BYTE*)src;
190
0
    U32 value32 = srcPtr[0];
191
0
    value32 |= ((U32)srcPtr[1])<< 8;
192
0
    value32 |= ((U32)srcPtr[2])<<16;
193
0
    value32 |= ((U32)srcPtr[3])<<24;
194
0
    return value32;
195
0
}
196
197
static void LZ4F_writeLE32 (void* dst, U32 value32)
198
0
{
199
0
    BYTE* const dstPtr = (BYTE*)dst;
200
0
    dstPtr[0] = (BYTE)value32;
201
0
    dstPtr[1] = (BYTE)(value32 >> 8);
202
0
    dstPtr[2] = (BYTE)(value32 >> 16);
203
0
    dstPtr[3] = (BYTE)(value32 >> 24);
204
0
}
205
206
static U64 LZ4F_readLE64 (const void* src)
207
0
{
208
0
    const BYTE* const srcPtr = (const BYTE*)src;
209
0
    U64 value64 = srcPtr[0];
210
0
    value64 |= ((U64)srcPtr[1]<<8);
211
0
    value64 |= ((U64)srcPtr[2]<<16);
212
0
    value64 |= ((U64)srcPtr[3]<<24);
213
0
    value64 |= ((U64)srcPtr[4]<<32);
214
0
    value64 |= ((U64)srcPtr[5]<<40);
215
0
    value64 |= ((U64)srcPtr[6]<<48);
216
0
    value64 |= ((U64)srcPtr[7]<<56);
217
0
    return value64;
218
0
}
219
220
static void LZ4F_writeLE64 (void* dst, U64 value64)
221
0
{
222
0
    BYTE* const dstPtr = (BYTE*)dst;
223
0
    dstPtr[0] = (BYTE)value64;
224
0
    dstPtr[1] = (BYTE)(value64 >> 8);
225
0
    dstPtr[2] = (BYTE)(value64 >> 16);
226
0
    dstPtr[3] = (BYTE)(value64 >> 24);
227
0
    dstPtr[4] = (BYTE)(value64 >> 32);
228
0
    dstPtr[5] = (BYTE)(value64 >> 40);
229
0
    dstPtr[6] = (BYTE)(value64 >> 48);
230
0
    dstPtr[7] = (BYTE)(value64 >> 56);
231
0
}
232
233
234
/*-************************************
235
*  Constants
236
**************************************/
237
#ifndef LZ4_SRC_INCLUDED   /* avoid double definition */
238
0
#  define KB *(1<<10)
239
0
#  define MB *(1<<20)
240
0
#  define GB *(1<<30)
241
#endif
242
243
0
#define _1BIT  0x01
244
0
#define _2BITS 0x03
245
0
#define _3BITS 0x07
246
0
#define _4BITS 0x0F
247
#define _8BITS 0xFF
248
249
0
#define LZ4F_BLOCKUNCOMPRESSED_FLAG 0x80000000U
250
0
#define LZ4F_BLOCKSIZEID_DEFAULT LZ4F_max64KB
251
252
static const size_t minFHSize = LZ4F_HEADER_SIZE_MIN;   /*  7 */
253
static const size_t maxFHSize = LZ4F_HEADER_SIZE_MAX;   /* 19 */
254
static const size_t BHSize = LZ4F_BLOCK_HEADER_SIZE;  /* block header : size, and compress flag */
255
static const size_t BFSize = LZ4F_BLOCK_CHECKSUM_SIZE;  /* block footer : checksum (optional) */
256
257
258
/*-************************************
259
*  Structures and local types
260
**************************************/
261
262
typedef enum { LZ4B_COMPRESSED, LZ4B_UNCOMPRESSED} LZ4F_BlockCompressMode_e;
263
typedef enum { ctxNone, ctxFast, ctxHC } LZ4F_CtxType_e;
264
265
typedef struct LZ4F_cctx_s
266
{
267
    LZ4F_CustomMem cmem;
268
    LZ4F_preferences_t prefs;
269
    U32    version;
270
    U32    cStage;     /* 0 : compression uninitialized ; 1 : initialized, can compress */
271
    const LZ4F_CDict* cdict;
272
    size_t maxBlockSize;
273
    size_t maxBufferSize;
274
    BYTE*  tmpBuff;    /* internal buffer, for streaming */
275
    BYTE*  tmpIn;      /* starting position of data compress within internal buffer (>= tmpBuff) */
276
    size_t tmpInSize;  /* amount of data to compress after tmpIn */
277
    U64    totalInSize;
278
    XXH32_state_t xxh;
279
    void*  lz4CtxPtr;
280
    U16    lz4CtxAlloc; /* sized for: 0 = none, 1 = lz4 ctx, 2 = lz4hc ctx */
281
    U16    lz4CtxType;  /* in use as: 0 = none, 1 = lz4 ctx, 2 = lz4hc ctx */
282
    LZ4F_BlockCompressMode_e  blockCompressMode;
283
} LZ4F_cctx_t;
284
285
286
/*-************************************
287
*  Error management
288
**************************************/
289
#define LZ4F_GENERATE_STRING(STRING) #STRING,
290
static const char* LZ4F_errorStrings[] = { LZ4F_LIST_ERRORS(LZ4F_GENERATE_STRING) };
291
292
293
unsigned LZ4F_isError(LZ4F_errorCode_t code)
294
0
{
295
0
    return (code > (LZ4F_errorCode_t)(-LZ4F_ERROR_maxCode));
296
0
}
297
298
const char* LZ4F_getErrorName(LZ4F_errorCode_t code)
299
0
{
300
0
    static const char* codeError = "Unspecified error code";
301
0
    if (LZ4F_isError(code)) return LZ4F_errorStrings[-(int)(code)];
302
0
    return codeError;
303
0
}
304
305
LZ4F_errorCodes LZ4F_getErrorCode(size_t functionResult)
306
0
{
307
0
    if (!LZ4F_isError(functionResult)) return LZ4F_OK_NoError;
308
0
    return (LZ4F_errorCodes)(-(ptrdiff_t)functionResult);
309
0
}
310
311
static LZ4F_errorCode_t LZ4F_returnErrorCode(LZ4F_errorCodes code)
312
0
{
313
    /* A compilation error here means sizeof(ptrdiff_t) is not large enough */
314
0
    LZ4F_STATIC_ASSERT(sizeof(ptrdiff_t) >= sizeof(size_t));
315
0
    return (LZ4F_errorCode_t)-(ptrdiff_t)code;
316
0
}
317
318
0
#define RETURN_ERROR(e) return LZ4F_returnErrorCode(LZ4F_ERROR_ ## e)
319
320
0
#define RETURN_ERROR_IF(c,e) do {  \
321
0
        if (c) {                   \
322
0
            DEBUGLOG(3, "Error: " #c); \
323
0
            RETURN_ERROR(e);       \
324
0
        }                          \
325
0
    } while (0)
326
327
0
#define FORWARD_IF_ERROR(r) do { if (LZ4F_isError(r)) return (r); } while (0)
328
329
0
unsigned LZ4F_getVersion(void) { return LZ4F_VERSION; }
330
331
0
int LZ4F_compressionLevel_max(void) { return LZ4HC_CLEVEL_MAX; }
332
333
size_t LZ4F_getBlockSize(LZ4F_blockSizeID_t blockSizeID)
334
0
{
335
0
    static const size_t blockSizes[4] = { 64 KB, 256 KB, 1 MB, 4 MB };
336
337
0
    if (blockSizeID == 0) blockSizeID = LZ4F_BLOCKSIZEID_DEFAULT;
338
0
    if (blockSizeID < LZ4F_max64KB || blockSizeID > LZ4F_max4MB)
339
0
        RETURN_ERROR(maxBlockSize_invalid);
340
0
    {   int const blockSizeIdx = (int)blockSizeID - (int)LZ4F_max64KB;
341
0
        return blockSizes[blockSizeIdx];
342
0
}   }
343
344
/*-************************************
345
*  Private functions
346
**************************************/
347
0
#define MIN(a,b)   ( (a) < (b) ? (a) : (b) )
348
349
static BYTE LZ4F_headerChecksum (const void* header, size_t length)
350
0
{
351
0
    U32 const xxh = XXH32(header, length, 0);
352
0
    return (BYTE)(xxh >> 8);
353
0
}
354
355
356
/*-************************************
357
*  Simple-pass compression functions
358
**************************************/
359
static LZ4F_blockSizeID_t LZ4F_optimalBSID(const LZ4F_blockSizeID_t requestedBSID,
360
                                           const size_t srcSize)
361
0
{
362
0
    LZ4F_blockSizeID_t proposedBSID = LZ4F_max64KB;
363
0
    size_t maxBlockSize = 64 KB;
364
0
    while (requestedBSID > proposedBSID) {
365
0
        if (srcSize <= maxBlockSize)
366
0
            return proposedBSID;
367
0
        proposedBSID = (LZ4F_blockSizeID_t)((int)proposedBSID + 1);
368
0
        maxBlockSize <<= 2;
369
0
    }
370
0
    return requestedBSID;
371
0
}
372
373
/*! LZ4F_compressBound_internal() :
374
 *  Provides dstCapacity given a srcSize to guarantee operation success in worst case situations.
375
 *  prefsPtr is optional : if NULL is provided, preferences will be set to cover worst case scenario.
376
 * @return is always the same for a srcSize and prefsPtr, so it can be relied upon to size reusable buffers.
377
 *  When srcSize==0, LZ4F_compressBound() provides an upper bound for LZ4F_flush() and LZ4F_compressEnd() operations.
378
 */
379
static size_t LZ4F_compressBound_internal(size_t srcSize,
380
                                    const LZ4F_preferences_t* preferencesPtr,
381
                                          size_t alreadyBuffered)
382
0
{
383
0
    LZ4F_preferences_t prefsNull = LZ4F_INIT_PREFERENCES;
384
0
    prefsNull.frameInfo.contentChecksumFlag = LZ4F_contentChecksumEnabled;   /* worst case */
385
0
    prefsNull.frameInfo.blockChecksumFlag = LZ4F_blockChecksumEnabled;   /* worst case */
386
0
    {   const LZ4F_preferences_t* const prefsPtr = (preferencesPtr==NULL) ? &prefsNull : preferencesPtr;
387
0
        U32 const flush = prefsPtr->autoFlush | (srcSize==0);
388
0
        LZ4F_blockSizeID_t const blockID = prefsPtr->frameInfo.blockSizeID;
389
0
        size_t const blockSize = LZ4F_getBlockSize(blockID);
390
0
        size_t const maxBuffered = blockSize - 1;
391
0
        size_t const bufferedSize = MIN(alreadyBuffered, maxBuffered);
392
0
        size_t const maxSrcSize = srcSize + bufferedSize;
393
0
        unsigned const nbFullBlocks = (unsigned)(maxSrcSize / blockSize);
394
0
        size_t const partialBlockSize = maxSrcSize & (blockSize-1);
395
0
        size_t const lastBlockSize = flush ? partialBlockSize : 0;
396
0
        unsigned const nbBlocks = nbFullBlocks + (lastBlockSize>0);
397
398
0
        size_t const blockCRCSize = BFSize * prefsPtr->frameInfo.blockChecksumFlag;
399
0
        size_t const frameEnd = BHSize + (prefsPtr->frameInfo.contentChecksumFlag*BFSize);
400
401
0
        return ((BHSize + blockCRCSize) * nbBlocks) +
402
0
               (blockSize * nbFullBlocks) + lastBlockSize + frameEnd;
403
0
    }
404
0
}
405
406
size_t LZ4F_compressFrameBound(size_t srcSize, const LZ4F_preferences_t* preferencesPtr)
407
0
{
408
0
    LZ4F_preferences_t prefs;
409
0
    size_t const headerSize = maxFHSize;      /* max header size, including optional fields */
410
411
0
    if (preferencesPtr!=NULL) prefs = *preferencesPtr;
412
0
    else MEM_INIT(&prefs, 0, sizeof(prefs));
413
0
    prefs.autoFlush = 1;
414
415
0
    return headerSize + LZ4F_compressBound_internal(srcSize, &prefs, 0);;
416
0
}
417
418
419
/*! LZ4F_compressFrame_usingCDict() :
420
 *  Compress srcBuffer using a dictionary, in a single step.
421
 *  cdict can be NULL, in which case, no dictionary is used.
422
 *  dstBuffer MUST be >= LZ4F_compressFrameBound(srcSize, preferencesPtr).
423
 *  The LZ4F_preferences_t structure is optional : you may provide NULL as argument,
424
 *  however, it's the only way to provide a dictID, so it's not recommended.
425
 * @return : number of bytes written into dstBuffer,
426
 *           or an error code if it fails (can be tested using LZ4F_isError())
427
 */
428
size_t LZ4F_compressFrame_usingCDict(LZ4F_cctx* cctx,
429
                                     void* dstBuffer, size_t dstCapacity,
430
                               const void* srcBuffer, size_t srcSize,
431
                               const LZ4F_CDict* cdict,
432
                               const LZ4F_preferences_t* preferencesPtr)
433
0
{
434
0
    LZ4F_preferences_t prefs;
435
0
    LZ4F_compressOptions_t options;
436
0
    BYTE* const dstStart = (BYTE*) dstBuffer;
437
0
    BYTE* dstPtr = dstStart;
438
0
    BYTE* const dstEnd = dstStart + dstCapacity;
439
440
0
    DEBUGLOG(4, "LZ4F_compressFrame_usingCDict (srcSize=%u)", (unsigned)srcSize);
441
0
    if (preferencesPtr!=NULL)
442
0
        prefs = *preferencesPtr;
443
0
    else
444
0
        MEM_INIT(&prefs, 0, sizeof(prefs));
445
0
    if (prefs.frameInfo.contentSize != 0)
446
0
        prefs.frameInfo.contentSize = (U64)srcSize;   /* auto-correct content size if selected (!=0) */
447
448
0
    prefs.frameInfo.blockSizeID = LZ4F_optimalBSID(prefs.frameInfo.blockSizeID, srcSize);
449
0
    prefs.autoFlush = 1;
450
0
    if (srcSize <= LZ4F_getBlockSize(prefs.frameInfo.blockSizeID))
451
0
        prefs.frameInfo.blockMode = LZ4F_blockIndependent;   /* only one block => no need for inter-block link */
452
453
0
    MEM_INIT(&options, 0, sizeof(options));
454
0
    options.stableSrc = 1;
455
456
0
    RETURN_ERROR_IF(dstCapacity < LZ4F_compressFrameBound(srcSize, &prefs), dstMaxSize_tooSmall);
457
458
0
    { size_t const headerSize = LZ4F_compressBegin_usingCDict(cctx, dstBuffer, dstCapacity, cdict, &prefs);  /* write header */
459
0
      FORWARD_IF_ERROR(headerSize);
460
0
      dstPtr += headerSize;   /* header size */ }
461
462
0
    assert(dstEnd >= dstPtr);
463
0
    { size_t const cSize = LZ4F_compressUpdate(cctx, dstPtr, (size_t)(dstEnd-dstPtr), srcBuffer, srcSize, &options);
464
0
      FORWARD_IF_ERROR(cSize);
465
0
      dstPtr += cSize; }
466
467
0
    assert(dstEnd >= dstPtr);
468
0
    { size_t const tailSize = LZ4F_compressEnd(cctx, dstPtr, (size_t)(dstEnd-dstPtr), &options);   /* flush last block, and generate suffix */
469
0
      FORWARD_IF_ERROR(tailSize);
470
0
      dstPtr += tailSize; }
471
472
0
    assert(dstEnd >= dstStart);
473
0
    return (size_t)(dstPtr - dstStart);
474
0
}
475
476
477
/*! LZ4F_compressFrame() :
478
 *  Compress an entire srcBuffer into a valid LZ4 frame, in a single step.
