/src/gdal/build/frmts/jpeg/libjpeg12/jdcoefct12.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * jdcoefct.c |
3 | | * |
4 | | * Copyright (C) 1994-1997, Thomas G. Lane. |
5 | | * This file is part of the Independent JPEG Group's software. |
6 | | * For conditions of distribution and use, see the accompanying README file. |
7 | | * |
8 | | * This file contains the coefficient buffer controller for decompression. |
9 | | * This controller is the top level of the JPEG decompressor proper. |
10 | | * The coefficient buffer lies between entropy decoding and inverse-DCT steps. |
11 | | * |
12 | | * In buffered-image mode, this controller is the interface between |
13 | | * input-oriented processing and output-oriented processing. |
14 | | * Also, the input side (only) is used when reading a file for transcoding. |
15 | | */ |
16 | | |
17 | | #define JPEG_INTERNALS |
18 | | #include "jinclude.h" |
19 | | #include "jpeglib.h" |
20 | | |
21 | | #include "cpl_port.h" |
22 | | |
23 | | /* Block smoothing is only applicable for progressive JPEG, so: */ |
24 | | #ifndef D_PROGRESSIVE_SUPPORTED |
25 | | #undef BLOCK_SMOOTHING_SUPPORTED |
26 | | #endif |
27 | | |
28 | | /* Private buffer controller object */ |
29 | | |
30 | | typedef struct { |
31 | | struct jpeg_d_coef_controller pub; /* public fields */ |
32 | | |
33 | | /* These variables keep track of the current location of the input side. */ |
34 | | /* cinfo->input_iMCU_row is also used for this. */ |
35 | | JDIMENSION MCU_ctr; /* counts MCUs processed in current row */ |
36 | | int MCU_vert_offset; /* counts MCU rows within iMCU row */ |
37 | | int MCU_rows_per_iMCU_row; /* number of such rows needed */ |
38 | | |
39 | | /* The output side's location is represented by cinfo->output_iMCU_row. */ |
40 | | |
41 | | /* In single-pass modes, it's sufficient to buffer just one MCU. |
42 | | * We allocate a workspace of D_MAX_BLOCKS_IN_MCU coefficient blocks, |
43 | | * and let the entropy decoder write into that workspace each time. |
44 | | * (On 80x86, the workspace is FAR even though it's not really very big; |
45 | | * this is to keep the module interfaces unchanged when a large coefficient |
46 | | * buffer is necessary.) |
47 | | * In multi-pass modes, this array points to the current MCU's blocks |
48 | | * within the virtual arrays; it is used only by the input side. |
49 | | */ |
50 | | JBLOCKROW MCU_buffer[D_MAX_BLOCKS_IN_MCU]; |
51 | | |
52 | | #ifdef D_MULTISCAN_FILES_SUPPORTED |
53 | | /* In multi-pass modes, we need a virtual block array for each component. */ |
54 | | jvirt_barray_ptr whole_image[MAX_COMPONENTS]; |
55 | | #endif |
56 | | |
57 | | #ifdef BLOCK_SMOOTHING_SUPPORTED |
58 | | /* When doing block smoothing, we latch coefficient Al values here */ |
59 | | int * coef_bits_latch; |
60 | 0 | #define SAVED_COEFS 6 /* we save coef_bits[0..5] */ |
61 | | #endif |
62 | | } my_coef_controller; |
63 | | |
64 | | typedef my_coef_controller * my_coef_ptr; |
65 | | |
66 | | /* Forward declarations */ |
67 | | METHODDEF(int) decompress_onepass |
68 | | JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf)); |
69 | | #ifdef D_MULTISCAN_FILES_SUPPORTED |
70 | | METHODDEF(int) decompress_data |
71 | | JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf)); |
72 | | #endif |
73 | | #ifdef BLOCK_SMOOTHING_SUPPORTED |
74 | | LOCAL(boolean) smoothing_ok JPP((j_decompress_ptr cinfo)); |
75 | | METHODDEF(int) decompress_smooth_data |
76 | | JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf)); |
77 | | #endif |
78 | | |
79 | | |
80 | | LOCAL(void) |
81 | | start_iMCU_row (j_decompress_ptr cinfo) |
82 | | /* Reset within-iMCU-row counters for a new row (input side) */ |
83 | 0 | { |
84 | 0 | my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
85 | | |
86 | | /* In an interleaved scan, an MCU row is the same as an iMCU row. |
87 | | * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows. |
