Coverage Report

Created: 2025-06-13 06:18

/src/gdal/build/frmts/jpeg/libjpeg12/jquant212.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * jquant2.c
3
 *
4
 * Copyright (C) 1991-1996, Thomas G. Lane.
5
 * This file is part of the Independent JPEG Group's software.
6
 * For conditions of distribution and use, see the accompanying README file.
7
 *
8
 * This file contains 2-pass color quantization (color mapping) routines.
9
 * These routines provide selection of a custom color map for an image,
10
 * followed by mapping of the image to that color map, with optional
11
 * Floyd-Steinberg dithering.
12
 * It is also possible to use just the second pass to map to an arbitrary
13
 * externally-given color map.
14
 *
15
 * Note: ordered dithering is not supported, since there isn't any fast
16
 * way to compute intercolor distances; it's unclear that ordered dither's
17
 * fundamental assumptions even hold with an irregularly spaced color map.
18
 */
19
20
#define JPEG_INTERNALS
21
#include "jinclude.h"
22
#include "jpeglib.h"
23
24
#include "cpl_port.h"
25
26
#ifdef QUANT_2PASS_SUPPORTED
27
28
29
/*
30
 * This module implements the well-known Heckbert paradigm for color
31
 * quantization.  Most of the ideas used here can be traced back to
32
 * Heckbert's seminal paper
33
 *   Heckbert, Paul.  "Color Image Quantization for Frame Buffer Display",
34
 *   Proc. SIGGRAPH '82, Computer Graphics v.16 #3 (July 1982), pp 297-304.
35
 *
36
 * In the first pass over the image, we accumulate a histogram showing the
37
 * usage count of each possible color.  To keep the histogram to a reasonable
38
 * size, we reduce the precision of the input; typical practice is to retain
39
 * 5 or 6 bits per color, so that 8 or 4 different input values are counted
40
 * in the same histogram cell.
41
 *
42
 * Next, the color-selection step begins with a box representing the whole
43
 * color space, and repeatedly splits the "largest" remaining box until we
44
 * have as many boxes as desired colors.  Then the mean color in each
45
 * remaining box becomes one of the possible output colors.
46
 * 
47
 * The second pass over the image maps each input pixel to the closest output
48
 * color (optionally after applying a Floyd-Steinberg dithering correction).
49
 * This mapping is logically trivial, but making it go fast enough requires
50
 * considerable care.
51
 *
52
 * Heckbert-style quantizers vary a good deal in their policies for choosing
53
 * the "largest" box and deciding where to cut it.  The particular policies
54
 * used here have proved out well in experimental comparisons, but better ones
55
 * may yet be found.
56
 *
57
 * In earlier versions of the IJG code, this module quantized in YCbCr color
58
 * space, processing the raw upsampled data without a color conversion step.
59
 * This allowed the color conversion math to be done only once per colormap
60
 * entry, not once per pixel.  However, that optimization precluded other
61
 * useful optimizations (such as merging color conversion with upsampling)
62
 * and it also interfered with desired capabilities such as quantizing to an
63
 * externally-supplied colormap.  We have therefore abandoned that approach.
64
 * The present code works in the post-conversion color space, typically RGB.
65
 *
66
 * To improve the visual quality of the results, we actually work in scaled
67
 * RGB space, giving G distances more weight than R, and R in turn more than
68
 * B.  To do everything in integer math, we must use integer scale factors.
69
 * The 2/3/1 scale factors used here correspond loosely to the relative
70
 * weights of the colors in the NTSC grayscale equation.
71
 * If you want to use this code to quantize a non-RGB color space, you'll
72
 * probably need to change these scale factors.
73
 */
74
75
0
#define R_SCALE 2    /* scale R distances by this much */
76
0
#define G_SCALE 3    /* scale G distances by this much */
77
0
#define B_SCALE 1    /* and B by this much */
78
79
/* Relabel R/G/B as components 0/1/2, respecting the RGB ordering defined
80
 * in jmorecfg.h.  As the code stands, it will do the right thing for R,G,B
81
 * and B,G,R orders.  If you define some other weird order in jmorecfg.h,
82
 * you'll get compile errors until you extend this logic.  In that case
83
 * you'll probably want to tweak the histogram sizes too.
84
 */
85
86
#if RGB_RED == 0
87
0
#define C0_SCALE R_SCALE
88
#endif
89
#if RGB_BLUE == 0
90
#define C0_SCALE B_SCALE
91
#endif
92
#if RGB_GREEN == 1
93
0
#define C1_SCALE G_SCALE
94
#endif
95
#if RGB_RED == 2
96
#define C2_SCALE R_SCALE
97
#endif
98
#if RGB_BLUE == 2
99
0
#define C2_SCALE B_SCALE
100
#endif
101
102
103
/*
104
 * First we have the histogram data structure and routines for creating it.
105
 *
106
 * The number of bits of precision can be adjusted by changing these symbols.
107
 * We recommend keeping 6 bits for G and 5 each for R and B.
108
 * If you have plenty of memory and cycles, 6 bits all around gives marginally
109
 * better results; if you are short of memory, 5 bits all around will save
110
 * some space but degrade the results.
111
 * To maintain a fully accurate histogram, we'd need to allocate a "long"
112
 * (preferably unsigned long) for each cell.  In practice this is overkill;
113
 * we can get by with 16 bits per cell.  Few of the cell counts will overflow,
114
 * and clamping those that do overflow to the maximum value will give close-
115
 * enough results.  This reduces the recommended histogram size from 256Kb
116
 * to 128Kb, which is a useful savings on PC-class machines.
117
 * (In the second pass the histogram space is re-used for pixel mapping data;
118
 * in that capacity, each cell must be able to store zero to the number of
119
 * desired colors.  16 bits/cell is plenty for that too.)
120
 * Since the JPEG code is intended to run in small memory model on 80x86
121
 * machines, we can't just allocate the histogram in one chunk.  Instead
122
 * of a true 3-D array, we use a row of pointers to 2-D arrays.  Each
123
 * pointer corresponds to a C0 value (typically 2^5 = 32 pointers) and
124
 * each 2-D array has 2^6*2^5 = 2048 or 2^6*2^6 = 4096 entries.  Note that
125
 * on 80x86 machines, the pointer row is in near memory but the actual
126
 * arrays are in far memory (same arrangement as we use for image arrays).
127
 */
128
129
0
#define MAXNUMCOLORS  (MAXJSAMPLE+1) /* maximum size of colormap */
130
131
/* These will do the right thing for either R,G,B or B,G,R color order,
132
 * but you may not like the results for other color orders.
133
 */
134
0
#define HIST_C0_BITS  5    /* bits of precision in R/B histogram */
135
0
#define HIST_C1_BITS  6    /* bits of precision in G histogram */
136
0
#define HIST_C2_BITS  5    /* bits of precision in B/R histogram */
137
138
/* Number of elements along histogram axes. */
139
0
#define HIST_C0_ELEMS  (1<<HIST_C0_BITS)
140
0
#define HIST_C1_ELEMS  (1<<HIST_C1_BITS)
141
0
#define HIST_C2_ELEMS  (1<<HIST_C2_BITS)
142
143
/* These are the amounts to shift an input value to get a histogram index. */
144
0
#define C0_SHIFT  (BITS_IN_JSAMPLE-HIST_C0_BITS)
145
0
#define C1_SHIFT  (BITS_IN_JSAMPLE-HIST_C1_BITS)
146
0
#define C2_SHIFT  (BITS_IN_JSAMPLE-HIST_C2_BITS)
147
148
149
typedef UINT16 histcell;  /* histogram cell; prefer an unsigned type */
150
151
typedef histcell FAR * histptr; /* for pointers to histogram cells */
152
153
typedef histcell hist1d[HIST_C2_ELEMS]; /* typedefs for the array */
154
typedef hist1d FAR * hist2d;  /* type for the 2nd-level pointers */
155
typedef hist2d * hist3d;  /* type for top-level pointer */
156
157
158
/* Declarations for Floyd-Steinberg dithering.
