Coverage Report

Created: 2025-06-13 06:18

/src/gdal/frmts/vrt/vrtderivedrasterband.cpp
Line
Count
Source (jump to first uncovered line)
1
/******************************************************************************
2
 *
3
 * Project:  Virtual GDAL Datasets
4
 * Purpose:  Implementation of a sourced raster band that derives its raster
5
 *           by applying an algorithm (GDALDerivedPixelFunc) to the sources.
6
 * Author:   Pete Nagy
7
 *
8
 ******************************************************************************
9
 * Copyright (c) 2005 Vexcel Corp.
10
 * Copyright (c) 2008-2011, Even Rouault <even dot rouault at spatialys.com>
11
 *
12
 * SPDX-License-Identifier: MIT
13
 *****************************************************************************/
14
15
#include "cpl_minixml.h"
16
#include "cpl_string.h"
17
#include "vrtdataset.h"
18
#include "cpl_multiproc.h"
19
#include "gdalpython.h"
20
21
#include <algorithm>
22
#include <map>
23
#include <vector>
24
#include <utility>
25
26
/*! @cond Doxygen_Suppress */
27
28
using namespace GDALPy;
29
30
// #define GDAL_VRT_DISABLE_PYTHON
31
32
#ifndef GDAL_VRT_ENABLE_PYTHON_DEFAULT
33
// Can be YES, NO or TRUSTED_MODULES
34
0
#define GDAL_VRT_ENABLE_PYTHON_DEFAULT "TRUSTED_MODULES"
35
#endif
36
37
/* Flags for getting buffers */
38
0
#define PyBUF_WRITABLE 0x0001
39
0
#define PyBUF_FORMAT 0x0004
40
0
#define PyBUF_ND 0x0008
41
0
#define PyBUF_STRIDES (0x0010 | PyBUF_ND)
42
0
#define PyBUF_INDIRECT (0x0100 | PyBUF_STRIDES)
43
0
#define PyBUF_FULL (PyBUF_INDIRECT | PyBUF_WRITABLE | PyBUF_FORMAT)
44
45
/************************************************************************/
46
/*                        GDALCreateNumpyArray()                        */
47
/************************************************************************/
48
49
static PyObject *GDALCreateNumpyArray(PyObject *pCreateArray, void *pBuffer,
50
                                      GDALDataType eType, int nHeight,
51
                                      int nWidth)
52
0
{
53
0
    PyObject *poPyBuffer;
54
0
    const size_t nSize =
55
0
        static_cast<size_t>(nHeight) * nWidth * GDALGetDataTypeSizeBytes(eType);
56
0
    Py_buffer pybuffer;
57
0
    if (PyBuffer_FillInfo(&pybuffer, nullptr, static_cast<char *>(pBuffer),
58
0
                          nSize, 0, PyBUF_FULL) != 0)
59
0
    {
60
0
        return nullptr;
61
0
    }
62
0
    poPyBuffer = PyMemoryView_FromBuffer(&pybuffer);
63
0
    PyObject *pArgsCreateArray = PyTuple_New(4);
64
0
    PyTuple_SetItem(pArgsCreateArray, 0, poPyBuffer);
65
0
    const char *pszDataType = nullptr;
66
0
    switch (eType)
67
0
    {
68
0
        case GDT_Byte:
69
0
            pszDataType = "uint8";
70
0
            break;
71
0
        case GDT_Int8:
72
0
            pszDataType = "int8";
73
0
            break;
74
0
        case GDT_UInt16:
75
0
            pszDataType = "uint16";
76
0
            break;
77
0
        case GDT_Int16:
78
0
            pszDataType = "int16";
79
0
            break;
80
0
        case GDT_UInt32:
81
0
            pszDataType = "uint32";
82
0
            break;
83
0
        case GDT_Int32:
84
0