88 | | * But at the bottom of the image, process only what's left. |
89 | | */ |
90 | 0 | if (cinfo->comps_in_scan > 1) { |
91 | 0 | coef->MCU_rows_per_iMCU_row = 1; |
92 | 0 | } else { |
93 | 0 | if (cinfo->input_iMCU_row < (cinfo->total_iMCU_rows-1)) |
94 | 0 | coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor; |
95 | 0 | else |
96 | 0 | coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height; |
97 | 0 | } |
98 | |
|
99 | 0 | coef->MCU_ctr = 0; |
100 | 0 | coef->MCU_vert_offset = 0; |
101 | 0 | } |
102 | | |
103 | | |
104 | | /* |
105 | | * Initialize for an input processing pass. |
106 | | */ |
107 | | |
108 | | METHODDEF(void) |
109 | | start_input_pass (j_decompress_ptr cinfo) |
110 | 0 | { |
111 | 0 | cinfo->input_iMCU_row = 0; |
112 | 0 | start_iMCU_row(cinfo); |
113 | 0 | } |
114 | | |
115 | | |
116 | | /* |
117 | | * Initialize for an output processing pass. |
118 | | */ |
119 | | |
120 | | METHODDEF(void) |
121 | | start_output_pass (j_decompress_ptr cinfo) |
122 | 0 | { |
123 | 0 | #ifdef BLOCK_SMOOTHING_SUPPORTED |
124 | 0 | my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
125 | | |
126 | | /* If multipass, check to see whether to use block smoothing on this pass */ |
127 | 0 | if (coef->pub.coef_arrays != NULL) { |
128 | 0 | if (cinfo->do_block_smoothing && smoothing_ok(cinfo)) |
129 | 0 | coef->pub.decompress_data = decompress_smooth_data; |
130 | 0 | else |
131 | 0 | coef->pub.decompress_data = decompress_data; |
132 | 0 | } |
133 | 0 | #endif |
134 | 0 | cinfo->output_iMCU_row = 0; |
135 | 0 | } |
136 | | |
137 | | |
138 | | /* |
139 | | * Decompress and return some data in the single-pass case. |
140 | | * Always attempts to emit one fully interleaved MCU row ("iMCU" row). |
141 | | * Input and output must run in lockstep since we have only a one-MCU buffer. |
142 | | * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED. |
143 | | * |
144 | | * NB: output_buf contains a plane for each component in image, |
145 | | * which we index according to the component's SOF position. |
146 | | */ |
147 | | |
148 | | METHODDEF(int) |
149 | | decompress_onepass (j_decompress_ptr cinfo, JSAMPIMAGE output_buf) |
150 | 0 | { |
151 | 0 | my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
152 | 0 | JDIMENSION MCU_col_num; /* index of current MCU within row */ |
153 | 0 | JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1; |
154 | 0 | JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; |
155 | 0 | int blkn, ci, xindex, yindex, yoffset, useful_width; |
156 | 0 | JSAMPARRAY output_ptr; |
157 | 0 | JDIMENSION start_col, output_col; |
158 | 0 | jpeg_component_info *compptr; |
159 | 0 | inverse_DCT_method_ptr inverse_DCT; |
160 | | |
161 | | /* Loop to process as much as one whole iMCU row */ |
162 | 0 | for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; |
163 | 0 | yoffset++) { |
164 | 0 | for (MCU_col_num = coef->MCU_ctr; MCU_col_num <= last_MCU_col; |
165 | 0 | MCU_col_num++) { |
166 | | /* Try to fetch an MCU. Entropy decoder expects buffer to be zeroed. */ |
167 | 0 | jzero_far((void FAR *) coef->MCU_buffer[0], |
168 | 0 | (size_t) (cinfo->blocks_in_MCU * SIZEOF(JBLOCK))); |
169 | 0 | if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) { |
170 | | /* Suspension forced; update state counters and exit */ |
171 | 0 | coef->MCU_vert_offset = yoffset; |
172 | 0 | coef->MCU_ctr = MCU_col_num; |
173 | 0 | return JPEG_SUSPENDED; |
174 | 0 | } |
175 | | /* Determine where data should go in output_buf and do the IDCT thing. |
176 | | * We skip dummy blocks at the right and bottom edges (but blkn gets |
177 | | * incremented past them!). Note the inner loop relies on having |
178 | | * allocated the MCU_buffer[] blocks sequentially. |
179 | | */ |
180 | 0 | blkn = 0; /* index of current DCT block within MCU */ |
181 | 0 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
182 | 0 | compptr = cinfo->cur_comp_info[ci]; |