479
 *  dstBuffer MUST be >= LZ4F_compressFrameBound(srcSize, preferencesPtr).
480
 *  The LZ4F_preferences_t structure is optional : you can provide NULL as argument. All preferences will be set to default.
481
 * @return : number of bytes written into dstBuffer.
482
 *           or an error code if it fails (can be tested using LZ4F_isError())
483
 */
484
size_t LZ4F_compressFrame(void* dstBuffer, size_t dstCapacity,
485
                    const void* srcBuffer, size_t srcSize,
486
                    const LZ4F_preferences_t* preferencesPtr)
487
0
{
488
0
    size_t result;
489
#if (LZ4F_HEAPMODE)
490
    LZ4F_cctx_t* cctxPtr;
491
    result = LZ4F_createCompressionContext(&cctxPtr, LZ4F_VERSION);
492
    FORWARD_IF_ERROR(result);
493
#else
494
0
    LZ4F_cctx_t cctx;
495
0
    LZ4_stream_t lz4ctx;
496
0
    LZ4F_cctx_t* const cctxPtr = &cctx;
497
498
0
    MEM_INIT(&cctx, 0, sizeof(cctx));
499
0
    cctx.version = LZ4F_VERSION;
500
0
    cctx.maxBufferSize = 5 MB;   /* mess with real buffer size to prevent dynamic allocation; works only because autoflush==1 & stableSrc==1 */
501
0
    if ( preferencesPtr == NULL
502
0
      || preferencesPtr->compressionLevel < LZ4HC_CLEVEL_MIN ) {
503
0
        LZ4_initStream(&lz4ctx, sizeof(lz4ctx));
504
0
        cctxPtr->lz4CtxPtr = &lz4ctx;
505
0
        cctxPtr->lz4CtxAlloc = 1;
506
0
        cctxPtr->lz4CtxType = ctxFast;
507
0
    }
508
0
#endif
509
0
    DEBUGLOG(4, "LZ4F_compressFrame");
510
511
0
    result = LZ4F_compressFrame_usingCDict(cctxPtr, dstBuffer, dstCapacity,
512
0
                                           srcBuffer, srcSize,
513
0
                                           NULL, preferencesPtr);
514
515
#if (LZ4F_HEAPMODE)
516
    LZ4F_freeCompressionContext(cctxPtr);
517
#else
518
0
    if ( preferencesPtr != NULL
519
0
      && preferencesPtr->compressionLevel >= LZ4HC_CLEVEL_MIN ) {
520
0
        LZ4F_free(cctxPtr->lz4CtxPtr, cctxPtr->cmem);
521
0
    }
522
0
#endif
523
0
    return result;
524
0
}
525
526
527
/*-***************************************************
528
*   Dictionary compression
529
*****************************************************/
530
531
struct LZ4F_CDict_s {
532
    LZ4F_CustomMem cmem;
533
    void* dictContent;
534
    LZ4_stream_t* fastCtx;
535
    LZ4_streamHC_t* HCCtx;
536
}; /* typedef'd to LZ4F_CDict within lz4frame_static.h */
537
538
LZ4F_CDict*
539
LZ4F_createCDict_advanced(LZ4F_CustomMem cmem, const void* dictBuffer, size_t dictSize)
540
0
{
541
0
    const char* dictStart = (const char*)dictBuffer;
542
0
    LZ4F_CDict* cdict = NULL;
543
544
0
    DEBUGLOG(4, "LZ4F_createCDict_advanced");
545
546
0
    if (!dictStart)
547
0
        return NULL;
548
0
    cdict = (LZ4F_CDict*)LZ4F_malloc(sizeof(*cdict), cmem);
549
0
    if (!cdict)
550
0
        return NULL;
551
552
0
    cdict->cmem = cmem;
553
0
    if (dictSize > 64 KB) {
554
0
        dictStart += dictSize - 64 KB;
555
0
        dictSize = 64 KB;
556
0
    }
557
0
    cdict->dictContent = LZ4F_malloc(dictSize, cmem);
558
    /* note: using @cmem to allocate => can't use default create */
559
0
    cdict->fastCtx = (LZ4_stream_t*)LZ4F_malloc(sizeof(LZ4_stream_t), cmem);
560
0
    cdict->HCCtx = (LZ4_streamHC_t*)LZ4F_malloc(sizeof(LZ4_streamHC_t), cmem);
561
0
    if (!cdict->dictContent || !cdict->fastCtx || !cdict->HCCtx) {
562
0
        LZ4F_freeCDict(cdict);
563
0
        return NULL;
564
0
    }
565
0
    memcpy(cdict->dictContent, dictStart, dictSize);
566
0
    LZ4_initStream(cdict->fastCtx, sizeof(LZ4_stream_t));
567
0
    LZ4_loadDictSlow(cdict->fastCtx, (const char*)cdict->dictContent, (int)dictSize);
568
0
    LZ4_initStreamHC(cdict->HCCtx, sizeof(LZ4_streamHC_t));
569
    /* note: we don't know at this point which compression level is going to be used
570
     * as a consequence, HCCtx is created for the more common HC mode */
571
0
    LZ4_setCompressionLevel(cdict->HCCtx, LZ4HC_CLEVEL_DEFAULT);
572
0
    LZ4_loadDictHC(cdict->HCCtx, (const char*)cdict->dictContent, (int)dictSize);
573
0
    return cdict;
574
0
}
575
576
/*! LZ4F_createCDict() :
577
 *  When compressing multiple messages / blocks with the same dictionary, it's recommended to load it just once.
578
 *  LZ4F_createCDict() will create a digested dictionary, ready to start future compression operations without startup delay.
579
 *  LZ4F_CDict can be created once and shared by multiple threads concurrently, since its usage is read-only.
580
 * @dictBuffer can be released after LZ4F_CDict creation, since its content is copied within CDict
581
 * @return : digested dictionary for compression, or NULL if failed */
582
LZ4F_CDict* LZ4F_createCDict(const void* dictBuffer, size_t dictSize)
583
0
{
584
0
    DEBUGLOG(4, "LZ4F_createCDict");
585
0
    return LZ4F_createCDict_advanced(LZ4F_defaultCMem, dictBuffer, dictSize);
586
0
}
587
588
void LZ4F_freeCDict(LZ4F_CDict* cdict)
589
0
{
590
0
    if (cdict==NULL) return;  /* support free on NULL */
591
0
    LZ4F_free(cdict->dictContent, cdict->cmem);
592
0
    LZ4F_free(cdict->fastCtx, cdict->cmem);
593
0
    LZ4F_free(cdict->HCCtx, cdict->cmem);
594
0
    LZ4F_free(cdict, cdict->cmem);
595
0
}
596
597
598
/*-*********************************
599
*  Advanced compression functions
600
***********************************/
601
602
LZ4F_cctx*
603
LZ4F_createCompressionContext_advanced(LZ4F_CustomMem customMem, unsigned version)
604
0
{
605
0
    LZ4F_cctx* const cctxPtr =
606
0
        (LZ4F_cctx*)LZ4F_calloc(sizeof(LZ4F_cctx), customMem);
607
0
    if (cctxPtr==NULL) return NULL;
608
609
0
    cctxPtr->cmem = customMem;
610
0
    cctxPtr->version = version;
611
0
    cctxPtr->cStage = 0;   /* Uninitialized. Next stage : init cctx */
612
613
0
    return cctxPtr;
614
0
}
615
616
/*! LZ4F_createCompressionContext() :
617
 *  The first thing to do is to create a compressionContext object, which will be used in all compression operations.
618
 *  This is achieved using LZ4F_createCompressionContext(), which takes as argument a version and an LZ4F_preferences_t structure.
619
 *  The version provided MUST be LZ4F_VERSION. It is intended to track potential incompatible differences between different binaries.
620
 *  The function will provide a pointer to an allocated LZ4F_compressionContext_t object.
621
 *  If the result LZ4F_errorCode_t is not OK_NoError, there was an error during context creation.
622
 *  Object can release its memory using LZ4F_freeCompressionContext();
623
**/
624
LZ4F_errorCode_t
625
LZ4F_createCompressionContext(LZ4F_cctx** LZ4F_compressionContextPtr, unsigned version)
626
0
{
627
0
    assert(LZ4F_compressionContextPtr != NULL); /* considered a violation of narrow contract */
628
    /* in case it nonetheless happen in production */
629
0
    RETURN_ERROR_IF(LZ4F_compressionContextPtr == NULL, parameter_null);
630
631
0
    *LZ4F_compressionContextPtr = LZ4F_createCompressionContext_advanced(LZ4F_defaultCMem, version);
632
0
    RETURN_ERROR_IF(*LZ4F_compressionContextPtr==NULL, allocation_failed);
633
0
    return LZ4F_OK_NoError;
634
0
}
635
636
LZ4F_errorCode_t LZ4F_freeCompressionContext(LZ4F_cctx* cctxPtr)
637
0
{
638
0
    if (cctxPtr != NULL) {  /* support free on NULL */
639
0
       LZ4F_free(cctxPtr->lz4CtxPtr, cctxPtr->cmem);  /* note: LZ4_streamHC_t and LZ4_stream_t are simple POD types */
640
0
       LZ4F_free(cctxPtr->tmpBuff, cctxPtr->cmem);
641
0
       LZ4F_free(cctxPtr, cctxPtr->cmem);
642
0
    }
643
0
    return LZ4F_OK_NoError;
644
0
}
645
646
647
/**
648
 * This function prepares the internal LZ4(HC) stream for a new compression,
649
 * resetting the context and attaching the dictionary, if there is one.
650
 *
651
 * It needs to be called at the beginning of each independent compression
652
 * stream (i.e., at the beginning of a frame in blockLinked mode, or at the
653
 * beginning of each block in blockIndependent mode).
654
 */
655
static void LZ4F_initStream(void* ctx,
656
                            const LZ4F_CDict* cdict,
657
                            int level,
658
0
                            LZ4F_blockMode_t blockMode) {
659
0
    if (level < LZ4HC_CLEVEL_MIN) {
660
0
        if (cdict || blockMode == LZ4F_blockLinked) {
661
            /* In these cases, we will call LZ4_compress_fast_continue(),
662
             * which needs an already reset context. Otherwise, we'll call a
663
             * one-shot API. The non-continued APIs internally perform their own
664
             * resets at the beginning of their calls, where they know what
665
             * tableType they need the context to be in. So in that case this
666
             * would be misguided / wasted work. */
667
0
            LZ4_resetStream_fast((LZ4_stream_t*)ctx);
668
0
            if (cdict)
669
0
                LZ4_attach_dictionary((LZ4_stream_t*)ctx, cdict->fastCtx);
670
0
        }
671
        /* In these cases, we'll call a one-shot API.
672
         * The non-continued APIs internally perform their own resets
673
         * at the beginning of their calls, where they know
674
         * which tableType they need the context to be in.
675
         * Therefore, a reset here would be wasted work. */
676
0
    } else {
677
0
        LZ4_resetStreamHC_fast((LZ4_streamHC_t*)ctx, level);
678
0
        if (cdict)
679
0
            LZ4_attach_HC_dictionary((LZ4_streamHC_t*)ctx, cdict->HCCtx);
680
0
    }
681
0
}
682
683
0
static int ctxTypeID_to_size(int ctxTypeID) {
684
0
    switch(ctxTypeID) {
685
0
    case 1:
686
0
        return LZ4_sizeofState();
687
0
    case 2:
688
0
        return LZ4_sizeofStateHC();
689
0
    default:
690
0
        return 0;
691
0
    }
692
0
}
693
694
0
size_t LZ4F_cctx_size(const LZ4F_cctx* cctx) {
695
0
    if (cctx == NULL) {
696
0
        return 0;
697
0
    }
698
0
    return sizeof(*cctx) + cctx->maxBufferSize + ctxTypeID_to_size(cctx->lz4CtxAlloc);
699
0
}
700
701
/* LZ4F_compressBegin_internal()
702
 * Note: only accepts @cdict _or_ @dictBuffer as non NULL.