159
 *
160
 * Errors are accumulated into the array fserrors[], at a resolution of
161
 * 1/16th of a pixel count.  The error at a given pixel is propagated
162
 * to its not-yet-processed neighbors using the standard F-S fractions,
163
 *    ... (here)  7/16
164
 *    3/16  5/16  1/16
165
 * We work left-to-right on even rows, right-to-left on odd rows.
166
 *
167
 * We can get away with a single array (holding one row's worth of errors)
168
 * by using it to store the current row's errors at pixel columns not yet
169
 * processed, but the next row's errors at columns already processed.  We
170
 * need only a few extra variables to hold the errors immediately around the
171
 * current column.  (If we are lucky, those variables are in registers, but
172
 * even if not, they're probably cheaper to access than array elements are.)
173
 *
174
 * The fserrors[] array has (#columns + 2) entries; the extra entry at
175
 * each end saves us from special-casing the first and last pixels.
176
 * Each entry is three values long, one value for each color component.
177
 *
178
 * Note: on a wide image, we might not have enough room in a PC's near data
179
 * segment to hold the error array; so it is allocated with alloc_large.
180
 */
181
182
#if BITS_IN_JSAMPLE == 8
183
typedef INT16 FSERROR;    /* 16 bits should be enough */
184
typedef int LOCFSERROR;   /* use 'int' for calculation temps */
185
#else
186
typedef INT32 FSERROR;    /* may need more than 16 bits */
187
typedef INT32 LOCFSERROR; /* be sure calculation temps are big enough */
188
#endif
189
190
typedef FSERROR FAR *FSERRPTR;  /* pointer to error array (in FAR storage!) */
191
192
193
/* Private subobject */
194
195
typedef struct {
196
  struct jpeg_color_quantizer pub; /* public fields */
197
198
  /* Space for the eventually created colormap is stashed here */
199
  JSAMPARRAY sv_colormap; /* colormap allocated at init time */
200
  int desired;      /* desired # of colors = size of colormap */
201
202
  /* Variables for accumulating image statistics */
203
  hist3d histogram;   /* pointer to the histogram */
204
205
  boolean needs_zeroed;   /* TRUE if next pass must zero histogram */
206
207
  /* Variables for Floyd-Steinberg dithering */
208
  FSERRPTR fserrors;    /* accumulated errors */
209
  boolean on_odd_row;   /* flag to remember which row we are on */
210
  int * error_limiter;    /* table for clamping the applied error */
211
} my_cquantizer;
212
213
typedef my_cquantizer * my_cquantize_ptr;
214
215
216
/*
217
 * Prescan some rows of pixels.
218
 * In this module the prescan simply updates the histogram, which has been
219
 * initialized to zeroes by start_pass.
220
 * An output_buf parameter is required by the method signature, but no data
221
 * is actually output (in fact the buffer controller is probably passing a
222
 * NULL pointer).
223
 */
224
225
METHODDEF(void)
226
prescan_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
227
      CPL_UNUSED JSAMPARRAY output_buf, int num_rows)
228
0
{
229
0
  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
230
0
  register JSAMPROW ptr;
231
0
  register histptr histp;
232
0
  register hist3d histogram = cquantize->histogram;
233
0
  int row;
234
0
  JDIMENSION col;
235
0
  JDIMENSION width = cinfo->output_width;
236
237
0
  for (row = 0; row < num_rows; row++) {
238
0
    ptr = input_buf[row];
239
0
    for (col = width; col > 0; col--) {
240
      /* get pixel value and index into the histogram */
241
0
      histp = & histogram[GETJSAMPLE(ptr[0]) >> C0_SHIFT]
242
0
       [GETJSAMPLE(ptr[1]) >> C1_SHIFT]
243
0
       [GETJSAMPLE(ptr[2]) >> C2_SHIFT];
244
      /* increment, check for overflow and undo increment if so. */
245
0
      if (++(*histp) <= 0)
246
0
  (*histp)--;
247
0
      ptr += 3;
248
0
    }
249
0
  }
250
0
}
251
252
253
/*
254
 * Next we have the really interesting routines: selection of a colormap
255
 * given the completed histogram.
256
 * These routines work with a list of "boxes", each representing a rectangular
257
 * subset of the input color space (to histogram precision).
258
 */
259
260
typedef struct {
261
  /* The bounds of the box (inclusive); expressed as histogram indexes */
262
  int c0min, c0max;
263
  int c1min, c1max;
264
  int c2min, c2max;
265
  /* The volume (actually 2-norm) of the box */
266
  INT32 volume;
267
  /* The number of nonzero histogram cells within this box */
268
  long colorcount;
269
} box;
270
271
typedef box * boxptr;
272
273
274
LOCAL(boxptr)
275
find_biggest_color_pop (boxptr boxlist, int numboxes)
276
/* Find the splittable box with the largest color population */
277
/* Returns NULL if no splittable boxes remain */
278
0
{
279
0
  register boxptr boxp;
280
0
  register int i;
281
0
  register long maxc = 0;
282
0
  boxptr which = NULL;
283
  
284
0
  for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
285
0
    if (boxp->colorcount > maxc && boxp->volume > 0) {
286
0
      which = boxp;
287
0
      maxc = boxp->colorcount;
288
0
    }
289
0
  }
290
0
  return which;
291
0
}
292
293
294
LOCAL(boxptr)
295
find_biggest_volume (boxptr boxlist, int numboxes)
296
/* Find the splittable box with the largest (scaled) volume */
297
/* Returns NULL if no splittable boxes remain */
298
0
{
299
0
  register boxptr boxp;
300
0
  register int i;
301
0
  register INT32 maxv = 0;
302
0
  boxptr which = NULL;
303
  
304
0
  for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
305
0
    if (boxp->volume > maxv) {
306
0
      which = boxp;
307
0
      maxv = boxp->volume;
308
0
    }
309
0
  }
310
0
  return which;
311
0
}
312
313
314
LOCAL(void)
315
update_box (j_decompress_ptr cinfo, boxptr boxp)
316
/* Shrink the min/max bounds of a box to enclose only nonzero elements, */
317
/* and recompute its volume and population */
318
0
{
319
0
  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
320
0
  hist3d histogram = cquantize->histogram;
321
0
  histptr histp;
322
0
  int c0,c1,c2;
323
0
  int c0min,c0max,c1min,c1max,c2min,c2max;
324
0
  INT32 dist0,dist1,dist2;
325
0
  long ccount;
326
  
327
0
  c0min = boxp->c0min;  c0max = boxp->c0max;
328
0
  c1min = boxp->c1min;  c1max = boxp->c1max;
329
0
  c2min = boxp->c2min;  c2max = boxp->c2max;
330
  
331
0
  if (c0max > c0min)
332
0
    for (c0 = c0min; c0 <= c0max; c0++)
333
0
      for (c1 = c1min; c1 <= c1max; c1++) {
334
0
  histp = & histogram[c0][c1][c2min];
335
0
  for (c2 = c2min; c2 <= c2max; c2++)
336
0
    if (*histp++ != 0) {
337
0
      boxp->c0min = c0min = c0;
338
0
      goto have_c0min;
339
0
    }
340
0
      }
341
0
 have_c0min:
342
0
  if (c0max > c0min)
343
0
    for (c0 = c0max; c0 >= c0min; c0--)
344
0
      for (c1 = c1min; c1 <= c1max; c1++) {
345
0
  histp = & histogram[c0][c1][c2min];
346
0
  for (c2 = c2min; c2 <= c2max; c2++)
347
0
    if (*histp++ != 0) {
348
0
      boxp->c0max = c0max = c0;
349
0
      goto have_c0max;
350
0
    }
351
0
      }
352
0
 have_c0max:
353
0
  if (c1max > c1min)
354
0
    for (c1 = c1min; c1 <= c1max; c1++)
355
0
      for (c0 = c0min; c0 <= c0max; c0++) {
356
0
  histp = & histogram[c0][c1][c2min];
357
0
  for (c2 = c2min; c2 <= c2max; c2++)
358
0
    if (*histp++ != 0) {
359
0
      boxp->c1min = c1min = c1;
360
0
      goto have_c1min;
361
0
    }
362
0
      }
363
0
 have_c1min:
364
0
  if (c1max > c1min)
365
0
    for (c1 = c1max; c1 >= c1min; c1--)
366
0
      for (c0 = c0min; c0 <= c0max; c0++) {
367
0
  histp = & histogram[c0][c1][c2min];
368
0
  for (c2 = c2min; c2 <= c2max; c2++)
369
0
    if (*histp++ != 0) {
370
0
      boxp->c1max = c1max = c1;
371
0
      goto have_c1max;
372
0
    }
373
0
      }
374
0
 have_c1max:
375
0
  if (c2max > c2min)
376
0
    for (c2 = c2min; c2 <= c2max; c2++)
377
0
      for (c0 = c0min; c0 <= c0max; c0++) {
378
0
  histp = & histogram[c0][c1min][c2];
379
0
  for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
380
0
    if (*histp != 0) {
381
0
      boxp->c2min = c2min = c2;
382
0
      goto have_c2min;
383
0
    }
384
0
      }
385
0
 have_c2min:
386
0
  if (c2max > c2min)
387
0
    for (c2 = c2max; c2 >= c2min; c2--)
388
0
      for (c0 = c0min; c0 <= c0max; c0++) {
389
0
  histp = & histogram[c0][c1min][c2];
390
0
  for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
391
0
    if (*histp != 0) {
392
0
      boxp->c2max = c2max = c2;
393
0
      goto have_c2max;
394
0
    }
395
0
      }
396
0
 have_c2max:
397
398
  /* Update box volume.