183 | | /* Don't bother to IDCT an uninteresting component. */ |
184 | 0 | if (! compptr->component_needed) { |
185 | 0 | blkn += compptr->MCU_blocks; |
186 | 0 | continue; |
187 | 0 | } |
188 | 0 | inverse_DCT = cinfo->idct->inverse_DCT[compptr->component_index]; |
189 | 0 | useful_width = (MCU_col_num < last_MCU_col) ? compptr->MCU_width |
190 | 0 | : compptr->last_col_width; |
191 | 0 | output_ptr = output_buf[compptr->component_index] + |
192 | 0 | yoffset * compptr->DCT_scaled_size; |
193 | 0 | start_col = MCU_col_num * compptr->MCU_sample_width; |
194 | 0 | for (yindex = 0; yindex < compptr->MCU_height; yindex++) { |
195 | 0 | if (cinfo->input_iMCU_row < last_iMCU_row || |
196 | 0 | yoffset+yindex < compptr->last_row_height) { |
197 | 0 | output_col = start_col; |
198 | 0 | for (xindex = 0; xindex < useful_width; xindex++) { |
199 | 0 | (*inverse_DCT) (cinfo, compptr, |
200 | 0 | (JCOEFPTR) coef->MCU_buffer[blkn+xindex], |
201 | 0 | output_ptr, output_col); |
202 | 0 | output_col += compptr->DCT_scaled_size; |
203 | 0 | } |
204 | 0 | } |
205 | 0 | blkn += compptr->MCU_width; |
206 | 0 | output_ptr += compptr->DCT_scaled_size; |
207 | 0 | } |
208 | 0 | } |
209 | 0 | } |
210 | | /* Completed an MCU row, but perhaps not an iMCU row */ |
211 | 0 | coef->MCU_ctr = 0; |
212 | 0 | } |
213 | | /* Completed the iMCU row, advance counters for next one */ |
214 | 0 | cinfo->output_iMCU_row++; |
215 | 0 | if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) { |
216 | 0 | start_iMCU_row(cinfo); |
217 | 0 | return JPEG_ROW_COMPLETED; |
218 | 0 | } |
219 | | /* Completed the scan */ |
220 | 0 | (*cinfo->inputctl->finish_input_pass) (cinfo); |
221 | 0 | return JPEG_SCAN_COMPLETED; |
222 | 0 | } |
223 | | |
224 | | |
225 | | /* |
226 | | * Dummy consume-input routine for single-pass operation. |
227 | | */ |
228 | | |
229 | | METHODDEF(int) |
230 | | dummy_consume_data (CPL_UNUSED j_decompress_ptr cinfo) |
231 | 0 | { |
232 | 0 | return JPEG_SUSPENDED; /* Always indicate nothing was done */ |
233 | 0 | } |
234 | | |
235 | | |
236 | | #ifdef D_MULTISCAN_FILES_SUPPORTED |
237 | | |
238 | | /* |
239 | | * Consume input data and store it in the full-image coefficient buffer. |
240 | | * We read as much as one fully interleaved MCU row ("iMCU" row) per call, |
241 | | * ie, v_samp_factor block rows for each component in the scan. |
242 | | * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED. |
243 | | */ |
244 | | |
245 | | METHODDEF(int) |
246 | | consume_data (j_decompress_ptr cinfo) |
247 | 0 | { |
248 | 0 | my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
249 | 0 | JDIMENSION MCU_col_num; /* index of current MCU within row */ |
250 | 0 | int blkn, ci, xindex, yindex, yoffset; |
251 | 0 | JDIMENSION start_col; |
252 | 0 | JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN]; |
253 | 0 | JBLOCKROW buffer_ptr; |
254 | 0 | jpeg_component_info *compptr; |
255 | | |
256 | | /* Align the virtual buffers for the components used in this scan. */ |
257 | 0 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
258 | 0 | compptr = cinfo->cur_comp_info[ci]; |
259 | 0 | buffer[ci] = (*cinfo->mem->access_virt_barray) |
260 | 0 | ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index], |
261 | 0 | cinfo->input_iMCU_row * compptr->v_samp_factor, |
262 | 0 | (JDIMENSION) compptr->v_samp_factor, TRUE); |
263 | | /* Note: entropy decoder expects buffer to be zeroed, |
264 | | * but this is handled automatically by the memory manager |
265 | | * because we requested a pre-zeroed array. |
266 | | */ |
267 | 0 | } |
268 | | |
269 | | /* Loop to process one whole iMCU row */ |
270 | 0 | for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; |
271 | 0 | yoffset++) { |
272 | 0 | for (MCU_col_num = coef->MCU_ctr; MCU_col_num < cinfo->MCUs_per_row; |
273 | 0 | MCU_col_num++) { |
274 | | /* Construct list of pointers to DCT blocks belonging to this MCU */ |
