Coverage Report

Created: 2025-06-13 06:18

/src/gdal/build/frmts/jpeg/libjpeg12/jcsample12.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * jcsample.c
3
 *
4
 * Copyright (C) 1991-1996, Thomas G. Lane.
5
 * This file is part of the Independent JPEG Group's software.
6
 * For conditions of distribution and use, see the accompanying README file.
7
 *
8
 * This file contains downsampling routines.
9
 *
10
 * Downsampling input data is counted in "row groups".  A row group
11
 * is defined to be max_v_samp_factor pixel rows of each component,
12
 * from which the downsampler produces v_samp_factor sample rows.
13
 * A single row group is processed in each call to the downsampler module.
14
 *
15
 * The downsampler is responsible for edge-expansion of its output data
16
 * to fill an integral number of DCT blocks horizontally.  The source buffer
17
 * may be modified if it is helpful for this purpose (the source buffer is
18
 * allocated wide enough to correspond to the desired output width).
19
 * The caller (the prep controller) is responsible for vertical padding.
20
 *
21
 * The downsampler may request "context rows" by setting need_context_rows
22
 * during startup.  In this case, the input arrays will contain at least
23
 * one row group's worth of pixels above and below the passed-in data;
24
 * the caller will create dummy rows at image top and bottom by replicating
25
 * the first or last real pixel row.
26
 *
27
 * An excellent reference for image resampling is
28
 *   Digital Image Warping, George Wolberg, 1990.
29
 *   Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7.
30
 *
31
 * The downsampling algorithm used here is a simple average of the source
32
 * pixels covered by the output pixel.  The highfalutin sampling literature
33
 * refers to this as a "box filter".  In general the characteristics of a box
34
 * filter are not very good, but for the specific cases we normally use (1:1
35
 * and 2:1 ratios) the box is equivalent to a "triangle filter" which is not
36
 * nearly so bad.  If you intend to use other sampling ratios, you'd be well
37
 * advised to improve this code.
38
 *
39
 * A simple input-smoothing capability is provided.  This is mainly intended
40
 * for cleaning up color-dithered GIF input files (if you find it inadequate,
41
 * we suggest using an external filtering program such as pnmconvol).  When
42
 * enabled, each input pixel P is replaced by a weighted sum of itself and its
43
 * eight neighbors.  P's weight is 1-8*SF and each neighbor's weight is SF,
44
 * where SF = (smoothing_factor / 1024).
45
 * Currently, smoothing is only supported for 2h2v sampling factors.
46
 */
47
48
#define JPEG_INTERNALS
49
#include "jinclude.h"
50
#include "jpeglib.h"
51
52
#include "cpl_port.h"
53
54
/* Pointer to routine to downsample a single component */
55
typedef JMETHOD(void, downsample1_ptr,
56
    (j_compress_ptr cinfo, jpeg_component_info * compptr,
57
     JSAMPARRAY input_data, JSAMPARRAY output_data));
58
59
/* Private subobject */
60
61
typedef struct {
62
  struct jpeg_downsampler pub;  /* public fields */
63
64
  /* Downsampling method pointers, one per component */
65
  downsample1_ptr methods[MAX_COMPONENTS];
66
} my_downsampler;
67
68
typedef my_downsampler * my_downsample_ptr;
69
70
71
/*
72
 * Initialize for a downsampling pass.
73
 */
74
75
METHODDEF(void)
76
start_pass_downsample (CPL_UNUSED j_compress_ptr cinfo)
77
0
{
78
  /* no work for now */
79
0
}
80
81
82
/*
83
 * Expand a component horizontally from width input_cols to width output_cols,
84
 * by duplicating the rightmost samples.
85
 */
86
87
LOCAL(void)
88
expand_right_edge (JSAMPARRAY image_data, int num_rows,
89
       JDIMENSION input_cols, JDIMENSION output_cols)
90
0
{
91
0
  register JSAMPROW ptr;
92
0
  register JSAMPLE pixval;
93
0
  register int count;
94
0
  int row;
95
0
  int numcols = (int) (output_cols - input_cols);
96
97
0
  if (numcols > 0) {
98
0
    for (row = 0; row < num_rows; row++) {
99
0
      ptr = image_data[row] + input_cols;
100
0
      pixval = ptr[-1];   /* don't need GETJSAMPLE() here */
101
0
      for (count = numcols; count > 0; count--)
102
0
  *ptr++ = pixval;
103
0
    }
104
0
  }
105
0
}
106
107
108
/*
109
 * Do downsampling for a whole row group (all components).
