Coverage Report

Created: 2024-07-27 06:17

/src/lzma-fuzz/sdk/C/LzmaEnc.c
Line
Count
Source (jump to first uncovered line)
1
/* LzmaEnc.c -- LZMA Encoder
2
2019-01-10: Igor Pavlov : Public domain */
3
4
#include "Precomp.h"
5
6
#include <string.h>
7
8
/* #define SHOW_STAT */
9
/* #define SHOW_STAT2 */
10
11
#if defined(SHOW_STAT) || defined(SHOW_STAT2)
12
#include <stdio.h>
13
#endif
14
15
#include "LzmaEnc.h"
16
17
#include "LzFind.h"
18
#ifndef _7ZIP_ST
19
#include "LzFindMt.h"
20
#endif
21
22
#ifdef SHOW_STAT
23
static unsigned g_STAT_OFFSET = 0;
24
#endif
25
26
15.5k
#define kLzmaMaxHistorySize ((UInt32)3 << 29)
27
/* #define kLzmaMaxHistorySize ((UInt32)7 << 29) */
28
29
2.44G
#define kNumTopBits 24
30
2.44G
#define kTopValue ((UInt32)1 << kNumTopBits)
31
32
6.44G
#define kNumBitModelTotalBits 11
33
4.03G
#define kBitModelTotal (1 << kNumBitModelTotalBits)
34
6.55G
#define kNumMoveBits 5
35
150M
#define kProbInitValue (kBitModelTotal >> 1)
36
37
1.90G
#define kNumMoveReducingBits 4
38
9.30M
#define kNumBitPriceShiftBits 4
39
#define kBitPrice (1 << kNumBitPriceShiftBits)
40
41
112k
#define REP_LEN_COUNT 64
42
43
void LzmaEncProps_Init(CLzmaEncProps *p)
44
31.1k
{
45
31.1k
  p->level = 5;
46
31.1k
  p->dictSize = p->mc = 0;
47
31.1k
  p->reduceSize = (UInt64)(Int64)-1;
48
31.1k
  p->lc = p->lp = p->pb = p->algo = p->fb = p->btMode = p->numHashBytes = p->numThreads = -1;
49
31.1k
  p->writeEndMark = 0;
50
31.1k
}
51
52
void LzmaEncProps_Normalize(CLzmaEncProps *p)
53
93.3k
{
54
93.3k
  int level = p->level;
55
93.3k
  if (level < 0) level = 5;
56
93.3k
  p->level = level;
57
  
58
93.3k
  if (p->dictSize == 0) p->dictSize = (level <= 5 ? (1 << (level * 2 + 14)) : (level <= 7 ? (1 << 25) : (1 << 26)));
59
93.3k
  if (p->dictSize > p->reduceSize)
60
0
  {
61
0
    unsigned i;
62
0
    UInt32 reduceSize = (UInt32)p->reduceSize;
63
0
    for (i = 11; i <= 30; i++)
64
0
    {
65
0
      if (reduceSize <= ((UInt32)2 << i)) { p->dictSize = ((UInt32)2 << i); break; }
66
0
      if (reduceSize <= ((UInt32)3 << i)) { p->dictSize = ((UInt32)3 << i); break; }
67
0
    }
68
0
  }
69
70
93.3k
  if (p->lc < 0) p->lc = 3;
71
93.3k
  if (p->lp < 0) p->lp = 0;
72
93.3k
  if (p->pb < 0) p->pb = 2;
73
74
93.3k
  if (p->algo < 0) p->algo = (level < 5 ? 0 : 1);
75
93.3k
  if (p->fb < 0) p->fb = (level < 7 ? 32 : 64);
76
93.3k
  if (p->btMode < 0) p->btMode = (p->algo == 0 ? 0 : 1);
77
93.3k
  if (p->numHashBytes < 0) p->numHashBytes = 4;
78
93.3k
  if (p->mc == 0) p->mc = (16 + (p->fb >> 1)) >> (p->btMode ? 0 : 1);
79
  
80
93.3k
  if (p->numThreads < 0)
81
77.7k
    p->numThreads =
82
      #ifndef _7ZIP_ST
83
      ((p->btMode && p->algo) ? 2 : 1);
84
      #else
85
77.7k
      1;
86
93.3k
      #endif
87
93.3k
}
88
89
UInt32 LzmaEncProps_GetDictSize(const CLzmaEncProps *props2)
90
7.77k
{
91
7.77k
  CLzmaEncProps props = *props2;
92
7.77k
  LzmaEncProps_Normalize(&props);
93
7.77k
  return props.dictSize;
94
7.77k
}
95
96
#if (_MSC_VER >= 1400)
97
/* BSR code is fast for some new CPUs */
98
/* #define LZMA_LOG_BSR */
99
#endif
100
101
#ifdef LZMA_LOG_BSR
102
103
#define kDicLogSizeMaxCompress 32
104
105
#define BSR2_RET(pos, res) { unsigned long zz; _BitScanReverse(&zz, (pos)); res = (zz + zz) + ((pos >> (zz - 1)) & 1); }
106
107
static unsigned GetPosSlot1(UInt32 pos)
108
{
109
  unsigned res;
110
  BSR2_RET(pos, res);
111
  return res;
112
}
113
#define GetPosSlot2(pos, res) { BSR2_RET(pos, res); }
114
#define GetPosSlot(pos, res) { if (pos < 2) res = pos; else BSR2_RET(pos, res); }
115
116
#else
117
118
105M
#define kNumLogBits (9 + sizeof(size_t) / 2)
119
/* #define kNumLogBits (11 + sizeof(size_t) / 8 * 3) */
120
121
15.5k
#define kDicLogSizeMaxCompress ((kNumLogBits - 1) * 2 + 7)
122
123
static void LzmaEnc_FastPosInit(Byte *g_FastPos)
124
7.77k
{
125
7.77k
  unsigned slot;
126
7.77k
  g_FastPos[0] = 0;
127
7.77k
  g_FastPos[1] = 1;
128
7.77k
  g_FastPos += 2;
129
  
130
194k
  for (slot = 2; slot < kNumLogBits * 2; slot++)
131
186k
  {
132
186k
    size_t k = ((size_t)1 << ((slot >> 1) - 1));
133
186k
    size_t j;
134
63.8M
    for (j = 0; j < k; j++)
135
63.6M
      g_FastPos[j] = (Byte)slot;
136
186k
    g_FastPos += k;
137
186k
  }
138
7.77k
}
139
140
/* we can use ((limit - pos) >> 31) only if (pos < ((UInt32)1 << 31)) */
141
/*
142
#define BSR2_RET(pos, res) { unsigned zz = 6 + ((kNumLogBits - 1) & \
143
  (0 - (((((UInt32)1 << (kNumLogBits + 6)) - 1) - pos) >> 31))); \
144
  res = p->g_FastPos[pos >> zz] + (zz * 2); }
145
*/
146
147
/*
148
#define BSR2_RET(pos, res) { unsigned zz = 6 + ((kNumLogBits - 1) & \
149
  (0 - (((((UInt32)1 << (kNumLogBits)) - 1) - (pos >> 6)) >> 31))); \
150
  res = p->g_FastPos[pos >> zz] + (zz * 2); }
151
*/
152
153
104M
#define BSR2_RET(pos, res) { unsigned zz = (pos < (1 << (kNumLogBits + 6))) ? 6 : 6 + kNumLogBits - 1; \
154
104M
  res = p->g_FastPos[pos >> zz] + (zz * 2); }
155
156
/*
157
#define BSR2_RET(pos, res) { res = (pos < (1 << (kNumLogBits + 6))) ? \
158
  p->g_FastPos[pos >> 6] + 12 : \
159
  p->g_FastPos[pos >> (6 + kNumLogBits - 1)] + (6 + (kNumLogBits - 1)) * 2; }
160
*/
161
162
35.7M
#define GetPosSlot1(pos) p->g_FastPos[pos]
163
99.7M
#define GetPosSlot2(pos, res) { BSR2_RET(pos, res); }
164
6.42M
#define GetPosSlot(pos, res) { if (pos < kNumFullDistances) res = p->g_FastPos[pos & (kNumFullDistances - 1)]; else BSR2_RET(pos, res); }
165
166
#endif
167
168
169
1.82G
#define LZMA_NUM_REPS 4
170
171
typedef UInt16 CState;
172
typedef UInt16 CExtra;
173
174
typedef struct
175
{
176
  UInt32 price;
177
  CState state;
178
  CExtra extra;
179
      // 0   : normal
180
      // 1   : LIT : MATCH
181
      // > 1 : MATCH (extra-1) : LIT : REP0 (len)
182
  UInt32 len;
183
  UInt32 dist;
184
  UInt32 reps[LZMA_NUM_REPS];
185
} COptimal;
186
187
188
// 18.06
189
663M
#define kNumOpts (1 << 11)
190
223M
#define kPackReserve (kNumOpts * 8)
191
// #define kNumOpts (1 << 12)
192
// #define kPackReserve (1 + kNumOpts * 2)
193
194
279M
#define kNumLenToPosStates 4
195
149M
#define kNumPosSlotBits 6
196
#define kDicLogSizeMin 0
197
139k
#define kDicLogSizeMax 32
198
#define kDistTableSizeMax (kDicLogSizeMax * 2)
199
200
158M
#define kNumAlignBits 4
201
158M
#define kAlignTableSize (1 << kNumAlignBits)
202
157M
#define kAlignMask (kAlignTableSize - 1)
203
204
6.54M
#define kStartPosModelIndex 4
205
282M
#define kEndPosModelIndex 14
206
288M
#define kNumFullDistances (1 << (kEndPosModelIndex >> 1))
207
208
typedef
209
#ifdef _LZMA_PROB32
210
  UInt32
211
#else
212
  UInt16
213
#endif
214
  CLzmaProb;
215
216
13.5M
#define LZMA_PB_MAX 4
217
31.1k
#define LZMA_LC_MAX 8
218
31.1k
#define LZMA_LP_MAX 4
219
220
13.4M
#define LZMA_NUM_PB_STATES_MAX (1 << LZMA_PB_MAX)
221
222
501M
#define kLenNumLowBits 3
223
475M
#define kLenNumLowSymbols (1 << kLenNumLowBits)
224
463M
#define kLenNumHighBits 8
225
459M
#define kLenNumHighSymbols (1 << kLenNumHighBits)
226
450M
#define kLenNumSymbolsTotal (kLenNumLowSymbols * 2 + kLenNumHighSymbols)
227
228
1.05G
#define LZMA_MATCH_LEN_MIN 2
229
450M
#define LZMA_MATCH_LEN_MAX (LZMA_MATCH_LEN_MIN + kLenNumSymbolsTotal - 1)
230
231
244k
#define kNumStates 12
232
233
234
typedef struct
235
{
236
  CLzmaProb low[LZMA_NUM_PB_STATES_MAX << (kLenNumLowBits + 1)];
237
  CLzmaProb high[kLenNumHighSymbols];
238
} CLenEnc;
239
240
241
typedef struct
242
{
243
  unsigned tableSize;
244
  UInt32 prices[LZMA_NUM_PB_STATES_MAX][kLenNumSymbolsTotal];
245
  // UInt32 prices1[LZMA_NUM_PB_STATES_MAX][kLenNumLowSymbols * 2];
246
  // UInt32 prices2[kLenNumSymbolsTotal];
247
} CLenPriceEnc;
248
249
#define GET_PRICE_LEN(p, posState, len) \
250
593M
    ((p)->prices[posState][(size_t)(len) - LZMA_MATCH_LEN_MIN])
251
252
/*
253
#define GET_PRICE_LEN(p, posState, len) \
254
    ((p)->prices2[(size_t)(len) - 2] + ((p)->prices1[posState][((len) - 2) & (kLenNumLowSymbols * 2 - 1)] & (((len) - 2 - kLenNumLowSymbols * 2) >> 9)))
255
*/
256
257
typedef struct
258
{
259
  UInt32 range;
260
  unsigned cache;
261
  UInt64 low;
262
  UInt64 cacheSize;
263
  Byte *buf;
264
  Byte *bufLim;
265
  Byte *bufBase;
266
  ISeqOutStream *outStream;
267
  UInt64 processed;
268
  SRes res;
269
} CRangeEnc;
270
271
272
typedef struct
273
{
274
  CLzmaProb *litProbs;
275
276
  unsigned state;
277
  UInt32 reps[LZMA_NUM_REPS];
278
279
  CLzmaProb posAlignEncoder[1 << kNumAlignBits];
280
  CLzmaProb isRep[kNumStates];
281
  CLzmaProb isRepG0[kNumStates];
282
  CLzmaProb isRepG1[kNumStates];
283
  CLzmaProb isRepG2[kNumStates];
284
  CLzmaProb isMatch[kNumStates][LZMA_NUM_PB_STATES_MAX];
285
  CLzmaProb isRep0Long[kNumStates][LZMA_NUM_PB_STATES_MAX];
286
287
  CLzmaProb posSlotEncoder[kNumLenToPosStates][1 << kNumPosSlotBits];
288
  CLzmaProb posEncoders[kNumFullDistances];
289
  
290
  CLenEnc lenProbs;
291
  CLenEnc repLenProbs;
292
293
} CSaveState;
294
295
296
typedef UInt32 CProbPrice;
297
298
299
typedef struct
300
{
301
  void *matchFinderObj;
302
  IMatchFinder matchFinder;
303
304
  unsigned optCur;
305
  unsigned optEnd;
306
307
  unsigned longestMatchLen;
308
  unsigned numPairs;
309
  UInt32 numAvail;
310
311
  unsigned state;
312
  unsigned numFastBytes;
313
  unsigned additionalOffset;
314
  UInt32 reps[LZMA_NUM_REPS];
315
  unsigned lpMask, pbMask;
316
  CLzmaProb *litProbs;
317
  CRangeEnc rc;
318
319
  UInt32 backRes;
320
321
  unsigned lc, lp, pb;
322
  unsigned lclp;
323
324
  BoolInt fastMode;
325
  BoolInt writeEndMark;
326
  BoolInt finished;
327
  BoolInt multiThread;
328
  BoolInt needInit;
329
  // BoolInt _maxMode;
330
331
  UInt64 nowPos64;
332
  
333
  unsigned matchPriceCount;
334
  // unsigned alignPriceCount;
335
  int repLenEncCounter;
336
337
  unsigned distTableSize;
338
339
  UInt32 dictSize;
340
  SRes result;
341
342
  #ifndef _7ZIP_ST
343
  BoolInt mtMode;
344
  // begin of CMatchFinderMt is used in LZ thread
345
  CMatchFinderMt matchFinderMt;
346
  // end of CMatchFinderMt is used in BT and HASH threads
347
  #endif
348
349
  CMatchFinder matchFinderBase;
350
351
  #ifndef _7ZIP_ST
352
  Byte pad[128];
353
  #endif
354
  
355
  // LZ thread
356
  CProbPrice ProbPrices[kBitModelTotal >> kNumMoveReducingBits];
357
358
  UInt32 matches[LZMA_MATCH_LEN_MAX * 2 + 2 + 1];
359
360
  UInt32 alignPrices[kAlignTableSize];
361
  UInt32 posSlotPrices[kNumLenToPosStates][kDistTableSizeMax];
362
  UInt32 distancesPrices[kNumLenToPosStates][kNumFullDistances];
363
364
  CLzmaProb posAlignEncoder[1 << kNumAlignBits];
365
  CLzmaProb isRep[kNumStates];
366
  CLzmaProb isRepG0[kNumStates];
367
  CLzmaProb isRepG1[kNumStates];
368
  CLzmaProb isRepG2[kNumStates];
369
  CLzmaProb isMatch[kNumStates][LZMA_NUM_PB_STATES_MAX];
370
  CLzmaProb isRep0Long[kNumStates][LZMA_NUM_PB_STATES_MAX];
371
  CLzmaProb posSlotEncoder[kNumLenToPosStates][1 << kNumPosSlotBits];
372
  CLzmaProb posEncoders[kNumFullDistances];
373
  
374
  CLenEnc lenProbs;
375
  CLenEnc repLenProbs;
376
377
  #ifndef LZMA_LOG_BSR
378
  Byte g_FastPos[1 << kNumLogBits];
379
  #endif
380
381
  CLenPriceEnc lenEnc;
382
  CLenPriceEnc repLenEnc;
383
384
  COptimal opt[kNumOpts];
385
386
  CSaveState saveState;
387
388
  #ifndef _7ZIP_ST
389
  Byte pad2[128];
390
  #endif
391
} CLzmaEnc;
392
393
394
395
247k
#define COPY_ARR(dest, src, arr) memcpy(dest->arr, src->arr, sizeof(src->arr));
396
397
void LzmaEnc_SaveState(CLzmaEncHandle pp)
398
20.2k
{
399
20.2k
  CLzmaEnc *p = (CLzmaEnc *)pp;
400
20.2k
  CSaveState *dest = &p->saveState;
401
  