275 | 0 | blkn = 0; /* index of current DCT block within MCU */ |
276 | 0 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
277 | 0 | compptr = cinfo->cur_comp_info[ci]; |
278 | 0 | start_col = MCU_col_num * compptr->MCU_width; |
279 | 0 | for (yindex = 0; yindex < compptr->MCU_height; yindex++) { |
280 | 0 | buffer_ptr = buffer[ci][yindex+yoffset] + start_col; |
281 | 0 | for (xindex = 0; xindex < compptr->MCU_width; xindex++) { |
282 | 0 | coef->MCU_buffer[blkn++] = buffer_ptr++; |
283 | 0 | } |
284 | 0 | } |
285 | 0 | } |
286 | | /* Try to fetch the MCU. */ |
287 | 0 | if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) { |
288 | | /* Suspension forced; update state counters and exit */ |
289 | 0 | coef->MCU_vert_offset = yoffset; |
290 | 0 | coef->MCU_ctr = MCU_col_num; |
291 | 0 | return JPEG_SUSPENDED; |
292 | 0 | } |
293 | 0 | } |
294 | | /* Completed an MCU row, but perhaps not an iMCU row */ |
295 | 0 | coef->MCU_ctr = 0; |
296 | 0 | } |
297 | | /* Completed the iMCU row, advance counters for next one */ |
298 | 0 | if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) { |
299 | 0 | start_iMCU_row(cinfo); |
300 | 0 | return JPEG_ROW_COMPLETED; |
301 | 0 | } |
302 | | /* Completed the scan */ |
303 | 0 | (*cinfo->inputctl->finish_input_pass) (cinfo); |
304 | 0 | return JPEG_SCAN_COMPLETED; |
305 | 0 | } |
306 | | |
307 | | |
308 | | /* |
309 | | * Decompress and return some data in the multi-pass case. |
310 | | * Always attempts to emit one fully interleaved MCU row ("iMCU" row). |
311 | | * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED. |
312 | | * |
313 | | * NB: output_buf contains a plane for each component in image. |
314 | | */ |
315 | | |
316 | | METHODDEF(int) |
317 | | decompress_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf) |
318 | 0 | { |
319 | 0 | my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
320 | 0 | JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; |
321 | 0 | JDIMENSION block_num; |
322 | 0 | int ci, block_row, block_rows; |
323 | 0 | JBLOCKARRAY buffer; |
324 | 0 | JBLOCKROW buffer_ptr; |
325 | 0 | JSAMPARRAY output_ptr; |
326 | 0 | JDIMENSION output_col; |
327 | 0 | jpeg_component_info *compptr; |
328 | 0 | inverse_DCT_method_ptr inverse_DCT; |
329 | | |
330 | | /* Force some input to be done if we are getting ahead of the input. */ |
331 | 0 | while (cinfo->input_scan_number < cinfo->output_scan_number || |
332 | 0 | (cinfo->input_scan_number == cinfo->output_scan_number && |
333 | 0 | cinfo->input_iMCU_row <= cinfo->output_iMCU_row)) { |
334 | 0 | if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED) |
335 | 0 | return JPEG_SUSPENDED; |
336 | 0 | } |
337 | | |
338 | | /* OK, output from the virtual arrays. */ |
339 | 0 | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
340 | 0 | ci++, compptr++) { |
341 | | /* Don't bother to IDCT an uninteresting component. */ |
342 | 0 | if (! compptr->component_needed) |
343 | 0 | continue; |
344 | | /* Align the virtual buffer for this component. */ |
345 | 0 | buffer = (*cinfo->mem->access_virt_barray) |
346 | 0 | ((j_common_ptr) cinfo, coef->whole_image[ci], |
347 | 0 | cinfo->output_iMCU_row * compptr->v_samp_factor, |
348 | 0 | (JDIMENSION) compptr->v_samp_factor, FALSE); |
349 | | /* Count non-dummy DCT block rows in this iMCU row. */ |
350 | 0 | if (cinfo->output_iMCU_row < last_iMCU_row) |
351 | 0 | block_rows = compptr->v_samp_factor; |
352 | 0 | else { |
353 | | /* NB: can't use last_row_height here; it is input-side-dependent! */ |
354 | 0 | block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor); |
355 | 0 | if (block_rows == 0) block_rows = compptr->v_samp_factor; |
356 | 0 | } |
357 | 0 | inverse_DCT = cinfo->idct->inverse_DCT[ci]; |
358 | 0 | output_ptr = output_buf[ci]; |
359 | | /* Loop over all DCT blocks to be processed. */ |
360 | 0 | for (block_row = 0; block_row < block_rows; block_row++) { |