110
 *
111
 * In this version we simply downsample each component independently.
112
 */
113
114
METHODDEF(void)
115
sep_downsample (j_compress_ptr cinfo,
116
    JSAMPIMAGE input_buf, JDIMENSION in_row_index,
117
    JSAMPIMAGE output_buf, JDIMENSION out_row_group_index)
118
0
{
119
0
  my_downsample_ptr downsample = (my_downsample_ptr) cinfo->downsample;
120
0
  int ci;
121
0
  jpeg_component_info * compptr;
122
0
  JSAMPARRAY in_ptr, out_ptr;
123
124
0
  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
125
0
       ci++, compptr++) {
126
0
    in_ptr = input_buf[ci] + in_row_index;
127
0
    out_ptr = output_buf[ci] + (out_row_group_index * compptr->v_samp_factor);
128
0
    (*downsample->methods[ci]) (cinfo, compptr, in_ptr, out_ptr);
129
0
  }
130
0
}
131
132
133
/*
134
 * Downsample pixel values of a single component.
135
 * One row group is processed per call.
136
 * This version handles arbitrary integral sampling ratios, without smoothing.
137
 * Note that this version is not actually used for customary sampling ratios.
138
 */
139
140
METHODDEF(void)
141
int_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
142
    JSAMPARRAY input_data, JSAMPARRAY output_data)
143
0
{
144
0
  int inrow, outrow, h_expand, v_expand, numpix, numpix2, h, v;
145
0
  JDIMENSION outcol, outcol_h;  /* outcol_h == outcol*h_expand */
146
0
  JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
147
0
  JSAMPROW inptr, outptr;
148
0
  INT32 outvalue;
149
150
0
  h_expand = cinfo->max_h_samp_factor / compptr->h_samp_factor;
151
0
  v_expand = cinfo->max_v_samp_factor / compptr->v_samp_factor;
152
0
  numpix = h_expand * v_expand;
153
0
  numpix2 = numpix/2;
154
155
  /* Expand input data enough to let all the output samples be generated
156
   * by the standard loop.  Special-casing padded output would be more
157
   * efficient.
158
   */
159
0
  expand_right_edge(input_data, cinfo->max_v_samp_factor,
160
0
        cinfo->image_width, output_cols * h_expand);
161
162
0
  inrow = 0;
163
0
  for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
164
0
    outptr = output_data[outrow];
165
0
    for (outcol = 0, outcol_h = 0; outcol < output_cols;
166
0
   outcol++, outcol_h += h_expand) {
167
0
      outvalue = 0;
168
0
      for (v = 0; v < v_expand; v++) {
169
0
  inptr = input_data[inrow+v] + outcol_h;
170
0
  for (h = 0; h < h_expand; h++) {
171
0
    outvalue += (INT32) GETJSAMPLE(*inptr++);
172
0
  }
173
0
      }
174
0
      *outptr++ = (JSAMPLE) ((outvalue + numpix2) / numpix);
175
0
    }
176
0
    inrow += v_expand;
177
0
  }
178
0
}
179
180
181
/*
182
 * Downsample pixel values of a single component.
183
 * This version handles the special case of a full-size component,
184
 * without smoothing.
185
 */
186
187
METHODDEF(void)
188
fullsize_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
189
         JSAMPARRAY input_data, JSAMPARRAY output_data)
190
0
{
191
  /* Copy the data */
192
0
  jcopy_sample_rows(input_data, 0, output_data, 0,
193
0
        cinfo->max_v_samp_factor, cinfo->image_width);
194
  /* Edge-expand */
195
0
  expand_right_edge(output_data, cinfo->max_v_samp_factor,
196
0
        cinfo->image_width, compptr->width_in_blocks * DCTSIZE);
197
0
}
198
199
200
/*
201
 * Downsample pixel values of a single component.
202
 * This version handles the common case of 2:1 horizontal and 1:1 vertical,
203
 * without smoothing.
204
 *
205
 * A note about the "bias" calculations: when rounding fractional values to
206
 * integer, we do not want to always round 0.5 up to the next integer.
207
 * If we did that, we'd introduce a noticeable bias towards larger values.
208
 * Instead, this code is arranged so that 0.5 will be rounded up or down at
209
 * alternate pixel locations (a simple ordered dither pattern).