402
20.2k
  dest->state = p->state;
403
  
404
20.2k
  dest->lenProbs = p->lenProbs;
405
20.2k
  dest->repLenProbs = p->repLenProbs;
406
407
20.2k
  COPY_ARR(dest, p, reps);
408
409
20.2k
  COPY_ARR(dest, p, posAlignEncoder);
410
20.2k
  COPY_ARR(dest, p, isRep);
411
20.2k
  COPY_ARR(dest, p, isRepG0);
412
20.2k
  COPY_ARR(dest, p, isRepG1);
413
20.2k
  COPY_ARR(dest, p, isRepG2);
414
20.2k
  COPY_ARR(dest, p, isMatch);
415
20.2k
  COPY_ARR(dest, p, isRep0Long);
416
20.2k
  COPY_ARR(dest, p, posSlotEncoder);
417
20.2k
  COPY_ARR(dest, p, posEncoders);
418
419
20.2k
  memcpy(dest->litProbs, p->litProbs, ((UInt32)0x300 << p->lclp) * sizeof(CLzmaProb));
420
20.2k
}
421
422
423
void LzmaEnc_RestoreState(CLzmaEncHandle pp)
424
4.42k
{
425
4.42k
  CLzmaEnc *dest = (CLzmaEnc *)pp;
426
4.42k
  const CSaveState *p = &dest->saveState;
427
428
4.42k
  dest->state = p->state;
429
430
4.42k
  dest->lenProbs = p->lenProbs;
431
4.42k
  dest->repLenProbs = p->repLenProbs;
432
  
433
4.42k
  COPY_ARR(dest, p, reps);
434
  
435
4.42k
  COPY_ARR(dest, p, posAlignEncoder);
436
4.42k
  COPY_ARR(dest, p, isRep);
437
4.42k
  COPY_ARR(dest, p, isRepG0);
438
4.42k
  COPY_ARR(dest, p, isRepG1);
439
4.42k
  COPY_ARR(dest, p, isRepG2);
440
4.42k
  COPY_ARR(dest, p, isMatch);
441
4.42k
  COPY_ARR(dest, p, isRep0Long);
442
4.42k
  COPY_ARR(dest, p, posSlotEncoder);
443
4.42k
  COPY_ARR(dest, p, posEncoders);
444
445
4.42k
  memcpy(dest->litProbs, p->litProbs, ((UInt32)0x300 << dest->lclp) * sizeof(CLzmaProb));
446
4.42k
}
447
448
449
450
SRes LzmaEnc_SetProps(CLzmaEncHandle pp, const CLzmaEncProps *props2)
451
15.5k
{
452
15.5k
  CLzmaEnc *p = (CLzmaEnc *)pp;
453
15.5k
  CLzmaEncProps props = *props2;
454
15.5k
  LzmaEncProps_Normalize(&props);
455
456
15.5k
  if (props.lc > LZMA_LC_MAX
457
15.5k
      || props.lp > LZMA_LP_MAX
458
15.5k
      || props.pb > LZMA_PB_MAX
459
15.5k
      || props.dictSize > ((UInt64)1 << kDicLogSizeMaxCompress)
460
15.5k
      || props.dictSize > kLzmaMaxHistorySize)
461
0
    return SZ_ERROR_PARAM;
462
463
15.5k
  p->dictSize = props.dictSize;
464
15.5k
  {
465
15.5k
    unsigned fb = props.fb;
466
15.5k
    if (fb < 5)
467
0
      fb = 5;
468
15.5k
    if (fb > LZMA_MATCH_LEN_MAX)
469
0
      fb = LZMA_MATCH_LEN_MAX;
470
15.5k
    p->numFastBytes = fb;
471
15.5k
  }
472
15.5k
  p->lc = props.lc;
473
15.5k
  p->lp = props.lp;
474
15.5k
  p->pb = props.pb;
475
15.5k
  p->fastMode = (props.algo == 0);
476
  // p->_maxMode = True;
477
15.5k
  p->matchFinderBase.btMode = (Byte)(props.btMode ? 1 : 0);
478
15.5k
  {
479
15.5k
    unsigned numHashBytes = 4;
480
15.5k
    if (props.btMode)
481
15.5k
    {
482
15.5k
      if (props.numHashBytes < 2)
483
0
        numHashBytes = 2;
484
15.5k
      else if (props.numHashBytes < 4)
485
0
        numHashBytes = props.numHashBytes;
486
15.5k
    }
487
15.5k
    p->matchFinderBase.numHashBytes = numHashBytes;
488
15.5k
  }
489
490
15.5k
  p->matchFinderBase.cutValue = props.mc;
491
492
15.5k
  p->writeEndMark = props.writeEndMark;
493
494
  #ifndef _7ZIP_ST
495
  /*
496
  if (newMultiThread != _multiThread)
497
  {
498
    ReleaseMatchFinder();
499
    _multiThread = newMultiThread;
500
  }
501
  */
502
  p->multiThread = (props.numThreads > 1);
503
  #endif
504
505
15.5k
  return SZ_OK;
506
15.5k
}
507
508
509
void LzmaEnc_SetDataSize(CLzmaEncHandle pp, UInt64 expectedDataSiize)
510
7.77k
{
511
7.77k
  CLzmaEnc *p = (CLzmaEnc *)pp;
512
7.77k
  p->matchFinderBase.expectedDataSize = expectedDataSiize;
513
7.77k
}
514
515
516
7.77k
#define kState_Start 0
517
17.5M
#define kState_LitAfterMatch 4
518
38.6M
#define kState_LitAfterRep   5
519
0
#define kState_MatchAfterLit 7
520
5.11M
#define kState_RepAfterLit   8
521
522
static const Byte kLiteralNextStates[kNumStates] = {0, 0, 0, 0, 1, 2, 3, 4,  5,  6,   4, 5};
523
static const Byte kMatchNextStates[kNumStates]   = {7, 7, 7, 7, 7, 7, 7, 10, 10, 10, 10, 10};
524
static const Byte kRepNextStates[kNumStates]     = {8, 8, 8, 8, 8, 8, 8, 11, 11, 11, 11, 11};
525
static const Byte kShortRepNextStates[kNumStates]= {9, 9, 9, 9, 9, 9, 9, 11, 11, 11, 11, 11};
526
527
390M
#define IsLitState(s) ((s) < 7)
528
170M
#define GetLenToPosState2(len) (((len) < kNumLenToPosStates - 1) ? (len) : kNumLenToPosStates - 1)
529
28.5M
#define GetLenToPosState(len) (((len) < kNumLenToPosStates + 1) ? (len) - 2 : kNumLenToPosStates - 1)
530
531
320M
#define kInfinityPrice (1 << 30)
532
533
static void RangeEnc_Construct(CRangeEnc *p)
534
7.77k
{
535
7.77k
  p->outStream = NULL;
536
7.77k
  p->bufBase = NULL;
537
7.77k
}
538
539
#define RangeEnc_GetProcessed(p)       ((p)->processed + ((p)->buf - (p)->bufBase) + (p)->cacheSize)
540
223M
#define RangeEnc_GetProcessed_sizet(p) ((size_t)(p)->processed + ((p)->buf - (p)->bufBase) + (size_t)(p)->cacheSize)
541
542
7.77k
#define RC_BUF_SIZE (1 << 16)
543
544
static int RangeEnc_Alloc(CRangeEnc *p, ISzAllocPtr alloc)
545
7.77k
{
546
7.77k
  if (!p->bufBase)
547
7.77k
  {
548
7.77k
    p->bufBase = (Byte *)ISzAlloc_Alloc(alloc, RC_BUF_SIZE);
549
7.77k
    if (!p->bufBase)
550
0
      return 0;
551
7.77k
    p->bufLim = p->bufBase + RC_BUF_SIZE;
552
7.77k
  }
553
7.77k
  return 1;
554
7.77k
}
555
556
static void RangeEnc_Free(CRangeEnc *p, ISzAllocPtr alloc)
557
7.77k
{
558
7.77k
  ISzAlloc_Free(alloc, p->bufBase);
559
7.77k
  p->bufBase = 0;
560
7.77k
}
561
562
static void RangeEnc_Init(CRangeEnc *p)
563
39.0k
{
564
  /* Stream.Init(); */
565
39.0k
  p->range = 0xFFFFFFFF;
566
39.0k
  p->cache = 0;
567
39.0k
  p->low = 0;
568
39.0k
  p->cacheSize = 0;
569
570
39.0k
  p->buf = p->bufBase;
571
572
39.0k
  p->processed = 0;
573
39.0k
  p->res = SZ_OK;
574
39.0k
}
575
576
MY_NO_INLINE static void RangeEnc_FlushStream(CRangeEnc *p)
577
20.2k
{
578
20.2k
  size_t num;
579
20.2k
  if (p->res != SZ_OK)
580
0
    return;
581
20.2k
  num = p->buf - p->bufBase;
582
20.2k
  if (num != ISeqOutStream_Write(p->outStream, p->bufBase, num))
583
0
    p->res = SZ_ERROR_WRITE;
584
20.2k
  p->processed += num;
585
20.2k
  p->buf = p->bufBase;
586
20.2k
}
587
588
MY_NO_INLINE static void MY_FAST_CALL RangeEnc_ShiftLow(CRangeEnc *p)
589
257M
{
590
257M
  UInt32 low = (UInt32)p->low;
591
257M
  unsigned high = (unsigned)(p->low >> 32);
592
257M
  p->low = (UInt32)(low << 8);
593
257M
  if (low < (UInt32)0xFF000000 || high != 0)
594
256M
  {
595
256M
    {
596
256M
      Byte *buf = p->buf;
597
256M
      *buf++ = (Byte)(p->cache + high);
598
256M
      p->cache = (unsigned)(low >> 24);
599
256M
      p->buf = buf;
600
256M
      if (buf == p->bufLim)
601
0
        RangeEnc_FlushStream(p);
602
256M
      if (p->cacheSize == 0)
603
255M
        return;
604
256M
    }
605
1.00M
    high += 0xFF;
606
1.00M
    for (;;)
607
1.00M
    {
608
1.00M
      Byte *buf = p->buf;
609
1.00M
      *buf++ = (Byte)(high);
610
1.00M
      p->buf = buf;
611
1.00M
      if (buf == p->bufLim)
612
0
        RangeEnc_FlushStream(p);
613
1.00M
      if (--p->cacheSize == 0)
614
1.00M
        return;
615
1.00M
    }
616
1.00M
  }
617
1.00M
  p->cacheSize++;
618
1.00M
}
619
620
static void RangeEnc_FlushData(CRangeEnc *p)
621
20.2k
{
622
20.2k
  int i;
623
121k
  for (i = 0; i < 5; i++)
624
101k
    RangeEnc_ShiftLow(p);
625
20.2k
}
626
627
2.44G
#define RC_NORM(p) if (range < kTopValue) { range <<= 8; RangeEnc_ShiftLow(p); }
628
629
#define RC_BIT_PRE(p, prob) \
630
2.40G
  ttt = *(prob); \
631
2.40G
  newBound = (range >> kNumBitModelTotalBits) * ttt;
632
633
// #define _LZMA_ENC_USE_BRANCH
634
635
#ifdef _LZMA_ENC_USE_BRANCH
636
637
#define RC_BIT(p, prob, bit) { \
638
  RC_BIT_PRE(p, prob) \
639
  if (bit == 0) { range = newBound; ttt += (kBitModelTotal - ttt) >> kNumMoveBits; } \
640
  else { (p)->low += newBound; range -= newBound; ttt -= ttt >> kNumMoveBits; } \
641
  *(prob) = (CLzmaProb)ttt; \
642
  RC_NORM(p) \
643
  }
644
645
#else
646
647
2.07G
#define RC_BIT(p, prob, bit) { \
648
2.07G
  UInt32 mask; \
649
2.07G
  RC_BIT_PRE(p, prob) \
650
2.07G
  mask = 0 - (UInt32)bit; \
651
2.07G
  range &= mask; \
652
2.07G
  mask &= newBound; \
653
2.07G
  range -= mask; \
654
2.07G
  (p)->low += mask; \
655
2.07G
  mask = (UInt32)bit - 1; \
656
2.07G
  range += newBound & mask; \
657
2.07G
  mask &= (kBitModelTotal - ((1 << kNumMoveBits) - 1)); \
658
2.07G
  mask += ((1 << kNumMoveBits) - 1); \
659
2.07G
  ttt += (Int32)(mask - ttt) >> kNumMoveBits; \
660
2.07G
  *(prob) = (CLzmaProb)ttt; \
661
2.07G
  RC_NORM(p) \
662
2.07G
  }
663
664
#endif
665
666
667
668
669
#define RC_BIT_0_BASE(p, prob) \
670
284M
  range = newBound; *(prob) = (CLzmaProb)(ttt + ((kBitModelTotal - ttt) >> kNumMoveBits));
671
672
#define RC_BIT_1_BASE(p, prob) \
673
48.2M
  range -= newBound; (p)->low += newBound; *(prob) = (CLzmaProb)(ttt - (ttt >> kNumMoveBits)); \
674
675
#define RC_BIT_0(p, prob) \
676
276M
  RC_BIT_0_BASE(p, prob) \
677
276M
  RC_NORM(p)
678
679
#define RC_BIT_1(p, prob) \
680
41.7M
  RC_BIT_1_BASE(p, prob) \
681
41.7M
  RC_NORM(p)
682
683
static void RangeEnc_EncodeBit_0(CRangeEnc *p, CLzmaProb *prob)
684
7.77k
{
685
7.77k
  UInt32 range, ttt, newBound;
686
7.77k
  range = p->range;
687
7.77k
  RC_BIT_PRE(p, prob)
688
7.77k
  RC_BIT_0(p, prob)
689
7.77k
  p->range = range;
690
7.77k
}
691
692
static void LitEnc_Encode(CRangeEnc *p, CLzmaProb *probs, UInt32 sym)
693
231M
{
694
231M
  UInt32 range = p->range;
695
231M
  sym |= 0x100;
696
231M
  do
697
1.84G
  {
698
1.84G
    UInt32 ttt, newBound;
699
    // RangeEnc_EncodeBit(p, probs + (sym >> 8), (sym >> 7) & 1);
700
1.84G
    CLzmaProb *prob = probs + (sym >> 8);
701
1.84G
    UInt32 bit = (sym >> 7) & 1;
702
1.84G
    sym <<= 1;
703
1.84G
    RC_BIT(p, prob, bit);
704
1.84G
  }
705
1.84G
  while (sym < 0x10000);
706
231M
  p->range = range;
707
231M
}
708
709
static void LitEnc_EncodeMatched(CRangeEnc *p, CLzmaProb *probs, UInt32 sym, UInt32 matchByte)
710
14.9M
{
711
14.9M
  UInt32 range = p->range;
712
14.9M
  UInt32 offs = 0x100;
713
14.9M
  sym |= 0x100;
714
14.9M
  do
715
119M
  {
716
119M
    UInt32 ttt, newBound;
717
119M
    CLzmaProb *prob;
718
119M
    UInt32 bit;
719
119M
    matchByte <<= 1;
720
    // RangeEnc_EncodeBit(p, probs + (offs + (matchByte & offs) + (sym >> 8)), (sym >> 7) & 1);
721
119M
    prob = probs + (offs + (matchByte & offs) + (sym >> 8));
722
119M
    bit = (sym >> 7) & 1;
723
119M
    sym <<= 1;
724
119M
    offs &= ~(matchByte ^ sym);
725
119M
    RC_BIT(p, prob, bit);
726
119M
  }
727
119M
  while (sym < 0x10000);
728
14.9M
  p->range = range;
729
14.9M
}
730
731
732
733
static void LzmaEnc_InitPriceTables(CProbPrice *ProbPrices)
734
7.77k
{
735
7.77k
  UInt32 i;
736
1.00M
  for (i = 0; i < (kBitModelTotal >> kNumMoveReducingBits); i++)
737
995k
  {
738
995k
    const unsigned kCyclesBits = kNumBitPriceShiftBits;
739
995k
    UInt32 w = (i << kNumMoveReducingBits) + (1 << (kNumMoveReducingBits - 1));
740
995k
    unsigned bitCount = 0;
741
995k
    unsigned j;
742
4.97M
    for (j = 0; j < kCyclesBits; j++)
743
3.98M
    {
744
3.98M
      w = w * w;
745
3.98M
      bitCount <<= 1;
746
53.6M
      while (w >= ((UInt32)1 << 16))
747
49.6M
      {
748
49.6M
        w >>= 1;
749
49.6M
        bitCount++;
750
49.6M
      }
751
3.98M
    }
752
995k
    ProbPrices[i] = (CProbPrice)((kNumBitModelTotalBits << kCyclesBits) - 15 - bitCount);
753
    // printf("\n%3d: %5d", i, ProbPrices[i]);
754
995k
  }
755
7.77k
}
756
757
758
#define GET_PRICE(prob, bit) \
759
19.2M
  p->ProbPrices[((prob) ^ (unsigned)(((-(int)(bit))) & (kBitModelTotal - 1))) >> kNumMoveReducingBits];
760
761
#define GET_PRICEa(prob, bit) \
762
1.01G
     ProbPrices[((prob) ^ (unsigned)((-((int)(bit))) & (kBitModelTotal - 1))) >> kNumMoveReducingBits];
763
764
348M
#define GET_PRICE_0(prob) p->ProbPrices[(prob) >> kNumMoveReducingBits]
765
458M
#define GET_PRICE_1(prob) p->ProbPrices[((prob) ^ (kBitModelTotal - 1)) >> kNumMoveReducingBits]
766
767
28.7M
#define GET_PRICEa_0(prob) ProbPrices[(prob) >> kNumMoveReducingBits]
768
28.7M
#define GET_PRICEa_1(prob) ProbPrices[((prob) ^ (kBitModelTotal - 1)) >> kNumMoveReducingBits]
769
770
771
static UInt32 LitEnc_GetPrice(const CLzmaProb *probs, UInt32 sym, const CProbPrice *ProbPrices)
772
36.8M
{
773
36.8M
  UInt32 price = 0;
774
36.8M
  sym |= 0x100;
775
36.8M
  do
776
294M
  {
777
294M
    unsigned bit = sym & 1;
778
294M
    sym >>= 1;
779
294M
    price += GET_PRICEa(probs[sym], bit);
780
294M
  }
781
294M
  while (sym >= 2);
782
36.8M
  return price;
783
36.8M
}
784
785
786
static UInt32 LitEnc_Matched_GetPrice(const CLzmaProb *probs, UInt32 sym, UInt32 matchByte, const CProbPrice *ProbPrices)
787
76.4M
{
788
76.4M
  UInt32 price = 0;
789
76.4M
  UInt32 offs = 0x100;
790
76.4M
  sym |= 0x100;
791
76.4M
  do
792
611M
  {
793
611M
    matchByte <<= 1;
794
611M
    price += GET_PRICEa(probs[offs + (matchByte & offs) + (sym >> 8)], (sym >> 7) & 1);
795
611M
    sym <<= 1;
796
611M
    offs &= ~(matchByte ^ sym);
797
611M
  }
798
611M
  while (sym < 0x10000);
799
76.4M
  return price;
800
76.4M
}
801
802
803
static void RcTree_ReverseEncode(CRangeEnc *rc, CLzmaProb *probs, unsigned numBits, unsigned sym)
804
1.44M
{
805
1.44M
  UInt32 range = rc->range;
806
1.44M
  unsigned m = 1;
807
1.44M
  do
808
4.40M
  {
809
4.40M
    UInt32 ttt, newBound;
810
4.40M
    unsigned bit = sym & 1;
811
    // RangeEnc_EncodeBit(rc, probs + m, bit);
812
4.40M
    sym >>= 1;
813
4.40M
    RC_BIT(rc, probs + m, bit);
814
4.40M
    m = (m << 1) | bit;
815
4.40M
  }
816
4.40M
  while (--numBits);
817
1.44M
  rc->range = range;
818
1.44M
}
819
820
821
822
static void LenEnc_Init(CLenEnc *p)
823
37.5k
{
824
37.5k
  unsigned i;
825
9.64M
  for (i = 0; i < (LZMA_NUM_PB_STATES_MAX << (kLenNumLowBits + 1)); i++)
826
9.61M
    p->low[i] = kProbInitValue;
827
9.64M
  for (i = 0; i < kLenNumHighSymbols; i++)
828
9.61M
    p->high[i] = kProbInitValue;
829
37.5k
}
830
831
static void LenEnc_Encode(CLenEnc *p, CRangeEnc *rc, unsigned sym, unsigned posState)
832
15.9M
{
833
15.9M
  UInt32 range, ttt, newBound;
834
15.9M
  CLzmaProb *probs = p->low;
835
15.9M
  range = rc->range;
836
15.9M
  RC_BIT_PRE(rc, probs);
837
15.9M
  if (sym >= kLenNumLowSymbols)
838
1.94M
  {
839
1.94M
    RC_BIT_1(rc, probs);
840
1.94M
    probs += kLenNumLowSymbols;
841
1.94M
    RC_BIT_PRE(rc, probs);
842
1.94M
    if (sym >= kLenNumLowSymbols * 2)
843
1.21M
    {
844
1.21M
      RC_BIT_1(rc, probs);
845
1.21M
      rc->range = range;
846
      // RcTree_Encode(rc, p->high, kLenNumHighBits, sym - kLenNumLowSymbols * 2);
847
1.21M
      LitEnc_Encode(rc, p->high, sym - kLenNumLowSymbols * 2);
848
1.21M
      return;
849
1.21M
    }
850
726k
    sym -= kLenNumLowSymbols;
851
726k
  }
852
853
  // RcTree_Encode(rc, probs + (posState << kLenNumLowBits), kLenNumLowBits, sym);
854
14.7M
  {
855
14.7M
    unsigned m;
856
14.7M
    unsigned bit;
857
14.7M
    RC_BIT_0(rc, probs);
858
14.7M
    probs += (posState << (1 + kLenNumLowBits));
859
14.7M
    bit = (sym >> 2)    ; RC_BIT(rc, probs + 1, bit); m = (1 << 1) + bit;
860
14.7M
    bit = (sym >> 1) & 1; RC_BIT(rc, probs + m, bit); m = (m << 1) + bit;
861
14.7M
    bit =  sym       & 1; RC_BIT(rc, probs + m, bit);
862
14.7M
    rc->range = range;
863
14.7M
  }
864
14.7M
}
865
866
static void SetPrices_3(const CLzmaProb *probs, UInt32 startPrice, UInt32 *prices, const CProbPrice *ProbPrices)
867
1.82M
{
868
1.82M
  unsigned i;
869
9.12M
  for (i = 0; i < 8; i += 2)
870
7.29M
  {
871
7.29M
    UInt32 price = startPrice;
872
7.29M
    UInt32 prob;
873
7.29M
    price += GET_PRICEa(probs[1           ], (i >> 2));
874
7.29M
    price += GET_PRICEa(probs[2 + (i >> 2)], (i >> 1) & 1);
875
7.29M
    prob = probs[4 + (i >> 1)];
876
7.29M
    prices[i    ] = price + GET_PRICEa_0(prob);
877
7.29M
    prices[i + 1] = price + GET_PRICEa_1(prob);
878
7.29M
  }
879
1.82M
}
880
881
882
MY_NO_INLINE static void MY_FAST_CALL LenPriceEnc_UpdateTables(
883
    CLenPriceEnc *p,
884
    unsigned numPosStates,
885
    const CLenEnc *enc,
886
    const CProbPrice *ProbPrices)
887
228k
{
888
228k
  UInt32 b;
889
 