361 | 0 | buffer_ptr = buffer[block_row]; |
362 | 0 | output_col = 0; |
363 | 0 | for (block_num = 0; block_num < compptr->width_in_blocks; block_num++) { |
364 | 0 | (*inverse_DCT) (cinfo, compptr, (JCOEFPTR) buffer_ptr, |
365 | 0 | output_ptr, output_col); |
366 | 0 | buffer_ptr++; |
367 | 0 | output_col += compptr->DCT_scaled_size; |
368 | 0 | } |
369 | 0 | output_ptr += compptr->DCT_scaled_size; |
370 | 0 | } |
371 | 0 | } |
372 | |
|
373 | 0 | if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows) |
374 | 0 | return JPEG_ROW_COMPLETED; |
375 | 0 | return JPEG_SCAN_COMPLETED; |
376 | 0 | } |
377 | | |
378 | | #endif /* D_MULTISCAN_FILES_SUPPORTED */ |
379 | | |
380 | | |
381 | | #ifdef BLOCK_SMOOTHING_SUPPORTED |
382 | | |
383 | | /* |
384 | | * This code applies interblock smoothing as described by section K.8 |
385 | | * of the JPEG standard: the first 5 AC coefficients are estimated from |
386 | | * the DC values of a DCT block and its 8 neighboring blocks. |
387 | | * We apply smoothing only for progressive JPEG decoding, and only if |
388 | | * the coefficients it can estimate are not yet known to full precision. |
389 | | */ |
390 | | |
391 | | /* Natural-order array positions of the first 5 zigzag-order coefficients */ |
392 | 0 | #define Q01_POS 1 |
393 | 0 | #define Q10_POS 8 |
394 | 0 | #define Q20_POS 16 |
395 | 0 | #define Q11_POS 9 |
396 | 0 | #define Q02_POS 2 |
397 | | |
398 | | /* |
399 | | * Determine whether block smoothing is applicable and safe. |
400 | | * We also latch the current states of the coef_bits[] entries for the |
401 | | * AC coefficients; otherwise, if the input side of the decompressor |
402 | | * advances into a new scan, we might think the coefficients are known |
403 | | * more accurately than they really are. |
404 | | */ |
405 | | |
406 | | LOCAL(boolean) |
407 | | smoothing_ok (j_decompress_ptr cinfo) |
408 | 0 | { |
409 | 0 | my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
410 | 0 | boolean smoothing_useful = FALSE; |
411 | 0 | int ci, coefi; |
412 | 0 | jpeg_component_info *compptr; |
413 | 0 | JQUANT_TBL * qtable; |
414 | 0 | int * coef_bits; |
415 | 0 | int * coef_bits_latch; |
416 | |
|
417 | 0 | if (! cinfo->progressive_mode || cinfo->coef_bits == NULL) |
418 | 0 | return FALSE; |
419 | | |
420 | | /* Allocate latch area if not already done */ |
421 | 0 | if (coef->coef_bits_latch == NULL) |
422 | 0 | coef->coef_bits_latch = (int *) |
423 | 0 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
424 | 0 | cinfo->num_components * |
425 | 0 | (SAVED_COEFS * SIZEOF(int))); |
426 | 0 | coef_bits_latch = coef->coef_bits_latch; |
427 | |
|
428 | 0 | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
429 | 0 | ci++, compptr++) { |
430 | | /* All components' quantization values must already be latched. */ |
431 | 0 | if ((qtable = compptr->quant_table) == NULL) |
432 | 0 | return FALSE; |
433 | | /* Verify DC & first 5 AC quantizers are nonzero to avoid zero-divide. */ |
434 | 0 | if (qtable->quantval[0] == 0 || |
435 | 0 | qtable->quantval[Q01_POS] == 0 || |
436 | 0 | qtable->quantval[Q10_POS] == 0 || |
437 | 0 | qtable->quantval[Q20_POS] == 0 || |
438 | 0 | qtable->quantval[Q11_POS] == 0 || |
439 | 0 | qtable->quantval[Q02_POS] == 0) |
440 | 0 | return FALSE; |
441 | | /* DC values must be at least partly known for all components. */ |
442 | 0 | coef_bits = cinfo->coef_bits[ci]; |
443 | 0 | if (coef_bits[0] < 0) |
444 | 0 | return FALSE; |
445 | | /* Block smoothing is helpful if some AC coefficients remain inaccurate. */ |
446 | 0 | for (coefi = 1; coefi <= 5; coefi++) { |
447 | 0 | coef_bits_latch[coefi] = coef_bits[coefi]; |
448 | 0 | if (coef_bits[coefi] != 0) |
449 | 0 | smoothing_useful = TRUE; |
450 | 0 | } |
451 | 0 | coef_bits_latch += SAVED_COEFS; |
452 | 0 | } |
453 | | |
454 | 0 | return smoothing_useful; |
455 | 0 | } |
456 | | |
457 | | |
458 | | /* |