703
 */
704
size_t LZ4F_compressBegin_internal(LZ4F_cctx* cctx,
705
                          void* dstBuffer, size_t dstCapacity,
706
                          const void* dictBuffer, size_t dictSize,
707
                          const LZ4F_CDict* cdict,
708
                          const LZ4F_preferences_t* preferencesPtr)
709
0
{
710
0
    LZ4F_preferences_t const prefNull = LZ4F_INIT_PREFERENCES;
711
0
    BYTE* const dstStart = (BYTE*)dstBuffer;
712
0
    BYTE* dstPtr = dstStart;
713
714
0
    RETURN_ERROR_IF(dstCapacity < maxFHSize, dstMaxSize_tooSmall);
715
0
    if (preferencesPtr == NULL) preferencesPtr = &prefNull;
716
0
    cctx->prefs = *preferencesPtr;
717
0
    DEBUGLOG(5, "LZ4F_compressBegin_internal: Independent_blocks=%u", cctx->prefs.frameInfo.blockMode);
718
719
    /* cctx Management */
720
0
    {   U16 const ctxTypeID = (cctx->prefs.compressionLevel < LZ4HC_CLEVEL_MIN) ? 1 : 2;
721
0
        int requiredSize = ctxTypeID_to_size(ctxTypeID);
722
0
        int allocatedSize = ctxTypeID_to_size(cctx->lz4CtxAlloc);
723
0
        if (allocatedSize < requiredSize) {
724
            /* not enough space allocated */
725
0
            LZ4F_free(cctx->lz4CtxPtr, cctx->cmem);
726
0
            if (cctx->prefs.compressionLevel < LZ4HC_CLEVEL_MIN) {
727
                /* must take ownership of memory allocation,
728
                 * in order to respect custom allocator contract */
729
0
                cctx->lz4CtxPtr = LZ4F_malloc(sizeof(LZ4_stream_t), cctx->cmem);
730
0
                if (cctx->lz4CtxPtr)
731
0
                    LZ4_initStream(cctx->lz4CtxPtr, sizeof(LZ4_stream_t));
732
0
            } else {
733
0
                cctx->lz4CtxPtr = LZ4F_malloc(sizeof(LZ4_streamHC_t), cctx->cmem);
734
0
                if (cctx->lz4CtxPtr)
735
0
                    LZ4_initStreamHC(cctx->lz4CtxPtr, sizeof(LZ4_streamHC_t));
736
0
            }
737
0
            RETURN_ERROR_IF(cctx->lz4CtxPtr == NULL, allocation_failed);
738
0
            cctx->lz4CtxAlloc = ctxTypeID;
739
0
            cctx->lz4CtxType = ctxTypeID;
740
0
        } else if (cctx->lz4CtxType != ctxTypeID) {
741
            /* otherwise, a sufficient buffer is already allocated,
742
             * but we need to reset it to the correct context type */
743
0
            if (cctx->prefs.compressionLevel < LZ4HC_CLEVEL_MIN) {
744
0
                LZ4_initStream((LZ4_stream_t*)cctx->lz4CtxPtr, sizeof(LZ4_stream_t));
745
0
            } else {
746
0
                LZ4_initStreamHC((LZ4_streamHC_t*)cctx->lz4CtxPtr, sizeof(LZ4_streamHC_t));
747
0
                LZ4_setCompressionLevel((LZ4_streamHC_t*)cctx->lz4CtxPtr, cctx->prefs.compressionLevel);
748
0
            }
749
0
            cctx->lz4CtxType = ctxTypeID;
750
0
    }   }
751
752
    /* Buffer Management */
753
0
    if (cctx->prefs.frameInfo.blockSizeID == 0)
754
0
        cctx->prefs.frameInfo.blockSizeID = LZ4F_BLOCKSIZEID_DEFAULT;
755
0
    cctx->maxBlockSize = LZ4F_getBlockSize(cctx->prefs.frameInfo.blockSizeID);
756
757
0
    {   size_t const requiredBuffSize = preferencesPtr->autoFlush ?
758
0
                ((cctx->prefs.frameInfo.blockMode == LZ4F_blockLinked) ? 64 KB : 0) :  /* only needs past data up to window size */
759
0
                cctx->maxBlockSize + ((cctx->prefs.frameInfo.blockMode == LZ4F_blockLinked) ? 128 KB : 0);
760
761
0
        if (cctx->maxBufferSize < requiredBuffSize) {
762
0
            cctx->maxBufferSize = 0;
763
0
            LZ4F_free(cctx->tmpBuff, cctx->cmem);
764
0
            cctx->tmpBuff = (BYTE*)LZ4F_malloc(requiredBuffSize, cctx->cmem);
765
0
            RETURN_ERROR_IF(cctx->tmpBuff == NULL, allocation_failed);
766
0
            cctx->maxBufferSize = requiredBuffSize;
767
0
    }   }
768
0
    cctx->tmpIn = cctx->tmpBuff;
769
0
    cctx->tmpInSize = 0;
770
0
    (void)XXH32_reset(&(cctx->xxh), 0);
771
772
    /* context init */
773
0
    cctx->cdict = cdict;
774
0
    if (cctx->prefs.frameInfo.blockMode == LZ4F_blockLinked) {
775
        /* frame init only for blockLinked : blockIndependent will be init at each block */
776
0
        LZ4F_initStream(cctx->lz4CtxPtr, cdict, cctx->prefs.compressionLevel, LZ4F_blockLinked);
777
0
    }
778
0
    if (preferencesPtr->compressionLevel >= LZ4HC_CLEVEL_MIN) {
779
0
        LZ4_favorDecompressionSpeed((LZ4_streamHC_t*)cctx->lz4CtxPtr, (int)preferencesPtr->favorDecSpeed);
780
0
    }
781
0
    if (dictBuffer) {
782
0
        assert(cdict == NULL);
783
0
        RETURN_ERROR_IF(dictSize > INT_MAX, parameter_invalid);
784
0
        if (cctx->lz4CtxType == ctxFast) {
785
            /* lz4 fast*/
786
0
            LZ4_loadDict((LZ4_stream_t*)cctx->lz4CtxPtr, (const char*)dictBuffer, (int)dictSize);
787
0
        } else {
788
            /* lz4hc */
789
0
            assert(cctx->lz4CtxType == ctxHC);
790
0
            LZ4_loadDictHC((LZ4_streamHC_t*)cctx->lz4CtxPtr, (const char*)dictBuffer, (int)dictSize);
791
0
        }
792
0
    }
793
794
    /* Stage 2 : Write Frame Header */
795
796
    /* Magic Number */
797
0
    LZ4F_writeLE32(dstPtr, LZ4F_MAGICNUMBER);
798
0
    dstPtr += 4;
799
0
    {   BYTE* const headerStart = dstPtr;
800
801
        /* FLG Byte */
802
0
        *dstPtr++ = (BYTE)(((1 & _2BITS) << 6)    /* Version('01') */
803
0
            + ((cctx->prefs.frameInfo.blockMode & _1BIT ) << 5)
804
0
            + ((cctx->prefs.frameInfo.blockChecksumFlag & _1BIT ) << 4)
805
0
            + ((unsigned)(cctx->prefs.frameInfo.contentSize > 0) << 3)
806
0
            + ((cctx->prefs.frameInfo.contentChecksumFlag & _1BIT ) << 2)
807
0
            +  (cctx->prefs.frameInfo.dictID > 0) );
808
        /* BD Byte */
809
0
        *dstPtr++ = (BYTE)((cctx->prefs.frameInfo.blockSizeID & _3BITS) << 4);
810
        /* Optional Frame content size field */
811
0
        if (cctx->prefs.frameInfo.contentSize) {
812
0
            LZ4F_writeLE64(dstPtr, cctx->prefs.frameInfo.contentSize);
813
0
            dstPtr += 8;
814
0
            cctx->totalInSize = 0;
815
0
        }
816
        /* Optional dictionary ID field */
817
0
        if (cctx->prefs.frameInfo.dictID) {
818
0
            LZ4F_writeLE32(dstPtr, cctx->prefs.frameInfo.dictID);
819
0
            dstPtr += 4;
820
0
        }
821
        /* Header CRC Byte */
822
0
        *dstPtr = LZ4F_headerChecksum(headerStart, (size_t)(dstPtr - headerStart));
823
0
        dstPtr++;
824
0
    }
825
826
0
    cctx->cStage = 1;   /* header written, now request input data block */
827
0
    return (size_t)(dstPtr - dstStart);
828
0
}
829
830
size_t LZ4F_compressBegin(LZ4F_cctx* cctx,
831
                          void* dstBuffer, size_t dstCapacity,
832
                          const LZ4F_preferences_t* preferencesPtr)
833
0
{
834
0
    return LZ4F_compressBegin_internal(cctx, dstBuffer, dstCapacity,
835
0
                                        NULL, 0,
836
0
                                        NULL, preferencesPtr);
837
0
}
838
839
/* LZ4F_compressBegin_usingDictOnce:
840
 * Hidden implementation,
841
 * employed for multi-threaded compression
842
 * when frame defines linked blocks */
843
size_t LZ4F_compressBegin_usingDictOnce(LZ4F_cctx* cctx,
844
                          void* dstBuffer, size_t dstCapacity,
845
                          const void* dict, size_t dictSize,
846
                          const LZ4F_preferences_t* preferencesPtr)
847
0
{
848
0
    return LZ4F_compressBegin_internal(cctx, dstBuffer, dstCapacity,
849
0
                                        dict, dictSize,
850
0
                                        NULL, preferencesPtr);
851
0
}
852
853
size_t LZ4F_compressBegin_usingDict(LZ4F_cctx* cctx,
854
                          void* dstBuffer, size_t dstCapacity,
855
                          const void* dict, size_t dictSize,
856
                          const LZ4F_preferences_t* preferencesPtr)
857
0
{
858
    /* note : incorrect implementation :
859
     * this will only use the dictionary once,
860
     * instead of once *per* block when frames defines independent blocks */
861
0
    return LZ4F_compressBegin_usingDictOnce(cctx, dstBuffer, dstCapacity,
862
0
                                        dict, dictSize,
863
0
                                        preferencesPtr);
864
0
}
865
866
size_t LZ4F_compressBegin_usingCDict(LZ4F_cctx* cctx,
867
                          void* dstBuffer, size_t dstCapacity,
868
                          const LZ4F_CDict* cdict,
869
                          const LZ4F_preferences_t* preferencesPtr)
870
0
{
871
0
    return LZ4F_compressBegin_internal(cctx, dstBuffer, dstCapacity,
872
0
                                        NULL, 0,
873
0
                                       cdict, preferencesPtr);
874
0
}
875
876
877
/*  LZ4F_compressBound() :
878
 * @return minimum capacity of dstBuffer for a given srcSize to handle worst case scenario.
879
 *  LZ4F_preferences_t structure is optional : if NULL, preferences will be set to cover worst case scenario.
880
 *  This function cannot fail.
881
 */
882
size_t LZ4F_compressBound(size_t srcSize, const LZ4F_preferences_t* preferencesPtr)
883
0
{
884
0
    if (preferencesPtr && preferencesPtr->autoFlush) {
885
0
        return LZ4F_compressBound_internal(srcSize, preferencesPtr, 0);
886
0
    }
887
0
    return LZ4F_compressBound_internal(srcSize, preferencesPtr, (size_t)-1);
888
0
}
889
890
891
typedef int (*compressFunc_t)(void* ctx, const char* src, char* dst, int srcSize, int dstSize, int level, const LZ4F_CDict* cdict);
892
893
894
/*! LZ4F_makeBlock():
895
 *  compress a single block, add header and optional checksum.
896
 *  assumption : dst buffer capacity is >= BHSize + srcSize + crcSize
897
 */
898
static size_t LZ4F_makeBlock(void* dst,
899
                       const void* src, size_t srcSize,
900
                             compressFunc_t compress, void* lz4ctx, int level,
901
                       const LZ4F_CDict* cdict,
902
                             LZ4F_blockChecksum_t crcFlag)
903
0
{
904
0
    BYTE* const cSizePtr = (BYTE*)dst;
905
0
    int dstCapacity = (srcSize > 1) ? (int)srcSize - 1 : 1;
906
0
    U32 cSize;
907
0
    assert(compress != NULL);
908
0
    cSize = (U32)compress(lz4ctx, (const char*)src, (char*)(cSizePtr+BHSize),
909
0
                          (int)srcSize, dstCapacity,
910
0
                          level, cdict);
911
912
0
    if (cSize == 0 || cSize >= srcSize) {
913
0
        cSize = (U32)srcSize;
914
0
        LZ4F_writeLE32(cSizePtr, cSize | LZ4F_BLOCKUNCOMPRESSED_FLAG);
915
0
        memcpy(cSizePtr+BHSize, src, srcSize);
916
0
    } else {
917
0
        LZ4F_writeLE32(cSizePtr, cSize);
918
0
    }
919
0
    if (crcFlag) {
920
0
        U32 const crc32 = XXH32(cSizePtr+BHSize, cSize, 0);  /* checksum of compressed data */
921
0
        LZ4F_writeLE32(cSizePtr+BHSize+cSize, crc32);
922
0
    }
923
0
    return BHSize + cSize + ((U32)crcFlag)*BFSize;
924
0
}
925
926
927
static int LZ4F_compressBlock(void* ctx, const char* src, char* dst, int srcSize, int dstCapacity, int level, const LZ4F_CDict* cdict)
928
0
{
929
0
    int const acceleration = (level < 0) ? -level + 1 : 1;
930
0
    DEBUGLOG(5, "LZ4F_compressBlock (srcSize=%i)", srcSize);
931
0
    LZ4F_initStream(ctx, cdict, level, LZ4F_blockIndependent);
932
0
    if (cdict) {
933
0
        return LZ4_compress_fast_continue((LZ4_stream_t*)ctx, src, dst, srcSize, dstCapacity, acceleration);
934
0
    } else {
935
0
        return LZ4_compress_fast_extState_fastReset(ctx, src, dst, srcSize, dstCapacity, acceleration);
936
0
    }
937
0
}
938
939
static int LZ4F_compressBlock_continue(void* ctx, const char* src, char* dst, int srcSize, int dstCapacity, int level, const LZ4F_CDict* cdict)
940
0
{
941
0
    int const acceleration = (level < 0) ? -level + 1 : 1;
942
0
    (void)cdict; /* init once at beginning of frame */
943
0
    DEBUGLOG(5, "LZ4F_compressBlock_continue (srcSize=%i)", srcSize);
944
0
    return LZ4_compress_fast_continue((LZ4_stream_t*)ctx, src, dst, srcSize, dstCapacity, acceleration);
945
0
}
946
947
static int LZ4F_compressBlockHC(void* ctx, const char* src, char* dst, int srcSize, int dstCapacity, int level, const LZ4F_CDict* cdict)
948
0
{
949
0
    LZ4F_initStream(ctx, cdict, level, LZ4F_blockIndependent);
950
0
    if (cdict) {
951
0
        return LZ4_compress_HC_continue((LZ4_streamHC_t*)ctx, src, dst, srcSize, dstCapacity);
952
0
    }
953
0
    return LZ4_compress_HC_extStateHC_fastReset(ctx, src, dst, srcSize, dstCapacity, level);
954
0
}
955
956
static int LZ4F_compressBlockHC_continue(void* ctx, const char* src, char* dst, int srcSize, int dstCapacity, int level, const LZ4F_CDict* cdict)
957
0
{
958
0
    (void)level; (void)cdict; /* init once at beginning of frame */
959
0
    return LZ4_compress_HC_continue((LZ4_streamHC_t*)ctx, src, dst, srcSize, dstCapacity);
960
0
}
961
962
static int LZ4F_doNotCompressBlock(void* ctx, const char* src, char* dst, int srcSize, int dstCapacity, int level, const LZ4F_CDict* cdict)
963
0
{
964
0
    (void)ctx; (void)src; (void)dst; (void)srcSize; (void)dstCapacity; (void)level; (void)cdict;
965
0
    return 0;
966
0
}
967
968
static compressFunc_t LZ4F_selectCompression(LZ4F_blockMode_t blockMode, int level, LZ4F_BlockCompressMode_e  compressMode)
969
0
{
970
0
    if (compressMode == LZ4B_UNCOMPRESSED)
971
0
        return LZ4F_doNotCompressBlock;
972
0
    if (level < LZ4HC_CLEVEL_MIN) {
973
0
        if (blockMode == LZ4F_blockIndependent) return LZ4F_compressBlock;
974
0
        return LZ4F_compressBlock_continue;
975
0
    }
976
0
    if (blockMode == LZ4F_blockIndependent) return LZ4F_compressBlockHC;
977
0
    return LZ4F_compressBlockHC_continue;
978
0
}
979
980
/* Save or shorten history (up to 64KB) into @tmpBuff */
981
static void LZ4F_localSaveDict(LZ4F_cctx_t* cctxPtr)
982
0
{
983
0
    int const dictSize = (cctxPtr->prefs.compressionLevel < LZ4HC_CLEVEL_MIN) ?