890
228k
  {
891
228k
    unsigned prob = enc->low[0];
892
228k
    UInt32 a, c;
893
228k
    unsigned posState;
894
228k
    b = GET_PRICEa_1(prob);
895
228k
    a = GET_PRICEa_0(prob);
896
228k
    c = b + GET_PRICEa_0(enc->low[kLenNumLowSymbols]);
897
1.14M
    for (posState = 0; posState < numPosStates; posState++)
898
912k
    {
899
912k
      UInt32 *prices = p->prices[posState];
900
912k
      const CLzmaProb *probs = enc->low + (posState << (1 + kLenNumLowBits));
901
912k
      SetPrices_3(probs, a, prices, ProbPrices);
902
912k
      SetPrices_3(probs + kLenNumLowSymbols, c, prices + kLenNumLowSymbols, ProbPrices);
903
912k
    }
904
228k
  }
905
906
  /*
907
  {
908
    unsigned i;
909
    UInt32 b;
910
    a = GET_PRICEa_0(enc->low[0]);
911
    for (i = 0; i < kLenNumLowSymbols; i++)
912
      p->prices2[i] = a;
913
    a = GET_PRICEa_1(enc->low[0]);
914
    b = a + GET_PRICEa_0(enc->low[kLenNumLowSymbols]);
915
    for (i = kLenNumLowSymbols; i < kLenNumLowSymbols * 2; i++)
916
      p->prices2[i] = b;
917
    a += GET_PRICEa_1(enc->low[kLenNumLowSymbols]);
918
  }
919
  */
920
 
921
  // p->counter = numSymbols;
922
  // p->counter = 64;
923
924
228k
  {
925
228k
    unsigned i = p->tableSize;
926
    
927
228k
    if (i > kLenNumLowSymbols * 2)
928
228k
    {
929
228k
      const CLzmaProb *probs = enc->high;
930
228k
      UInt32 *prices = p->prices[0] + kLenNumLowSymbols * 2;
931
228k
      i -= kLenNumLowSymbols * 2 - 1;
932
228k
      i >>= 1;
933
228k
      b += GET_PRICEa_1(enc->low[kLenNumLowSymbols]);
934
228k
      do
935
1.82M
      {
936
        /*
937
        p->prices2[i] = a +
938
        // RcTree_GetPrice(enc->high, kLenNumHighBits, i - kLenNumLowSymbols * 2, ProbPrices);
939
        LitEnc_GetPrice(probs, i - kLenNumLowSymbols * 2, ProbPrices);
940
        */
941
        // UInt32 price = a + RcTree_GetPrice(probs, kLenNumHighBits - 1, sym, ProbPrices);
942
1.82M
        unsigned sym = --i + (1 << (kLenNumHighBits - 1));
943
1.82M
        UInt32 price = b;
944
1.82M
        do
945
12.7M
        {
946
12.7M
          unsigned bit = sym & 1;
947
12.7M
          sym >>= 1;
948
12.7M
          price += GET_PRICEa(probs[sym], bit);
949
12.7M
        }
950
12.7M
        while (sym >= 2);
951
952
1.82M
        {
953
1.82M
          unsigned prob = probs[(size_t)i + (1 << (kLenNumHighBits - 1))];
954
1.82M
          prices[(size_t)i * 2    ] = price + GET_PRICEa_0(prob);
955
1.82M
          prices[(size_t)i * 2 + 1] = price + GET_PRICEa_1(prob);
956
1.82M
        }
957
1.82M
      }
958
1.82M
      while (i);
959
960
228k
      {
961
228k
        unsigned posState;
962
228k
        size_t num = (p->tableSize - kLenNumLowSymbols * 2) * sizeof(p->prices[0][0]);
963
912k
        for (posState = 1; posState < numPosStates; posState++)
964
684k
          memcpy(p->prices[posState] + kLenNumLowSymbols * 2, p->prices[0] + kLenNumLowSymbols * 2, num);
965
228k
      }
966
228k
    }
967
228k
  }
968
228k
}
969
970
/*
971
  #ifdef SHOW_STAT
972
  g_STAT_OFFSET += num;
973
  printf("\n MovePos %u", num);
974
  #endif
975
*/
976
  
977
903k
#define MOVE_POS(p, num) { \
978
903k
    p->additionalOffset += (num); \
979
903k
    p->matchFinder.Skip(p->matchFinderObj, (UInt32)(num)); }
980
981
982
static unsigned ReadMatchDistances(CLzmaEnc *p, unsigned *numPairsRes)
983
312M
{
984
312M
  unsigned numPairs;
985
  
986
312M
  p->additionalOffset++;
987
312M
  p->numAvail = p->matchFinder.GetNumAvailableBytes(p->matchFinderObj);
988
312M
  numPairs = p->matchFinder.GetMatches(p->matchFinderObj, p->matches);
989
312M
  *numPairsRes = numPairs;
990
  
991
  #ifdef SHOW_STAT
992
  printf("\n i = %u numPairs = %u    ", g_STAT_OFFSET, numPairs / 2);
993
  g_STAT_OFFSET++;
994
  {
995
    unsigned i;
996
    for (i = 0; i < numPairs; i += 2)
997
      printf("%2u %6u   | ", p->matches[i], p->matches[i + 1]);
998
  }
999
  #endif
1000
  
1001
312M
  if (numPairs == 0)
1002
234M
    return 0;
1003
77.9M
  {
1004
77.9M
    unsigned len = p->matches[(size_t)numPairs - 2];
1005
77.9M
    if (len != p->numFastBytes)
1006
77.0M
      return len;
1007
890k
    {
1008
890k
      UInt32 numAvail = p->numAvail;
1009
890k
      if (numAvail > LZMA_MATCH_LEN_MAX)
1010
888k
        numAvail = LZMA_MATCH_LEN_MAX;
1011
890k
      {
1012
890k
        const Byte *p1 = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
1013
890k
        const Byte *p2 = p1 + len;
1014
890k
        ptrdiff_t dif = (ptrdiff_t)-1 - p->matches[(size_t)numPairs - 1];
1015
890k
        const Byte *lim = p1 + numAvail;
1016
92.5M
        for (; p2 != lim && *p2 == p2[dif]; p2++)
1017
91.7M
        {}
1018
890k
        return (unsigned)(p2 - p1);
1019
77.9M
      }
1020
77.9M
    }
1021
77.9M
  }
1022
77.9M
}
1023
1024
528M
#define MARK_LIT ((UInt32)(Int32)-1)
1025
1026
50.0M
#define MakeAs_Lit(p)       { (p)->dist = MARK_LIT; (p)->extra = 0; }
1027
11.0M
#define MakeAs_ShortRep(p)  { (p)->dist = 0; (p)->extra = 0; }
1028
47.3M
#define IsShortRep(p)       ((p)->dist == 0)
1029
1030
1031
#define GetPrice_ShortRep(p, state, posState) \
1032
12.0M
  ( GET_PRICE_0(p->isRepG0[state]) + GET_PRICE_0(p->isRep0Long[state][posState]))
1033
1034
56.9M
#define GetPrice_Rep_0(p, state, posState) ( \
1035
56.9M
    GET_PRICE_1(p->isMatch[state][posState]) \
1036
56.9M
  + GET_PRICE_1(p->isRep0Long[state][posState])) \
1037
56.9M
  + GET_PRICE_1(p->isRep[state]) \
1038
56.9M
  + GET_PRICE_0(p->isRepG0[state])
1039
  
1040
MY_FORCE_INLINE
1041
static UInt32 GetPrice_PureRep(const CLzmaEnc *p, unsigned repIndex, size_t state, size_t posState)
1042
65.5M
{
1043
65.5M
  UInt32 price;
1044
65.5M
  UInt32 prob = p->isRepG0[state];
1045
65.5M
  if (repIndex == 0)
1046
27.8M
  {
1047
27.8M
    price = GET_PRICE_0(prob);
1048
27.8M
    price += GET_PRICE_1(p->isRep0Long[state][posState]);
1049
27.8M
  }
1050
37.7M
  else
1051
37.7M
  {
1052
37.7M
    price = GET_PRICE_1(prob);
1053
37.7M
    prob = p->isRepG1[state];
1054
37.7M
    if (repIndex == 1)
1055
18.4M
      price += GET_PRICE_0(prob);
1056
19.2M
    else
1057
19.2M
    {
1058
19.2M
      price += GET_PRICE_1(prob);
1059
19.2M
      price += GET_PRICE(p->isRepG2[state], repIndex - 2);
1060
19.2M
    }
1061
37.7M
  }
1062
65.5M
  return price;
1063
65.5M
}
1064
1065
1066
static unsigned Backward(CLzmaEnc *p, unsigned cur)
1067
11.5M
{
1068
11.5M
  unsigned wr = cur + 1;
1069
11.5M
  p->optEnd = wr;
1070
1071
11.5M
  for (;;)
1072
47.5M
  {
1073
47.5M
    UInt32 dist = p->opt[cur].dist;
1074
47.5M
    unsigned len = (unsigned)p->opt[cur].len;
1075
47.5M
    unsigned extra = (unsigned)p->opt[cur].extra;
1076
47.5M
    cur -= len;
1077
1078
47.5M
    if (extra)
1079
2.62M
    {
1080
2.62M
      wr--;
1081
2.62M
      p->opt[wr].len = (UInt32)len;
1082
2.62M
      cur -= extra;
1083
2.62M
      len = extra;
1084
2.62M
      if (extra == 1)
1085
85.7k
      {
1086
85.7k
        p->opt[wr].dist = dist;
1087
85.7k
        dist = MARK_LIT;
1088
85.7k
      }
1089
2.53M
      else
1090
2.53M
      {
1091
2.53M
        p->opt[wr].dist = 0;
1092
2.53M
        len--;
1093
2.53M
        wr--;
1094
2.53M
        p->opt[wr].dist = MARK_LIT;
1095
2.53M
        p->opt[wr].len = 1;
1096
2.53M
      }
1097
2.62M
    }
1098
1099
47.5M
    if (cur == 0)
1100
11.5M
    {
1101
11.5M
      p->backRes = dist;
1102
11.5M
      p->optCur = wr;
1103
11.5M
      return len;
1104
11.5M
    }
1105
    
1106
35.9M
    wr--;
1107
35.9M
    p->opt[wr].dist = dist;
1108
35.9M
    p->opt[wr].len = (UInt32)len;
1109
35.9M
  }
1110
11.5M
}
1111
1112
1113
1114
#define LIT_PROBS(pos, prevByte) \
1115
358M
  (p->litProbs + (UInt32)3 * (((((pos) << 8) + (prevByte)) & p->lpMask) << p->lc))
1116
1117
1118
static unsigned GetOptimum(CLzmaEnc *p, UInt32 position)
1119
224M
{
1120
224M
  unsigned last, cur;
1121
224M
  UInt32 reps[LZMA_NUM_REPS];
1122
224M
  unsigned repLens[LZMA_NUM_REPS];
1123
224M
  UInt32 *matches;
1124
1125
224M
  {
1126
224M
    UInt32 numAvail;
1127
224M
    unsigned numPairs, mainLen, repMaxIndex, i, posState;
1128
224M
    UInt32 matchPrice, repMatchPrice;
1129
224M
    const Byte *data;
1130
224M
    Byte curByte, matchByte;
1131
    