459 | | * Variant of decompress_data for use when doing block smoothing. |
460 | | */ |
461 | | |
462 | | METHODDEF(int) |
463 | | decompress_smooth_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf) |
464 | 0 | { |
465 | 0 | my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
466 | 0 | JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; |
467 | 0 | JDIMENSION block_num, last_block_column; |
468 | 0 | int ci, block_row, block_rows, access_rows; |
469 | 0 | JBLOCKARRAY buffer; |
470 | 0 | JBLOCKROW buffer_ptr, prev_block_row, next_block_row; |
471 | 0 | JSAMPARRAY output_ptr; |
472 | 0 | JDIMENSION output_col; |
473 | 0 | jpeg_component_info *compptr; |
474 | 0 | inverse_DCT_method_ptr inverse_DCT; |
475 | 0 | boolean first_row, last_row; |
476 | 0 | JBLOCK workspace; |
477 | 0 | int *coef_bits; |
478 | 0 | JQUANT_TBL *quanttbl; |
479 | 0 | INT32 Q00,Q01,Q02,Q10,Q11,Q20, num; |
480 | 0 | int DC1,DC2,DC3,DC4,DC5,DC6,DC7,DC8,DC9; |
481 | 0 | int Al, pred; |
482 | | |
483 | | /* Force some input to be done if we are getting ahead of the input. */ |
484 | 0 | while (cinfo->input_scan_number <= cinfo->output_scan_number && |
485 | 0 | ! cinfo->inputctl->eoi_reached) { |
486 | 0 | if (cinfo->input_scan_number == cinfo->output_scan_number) { |
487 | | /* If input is working on current scan, we ordinarily want it to |
488 | | * have completed the current row. But if input scan is DC, |
489 | | * we want it to keep one row ahead so that next block row's DC |
490 | | * values are up to date. |
491 | | */ |
492 | 0 | JDIMENSION delta = (cinfo->Ss == 0) ? 1 : 0; |
493 | 0 | if (cinfo->input_iMCU_row > cinfo->output_iMCU_row+delta) |
494 | 0 | break; |
495 | 0 | } |
496 | 0 | if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED) |
497 | 0 | return JPEG_SUSPENDED; |
498 | 0 | } |
499 | | |
500 | | /* OK, output from the virtual arrays. */ |
501 | 0 | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
502 | 0 | ci++, compptr++) { |
503 | | /* Don't bother to IDCT an uninteresting component. */ |
504 | 0 | if (! compptr->component_needed) |
505 | 0 | continue; |
506 | | /* Count non-dummy DCT block rows in this iMCU row. */ |
507 | 0 | if (cinfo->output_iMCU_row < last_iMCU_row) { |
508 | 0 | block_rows = compptr->v_samp_factor; |
509 | 0 | access_rows = block_rows * 2; /* this and next iMCU row */ |
510 | 0 | last_row = FALSE; |
511 | 0 | } else { |
512 | | /* NB: can't use last_row_height here; it is input-side-dependent! */ |
513 | 0 | block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor); |
514 | 0 | if (block_rows == 0) block_rows = compptr->v_samp_factor; |
515 | 0 | access_rows = block_rows; /* this iMCU row only */ |
516 | 0 | last_row = TRUE; |
517 | 0 | } |
518 | | /* Align the virtual buffer for this component. */ |
519 | 0 | if (cinfo->output_iMCU_row > 0) { |
520 | 0 | access_rows += compptr->v_samp_factor; /* prior iMCU row too */ |
521 | 0 | buffer = (*cinfo->mem->access_virt_barray) |
522 | 0 | ((j_common_ptr) cinfo, coef->whole_image[ci], |
523 | 0 | (cinfo->output_iMCU_row - 1) * compptr->v_samp_factor, |
524 | 0 | (JDIMENSION) access_rows, FALSE); |
525 | 0 | buffer += compptr->v_samp_factor; /* point to current iMCU row */ |
526 | 0 | first_row = FALSE; |
527 | 0 | } else { |
528 | 0 | buffer = (*cinfo->mem->access_virt_barray) |
529 | 0 | ((j_common_ptr) cinfo, coef->whole_image[ci], |
530 | 0 | (JDIMENSION) 0, (JDIMENSION) access_rows, FALSE); |
531 | 0 | first_row = TRUE; |
532 | 0 | } |
533 | | /* Fetch component-dependent info */ |
534 | 0 | coef_bits = coef->coef_bits_latch + (ci * SAVED_COEFS); |
535 | 0 | quanttbl = compptr->quant_table; |
536 | 0 | Q00 = quanttbl->quantval[0]; |
537 | 0 | Q01 = quanttbl->quantval[Q01_POS]; |
538 | 0 | Q10 = quanttbl->quantval[Q10_POS]; |
539 | 0 | Q20 = quanttbl->quantval[Q20_POS]; |
540 | 0 | Q11 = quanttbl->quantval[Q11_POS]; |
541 | 0 | Q02 = quanttbl->quantval[Q02_POS]; |
542 | 0 | inverse_DCT = cinfo->idct->inverse_DCT[ci]; |