            pszDataType = "int32";
85
0
            break;
86
0
        case GDT_Int64:
87
0
            pszDataType = "int64";
88
0
            break;
89
0
        case GDT_UInt64:
90
0
            pszDataType = "uint64";
91
0
            break;
92
0
        case GDT_Float16:
93
0
            pszDataType = "float16";
94
0
            break;
95
0
        case GDT_Float32:
96
0
            pszDataType = "float32";
97
0
            break;
98
0
        case GDT_Float64:
99
0
            pszDataType = "float64";
100
0
            break;
101
0
        case GDT_CInt16:
102
0
        case GDT_CInt32:
103
0
            CPLAssert(FALSE);
104
0
            break;
105
0
        case GDT_CFloat16:
106
0
            CPLAssert(FALSE);
107
0
            break;
108
0
        case GDT_CFloat32:
109
0
            pszDataType = "complex64";
110
0
            break;
111
0
        case GDT_CFloat64:
112
0
            pszDataType = "complex128";
113
0
            break;
114
0
        case GDT_Unknown:
115
0
        case GDT_TypeCount:
116
0
            CPLAssert(FALSE);
117
0
            break;
118
0
    }
119
0
    PyTuple_SetItem(
120
0
        pArgsCreateArray, 1,
121
0
        PyBytes_FromStringAndSize(pszDataType, strlen(pszDataType)));
122
0
    PyTuple_SetItem(pArgsCreateArray, 2, PyLong_FromLong(nHeight));
123
0
    PyTuple_SetItem(pArgsCreateArray, 3, PyLong_FromLong(nWidth));
124
0
    PyObject *poNumpyArray =
125
0
        PyObject_Call(pCreateArray, pArgsCreateArray, nullptr);
126
0
    Py_DecRef(pArgsCreateArray);
127
0
    if (PyErr_Occurred())
128
0
        PyErr_Print();
129
0
    return poNumpyArray;
130
0
}
131
132
/************************************************************************/
133
/* ==================================================================== */
134
/*                     VRTDerivedRasterBandPrivateData                  */
135
/* ==================================================================== */
136
/************************************************************************/
137
138
class VRTDerivedRasterBandPrivateData
139
{
140
    VRTDerivedRasterBandPrivateData(const VRTDerivedRasterBandPrivateData &) =
141
        delete;
142
    VRTDerivedRasterBandPrivateData &
143
    operator=(const VRTDerivedRasterBandPrivateData &) = delete;
144
145
  public:
146
    CPLString m_osCode{};
147
    CPLString m_osLanguage = "C";
148
    int m_nBufferRadius = 0;
149
    PyObject *m_poGDALCreateNumpyArray = nullptr;
150
    PyObject *m_poUserFunction = nullptr;
151
    bool m_bPythonInitializationDone = false;
152
    bool m_bPythonInitializationSuccess = false;
153
    bool m_bExclusiveLock = false;
154
    bool m_bFirstTime = true;
155
    std::vector<std::pair<CPLString, CPLString>> m_oFunctionArgs{};
156
    bool m_bSkipNonContributingSourcesSpecified = false;
157
    bool m_bSkipNonContributingSources = false;
158
    GIntBig m_nAllowedRAMUsage = 0;
159
160
    VRTDerivedRasterBandPrivateData()
161
0
        : m_nAllowedRAMUsage(CPLGetUsablePhysicalRAM() / 10 * 4)
162
0
    {
163
        // Use only up to 40% of RAM to acquire source bands and generate the
164
        // output buffer.