399
   * We use 2-norm rather than real volume here; this biases the method
400
   * against making long narrow boxes, and it has the side benefit that
401
   * a box is splittable iff norm > 0.
402
   * Since the differences are expressed in histogram-cell units,
403
   * we have to shift back to JSAMPLE units to get consistent distances;
404
   * after which, we scale according to the selected distance scale factors.
405
   */
406
0
  dist0 = ((c0max - c0min) << C0_SHIFT) * C0_SCALE;
407
0
  dist1 = ((c1max - c1min) << C1_SHIFT) * C1_SCALE;
408
0
  dist2 = ((c2max - c2min) << C2_SHIFT) * C2_SCALE;
409
0
  boxp->volume = dist0*dist0 + dist1*dist1 + dist2*dist2;
410
  
411
  /* Now scan remaining volume of box and compute population */
412
0
  ccount = 0;
413
0
  for (c0 = c0min; c0 <= c0max; c0++)
414
0
    for (c1 = c1min; c1 <= c1max; c1++) {
415
0
      histp = & histogram[c0][c1][c2min];
416
0
      for (c2 = c2min; c2 <= c2max; c2++, histp++)
417
0
  if (*histp != 0) {
418
0
    ccount++;
419
0
  }
420
0
    }
421
0
  boxp->colorcount = ccount;
422
0
}
423
424
425
LOCAL(int)
426
median_cut (j_decompress_ptr cinfo, boxptr boxlist, int numboxes,
427
      int desired_colors)
428
/* Repeatedly select and split the largest box until we have enough boxes */
429
0
{
430
0
  int n,lb;
431
0
  int c0,c1,c2,cmax;
432
0
  register boxptr b1,b2;
433
434
0
  while (numboxes < desired_colors) {
435
    /* Select box to split.
436
     * Current algorithm: by population for first half, then by volume.
437
     */
438
0
    if (numboxes*2 <= desired_colors) {
439
0
      b1 = find_biggest_color_pop(boxlist, numboxes);
440
0
    } else {
441
0
      b1 = find_biggest_volume(boxlist, numboxes);
442
0
    }
443
0
    if (b1 == NULL)   /* no splittable boxes left! */
444
0
      break;
445
0
    b2 = &boxlist[numboxes];  /* where new box will go */
446
    /* Copy the color bounds to the new box. */
447
0
    b2->c0max = b1->c0max; b2->c1max = b1->c1max; b2->c2max = b1->c2max;
448
0
    b2->c0min = b1->c0min; b2->c1min = b1->c1min; b2->c2min = b1->c2min;
449
    /* Choose which axis to split the box on.
450
     * Current algorithm: longest scaled axis.
451
     * See notes in update_box about scaling distances.
452
     */
453
0
    c0 = ((b1->c0max - b1->c0min) << C0_SHIFT) * C0_SCALE;
454
0
    c1 = ((b1->c1max - b1->c1min) << C1_SHIFT) * C1_SCALE;
455
0
    c2 = ((b1->c2max - b1->c2min) << C2_SHIFT) * C2_SCALE;
456
    /* We want to break any ties in favor of green, then red, blue last.
457
     * This code does the right thing for R,G,B or B,G,R color orders only.
458
     */
459
0
#if RGB_RED == 0
460
0
    cmax = c1; n = 1;
461
0
    if (c0 > cmax) { cmax = c0; n = 0; }
462
0
    if (c2 > cmax) { n = 2; }
463
#else
464
    cmax = c1; n = 1;
465
    if (c2 > cmax) { cmax = c2; n = 2; }
466
    if (c0 > cmax) { n = 0; }
467
#endif
468
    /* Choose split point along selected axis, and update box bounds.
469
     * Current algorithm: split at halfway point.
470
     * (Since the box has been shrunk to minimum volume,
471
     * any split will produce two nonempty subboxes.)
472
     * Note that lb value is max for lower box, so must be < old max.
473
     */
474
0
    switch (n) {
475
0
    case 0:
476
0
      lb = (b1->c0max + b1->c0min) / 2;
477
0
      b1->c0max = lb;
478
0
      b2->c0min = lb+1;
479
0
      break;
480
0
    case 1:
481
0
      lb = (b1->c1max + b1->c1min) / 2;
482
0
      b1->c1max = lb;
483
0
      b2->c1min = lb+1;
484
0
      break;
485
0
    case 2:
486
0
      lb = (b1->c2max + b1->c2min) / 2;
487
0
      b1->c2max = lb;
488
0
      b2->c2min = lb+1;
489
0
      break;
490
0
    }
491
    /* Update stats for boxes */
492
0
    update_box(cinfo, b1);
493
0
    update_box(cinfo, b2);
494
0
    numboxes++;
495
0
  }
496
0
  return numboxes;
497
0
}
498
499
500
LOCAL(void)
501
compute_color (j_decompress_ptr cinfo, boxptr boxp, int icolor)
502
/* Compute representative color for a box, put it in colormap[icolor] */
503
0
{
504
  /* Current algorithm: mean weighted by pixels (not colors) */
505
  /* Note it is important to get the rounding correct! */
506
0
  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
507
0
  hist3d histogram = cquantize->histogram;
508
0
  histptr histp;
509
0
  int c0,c1,c2;
510
0
  int c0min,c0max,c1min,c1max,c2min,c2max;
511
0
  long count;
512
0
  long total = 0;
513
0
  long c0total = 0;
514
0
  long c1total = 0;
515
0
  long c2total = 0;
516
  
517
0
  c0min = boxp->c0min;  c0max = boxp->c0max;
518
0
  c1min = boxp->c1min;  c1max = boxp->c1max;
519
0
  c2min = boxp->c2min;  c2max = boxp->c2max;
520
  
521
0
  for (c0 = c0min; c0 <= c0max; c0++)
522
0
    for (c1 = c1min; c1 <= c1max; c1++) {
523
0
      histp = & histogram[c0][c1][c2min];
524
0
      for (c2 = c2min; c2 <= c2max; c2++) {
525
0
  if ((count = *histp++) != 0) {
526
0
    total += count;
527
0
    c0total += ((c0 << C0_SHIFT) + ((1<<C0_SHIFT)>>1)) * count;
528
0
    c1total += ((c1 << C1_SHIFT) + ((1<<C1_SHIFT)>>1)) * count;
529
0
    c2total += ((c2 << C2_SHIFT) + ((1<<C2_SHIFT)>>1)) * count;
530
0
  }
531
0
      }
532
0
    }
533
  
534
0
  cinfo->colormap[0][icolor] = (JSAMPLE) ((total) ? ((c0total + (total>>1)) / total) : 0);
535
0
  cinfo->colormap[1][icolor] = (JSAMPLE) ((total) ? ((c1total + (total>>1)) / total) : 0);
536
0
  cinfo->colormap[2][icolor] = (JSAMPLE) ((total) ? ((c2total + (total>>1)) / total) : 0);
537
0
}
538
539
540
LOCAL(void)
541
select_colors (j_decompress_ptr cinfo, int desired_colors)
542
/* Master routine for color selection */
543
0
{
544
0
  boxptr boxlist;
545
0
  int numboxes;
546
0
  int i;
547
548
  /* Allocate workspace for box list */
549
0
  boxlist = (boxptr) (*cinfo->mem->alloc_small)
550
0
    ((j_common_ptr) cinfo, JPOOL_IMAGE, desired_colors * SIZEOF(box));
551
  /* Initialize one box containing whole space */
552
0
  numboxes = 1;
553
0
  boxlist[0].c0min = 0;
554
0
  boxlist[0].c0max = MAXJSAMPLE >> C0_SHIFT;
555
0
  boxlist[0].c1min = 0;
556
0
  boxlist[0].c1max = MAXJSAMPLE >> C1_SHIFT;
557
0
  boxlist[0].c2min = 0;
558
0
  boxlist[0].c2max = MAXJSAMPLE >> C2_SHIFT;
559
  /* Shrink it to actually-used volume and set its statistics */
560
0
  update_box(cinfo, & boxlist[0]);
561
  /* Perform median-cut to produce final box list */
562
0
  numboxes = median_cut(cinfo, boxlist, numboxes, desired_colors);
563
  /* Compute the representative color for each box, fill colormap */
564
0
  for (i = 0; i < numboxes; i++)
565
0
    compute_color(cinfo, & boxlist[i], i);
566
0
  cinfo->actual_number_of_colors = numboxes;
567
0
  TRACEMS1(cinfo, 1, JTRC_QUANT_SELECTED, numboxes);
568
0
}
569
570
571
/*
572
 * These routines are concerned with the time-critical task of mapping input
573
 * colors to the nearest color in the selected colormap.