984
0
                    LZ4_saveDict ((LZ4_stream_t*)(cctxPtr->lz4CtxPtr), (char*)(cctxPtr->tmpBuff), 64 KB) :
985
0
                    LZ4_saveDictHC ((LZ4_streamHC_t*)(cctxPtr->lz4CtxPtr), (char*)(cctxPtr->tmpBuff), 64 KB);
986
0
    cctxPtr->tmpIn = cctxPtr->tmpBuff + dictSize;
987
0
}
988
989
typedef enum { notDone, fromTmpBuffer, fromSrcBuffer } LZ4F_lastBlockStatus;
990
991
static const LZ4F_compressOptions_t k_cOptionsNull = { 0, { 0, 0, 0 } };
992
993
994
/*! LZ4F_compressUpdateImpl() :
995
 *  LZ4F_compressUpdate() can be called repetitively to compress as much data as necessary.
996
 *  When successful, the function always entirely consumes @srcBuffer.
997
 *  src data is either buffered or compressed into @dstBuffer.
998
 *  If the block compression does not match the compression of the previous block, the old data is flushed
999
 *  and operations continue with the new compression mode.
1000
 * @dstCapacity MUST be >= LZ4F_compressBound(srcSize, preferencesPtr) when block compression is turned on.
1001
 * @compressOptionsPtr is optional : provide NULL to mean "default".
1002
 * @return : the number of bytes written into dstBuffer. It can be zero, meaning input data was just buffered.
1003
 *           or an error code if it fails (which can be tested using LZ4F_isError())
1004
 *  After an error, the state is left in a UB state, and must be re-initialized.
1005
 */
1006
static size_t LZ4F_compressUpdateImpl(LZ4F_cctx* cctxPtr,
1007
                     void* dstBuffer, size_t dstCapacity,
1008
                     const void* srcBuffer, size_t srcSize,
1009
                     const LZ4F_compressOptions_t* compressOptionsPtr,
1010
                     LZ4F_BlockCompressMode_e blockCompression)
1011
0
  {
1012
0
    size_t const blockSize = cctxPtr->maxBlockSize;
1013
0
    const BYTE* srcPtr = (const BYTE*)srcBuffer;
1014
0
    const BYTE* const srcEnd = srcSize ? (assert(srcPtr!=NULL), srcPtr + srcSize) : srcPtr;
1015
0
    BYTE* const dstStart = (BYTE*)dstBuffer;
1016
0
    BYTE* dstPtr = dstStart;
1017
0
    LZ4F_lastBlockStatus lastBlockCompressed = notDone;
1018
0
    compressFunc_t const compress = LZ4F_selectCompression(cctxPtr->prefs.frameInfo.blockMode, cctxPtr->prefs.compressionLevel, blockCompression);
1019
0
    size_t bytesWritten;
1020
0
    DEBUGLOG(4, "LZ4F_compressUpdate (srcSize=%zu)", srcSize);
1021
1022
0
    RETURN_ERROR_IF(cctxPtr->cStage != 1, compressionState_uninitialized);   /* state must be initialized and waiting for next block */
1023
0
    if (dstCapacity < LZ4F_compressBound_internal(srcSize, &(cctxPtr->prefs), cctxPtr->tmpInSize))
1024
0
        RETURN_ERROR(dstMaxSize_tooSmall);
1025
1026
0
    if (blockCompression == LZ4B_UNCOMPRESSED && dstCapacity < srcSize)
1027
0
        RETURN_ERROR(dstMaxSize_tooSmall);
1028
1029
    /* flush currently written block, to continue with new block compression */
1030
0
    if (cctxPtr->blockCompressMode != blockCompression) {
1031
0
        bytesWritten = LZ4F_flush(cctxPtr, dstBuffer, dstCapacity, compressOptionsPtr);
1032
0
        dstPtr += bytesWritten;
1033
0
        cctxPtr->blockCompressMode = blockCompression;
1034
0
    }
1035
1036
0
    if (compressOptionsPtr == NULL) compressOptionsPtr = &k_cOptionsNull;
1037
1038
    /* complete tmp buffer */
1039
0
    if (cctxPtr->tmpInSize > 0) {   /* some data already within tmp buffer */
1040
0
        size_t const sizeToCopy = blockSize - cctxPtr->tmpInSize;
1041
0
        assert(blockSize > cctxPtr->tmpInSize);
1042
0
        if (sizeToCopy > srcSize) {
1043
            /* add src to tmpIn buffer */
1044
0
            memcpy(cctxPtr->tmpIn + cctxPtr->tmpInSize, srcBuffer, srcSize);
1045
0
            srcPtr = srcEnd;
1046
0
            cctxPtr->tmpInSize += srcSize;
1047
            /* still needs some CRC */
1048
0
        } else {
1049
            /* complete tmpIn block and then compress it */
1050
0
            lastBlockCompressed = fromTmpBuffer;
1051
0
            memcpy(cctxPtr->tmpIn + cctxPtr->tmpInSize, srcBuffer, sizeToCopy);
1052
0
            srcPtr += sizeToCopy;
1053
1054
0
            dstPtr += LZ4F_makeBlock(dstPtr,
1055
0
                                     cctxPtr->tmpIn, blockSize,
1056
0
                                     compress, cctxPtr->lz4CtxPtr, cctxPtr->prefs.compressionLevel,
1057
0
                                     cctxPtr->cdict,
1058
0
                                     cctxPtr->prefs.frameInfo.blockChecksumFlag);
1059
0
            if (cctxPtr->prefs.frameInfo.blockMode==LZ4F_blockLinked) cctxPtr->tmpIn += blockSize;
1060
0
            cctxPtr->tmpInSize = 0;
1061
0
    }   }
1062
1063
0
    while ((size_t)(srcEnd - srcPtr) >= blockSize) {
1064
        /* compress full blocks */
1065
0
        lastBlockCompressed = fromSrcBuffer;
1066
0
        dstPtr += LZ4F_makeBlock(dstPtr,
1067
0
                                 srcPtr, blockSize,
1068
0
                                 compress, cctxPtr->lz4CtxPtr, cctxPtr->prefs.compressionLevel,
1069
0
                                 cctxPtr->cdict,
1070
0
                                 cctxPtr->prefs.frameInfo.blockChecksumFlag);
1071
0
        srcPtr += blockSize;
1072
0
    }
1073
1074
0
    if ((cctxPtr->prefs.autoFlush) && (srcPtr < srcEnd)) {
1075
        /* autoFlush : remaining input (< blockSize) is compressed */
1076
0
        lastBlockCompressed = fromSrcBuffer;
1077
0
        dstPtr += LZ4F_makeBlock(dstPtr,
1078
0
                                 srcPtr, (size_t)(srcEnd - srcPtr),
1079
0
                                 compress, cctxPtr->lz4CtxPtr, cctxPtr->prefs.compressionLevel,
1080
0
                                 cctxPtr->cdict,
1081
0
                                 cctxPtr->prefs.frameInfo.blockChecksumFlag);
1082
0
        srcPtr = srcEnd;
1083
0
    }
1084
1085
    /* preserve dictionary within @tmpBuff whenever necessary */
1086
0
    if ((cctxPtr->prefs.frameInfo.blockMode==LZ4F_blockLinked) && (lastBlockCompressed==fromSrcBuffer)) {
1087
        /* linked blocks are only supported in compressed mode, see LZ4F_uncompressedUpdate */
1088
0
        assert(blockCompression == LZ4B_COMPRESSED);
1089
0
        if (compressOptionsPtr->stableSrc) {
1090
0
            cctxPtr->tmpIn = cctxPtr->tmpBuff;  /* src is stable : dictionary remains in src across invocations */
1091
0
        } else {
1092
0
            LZ4F_localSaveDict(cctxPtr);
1093
0
        }
1094
0
    }
1095
1096
    /* keep tmpIn within limits */
1097
0
    if (!(cctxPtr->prefs.autoFlush)  /* no autoflush : there may be some data left within internal buffer */
1098
0
      && (cctxPtr->tmpIn + blockSize) > (cctxPtr->tmpBuff + cctxPtr->maxBufferSize) )  /* not enough room to store next block */
1099
0
    {
1100
        /* only preserve 64KB within internal buffer. Ensures there is enough room for next block.
1101
         * note: this situation necessarily implies lastBlockCompressed==fromTmpBuffer */
1102
0
        LZ4F_localSaveDict(cctxPtr);
1103
0
        assert((cctxPtr->tmpIn + blockSize) <= (cctxPtr->tmpBuff + cctxPtr->maxBufferSize));
1104
0
    }
1105
1106
    /* some input data left, necessarily < blockSize */
1107
0
    if (srcPtr < srcEnd) {
1108
        /* fill tmp buffer */
1109
0
        size_t const sizeToCopy = (size_t)(srcEnd - srcPtr);
1110
0
        memcpy(cctxPtr->tmpIn, srcPtr, sizeToCopy);
1111
0
        cctxPtr->tmpInSize = sizeToCopy;
1112
0
    }
1113
1114
0
    if (cctxPtr->prefs.frameInfo.contentChecksumFlag == LZ4F_contentChecksumEnabled)
1115
0
        (void)XXH32_update(&(cctxPtr->xxh), srcBuffer, srcSize);
1116
1117
0
    cctxPtr->totalInSize += srcSize;
1118
0
    return (size_t)(dstPtr - dstStart);
1119
0
}
1120
1121
/*! LZ4F_compressUpdate() :
1122
 *  LZ4F_compressUpdate() can be called repetitively to compress as much data as necessary.
1123
 *  When successful, the function always entirely consumes @srcBuffer.
1124
 *  src data is either buffered or compressed into @dstBuffer.
1125
 *  If previously an uncompressed block was written, buffered data is flushed
1126
 *  before appending compressed data is continued.
1127
 * @dstCapacity MUST be >= LZ4F_compressBound(srcSize, preferencesPtr).
1128
 * @compressOptionsPtr is optional : provide NULL to mean "default".
1129
 * @return : the number of bytes written into dstBuffer. It can be zero, meaning input data was just buffered.
1130
 *           or an error code if it fails (which can be tested using LZ4F_isError())
1131
 *  After an error, the state is left in a UB state, and must be re-initialized.
1132
 */
1133
size_t LZ4F_compressUpdate(LZ4F_cctx* cctxPtr,
1134
                           void* dstBuffer, size_t dstCapacity,
1135
                     const void* srcBuffer, size_t srcSize,
1136
                     const LZ4F_compressOptions_t* compressOptionsPtr)
1137
0
{
1138
0
     return LZ4F_compressUpdateImpl(cctxPtr,
1139
0
                                   dstBuffer, dstCapacity,
1140
0
                                   srcBuffer, srcSize,
1141
0
                                   compressOptionsPtr, LZ4B_COMPRESSED);
1142
0
}
1143
1144
/*! LZ4F_uncompressedUpdate() :
1145
 *  Same as LZ4F_compressUpdate(), but requests blocks to be sent uncompressed.
1146
 *  This symbol is only supported when LZ4F_blockIndependent is used
1147
 * @dstCapacity MUST be >= LZ4F_compressBound(srcSize, preferencesPtr).
1148
 * @compressOptionsPtr is optional : provide NULL to mean "default".
1149
 * @return : the number of bytes written into dstBuffer. It can be zero, meaning input data was just buffered.
1150
 *           or an error code if it fails (which can be tested using LZ4F_isError())
1151
 *  After an error, the state is left in a UB state, and must be re-initialized.
1152
 */
1153
size_t LZ4F_uncompressedUpdate(LZ4F_cctx* cctxPtr,
1154
                               void* dstBuffer, size_t dstCapacity,
1155
                         const void* srcBuffer, size_t srcSize,
1156
                         const LZ4F_compressOptions_t* compressOptionsPtr)
1157
0
{
1158
0
    return LZ4F_compressUpdateImpl(cctxPtr,
1159
0
                                   dstBuffer, dstCapacity,
1160
0
                                   srcBuffer, srcSize,
1161
0
                                   compressOptionsPtr, LZ4B_UNCOMPRESSED);
1162
0
}
1163
1164
1165
/*! LZ4F_flush() :
1166
 *  When compressed data must be sent immediately, without waiting for a block to be filled,
1167
 *  invoke LZ4F_flush(), which will immediately compress any remaining data stored within LZ4F_cctx.
1168
 *  The result of the function is the number of bytes written into dstBuffer.
1169
 *  It can be zero, this means there was no data left within LZ4F_cctx.
1170
 *  The function outputs an error code if it fails (can be tested using LZ4F_isError())
1171
 *  LZ4F_compressOptions_t* is optional. NULL is a valid argument.