165
        // Only for tests now
166
0
        const char *pszMAX_RAM = "VRT_DERIVED_DATASET_ALLOWED_RAM_USAGE";
167
0
        if (const char *pszVal = CPLGetConfigOption(pszMAX_RAM, nullptr))
168
0
        {
169
0
            CPL_IGNORE_RET_VAL(
170
0
                CPLParseMemorySize(pszVal, &m_nAllowedRAMUsage, nullptr));
171
0
        }
172
0
    }
173
174
    ~VRTDerivedRasterBandPrivateData();
175
};
176
177
VRTDerivedRasterBandPrivateData::~VRTDerivedRasterBandPrivateData()
178
0
{
179
0
    if (m_poGDALCreateNumpyArray)
180
0
        Py_DecRef(m_poGDALCreateNumpyArray);
181
0
    if (m_poUserFunction)
182
0
        Py_DecRef(m_poUserFunction);
183
0
}
184
185
/************************************************************************/
186
/* ==================================================================== */
187
/*                          VRTDerivedRasterBand                        */
188
/* ==================================================================== */
189
/************************************************************************/
190
191
/************************************************************************/
192
/*                        VRTDerivedRasterBand()                        */
193
/************************************************************************/
194
195
VRTDerivedRasterBand::VRTDerivedRasterBand(GDALDataset *poDSIn, int nBandIn)
196
0
    : VRTSourcedRasterBand(poDSIn, nBandIn), m_poPrivate(nullptr),
197
0
      eSourceTransferType(GDT_Unknown)
198
0
{
199
0
    m_poPrivate = new VRTDerivedRasterBandPrivateData;
200
0
}
201
202
/************************************************************************/
203
/*                        VRTDerivedRasterBand()                        */
204
/************************************************************************/
205
206
VRTDerivedRasterBand::VRTDerivedRasterBand(GDALDataset *poDSIn, int nBandIn,
207
                                           GDALDataType eType, int nXSize,
208
                                           int nYSize)
209
0
    : VRTSourcedRasterBand(poDSIn, nBandIn, eType, nXSize, nYSize),
210
0
      m_poPrivate(nullptr), eSourceTransferType(GDT_Unknown)
211
0
{
212
0
    m_poPrivate = new VRTDerivedRasterBandPrivateData;
213
0
}
214
215
/************************************************************************/
216
/*                       ~VRTDerivedRasterBand()                        */
217
/************************************************************************/
218
219
VRTDerivedRasterBand::~VRTDerivedRasterBand()
220
221
0
{
222
0
    delete m_poPrivate;
223
0
}
224
225
/************************************************************************/
226
/*                               Cleanup()                              */
227
/************************************************************************/
228
229
void VRTDerivedRasterBand::Cleanup()
230
0
{
231
0
}
232
233
/************************************************************************/
234
/*                      GetGlobalMapPixelFunction()                     */
235
/************************************************************************/
236
237
static std::map<std::string,
238
                std::pair<VRTDerivedRasterBand::PixelFunc, std::string>> &
239
GetGlobalMapPixelFunction()
240
0
{
241
0
    static std::map<std::string,
242
0
                    std::pair<VRTDerivedRasterBand::PixelFunc, std::string>>
243
0
        gosMapPixelFunction;
244
0
    return gosMapPixelFunction;
245
0
}
246
247
/************************************************************************/
248
/*                           AddPixelFunction()                         */
249
/************************************************************************/
250
251
/*! @endcond */
252
253
/**
254
 * This adds a pixel function to the global list of available pixel
255
 * functions for derived bands.  Pixel functions must be registered
256
 * in this way before a derived band tries to access data.
257
 *
258
 * Derived bands are stored with only the name of the pixel function
259
 * that it will apply, and if a pixel function matching the name is not
260
 * found the IRasterIO() call will do nothing.
261
 *
262
 * @param pszName Name used to access pixel function
263
 * @param pfnNewFunction Pixel function associated with name.  An
264
 *  existing pixel function registered with the same name will be
265
 *  replaced with the new one.
266
 *
267
 * @return CE_None, invalid (NULL) parameters are currently ignored.