543 | 0 | output_ptr = output_buf[ci]; |
544 | | /* Loop over all DCT blocks to be processed. */ |
545 | 0 | for (block_row = 0; block_row < block_rows; block_row++) { |
546 | 0 | buffer_ptr = buffer[block_row]; |
547 | 0 | if (first_row && block_row == 0) |
548 | 0 | prev_block_row = buffer_ptr; |
549 | 0 | else |
550 | 0 | prev_block_row = buffer[block_row-1]; |
551 | 0 | if (last_row && block_row == block_rows-1) |
552 | 0 | next_block_row = buffer_ptr; |
553 | 0 | else |
554 | 0 | next_block_row = buffer[block_row+1]; |
555 | | /* We fetch the surrounding DC values using a sliding-register approach. |
556 | | * Initialize all nine here so as to do the right thing on narrow pics. |
557 | | */ |
558 | 0 | DC1 = DC2 = DC3 = (int) prev_block_row[0][0]; |
559 | 0 | DC4 = DC5 = DC6 = (int) buffer_ptr[0][0]; |
560 | 0 | DC7 = DC8 = DC9 = (int) next_block_row[0][0]; |
561 | 0 | output_col = 0; |
562 | 0 | last_block_column = compptr->width_in_blocks - 1; |
563 | 0 | for (block_num = 0; block_num <= last_block_column; block_num++) { |
564 | | /* Fetch current DCT block into workspace so we can modify it. */ |
565 | 0 | jcopy_block_row(buffer_ptr, (JBLOCKROW) workspace, (JDIMENSION) 1); |
566 | | /* Update DC values */ |
567 | 0 | if (block_num < last_block_column) { |
568 | 0 | DC3 = (int) prev_block_row[1][0]; |
569 | 0 | DC6 = (int) buffer_ptr[1][0]; |
570 | 0 | DC9 = (int) next_block_row[1][0]; |
571 | 0 | } |
572 | | /* Compute coefficient estimates per K.8. |
573 | | * An estimate is applied only if coefficient is still zero, |
574 | | * and is not known to be fully accurate. |
575 | | */ |
576 | | /* AC01 */ |
577 | 0 | if ((Al=coef_bits[1]) != 0 && workspace[1] == 0) { |
578 | 0 | num = 36 * Q00 * (DC4 - DC6); |
579 | 0 | if (num >= 0) { |
580 | 0 | pred = (int) (((Q01<<7) + num) / (Q01<<8)); |
581 | 0 | if (Al > 0 && pred >= (1<<Al)) |
582 | 0 | pred = (1<<Al)-1; |
583 | 0 | } else { |
584 | 0 | pred = (int) (((Q01<<7) - num) / (Q01<<8)); |
585 | 0 | if (Al > 0 && pred >= (1<<Al)) |
586 | 0 | pred = (1<<Al)-1; |
587 | 0 | pred = -pred; |
588 | 0 | } |
589 | 0 | workspace[1] = (JCOEF) pred; |
590 | 0 | } |
591 | | /* AC10 */ |
592 | 0 | if ((Al=coef_bits[2]) != 0 && workspace[8] == 0) { |
593 | 0 | num = 36 * Q00 * (DC2 - DC8); |
594 | 0 | if (num >= 0) { |
595 | 0 | pred = (int) (((Q10<<7) + num) / (Q10<<8)); |
596 | 0 | if (Al > 0 && pred >= (1<<Al)) |
597 | 0 | pred = (1<<Al)-1; |
598 | 0 | } else { |
599 | 0 | pred = (int) (((Q10<<7) - num) / (Q10<<8)); |
600 | 0 | if (Al > 0 && pred >= (1<<Al)) |
601 | 0 | pred = (1<<Al)-1; |
602 | 0 | pred = -pred; |
603 | 0 | } |
604 | 0 | workspace[8] = (JCOEF) pred; |
605 | 0 | } |
606 | | /* AC20 */ |
607 | 0 | if ((Al=coef_bits[3]) != 0 && workspace[16] == 0) { |
608 | 0 | num = 9 * Q00 * (DC2 + DC8 - 2*DC5); |
609 | 0 | if (num >= 0) { |
610 | 0 | pred = (int) (((Q20<<7) + num) / (Q20<<8)); |
611 | 0 | if (Al > 0 && pred >= (1<<Al)) |
612 | 0 | pred = (1<<Al)-1; |
613 | 0 | } else { |
614 | 0 | pred = (int) (((Q20<<7) - num) / (Q20<<8)); |
615 | 0 | if (Al > 0 && pred >= (1<<Al)) |
616 | 0 | pred = (1<<Al)-1; |
617 | 0 | pred = -pred; |
618 | 0 | } |
619 | 0 | workspace[16] = (JCOEF) pred; |
620 | 0 | } |
621 | | /* AC11 */ |
622 | 0 | if ((Al=coef_bits[4]) != 0 && workspace[9] == 0) { |
623 | 0 | num = 5 * Q00 * (DC1 - DC3 - DC7 + DC9); |
624 | 0 | if (num >= 0) { |
625 | 0 | pred = (int) (((Q11<<7) + num) / (Q11<<8)); |
626 | 0 | if (Al > 0 && pred >= (1<<Al)) |
627 | 0 | pred = (1<<Al)-1; |
628 | 0 | } else { |
629 | 0 | pred = (int) (((Q11<<7) - num) / (Q11<<8)); |
630 | 0 | if (Al > 0 && pred >= (1<<Al)) |
631 | 0 | pred = (1<<Al)-1; |
632 | 0 | pred = -pred; |
633 | 0 | } |
634 | 0 | workspace[9] = (JCOEF) pred; |
635 | 0 | } |
636 | | /* AC02 */ |
637 | 0 | if ((Al=coef_bits[5]) != 0 && workspace[2] == 0) { |
638 | 0 | num = 9 * Q00 * (DC4 + DC6 - 2*DC5); |