1172
 */
1173
size_t LZ4F_flush(LZ4F_cctx* cctxPtr,
1174
                  void* dstBuffer, size_t dstCapacity,
1175
            const LZ4F_compressOptions_t* compressOptionsPtr)
1176
0
{
1177
0
    BYTE* const dstStart = (BYTE*)dstBuffer;
1178
0
    BYTE* dstPtr = dstStart;
1179
0
    compressFunc_t compress;
1180
1181
0
    DEBUGLOG(5, "LZ4F_flush: %zu buffered bytes (saved dict size = %i) (dstCapacity=%u)",
1182
0
            cctxPtr->tmpInSize, (int)(cctxPtr->tmpIn - cctxPtr->tmpBuff), (unsigned)dstCapacity);
1183
0
    if (cctxPtr->tmpInSize == 0) return 0;   /* nothing to flush */
1184
0
    RETURN_ERROR_IF(cctxPtr->cStage != 1, compressionState_uninitialized);
1185
0
    RETURN_ERROR_IF(dstCapacity < (cctxPtr->tmpInSize + BHSize + BFSize), dstMaxSize_tooSmall);
1186
0
    (void)compressOptionsPtr;   /* not useful (yet) */
1187
1188
    /* select compression function */
1189
0
    compress = LZ4F_selectCompression(cctxPtr->prefs.frameInfo.blockMode, cctxPtr->prefs.compressionLevel, cctxPtr->blockCompressMode);
1190
1191
    /* compress tmp buffer */
1192
0
    dstPtr += LZ4F_makeBlock(dstPtr,
1193
0
                             cctxPtr->tmpIn, cctxPtr->tmpInSize,
1194
0
                             compress, cctxPtr->lz4CtxPtr, cctxPtr->prefs.compressionLevel,
1195
0
                             cctxPtr->cdict,
1196
0
                             cctxPtr->prefs.frameInfo.blockChecksumFlag);
1197
0
    assert(((void)"flush overflows dstBuffer!", (size_t)(dstPtr - dstStart) <= dstCapacity));
1198
1199
0
    if (cctxPtr->prefs.frameInfo.blockMode == LZ4F_blockLinked)
1200
0
        cctxPtr->tmpIn += cctxPtr->tmpInSize;
1201
0
    cctxPtr->tmpInSize = 0;
1202
1203
    /* keep tmpIn within limits */
1204
0
    if ((cctxPtr->tmpIn + cctxPtr->maxBlockSize) > (cctxPtr->tmpBuff + cctxPtr->maxBufferSize)) {
1205
0
        assert(cctxPtr->prefs.frameInfo.blockMode == LZ4F_blockLinked);
1206
0
        LZ4F_localSaveDict(cctxPtr);
1207
0
    }
1208
1209
0
    return (size_t)(dstPtr - dstStart);
1210
0
}
1211
1212
1213
/*! LZ4F_compressEnd() :
1214
 *  When you want to properly finish the compressed frame, just call LZ4F_compressEnd().
1215
 *  It will flush whatever data remained within compressionContext (like LZ4_flush())
1216
 *  but also properly finalize the frame, with an endMark and an (optional) checksum.
1217
 *  LZ4F_compressOptions_t structure is optional : you can provide NULL as argument.
1218
 * @return: the number of bytes written into dstBuffer (necessarily >= 4 (endMark size))
1219
 *       or an error code if it fails (can be tested using LZ4F_isError())
1220
 *  The context can then be used again to compress a new frame, starting with LZ4F_compressBegin().
1221
 */
1222
size_t LZ4F_compressEnd(LZ4F_cctx* cctxPtr,
1223
                        void* dstBuffer, size_t dstCapacity,
1224
                  const LZ4F_compressOptions_t* compressOptionsPtr)
1225
0
{
1226
0
    BYTE* const dstStart = (BYTE*)dstBuffer;
1227
0
    BYTE* dstPtr = dstStart;
1228
1229
0
    size_t const flushSize = LZ4F_flush(cctxPtr, dstBuffer, dstCapacity, compressOptionsPtr);
1230
0
    DEBUGLOG(5,"LZ4F_compressEnd: dstCapacity=%u", (unsigned)dstCapacity);
1231
0
    FORWARD_IF_ERROR(flushSize);
1232
0
    dstPtr += flushSize;
1233
1234
0
    assert(flushSize <= dstCapacity);
1235
0
    dstCapacity -= flushSize;
1236
1237
0
    RETURN_ERROR_IF(dstCapacity < 4, dstMaxSize_tooSmall);
1238
0
    LZ4F_writeLE32(dstPtr, 0);
1239
0
    dstPtr += 4;   /* endMark */
1240
1241
0
    if (cctxPtr->prefs.frameInfo.contentChecksumFlag == LZ4F_contentChecksumEnabled) {
1242
0
        U32 const xxh = XXH32_digest(&(cctxPtr->xxh));
1243
0
        RETURN_ERROR_IF(dstCapacity < 8, dstMaxSize_tooSmall);
1244
0
        DEBUGLOG(5,"Writing 32-bit content checksum (0x%0X)", xxh);
1245
0
        LZ4F_writeLE32(dstPtr, xxh);
1246
0
        dstPtr+=4;   /* content Checksum */
1247
0
    }
1248
1249
0
    cctxPtr->cStage = 0;   /* state is now re-usable (with identical preferences) */
1250
1251
0
    if (cctxPtr->prefs.frameInfo.contentSize) {
1252
0
        if (cctxPtr->prefs.frameInfo.contentSize != cctxPtr->totalInSize)
1253
0
            RETURN_ERROR(frameSize_wrong);
1254
0
    }
1255
1256
0
    return (size_t)(dstPtr - dstStart);
1257
0
}
1258
1259
1260
/*-***************************************************
1261
*   Frame Decompression
1262
*****************************************************/
1263
1264
typedef enum {
1265
    dstage_getFrameHeader=0, dstage_storeFrameHeader,
1266
    dstage_init,
1267
    dstage_getBlockHeader, dstage_storeBlockHeader,
1268
    dstage_copyDirect, dstage_getBlockChecksum,
1269
    dstage_getCBlock, dstage_storeCBlock,
1270
    dstage_flushOut,
1271
    dstage_getSuffix, dstage_storeSuffix,
1272
    dstage_getSFrameSize, dstage_storeSFrameSize,
1273
    dstage_skipSkippable
1274
} dStage_t;
1275
1276
struct LZ4F_dctx_s {
1277
    LZ4F_CustomMem cmem;
1278
    LZ4F_frameInfo_t frameInfo;
1279
    U32    version;
1280
    dStage_t dStage;
1281
    U64    frameRemainingSize;
1282
    size_t maxBlockSize;
1283
    size_t maxBufferSize;
1284
    BYTE*  tmpIn;
1285
    size_t tmpInSize;
1286
    size_t tmpInTarget;
1287
    BYTE*  tmpOutBuffer;
1288
    const BYTE* dict;
1289
    size_t dictSize;
1290
    BYTE*  tmpOut;
1291
    size_t tmpOutSize;
1292
    size_t tmpOutStart;
1293
    XXH32_state_t xxh;
1294
    XXH32_state_t blockChecksum;
1295
    int    skipChecksum;
1296
    BYTE   header[LZ4F_HEADER_SIZE_MAX];
1297
};  /* typedef'd to LZ4F_dctx in lz4frame.h */
1298
1299
1300
LZ4F_dctx* LZ4F_createDecompressionContext_advanced(LZ4F_CustomMem customMem, unsigned version)
1301
0
{
1302
0
    LZ4F_dctx* const dctx = (LZ4F_dctx*)LZ4F_calloc(sizeof(LZ4F_dctx), customMem);
1303
0
    if (dctx == NULL) return NULL;
1304
1305
0
    dctx->cmem = customMem;
1306
0
    dctx->version = version;
1307
0
    return dctx;
1308
0
}
1309
1310
/*! LZ4F_createDecompressionContext() :
1311
 *  Create a decompressionContext object, which will track all decompression operations.
1312
 *  Provides a pointer to a fully allocated and initialized LZ4F_decompressionContext object.
1313
 *  Object can later be released using LZ4F_freeDecompressionContext().
1314
 * @return : if != 0, there was an error during context creation.
1315
 */
1316
LZ4F_errorCode_t
1317
LZ4F_createDecompressionContext(LZ4F_dctx** LZ4F_decompressionContextPtr, unsigned versionNumber)
1318
0
{
1319
0
    assert(LZ4F_decompressionContextPtr != NULL);  /* violation of narrow contract */
1320
0
    RETURN_ERROR_IF(LZ4F_decompressionContextPtr == NULL, parameter_null);  /* in case it nonetheless happen in production */
1321
1322
0
    *LZ4F_decompressionContextPtr = LZ4F_createDecompressionContext_advanced(LZ4F_defaultCMem, versionNumber);
1323
0
    if (*LZ4F_decompressionContextPtr == NULL) {  /* failed allocation */
1324
0
        RETURN_ERROR(allocation_failed);
1325
0
    }
1326
0
    return LZ4F_OK_NoError;
1327
0
}
1328
1329
LZ4F_errorCode_t LZ4F_freeDecompressionContext(LZ4F_dctx* dctx)
1330
0
{
1331
0
    LZ4F_errorCode_t result = LZ4F_OK_NoError;
1332
0
    if (dctx != NULL) {   /* can accept NULL input, like free() */
1333
0
      result = (LZ4F_errorCode_t)dctx->dStage;
1334
0
      LZ4F_free(dctx->tmpIn, dctx->cmem);
1335
0
      LZ4F_free(dctx->tmpOutBuffer, dctx->cmem);
1336
0
      LZ4F_free(dctx, dctx->cmem);
1337
0
    }
1338
0
    return result;
1339
0
}
1340
1341
0
size_t LZ4F_dctx_size(const LZ4F_dctx* dctx) {
1342
0
    if (dctx == NULL) {
1343
0
        return 0;
1344
0
    }
1345
0
    return sizeof(*dctx)
1346
0
         + (dctx->tmpIn != NULL ? dctx->maxBlockSize + BFSize : 0)
1347
0
         + (dctx->tmpOutBuffer != NULL ? dctx->maxBufferSize : 0);
1348
0
}
1349
1350
1351
/*==---   Streaming Decompression operations   ---==*/
1352
void LZ4F_resetDecompressionContext(LZ4F_dctx* dctx)
1353
0
{
1354
0
    DEBUGLOG(5, "LZ4F_resetDecompressionContext");
1355
0
    dctx->dStage = dstage_getFrameHeader;
1356
0
    dctx->dict = NULL;
1357
0
    dctx->dictSize = 0;
1358
0
    dctx->skipChecksum = 0;
1359
0
    dctx->frameRemainingSize = 0;
1360
0
}
1361
1362
1363
/*! LZ4F_decodeHeader() :
1364
 *  input   : `src` points at the **beginning of the frame**
1365
 *  output  : set internal values of dctx, such as
1366
 *            dctx->frameInfo and dctx->dStage.
1367
 *            Also allocates internal buffers.
1368
 *  @return : nb Bytes read from src (necessarily <= srcSize)
1369
 *            or an error code (testable with LZ4F_isError())
1370
 */
1371
static size_t LZ4F_decodeHeader(LZ4F_dctx* dctx, const void* src, size_t srcSize)
1372
0
{
1373
0
    unsigned blockMode, blockChecksumFlag, contentSizeFlag, contentChecksumFlag, dictIDFlag, blockSizeID;
1374
0
    size_t frameHeaderSize;
1375
0
    const BYTE* srcPtr = (const BYTE*)src;
1376
1377
0
    DEBUGLOG(5, "LZ4F_decodeHeader");
1378
    /* need to decode header to get frameInfo */
1379
0
    RETURN_ERROR_IF(srcSize < minFHSize, frameHeader_incomplete);   /* minimal frame header size */
1380
0
    MEM_INIT(&(dctx->frameInfo), 0, sizeof(dctx->frameInfo));
1381
1382
    /* special case : skippable frames */
1383
0
    if ((LZ4F_readLE32(srcPtr) & 0xFFFFFFF0U) == LZ4F_MAGIC_SKIPPABLE_START) {
1384
0
        dctx->frameInfo.frameType = LZ4F_skippableFrame;
1385
0
        if (src == (void*)(dctx->header)) {
1386
0
            dctx->tmpInSize = srcSize;
1387
0
            dctx->tmpInTarget = 8;
1388
0
            dctx->dStage = dstage_storeSFrameSize;
1389
0
            return srcSize;
1390
0
        } else {
1391
0
            dctx->dStage = dstage_getSFrameSize;
1392
0
            return 4;
1393
0
    }   }
1394
1395
    /* control magic number */
1396
#ifndef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
1397
    if (LZ4F_readLE32(srcPtr) != LZ4F_MAGICNUMBER) {
1398
        DEBUGLOG(4, "frame header error : unknown magic number");
1399
        RETURN_ERROR(frameType_unknown);
1400
    }
1401
#endif
1402
0
    dctx->frameInfo.frameType = LZ4F_frame;
1403
1404
    /* Flags */
1405
0
    {   U32 const FLG = srcPtr[4];
1406
0
        U32 const version = (FLG>>6) & _2BITS;
1407
0
        blockChecksumFlag = (FLG>>4) & _1BIT;
1408
0
        blockMode = (FLG>>5) & _1BIT;
1409
0
        contentSizeFlag = (FLG>>3) & _1BIT;
1410
0
        contentChecksumFlag = (FLG>>2) & _1BIT;
1411
0
        dictIDFlag = FLG & _1BIT;
1412
        /* validate */
1413
0
        if (((FLG>>1)&_1BIT) != 0) RETURN_ERROR(reservedFlag_set); /* Reserved bit */
1414
0
        if (version != 1) RETURN_ERROR(headerVersion_wrong);       /* Version Number, only supported value */
1415
0
    }
1416
0
    DEBUGLOG(6, "contentSizeFlag: %u", contentSizeFlag);
1417
1418
    /* Frame Header Size */
1419
0
    frameHeaderSize = minFHSize + (contentSizeFlag?8:0) + (dictIDFlag?4:0);
1420
1421
0
    if (srcSize < frameHeaderSize) {
1422
        /* not enough input to fully decode frame header */
1423
0
        if (srcPtr != dctx->header)
1424
0
            memcpy(dctx->header, srcPtr, srcSize);
1425
0
        dctx->tmpInSize = srcSize;
1426
0
        dctx->tmpInTarget = frameHeaderSize;
1427
0
        dctx->dStage = dstage_storeFrameHeader;
1428
0
        return srcSize;
1429
0
    }
1430
1431
0
    {   U32 const BD = srcPtr[5];
1432
0
        blockSizeID = (BD>>4) & _3BITS;
1433
        /* validate */
1434
0
        if (((BD>>7)&_1BIT) != 0) RETURN_ERROR(reservedFlag_set);   /* Reserved bit */
1435
0
        if (blockSizeID < 4) RETURN_ERROR(maxBlockSize_invalid);    /* 4-7 only supported values for the time being */
1436
0
        if (((BD>>0)&_4BITS) != 0) RETURN_ERROR(reservedFlag_set);  /* Reserved bits */
1437
0
    }
1438
1439
    /* check header */
1440
0
    assert(frameHeaderSize > 5);
1441
#ifndef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
1442
    {   BYTE const HC = LZ4F_headerChecksum(srcPtr+4, frameHeaderSize-5);
1443
        RETURN_ERROR_IF(HC != srcPtr[frameHeaderSize-1], headerChecksum_invalid);
1444
    }
1445
#endif
1446
1447
    /* save */
1448
0
    dctx->frameInfo.blockMode = (LZ4F_blockMode_t)blockMode;
1449
0
    dctx->frameInfo.blockChecksumFlag = (LZ4F_blockChecksum_t)blockChecksumFlag;
1450
0
    dctx->frameInfo.contentChecksumFlag = (LZ4F_contentChecksum_t)contentChecksumFlag;
1451
0
    dctx->frameInfo.blockSizeID = (LZ4F_blockSizeID_t)blockSizeID;
1452
0
    dctx->maxBlockSize = LZ4F_getBlockSize((LZ4F_blockSizeID_t)blockSizeID);
1453
0
    if (contentSizeFlag) {
1454
0
        dctx->frameRemainingSize = dctx->frameInfo.contentSize = LZ4F_readLE64(srcPtr+6);
1455
0
    }
1456
0
    if (dictIDFlag)
1457
0
        dctx->frameInfo.dictID = LZ4F_readLE32(srcPtr + frameHeaderSize - 5);
1458
1459
0
    dctx->dStage = dstage_init;
1460
1461
0
    return frameHeaderSize;
1462
0
}
1463
1464
1465
/*! LZ4F_headerSize() :
1466
 * @return : size of frame header
1467
 *           or an error code, which can be tested using LZ4F_isError()
1468
 */
1469
size_t LZ4F_headerSize(const void* src, size_t srcSize)
1470
0
{
1471
0
    RETURN_ERROR_IF(src == NULL, srcPtr_wrong);
1472
1473
    /* minimal srcSize to determine header size */
1474
0
    if (srcSize < LZ4F_MIN_SIZE_TO_KNOW_HEADER_LENGTH)
1475
0
        RETURN_ERROR(frameHeader_incomplete);
1476
1477
    /* special case : skippable frames */
1478
0
    if ((LZ4F_readLE32(src) & 0xFFFFFFF0U) == LZ4F_MAGIC_SKIPPABLE_START)
1479
0
        return 8;
1480
1481
    /* control magic number */
1482
#ifndef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
1483
    if (LZ4F_readLE32(src) != LZ4F_MAGICNUMBER)
1484
        RETURN_ERROR(frameType_unknown);
1485
#endif
1486
1487
    /* Frame Header Size */
1488
0
    {   BYTE const FLG = ((const BYTE*)src)[4];
1489
0
        U32 const contentSizeFlag = (FLG>>3) & _1BIT;
1490
0
        U32 const dictIDFlag = FLG & _1BIT;
1491
0
        return minFHSize + (contentSizeFlag?8:0) + (dictIDFlag?4:0);
1492
0
    }
1493
0
}
1494
1495
/*! LZ4F_getFrameInfo() :
1496
 *  This function extracts frame parameters (max blockSize, frame checksum, etc.).
