/src/gdal/build/frmts/jpeg/libjpeg12/jdmerge12.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * jdmerge.c |
3 | | * |
4 | | * Copyright (C) 1994-1996, Thomas G. Lane. |
5 | | * This file is part of the Independent JPEG Group's software. |
6 | | * For conditions of distribution and use, see the accompanying README file. |
7 | | * |
8 | | * This file contains code for merged upsampling/color conversion. |
9 | | * |
10 | | * This file combines functions from jdsample.c and jdcolor.c; |
11 | | * read those files first to understand what's going on. |
12 | | * |
13 | | * When the chroma components are to be upsampled by simple replication |
14 | | * (ie, box filtering), we can save some work in color conversion by |
15 | | * calculating all the output pixels corresponding to a pair of chroma |
16 | | * samples at one time. In the conversion equations |
17 | | * R = Y + K1 * Cr |
18 | | * G = Y + K2 * Cb + K3 * Cr |
19 | | * B = Y + K4 * Cb |
20 | | * only the Y term varies among the group of pixels corresponding to a pair |
21 | | * of chroma samples, so the rest of the terms can be calculated just once. |
22 | | * At typical sampling ratios, this eliminates half or three-quarters of the |
23 | | * multiplications needed for color conversion. |
24 | | * |
25 | | * This file currently provides implementations for the following cases: |
26 | | * YCbCr => RGB color conversion only. |
27 | | * Sampling ratios of 2h1v or 2h2v. |
28 | | * No scaling needed at upsample time. |
29 | | * Corner-aligned (non-CCIR601) sampling alignment. |
30 | | * Other special cases could be added, but in most applications these are |
31 | | * the only common cases. (For uncommon cases we fall back on the more |
32 | | * general code in jdsample.c and jdcolor.c.) |
33 | | */ |
34 | | |
35 | | #define JPEG_INTERNALS |
36 | | #include "jinclude.h" |
37 | | #include "jpeglib.h" |
38 | | |
39 | | #include "cpl_port.h" |
40 | | |
41 | | #ifdef UPSAMPLE_MERGING_SUPPORTED |
42 | | |
43 | | |
44 | | /* Private subobject */ |
45 | | |
46 | | typedef struct { |
47 | | struct jpeg_upsampler pub; /* public fields */ |
48 | | |
49 | | /* Pointer to routine to do actual upsampling/conversion of one row group */ |
50 | | JMETHOD(void, upmethod, (j_decompress_ptr cinfo, |
51 | | JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, |
52 | | JSAMPARRAY output_buf)); |
53 | | |
54 | | /* Private state for YCC->RGB conversion */ |
55 | | int * Cr_r_tab; /* => table for Cr to R conversion */ |
56 | | int * Cb_b_tab; /* => table for Cb to B conversion */ |
57 | | INT32 * Cr_g_tab; /* => table for Cr to G conversion */ |
58 | | INT32 * Cb_g_tab; /* => table for Cb to G conversion */ |
59 | | |
60 | | /* For 2:1 vertical sampling, we produce two output rows at a time. |
61 | | * We need a "spare" row buffer to hold the second output row if the |
62 | | * application provides just a one-row buffer; we also use the spare |
63 | | * to discard the dummy last row if the image height is odd. |
64 | | */ |
65 | | JSAMPROW spare_row; |
66 | | boolean spare_full; /* T if spare buffer is occupied */ |
67 | | |
68 | | JDIMENSION out_row_width; /* samples per output row */ |
69 | | JDIMENSION rows_to_go; /* counts rows remaining in image */ |
70 | | } my_upsampler; |
71 | | |
72 | | typedef my_upsampler * my_upsample_ptr; |
73 | | |
74 | 0 | #define SCALEBITS 16 /* speediest right-shift on some machines */ |
75 | 0 | #define ONE_HALF ((INT32) 1 << (SCALEBITS-1)) |