574
 *
575
 * We re-use the histogram space as an "inverse color map", essentially a
576
 * cache for the results of nearest-color searches.  All colors within a
577
 * histogram cell will be mapped to the same colormap entry, namely the one
578
 * closest to the cell's center.  This may not be quite the closest entry to
579
 * the actual input color, but it's almost as good.  A zero in the cache
580
 * indicates we haven't found the nearest color for that cell yet; the array
581
 * is cleared to zeroes before starting the mapping pass.  When we find the
582
 * nearest color for a cell, its colormap index plus one is recorded in the
583
 * cache for future use.  The pass2 scanning routines call fill_inverse_cmap
584
 * when they need to use an unfilled entry in the cache.
585
 *
586
 * Our method of efficiently finding nearest colors is based on the "locally
587
 * sorted search" idea described by Heckbert and on the incremental distance
588
 * calculation described by Spencer W. Thomas in chapter III.1 of Graphics
589
 * Gems II (James Arvo, ed.  Academic Press, 1991).  Thomas points out that
590
 * the distances from a given colormap entry to each cell of the histogram can
591
 * be computed quickly using an incremental method: the differences between
592
 * distances to adjacent cells themselves differ by a constant.  This allows a
593
 * fairly fast implementation of the "brute force" approach of computing the
594
 * distance from every colormap entry to every histogram cell.  Unfortunately,
595
 * it needs a work array to hold the best-distance-so-far for each histogram
596
 * cell (because the inner loop has to be over cells, not colormap entries).
597
 * The work array elements have to be INT32s, so the work array would need
598
 * 256Kb at our recommended precision.  This is not feasible in DOS machines.
599
 *
600
 * To get around these problems, we apply Thomas' method to compute the
601
 * nearest colors for only the cells within a small subbox of the histogram.
602
 * The work array need be only as big as the subbox, so the memory usage
603
 * problem is solved.  Furthermore, we need not fill subboxes that are never
604
 * referenced in pass2; many images use only part of the color gamut, so a
605
 * fair amount of work is saved.  An additional advantage of this
606
 * approach is that we can apply Heckbert's locality criterion to quickly
607
 * eliminate colormap entries that are far away from the subbox; typically
608
 * three-fourths of the colormap entries are rejected by Heckbert's criterion,
609
 * and we need not compute their distances to individual cells in the subbox.
610
 * The speed of this approach is heavily influenced by the subbox size: too
611
 * small means too much overhead, too big loses because Heckbert's criterion
612
 * can't eliminate as many colormap entries.  Empirically the best subbox
613
 * size seems to be about 1/512th of the histogram (1/8th in each direction).
614
 *
615
 * Thomas' article also describes a refined method which is asymptotically
616
 * faster than the brute-force method, but it is also far more complex and
617
 * cannot efficiently be applied to small subboxes.  It is therefore not
618
 * useful for programs intended to be portable to DOS machines.  On machines
619
 * with plenty of memory, filling the whole histogram in one shot with Thomas'
620
 * refined method might be faster than the present code --- but then again,
621
 * it might not be any faster, and it's certainly more complicated.
622
 */
623
624
625
/* log2(histogram cells in update box) for each axis; this can be adjusted */
626
0
#define BOX_C0_LOG  (HIST_C0_BITS-3)
627
0
#define BOX_C1_LOG  (HIST_C1_BITS-3)
628
0
#define BOX_C2_LOG  (HIST_C2_BITS-3)
629
630
0
#define BOX_C0_ELEMS  (1<<BOX_C0_LOG) /* # of hist cells in update box */
631
0
#define BOX_C1_ELEMS  (1<<BOX_C1_LOG)
632
0
#define BOX_C2_ELEMS  (1<<BOX_C2_LOG)
633
634
0
#define BOX_C0_SHIFT  (C0_SHIFT + BOX_C0_LOG)
635
0
#define BOX_C1_SHIFT  (C1_SHIFT + BOX_C1_LOG)
636
0
#define BOX_C2_SHIFT  (C2_SHIFT + BOX_C2_LOG)
637
638
639
/*
640
 * The next three routines implement inverse colormap filling.  They could
641
 * all be folded into one big routine, but splitting them up this way saves
642
 * some stack space (the mindist[] and bestdist[] arrays need not coexist)
643
 * and may allow some compilers to produce better code by registerizing more
644
 * inner-loop variables.
645
 */
646
647
LOCAL(int)
648
find_nearby_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
649
        JSAMPLE colorlist[])
650
/* Locate the colormap entries close enough to an update box to be candidates
651
 * for the nearest entry to some cell(s) in the update box.  The update box
652
 * is specified by the center coordinates of its first cell.  The number of
653
 * candidate colormap entries is returned, and their colormap indexes are
654
 * placed in colorlist[].
655
 * This routine uses Heckbert's "locally sorted search" criterion to select
656
 * the colors that need further consideration.
657
 */
658
0
{
659
0
  int numcolors = cinfo->actual_number_of_colors;
660
0
  int maxc0, maxc1, maxc2;
661
0
  int centerc0, centerc1, centerc2;
662
0
  int i, x, ncolors;
663
0
  INT32 minmaxdist, min_dist, max_dist, tdist;
664
0
  INT32 mindist[MAXNUMCOLORS];  /* min distance to colormap entry i */
665
666
  /* Compute true coordinates of update box's upper corner and center.
667
   * Actually we compute the coordinates of the center of the upper-corner
668
   * histogram cell, which are the upper bounds of the volume we care about.
669
   * Note that since ">>" rounds down, the "center" values may be closer to
670
   * min than to max; hence comparisons to them must be "<=", not "<".