1497
 *  Usage is optional. Objective is to provide relevant information for allocation purposes.
1498
 *  This function works in 2 situations :
1499
 *   - At the beginning of a new frame, in which case it will decode this information from `srcBuffer`, and start the decoding process.
1500
 *     Amount of input data provided must be large enough to successfully decode the frame header.
1501
 *     A header size is variable, but is guaranteed to be <= LZ4F_HEADER_SIZE_MAX bytes. It's possible to provide more input data than this minimum.
1502
 *   - After decoding has been started. In which case, no input is read, frame parameters are extracted from dctx.
1503
 *  The number of bytes consumed from srcBuffer will be updated within *srcSizePtr (necessarily <= original value).
1504
 *  Decompression must resume from (srcBuffer + *srcSizePtr).
1505
 * @return : an hint about how many srcSize bytes LZ4F_decompress() expects for next call,
1506
 *           or an error code which can be tested using LZ4F_isError()
1507
 *  note 1 : in case of error, dctx is not modified. Decoding operations can resume from where they stopped.
1508
 *  note 2 : frame parameters are *copied into* an already allocated LZ4F_frameInfo_t structure.
1509
 */
1510
LZ4F_errorCode_t LZ4F_getFrameInfo(LZ4F_dctx* dctx,
1511
                                   LZ4F_frameInfo_t* frameInfoPtr,
1512
                             const void* srcBuffer, size_t* srcSizePtr)
1513
0
{
1514
0
    assert(dctx != NULL);
1515
0
    RETURN_ERROR_IF(frameInfoPtr == NULL, parameter_null);
1516
0
    RETURN_ERROR_IF(srcSizePtr == NULL, parameter_null);
1517
1518
0
    LZ4F_STATIC_ASSERT(dstage_getFrameHeader < dstage_storeFrameHeader);
1519
0
    if (dctx->dStage > dstage_storeFrameHeader) {
1520
        /* frameInfo already decoded */
1521
0
        size_t o=0, i=0;
1522
0
        *srcSizePtr = 0;
1523
0
        *frameInfoPtr = dctx->frameInfo;
1524
        /* returns : recommended nb of bytes for LZ4F_decompress() */
1525
0
        return LZ4F_decompress(dctx, NULL, &o, NULL, &i, NULL);
1526
0
    } else {
1527
0
        if (dctx->dStage == dstage_storeFrameHeader) {
1528
            /* frame decoding already started, in the middle of header => automatic fail */
1529
0
            *srcSizePtr = 0;
1530
0
            RETURN_ERROR(frameDecoding_alreadyStarted);
1531
0
        } else {
1532
0
            size_t const hSize = LZ4F_headerSize(srcBuffer, *srcSizePtr);
1533
0
            if (LZ4F_isError(hSize)) { *srcSizePtr=0; return hSize; }
1534
0
            if (*srcSizePtr < hSize) {
1535
0
                *srcSizePtr=0;
1536
0
                RETURN_ERROR(frameHeader_incomplete);
1537
0
            }
1538
1539
0
            {   size_t decodeResult = LZ4F_decodeHeader(dctx, srcBuffer, hSize);
1540
0
                if (LZ4F_isError(decodeResult)) {
1541
0
                    *srcSizePtr = 0;
1542
0
                } else {
1543
0
                    *srcSizePtr = decodeResult;
1544
0
                    decodeResult = BHSize;   /* block header size */
1545
0
                }
1546
0
                *frameInfoPtr = dctx->frameInfo;
1547
0
                return decodeResult;
1548
0
    }   }   }
1549
0
}
1550
1551
1552
/* LZ4F_updateDict() :
1553
 * only used for LZ4F_blockLinked mode
1554
 * Condition : @dstPtr != NULL
1555
 */
1556
static void LZ4F_updateDict(LZ4F_dctx* dctx,
1557
                      const BYTE* dstPtr, size_t dstSize, const BYTE* dstBufferStart,
1558
                      unsigned withinTmp)
1559
0
{
1560
0
    assert(dstPtr != NULL);
1561
0
    if (dctx->dictSize==0) dctx->dict = (const BYTE*)dstPtr;  /* will lead to prefix mode */
1562
0
    assert(dctx->dict != NULL);
1563
1564
0
    if (dctx->dict + dctx->dictSize == dstPtr) {  /* prefix mode, everything within dstBuffer */
1565
0
        dctx->dictSize += dstSize;
1566
0
        return;
1567
0
    }
1568
1569
0
    assert(dstPtr >= dstBufferStart);
1570
0
    if ((size_t)(dstPtr - dstBufferStart) + dstSize >= 64 KB) {  /* history in dstBuffer becomes large enough to become dictionary */
1571
0
        dctx->dict = (const BYTE*)dstBufferStart;
1572
0
        dctx->dictSize = (size_t)(dstPtr - dstBufferStart) + dstSize;
1573
0
        return;
1574
0
    }
1575
1576
0
    assert(dstSize < 64 KB);   /* if dstSize >= 64 KB, dictionary would be set into dstBuffer directly */
1577
1578
    /* dstBuffer does not contain whole useful history (64 KB), so it must be saved within tmpOutBuffer */
1579
0
    assert(dctx->tmpOutBuffer != NULL);
1580
1581
0
    if (withinTmp && (dctx->dict == dctx->tmpOutBuffer)) {   /* continue history within tmpOutBuffer */
1582
        /* withinTmp expectation : content of [dstPtr,dstSize] is same as [dict+dictSize,dstSize], so we just extend it */
1583
0
        assert(dctx->dict + dctx->dictSize == dctx->tmpOut + dctx->tmpOutStart);
1584
0
        dctx->dictSize += dstSize;
1585
0
        return;
1586
0
    }
1587
1588
0
    if (withinTmp) { /* copy relevant dict portion in front of tmpOut within tmpOutBuffer */
1589
0
        size_t const preserveSize = (size_t)(dctx->tmpOut - dctx->tmpOutBuffer);
1590
0
        size_t copySize = 64 KB - dctx->tmpOutSize;
1591
0
        const BYTE* const oldDictEnd = dctx->dict + dctx->dictSize - dctx->tmpOutStart;
1592
0
        if (dctx->tmpOutSize > 64 KB) copySize = 0;
1593
0
        if (copySize > preserveSize) copySize = preserveSize;
1594
1595
0
        memcpy(dctx->tmpOutBuffer + preserveSize - copySize, oldDictEnd - copySize, copySize);
1596
1597
0
        dctx->dict = dctx->tmpOutBuffer;
1598
0
        dctx->dictSize = preserveSize + dctx->tmpOutStart + dstSize;
1599
0
        return;
1600
0
    }
1601
1602
0
    if (dctx->dict == dctx->tmpOutBuffer) {    /* copy dst into tmp to complete dict */
1603
0
        if (dctx->dictSize + dstSize > dctx->maxBufferSize) {  /* tmp buffer not large enough */
1604
0
            size_t const preserveSize = 64 KB - dstSize;
1605
0
            memcpy(dctx->tmpOutBuffer, dctx->dict + dctx->dictSize - preserveSize, preserveSize);
1606
0
            dctx->dictSize = preserveSize;
1607
0
        }
1608
0
        memcpy(dctx->tmpOutBuffer + dctx->dictSize, dstPtr, dstSize);
1609
0
        dctx->dictSize += dstSize;
1610
0
        return;
1611
0
    }
1612
1613
    /* join dict & dest into tmp */
1614
0
    {   size_t preserveSize = 64 KB - dstSize;
1615
0
        if (preserveSize > dctx->dictSize) preserveSize = dctx->dictSize;
1616
0
        memcpy(dctx->tmpOutBuffer, dctx->dict + dctx->dictSize - preserveSize, preserveSize);
1617
0
        memcpy(dctx->tmpOutBuffer + preserveSize, dstPtr, dstSize);
1618
0
        dctx->dict = dctx->tmpOutBuffer;
1619
0
        dctx->dictSize = preserveSize + dstSize;
1620
0
    }
1621
0
}
1622
1623
1624
/*! LZ4F_decompress() :
1625
 *  Call this function repetitively to regenerate compressed data in srcBuffer.
1626
 *  The function will attempt to decode up to *srcSizePtr bytes from srcBuffer
1627
 *  into dstBuffer of capacity *dstSizePtr.
1628
 *
1629
 *  The number of bytes regenerated into dstBuffer will be provided within *dstSizePtr (necessarily <= original value).
1630
 *
1631
 *  The number of bytes effectively read from srcBuffer will be provided within *srcSizePtr (necessarily <= original value).
1632
 *  If number of bytes read is < number of bytes provided, then decompression operation is not complete.
1633
 *  Remaining data will have to be presented again in a subsequent invocation.
1634
 *
1635
 *  The function result is an hint of the better srcSize to use for next call to LZ4F_decompress.
1636
 *  Schematically, it's the size of the current (or remaining) compressed block + header of next block.
1637
 *  Respecting the hint provides a small boost to performance, since it allows less buffer shuffling.
1638
 *  Note that this is just a hint, and it's always possible to any srcSize value.
1639
 *  When a frame is fully decoded, @return will be 0.
1640
 *  If decompression failed, @return is an error code which can be tested using LZ4F_isError().