1132
224M
    p->optCur = p->optEnd = 0;
1133
    
1134
224M
    if (p->additionalOffset == 0)
1135
223M
      mainLen = ReadMatchDistances(p, &numPairs);
1136
388k
    else
1137
388k
    {
1138
388k
      mainLen = p->longestMatchLen;
1139
388k
      numPairs = p->numPairs;
1140
388k
    }
1141
    
1142
224M
    numAvail = p->numAvail;
1143
224M
    if (numAvail < 2)
1144
4.45k
    {
1145
4.45k
      p->backRes = MARK_LIT;
1146
4.45k
      return 1;
1147
4.45k
    }
1148
224M
    if (numAvail > LZMA_MATCH_LEN_MAX)
1149
223M
      numAvail = LZMA_MATCH_LEN_MAX;
1150
    
1151
224M
    data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
1152
224M
    repMaxIndex = 0;
1153
    
1154
1.12G
    for (i = 0; i < LZMA_NUM_REPS; i++)
1155
897M
    {
1156
897M
      unsigned len;
1157
897M
      const Byte *data2;
1158
897M
      reps[i] = p->reps[i];
1159
897M
      data2 = data - reps[i];
1160
897M
      if (data[0] != data2[0] || data[1] != data2[1])
1161
894M
      {
1162
894M
        repLens[i] = 0;
1163
894M
        continue;
1164
894M
      }
1165
271M
      for (len = 2; len < numAvail && data[len] == data2[len]; len++)
1166
269M
      {}
1167
2.61M
      repLens[i] = len;
1168
2.61M
      if (len > repLens[repMaxIndex])
1169
639k
        repMaxIndex = i;
1170
2.61M
    }
1171
    
1172
224M
    if (repLens[repMaxIndex] >= p->numFastBytes)
1173
775k
    {
1174
775k
      unsigned len;
1175
775k
      p->backRes = (UInt32)repMaxIndex;
1176
775k
      len = repLens[repMaxIndex];
1177
775k
      MOVE_POS(p, len - 1)
1178
775k
      return len;
1179
775k
    }
1180
    
1181
223M
    matches = p->matches;
1182
    
1183
223M
    if (mainLen >= p->numFastBytes)
1184
125k
    {
1185
125k
      p->backRes = matches[(size_t)numPairs - 1] + LZMA_NUM_REPS;
1186
125k
      MOVE_POS(p, mainLen - 1)
1187
125k
      return mainLen;
1188
125k
    }
1189
    
1190
223M
    curByte = *data;
1191
223M
    matchByte = *(data - reps[0]);
1192
1193
223M
    last = repLens[repMaxIndex];
1194
223M
    if (last <= mainLen)
1195
223M
      last = mainLen;
1196
    
1197
223M
    if (last < 2 && curByte != matchByte)
1198
210M
    {
1199
210M
      p->backRes = MARK_LIT;
1200
210M
      return 1;
1201
210M
    }
1202
    
1203
13.1M
    p->opt[0].state = (CState)p->state;
1204
    
1205
13.1M
    posState = (position & p->pbMask);
1206
    
1207
13.1M
    {
1208
13.1M
      const CLzmaProb *probs = LIT_PROBS(position, *(data - 1));
1209
13.1M
      p->opt[1].price = GET_PRICE_0(p->isMatch[p->state][posState]) +
1210
13.1M
        (!IsLitState(p->state) ?
1211
1.26M
          LitEnc_Matched_GetPrice(probs, curByte, matchByte, p->ProbPrices) :
1212
13.1M
          LitEnc_GetPrice(probs, curByte, p->ProbPrices));
1213
13.1M
    }
1214
1215
13.1M
    MakeAs_Lit(&p->opt[1]);
1216
    
1217
13.1M
    matchPrice = GET_PRICE_1(p->isMatch[p->state][posState]);
1218
13.1M
    repMatchPrice = matchPrice + GET_PRICE_1(p->isRep[p->state]);
1219
    
1220
    // 18.06
1221
13.1M
    if (matchByte == curByte && repLens[0] == 0)
1222
2.03M
    {
1223
2.03M
      UInt32 shortRepPrice = repMatchPrice + GetPrice_ShortRep(p, p->state, posState);
1224
2.03M
      if (shortRepPrice < p->opt[1].price)
1225
1.66M
      {
1226
1.66M
        p->opt[1].price = shortRepPrice;
1227
1.66M
        MakeAs_ShortRep(&p->opt[1]);
1228
1.66M
      }
1229
2.03M
      if (last < 2)
1230
1.62M
      {
1231
1.62M
        p->backRes = p->opt[1].dist;
1232
1.62M
        return 1;
1233
1.62M
      }
1234
2.03M
    }
1235
   
1236
11.5M
    p->opt[1].len = 1;
1237
    
1238
11.5M
    p->opt[0].reps[0] = reps[0];
1239
11.5M
    p->opt[0].reps[1] = reps[1];
1240
11.5M
    p->opt[0].reps[2] = reps[2];
1241
11.5M
    p->opt[0].reps[3] = reps[3];
1242
    
1243
    // ---------- REP ----------
1244
    
1245
57.6M
    for (i = 0; i < LZMA_NUM_REPS; i++)
1246
46.1M
    {
1247
46.1M
      unsigned repLen = repLens[i];
1248
46.1M
      UInt32 price;
1249
46.1M
      if (repLen < 2)
1250
45.2M
        continue;
1251
868k
      price = repMatchPrice + GetPrice_PureRep(p, i, p->state, posState);
1252
868k
      do
1253
2.69M
      {
1254
2.69M
        UInt32 price2 = price + GET_PRICE_LEN(&p->repLenEnc, posState, repLen);
1255
2.69M
        COptimal *opt = &p->opt[repLen];
1256
2.69M
        if (price2 < opt->price)
1257
2.27M
        {
1258
2.27M
          opt->price = price2;
1259
2.27M
          opt->len = (UInt32)repLen;
1260
2.27M
          opt->dist = (UInt32)i;
1261
2.27M
          opt->extra = 0;
1262
2.27M
        }
1263
2.69M
      }
1264
2.69M
      while (--repLen >= 2);
1265
868k
    }
1266
    
1267
    
1268
    // ---------- MATCH ----------
1269
11.5M
    {
1270
11.5M
      unsigned len = repLens[0] + 1;
1271
11.5M
      if (len <= mainLen)
1272
11.3M
      {
1273
11.3M
        unsigned offs = 0;
1274
11.3M
        UInt32 normalMatchPrice = matchPrice + GET_PRICE_0(p->isRep[p->state]);
1275
1276
11.3M
        if (len < 2)
1277
11.2M
          len = 2;
1278
54.6k
        else
1279
104k
          while (len > matches[offs])
1280
50.3k
            offs += 2;
1281
    
1282
11.3M
        for (; ; len++)
1283
22.0M
        {
1284
22.0M
          COptimal *opt;
1285
22.0M
          UInt32 dist = matches[(size_t)offs + 1];
1286
22.0M
          UInt32 price = normalMatchPrice + GET_PRICE_LEN(&p->lenEnc, posState, len);
1287
22.0M
          unsigned lenToPosState = GetLenToPosState(len);
1288
       
1289
22.0M
          if (dist < kNumFullDistances)
1290
3.73M
            price += p->distancesPrices[lenToPosState][dist & (kNumFullDistances - 1)];
1291
18.3M
          else
1292
18.3M
          {
1293
18.3M
            unsigned slot;
1294
18.3M
            GetPosSlot2(dist, slot);
1295
18.3M
            price += p->alignPrices[dist & kAlignMask];
1296
18.3M
            price += p->posSlotPrices[lenToPosState][slot];
1297
18.3M
          }
1298
          
1299
22.0M
          opt = &p->opt[len];
1300
          
1301
22.0M
          if (price < opt->price)
1302
20.6M
          {
1303
20.6M
            opt->price = price;
1304
20.6M
            opt->len = (UInt32)len;
1305
20.6M
            opt->dist = dist + LZMA_NUM_REPS;
1306
20.6M
            opt->extra = 0;
1307
20.6M
          }
1308
          
1309
22.0M
          if (len == matches[offs])
1310
12.8M
          {
1311
12.8M
            offs += 2;
1312
12.8M
            if (offs == numPairs)
1313
11.3M
              break;
1314
12.8M
          }
1315
22.0M
        }
1316
11.3M
      }
1317
11.5M
    }
1318
    
1319
1320
11.5M
    cur = 0;
1321
1322
    #ifdef SHOW_STAT2
1323
    /* if (position >= 0) */
1324
    {
1325
      unsigned i;
1326
      printf("\n pos = %4X", position);
1327
      for (i = cur; i <= last; i++)
1328
      printf("\nprice[%4X] = %u", position - cur + i, p->opt[i].price);
1329
    }
1330
    #endif
1331
11.5M
  }
1332
1333
1334
  
1335
  // ---------- Optimal Parsing ----------
1336
1337
0
  for (;;)
1338
99.9M
  {
1339
99.9M
    unsigned numAvail;
1340
99.9M
    UInt32 numAvailFull;
1341
99.9M
    unsigned newLen, numPairs, prev, state, posState, startLen;
1342
99.9M
    UInt32 litPrice, matchPrice, repMatchPrice;
1343
99.9M
    BoolInt nextIsLit;
1344
99.9M
    Byte curByte, matchByte;
1345
99.9M
    const Byte *data;
1346
99.9M
    COptimal *curOpt, *nextOpt;
1347
1348
99.9M
    if (++cur == last)
1349
11.1M
      break;
1350
    
1351
    // 18.06
1352
88.8M
    if (cur >= kNumOpts - 64)
1353
6.39k
    {
1354
6.39k
      unsigned j, best;
1355
6.39k
      UInt32 price = p->opt[cur].price;
1356
6.39k
      best = cur;
1357
74.5k
      for (j = cur + 1; j <= last; j++)
1358
68.1k
      {
1359
68.1k
        UInt32 price2 = p->opt[j].price;
1360
68.1k
        if (price >= price2)
1361
6.34k
        {
1362
6.34k
          price = price2;
1363
6.34k
          best = j;
1364
6.34k
        }
1365
68.1k
      }
1366
6.39k
      {
1367
6.39k
        unsigned delta = best - cur;
1368
6.39k
        if (delta != 0)
1369
1.98k
        {
1370
1.98k
          MOVE_POS(p, delta);
1371
1.98k
        }
1372
6.39k
      }
1373
6.39k
      cur = best;
1374
6.39k
      break;
1375
6.39k
    }
1376
1377
88.8M
    newLen = ReadMatchDistances(p, &numPairs);
1378
    
1379
88.8M
    if (newLen >= p->numFastBytes)
1380
388k
    {
1381
388k
      p->numPairs = numPairs;
1382
388k
      p->longestMatchLen = newLen;
1383
388k
      break;
1384
388k
    }
1385
    
1386
88.4M
    curOpt = &p->opt[cur];
1387
1388
88.4M
    position++;
1389
1390
    // we need that check here, if skip_items in p->opt are possible
1391
    /*
1392
    if (curOpt->price >= kInfinityPrice)
1393
      continue;
1394
    */
1395
1396
88.4M
    prev = cur - curOpt->len;
1397
1398
88.4M
    if (curOpt->len == 1)
1399
47.3M
    {
1400
47.3M
      state = (unsigned)p->opt[prev].state;
1401
47.3M
      if (IsShortRep(curOpt))
1402
9.19M
        state = kShortRepNextStates[state];
1403
38.1M
      else
1404
38.1M
        state = kLiteralNextStates[state];
1405
47.3M
    }
1406
41.0M
    else
1407
41.0M
    {
1408
41.0M
      const COptimal *prevOpt;
1409
41.0M
      UInt32 b0;
1410
41.0M
      UInt32 dist = curOpt->dist;
1411
1412
41.0M
      if (curOpt->extra)
1413
4.98M
      {
1414
4.98M
        prev -= (unsigned)curOpt->extra;
1415
4.98M
        state = kState_RepAfterLit;
1416
4.98M
        if (curOpt->extra == 1)
1417
134k
          state = (dist < LZMA_NUM_REPS ? kState_RepAfterLit : kState_MatchAfterLit);
1418
4.98M
      }
1419
36.1M
      else
1420
36.1M
      {
1421
36.1M
        state = (unsigned)p->opt[prev].state;
1422
36.1M
        if (dist < LZMA_NUM_REPS)
1423
23.4M
          state = kRepNextStates[state];
1424
12.7M
        else
1425
12.7M
          state = kMatchNextStates[state];
1426
36.1M
      }
1427
1428
41.0M
      prevOpt = &p->opt[prev];
1429
41.0M
      b0 = prevOpt->reps[0];
1430
1431
41.0M
      if (dist < LZMA_NUM_REPS)
1432
27.8M
      {
1433
27.8M
        if (dist == 0)
1434
17.9M
        {
1435
17.9M
          reps[0] = b0;
1436
17.9M
          reps[1] = prevOpt->reps[1];
1437
17.9M
          reps[2] = prevOpt->reps[2];
1438
17.9M
          reps[3] = prevOpt->reps[3];
1439
17.9M
        }
1440
9.92M
        else
1441
9.92M
        {
1442
9.92M
          reps[1] = b0;
1443
9.92M
          b0 = prevOpt->reps[1];
1444
9.92M
          if (dist == 1)
1445
7.09M
          {
1446
7.09M
            reps[0] = b0;
1447
7.09M
            reps[2] = prevOpt->reps[2];
1448
7.09M
            reps[3] = prevOpt->reps[3];
1449
7.09M
          }
1450
2.83M
          else
1451
2.83M
          {
1452
2.83M
            reps[2] = b0;
1453
2.83M
            reps[0] = prevOpt->reps[dist];
1454
2.83M
            reps[3] = prevOpt->reps[dist ^ 1];
1455
2.83M
          }
1456
9.92M
        }
1457
27.8M
      }
1458
13.2M
      else
1459
13.2M
      {
1460
13.2M
        reps[0] = (dist - LZMA_NUM_REPS + 1);
1461
13.2M
        reps[1] = b0;
1462
13.2M
        reps[2] = prevOpt->reps[1];
1463
13.2M
        reps[3] = prevOpt->reps[2];
1464
13.2M
      }
1465
41.0M
    }
1466
    
1467
88.4M
    curOpt->state = (CState)state;
1468
88.4M
    curOpt->reps[0] = reps[0];
1469
88.4M
    curOpt->reps[1] = reps[1];
1470
88.4M
    curOpt->reps[2] = reps[2];
1471
88.4M
    curOpt->reps[3] = reps[3];
1472
1473
88.4M
    data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
1474
88.4M
    curByte = *data;
1475
88.4M
    matchByte = *(data - reps[0]);
1476
1477
88.4M
    posState = (position & p->pbMask);
1478
1479
    /*
1480
    The order of Price checks:
1481
       <  LIT
1482
       <= SHORT_REP
1483
       <  LIT : REP_0
1484
       <  REP    [ : LIT : REP_0 ]
1485
       <  MATCH  [ : LIT : REP_0 ]
1486
    */
1487
1488
88.4M
    {
1489
88.4M
      UInt32 curPrice = curOpt->price;
1490
88.4M
      unsigned prob = p->isMatch[state][posState];
1491
88.4M
      matchPrice = curPrice + GET_PRICE_1(prob);
1492
88.4M
      litPrice = curPrice + GET_PRICE_0(prob);
1493
88.4M
    }
1494
1495
88.4M
    nextOpt = &p->opt[(size_t)cur + 1];
1496
88.4M
    nextIsLit = False;
1497
1498
    // here we can allow skip_items in p->opt, if we don't check (nextOpt->price < kInfinityPrice)
1499
    // 18.new.06
1500
88.4M
    if ((nextOpt->price < kInfinityPrice
1501
        // && !IsLitState(state)
1502
88.4M
        && matchByte == curByte)
1503
88.4M
        || litPrice > nextOpt->price
1504
88.4M
        )
1505
44.5M
      litPrice = 0;
1506
43.8M
    else
1507
43.8M
    {
1508
43.8M
      const CLzmaProb *probs = LIT_PROBS(position, *(data - 1));
1509
43.8M
      litPrice += (!IsLitState(state) ?
1510
18.9M
          LitEnc_Matched_GetPrice(probs, curByte, matchByte, p->ProbPrices) :
1511
43.8M
          LitEnc_GetPrice(probs, curByte, p->ProbPrices));
1512
      
1513
43.8M
      if (litPrice < nextOpt->price)
1514
36.8M
      {
1515
36.8M
        nextOpt->price = litPrice;
1516
36.8M
        nextOpt->len = 1;
1517
36.8M
        MakeAs_Lit(nextOpt);
1518
36.8M
        nextIsLit = True;
1519
36.8M
      }
1520
43.8M
    }
1521
1522
88.4M
    repMatchPrice = matchPrice + GET_PRICE_1(p->isRep[state]);
1523
    