76 | 0 | #define FIX(x) ((INT32) ((x) * (1L<<SCALEBITS) + 0.5)) |
77 | | |
78 | | |
79 | | /* |
80 | | * Initialize tables for YCC->RGB colorspace conversion. |
81 | | * This is taken directly from jdcolor.c; see that file for more info. |
82 | | */ |
83 | | |
84 | | LOCAL(void) |
85 | | build_ycc_rgb_table (j_decompress_ptr cinfo) |
86 | 0 | { |
87 | 0 | my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; |
88 | 0 | int i; |
89 | 0 | INT32 x; |
90 | 0 | SHIFT_TEMPS |
91 | |
|
92 | 0 | upsample->Cr_r_tab = (int *) |
93 | 0 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
94 | 0 | (MAXJSAMPLE+1) * SIZEOF(int)); |
95 | 0 | upsample->Cb_b_tab = (int *) |
96 | 0 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
97 | 0 | (MAXJSAMPLE+1) * SIZEOF(int)); |
98 | 0 | upsample->Cr_g_tab = (INT32 *) |
99 | 0 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
100 | 0 | (MAXJSAMPLE+1) * SIZEOF(INT32)); |
101 | 0 | upsample->Cb_g_tab = (INT32 *) |
102 | 0 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
103 | 0 | (MAXJSAMPLE+1) * SIZEOF(INT32)); |
104 | |
|
105 | 0 | for (i = 0, x = -CENTERJSAMPLE; i <= MAXJSAMPLE; i++, x++) { |
106 | | /* i is the actual input pixel value, in the range 0..MAXJSAMPLE */ |
107 | | /* The Cb or Cr value we are thinking of is x = i - CENTERJSAMPLE */ |
108 | | /* Cr=>R value is nearest int to 1.40200 * x */ |
109 | 0 | upsample->Cr_r_tab[i] = (int) |
110 | 0 | RIGHT_SHIFT(FIX(1.40200) * x + ONE_HALF, SCALEBITS); |
111 | | /* Cb=>B value is nearest int to 1.77200 * x */ |
112 | 0 | upsample->Cb_b_tab[i] = (int) |
113 | 0 | RIGHT_SHIFT(FIX(1.77200) * x + ONE_HALF, SCALEBITS); |
114 | | /* Cr=>G value is scaled-up -0.71414 * x */ |
115 | 0 | upsample->Cr_g_tab[i] = (- FIX(0.71414)) * x; |
116 | | /* Cb=>G value is scaled-up -0.34414 * x */ |
117 | | /* We also add in ONE_HALF so that need not do it in inner loop */ |
118 | 0 | upsample->Cb_g_tab[i] = (- FIX(0.34414)) * x + ONE_HALF; |
119 | 0 | } |
120 | 0 | } |
121 | | |
122 | | |
123 | | /* |
124 | | * Initialize for an upsampling pass. |
125 | | */ |
126 | | |
127 | | METHODDEF(void) |
128 | | start_pass_merged_upsample (j_decompress_ptr cinfo) |
129 | 0 | { |
130 | 0 | my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; |
131 | | |
132 | | /* Mark the spare buffer empty */ |
133 | 0 | upsample->spare_full = FALSE; |
134 | | /* Initialize total-height counter for detecting bottom of image */ |
135 | 0 | upsample->rows_to_go = cinfo->output_height; |
136 | 0 | } |
137 | | |
138 | | |
139 | | /* |
140 | | * Control routine to do upsampling (and color conversion). |
141 | | * |
142 | | * The control routine just handles the row buffering considerations. |
143 | | */ |
144 | | |
145 | | METHODDEF(void) |
146 | | merged_2v_upsample (j_decompress_ptr cinfo, |
147 | | JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, |
148 | | CPL_UNUSED JDIMENSION in_row_groups_avail, |
149 | | JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, |
150 | | JDIMENSION out_rows_avail) |
151 | | /* 2:1 vertical sampling case: may need a spare row. */ |
152 | 0 | { |
153 | 0 | my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; |
154 | 0 | JSAMPROW work_ptrs[2]; |
155 | 0 | JDIMENSION num_rows; /* number of rows returned to caller */ |
156 | |
|
157 | 0 | if (upsample->spare_full) { |
158 | | /* If we have a spare row saved from a previous cycle, just return it. */ |