268
 */
269
CPLErr CPL_STDCALL GDALAddDerivedBandPixelFunc(
270
    const char *pszName, GDALDerivedPixelFunc pfnNewFunction)
271
0
{
272
0
    if (pszName == nullptr || pszName[0] == '\0' || pfnNewFunction == nullptr)
273
0
    {
274
0
        return CE_None;
275
0
    }
276
277
0
    GetGlobalMapPixelFunction()[pszName] = {
278
0
        [pfnNewFunction](void **papoSources, int nSources, void *pData,
279
0
                         int nBufXSize, int nBufYSize, GDALDataType eSrcType,
280
0
                         GDALDataType eBufType, int nPixelSpace, int nLineSpace,
281
0
                         CSLConstList papszFunctionArgs)
282
0
        {
283
0
            (void)papszFunctionArgs;
284
0
            return pfnNewFunction(papoSources, nSources, pData, nBufXSize,
285
0
                                  nBufYSize, eSrcType, eBufType, nPixelSpace,
286
0
                                  nLineSpace);
287
0
        },
288
0
        ""};
289
290
0
    return CE_None;
291
0
}
292
293
/**
294
 * This adds a pixel function to the global list of available pixel
295
 * functions for derived bands.  Pixel functions must be registered
296
 * in this way before a derived band tries to access data.
297
 *
298
 * Derived bands are stored with only the name of the pixel function
299
 * that it will apply, and if a pixel function matching the name is not
300
 * found the IRasterIO() call will do nothing.
301
 *
302
 * @param pszName Name used to access pixel function
303
 * @param pfnNewFunction Pixel function associated with name.  An
304
 *  existing pixel function registered with the same name will be
305
 *  replaced with the new one.
306
 * @param pszMetadata Pixel function metadata (not currently implemented)
307
 *
308
 * @return CE_None, invalid (NULL) parameters are currently ignored.
309
 * @since GDAL 3.4
310
 */
311
CPLErr CPL_STDCALL GDALAddDerivedBandPixelFuncWithArgs(
312
    const char *pszName, GDALDerivedPixelFuncWithArgs pfnNewFunction,
313
    const char *pszMetadata)
314
0
{
315
0
    if (!pszName || pszName[0] == '\0' || !pfnNewFunction)
316
0
    {
317
0
        return CE_None;
318
0
    }
319
320
0
    GetGlobalMapPixelFunction()[pszName] = {pfnNewFunction,
321
0
                                            pszMetadata ? pszMetadata : ""};
322
323
0
    return CE_None;
324
0
}
325
326
/*! @cond Doxygen_Suppress */
327
328
/**
329
 * This adds a pixel function to the global list of available pixel
330
 * functions for derived bands.
331
 *
332
 * This is the same as the C function GDALAddDerivedBandPixelFunc()
333
 *
334
 * @param pszFuncNameIn Name used to access pixel function
335
 * @param pfnNewFunction Pixel function associated with name.  An
336
 *  existing pixel function registered with the same name will be
337
 *  replaced with the new one.
338
 *
339
 * @return CE_None, invalid (NULL) parameters are currently ignored.
340
 */
341
CPLErr
342
VRTDerivedRasterBand::AddPixelFunction(const char *pszFuncNameIn,
343
                                       GDALDerivedPixelFunc pfnNewFunction)
344
0
{
345
0
    return GDALAddDerivedBandPixelFunc(pszFuncNameIn, pfnNewFunction);
346
0
}
347
348
CPLErr VRTDerivedRasterBand::AddPixelFunction(
349
    const char *pszFuncNameIn, GDALDerivedPixelFuncWithArgs pfnNewFunction,
350
    const char *pszMetadata)
351
0
{
352
0
    return GDALAddDerivedBandPixelFuncWithArgs(pszFuncNameIn, pfnNewFunction,
353
0
                                               pszMetadata);
354
0
}
355
356
/************************************************************************/
357
/*                           GetPixelFunction()                         */
358
/************************************************************************/
359
360
/**
361
 * Get a pixel function previously registered using the global
362
 * AddPixelFunction.
363
 *
364
 * @param pszFuncNameIn The name associated with the pixel function.
365
 *
366
 * @return A pointer to a std::pair whose first element is the pixel
367
 *         function pointer and second element is the pixel function
368
 *         metadata string. If no pixel function has been registered
369
 *         for pszFuncNameIn, nullptr will be returned.