1524
88.4M
    numAvailFull = p->numAvail;
1525
88.4M
    {
1526
88.4M
      unsigned temp = kNumOpts - 1 - cur;
1527
88.4M
      if (numAvailFull > temp)
1528
86.9M
        numAvailFull = (UInt32)temp;
1529
88.4M
    }
1530
1531
    // 18.06
1532
    // ---------- SHORT_REP ----------
1533
88.4M
    if (IsLitState(state)) // 18.new
1534
38.1M
    if (matchByte == curByte)
1535
12.8M
    if (repMatchPrice < nextOpt->price) // 18.new
1536
    // if (numAvailFull < 2 || data[1] != *(data - reps[0] + 1))
1537
10.0M
    if (
1538
        // nextOpt->price >= kInfinityPrice ||
1539
10.0M
        nextOpt->len < 2   // we can check nextOpt->len, if skip items are not allowed in p->opt
1540
10.0M
        || (nextOpt->dist != 0
1541
            // && nextOpt->extra <= 1 // 17.old
1542
8.95M
            )
1543
10.0M
        )
1544
10.0M
    {
1545
10.0M
      UInt32 shortRepPrice = repMatchPrice + GetPrice_ShortRep(p, state, posState);
1546
      // if (shortRepPrice <= nextOpt->price) // 17.old
1547
10.0M
      if (shortRepPrice < nextOpt->price)  // 18.new
1548
9.35M
      {
1549
9.35M
        nextOpt->price = shortRepPrice;
1550
9.35M
        nextOpt->len = 1;
1551
9.35M
        MakeAs_ShortRep(nextOpt);
1552
9.35M
        nextIsLit = False;
1553
9.35M
      }
1554
10.0M
    }
1555
    
1556
88.4M
    if (numAvailFull < 2)
1557
3.04k
      continue;
1558
88.4M
    numAvail = (numAvailFull <= p->numFastBytes ? numAvailFull : p->numFastBytes);
1559
1560
    // numAvail <= p->numFastBytes
1561
1562
    // ---------- LIT : REP_0 ----------
1563
1564
88.4M
    if (!nextIsLit
1565
88.4M
        && litPrice != 0 // 18.new
1566
88.4M
        && matchByte != curByte
1567
88.4M
        && numAvailFull > 2)
1568
7.02M
    {
1569
7.02M
      const Byte *data2 = data - reps[0];
1570
7.02M
      if (data[1] == data2[1] && data[2] == data2[2])
1571
733k
      {
1572
733k
        unsigned len;
1573
733k
        unsigned limit = p->numFastBytes + 1;
1574
733k
        if (limit > numAvailFull)
1575
2.62k
          limit = numAvailFull;
1576
2.75M
        for (len = 3; len < limit && data[len] == data2[len]; len++)
1577
2.02M
        {}
1578
        
1579
733k
        {
1580
733k
          unsigned state2 = kLiteralNextStates[state];
1581
733k
          unsigned posState2 = (position + 1) & p->pbMask;
1582
733k
          UInt32 price = litPrice + GetPrice_Rep_0(p, state2, posState2);
1583
733k
          {
1584
733k
            unsigned offset = cur + len;
1585
1586
733k
            if (last < offset)
1587
45.4k
              last = offset;
1588
          
1589
            // do
1590
733k
            {
1591
733k
              UInt32 price2;
1592
733k
              COptimal *opt;
1593
733k
              len--;
1594
              // price2 = price + GetPrice_Len_Rep_0(p, len, state2, posState2);
1595
733k
              price2 = price + GET_PRICE_LEN(&p->repLenEnc, posState2, len);
1596
1597
733k
              opt = &p->opt[offset];
1598
              // offset--;
1599
733k
              if (price2 < opt->price)
1600
220k
              {
1601
220k
                opt->price = price2;
1602
220k
                opt->len = (UInt32)len;
1603
220k
                opt->dist = 0;
1604
220k
                opt->extra = 1;
1605
220k
              }
1606
733k
            }
1607
            // while (len >= 3);
1608
733k
          }
1609
733k
        }
1610
733k
      }
1611
7.02M
    }
1612
    
1613
88.4M
    startLen = 2; /* speed optimization */
1614
1615
88.4M
    {
1616
      // ---------- REP ----------
1617
88.4M
      unsigned repIndex = 0; // 17.old
1618
      // unsigned repIndex = IsLitState(state) ? 0 : 1; // 18.notused
1619
442M
      for (; repIndex < LZMA_NUM_REPS; repIndex++)
1620
353M
      {
1621
353M
        unsigned len;
1622
353M
        UInt32 price;
1623
353M
        const Byte *data2 = data - reps[repIndex];
1624
353M
        if (data[0] != data2[0] || data[1] != data2[1])
1625
288M
          continue;
1626
        
1627
301M
        for (len = 2; len < numAvail && data[len] == data2[len]; len++)
1628
237M
        {}
1629
        
1630
        // if (len < startLen) continue; // 18.new: speed optimization
1631
1632
64.7M
        {
1633
64.7M
          unsigned offset = cur + len;
1634
64.7M
          if (last < offset)
1635
527k
            last = offset;
1636
64.7M
        }
1637
64.7M
        {
1638
64.7M
          unsigned len2 = len;
1639
64.7M
          price = repMatchPrice + GetPrice_PureRep(p, repIndex, state, posState);
1640
64.7M
          do
1641
301M
          {
1642
301M
            UInt32 price2 = price + GET_PRICE_LEN(&p->repLenEnc, posState, len2);
1643
301M
            COptimal *opt = &p->opt[cur + len2];
1644
301M
            if (price2 < opt->price)
1645
33.0M
            {
1646
33.0M
              opt->price = price2;
1647
33.0M
              opt->len = (UInt32)len2;
1648
33.0M
              opt->dist = (UInt32)repIndex;
1649
33.0M
              opt->extra = 0;
1650
33.0M
            }
1651
301M
          }
1652
301M
          while (--len2 >= 2);
1653
64.7M
        }
1654
        
1655
64.7M
        if (repIndex == 0) startLen = len + 1;  // 17.old
1656
        // startLen = len + 1; // 18.new
1657
1658
        /* if (_maxMode) */
1659
64.7M
        {
1660
          // ---------- REP : LIT : REP_0 ----------
1661
          // numFastBytes + 1 + numFastBytes
1662
1663
64.7M
          unsigned len2 = len + 1;
1664
64.7M
          unsigned limit = len2 + p->numFastBytes;
1665
64.7M
          if (limit > numAvailFull)
1666
143k
            limit = numAvailFull;
1667
          
1668
64.7M
          len2 += 2;
1669
64.7M
          if (len2 <= limit)
1670
64.6M
          if (data[len2 - 2] == data2[len2 - 2])
1671
41.6M
          if (data[len2 - 1] == data2[len2 - 1])
1672
38.6M
          {
1673
38.6M
            unsigned state2 = kRepNextStates[state];
1674
38.6M
            unsigned posState2 = (position + len) & p->pbMask;
1675
38.6M
            price += GET_PRICE_LEN(&p->repLenEnc, posState, len)
1676
38.6M
                + GET_PRICE_0(p->isMatch[state2][posState2])
1677
38.6M
                + LitEnc_Matched_GetPrice(LIT_PROBS(position + len, data[(size_t)len - 1]),
1678
38.6M
                    data[len], data2[len], p->ProbPrices);
1679
            
1680
            // state2 = kLiteralNextStates[state2];
1681
38.6M
            state2 = kState_LitAfterRep;
1682
38.6M
            posState2 = (posState2 + 1) & p->pbMask;
1683
1684
1685
38.6M
            price += GetPrice_Rep_0(p, state2, posState2);
1686
1687
249M
          for (; len2 < limit && data[len2] == data2[len2]; len2++)
1688
211M
          {}
1689
          
1690
38.6M
          len2 -= len;
1691
          // if (len2 >= 3)
1692
38.6M
          {
1693
38.6M
            {
1694
38.6M
              unsigned offset = cur + len + len2;
1695
1696
38.6M
              if (last < offset)
1697
7.43M
                last = offset;
1698
              // do
1699
38.6M
              {
1700
38.6M
                UInt32 price2;
1701
38.6M
                COptimal *opt;
1702
38.6M
                len2--;
1703
                // price2 = price + GetPrice_Len_Rep_0(p, len2, state2, posState2);
1704
38.6M
                price2 = price + GET_PRICE_LEN(&p->repLenEnc, posState2, len2);
1705
1706
38.6M
                opt = &p->opt[offset];
1707
                // offset--;
1708
38.6M
                if (price2 < opt->price)
1709
9.63M
                {
1710
9.63M
                  opt->price = price2;
1711
9.63M
                  opt->len = (UInt32)len2;
1712
9.63M
                  opt->extra = (CExtra)(len + 1);
1713
9.63M
                  opt->dist = (UInt32)repIndex;
1714
9.63M
                }
1715
38.6M
              }
1716
              // while (len2 >= 3);
1717
38.6M
            }
1718
38.6M
          }
1719
38.6M
          }
1720
64.7M
        }
1721
64.7M
      }
1722
88.4M
    }
1723
1724
1725
    // ---------- MATCH ----------
1726
    /* for (unsigned len = 2; len <= newLen; len++) */
1727
88.4M
    if (newLen > numAvail)
1728
0
    {
1729
0
      newLen = numAvail;
1730
0
      for (numPairs = 0; newLen > matches[numPairs]; numPairs += 2);
1731
0
      matches[numPairs] = (UInt32)newLen;
1732
0
      numPairs += 2;
1733
0
    }
1734
    
1735
    // startLen = 2; /* speed optimization */
1736
1737
88.4M
    if (newLen >= startLen)
1738
51.9M
    {
1739
51.9M
      UInt32 normalMatchPrice = matchPrice + GET_PRICE_0(p->isRep[state]);
1740
51.9M
      UInt32 dist;
1741
51.9M
      unsigned offs, posSlot, len;
1742
      
1743
51.9M
      {
1744
51.9M
        unsigned offset = cur + newLen;
1745
51.9M
        if (last < offset)
1746
15.3M
          last = offset;
1747
51.9M
      }
1748
1749
51.9M
      offs = 0;
1750
67.9M
      while (startLen > matches[offs])
1751
16.0M
        offs += 2;
1752
51.9M
      dist = matches[(size_t)offs + 1];
1753
      
1754
      // if (dist >= kNumFullDistances)
1755
51.9M
      GetPosSlot2(dist, posSlot);
1756
      
1757
118M
      for (len = /*2*/ startLen; ; len++)
1758
170M
      {
1759
170M
        UInt32 price = normalMatchPrice + GET_PRICE_LEN(&p->lenEnc, posState, len);
1760
170M
        {
1761
170M
          COptimal *opt;
1762
170M
          unsigned lenNorm = len - 2;
1763
170M
          lenNorm = GetLenToPosState2(lenNorm);
1764
170M
          if (dist < kNumFullDistances)
1765
32.0M
            price += p->distancesPrices[lenNorm][dist & (kNumFullDistances - 1)];
1766
138M
          else
1767
138M
            price += p->posSlotPrices[lenNorm][posSlot] + p->alignPrices[dist & kAlignMask];
1768
          
1769
170M
          opt = &p->opt[cur + len];
1770
170M
          if (price < opt->price)
1771
58.9M
          {
1772
58.9M
            opt->price = price;
1773
58.9M
            opt->len = (UInt32)len;
1774
58.9M
            opt->dist = dist + LZMA_NUM_REPS;
1775
58.9M
            opt->extra = 0;
1776
58.9M
          }
1777
170M
        }
1778
1779
170M
        if (len == matches[offs])
1780
81.3M
        {
1781
          // if (p->_maxMode) {
1782
          // MATCH : LIT : REP_0
1783
1784
81.3M
          const Byte *data2 = data - dist - 1;
1785
81.3M
          unsigned len2 = len + 1;
1786
81.3M
          unsigned limit = len2 + p->numFastBytes;
1787
81.3M
          if (limit > numAvailFull)
1788
57.7k
            limit = numAvailFull;
1789
          
1790
81.3M
          len2 += 2;
1791
81.3M
          if (len2 <= limit)
1792
81.3M
          if (data[len2 - 2] == data2[len2 - 2])
1793
35.7M
          if (data[len2 - 1] == data2[len2 - 1])
1794
17.5M
          {
1795
92.4M
          for (; len2 < limit && data[len2] == data2[len2]; len2++)
1796
74.8M
          {}
1797
          
1798
17.5M
          len2 -= len;
1799
          
1800
          // if (len2 >= 3)
1801
17.5M
          {
1802
17.5M
            unsigned state2 = kMatchNextStates[state];
1803
17.5M
            unsigned posState2 = (position + len) & p->pbMask;
1804
17.5M
            unsigned offset;
1805
17.5M
            price += GET_PRICE_0(p->isMatch[state2][posState2]);
1806
17.5M
            price += LitEnc_Matched_GetPrice(LIT_PROBS(position + len, data[(size_t)len - 1]),
1807
17.5M
                    data[len], data2[len], p->ProbPrices);
1808
1809
            // state2 = kLiteralNextStates[state2];
1810
17.5M
            state2 = kState_LitAfterMatch;
1811
1812
17.5M
            posState2 = (posState2 + 1) & p->pbMask;
1813
17.5M
            price += GetPrice_Rep_0(p, state2, posState2);
1814
1815
17.5M
            offset = cur + len + len2;
1816
1817
17.5M
            if (last < offset)
1818
3.65M
              last = offset;
1819
            // do
1820
17.5M
            {
1821
17.5M
              UInt32 price2;
1822
17.5M
              COptimal *opt;
1823
17.5M
              len2--;
1824
              // price2 = price + GetPrice_Len_Rep_0(p, len2, state2, posState2);
1825
17.5M
              price2 = price + GET_PRICE_LEN(&p->repLenEnc, posState2, len2);
1826
17.5M
              opt = &p->opt[offset];
1827
              // offset--;
1828
17.5M
              if (price2 < opt->price)
1829
5.10M
              {
1830
5.10M
                opt->price = price2;
1831
5.10M
                opt->len = (UInt32)len2;
1832
5.10M
                opt->extra = (CExtra)(len + 1);
1833
5.10M
                opt->dist = dist + LZMA_NUM_REPS;
1834
5.10M
              }
1835
17.5M
            }
1836
            // while (len2 >= 3);
1837
17.5M
          }
1838
1839
17.5M
          }
1840
        
1841
81.3M
          offs += 2;
1842
81.3M
          if (offs == numPairs)
1843
51.9M
            break;
1844
29.4M
          dist = matches[(size_t)offs + 1];
1845
          // if (dist >= kNumFullDistances)
1846
29.4M
            GetPosSlot2(dist, posSlot);
1847
29.4M
        }
1848
170M
      }
1849
51.9M
    }
1850
88.4M
  }
1851
1852
11.5M
  do
1853
105M
    p->opt[last].price = kInfinityPrice;
1854
105M
  while (--last);
1855
1856
11.5M
  return Backward(p, cur);
1857
13.1M
}
1858
1859
1860
1861
0
#define ChangePair(smallDist, bigDist) (((bigDist) >> 7) > (smallDist))
1862
1863
1864
1865
static unsigned GetOptimumFast(CLzmaEnc *p)
1866
0
{
1867
0
  UInt32 numAvail, mainDist;
1868
0
  unsigned mainLen, numPairs, repIndex, repLen, i;
1869
0
  const Byte *data;
1870
1871
0
  if (p->additionalOffset == 0)
1872
0
    mainLen = ReadMatchDistances(p, &numPairs);
1873
0
  else
1874
0
  {
1875
0
    mainLen = p->longestMatchLen;
1876
0
    numPairs = p->numPairs;
1877
0
  }
1878
1879
0
  numAvail = p->numAvail;
1880
0
  p->backRes = MARK_LIT;
1881
0
  if (numAvail < 2)
1882
0
    return 1;
1883
  // if (mainLen < 2 && p->state == 0) return 1; // 18.06.notused
1884
0
  if (numAvail > LZMA_MATCH_LEN_MAX)
1885
0
    numAvail = LZMA_MATCH_LEN_MAX;
1886
0
  data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
1887
0
  repLen = repIndex = 0;
1888
  
1889
0
  for (i = 0; i < LZMA_NUM_REPS; i++)
1890
0
  {
1891
0
    unsigned len;
1892
0
    const Byte *data2 = data - p->reps[i];
1893
0
    if (data[0] != data2[0] || data[1] != data2[1])
1894
0
      continue;
1895
0
    for (len = 2; len < numAvail && data[len] == data2[len]; len++)
1896
0
    {}
1897
0
    if (len >= p->numFastBytes)
1898
0
    {
1899
0
      p->backRes = (UInt32)i;
1900
0
      MOVE_POS(p, len - 1)
1901
0
      return len;
1902
0
    }
1903
0
    if (len > repLen)
1904
0
    {
1905
0
      repIndex = i;
1906
0
      repLen = len;
1907
0
    }
1908
0
  }
1909
1910
0
  if (mainLen >= p->numFastBytes)
1911
0
  {
1912
0
    p->backRes = p->matches[(size_t)numPairs - 1] + LZMA_NUM_REPS;
1913
0
    MOVE_POS(p, mainLen - 1)
1914
0
    return mainLen;
1915
0
  }
1916
1917
0
  mainDist = 0; /* for GCC */
1918
  