159 | 0 | jcopy_sample_rows(& upsample->spare_row, 0, output_buf + *out_row_ctr, 0, |
160 | 0 | 1, upsample->out_row_width); |
161 | 0 | num_rows = 1; |
162 | 0 | upsample->spare_full = FALSE; |
163 | 0 | } else { |
164 | | /* Figure number of rows to return to caller. */ |
165 | 0 | num_rows = 2; |
166 | | /* Not more than the distance to the end of the image. */ |
167 | 0 | if (num_rows > upsample->rows_to_go) |
168 | 0 | num_rows = upsample->rows_to_go; |
169 | | /* And not more than what the client can accept: */ |
170 | 0 | out_rows_avail -= *out_row_ctr; |
171 | 0 | if (num_rows > out_rows_avail) |
172 | 0 | num_rows = out_rows_avail; |
173 | | /* Create output pointer array for upsampler. */ |
174 | 0 | work_ptrs[0] = output_buf[*out_row_ctr]; |
175 | 0 | if (num_rows > 1) { |
176 | 0 | work_ptrs[1] = output_buf[*out_row_ctr + 1]; |
177 | 0 | } else { |
178 | 0 | work_ptrs[1] = upsample->spare_row; |
179 | 0 | upsample->spare_full = TRUE; |
180 | 0 | } |
181 | | /* Now do the upsampling. */ |
182 | 0 | (*upsample->upmethod) (cinfo, input_buf, *in_row_group_ctr, work_ptrs); |
183 | 0 | } |
184 | | |
185 | | /* Adjust counts */ |
186 | 0 | *out_row_ctr += num_rows; |
187 | 0 | upsample->rows_to_go -= num_rows; |
188 | | /* When the buffer is emptied, declare this input row group consumed */ |
189 | 0 | if (! upsample->spare_full) |
190 | 0 | (*in_row_group_ctr)++; |
191 | 0 | } |
192 | | |
193 | | |
194 | | METHODDEF(void) |
195 | | merged_1v_upsample (j_decompress_ptr cinfo, |
196 | | JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, |
197 | | CPL_UNUSED JDIMENSION in_row_groups_avail, |
198 | | JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, |
199 | | CPL_UNUSED JDIMENSION out_rows_avail) |
200 | | /* 1:1 vertical sampling case: much easier, never need a spare row. */ |
201 | 0 | { |
202 | 0 | my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; |
203 | | |
204 | | /* Just do the upsampling. */ |
205 | 0 | (*upsample->upmethod) (cinfo, input_buf, *in_row_group_ctr, |
206 | 0 | output_buf + *out_row_ctr); |
207 | | /* Adjust counts */ |
208 | 0 | (*out_row_ctr)++; |
209 | 0 | (*in_row_group_ctr)++; |
210 | 0 | } |
211 | | |
212 | | |
213 | | /* |
214 | | * These are the routines invoked by the control routines to do |
215 | | * the actual upsampling/conversion. One row group is processed per call. |
216 | | * |
217 | | * Note: since we may be writing directly into application-supplied buffers, |
218 | | * we have to be honest about the output width; we can't assume the buffer |
219 | | * has been rounded up to an even width. |
220 | | */ |
221 | | |
222 | | |
223 | | /* |
224 | | * Upsample and color convert for the case of 2:1 horizontal and 1:1 vertical. |
225 | | */ |
226 | | |
227 | | METHODDEF(void) |
228 | | h2v1_merged_upsample (j_decompress_ptr cinfo, |
229 | | JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, |
230 | | JSAMPARRAY output_buf) |
231 | 0 | { |
232 | 0 | my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; |
233 | 0 | register int y, cred, cgreen, cblue; |
234 | 0 | int cb, cr; |
235 | 0 | register JSAMPROW outptr; |
236 | 0 | JSAMPROW inptr0, inptr1, inptr2; |
237 | 0 | JDIMENSION col; |
238 | | /* copy these pointers into registers if possible */ |
239 | 0 | register JSAMPLE * range_limit = cinfo->sample_range_limit; |
240 | 0 | int * Crrtab = upsample->Cr_r_tab; |
241 | 0 | int * Cbbtab = upsample->Cb_b_tab; |
242 | 0 | INT32 * Crgtab = upsample->Cr_g_tab; |