671
   */
672
0
  maxc0 = minc0 + ((1 << BOX_C0_SHIFT) - (1 << C0_SHIFT));
673
0
  centerc0 = (minc0 + maxc0) >> 1;
674
0
  maxc1 = minc1 + ((1 << BOX_C1_SHIFT) - (1 << C1_SHIFT));
675
0
  centerc1 = (minc1 + maxc1) >> 1;
676
0
  maxc2 = minc2 + ((1 << BOX_C2_SHIFT) - (1 << C2_SHIFT));
677
0
  centerc2 = (minc2 + maxc2) >> 1;
678
679
  /* For each color in colormap, find:
680
   *  1. its minimum squared-distance to any point in the update box
681
   *     (zero if color is within update box);
682
   *  2. its maximum squared-distance to any point in the update box.
683
   * Both of these can be found by considering only the corners of the box.
684
   * We save the minimum distance for each color in mindist[];
685
   * only the smallest maximum distance is of interest.
686
   */
687
0
  minmaxdist = 0x7FFFFFFFL;
688
689
0
  for (i = 0; i < numcolors; i++) {
690
    /* We compute the squared-c0-distance term, then add in the other two. */
691
0
    x = GETJSAMPLE(cinfo->colormap[0][i]);
692
0
    if (x < minc0) {
693
0
      tdist = (x - minc0) * C0_SCALE;
694
0
      min_dist = tdist*tdist;
695
0
      tdist = (x - maxc0) * C0_SCALE;
696
0
      max_dist = tdist*tdist;
697
0
    } else if (x > maxc0) {
698
0
      tdist = (x - maxc0) * C0_SCALE;
699
0
      min_dist = tdist*tdist;
700
0
      tdist = (x - minc0) * C0_SCALE;
701
0
      max_dist = tdist*tdist;
702
0
    } else {
703
      /* within cell range so no contribution to min_dist */
704
0
      min_dist = 0;
705
0
      if (x <= centerc0) {
706
0
  tdist = (x - maxc0) * C0_SCALE;
707
0
  max_dist = tdist*tdist;
708
0
      } else {
709
0
  tdist = (x - minc0) * C0_SCALE;
710
0
  max_dist = tdist*tdist;
711
0
      }
712
0
    }
713
714
0
    x = GETJSAMPLE(cinfo->colormap[1][i]);
715
0
    if (x < minc1) {
716
0
      tdist = (x - minc1) * C1_SCALE;
717
0
      min_dist += tdist*tdist;
718
0
      tdist = (x - maxc1) * C1_SCALE;
719
0
      max_dist += tdist*tdist;
720
0
    } else if (x > maxc1) {
721
0
      tdist = (x - maxc1) * C1_SCALE;
722
0
      min_dist += tdist*tdist;
723
0
      tdist = (x - minc1) * C1_SCALE;
724
0
      max_dist += tdist*tdist;
725
0
    } else {
726
      /* within cell range so no contribution to min_dist */
727
0
      if (x <= centerc1) {
728
0
  tdist = (x - maxc1) * C1_SCALE;
729
0
  max_dist += tdist*tdist;
730
0
      } else {
731
0
  tdist = (x - minc1) * C1_SCALE;
732
0
  max_dist += tdist*tdist;
733
0
      }
734
0
    }
735
736
0
    x = GETJSAMPLE(cinfo->colormap[2][i]);
737
0
    if (x < minc2) {
738
0
      tdist = (x - minc2) * C2_SCALE;
739
0
      min_dist += tdist*tdist;
740
0
      tdist = (x - maxc2) * C2_SCALE;
741
0
      max_dist += tdist*tdist;
742
0
    } else if (x > maxc2) {
743
0
      tdist = (x - maxc2) * C2_SCALE;
744
0
      min_dist += tdist*tdist;
745
0
      tdist = (x - minc2) * C2_SCALE;
746
0
      max_dist += tdist*tdist;
747
0
    } else {
748
      /* within cell range so no contribution to min_dist */
749
0
      if (x <= centerc2) {
750
0
  tdist = (x - maxc2) * C2_SCALE;
751
0
  max_dist += tdist*tdist;
752
0
      } else {
753
0
  tdist = (x - minc2) * C2_SCALE;
754
0
  max_dist += tdist*tdist;
755
0
      }
756
0
    }
757
758
0
    mindist[i] = min_dist;  /* save away the results */
759
0
    if (max_dist < minmaxdist)
760
0
      minmaxdist = max_dist;
761
0
  }
762
763
  /* Now we know that no cell in the update box is more than minmaxdist
764
   * away from some colormap entry.  Therefore, only colors that are
765
   * within minmaxdist of some part of the box need be considered.
766
   */
767
0
  ncolors = 0;
768
0
  for (i = 0; i < numcolors; i++) {
769
0
    if (mindist[i] <= minmaxdist)
770
0
      colorlist[ncolors++] = (JSAMPLE) i;
771
0
  }
772
0
  return ncolors;
773
0
}
774
775
776
LOCAL(void)
777
find_best_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
778
      int numcolors, JSAMPLE colorlist[], JSAMPLE bestcolor[])
779
/* Find the closest colormap entry for each cell in the update box,
780
 * given the list of candidate colors prepared by find_nearby_colors.
781
 * Return the indexes of the closest entries in the bestcolor[] array.
782
 * This routine uses Thomas' incremental distance calculation method to
783
 * find the distance from a colormap entry to successive cells in the box.
784
 */
785
0
{
786
0
  int ic0, ic1, ic2;
787
0
  int i, icolor;
788
0
  register INT32 * bptr;  /* pointer into bestdist[] array */
789
0
  JSAMPLE * cptr;    /* pointer into bestcolor[] array */
790
0
  INT32 dist0, dist1;   /* initial distance values */
791
0
  register INT32 dist2;   /* current distance in inner loop */
792
0
  INT32 xx0, xx1;   /* distance increments */
793
0
  register INT32 xx2;
794
0
  INT32 inc0, inc1, inc2; /* initial values for increments */
795
  /* This array holds the distance to the nearest-so-far color for each cell */
796
0
  INT32 bestdist[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
797
798
  /* Initialize best-distance for each cell of the update box */
799
0
  bptr = bestdist;
800
0
  for (i = BOX_C0_ELEMS*BOX_C1_ELEMS*BOX_C2_ELEMS-1; i >= 0; i--)
801
0
    *bptr++ = 0x7FFFFFFFL;
802
  
803
  /* For each color selected by find_nearby_colors,
804
   * compute its distance to the center of each cell in the box.
805
   * If that's less than best-so-far, update best distance and color number.