1919
0
  if (mainLen >= 2)
1920
0
  {
1921
0
    mainDist = p->matches[(size_t)numPairs - 1];
1922
0
    while (numPairs > 2)
1923
0
    {
1924
0
      UInt32 dist2;
1925
0
      if (mainLen != p->matches[(size_t)numPairs - 4] + 1)
1926
0
        break;
1927
0
      dist2 = p->matches[(size_t)numPairs - 3];
1928
0
      if (!ChangePair(dist2, mainDist))
1929
0
        break;
1930
0
      numPairs -= 2;
1931
0
      mainLen--;
1932
0
      mainDist = dist2;
1933
0
    }
1934
0
    if (mainLen == 2 && mainDist >= 0x80)
1935
0
      mainLen = 1;
1936
0
  }
1937
1938
0
  if (repLen >= 2)
1939
0
    if (    repLen + 1 >= mainLen
1940
0
        || (repLen + 2 >= mainLen && mainDist >= (1 << 9))
1941
0
        || (repLen + 3 >= mainLen && mainDist >= (1 << 15)))
1942
0
  {
1943
0
    p->backRes = (UInt32)repIndex;
1944
0
    MOVE_POS(p, repLen - 1)
1945
0
    return repLen;
1946
0
  }
1947
  
1948
0
  if (mainLen < 2 || numAvail <= 2)
1949
0
    return 1;
1950
1951
0
  {
1952
0
    unsigned len1 = ReadMatchDistances(p, &p->numPairs);
1953
0
    p->longestMatchLen = len1;
1954
  
1955
0
    if (len1 >= 2)
1956
0
    {
1957
0
      UInt32 newDist = p->matches[(size_t)p->numPairs - 1];
1958
0
      if (   (len1 >= mainLen && newDist < mainDist)
1959
0
          || (len1 == mainLen + 1 && !ChangePair(mainDist, newDist))
1960
0
          || (len1 >  mainLen + 1)
1961
0
          || (len1 + 1 >= mainLen && mainLen >= 3 && ChangePair(newDist, mainDist)))
1962
0
        return 1;
1963
0
    }
1964
0
  }
1965
  
1966
0
  data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
1967
  
1968
0
  for (i = 0; i < LZMA_NUM_REPS; i++)
1969
0
  {
1970
0
    unsigned len, limit;
1971
0
    const Byte *data2 = data - p->reps[i];
1972
0
    if (data[0] != data2[0] || data[1] != data2[1])
1973
0
      continue;
1974
0
    limit = mainLen - 1;
1975
0
    for (len = 2;; len++)
1976
0
    {
1977
0
      if (len >= limit)
1978
0
        return 1;
1979
0
      if (data[len] != data2[len])
1980
0
        break;
1981
0
    }
1982
0
  }
1983
  
1984
0
  p->backRes = mainDist + LZMA_NUM_REPS;
1985
0
  if (mainLen != 2)
1986
0
  {
1987
0
    MOVE_POS(p, mainLen - 2)
1988
0
  }
1989
0
  return mainLen;
1990
0
}
1991
1992
1993
1994
1995
static void WriteEndMarker(CLzmaEnc *p, unsigned posState)
1996
0
{
1997
0
  UInt32 range;
1998
0
  range = p->rc.range;
1999
0
  {
2000
0
    UInt32 ttt, newBound;
2001
0
    CLzmaProb *prob = &p->isMatch[p->state][posState];
2002
0
    RC_BIT_PRE(&p->rc, prob)
2003
0
    RC_BIT_1(&p->rc, prob)
2004
0
    prob = &p->isRep[p->state];
2005
0
    RC_BIT_PRE(&p->rc, prob)
2006
0
    RC_BIT_0(&p->rc, prob)
2007
0
  }
2008
0
  p->state = kMatchNextStates[p->state];
2009
  
2010
0
  p->rc.range = range;
2011
0
  LenEnc_Encode(&p->lenProbs, &p->rc, 0, posState);
2012
0
  range = p->rc.range;
2013
2014
0
  {
2015
    // RcTree_Encode_PosSlot(&p->rc, p->posSlotEncoder[0], (1 << kNumPosSlotBits) - 1);
2016
0
    CLzmaProb *probs = p->posSlotEncoder[0];
2017
0
    unsigned m = 1;
2018
0
    do
2019
0
    {
2020
0
      UInt32 ttt, newBound;
2021
0
      RC_BIT_PRE(p, probs + m)
2022
0
      RC_BIT_1(&p->rc, probs + m);
2023
0
      m = (m << 1) + 1;
2024
0
    }
2025
0
    while (m < (1 << kNumPosSlotBits));
2026
0
  }
2027
0
  {
2028
    // RangeEnc_EncodeDirectBits(&p->rc, ((UInt32)1 << (30 - kNumAlignBits)) - 1, 30 - kNumAlignBits);    UInt32 range = p->range;
2029
0
    unsigned numBits = 30 - kNumAlignBits;
2030
0
    do
2031
0
    {
2032
0
      range >>= 1;
2033
0
      p->rc.low += range;
2034
0
      RC_NORM(&p->rc)
2035
0
    }
2036
0
    while (--numBits);
2037
0
  }
2038
   
2039
0
  {
2040
    // RcTree_ReverseEncode(&p->rc, p->posAlignEncoder, kNumAlignBits, kAlignMask);
2041
0
    CLzmaProb *probs = p->posAlignEncoder;
2042
0
    unsigned m = 1;
2043
0
    do
2044
0
    {
2045
0
      UInt32 ttt, newBound;
2046
0
      RC_BIT_PRE(p, probs + m)
2047
0
      RC_BIT_1(&p->rc, probs + m);
2048
0
      m = (m << 1) + 1;
2049
0
    }
2050
0
    while (m < kAlignTableSize);
2051
0
  }
2052
0
  p->rc.range = range;
2053
0
}
2054
2055
2056
static SRes CheckErrors(CLzmaEnc *p)
2057
40.5k
{
2058
40.5k
  if (p->result != SZ_OK)
2059
0
    return p->result;
2060
40.5k
  if (p->rc.res != SZ_OK)
2061
0
    p->result = SZ_ERROR_WRITE;
2062
40.5k
  if (p->matchFinderBase.result != SZ_OK)
2063
0
    p->result = SZ_ERROR_READ;
2064
40.5k
  if (p->result != SZ_OK)
2065
0
    p->finished = True;
2066
40.5k
  return p->result;
2067
40.5k
}
2068
2069
2070
MY_NO_INLINE static SRes Flush(CLzmaEnc *p, UInt32 nowPos)
2071
20.2k
{
2072
  /* ReleaseMFStream(); */
2073
20.2k
  p->finished = True;
2074
20.2k
  if (p->writeEndMark)
2075
0
    WriteEndMarker(p, nowPos & p->pbMask);
2076
20.2k
  RangeEnc_FlushData(&p->rc);
2077
20.2k
  RangeEnc_FlushStream(&p->rc);
2078
20.2k
  return CheckErrors(p);
2079
20.2k
}
2080
2081
2082
MY_NO_INLINE static void FillAlignPrices(CLzmaEnc *p)
2083
115k
{
2084
115k
  unsigned i;
2085
115k
  const CProbPrice *ProbPrices = p->ProbPrices;
2086
115k
  const CLzmaProb *probs = p->posAlignEncoder;
2087
  // p->alignPriceCount = 0;
2088
1.03M
  for (i = 0; i < kAlignTableSize / 2; i++)
2089
923k
  {
2090
923k
    UInt32 price = 0;
2091
923k
    unsigned sym = i;
2092
923k
    unsigned m = 1;
2093
923k
    unsigned bit;
2094
923k
    UInt32 prob;
2095
923k
    bit = sym & 1; sym >>= 1; price += GET_PRICEa(probs[m], bit); m = (m << 1) + bit;
2096
923k
    bit = sym & 1; sym >>= 1; price += GET_PRICEa(probs[m], bit); m = (m << 1) + bit;
2097
923k
    bit = sym & 1; sym >>= 1; price += GET_PRICEa(probs[m], bit); m = (m << 1) + bit;
2098
923k
    prob = probs[m];
2099
923k
    p->alignPrices[i    ] = price + GET_PRICEa_0(prob);
2100
923k
    p->alignPrices[i + 8] = price + GET_PRICEa_1(prob);
2101
    // p->alignPrices[i] = RcTree_ReverseGetPrice(p->posAlignEncoder, kNumAlignBits, i, p->ProbPrices);
2102
923k
  }
2103
115k
}
2104
2105
2106
MY_NO_INLINE static void FillDistancesPrices(CLzmaEnc *p)
2107
115k
{
2108
  // int y; for (y = 0; y < 100; y++) {
2109
2110
115k
  UInt32 tempPrices[kNumFullDistances];
2111
115k
  unsigned i, lps;
2112
2113
115k
  const CProbPrice *ProbPrices = p->ProbPrices;
2114
115k
  p->matchPriceCount = 0;
2115
2116
7.27M
  for (i = kStartPosModelIndex / 2; i < kNumFullDistances / 2; i++)
2117
7.15M
  {
2118
7.15M
    unsigned posSlot = GetPosSlot1(i);
2119
7.15M
    unsigned footerBits = (posSlot >> 1) - 1;
2120
7.15M
    unsigned base = ((2 | (posSlot & 1)) << footerBits);
2121
7.15M
    const CLzmaProb *probs = p->posEncoders + (size_t)base * 2;
2122
    // tempPrices[i] = RcTree_ReverseGetPrice(p->posEncoders + base, footerBits, i - base, p->ProbPrices);
2123
7.15M
    UInt32 price = 0;
2124
7.15M
    unsigned m = 1;
2125
7.15M
    unsigned sym = i;
2126
7.15M
    unsigned offset = (unsigned)1 << footerBits;
2127
7.15M
    base += i;
2128
    
2129
7.15M
    if (footerBits)
2130
6.92M
    do
2131
22.6M
    {
2132
22.6M
      unsigned bit = sym & 1;
2133
22.6M
      sym >>= 1;
2134
22.6M
      price += GET_PRICEa(probs[m], bit);
2135
22.6M
      m = (m << 1) + bit;
2136
22.6M
    }
2137
22.6M
    while (--footerBits);
2138
2139
7.15M
    {
2140
7.15M
      unsigned prob = probs[m];
2141
7.15M
      tempPrices[base         ] = price + GET_PRICEa_0(prob);
2142
7.15M
      tempPrices[base + offset] = price + GET_PRICEa_1(prob);
2143
7.15M
    }
2144
7.15M
  }
2145
2146
577k
  for (lps = 0; lps < kNumLenToPosStates; lps++)
2147
461k
  {
2148
461k
    unsigned slot;
2149
461k
    unsigned distTableSize2 = (p->distTableSize + 1) >> 1;
2150
461k
    UInt32 *posSlotPrices = p->posSlotPrices[lps];
2151
461k
    const CLzmaProb *probs = p->posSlotEncoder[lps];
2152
    
2153
11.5M
    for (slot = 0; slot < distTableSize2; slot++)
2154
11.0M
    {
2155
      // posSlotPrices[slot] = RcTree_GetPrice(encoder, kNumPosSlotBits, slot, p->ProbPrices);
2156
11.0M
      UInt32 price;
2157
11.0M
      unsigned bit;
2158
11.0M
      unsigned sym = slot + (1 << (kNumPosSlotBits - 1));
2159
11.0M
      unsigned prob;
2160
11.0M
      bit = sym & 1; sym >>= 1; price  = GET_PRICEa(probs[sym], bit);
2161
11.0M
      bit = sym & 1; sym >>= 1; price += GET_PRICEa(probs[sym], bit);
2162
11.0M
      bit = sym & 1; sym >>= 1; price += GET_PRICEa(probs[sym], bit);
2163
11.0M
      bit = sym & 1; sym >>= 1; price += GET_PRICEa(probs[sym], bit);
2164
11.0M
      bit = sym & 1; sym >>= 1; price += GET_PRICEa(probs[sym], bit);
2165
11.0M
      prob = probs[(size_t)slot + (1 << (kNumPosSlotBits - 1))];
2166
11.0M
      posSlotPrices[(size_t)slot * 2    ] = price + GET_PRICEa_0(prob);
2167
11.0M
      posSlotPrices[(size_t)slot * 2 + 1] = price + GET_PRICEa_1(prob);
2168
11.0M
    }
2169
    
2170
461k
    {
2171
461k
      UInt32 delta = ((UInt32)((kEndPosModelIndex / 2 - 1) - kNumAlignBits) << kNumBitPriceShiftBits);
2172
8.30M
      for (slot = kEndPosModelIndex / 2; slot < distTableSize2; slot++)
2173
7.84M
      {
2174
7.84M
        posSlotPrices[(size_t)slot * 2    ] += delta;
2175
7.84M
        posSlotPrices[(size_t)slot * 2 + 1] += delta;
2176
7.84M
        delta += ((UInt32)1 << kNumBitPriceShiftBits);
2177
7.84M
      }
2178
461k
    }
2179
2180
461k
    {
2181
461k
      UInt32 *dp = p->distancesPrices[lps];
2182
      
2183
461k
      dp[0] = posSlotPrices[0];
2184
461k
      dp[1] = posSlotPrices[1];
2185
461k
      dp[2] = posSlotPrices[2];
2186
461k
      dp[3] = posSlotPrices[3];
2187
2188
29.0M
      for (i = 4; i < kNumFullDistances; i += 2)
2189
28.6M
      {
2190
28.6M
        UInt32 slotPrice = posSlotPrices[GetPosSlot1(i)];
2191
28.6M
        dp[i    ] = slotPrice + tempPrices[i];
2192
28.6M
        dp[i + 1] = slotPrice + tempPrices[i + 1];
2193
28.6M
      }
2194
461k
    }
2195
461k
  }
2196
  // }
2197
115k
}
2198
2199
2200
2201
void LzmaEnc_Construct(CLzmaEnc *p)
2202
7.77k
{
2203
7.77k
  RangeEnc_Construct(&p->rc);
2204
7.77k
  MatchFinder_Construct(&p->matchFinderBase);
2205
  
2206
  #ifndef _7ZIP_ST
2207
  MatchFinderMt_Construct(&p->matchFinderMt);
2208
  p->matchFinderMt.MatchFinder = &p->matchFinderBase;
2209
  #endif
2210
2211
7.77k
  {
2212
7.77k
    CLzmaEncProps props;
2213
7.77k
    LzmaEncProps_Init(&props);
2214
7.77k
    LzmaEnc_SetProps(p, &props);
2215
7.77k
  }
2216
2217
7.77k
  #ifndef LZMA_LOG_BSR
2218
7.77k
  LzmaEnc_FastPosInit(p->g_FastPos);
2219
7.77k
  #endif
2220
2221
7.77k
  LzmaEnc_InitPriceTables(p->ProbPrices);
2222
7.77k
  p->litProbs = NULL;
2223
7.77k
  p->saveState.litProbs = NULL;
2224
2225
7.77k
}
2226
2227
CLzmaEncHandle LzmaEnc_Create(ISzAllocPtr alloc)
2228
7.77k
{
2229
7.77k
  void *p;
2230
7.77k
  p = ISzAlloc_Alloc(alloc, sizeof(CLzmaEnc));
2231
7.77k
  if (p)
2232
7.77k
    LzmaEnc_Construct((CLzmaEnc *)p);
2233
7.77k
  return p;
2234
7.77k
}
2235
2236
void LzmaEnc_FreeLits(CLzmaEnc *p, ISzAllocPtr alloc)
2237
15.5k
{
2238
15.5k
  ISzAlloc_Free(alloc, p->litProbs);
2239
15.5k
  ISzAlloc_Free(alloc, p->saveState.litProbs);
2240
15.5k
  p->litProbs = NULL;
2241
15.5k
  p->saveState.litProbs = NULL;
2242
15.5k
}
2243
2244
void LzmaEnc_Destruct(CLzmaEnc *p, ISzAllocPtr alloc, ISzAllocPtr allocBig)
2245
7.77k
{
2246
  #ifndef _7ZIP_ST
2247
  MatchFinderMt_Destruct(&p->matchFinderMt, allocBig);
2248
  #endif
2249
  