1641
 */
1642
size_t LZ4F_decompress(LZ4F_dctx* dctx,
1643
                       void* dstBuffer, size_t* dstSizePtr,
1644
                       const void* srcBuffer, size_t* srcSizePtr,
1645
                       const LZ4F_decompressOptions_t* decompressOptionsPtr)
1646
0
{
1647
0
    LZ4F_decompressOptions_t optionsNull;
1648
0
    const BYTE* const srcStart = (const BYTE*)srcBuffer;
1649
0
    const BYTE* const srcEnd = srcStart + *srcSizePtr;
1650
0
    const BYTE* srcPtr = srcStart;
1651
0
    BYTE* const dstStart = (BYTE*)dstBuffer;
1652
0
    BYTE* const dstEnd = dstStart ? dstStart + *dstSizePtr : NULL;
1653
0
    BYTE* dstPtr = dstStart;
1654
0
    const BYTE* selectedIn = NULL;
1655
0
    unsigned doAnotherStage = 1;
1656
0
    size_t nextSrcSizeHint = 1;
1657
1658
1659
0
    DEBUGLOG(5, "LZ4F_decompress: src[%p](%u) => dst[%p](%u)",
1660
0
            srcBuffer, (unsigned)*srcSizePtr, dstBuffer, (unsigned)*dstSizePtr);
1661
0
    if (dstBuffer == NULL) assert(*dstSizePtr == 0);
1662
0
    MEM_INIT(&optionsNull, 0, sizeof(optionsNull));
1663
0
    if (decompressOptionsPtr==NULL) decompressOptionsPtr = &optionsNull;
1664
0
    *srcSizePtr = 0;
1665
0
    *dstSizePtr = 0;
1666
0
    assert(dctx != NULL);
1667
0
    dctx->skipChecksum |= (decompressOptionsPtr->skipChecksums != 0); /* once set, disable for the remainder of the frame */
1668
1669
    /* behaves as a state machine */
1670
1671
0
    while (doAnotherStage) {
1672
1673
0
        switch(dctx->dStage)
1674
0
        {
1675
1676
0
        case dstage_getFrameHeader:
1677
0
            DEBUGLOG(6, "dstage_getFrameHeader");
1678
0
            if ((size_t)(srcEnd-srcPtr) >= maxFHSize) {  /* enough to decode - shortcut */
1679
0
                size_t const hSize = LZ4F_decodeHeader(dctx, srcPtr, (size_t)(srcEnd-srcPtr));  /* will update dStage appropriately */
1680
0
                FORWARD_IF_ERROR(hSize);
1681
0
                srcPtr += hSize;
1682
0
                break;
1683
0
            }
1684
0
            dctx->tmpInSize = 0;
1685
0
            if (srcEnd-srcPtr == 0) return minFHSize;   /* 0-size input */
1686
0
            dctx->tmpInTarget = minFHSize;   /* minimum size to decode header */
1687
0
            dctx->dStage = dstage_storeFrameHeader;
1688
            /* fall-through */
1689
1690
0
        case dstage_storeFrameHeader:
1691
0
            DEBUGLOG(6, "dstage_storeFrameHeader");
1692
0
            {   size_t const sizeToCopy = MIN(dctx->tmpInTarget - dctx->tmpInSize, (size_t)(srcEnd - srcPtr));
1693
0
                memcpy(dctx->header + dctx->tmpInSize, srcPtr, sizeToCopy);
1694
0
                dctx->tmpInSize += sizeToCopy;
1695
0
                srcPtr += sizeToCopy;
1696
0
            }
1697
0
            if (dctx->tmpInSize < dctx->tmpInTarget) {
1698
0
                nextSrcSizeHint = (dctx->tmpInTarget - dctx->tmpInSize) + BHSize;   /* rest of header + nextBlockHeader */
1699
0
                doAnotherStage = 0;   /* not enough src data, ask for some more */
1700
0
                break;
1701
0
            }
1702
0
            FORWARD_IF_ERROR( LZ4F_decodeHeader(dctx, dctx->header, dctx->tmpInTarget) ); /* will update dStage appropriately */
1703
0
            break;
1704
1705
0
        case dstage_init:
1706
0
            DEBUGLOG(6, "dstage_init");
1707
0
            if (dctx->frameInfo.contentChecksumFlag) (void)XXH32_reset(&(dctx->xxh), 0);
1708
            /* internal buffers allocation */
1709
0
            {   size_t const bufferNeeded = dctx->maxBlockSize
1710
0
                    + ((dctx->frameInfo.blockMode==LZ4F_blockLinked) ? 128 KB : 0);
1711
0
                if (bufferNeeded > dctx->maxBufferSize) {   /* tmp buffers too small */
1712
0
                    dctx->maxBufferSize = 0;   /* ensure allocation will be re-attempted on next entry*/
1713
0
                    LZ4F_free(dctx->tmpIn, dctx->cmem);
1714
0
                    dctx->tmpIn = (BYTE*)LZ4F_malloc(dctx->maxBlockSize + BFSize /* block checksum */, dctx->cmem);
1715
0
                    RETURN_ERROR_IF(dctx->tmpIn == NULL, allocation_failed);
1716
0
                    LZ4F_free(dctx->tmpOutBuffer, dctx->cmem);
1717
0
                    dctx->tmpOutBuffer= (BYTE*)LZ4F_malloc(bufferNeeded, dctx->cmem);
1718
0
                    RETURN_ERROR_IF(dctx->tmpOutBuffer== NULL, allocation_failed);
1719
0
                    dctx->maxBufferSize = bufferNeeded;
1720
0
            }   }
1721
0
            dctx->tmpInSize = 0;
1722
0
            dctx->tmpInTarget = 0;
1723
0
            dctx->tmpOut = dctx->tmpOutBuffer;
1724
0
            dctx->tmpOutStart = 0;
1725
0
            dctx->tmpOutSize = 0;
1726
1727
0
            dctx->dStage = dstage_getBlockHeader;
1728
            /* fall-through */
1729
1730
0
        case dstage_getBlockHeader:
1731
0
            if ((size_t)(srcEnd - srcPtr) >= BHSize) {
1732
0
                selectedIn = srcPtr;
1733
0
                srcPtr += BHSize;
1734
0
            } else {
1735
                /* not enough input to read cBlockSize field */
1736
0
                dctx->tmpInSize = 0;
1737
0
                dctx->dStage = dstage_storeBlockHeader;
1738
0
            }
1739
1740
0
            if (dctx->dStage == dstage_storeBlockHeader)   /* can be skipped */
1741
0
        case dstage_storeBlockHeader:
1742
0
            {   size_t const remainingInput = (size_t)(srcEnd - srcPtr);
1743
0
                size_t const wantedData = BHSize - dctx->tmpInSize;
1744
0
                size_t const sizeToCopy = MIN(wantedData, remainingInput);
1745
0
                memcpy(dctx->tmpIn + dctx->tmpInSize, srcPtr, sizeToCopy);
1746
0
                srcPtr += sizeToCopy;
1747
0
                dctx->tmpInSize += sizeToCopy;
1748
1749
0
                if (dctx->tmpInSize < BHSize) {   /* not enough input for cBlockSize */
1750
0
                    nextSrcSizeHint = BHSize - dctx->tmpInSize;
1751
0
                    doAnotherStage  = 0;
1752
0
                    break;
1753
0
                }
1754
0
                selectedIn = dctx->tmpIn;
1755
0
            }   /* if (dctx->dStage == dstage_storeBlockHeader) */
1756
1757
        /* decode block header */
1758
0
            {   U32 const blockHeader = LZ4F_readLE32(selectedIn);
1759
0
                size_t const nextCBlockSize = blockHeader & 0x7FFFFFFFU;
1760
0
                size_t const crcSize = dctx->frameInfo.blockChecksumFlag * BFSize;
1761
0
                if (blockHeader==0) {  /* frameEnd signal, no more block */
1762
0
                    DEBUGLOG(5, "end of frame");
1763
0
                    dctx->dStage = dstage_getSuffix;
1764
0
                    break;
1765
0
                }
1766
0
                if (nextCBlockSize > dctx->maxBlockSize) {
1767
0
                    RETURN_ERROR(maxBlockSize_invalid);
1768
0
                }
1769
0
                if (blockHeader & LZ4F_BLOCKUNCOMPRESSED_FLAG) {
1770
                    /* next block is uncompressed */
1771
0
                    dctx->tmpInTarget = nextCBlockSize;
1772
0
                    DEBUGLOG(5, "next block is uncompressed (size %u)", (U32)nextCBlockSize);
1773
0
                    if (dctx->frameInfo.blockChecksumFlag) {
1774
0
                        (void)XXH32_reset(&dctx->blockChecksum, 0);
1775
0
                    }
1776
0
                    dctx->dStage = dstage_copyDirect;
1777
0
                    break;
1778
0
                }
1779
                /* next block is a compressed block */
1780
0
                dctx->tmpInTarget = nextCBlockSize + crcSize;
1781
0
                dctx->dStage = dstage_getCBlock;
1782
0
                if (dstPtr==dstEnd || srcPtr==srcEnd) {
1783
0
                    nextSrcSizeHint = BHSize + nextCBlockSize + crcSize;
1784
0
                    doAnotherStage = 0;
1785
0
                }
1786
0
                break;
1787
0
            }
1788
1789
0
        case dstage_copyDirect:   /* uncompressed block */
1790
0
            DEBUGLOG(6, "dstage_copyDirect");
1791
0
            {   size_t sizeToCopy;
1792
0
                if (dstPtr == NULL) {
1793
0
                    sizeToCopy = 0;
1794
0
                } else {
1795
0
                    size_t const minBuffSize = MIN((size_t)(srcEnd-srcPtr), (size_t)(dstEnd-dstPtr));
1796
0
                    sizeToCopy = MIN(dctx->tmpInTarget, minBuffSize);
1797
0
                    memcpy(dstPtr, srcPtr, sizeToCopy);
1798
0
                    if (!dctx->skipChecksum) {
1799
0
                        if (dctx->frameInfo.blockChecksumFlag) {
1800
0
                            (void)XXH32_update(&dctx->blockChecksum, srcPtr, sizeToCopy);
1801
0
                        }
1802
0
                        if (dctx->frameInfo.contentChecksumFlag)
1803
0
                            (void)XXH32_update(&dctx->xxh, srcPtr, sizeToCopy);
1804
0
                    }
1805
0
                    if (dctx->frameInfo.contentSize)
1806
0
                        dctx->frameRemainingSize -= sizeToCopy;
1807
1808
                    /* history management (linked blocks only)*/
1809
0
                    if (dctx->frameInfo.blockMode == LZ4F_blockLinked) {
1810
0
                        LZ4F_updateDict(dctx, dstPtr, sizeToCopy, dstStart, 0);
1811
0
                    }
1812
0
                    srcPtr += sizeToCopy;
1813
0
                    dstPtr += sizeToCopy;
1814
0
                }
1815
0
                if (sizeToCopy == dctx->tmpInTarget) {   /* all done */
1816
0
                    if (dctx->frameInfo.blockChecksumFlag) {
1817
0
                        dctx->tmpInSize = 0;
1818
0
                        dctx->dStage = dstage_getBlockChecksum;
1819
0
                    } else
1820
0
                        dctx->dStage = dstage_getBlockHeader;  /* new block */
1821
0
                    break;
1822
0
                }
1823
0
                dctx->tmpInTarget -= sizeToCopy;  /* need to copy more */
1824
0
            }
1825
0
            nextSrcSizeHint = dctx->tmpInTarget +
1826
0
                            +(dctx->frameInfo.blockChecksumFlag ? BFSize : 0)
1827
0
                            + BHSize /* next header size */;
1828
0
            doAnotherStage = 0;
1829
0
            break;
1830
1831
        /* check block checksum for recently transferred uncompressed block */
1832
0
        case dstage_getBlockChecksum:
1833
0
            DEBUGLOG(6, "dstage_getBlockChecksum");
1834
0
            {   const void* crcSrc;
1835
0
                if ((srcEnd-srcPtr >= 4) && (dctx->tmpInSize==0)) {
1836
0
                    crcSrc = srcPtr;
1837
0
                    srcPtr += 4;
1838
0
                } else {
1839
0
                    size_t const stillToCopy = 4 - dctx->tmpInSize;
1840
0
                    size_t const sizeToCopy = MIN(stillToCopy, (size_t)(srcEnd-srcPtr));
1841
0
                    memcpy(dctx->header + dctx->tmpInSize, srcPtr, sizeToCopy);
1842
0
                    dctx->tmpInSize += sizeToCopy;
1843
0
                    srcPtr += sizeToCopy;
1844
0
                    if (dctx->tmpInSize < 4) {  /* all input consumed */
1845
0
                        doAnotherStage = 0;
1846
0
                        break;
1847
0
                    }
1848
0
                    crcSrc = dctx->header;
1849
0
                }
1850
0
                if (!dctx->skipChecksum) {
1851
0
                    U32 const readCRC = LZ4F_readLE32(crcSrc);
1852
0
                    U32 const calcCRC = XXH32_digest(&dctx->blockChecksum);
1853
#ifndef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
1854
                    DEBUGLOG(6, "compare block checksum");
1855
                    if (readCRC != calcCRC) {
1856
                        DEBUGLOG(4, "incorrect block checksum: %08X != %08X",
1857
                                readCRC, calcCRC);
1858
                        RETURN_ERROR(blockChecksum_invalid);
1859
                    }
1860
#else
1861
0
                    (void)readCRC;
1862
0
                    (void)calcCRC;
1863
0
#endif
1864
0
            }   }
1865
0
            dctx->dStage = dstage_getBlockHeader;  /* new block */
1866
0
            break;
1867
1868
0
        case dstage_getCBlock:
1869
0
            DEBUGLOG(6, "dstage_getCBlock");
1870
0
            if ((size_t)(srcEnd-srcPtr) < dctx->tmpInTarget) {
1871
0
                dctx->tmpInSize = 0;
1872
0
                dctx->dStage = dstage_storeCBlock;
1873
0
                break;
1874
0
            }
1875
            /* input large enough to read full block directly */
1876
0
            selectedIn = srcPtr;
1877
0
            srcPtr += dctx->tmpInTarget;
1878
1879
0
            if (0)  /* always jump over next block */
1880
0
        case dstage_storeCBlock:
1881
0
            {   size_t const wantedData = dctx->tmpInTarget - dctx->tmpInSize;
1882
0
                size_t const inputLeft = (size_t)(srcEnd-srcPtr);
1883
0
                size_t const sizeToCopy = MIN(wantedData, inputLeft);
1884
0
                memcpy(dctx->tmpIn + dctx->tmpInSize, srcPtr, sizeToCopy);
1885
0
                dctx->tmpInSize += sizeToCopy;
1886
0
                srcPtr += sizeToCopy;
1887
0
                if (dctx->tmpInSize < dctx->tmpInTarget) { /* need more input */
1888
0
                    nextSrcSizeHint = (dctx->tmpInTarget - dctx->tmpInSize)
1889
0
                                    + (dctx->frameInfo.blockChecksumFlag ? BFSize : 0)
1890
0
                                    + BHSize /* next header size */;
1891
0
                    doAnotherStage = 0;
1892
0
                    break;
1893
0
                }
1894
0
                selectedIn = dctx->tmpIn;
1895
0
            }
1896
1897
            /* At this stage, input is large enough to decode a block */
1898
1899
            /* First, decode and control block checksum if it exists */
1900
0
            if (dctx->frameInfo.blockChecksumFlag) {
1901
0
                assert(dctx->tmpInTarget >= 4);
1902
0
                dctx->tmpInTarget -= 4;
1903
0
                assert(selectedIn != NULL);  /* selectedIn is defined at this stage (either srcPtr, or dctx->tmpIn) */