370
 */
371
/* static */
372
const std::pair<VRTDerivedRasterBand::PixelFunc, std::string> *
373
VRTDerivedRasterBand::GetPixelFunction(const char *pszFuncNameIn)
374
0
{
375
0
    if (pszFuncNameIn == nullptr || pszFuncNameIn[0] == '\0')
376
0
    {
377
0
        return nullptr;
378
0
    }
379
380
0
    const auto &oMapPixelFunction = GetGlobalMapPixelFunction();
381
0
    const auto oIter = oMapPixelFunction.find(pszFuncNameIn);
382
383
0
    if (oIter == oMapPixelFunction.end())
384
0
        return nullptr;
385
386
0
    return &(oIter->second);
387
0
}
388
389
/************************************************************************/
390
/*                        GetPixelFunctionNames()                       */
391
/************************************************************************/
392
393
/**
394
 * Return the list of available pixel function names.
395
 */
396
/* static */
397
std::vector<std::string> VRTDerivedRasterBand::GetPixelFunctionNames()
398
0
{
399
0
    std::vector<std::string> res;
400
0
    for (const auto &iter : GetGlobalMapPixelFunction())
401
0
    {
402
0
        res.push_back(iter.first);
403
0
    }
404
0
    return res;
405
0
}
406
407
/************************************************************************/
408
/*                         SetPixelFunctionName()                       */
409
/************************************************************************/
410
411
/**
412
 * Set the pixel function name to be applied to this derived band.  The
413
 * name should match a pixel function registered using AddPixelFunction.
414
 *
415
 * @param pszFuncNameIn Name of pixel function to be applied to this derived
416
 * band.
417
 */
418
void VRTDerivedRasterBand::SetPixelFunctionName(const char *pszFuncNameIn)
419
0
{
420
0
    osFuncName = (pszFuncNameIn == nullptr) ? "" : pszFuncNameIn;
421
0
}
422
423
/************************************************************************/
424
/*                     AddPixelFunctionArgument()                       */
425
/************************************************************************/
426
427
/**
428
 *  Set a pixel function argument to a specified value.
429
 * @param pszArg the argument name
430
 * @param pszValue the argument value
431
 *
432
 * @since 3.12
433
 */
434
void VRTDerivedRasterBand::AddPixelFunctionArgument(const char *pszArg,
435
                                                    const char *pszValue)
436
0
{
437
0
    m_poPrivate->m_oFunctionArgs.emplace_back(pszArg, pszValue);
438
0
}
439
440
/************************************************************************/
441
/*                         SetPixelFunctionLanguage()                   */
442
/************************************************************************/
443
444
/**
445
 * Set the language of the pixel function.
446
 *
447
 * @param pszLanguage Language of the pixel function (only "C" and "Python"
448
 * are supported currently)
449
 * @since GDAL 2.3
450
 */
451
void VRTDerivedRasterBand::SetPixelFunctionLanguage(const char *pszLanguage)
452
0
{
453
0
    m_poPrivate->m_osLanguage = pszLanguage;
454
0
}
455
456
/************************************************************************/
457
/*                 SetSkipNonContributingSources()                      */
458
/************************************************************************/
459
460
/** Whether sources that do not intersect the VRTRasterBand RasterIO() requested
461
 * region should be omitted. By default, data for all sources, including ones
462
 * that do not intersect it, are passed to the pixel function. By setting this
463
 * parameter to true, only sources that intersect the requested region will be
464
 * passed.
465
 *
466
 * @param bSkip whether to skip non-contributing sources
467
 *
468
 * @since 3.12
469
 */
470
void VRTDerivedRasterBand::SetSkipNonContributingSources(bool bSkip)
471
0
{
472
0
    m_poPrivate->m_bSkipNonContributingSources = bSkip;
473
0
    m_poPrivate->m_bSkipNonContributingSourcesSpecified = true;
474
0
}
475
476
/************************************************************************/
477
/*                         SetSourceTransferType()                      */
478
/************************************************************************/
479
480
/**
481
 * Set the transfer type to be used to obtain pixel information from
482
 * all of the sources.  If unset, the transfer type used will be the
483
 * same as the derived band data type.  This makes it possible, for
484
 * example, to pass CFloat32 source pixels to the pixel function, even
485
 * if the pixel function generates a raster for a derived band that
486
 * is of type Byte.