639 | 0 | if (num >= 0) { |
640 | 0 | pred = (int) (((Q02<<7) + num) / (Q02<<8)); |
641 | 0 | if (Al > 0 && pred >= (1<<Al)) |
642 | 0 | pred = (1<<Al)-1; |
643 | 0 | } else { |
644 | 0 | pred = (int) (((Q02<<7) - num) / (Q02<<8)); |
645 | 0 | if (Al > 0 && pred >= (1<<Al)) |
646 | 0 | pred = (1<<Al)-1; |
647 | 0 | pred = -pred; |
648 | 0 | } |
649 | 0 | workspace[2] = (JCOEF) pred; |
650 | 0 | } |
651 | | /* OK, do the IDCT */ |
652 | 0 | (*inverse_DCT) (cinfo, compptr, (JCOEFPTR) workspace, |
653 | 0 | output_ptr, output_col); |
654 | | /* Advance for next column */ |
655 | 0 | DC1 = DC2; DC2 = DC3; |
656 | 0 | DC4 = DC5; DC5 = DC6; |
657 | 0 | DC7 = DC8; DC8 = DC9; |
658 | 0 | buffer_ptr++; |
659 | 0 | prev_block_row++; |
660 | 0 | next_block_row++; |
661 | 0 | output_col += compptr->DCT_scaled_size; |
662 | 0 | } |
663 | 0 | output_ptr += compptr->DCT_scaled_size; |
664 | 0 | } |
665 | 0 | } |
666 | |
|
667 | 0 | if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows) |
668 | 0 | return JPEG_ROW_COMPLETED; |
669 | 0 | return JPEG_SCAN_COMPLETED; |
670 | 0 | } |
671 | | |
672 | | #endif /* BLOCK_SMOOTHING_SUPPORTED */ |
673 | | |
674 | | |
675 | | /* |
676 | | * Initialize coefficient buffer controller. |
677 | | */ |
678 | | |
679 | | GLOBAL(void) |
680 | | jinit_d_coef_controller (j_decompress_ptr cinfo, boolean need_full_buffer) |
681 | 0 | { |
682 | 0 | my_coef_ptr coef; |
683 | |
|
684 | 0 | coef = (my_coef_ptr) |
685 | 0 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
686 | 0 | SIZEOF(my_coef_controller)); |
687 | 0 | cinfo->coef = (struct jpeg_d_coef_controller *) coef; |
688 | 0 | coef->pub.start_input_pass = start_input_pass; |
689 | 0 | coef->pub.start_output_pass = start_output_pass; |
690 | 0 | #ifdef BLOCK_SMOOTHING_SUPPORTED |
691 | 0 | coef->coef_bits_latch = NULL; |
692 | 0 | #endif |
693 | | |
694 | | /* Create the coefficient buffer. */ |
695 | 0 | if (need_full_buffer) { |
696 | 0 | #ifdef D_MULTISCAN_FILES_SUPPORTED |
697 | | /* Allocate a full-image virtual array for each component, */ |
698 | | /* padded to a multiple of samp_factor DCT blocks in each direction. */ |
699 | | /* Note we ask for a pre-zeroed array. */ |
700 | 0 | int ci, access_rows; |
701 | 0 | jpeg_component_info *compptr; |
702 | |
|
703 | 0 | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
704 | 0 | ci++, compptr++) { |
705 | 0 | access_rows = compptr->v_samp_factor; |
706 | 0 | #ifdef BLOCK_SMOOTHING_SUPPORTED |
707 | | /* If block smoothing could be used, need a bigger window */ |
708 | 0 | if (cinfo->progressive_mode) |
709 | 0 | access_rows *= 3; |
710 | 0 | #endif |
711 | 0 | coef->whole_image[ci] = (*cinfo->mem->request_virt_barray) |
712 | 0 | ((j_common_ptr) cinfo, JPOOL_IMAGE, TRUE, |
713 | 0 | (JDIMENSION) jround_up((long) compptr->width_in_blocks, |
714 | 0 | (long) compptr->h_samp_factor), |
715 | 0 | (JDIMENSION) jround_up((long) compptr->height_in_blocks, |
716 | 0 | (long) compptr->v_samp_factor), |
717 | 0 | (JDIMENSION) access_rows); |
718 | 0 | } |
719 | 0 | coef->pub.consume_data = consume_data; |
720 | 0 | coef->pub.decompress_data = decompress_data; |
721 | 0 | coef->pub.coef_arrays = coef->whole_image; /* link to virtual arrays */ |
722 | | #else |
723 | | ERREXIT(cinfo, JERR_NOT_COMPILED); |
724 | | #endif |
725 | 0 | } else { |
726 | | /* We only need a single-MCU buffer. */ |
727 | 0 | JBLOCKROW buffer; |
728 | 0 | int i; |
729 | |
|
730 | 0 | buffer = (JBLOCKROW) |
731 | 0 | (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
732 | 0 | D_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK)); |
733 | 0 | for (i = 0; i < D_MAX_BLOCKS_IN_MCU; i++) { |
734 | 0 | coef->MCU_buffer[i] = buffer + i; |
735 | 0 | } |
736 | 0 | coef->pub.consume_data = dummy_consume_data; |
737 | 0 | coef->pub.decompress_data = decompress_onepass; |
738 | 0 | coef->pub.coef_arrays = NULL; /* flag for no virtual arrays */ |
739 | 0 | } |
740 | 0 | } |