806
   */
807
  
808
  /* Nominal steps between cell centers ("x" in Thomas article) */
809
0
#define STEP_C0  ((1 << C0_SHIFT) * C0_SCALE)
810
0
#define STEP_C1  ((1 << C1_SHIFT) * C1_SCALE)
811
0
#define STEP_C2  ((1 << C2_SHIFT) * C2_SCALE)
812
  
813
0
  for (i = 0; i < numcolors; i++) {
814
0
    icolor = GETJSAMPLE(colorlist[i]);
815
    /* Compute (square of) distance from minc0/c1/c2 to this color */
816
0
    inc0 = (minc0 - GETJSAMPLE(cinfo->colormap[0][icolor])) * C0_SCALE;
817
0
    dist0 = inc0*inc0;
818
0
    inc1 = (minc1 - GETJSAMPLE(cinfo->colormap[1][icolor])) * C1_SCALE;
819
0
    dist0 += inc1*inc1;
820
0
    inc2 = (minc2 - GETJSAMPLE(cinfo->colormap[2][icolor])) * C2_SCALE;
821
0
    dist0 += inc2*inc2;
822
    /* Form the initial difference increments */
823
0
    inc0 = inc0 * (2 * STEP_C0) + STEP_C0 * STEP_C0;
824
0
    inc1 = inc1 * (2 * STEP_C1) + STEP_C1 * STEP_C1;
825
0
    inc2 = inc2 * (2 * STEP_C2) + STEP_C2 * STEP_C2;
826
    /* Now loop over all cells in box, updating distance per Thomas method */
827
0
    bptr = bestdist;
828
0
    cptr = bestcolor;
829
0
    xx0 = inc0;
830
0
    for (ic0 = BOX_C0_ELEMS-1; ic0 >= 0; ic0--) {
831
0
      dist1 = dist0;
832
0
      xx1 = inc1;
833
0
      for (ic1 = BOX_C1_ELEMS-1; ic1 >= 0; ic1--) {
834
0
  dist2 = dist1;
835
0
  xx2 = inc2;
836
0
  for (ic2 = BOX_C2_ELEMS-1; ic2 >= 0; ic2--) {
837
0
    if (dist2 < *bptr) {
838
0
      *bptr = dist2;
839
0
      *cptr = (JSAMPLE) icolor;
840
0
    }
841
0
    dist2 += xx2;
842
0
    xx2 += 2 * STEP_C2 * STEP_C2;
843
0
    bptr++;
844
0
    cptr++;
845
0
  }
846
0
  dist1 += xx1;
847
0
  xx1 += 2 * STEP_C1 * STEP_C1;
848
0
      }
849
0
      dist0 += xx0;
850
0
      xx0 += 2 * STEP_C0 * STEP_C0;
851
0
    }
852
0
  }
853
0
}
854
855
856
LOCAL(void)
857
fill_inverse_cmap (j_decompress_ptr cinfo, int c0, int c1, int c2)
858
/* Fill the inverse-colormap entries in the update box that contains */
859
/* histogram cell c0/c1/c2.  (Only that one cell MUST be filled, but */
860
/* we can fill as many others as we wish.) */
861
0
{
862
0
  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
863
0
  hist3d histogram = cquantize->histogram;
864
0
  int minc0, minc1, minc2;  /* lower left corner of update box */
865
0
  int ic0, ic1, ic2;
866
0
  register JSAMPLE * cptr;  /* pointer into bestcolor[] array */
867
0
  register histptr cachep;  /* pointer into main cache array */
868
  /* This array lists the candidate colormap indexes. */
869
0
  JSAMPLE colorlist[MAXNUMCOLORS];
870
0
  int numcolors;    /* number of candidate colors */
871
  /* This array holds the actually closest colormap index for each cell. */
872
0
  JSAMPLE bestcolor[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
873
874
  /* Convert cell coordinates to update box ID */
875
0
  c0 >>= BOX_C0_LOG;
876
0
  c1 >>= BOX_C1_LOG;
877
0
  c2 >>= BOX_C2_LOG;
878
879
  /* Compute true coordinates of update box's origin corner.
880
   * Actually we compute the coordinates of the center of the corner
881
   * histogram cell, which are the lower bounds of the volume we care about.
882
   */
883
0
  minc0 = (c0 << BOX_C0_SHIFT) + ((1 << C0_SHIFT) >> 1);
884
0
  minc1 = (c1 << BOX_C1_SHIFT) + ((1 << C1_SHIFT) >> 1);
885
0
  minc2 = (c2 << BOX_C2_SHIFT) + ((1 << C2_SHIFT) >> 1);
886
  
887
  /* Determine which colormap entries are close enough to be candidates
888
   * for the nearest entry to some cell in the update box.
889
   */
890
0
  numcolors = find_nearby_colors(cinfo, minc0, minc1, minc2, colorlist);
891
892
  /* Determine the actually nearest colors. */
893
0
  find_best_colors(cinfo, minc0, minc1, minc2, numcolors, colorlist,
894
0
       bestcolor);
895
896
  /* Save the best color numbers (plus 1) in the main cache array */
897
0
  c0 <<= BOX_C0_LOG;   /* convert ID back to base cell indexes */
898
0
  c1 <<= BOX_C1_LOG;
899
0
  c2 <<= BOX_C2_LOG;
900
0
  cptr = bestcolor;
901
0
  for (ic0 = 0; ic0 < BOX_C0_ELEMS; ic0++) {
902
0
    for (ic1 = 0; ic1 < BOX_C1_ELEMS; ic1++) {
903
0
      cachep = & histogram[c0+ic0][c1+ic1][c2];
904
0
      for (ic2 = 0; ic2 < BOX_C2_ELEMS; ic2++) {
905
0
  *cachep++ = (histcell) (GETJSAMPLE(*cptr++) + 1);
906
0
      }
907
0
    }
908
0
  }
909
0
}
910
911
912
/*
913
 * Map some rows of pixels to the output colormapped representation.
914
 */
915
916
METHODDEF(void)
917
pass2_no_dither (j_decompress_ptr cinfo,
918
     JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows)
919
/* This version performs no dithering */
920
0
{
921
0
  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
922
0
  hist3d histogram = cquantize->histogram;
923
0
  register JSAMPROW inptr, outptr;
924
0
  register histptr cachep;
925
0
  register int c0, c1, c2;
926
0
  int row;
927
0
  JDIMENSION col;
928
0
  JDIMENSION width = cinfo->output_width;
929
930
0
  for (row = 0; row < num_rows; row++) {
931
0
    inptr = input_buf[row];
932
0
    outptr = output_buf[row];
933
0
    for (col = width; col > 0; col--) {
934
      /* get pixel value and index into the cache */
935
0
      c0 = GETJSAMPLE(*inptr++) >> C0_SHIFT;
936
0
      c1 = GETJSAMPLE(*inptr++) >> C1_SHIFT;
937
0
      c2 = GETJSAMPLE(*inptr++) >> C2_SHIFT;
938
0
      cachep = & histogram[c0][c1][c2];
939
      /* If we have not seen this color before, find nearest colormap entry */
940
      /* and update the cache */
941
0
      if (*cachep == 0)
942
0
  fill_inverse_cmap(cinfo, c0,c1,c2);
943
      /* Now emit the colormap index for this cell */
944
0
      *outptr++ = (JSAMPLE) (*cachep - 1);
945
0
    }
946
0
  }
947
0
}
948
949
950
METHODDEF(void)
951
pass2_fs_dither (j_decompress_ptr cinfo,
952
     JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows)
953
/* This version performs Floyd-Steinberg dithering */
954
0
{
955
0
  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
956
0
  hist3d histogram = cquantize->histogram;
957
0
  register LOCFSERROR cur0, cur1, cur2; /* current error or pixel value */
958
0
  LOCFSERROR belowerr0, belowerr1, belowerr2; /* error for pixel below cur */
959
0
  LOCFSERROR bpreverr0, bpreverr1, bpreverr2; /* error for below/prev col */
960
0
  register FSERRPTR errorptr; /* => fserrors[] at column before current */
961
0
  JSAMPROW inptr;   /* => current input pixel */
962
0
  JSAMPROW outptr;    /* => current output pixel */
963
0
  histptr cachep;
964
0
  int dir;      /* +1 or -1 depending on direction */
965
0
  int dir3;     /* 3*dir, for advancing inptr & errorptr */
966
0
  int row;
967
0
  JDIMENSION col;
968
0
  JDIMENSION width = cinfo->output_width;
969
0
  JSAMPLE *range_limit = cinfo->sample_range_limit;
970
0
  int *error_limit = cquantize->error_limiter;
971
0
  JSAMPROW colormap0 = cinfo->colormap[0];
972
0
  JSAMPROW colormap1 = cinfo->colormap[1];
973
0
  JSAMPROW colormap2 = cinfo->colormap[2];
974
0
  SHIFT_TEMPS
975
976
0
  for (row = 0; row < num_rows; row++) {
977
0
    inptr = input_buf[row];
978
0
    outptr = output_buf[row];
979
0
    if (cquantize->on_odd_row) {
980
      /* work right to left in this row */
981
0
      inptr += (width-1) * 3; /* so point to rightmost pixel */
982
0
      outptr += width-1;
983
0
      dir = -1;
984
0
      dir3 = -3;
985
0
      errorptr = cquantize->fserrors + (width+1)*3; /* => entry after last column */
986
0
      cquantize->on_odd_row = FALSE; /* flip for next time */
987
0
    } else {
988
      /* work left to right in this row */
989
0
      dir = 1;
990
0
      dir3 = 3;
991
0
      errorptr = cquantize->fserrors; /* => entry before first real column */
992
0
      cquantize->on_odd_row = TRUE; /* flip for next time */
993
0
    }
994
    /* Preset error values: no error propagated to first pixel from left */
995
0
    cur0 = cur1 = cur2 = 0;
996
    /* and no error propagated to row below yet */
997
0
    belowerr0 = belowerr1 = belowerr2 = 0;
998
0
    bpreverr0 = bpreverr1 = bpreverr2 = 0;
999
1000
0
    for (col = width; col > 0; col--) {
1001
      /* curN holds the error propagated from the previous pixel on the
1002
       * current line.  Add the error propagated from the previous line
1003
       * to form the complete error correction term for this pixel, and
1004
       * round the error term (which is expressed * 16) to an integer.