487
 *
488
 * @param eDataTypeIn Data type to use to obtain pixel information from
489
 * the sources to be passed to the derived band pixel function.
490
 */
491
void VRTDerivedRasterBand::SetSourceTransferType(GDALDataType eDataTypeIn)
492
0
{
493
0
    eSourceTransferType = eDataTypeIn;
494
0
}
495
496
/************************************************************************/
497
/*                           InitializePython()                         */
498
/************************************************************************/
499
500
bool VRTDerivedRasterBand::InitializePython()
501
0
{
502
0
    if (m_poPrivate->m_bPythonInitializationDone)
503
0
        return m_poPrivate->m_bPythonInitializationSuccess;
504
505
0
    m_poPrivate->m_bPythonInitializationDone = true;
506
0
    m_poPrivate->m_bPythonInitializationSuccess = false;
507
508
0
    const size_t nIdxDot = osFuncName.rfind(".");
509
0
    CPLString osPythonModule;
510
0
    CPLString osPythonFunction;
511
0
    if (nIdxDot != std::string::npos)
512
0
    {
513
0
        osPythonModule = osFuncName.substr(0, nIdxDot);
514
0
        osPythonFunction = osFuncName.substr(nIdxDot + 1);
515
0
    }
516
0
    else
517
0
    {
518
0
        osPythonFunction = osFuncName;
519
0
    }
520
521
0
#ifndef GDAL_VRT_DISABLE_PYTHON
522
0
    const char *pszPythonEnabled =
523
0
        CPLGetConfigOption("GDAL_VRT_ENABLE_PYTHON", nullptr);
524
#else
525
    const char *pszPythonEnabled = "NO";
526
#endif
527
0
    const CPLString osPythonEnabled(
528
0
        pszPythonEnabled ? pszPythonEnabled : GDAL_VRT_ENABLE_PYTHON_DEFAULT);
529
530
0
    if (EQUAL(osPythonEnabled, "TRUSTED_MODULES"))
531
0
    {
532
0
        bool bIsTrustedModule = false;
533
0
        const CPLString osVRTTrustedModules(
534
0
            CPLGetConfigOption("GDAL_VRT_PYTHON_TRUSTED_MODULES", ""));
535
0
        if (!osPythonModule.empty())
536
0
        {
537
0
            char **papszTrustedModules =
538
0
                CSLTokenizeString2(osVRTTrustedModules, ",", 0);
539
0
            for (char **papszIter = papszTrustedModules;
540
0
                 !bIsTrustedModule && papszIter && *papszIter; ++papszIter)
541
0
            {
542
0
                const char *pszIterModule = *papszIter;
543
0
                size_t nIterModuleLen = strlen(pszIterModule);
544
0
                if (nIterModuleLen > 2 &&
545
0
                    strncmp(pszIterModule + nIterModuleLen - 2, ".*", 2) == 0)
546
0
                {
547
0
                    bIsTrustedModule =
548
0
                        (strncmp(osPythonModule, pszIterModule,
549
0
                                 nIterModuleLen - 2) == 0) &&
550
0
                        (osPythonModule.size() == nIterModuleLen - 2 ||
551
0
                         (osPythonModule.size() >= nIterModuleLen &&
552
0
                          osPythonModule[nIterModuleLen - 1] == '.'));
553
0
                }
554
0
                else if (nIterModuleLen >= 1 &&
555
0
                         pszIterModule[nIterModuleLen - 1] == '*')
556
0
                {
557
0
                    bIsTrustedModule = (strncmp(osPythonModule, pszIterModule,
558
0
                                                nIterModuleLen - 1) == 0);
559
0
                }
560
0
                else
561
0
                {
562
0
                    bIsTrustedModule =
563
0
                        (strcmp(osPythonModule, pszIterModule) == 0);
564
0
                }
565
0
            }
566
0
            CSLDestroy(papszTrustedModules);
567
0
        }
568
569
0
        if (!bIsTrustedModule)
570
0
        {
571
0
            if (osPythonModule.empty())
572
0
            {
573
0
                CPLError(
574
0