210
 */
211
212
METHODDEF(void)
213
h2v1_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
214
     JSAMPARRAY input_data, JSAMPARRAY output_data)
215
0
{
216
0
  int outrow;
217
0
  JDIMENSION outcol;
218
0
  JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
219
0
  register JSAMPROW inptr, outptr;
220
0
  register int bias;
221
222
  /* Expand input data enough to let all the output samples be generated
223
   * by the standard loop.  Special-casing padded output would be more
224
   * efficient.
225
   */
226
0
  expand_right_edge(input_data, cinfo->max_v_samp_factor,
227
0
        cinfo->image_width, output_cols * 2);
228
229
0
  for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
230
0
    outptr = output_data[outrow];
231
0
    inptr = input_data[outrow];
232
0
    bias = 0;     /* bias = 0,1,0,1,... for successive samples */
233
0
    for (outcol = 0; outcol < output_cols; outcol++) {
234
0
      *outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr) + GETJSAMPLE(inptr[1])
235
0
            + bias) >> 1);
236
0
      bias ^= 1;    /* 0=>1, 1=>0 */
237
0
      inptr += 2;
238
0
    }
239
0
  }
240
0
}
241
242
243
/*
244
 * Downsample pixel values of a single component.
245
 * This version handles the standard case of 2:1 horizontal and 2:1 vertical,
246
 * without smoothing.
247
 */
248
249
METHODDEF(void)
250
h2v2_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
251
     JSAMPARRAY input_data, JSAMPARRAY output_data)
252
0
{
253
0
  int inrow, outrow;
254
0
  JDIMENSION outcol;
255
0
  JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
256
0
  register JSAMPROW inptr0, inptr1, outptr;
257
0
  register int bias;
258
259
  /* Expand input data enough to let all the output samples be generated
260
   * by the standard loop.  Special-casing padded output would be more
261
   * efficient.
262
   */
263
0
  expand_right_edge(input_data, cinfo->max_v_samp_factor,
264
0
        cinfo->image_width, output_cols * 2);
265
266
0
  inrow = 0;
267
0
  for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
268
0
    outptr = output_data[outrow];
269
0
    inptr0 = input_data[inrow];
270
0
    inptr1 = input_data[inrow+1];
271
0
    bias = 1;     /* bias = 1,2,1,2,... for successive samples */
272
0
    for (outcol = 0; outcol < output_cols; outcol++) {
273
0
      *outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
274
0
            GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1])
275
0
            + bias) >> 2);
276
0
      bias ^= 3;    /* 1=>2, 2=>1 */
277
0
      inptr0 += 2; inptr1 += 2;
278
0
    }
279
0
    inrow += 2;
280
0
  }
281
0
}
282
283
284
#ifdef INPUT_SMOOTHING_SUPPORTED
285
286
/*
287
 * Downsample pixel values of a single component.
288
 * This version handles the standard case of 2:1 horizontal and 2:1 vertical,
289
 * with smoothing.  One row of context is required.
290
 */
291
292
METHODDEF(void)
293
h2v2_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
294
      JSAMPARRAY input_data, JSAMPARRAY output_data)
295
0
{
296
0
  int inrow, outrow;
297
0
  JDIMENSION colctr;
298
0
  JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
299
0
  register JSAMPROW inptr0, inptr1, above_ptr, below_ptr, outptr;
300
0
  INT32 membersum, neighsum, memberscale, neighscale;
301
302
  /* Expand input data enough to let all the output samples be generated
303
   * by the standard loop.  Special-casing padded output would be more
304
   * efficient.
305
   */
306
0
  expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2,
307
0
        cinfo->image_width, output_cols * 2);
308
309
  /* We don't bother to form the individual "smoothed" input pixel values;
310
   * we can directly compute the output which is the average of the four
311
   * smoothed values.  Each of the four member pixels contributes a fraction
312
   * (1-8*SF) to its own smoothed image and a fraction SF to each of the three
313
   * other smoothed pixels, therefore a total fraction (1-5*SF)/4 to the final
314
   * output.  The four corner-adjacent neighbor pixels contribute a fraction
315
   * SF to just one smoothed pixel, or SF/4 to the final output; while the
316
   * eight edge-adjacent neighbors contribute SF to each of two smoothed
317
   * pixels, or SF/2 overall.  In order to use integer arithmetic, these
318
   * factors are scaled by 2^16 = 65536.