2250
7.77k
  MatchFinder_Free(&p->matchFinderBase, allocBig);
2251
7.77k
  LzmaEnc_FreeLits(p, alloc);
2252
7.77k
  RangeEnc_Free(&p->rc, alloc);
2253
7.77k
}
2254
2255
void LzmaEnc_Destroy(CLzmaEncHandle p, ISzAllocPtr alloc, ISzAllocPtr allocBig)
2256
7.77k
{
2257
7.77k
  LzmaEnc_Destruct((CLzmaEnc *)p, alloc, allocBig);
2258
7.77k
  ISzAlloc_Free(alloc, p);
2259
7.77k
}
2260
2261
2262
static SRes LzmaEnc_CodeOneBlock(CLzmaEnc *p, UInt32 maxPackSize, UInt32 maxUnpackSize)
2263
20.2k
{
2264
20.2k
  UInt32 nowPos32, startPos32;
2265
20.2k
  if (p->needInit)
2266
7.77k
  {
2267
7.77k
    p->matchFinder.Init(p->matchFinderObj);
2268
7.77k
    p->needInit = 0;
2269
7.77k
  }
2270
2271
20.2k
  if (p->finished)
2272
0
    return p->result;
2273
20.2k
  RINOK(CheckErrors(p));
2274
2275
20.2k
  nowPos32 = (UInt32)p->nowPos64;
2276
20.2k
  startPos32 = nowPos32;
2277
2278
20.2k
  if (p->nowPos64 == 0)
2279
7.77k
  {
2280
7.77k
    unsigned numPairs;
2281
7.77k
    Byte curByte;
2282
7.77k
    if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) == 0)
2283
0
      return Flush(p, nowPos32);
2284
7.77k
    ReadMatchDistances(p, &numPairs);
2285
7.77k
    RangeEnc_EncodeBit_0(&p->rc, &p->isMatch[kState_Start][0]);
2286
    // p->state = kLiteralNextStates[p->state];
2287
7.77k
    curByte = *(p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - p->additionalOffset);
2288
7.77k
    LitEnc_Encode(&p->rc, p->litProbs, curByte);
2289
7.77k
    p->additionalOffset--;
2290
7.77k
    nowPos32++;
2291
7.77k
  }
2292
2293
20.2k
  if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) != 0)
2294
  
2295
12.5k
  for (;;)
2296
265M
  {
2297
265M
    UInt32 dist;
2298
265M
    unsigned len, posState;
2299
265M
    UInt32 range, ttt, newBound;
2300
265M
    CLzmaProb *probs;
2301
  
2302
265M
    if (p->fastMode)
2303
0
      len = GetOptimumFast(p);
2304
265M
    else
2305
265M
    {
2306
265M
      unsigned oci = p->optCur;
2307
265M
      if (p->optEnd == oci)
2308
224M
        len = GetOptimum(p, nowPos32);
2309
41.1M
      else
2310
41.1M
      {
2311
41.1M
        const COptimal *opt = &p->opt[oci];
2312
41.1M
        len = opt->len;
2313
41.1M
        p->backRes = opt->dist;
2314
41.1M
        p->optCur = oci + 1;
2315
41.1M
      }
2316
265M
    }
2317
2318
265M
    posState = (unsigned)nowPos32 & p->pbMask;
2319
265M
    range = p->rc.range;
2320
265M
    probs = &p->isMatch[p->state][posState];
2321
    
2322
265M
    RC_BIT_PRE(&p->rc, probs)
2323
    
2324
265M
    dist = p->backRes;
2325
2326
    #ifdef SHOW_STAT2
2327
    printf("\n pos = %6X, len = %3u  pos = %6u", nowPos32, len, dist);
2328
    #endif
2329
2330
265M
    if (dist == MARK_LIT)
2331
244M
    {
2332
244M
      Byte curByte;
2333
244M
      const Byte *data;
2334
244M
      unsigned state;
2335
2336
244M
      RC_BIT_0(&p->rc, probs);
2337
244M
      p->rc.range = range;
2338
244M
      data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - p->additionalOffset;
2339
244M
      probs = LIT_PROBS(nowPos32, *(data - 1));
2340
244M
      curByte = *data;
2341
244M
      state = p->state;
2342
244M
      p->state = kLiteralNextStates[state];
2343
244M
      if (IsLitState(state))
2344
229M
        LitEnc_Encode(&p->rc, probs, curByte);
2345
14.9M
      else
2346
14.9M
        LitEnc_EncodeMatched(&p->rc, probs, curByte, *(data - p->reps[0]));
2347
244M
    }
2348
20.4M
    else
2349
20.4M
    {
2350
20.4M
      RC_BIT_1(&p->rc, probs);
2351
20.4M
      probs = &p->isRep[p->state];
2352
20.4M
      RC_BIT_PRE(&p->rc, probs)
2353
      
2354
20.4M
      if (dist < LZMA_NUM_REPS)
2355
14.0M
      {
2356
14.0M
        RC_BIT_1(&p->rc, probs);
2357
14.0M
        probs = &p->isRepG0[p->state];
2358
14.0M
        RC_BIT_PRE(&p->rc, probs)
2359
14.0M
        if (dist == 0)
2360
10.7M
        {
2361
10.7M
          RC_BIT_0(&p->rc, probs);
2362
10.7M
          probs = &p->isRep0Long[p->state][posState];
2363
10.7M
          RC_BIT_PRE(&p->rc, probs)
2364
10.7M
          if (len != 1)
2365
6.21M
          {
2366
6.21M
            RC_BIT_1_BASE(&p->rc, probs);
2367
6.21M
          }
2368
4.51M
          else
2369
4.51M
          {
2370
4.51M
            RC_BIT_0_BASE(&p->rc, probs);
2371
4.51M
            p->state = kShortRepNextStates[p->state];
2372
4.51M
          }
2373
10.7M
        }
2374
3.32M
        else
2375
3.32M
        {
2376
3.32M
          RC_BIT_1(&p->rc, probs);
2377
3.32M
          probs = &p->isRepG1[p->state];
2378
3.32M
          RC_BIT_PRE(&p->rc, probs)
2379
3.32M
          if (dist == 1)
2380
2.57M
          {
2381
2.57M
            RC_BIT_0_BASE(&p->rc, probs);
2382
2.57M
            dist = p->reps[1];
2383
2.57M
          }
2384
751k
          else
2385
751k
          {
2386
751k
            RC_BIT_1(&p->rc, probs);
2387
751k
            probs = &p->isRepG2[p->state];
2388
751k
            RC_BIT_PRE(&p->rc, probs)
2389
751k
            if (dist == 2)
2390
464k
            {
2391
464k
              RC_BIT_0_BASE(&p->rc, probs);
2392
464k
              dist = p->reps[2];
2393
464k
            }
2394
286k
            else
2395
286k
            {
2396
286k
              RC_BIT_1_BASE(&p->rc, probs);
2397
286k
              dist = p->reps[3];
2398
286k
              p->reps[3] = p->reps[2];
2399
286k
            }
2400
751k
            p->reps[2] = p->reps[1];
2401
751k
          }
2402
3.32M
          p->reps[1] = p->reps[0];
2403
3.32M
          p->reps[0] = dist;
2404
3.32M
        }
2405
2406
14.0M
        RC_NORM(&p->rc)
2407
2408
14.0M
        p->rc.range = range;
2409
2410
14.0M
        if (len != 1)
2411
9.54M
        {
2412
9.54M
          LenEnc_Encode(&p->repLenProbs, &p->rc, len - LZMA_MATCH_LEN_MIN, posState);
2413
9.54M
          --p->repLenEncCounter;
2414
9.54M
          p->state = kRepNextStates[p->state];
2415
9.54M
        }
2416
14.0M
      }
2417
6.42M
      else
2418
6.42M
      {
2419
6.42M
        unsigned posSlot;
2420
6.42M
        RC_BIT_0(&p->rc, probs);
2421
6.42M
        p->rc.range = range;
2422
6.42M
        p->state = kMatchNextStates[p->state];
2423
2424
6.42M
        LenEnc_Encode(&p->lenProbs, &p->rc, len - LZMA_MATCH_LEN_MIN, posState);
2425
        // --p->lenEnc.counter;
2426
2427
6.42M
        dist -= LZMA_NUM_REPS;
2428
6.42M
        p->reps[3] = p->reps[2];
2429
6.42M
        p->reps[2] = p->reps[1];
2430
6.42M
        p->reps[1] = p->reps[0];
2431
6.42M
        p->reps[0] = dist + 1;
2432
        
2433
6.42M
        p->matchPriceCount++;
2434
6.42M
        GetPosSlot(dist, posSlot);
2435
        // RcTree_Encode_PosSlot(&p->rc, p->posSlotEncoder[GetLenToPosState(len)], posSlot);
2436
6.42M
        {
2437
6.42M
          UInt32 sym = (UInt32)posSlot + (1 << kNumPosSlotBits);
2438
6.42M
          range = p->rc.range;
2439
6.42M
          probs = p->posSlotEncoder[GetLenToPosState(len)];
2440
6.42M
          do
2441
38.5M
          {
2442
38.5M
            CLzmaProb *prob = probs + (sym >> kNumPosSlotBits);
2443
38.5M
            UInt32 bit = (sym >> (kNumPosSlotBits - 1)) & 1;
2444
38.5M
            sym <<= 1;
2445
38.5M
            RC_BIT(&p->rc, prob, bit);
2446
38.5M
          }
2447
38.5M
          while (sym < (1 << kNumPosSlotBits * 2));
2448
6.42M
          p->rc.range = range;
2449
6.42M
        }
2450
        
2451
6.42M
        if (dist >= kStartPosModelIndex)
2452
6.07M
        {
2453
6.07M
          unsigned footerBits = ((posSlot >> 1) - 1);
2454
2455
6.07M
          if (dist < kNumFullDistances)
2456
1.44M
          {
2457
1.44M
            unsigned base = ((2 | (posSlot & 1)) << footerBits);
2458
1.44M
            RcTree_ReverseEncode(&p->rc, p->posEncoders + base, footerBits, (unsigned)(dist /* - base */));
2459
1.44M
          }
2460
4.63M
          else
2461
4.63M
          {
2462
4.63M
            UInt32 pos2 = (dist | 0xF) << (32 - footerBits);
2463
4.63M
            range = p->rc.range;
2464
            // RangeEnc_EncodeDirectBits(&p->rc, posReduced >> kNumAlignBits, footerBits - kNumAlignBits);
2465
            /*
2466
            do
2467
            {
2468
              range >>= 1;
2469
              p->rc.low += range & (0 - ((dist >> --footerBits) & 1));
2470
              RC_NORM(&p->rc)
2471
            }
2472
            while (footerBits > kNumAlignBits);
2473
            */
2474
4.63M
            do
2475
37.4M
            {
2476
37.4M
              range >>= 1;
2477
37.4M
              p->rc.low += range & (0 - (pos2 >> 31));
2478
37.4M
              pos2 += pos2;
2479
37.4M
              RC_NORM(&p->rc)
2480
37.4M
            }
2481
37.4M
            while (pos2 != 0xF0000000);
2482
2483
2484
            // RcTree_ReverseEncode(&p->rc, p->posAlignEncoder, kNumAlignBits, posReduced & kAlignMask);
2485
2486
4.63M
            {
2487
4.63M
              unsigned m = 1;
2488
4.63M
              unsigned bit;
2489
4.63M
              bit = dist & 1; dist >>= 1; RC_BIT(&p->rc, p->posAlignEncoder + m, bit); m = (m << 1) + bit;
2490
4.63M
              bit = dist & 1; dist >>= 1; RC_BIT(&p->rc, p->posAlignEncoder + m, bit); m = (m << 1) + bit;
2491
4.63M
              bit = dist & 1; dist >>= 1; RC_BIT(&p->rc, p->posAlignEncoder + m, bit); m = (m << 1) + bit;
2492
4.63M
              bit = dist & 1;             RC_BIT(&p->rc, p->posAlignEncoder + m, bit);
2493
4.63M
              p->rc.range = range;
2494
              // p->alignPriceCount++;
2495
4.63M
            }
2496
4.63M
          }
2497
6.07M
        }
2498
6.42M
      }
2499
20.4M
    }
2500
2501
265M
    nowPos32 += (UInt32)len;
2502
265M
    p->additionalOffset -= len;
2503
    
2504
265M
    if (p->additionalOffset == 0)
2505
223M
    {
2506
223M
      UInt32 processed;
2507
2508
223M
      if (!p->fastMode)
2509
223M
      {
2510
        /*
2511
        if (p->alignPriceCount >= 16) // kAlignTableSize
2512
          FillAlignPrices(p);
2513
        if (p->matchPriceCount >= 128)
2514
          FillDistancesPrices(p);
2515
        if (p->lenEnc.counter <= 0)
2516
          LenPriceEnc_UpdateTables(&p->lenEnc, 1 << p->pb, &p->lenProbs, p->ProbPrices);
2517
        */
2518
223M
        if (p->matchPriceCount >= 64)
2519
87.3k
        {
2520
87.3k
          FillAlignPrices(p);
2521
          // { int y; for (y = 0; y < 100; y++) {
2522
87.3k
          FillDistancesPrices(p);
2523
          // }}
2524
87.3k
          LenPriceEnc_UpdateTables(&p->lenEnc, 1 << p->pb, &p->lenProbs, p->ProbPrices);
2525
87.3k
        }
2526
223M
        if (p->repLenEncCounter <= 0)
2527
84.5k
        {
2528
84.5k
          p->repLenEncCounter = REP_LEN_COUNT;
2529
84.5k
          LenPriceEnc_UpdateTables(&p->repLenEnc, 1 << p->pb, &p->repLenProbs, p->ProbPrices);
2530
84.5k
        }
2531
223M
      }
2532
    
2533
223M
      if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) == 0)
2534
7.77k
        break;
2535
223M
      processed = nowPos32 - startPos32;
2536
      
2537
223M
      if (maxPackSize)
2538
223M
      {
2539
223M
        if (processed + kNumOpts + 300 >= maxUnpackSize
2540
223M
            || RangeEnc_GetProcessed_sizet(&p->rc) + kPackReserve >= maxPackSize)
2541
4.73k
          break;
2542
223M
      }
2543
0
      else if (processed >= (1 << 17))
2544
0
      {
2545
0
        p->nowPos64 += nowPos32 - startPos32;
2546
0
        return CheckErrors(p);
2547
0
      }
2548
223M
    }
2549
265M
  }
2550
2551
20.2k
  p->nowPos64 += nowPos32 - startPos32;
2552
20.2k
  return Flush(p, nowPos32);
2553
20.2k
}
2554
2555
2556
2557
7.77k
#define kBigHashDicLimit ((UInt32)1 << 24)
2558
2559
static SRes LzmaEnc_Alloc(CLzmaEnc *p, UInt32 keepWindowSize, ISzAllocPtr alloc, ISzAllocPtr allocBig)
2560
7.77k
{
2561
7.77k
  UInt32 beforeSize = kNumOpts;
2562
7.77k
  if (!RangeEnc_Alloc(&p->rc, alloc))
2563
0
    return SZ_ERROR_MEM;
2564
2565
  #ifndef _7ZIP_ST
2566
  p->mtMode = (p->multiThread && !p->fastMode && (p->matchFinderBase.btMode != 0));
2567
  #endif
2568
2569
7.77k
  {
2570
7.77k
    unsigned lclp = p->lc + p->lp;
2571
7.77k
    if (!p->litProbs || !p->saveState.litProbs || p->lclp != lclp)
2572
7.77k
    {
2573
7.77k
      LzmaEnc_FreeLits(p, alloc);
2574
7.77k
      p->litProbs = (CLzmaProb *)ISzAlloc_Alloc(alloc, ((UInt32)0x300 << lclp) * sizeof(CLzmaProb));
2575
7.77k
      p->saveState.litProbs = (CLzmaProb *)ISzAlloc_Alloc(alloc, ((UInt32)0x300 << lclp) * sizeof(CLzmaProb));
2576
7.77k
      if (!p->litProbs || !p->saveState.litProbs)
2577
0
      {
2578
0
        LzmaEnc_FreeLits(p, alloc);
2579
0
        return SZ_ERROR_MEM;
2580
0
      }
2581
7.77k
      p->lclp = lclp;
2582
7.77k
    }
2583
7.77k
  }
2584
2585
7.77k
  p->matchFinderBase.bigHash = (Byte)(p->dictSize > kBigHashDicLimit ? 1 : 0);
2586
2587
7.77k
  if (beforeSize + p->dictSize < keepWindowSize)
2588
0
    beforeSize = keepWindowSize - p->dictSize;
2589
2590
  #ifndef _7ZIP_ST
2591
  if (p->mtMode)
2592
  {
2593
    RINOK(MatchFinderMt_Create(&p->matchFinderMt, p->dictSize, beforeSize, p->numFastBytes,
2594
        LZMA_MATCH_LEN_MAX
2595
        + 1  /* 18.04 */
2596
        , allocBig));
2597
    p->matchFinderObj = &p->matchFinderMt;
2598
    p->matchFinderBase.bigHash = (Byte)(
2599
        (p->dictSize > kBigHashDicLimit && p->matchFinderBase.hashMask >= 0xFFFFFF) ? 1 : 0);
2600
    MatchFinderMt_CreateVTable(&p->matchFinderMt, &p->matchFinder);
2601
  }
2602
  else
2603
  #endif
2604
7.77k
  {
2605
7.77k
    if (!MatchFinder_Create(&p->matchFinderBase, p->dictSize, beforeSize, p->numFastBytes, LZMA_MATCH_LEN_MAX, allocBig))
2606
0
      return SZ_ERROR_MEM;
2607
7.77k
    p->matchFinderObj = &p->matchFinderBase;
2608
7.77k
    MatchFinder_CreateVTable(&p->matchFinderBase, &p->matchFinder);
2609
7.77k
  }
2610
  