1904
0
                {   U32 const readBlockCrc = LZ4F_readLE32(selectedIn + dctx->tmpInTarget);
1905
0
                    U32 const calcBlockCrc = XXH32(selectedIn, dctx->tmpInTarget, 0);
1906
#ifndef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
1907
                    RETURN_ERROR_IF(readBlockCrc != calcBlockCrc, blockChecksum_invalid);
1908
#else
1909
0
                    (void)readBlockCrc;
1910
0
                    (void)calcBlockCrc;
1911
0
#endif
1912
0
            }   }
1913
1914
            /* decode directly into destination buffer if there is enough room */
1915
0
            if ( ((size_t)(dstEnd-dstPtr) >= dctx->maxBlockSize)
1916
                 /* unless the dictionary is stored in tmpOut:
1917
                  * in which case it's faster to decode within tmpOut
1918
                  * to benefit from prefix speedup */
1919
0
              && !(dctx->dict!= NULL && (const BYTE*)dctx->dict + dctx->dictSize == dctx->tmpOut) )
1920
0
            {
1921
0
                const char* dict = (const char*)dctx->dict;
1922
0
                size_t dictSize = dctx->dictSize;
1923
0
                int decodedSize;
1924
0
                assert(dstPtr != NULL);
1925
0
                if (dict && dictSize > 1 GB) {
1926
                    /* overflow control : dctx->dictSize is an int, avoid truncation / sign issues */
1927
0
                    dict += dictSize - 64 KB;
1928
0
                    dictSize = 64 KB;
1929
0
                }
1930
0
                decodedSize = LZ4_decompress_safe_usingDict(
1931
0
                        (const char*)selectedIn, (char*)dstPtr,
1932
0
                        (int)dctx->tmpInTarget, (int)dctx->maxBlockSize,
1933
0
                        dict, (int)dictSize);
1934
0
                RETURN_ERROR_IF(decodedSize < 0, decompressionFailed);
1935
0
                if ((dctx->frameInfo.contentChecksumFlag) && (!dctx->skipChecksum))
1936
0
                    XXH32_update(&(dctx->xxh), dstPtr, (size_t)decodedSize);
1937
0
                if (dctx->frameInfo.contentSize)
1938
0
                    dctx->frameRemainingSize -= (size_t)decodedSize;
1939
1940
                /* dictionary management */
1941
0
                if (dctx->frameInfo.blockMode==LZ4F_blockLinked) {
1942
0
                    LZ4F_updateDict(dctx, dstPtr, (size_t)decodedSize, dstStart, 0);
1943
0
                }
1944
1945
0
                dstPtr += decodedSize;
1946
0
                dctx->dStage = dstage_getBlockHeader;  /* end of block, let's get another one */
1947
0
                break;
1948
0
            }
1949
1950
            /* not enough place into dst : decode into tmpOut */
1951
1952
            /* manage dictionary */
1953
0
            if (dctx->frameInfo.blockMode == LZ4F_blockLinked) {
1954
0
                if (dctx->dict == dctx->tmpOutBuffer) {
1955
                    /* truncate dictionary to 64 KB if too big */
1956
0
                    if (dctx->dictSize > 128 KB) {
1957
0
                        memcpy(dctx->tmpOutBuffer, dctx->dict + dctx->dictSize - 64 KB, 64 KB);
1958
0
                        dctx->dictSize = 64 KB;
1959
0
                    }
1960
0
                    dctx->tmpOut = dctx->tmpOutBuffer + dctx->dictSize;
1961
0
                } else {  /* dict not within tmpOut */
1962
0
                    size_t const reservedDictSpace = MIN(dctx->dictSize, 64 KB);
1963
0
                    dctx->tmpOut = dctx->tmpOutBuffer + reservedDictSpace;
1964
0
            }   }
1965
1966
            /* Decode block into tmpOut */
1967
0
            {   const char* dict = (const char*)dctx->dict;
1968
0
                size_t dictSize = dctx->dictSize;
1969
0
                int decodedSize;
1970
0
                if (dict && dictSize > 1 GB) {
1971
                    /* the dictSize param is an int, avoid truncation / sign issues */
1972
0
                    dict += dictSize - 64 KB;
1973
0
                    dictSize = 64 KB;
1974
0
                }
1975
0
                decodedSize = LZ4_decompress_safe_usingDict(
1976
0
                        (const char*)selectedIn, (char*)dctx->tmpOut,
1977
0
                        (int)dctx->tmpInTarget, (int)dctx->maxBlockSize,
1978
0
                        dict, (int)dictSize);
1979
0
                RETURN_ERROR_IF(decodedSize < 0, decompressionFailed);
1980
0
                if (dctx->frameInfo.contentChecksumFlag && !dctx->skipChecksum)
1981
0
                    XXH32_update(&(dctx->xxh), dctx->tmpOut, (size_t)decodedSize);
1982
0
                if (dctx->frameInfo.contentSize)
1983
0
                    dctx->frameRemainingSize -= (size_t)decodedSize;
1984
0
                dctx->tmpOutSize = (size_t)decodedSize;
1985
0
                dctx->tmpOutStart = 0;
1986
0
                dctx->dStage = dstage_flushOut;
1987
0
            }
1988
            /* fall-through */
1989
1990
0
        case dstage_flushOut:  /* flush decoded data from tmpOut to dstBuffer */
1991
0
            DEBUGLOG(6, "dstage_flushOut");
1992
0
            if (dstPtr != NULL) {
1993
0
                size_t const sizeToCopy = MIN(dctx->tmpOutSize - dctx->tmpOutStart, (size_t)(dstEnd-dstPtr));
1994
0
                memcpy(dstPtr, dctx->tmpOut + dctx->tmpOutStart, sizeToCopy);
1995
1996
                /* dictionary management */
1997
0
                if (dctx->frameInfo.blockMode == LZ4F_blockLinked)
1998
0
                    LZ4F_updateDict(dctx, dstPtr, sizeToCopy, dstStart, 1 /*withinTmp*/);
1999
2000
0
                dctx->tmpOutStart += sizeToCopy;
2001
0
                dstPtr += sizeToCopy;
2002
0
            }
2003
0
            if (dctx->tmpOutStart == dctx->tmpOutSize) { /* all flushed */
2004
0
                dctx->dStage = dstage_getBlockHeader;  /* get next block */
2005
0
                break;
2006
0
            }
2007
            /* could not flush everything : stop there, just request a block header */
2008
0
            doAnotherStage = 0;
2009
0
            nextSrcSizeHint = BHSize;
2010
0
            break;
2011
2012
0
        case dstage_getSuffix:
2013
0
            RETURN_ERROR_IF(dctx->frameRemainingSize, frameSize_wrong);   /* incorrect frame size decoded */
2014
0
            if (!dctx->frameInfo.contentChecksumFlag) {  /* no checksum, frame is completed */
2015
0
                nextSrcSizeHint = 0;
2016
0
                LZ4F_resetDecompressionContext(dctx);
2017
0
                doAnotherStage = 0;
2018
0
                break;
2019
0
            }
2020
0
            if ((srcEnd - srcPtr) < 4) {  /* not enough size for entire CRC */
2021
0
                dctx->tmpInSize = 0;
2022
0
                dctx->dStage = dstage_storeSuffix;
2023
0
            } else {
2024
0
                selectedIn = srcPtr;
2025
0
                srcPtr += 4;
2026
0
            }
2027
2028
0
            if (dctx->dStage == dstage_storeSuffix)   /* can be skipped */
2029
0
        case dstage_storeSuffix:
2030
0
            {   size_t const remainingInput = (size_t)(srcEnd - srcPtr);
2031
0
                size_t const wantedData = 4 - dctx->tmpInSize;
2032
0
                size_t const sizeToCopy = MIN(wantedData, remainingInput);
2033
0
                memcpy(dctx->tmpIn + dctx->tmpInSize, srcPtr, sizeToCopy);
2034
0
                srcPtr += sizeToCopy;
2035
0
                dctx->tmpInSize += sizeToCopy;
2036
0
                if (dctx->tmpInSize < 4) { /* not enough input to read complete suffix */
2037
0
                    nextSrcSizeHint = 4 - dctx->tmpInSize;
2038
0
                    doAnotherStage=0;
2039
0
                    break;
2040
0
                }
2041
0
                selectedIn = dctx->tmpIn;
2042
0
            }   /* if (dctx->dStage == dstage_storeSuffix) */
2043
2044
        /* case dstage_checkSuffix: */   /* no direct entry, avoid initialization risks */
2045
0
            if (!dctx->skipChecksum) {
2046
0
                U32 const readCRC = LZ4F_readLE32(selectedIn);
2047
0
                U32 const resultCRC = XXH32_digest(&(dctx->xxh));
2048
0
                DEBUGLOG(4, "frame checksum: stored 0x%0X vs 0x%0X processed", readCRC, resultCRC);
2049
#ifndef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
2050
                RETURN_ERROR_IF(readCRC != resultCRC, contentChecksum_invalid);
2051
#else
2052
0
                (void)readCRC;
2053
0
                (void)resultCRC;
2054
0
#endif
2055
0
            }
2056
0
            nextSrcSizeHint = 0;
2057
0
            LZ4F_resetDecompressionContext(dctx);
2058
0
            doAnotherStage = 0;
2059
0
            break;
2060
2061
0
        case dstage_getSFrameSize:
2062
0
            if ((srcEnd - srcPtr) >= 4) {
2063
0
                selectedIn = srcPtr;
2064
0
                srcPtr += 4;
2065
0
            } else {
2066
                /* not enough input to read cBlockSize field */
2067
0
                dctx->tmpInSize = 4;
2068
0
                dctx->tmpInTarget = 8;
2069
0
                dctx->dStage = dstage_storeSFrameSize;
2070
0
            }
2071
2072
0
            if (dctx->dStage == dstage_storeSFrameSize)
2073
0
        case dstage_storeSFrameSize:
2074
0
            {   size_t const sizeToCopy = MIN(dctx->tmpInTarget - dctx->tmpInSize,
2075
0
                                             (size_t)(srcEnd - srcPtr) );
2076
0
                memcpy(dctx->header + dctx->tmpInSize, srcPtr, sizeToCopy);
2077
0
                srcPtr += sizeToCopy;
2078
0
                dctx->tmpInSize += sizeToCopy;
2079
0
                if (dctx->tmpInSize < dctx->tmpInTarget) {
2080
                    /* not enough input to get full sBlockSize; wait for more */
2081
0
                    nextSrcSizeHint = dctx->tmpInTarget - dctx->tmpInSize;
2082
0
                    doAnotherStage = 0;
2083
0
                    break;
2084
0
                }
2085
0
                selectedIn = dctx->header + 4;
2086
0
            }   /* if (dctx->dStage == dstage_storeSFrameSize) */
2087
2088
        /* case dstage_decodeSFrameSize: */   /* no direct entry */
2089
0
            {   size_t const SFrameSize = LZ4F_readLE32(selectedIn);
2090
0
                dctx->frameInfo.contentSize = SFrameSize;
2091
0
                dctx->tmpInTarget = SFrameSize;
2092
0
                dctx->dStage = dstage_skipSkippable;
2093
0
                break;
2094
0
            }
2095
2096
0
        case dstage_skipSkippable:
2097
0
            {   size_t const skipSize = MIN(dctx->tmpInTarget, (size_t)(srcEnd-srcPtr));
2098
0
                srcPtr += skipSize;
2099
0
                dctx->tmpInTarget -= skipSize;
2100
0
                doAnotherStage = 0;
2101
0
                nextSrcSizeHint = dctx->tmpInTarget;
2102
0
                if (nextSrcSizeHint) break;  /* still more to skip */
2103
                /* frame fully skipped : prepare context for a new frame */
2104
0
                LZ4F_resetDecompressionContext(dctx);
2105
0
                break;
2106
0
            }
2107
0
        }   /* switch (dctx->dStage) */
2108
0
    }   /* while (doAnotherStage) */
2109
2110
    /* preserve history within tmpOut whenever necessary */
2111
0
    LZ4F_STATIC_ASSERT((unsigned)dstage_init == 2);
2112
0
    if ( (dctx->frameInfo.blockMode==LZ4F_blockLinked)  /* next block will use up to 64KB from previous ones */
2113
0
      && (dctx->dict != dctx->tmpOutBuffer)             /* dictionary is not already within tmp */
2114
0
      && (dctx->dict != NULL)                           /* dictionary exists */
2115
0
      && (!decompressOptionsPtr->stableDst)             /* cannot rely on dst data to remain there for next call */
2116
0
      && ((unsigned)(dctx->dStage)-2 < (unsigned)(dstage_getSuffix)-2) )  /* valid stages : [init ... getSuffix[ */
2117
0
    {
2118
0
        if (dctx->dStage == dstage_flushOut) {
2119
0
            size_t const preserveSize = (size_t)(dctx->tmpOut - dctx->tmpOutBuffer);
2120
0
            size_t copySize = 64 KB - dctx->tmpOutSize;
2121
0
            const BYTE* oldDictEnd = dctx->dict + dctx->dictSize - dctx->tmpOutStart;
2122
0
            if (dctx->tmpOutSize > 64 KB) copySize = 0;
2123
0
            if (copySize > preserveSize) copySize = preserveSize;
2124
0
            assert(dctx->tmpOutBuffer != NULL);
2125
2126
0
            memcpy(dctx->tmpOutBuffer + preserveSize - copySize, oldDictEnd - copySize, copySize);
2127
2128
0
            dctx->dict = dctx->tmpOutBuffer;
2129
0
            dctx->dictSize = preserveSize + dctx->tmpOutStart;
2130
0
        } else {
2131
0
            const BYTE* const oldDictEnd = dctx->dict + dctx->dictSize;
2132
0
            size_t const newDictSize = MIN(dctx->dictSize, 64 KB);
2133
2134
0
            memcpy(dctx->tmpOutBuffer, oldDictEnd - newDictSize, newDictSize);
2135
2136
0
            dctx->dict = dctx->tmpOutBuffer;
2137
0
            dctx->dictSize = newDictSize;
2138
0
            dctx->tmpOut = dctx->tmpOutBuffer + newDictSize;
2139
0
        }
2140
0
    }
2141
2142
0
    *srcSizePtr = (size_t)(srcPtr - srcStart);
2143
0
    *dstSizePtr = (size_t)(dstPtr - dstStart);
2144
0
    return nextSrcSizeHint;
2145
0
}
2146
2147
/*! LZ4F_decompress_usingDict() :
2148
 *  Same as LZ4F_decompress(), using a predefined dictionary.
2149
 *  Dictionary is used "in place", without any preprocessing.
2150
 *  It must remain accessible throughout the entire frame decoding.
2151
 */
2152
size_t LZ4F_decompress_usingDict(LZ4F_dctx* dctx,
2153
                       void* dstBuffer, size_t* dstSizePtr,
2154
                       const void* srcBuffer, size_t* srcSizePtr,
2155
                       const void* dict, size_t dictSize,
2156
                       const LZ4F_decompressOptions_t* decompressOptionsPtr)
2157
0
{
2158
0
    if (dctx->dStage <= dstage_init) {
2159
0
        dctx->dict = (const BYTE*)dict;
2160
0
        dctx->dictSize = dictSize;
2161
0
    }
2162
0
    return LZ4F_decompress(dctx, dstBuffer, dstSizePtr,
2163
0
                           srcBuffer, srcSizePtr,
2164
0
                           decompressOptionsPtr);
2165
0
}