1005
       * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
1006
       * for either sign of the error value.
1007
       * Note: errorptr points to *previous* column's array entry.
1008
       */
1009
0
      cur0 = RIGHT_SHIFT(cur0 + errorptr[dir3+0] + 8, 4);
1010
0
      cur1 = RIGHT_SHIFT(cur1 + errorptr[dir3+1] + 8, 4);
1011
0
      cur2 = RIGHT_SHIFT(cur2 + errorptr[dir3+2] + 8, 4);
1012
      /* Limit the error using transfer function set by init_error_limit.
1013
       * See comments with init_error_limit for rationale.
1014
       */
1015
0
      cur0 = error_limit[cur0];
1016
0
      cur1 = error_limit[cur1];
1017
0
      cur2 = error_limit[cur2];
1018
      /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
1019
       * The maximum error is +- MAXJSAMPLE (or less with error limiting);
1020
       * this sets the required size of the range_limit array.
1021
       */
1022
0
      cur0 += GETJSAMPLE(inptr[0]);
1023
0
      cur1 += GETJSAMPLE(inptr[1]);
1024
0
      cur2 += GETJSAMPLE(inptr[2]);
1025
0
      cur0 = GETJSAMPLE(range_limit[cur0]);
1026
0
      cur1 = GETJSAMPLE(range_limit[cur1]);
1027
0
      cur2 = GETJSAMPLE(range_limit[cur2]);
1028
      /* Index into the cache with adjusted pixel value */
1029
0
      cachep = & histogram[cur0>>C0_SHIFT][cur1>>C1_SHIFT][cur2>>C2_SHIFT];
1030
      /* If we have not seen this color before, find nearest colormap */
1031
      /* entry and update the cache */
1032
0
      if (*cachep == 0)
1033
0
  fill_inverse_cmap(cinfo, (int)(cur0>>C0_SHIFT),(int)(cur1>>C1_SHIFT),(int)(cur2>>C2_SHIFT));
1034
      /* Now emit the colormap index for this cell */
1035
0
      { register int pixcode = *cachep - 1;
1036
0
  *outptr = (JSAMPLE) pixcode;
1037
  /* Compute representation error for this pixel */
1038
0
  cur0 -= GETJSAMPLE(colormap0[pixcode]);
1039
0
  cur1 -= GETJSAMPLE(colormap1[pixcode]);
1040
0
  cur2 -= GETJSAMPLE(colormap2[pixcode]);
1041
0
      }
1042
      /* Compute error fractions to be propagated to adjacent pixels.
1043
       * Add these into the running sums, and simultaneously shift the
1044
       * next-line error sums left by 1 column.
1045
       */
1046
0
      { register LOCFSERROR bnexterr, delta;
1047
1048
0
  bnexterr = cur0;  /* Process component 0 */
1049
0
  delta = cur0 * 2;
1050
0
  cur0 += delta;    /* form error * 3 */
1051
0
  errorptr[0] = (FSERROR) (bpreverr0 + cur0);
1052
0
  cur0 += delta;    /* form error * 5 */
1053
0
  bpreverr0 = belowerr0 + cur0;
1054
0
  belowerr0 = bnexterr;
1055
0
  cur0 += delta;    /* form error * 7 */
1056
0
  bnexterr = cur1;  /* Process component 1 */
1057
0
  delta = cur1 * 2;
1058
0
  cur1 += delta;    /* form error * 3 */
1059
0
  errorptr[1] = (FSERROR) (bpreverr1 + cur1);
1060
0
  cur1 += delta;    /* form error * 5 */
1061
0
  bpreverr1 = belowerr1 + cur1;
1062
0
  belowerr1 = bnexterr;
1063
0
  cur1 += delta;    /* form error * 7 */
1064
0
  bnexterr = cur2;  /* Process component 2 */
1065
0
  delta = cur2 * 2;
1066
0
  cur2 += delta;    /* form error * 3 */
1067
0
  errorptr[2] = (FSERROR) (bpreverr2 + cur2);
1068
0
  cur2 += delta;    /* form error * 5 */
1069
0
  bpreverr2 = belowerr2 + cur2;
1070
0
  belowerr2 = bnexterr;
1071
0
  cur2 += delta;    /* form error * 7 */
1072
0
      }
1073
      /* At this point curN contains the 7/16 error value to be propagated
1074
       * to the next pixel on the current line, and all the errors for the
1075
       * next line have been shifted over.  We are therefore ready to move on.
1076
       */
1077
0
      inptr += dir3;    /* Advance pixel pointers to next column */
1078
0
      outptr += dir;
1079
0
      errorptr += dir3;   /* advance errorptr to current column */
1080
0
    }
1081
    /* Post-loop cleanup: we must unload the final error values into the
1082
     * final fserrors[] entry.  Note we need not unload belowerrN because
1083
     * it is for the dummy column before or after the actual array.
1084
     */
1085
0
    errorptr[0] = (FSERROR) bpreverr0; /* unload prev errs into array */
1086
0
    errorptr[1] = (FSERROR) bpreverr1;
1087
0
    errorptr[2] = (FSERROR) bpreverr2;
1088
0
  }
1089
0
}
1090
1091
1092
/*
1093
 * Initialize the error-limiting transfer function (lookup table).
1094
 * The raw F-S error computation can potentially compute error values of up to
1095
 * +- MAXJSAMPLE.  But we want the maximum correction applied to a pixel to be
1096
 * much less, otherwise obviously wrong pixels will be created.  (Typical
1097
 * effects include weird fringes at color-area boundaries, isolated bright
1098
 * pixels in a dark area, etc.)  The standard advice for avoiding this problem
1099
 * is to ensure that the "corners" of the color cube are allocated as output
1100
 * colors; then repeated errors in the same direction cannot cause cascading
1101
 * error buildup.  However, that only prevents the error from getting
1102
 * completely out of hand; Aaron Giles reports that error limiting improves
1103
 * the results even with corner colors allocated.
1104
 * A simple clamping of the error values to about +- MAXJSAMPLE/8 works pretty
1105
 * well, but the smoother transfer function used below is even better.  Thanks
1106
 * to Aaron Giles for this idea.
1107
 */
1108
1109
LOCAL(void)
1110
init_error_limit (j_decompress_ptr cinfo)
1111
/* Allocate and fill in the error_limiter table */
1112
0
{
1113
0
  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1114
0
  int * table;
1115
0
  int in, out;
1116
1117
0
  table = (int *) (*cinfo->mem->alloc_small)
1118
0
    ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE*2+1) * SIZEOF(int));
1119
0
  table += MAXJSAMPLE;   /* so can index -MAXJSAMPLE .. +MAXJSAMPLE */
1120
0
  cquantize->error_limiter = table;
1121
1122
0
#define STEPSIZE ((MAXJSAMPLE+1)/16)
1123
  /* Map errors 1:1 up to +- MAXJSAMPLE/16 */
1124
0
  out = 0;
1125
0
  for (in = 0; in < STEPSIZE; in++, out++) {
1126
0
    table[in] = out; table[-in] = -out;
1127
0
  }
1128
  /* Map errors 1:2 up to +- 3*MAXJSAMPLE/16 */
1129
0
  for (; in < STEPSIZE*3; in++, out += (in&1) ? 0 : 1) {
1130
0
    table[in] = out; table[-in] = -out;
1131
0
  }
1132
  /* Clamp the rest to final out value (which is (MAXJSAMPLE+1)/8) */
1133
0
  for (; in <= MAXJSAMPLE; in++) {
1134
0
    table[in] = out; table[-in] = -out;
1135
0
  }
1136
0
#undef STEPSIZE
1137
0
}
1138
1139
1140
/*
1141
 * Finish up at the end of each pass.