2611
7.77k
  return SZ_OK;
2612
7.77k
}
2613
2614
void LzmaEnc_Init(CLzmaEnc *p)
2615
18.7k
{
2616
18.7k
  unsigned i;
2617
18.7k
  p->state = 0;
2618
18.7k
  p->reps[0] =
2619
18.7k
  p->reps[1] =
2620
18.7k
  p->reps[2] =
2621
18.7k
  p->reps[3] = 1;
2622
2623
18.7k
  RangeEnc_Init(&p->rc);
2624
2625
319k
  for (i = 0; i < (1 << kNumAlignBits); i++)
2626
300k
    p->posAlignEncoder[i] = kProbInitValue;
2627
2628
244k
  for (i = 0; i < kNumStates; i++)
2629
225k
  {
2630
225k
    unsigned j;
2631
3.82M
    for (j = 0; j < LZMA_NUM_PB_STATES_MAX; j++)
2632
3.60M
    {
2633
3.60M
      p->isMatch[i][j] = kProbInitValue;
2634
3.60M
      p->isRep0Long[i][j] = kProbInitValue;
2635
3.60M
    }
2636
225k
    p->isRep[i] = kProbInitValue;
2637
225k
    p->isRepG0[i] = kProbInitValue;
2638
225k
    p->isRepG1[i] = kProbInitValue;
2639
225k
    p->isRepG2[i] = kProbInitValue;
2640
225k
  }
2641
2642
18.7k
  {
2643
93.8k
    for (i = 0; i < kNumLenToPosStates; i++)
2644
75.0k
    {
2645
75.0k
      CLzmaProb *probs = p->posSlotEncoder[i];
2646
75.0k
      unsigned j;
2647
4.88M
      for (j = 0; j < (1 << kNumPosSlotBits); j++)
2648
4.80M
        probs[j] = kProbInitValue;
2649
75.0k
    }
2650
18.7k
  }
2651
18.7k
  {
2652
2.42M
    for (i = 0; i < kNumFullDistances; i++)
2653
2.40M
      p->posEncoders[i] = kProbInitValue;
2654
18.7k
  }
2655
2656
18.7k
  {
2657
18.7k
    UInt32 num = (UInt32)0x300 << (p->lp + p->lc);
2658
18.7k
    UInt32 k;
2659
18.7k
    CLzmaProb *probs = p->litProbs;
2660
115M
    for (k = 0; k < num; k++)
2661
115M
      probs[k] = kProbInitValue;
2662
18.7k
  }
2663
2664
2665
18.7k
  LenEnc_Init(&p->lenProbs);
2666
18.7k
  LenEnc_Init(&p->repLenProbs);
2667
2668
18.7k
  p->optEnd = 0;
2669
18.7k
  p->optCur = 0;
2670
2671
18.7k
  {
2672
38.4M
    for (i = 0; i < kNumOpts; i++)
2673
38.4M
      p->opt[i].price = kInfinityPrice;
2674
18.7k
  }
2675
2676
18.7k
  p->additionalOffset = 0;
2677
2678
18.7k
  p->pbMask = (1 << p->pb) - 1;
2679
18.7k
  p->lpMask = ((UInt32)0x100 << p->lp) - ((unsigned)0x100 >> p->lc);
2680
18.7k
}
2681
2682
2683
void LzmaEnc_InitPrices(CLzmaEnc *p)
2684
28.0k
{
2685
28.0k
  if (!p->fastMode)
2686
28.0k
  {
2687
28.0k
    FillDistancesPrices(p);
2688
28.0k
    FillAlignPrices(p);
2689
28.0k
  }
2690
2691
28.0k
  p->lenEnc.tableSize =
2692
28.0k
  p->repLenEnc.tableSize =
2693
28.0k
      p->numFastBytes + 1 - LZMA_MATCH_LEN_MIN;
2694
2695
28.0k
  p->repLenEncCounter = REP_LEN_COUNT;
2696
2697
28.0k
  LenPriceEnc_UpdateTables(&p->lenEnc, 1 << p->pb, &p->lenProbs, p->ProbPrices);
2698
28.0k
  LenPriceEnc_UpdateTables(&p->repLenEnc, 1 << p->pb, &p->repLenProbs, p->ProbPrices);
2699
28.0k
}
2700
2701
static SRes LzmaEnc_AllocAndInit(CLzmaEnc *p, UInt32 keepWindowSize, ISzAllocPtr alloc, ISzAllocPtr allocBig)
2702
7.77k
{
2703
7.77k
  unsigned i;
2704
139k
  for (i = kEndPosModelIndex / 2; i < kDicLogSizeMax; i++)
2705
139k
    if (p->dictSize <= ((UInt32)1 << i))
2706
7.77k
      break;
2707
7.77k
  p->distTableSize = i * 2;
2708
2709
7.77k
  p->finished = False;
2710
7.77k
  p->result = SZ_OK;
2711
7.77k
  RINOK(LzmaEnc_Alloc(p, keepWindowSize, alloc, allocBig));
2712
7.77k
  LzmaEnc_Init(p);
2713
7.77k
  LzmaEnc_InitPrices(p);
2714
7.77k
  p->nowPos64 = 0;
2715
7.77k
  return SZ_OK;
2716
7.77k
}
2717
2718
static SRes LzmaEnc_Prepare(CLzmaEncHandle pp, ISeqOutStream *outStream, ISeqInStream *inStream,
2719
    ISzAllocPtr alloc, ISzAllocPtr allocBig)
2720
0
{
2721
0
  CLzmaEnc *p = (CLzmaEnc *)pp;
2722
0
  p->matchFinderBase.stream = inStream;
2723
0
  p->needInit = 1;
2724
0
  p->rc.outStream = outStream;
2725
0
  return LzmaEnc_AllocAndInit(p, 0, alloc, allocBig);
2726
0
}
2727
2728
SRes LzmaEnc_PrepareForLzma2(CLzmaEncHandle pp,
2729
    ISeqInStream *inStream, UInt32 keepWindowSize,
2730
    ISzAllocPtr alloc, ISzAllocPtr allocBig)
2731
7.77k
{
2732
7.77k
  CLzmaEnc *p = (CLzmaEnc *)pp;
2733
7.77k
  p->matchFinderBase.stream = inStream;
2734
7.77k
  p->needInit = 1;
2735
7.77k
  return LzmaEnc_AllocAndInit(p, keepWindowSize, alloc, allocBig);
2736
7.77k
}
2737
2738
static void LzmaEnc_SetInputBuf(CLzmaEnc *p, const Byte *src, SizeT srcLen)
2739
0
{
2740
0
  p->matchFinderBase.directInput = 1;
2741
0
  p->matchFinderBase.bufferBase = (Byte *)src;
2742
0
  p->matchFinderBase.directInputRem = srcLen;
2743
0
}
2744
2745
SRes LzmaEnc_MemPrepare(CLzmaEncHandle pp, const Byte *src, SizeT srcLen,
2746
    UInt32 keepWindowSize, ISzAllocPtr alloc, ISzAllocPtr allocBig)
2747
0
{
2748
0
  CLzmaEnc *p = (CLzmaEnc *)pp;
2749
0
  LzmaEnc_SetInputBuf(p, src, srcLen);
2750
0
  p->needInit = 1;
2751
2752
0
  LzmaEnc_SetDataSize(pp, srcLen);
2753
0
  return LzmaEnc_AllocAndInit(p, keepWindowSize, alloc, allocBig);
2754
0
}
2755
2756
void LzmaEnc_Finish(CLzmaEncHandle pp)
2757
7.77k
{
2758
  #ifndef _7ZIP_ST
2759
  CLzmaEnc *p = (CLzmaEnc *)pp;
2760
  if (p->mtMode)
2761
    MatchFinderMt_ReleaseStream(&p->matchFinderMt);
2762
  #else
2763
7.77k
  UNUSED_VAR(pp);
2764
7.77k
  #endif
2765
7.77k
}
2766
2767
2768
typedef struct
2769
{
2770
  ISeqOutStream vt;
2771
  Byte *data;
2772
  SizeT rem;
2773
  BoolInt overflow;
2774
} CLzmaEnc_SeqOutStreamBuf;
2775
2776
static size_t SeqOutStreamBuf_Write(const ISeqOutStream *pp, const void *data, size_t size)
2777
20.2k
{
2778
20.2k
  CLzmaEnc_SeqOutStreamBuf *p = CONTAINER_FROM_VTBL(pp, CLzmaEnc_SeqOutStreamBuf, vt);
2779
20.2k
  if (p->rem < size)
2780
0
  {
2781
0
    size = p->rem;
2782
0
    p->overflow = True;
2783
0
  }
2784
20.2k
  memcpy(p->data, data, size);
2785
20.2k
  p->rem -= size;
2786
20.2k
  p->data += size;
2787
20.2k
  return size;
2788
20.2k
}
2789
2790
2791
UInt32 LzmaEnc_GetNumAvailableBytes(CLzmaEncHandle pp)
2792
0
{
2793
0
  const CLzmaEnc *p = (CLzmaEnc *)pp;
2794
0
  return p->matchFinder.GetNumAvailableBytes(p->matchFinderObj);
2795
0
}
2796
2797
2798
const Byte *LzmaEnc_GetCurBuf(CLzmaEncHandle pp)
2799
4.42k
{
2800
4.42k
  const CLzmaEnc *p = (CLzmaEnc *)pp;
2801
4.42k
  return p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - p->additionalOffset;
2802
4.42k
}
2803
2804
2805
SRes LzmaEnc_CodeOneMemBlock(CLzmaEncHandle pp, BoolInt reInit,
2806
    Byte *dest, size_t *destLen, UInt32 desiredPackSize, UInt32 *unpackSize)
2807
20.2k
{
2808
20.2k
  CLzmaEnc *p = (CLzmaEnc *)pp;
2809
20.2k
  UInt64 nowPos64;
2810
20.2k
  SRes res;
2811
20.2k
  CLzmaEnc_SeqOutStreamBuf outStream;
2812
2813
20.2k
  outStream.vt.Write = SeqOutStreamBuf_Write;
2814
20.2k
  outStream.data = dest;
2815
20.2k
  outStream.rem = *destLen;
2816
20.2k
  outStream.overflow = False;
2817
2818
20.2k
  p->writeEndMark = False;
2819
20.2k
  p->finished = False;
2820
20.2k
  p->result = SZ_OK;
2821
2822
20.2k
  if (reInit)
2823
10.9k
    LzmaEnc_Init(p);
2824
20.2k
  LzmaEnc_InitPrices(p);
2825
2826
20.2k
  nowPos64 = p->nowPos64;
2827
20.2k
  RangeEnc_Init(&p->rc);
2828
20.2k
  p->rc.outStream = &outStream.vt;
2829
2830
20.2k
  if (desiredPackSize == 0)
2831
0
    return SZ_ERROR_OUTPUT_EOF;
2832
2833
20.2k
  res = LzmaEnc_CodeOneBlock(p, desiredPackSize, *unpackSize);
2834
  
2835
20.2k
  *unpackSize = (UInt32)(p->nowPos64 - nowPos64);
2836
20.2k
  *destLen -= outStream.rem;
2837
20.2k
  if (outStream.overflow)
2838
0
    return SZ_ERROR_OUTPUT_EOF;
2839
2840
20.2k
  return res;
2841
20.2k
}
2842
2843
2844
static SRes LzmaEnc_Encode2(CLzmaEnc *p, ICompressProgress *progress)
2845
0
{
2846
0
  SRes res = SZ_OK;
2847
2848
  #ifndef _7ZIP_ST
2849
  Byte allocaDummy[0x300];
2850
  allocaDummy[0] = 0;
2851
  allocaDummy[1] = allocaDummy[0];
2852
  #endif
2853
2854
0
  for (;;)
2855
0
  {
2856
0
    res = LzmaEnc_CodeOneBlock(p, 0, 0);
2857
0
    if (res != SZ_OK || p->finished)
2858
0
      break;
2859
0
    if (progress)
2860
0
    {
2861
0
      res = ICompressProgress_Progress(progress, p->nowPos64, RangeEnc_GetProcessed(&p->rc));
2862
0
      if (res != SZ_OK)
2863
0
      {
2864
0
        res = SZ_ERROR_PROGRESS;
2865
0
        break;
2866
0
      }
2867
0
    }
2868
0
  }
2869
  
2870
0
  LzmaEnc_Finish(p);
2871
2872
  /*
2873
  if (res == SZ_OK && !Inline_MatchFinder_IsFinishedOK(&p->matchFinderBase))
2874
    res = SZ_ERROR_FAIL;
2875
  }
2876
  */
2877
2878
0
  return res;
2879
0
}
2880
2881
2882
SRes LzmaEnc_Encode(CLzmaEncHandle pp, ISeqOutStream *outStream, ISeqInStream *inStream, ICompressProgress *progress,
2883
    ISzAllocPtr alloc, ISzAllocPtr allocBig)
2884
0
{
2885
0
  RINOK(LzmaEnc_Prepare(pp, outStream, inStream, alloc, allocBig));
2886
0
  return LzmaEnc_Encode2((CLzmaEnc *)pp, progress);
2887
0
}
2888
2889
2890
SRes LzmaEnc_WriteProperties(CLzmaEncHandle pp, Byte *props, SizeT *size)
2891
7.77k
{
2892
7.77k
  CLzmaEnc *p = (CLzmaEnc *)pp;
2893
7.77k
  unsigned i;
2894
7.77k
  UInt32 dictSize = p->dictSize;
2895
7.77k
  if (*size < LZMA_PROPS_SIZE)
2896
0
    return SZ_ERROR_PARAM;
2897
7.77k
  *size = LZMA_PROPS_SIZE;
2898
7.77k
  props[0] = (Byte)((p->pb * 5 + p->lp) * 9 + p->lc);
2899
2900
7.77k
  if (dictSize >= ((UInt32)1 << 22))
2901
7.77k
  {
2902
7.77k
    UInt32 kDictMask = ((UInt32)1 << 20) - 1;
2903
7.77k
    if (dictSize < (UInt32)0xFFFFFFFF - kDictMask)
2904
7.77k
      dictSize = (dictSize + kDictMask) & ~kDictMask;
2905
7.77k
  }
2906
0
  else for (i = 11; i <= 30; i++)
2907
0
  {
2908
0
    if (dictSize <= ((UInt32)2 << i)) { dictSize = (2 << i); break; }
2909
0
    if (dictSize <= ((UInt32)3 << i)) { dictSize = (3 << i); break; }
2910
0
  }
2911
2912
38.8k
  for (i = 0; i < 4; i++)
2913
31.1k
    props[1 + i] = (Byte)(dictSize >> (8 * i));
2914
7.77k
  return SZ_OK;
2915
7.77k
}
2916
2917
2918
unsigned LzmaEnc_IsWriteEndMark(CLzmaEncHandle pp)
2919
0
{
2920
0
  return ((CLzmaEnc *)pp)->writeEndMark;
2921
0
}
2922
2923
2924
SRes LzmaEnc_MemEncode(CLzmaEncHandle pp, Byte *dest, SizeT *destLen, const Byte *src, SizeT srcLen,
2925
    int writeEndMark, ICompressProgress *progress, ISzAllocPtr alloc, ISzAllocPtr allocBig)
2926
0
{
2927
0
  SRes res;
2928
0
  CLzmaEnc *p = (CLzmaEnc *)pp;
2929
2930
0
  CLzmaEnc_SeqOutStreamBuf outStream;
2931
2932
0
  outStream.vt.Write = SeqOutStreamBuf_Write;
2933
0
  outStream.data = dest;
2934
0
  outStream.rem = *destLen;
2935
0
  outStream.overflow = False;
2936
2937
0
  p->writeEndMark = writeEndMark;
2938
0
  p->rc.outStream = &outStream.vt;
2939
2940
0
  res = LzmaEnc_MemPrepare(pp, src, srcLen, 0, alloc, allocBig);
2941
  
2942
0
  if (res == SZ_OK)
2943
0
  {
2944
0
    res = LzmaEnc_Encode2(p, progress);
2945
0
    if (res == SZ_OK && p->nowPos64 != srcLen)
2946
0
      res = SZ_ERROR_FAIL;
2947
0
  }
2948
2949
0
  *destLen -= outStream.rem;
2950
0
  if (outStream.overflow)
2951
0
    return SZ_ERROR_OUTPUT_EOF;
2952
0
  return res;
2953
0
}
2954
2955
2956
SRes LzmaEncode(Byte *dest, SizeT *destLen, const Byte *src, SizeT srcLen,
2957
    const CLzmaEncProps *props, Byte *propsEncoded, SizeT *propsSize, int writeEndMark,
2958
    ICompressProgress *progress, ISzAllocPtr alloc, ISzAllocPtr allocBig)
2959
0
{
2960
0
  CLzmaEnc *p = (CLzmaEnc *)LzmaEnc_Create(alloc);
2961
0
  SRes res;
2962
0
  if (!p)
2963
0
    return SZ_ERROR_MEM;
2964
2965
0
  res = LzmaEnc_SetProps(p, props);
2966
0
  if (res == SZ_OK)
2967
0
  {
2968
0
    res = LzmaEnc_WriteProperties(p, propsEncoded, propsSize);
2969
0
    if (res == SZ_OK)
2970
0
      res = LzmaEnc_MemEncode(p, dest, destLen, src, srcLen,
2971
0
          writeEndMark, progress, alloc, allocBig);
2972
0
  }
2973
2974
0
  LzmaEnc_Destroy(p, alloc, allocBig);
2975
0
  return res;
2976
0
}