243 | 0 | INT32 * Cbgtab = upsample->Cb_g_tab; |
244 | 0 | SHIFT_TEMPS |
245 | |
|
246 | 0 | inptr0 = input_buf[0][in_row_group_ctr]; |
247 | 0 | inptr1 = input_buf[1][in_row_group_ctr]; |
248 | 0 | inptr2 = input_buf[2][in_row_group_ctr]; |
249 | 0 | outptr = output_buf[0]; |
250 | | /* Loop for each pair of output pixels */ |
251 | 0 | for (col = cinfo->output_width >> 1; col > 0; col--) { |
252 | | /* Do the chroma part of the calculation */ |
253 | 0 | cb = GETJSAMPLE(*inptr1++); |
254 | 0 | cr = GETJSAMPLE(*inptr2++); |
255 | 0 | cred = Crrtab[cr]; |
256 | 0 | cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS); |
257 | 0 | cblue = Cbbtab[cb]; |
258 | | /* Fetch 2 Y values and emit 2 pixels */ |
259 | 0 | y = GETJSAMPLE(*inptr0++); |
260 | 0 | outptr[RGB_RED] = range_limit[y + cred]; |
261 | 0 | outptr[RGB_GREEN] = range_limit[y + cgreen]; |
262 | 0 | outptr[RGB_BLUE] = range_limit[y + cblue]; |
263 | 0 | outptr += RGB_PIXELSIZE; |
264 | 0 | y = GETJSAMPLE(*inptr0++); |
265 | 0 | outptr[RGB_RED] = range_limit[y + cred]; |
266 | 0 | outptr[RGB_GREEN] = range_limit[y + cgreen]; |
267 | 0 | outptr[RGB_BLUE] = range_limit[y + cblue]; |
268 | 0 | outptr += RGB_PIXELSIZE; |
269 | 0 | } |
270 | | /* If image width is odd, do the last output column separately */ |
271 | 0 | if (cinfo->output_width & 1) { |
272 | 0 | cb = GETJSAMPLE(*inptr1); |
273 | 0 | cr = GETJSAMPLE(*inptr2); |
274 | 0 | cred = Crrtab[cr]; |
275 | 0 | cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS); |
276 | 0 | cblue = Cbbtab[cb]; |
277 | 0 | y = GETJSAMPLE(*inptr0); |
278 | 0 | outptr[RGB_RED] = range_limit[y + cred]; |
279 | 0 | outptr[RGB_GREEN] = range_limit[y + cgreen]; |
280 | 0 | outptr[RGB_BLUE] = range_limit[y + cblue]; |
281 | 0 | } |
282 | 0 | } |
283 | | |
284 | | |
285 | | /* |
286 | | * Upsample and color convert for the case of 2:1 horizontal and 2:1 vertical. |
287 | | */ |
288 | | |
289 | | METHODDEF(void) |
290 | | h2v2_merged_upsample (j_decompress_ptr cinfo, |
291 | | JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, |
292 | | JSAMPARRAY output_buf) |
293 | 0 | { |
294 | 0 | my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; |
295 | 0 | register int y, cred, cgreen, cblue; |
296 | 0 | int cb, cr; |
297 | 0 | register JSAMPROW outptr0, outptr1; |
298 | 0 | JSAMPROW inptr00, inptr01, inptr1, inptr2; |
299 | 0 | JDIMENSION col; |
300 | | /* copy these pointers into registers if possible */ |
301 | 0 | register JSAMPLE * range_limit = cinfo->sample_range_limit; |
302 | 0 | int * Crrtab = upsample->Cr_r_tab; |
303 | 0 | int * Cbbtab = upsample->Cb_b_tab; |
304 | 0 | INT32 * Crgtab = upsample->Cr_g_tab; |
305 | 0 | INT32 * Cbgtab = upsample->Cb_g_tab; |
306 | 0 | SHIFT_TEMPS |
307 | |
|
308 | 0 | inptr00 = input_buf[0][in_row_group_ctr*2]; |
309 | 0 | inptr01 = input_buf[0][in_row_group_ctr*2 + 1]; |
310 | 0 | inptr1 = input_buf[1][in_row_group_ctr]; |
311 | 0 | inptr2 = input_buf[2][in_row_group_ctr]; |
312 | 0 | outptr0 = output_buf[0]; |
313 | 0 | outptr1 = output_buf[1]; |
314 | | /* Loop for each group of output pixels */ |
315 | 0 | for (col = cinfo->output_width >> 1; col > 0; col--) { |
316 | | /* Do the chroma part of the calculation */ |
317 | 0 | cb = GETJSAMPLE(*inptr1++); |
318 | 0 | cr = GETJSAMPLE(*inptr2++); |
319 | 0 | cred = Crrtab[cr]; |
320 | 0 | cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS); |
321 | 0 | cblue = Cbbtab[cb]; |
322 | | /* Fetch 4 Y values and emit 4 pixels */ |