319
   * Also recall that SF = smoothing_factor / 1024.
320
   */
321
322
0
  memberscale = 16384 - cinfo->smoothing_factor * 80; /* scaled (1-5*SF)/4 */
323
0
  neighscale = cinfo->smoothing_factor * 16; /* scaled SF/4 */
324
325
0
  inrow = 0;
326
0
  for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
327
0
    outptr = output_data[outrow];
328
0
    inptr0 = input_data[inrow];
329
0
    inptr1 = input_data[inrow+1];
330
0
    above_ptr = input_data[inrow-1];
331
0
    below_ptr = input_data[inrow+2];
332
333
    /* Special case for first column: pretend column -1 is same as column 0 */
334
0
    membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
335
0
    GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
336
0
    neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
337
0
         GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
338
0
         GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[2]) +
339
0
         GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[2]);
340
0
    neighsum += neighsum;
341
0
    neighsum += GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[2]) +
342
0
    GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[2]);
343
0
    membersum = membersum * memberscale + neighsum * neighscale;
344
0
    *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
345
0
    inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2;
346
347
0
    for (colctr = output_cols - 2; colctr > 0; colctr--) {
348
      /* sum of pixels directly mapped to this output element */
349
0
      membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
350
0
      GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
351
      /* sum of edge-neighbor pixels */
352
0
      neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
353
0
     GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
354
0
     GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[2]) +
355
0
     GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[2]);
356
      /* The edge-neighbors count twice as much as corner-neighbors */
357
0
      neighsum += neighsum;
358
      /* Add in the corner-neighbors */
359
0
      neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[2]) +
360
0
      GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[2]);
361
      /* form final output scaled up by 2^16 */
362
0
      membersum = membersum * memberscale + neighsum * neighscale;
363
      /* round, descale and output it */
364
0
      *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
365
0
      inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2;
366
0
    }
367
368
    /* Special case for last column */
369
0
    membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
370
0
    GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
371
0
    neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
372
0
         GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
373
0
         GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[1]) +
374
0
         GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[1]);
375
0
    neighsum += neighsum;
376
0
    neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[1]) +
377
0
    GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[1]);
378
0
    membersum = membersum * memberscale + neighsum * neighscale;
379
0
    *outptr = (JSAMPLE) ((membersum + 32768) >> 16);
380
381
0
    inrow += 2;
382
0
  }
383
0
}
384
385
386
/*
387
 * Downsample pixel values of a single component.
388
 * This version handles the special case of a full-size component,
389
 * with smoothing.  One row of context is required.
390
 */
391
392
METHODDEF(void)
393
fullsize_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info *compptr,
394
          JSAMPARRAY input_data, JSAMPARRAY output_data)
395
0
{
396
0
  int outrow;
397
0
  JDIMENSION colctr;
398
0
  JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
399
0
  register JSAMPROW inptr, above_ptr, below_ptr, outptr;
400
0
  INT32 membersum, neighsum, memberscale, neighscale;
401
0
  int colsum, lastcolsum, nextcolsum;
402
403
  /* Expand input data enough to let all the output samples be generated
404
   * by the standard loop.  Special-casing padded output would be more
405
   * efficient.
406
   */
407
0
  expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2,
408
0
        cinfo->image_width, output_cols);
409
410
  /* Each of the eight neighbor pixels contributes a fraction SF to the
411
   * smoothed pixel, while the main pixel contributes (1-8*SF).  In order
412
   * to use integer arithmetic, these factors are multiplied by 2^16 = 65536.
413
   * Also recall that SF = smoothing_factor / 1024.