1142
 */
1143
1144
METHODDEF(void)
1145
finish_pass1 (j_decompress_ptr cinfo)
1146
0
{
1147
0
  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1148
1149
  /* Select the representative colors and fill in cinfo->colormap */
1150
0
  cinfo->colormap = cquantize->sv_colormap;
1151
0
  select_colors(cinfo, cquantize->desired);
1152
  /* Force next pass to zero the color index table */
1153
0
  cquantize->needs_zeroed = TRUE;
1154
0
}
1155
1156
1157
METHODDEF(void)
1158
finish_pass2 (CPL_UNUSED j_decompress_ptr cinfo)
1159
0
{
1160
  /* no work */
1161
0
}
1162
1163
1164
/*
1165
 * Initialize for each processing pass.
1166
 */
1167
1168
METHODDEF(void)
1169
start_pass_2_quant (j_decompress_ptr cinfo, boolean is_pre_scan)
1170
0
{
1171
0
  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1172
0
  hist3d histogram = cquantize->histogram;
1173
0
  int i;
1174
1175
  /* Only F-S dithering or no dithering is supported. */
1176
  /* If user asks for ordered dither, give him F-S. */
1177
0
  if (cinfo->dither_mode != JDITHER_NONE)
1178
0
    cinfo->dither_mode = JDITHER_FS;
1179
1180
0
  if (is_pre_scan) {
1181
    /* Set up method pointers */
1182
0
    cquantize->pub.color_quantize = prescan_quantize;
1183
0
    cquantize->pub.finish_pass = finish_pass1;
1184
0
    cquantize->needs_zeroed = TRUE; /* Always zero histogram */
1185
0
  } else {
1186
    /* Set up method pointers */
1187
0
    if (cinfo->dither_mode == JDITHER_FS)
1188
0
      cquantize->pub.color_quantize = pass2_fs_dither;
1189
0
    else
1190
0
      cquantize->pub.color_quantize = pass2_no_dither;
1191
0
    cquantize->pub.finish_pass = finish_pass2;
1192
1193
    /* Make sure color count is acceptable */
1194
0
    i = cinfo->actual_number_of_colors;
1195
0
    if (i < 1)
1196
0
      ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 1);
1197
0
    if (i > MAXNUMCOLORS)
1198
0
      ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS);
1199
1200
0
    if (cinfo->dither_mode == JDITHER_FS) {
1201
0
      size_t arraysize = (size_t) ((cinfo->output_width + 2) *
1202
0
           (3 * SIZEOF(FSERROR)));
1203
      /* Allocate Floyd-Steinberg workspace if we didn't already. */
1204
0
      if (cquantize->fserrors == NULL)
1205
0
  cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large)
1206
0
    ((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize);
1207
      /* Initialize the propagated errors to zero. */
1208
0
      jzero_far((void FAR *) cquantize->fserrors, arraysize);
1209
      /* Make the error-limit table if we didn't already. */
1210
0
      if (cquantize->error_limiter == NULL)
1211
0
  init_error_limit(cinfo);
1212
0
      cquantize->on_odd_row = FALSE;
1213
0
    }
1214
1215
0
  }
1216
  /* Zero the histogram or inverse color map, if necessary */
1217
0
  if (cquantize->needs_zeroed) {
1218
0
    for (i = 0; i < HIST_C0_ELEMS; i++) {
1219
0
      jzero_far((void FAR *) histogram[i],
1220
0
    HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell));
1221
0
    }
1222
0
    cquantize->needs_zeroed = FALSE;
1223
0
  }
1224
0
}
1225
1226
1227
/*
1228
 * Switch to a new external colormap between output passes.
1229
 */
1230
1231
METHODDEF(void)
1232
new_color_map_2_quant (j_decompress_ptr cinfo)
1233
0
{
1234
0
  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1235
1236
  /* Reset the inverse color map */
1237
0
  cquantize->needs_zeroed = TRUE;
1238
0
}
1239
1240
1241
/*
1242
 * Module initialization routine for 2-pass color quantization.
1243
 */
1244
1245
GLOBAL(void)
1246
jinit_2pass_quantizer (j_decompress_ptr cinfo)
1247
0
{
1248
0
  my_cquantize_ptr cquantize;
1249
0
  int i;
1250
1251
0
  cquantize = (my_cquantize_ptr)
1252
0
    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
1253
0
        SIZEOF(my_cquantizer));
1254
0
  cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize;
1255
0
  cquantize->pub.start_pass = start_pass_2_quant;
1256
0
  cquantize->pub.new_color_map = new_color_map_2_quant;
1257
0
  cquantize->fserrors = NULL; /* flag optional arrays not allocated */
1258
0
  cquantize->error_limiter = NULL;
1259
1260
  /* Make sure jdmaster didn't give me a case I can't handle */
1261
0
  if (cinfo->out_color_components != 3)
1262
0
    ERREXIT(cinfo, JERR_NOTIMPL);
1263
1264
  /* Allocate the histogram/inverse colormap storage */
1265
0
  cquantize->histogram = (hist3d) (*cinfo->mem->alloc_small)
1266
0
    ((j_common_ptr) cinfo, JPOOL_IMAGE, HIST_C0_ELEMS * SIZEOF(hist2d));
1267
0
  for (i = 0; i < HIST_C0_ELEMS; i++) {
1268
0
    cquantize->histogram[i] = (hist2d) (*cinfo->mem->alloc_large)
1269
0
      ((j_common_ptr) cinfo, JPOOL_IMAGE,
1270
0
       HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell));
1271
0
  }
1272
0
  cquantize->needs_zeroed = TRUE; /* histogram is garbage now */
1273
1274
  /* Allocate storage for the completed colormap, if required.
1275
   * We do this now since it is FAR storage and may affect
1276
   * the memory manager's space calculations.
1277
   */
1278
0
  if (cinfo->enable_2pass_quant) {
1279
    /* Make sure color count is acceptable */
1280
0
    int desired = cinfo->desired_number_of_colors;
1281
    /* Lower bound on # of colors ... somewhat arbitrary as long as > 0 */
1282
0
    if (desired < 8)
1283
0
      ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 8);
1284
    /* Make sure colormap indexes can be represented by JSAMPLEs */
1285
0
    if (desired > MAXNUMCOLORS)
1286
0
      ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS);
1287
0
    cquantize->sv_colormap = (*cinfo->mem->alloc_sarray)
1288
0
      ((j_common_ptr) cinfo,JPOOL_IMAGE, (JDIMENSION) desired, (JDIMENSION) 3);
1289
0
    cquantize->desired = desired;
1290
0
  } else
1291
0
    cquantize->sv_colormap = NULL;
1292
1293
  /* Only F-S dithering or no dithering is supported. */
1294
  /* If user asks for ordered dither, give him F-S. */
1295
0
  if (cinfo->dither_mode != JDITHER_NONE)
1296
0
    cinfo->dither_mode = JDITHER_FS;
1297
1298
  /* Allocate Floyd-Steinberg workspace if necessary.
1299
   * This isn't really needed until pass 2, but again it is FAR storage.
1300
   * Although we will cope with a later change in dither_mode,
1301
   * we do not promise to honor max_memory_to_use if dither_mode changes.
1302
   */
1303
0
  if (cinfo->dither_mode == JDITHER_FS) {
1304
0
    cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large)
1305
0
      ((j_common_ptr) cinfo, JPOOL_IMAGE,
1306
0
       (size_t) ((cinfo->output_width + 2) * (3 * SIZEOF(FSERROR))));
1307
    /* Might as well create the error-limiting table too. */
1308
0
    init_error_limit(cinfo);
1309
0
  }
1310
0
}
1311
1312
#endif /* QUANT_2PASS_SUPPORTED */