323 | 0 | y = GETJSAMPLE(*inptr00++); |
324 | 0 | outptr0[RGB_RED] = range_limit[y + cred]; |
325 | 0 | outptr0[RGB_GREEN] = range_limit[y + cgreen]; |
326 | 0 | outptr0[RGB_BLUE] = range_limit[y + cblue]; |
327 | 0 | outptr0 += RGB_PIXELSIZE; |
328 | 0 | y = GETJSAMPLE(*inptr00++); |
329 | 0 | outptr0[RGB_RED] = range_limit[y + cred]; |
330 | 0 | outptr0[RGB_GREEN] = range_limit[y + cgreen]; |
331 | 0 | outptr0[RGB_BLUE] = range_limit[y + cblue]; |
332 | 0 | outptr0 += RGB_PIXELSIZE; |
333 | 0 | y = GETJSAMPLE(*inptr01++); |
334 | 0 | outptr1[RGB_RED] = range_limit[y + cred]; |
335 | 0 | outptr1[RGB_GREEN] = range_limit[y + cgreen]; |
336 | 0 | outptr1[RGB_BLUE] = range_limit[y + cblue]; |
337 | 0 | outptr1 += RGB_PIXELSIZE; |
338 | 0 | y = GETJSAMPLE(*inptr01++); |
339 | 0 | outptr1[RGB_RED] = range_limit[y + cred]; |
340 | 0 | outptr1[RGB_GREEN] = range_limit[y + cgreen]; |
341 | 0 | outptr1[RGB_BLUE] = range_limit[y + cblue]; |
342 | 0 | outptr1 += RGB_PIXELSIZE; |
343 | 0 | } |
344 | | /* If image width is odd, do the last output column separately */ |
345 | 0 | if (cinfo->output_width & 1) { |
346 | 0 | cb = GETJSAMPLE(*inptr1); |
347 | 0 | cr = GETJSAMPLE(*inptr2); |
348 | 0 | cred = Crrtab[cr]; |
349 | 0 | cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS); |
350 | 0 | cblue = Cbbtab[cb]; |
351 | 0 | y = GETJSAMPLE(*inptr00); |
352 | 0 | outptr0[RGB_RED] = range_limit[y + cred]; |
353 | 0 | outptr0[RGB_GREEN] = range_limit[y + cgreen]; |
354 | 0 | outptr0[RGB_BLUE] = range_limit[y + cblue]; |
355 | 0 | y = GETJSAMPLE(*inptr01); |
356 | 0 | outptr1[RGB_RED] = range_limit[y + cred]; |
357 | 0 | outptr1[RGB_GREEN] = range_limit[y + cgreen]; |
358 | 0 | outptr1[RGB_BLUE] = range_limit[y + cblue]; |
359 | 0 | } |
360 | 0 | } |
361 | | |
362 | | |
363 | | /* |
364 | | * Module initialization routine for merged upsampling/color conversion. |
365 | | * |
366 | | * NB: this is called under the conditions determined by use_merged_upsample() |
367 | | * in jdmaster.c. That routine MUST correspond to the actual capabilities |
368 | | * of this module; no safety checks are made here. |
369 | | */ |
370 | | |
371 | | GLOBAL(void) |
372 | | jinit_merged_upsampler (j_decompress_ptr cinfo) |
373 | 0 | { |
374 | 0 | my_upsample_ptr upsample; |
375 | |
|
376 | 0 | upsample = (my_upsample_ptr) |
377 | 0 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
378 | 0 | SIZEOF(my_upsampler)); |
379 | 0 | cinfo->upsample = (struct jpeg_upsampler *) upsample; |
380 | 0 | upsample->pub.start_pass = start_pass_merged_upsample; |
381 | 0 | upsample->pub.need_context_rows = FALSE; |
382 | |
|
383 | 0 | upsample->out_row_width = cinfo->output_width * cinfo->out_color_components; |
384 | |
|
385 | 0 | if (cinfo->max_v_samp_factor == 2) { |
386 | 0 | upsample->pub.upsample = merged_2v_upsample; |
387 | 0 | upsample->upmethod = h2v2_merged_upsample; |
388 | | /* Allocate a spare row buffer */ |
389 | 0 | upsample->spare_row = (JSAMPROW) |
390 | 0 | (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
391 | 0 | (size_t) (upsample->out_row_width * SIZEOF(JSAMPLE))); |
392 | 0 | } else { |
393 | 0 | upsample->pub.upsample = merged_1v_upsample; |
394 | 0 | upsample->upmethod = h2v1_merged_upsample; |
395 | | /* No spare row needed */ |
396 | 0 | upsample->spare_row = NULL; |
397 | 0 | } |
398 | |
|
399 | 0 | build_ycc_rgb_table(cinfo); |
400 | 0 | } |
401 | | |
402 | | #endif /* UPSAMPLE_MERGING_SUPPORTED */ |