414
   */
415
416
0
  memberscale = 65536L - cinfo->smoothing_factor * 512L; /* scaled 1-8*SF */
417
0
  neighscale = cinfo->smoothing_factor * 64; /* scaled SF */
418
419
0
  for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
420
0
    outptr = output_data[outrow];
421
0
    inptr = input_data[outrow];
422
0
    above_ptr = input_data[outrow-1];
423
0
    below_ptr = input_data[outrow+1];
424
425
    /* Special case for first column */
426
0
    colsum = GETJSAMPLE(*above_ptr++) + GETJSAMPLE(*below_ptr++) +
427
0
       GETJSAMPLE(*inptr);
428
0
    membersum = GETJSAMPLE(*inptr++);
429
0
    nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) +
430
0
     GETJSAMPLE(*inptr);
431
0
    neighsum = colsum + (colsum - membersum) + nextcolsum;
432
0
    membersum = membersum * memberscale + neighsum * neighscale;
433
0
    *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
434
0
    lastcolsum = colsum; colsum = nextcolsum;
435
436
0
    for (colctr = output_cols - 2; colctr > 0; colctr--) {
437
0
      membersum = GETJSAMPLE(*inptr++);
438
0
      above_ptr++; below_ptr++;
439
0
      nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) +
440
0
       GETJSAMPLE(*inptr);
441
0
      neighsum = lastcolsum + (colsum - membersum) + nextcolsum;
442
0
      membersum = membersum * memberscale + neighsum * neighscale;
443
0
      *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
444
0
      lastcolsum = colsum; colsum = nextcolsum;
445
0
    }
446
447
    /* Special case for last column */
448
0
    membersum = GETJSAMPLE(*inptr);
449
0
    neighsum = lastcolsum + (colsum - membersum) + colsum;
450
0
    membersum = membersum * memberscale + neighsum * neighscale;
451
0
    *outptr = (JSAMPLE) ((membersum + 32768) >> 16);
452
453
0
  }
454
0
}
455
456
#endif /* INPUT_SMOOTHING_SUPPORTED */
457
458
459
/*
460
 * Module initialization routine for downsampling.
461
 * Note that we must select a routine for each component.
462
 */
463
464
GLOBAL(void)
465
jinit_downsampler (j_compress_ptr cinfo)
466
0
{
467
0
  my_downsample_ptr downsample;
468
0
  int ci;
469
0
  jpeg_component_info * compptr;
470
0
  boolean smoothok = TRUE;
471
472
0
  downsample = (my_downsample_ptr)
473
0
    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
474
0
        SIZEOF(my_downsampler));
475
0
  cinfo->downsample = (struct jpeg_downsampler *) downsample;
476
0
  downsample->pub.start_pass = start_pass_downsample;
477
0
  downsample->pub.downsample = sep_downsample;
478
0
  downsample->pub.need_context_rows = FALSE;
479
480
0
  if (cinfo->CCIR601_sampling)
481
0
    ERREXIT(cinfo, JERR_CCIR601_NOTIMPL);
482
483
  /* Verify we can handle the sampling factors, and set up method pointers */
484
0
  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
485
0
       ci++, compptr++) {
486
0
    if (compptr->h_samp_factor == cinfo->max_h_samp_factor &&
487
0
  compptr->v_samp_factor == cinfo->max_v_samp_factor) {
488
0
#ifdef INPUT_SMOOTHING_SUPPORTED
489
0
      if (cinfo->smoothing_factor) {
490
0
  downsample->methods[ci] = fullsize_smooth_downsample;
491
0
  downsample->pub.need_context_rows = TRUE;
492
0
      } else
493
0
#endif
494
0
  downsample->methods[ci] = fullsize_downsample;
495
0
    } else if (compptr->h_samp_factor * 2 == cinfo->max_h_samp_factor &&
496
0
         compptr->v_samp_factor == cinfo->max_v_samp_factor) {
497
0
      smoothok = FALSE;
498
0
      downsample->methods[ci] = h2v1_downsample;
499
0
    } else if (compptr->h_samp_factor * 2 == cinfo->max_h_samp_factor &&
500
0
         compptr->v_samp_factor * 2 == cinfo->max_v_samp_factor) {
501
0
#ifdef INPUT_SMOOTHING_SUPPORTED
502
0
      if (cinfo->smoothing_factor) {
503
0
  downsample->methods[ci] = h2v2_smooth_downsample;
504
0
  downsample->pub.need_context_rows = TRUE;
505
0
      } else
506
0
#endif
507
0
  downsample->methods[ci] = h2v2_downsample;
508
0
    } else if ((cinfo->max_h_samp_factor % compptr->h_samp_factor) == 0 &&
509
0
         (cinfo->max_v_samp_factor % compptr->v_samp_factor) == 0) {
510
0
      smoothok = FALSE;
511
0
      downsample->methods[ci] = int_downsample;
512
0
    } else
513
0
      ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL);
514
0
  }
515
516
0
#ifdef INPUT_SMOOTHING_SUPPORTED
517
0
  if (cinfo->smoothing_factor && !smoothok)
518
0
    TRACEMS(cinfo, 0, JTRC_SMOOTH_NOTIMPL);
519
0
#endif
520
0
}