                    CE_Failure, CPLE_AppDefined,
575
0
                    "Python code needs to be executed, but it uses inline code "
576
0
                    "in the VRT whereas the current policy is to trust only "
577
0
                    "code from external trusted modules (defined in the "
578
0
                    "GDAL_VRT_PYTHON_TRUSTED_MODULES configuration option). "
579
0
                    "If you trust the code in %s, you can set the "
580
0
                    "GDAL_VRT_ENABLE_PYTHON configuration option to YES.",
581
0
                    GetDataset() ? GetDataset()->GetDescription()
582
0
                                 : "(unknown VRT)");
583
0
            }
584
0
            else if (osVRTTrustedModules.empty())
585
0
            {
586
0
                CPLError(
587
0
                    CE_Failure, CPLE_AppDefined,
588
0
                    "Python code needs to be executed, but it uses code "
589
0
                    "from module '%s', whereas the current policy is to "
590
0
                    "trust only code from modules defined in the "
591
0
                    "GDAL_VRT_PYTHON_TRUSTED_MODULES configuration option, "
592
0
                    "which is currently unset. "
593
0
                    "If you trust the code in '%s', you can add module '%s' "
594
0
                    "to GDAL_VRT_PYTHON_TRUSTED_MODULES (or set the "
595
0
                    "GDAL_VRT_ENABLE_PYTHON configuration option to YES).",
596
0
                    osPythonModule.c_str(),
597
0
                    GetDataset() ? GetDataset()->GetDescription()
598
0
                                 : "(unknown VRT)",
599
0
                    osPythonModule.c_str());
600
0
            }
601
0
            else
602
0
            {
603
0
                CPLError(
604
0
                    CE_Failure, CPLE_AppDefined,
605
0
                    "Python code needs to be executed, but it uses code "
606
0
                    "from module '%s', whereas the current policy is to "
607
0
                    "trust only code from modules '%s' (defined in the "
608
0
                    "GDAL_VRT_PYTHON_TRUSTED_MODULES configuration option). "
609
0
                    "If you trust the code in '%s', you can add module '%s' "
610
0
                    "to GDAL_VRT_PYTHON_TRUSTED_MODULES (or set the "
611
0
                    "GDAL_VRT_ENABLE_PYTHON configuration option to YES).",
612
0
                    osPythonModule.c_str(), osVRTTrustedModules.c_str(),
613
0
                    GetDataset() ? GetDataset()->GetDescription()
614
0
                                 : "(unknown VRT)",
615
0
                    osPythonModule.c_str());
616
0
            }
617
0
            return false;
618
0
        }
619
0
    }
620
621
#ifdef disabled_because_this_is_probably_broken_by_design
622
    // See https://lwn.net/Articles/574215/
623
    // and http://nedbatchelder.com/blog/201206/eval_really_is_dangerous.html
624
    else if (EQUAL(osPythonEnabled, "IF_SAFE"))
625
    {
626
        bool bSafe = true;
627
        // If the function comes from another module, then we don't know
628
        if (!osPythonModule.empty())
629
        {
630
            CPLDebug("VRT", "Python function is from another module");
631
            bSafe = false;
632
        }
633
634
        CPLString osCode(m_poPrivate->m_osCode);
635
636
        // Reject all imports except a few trusted modules
637
        const char *const apszTrustedImports[] = {
638
            "import math",
639
            "from math import",
640
            "import numpy",  // caution: numpy has lots of I/O functions !
641
            "from numpy import",
642
            // TODO: not sure if importing arbitrary stuff from numba is OK
643
            // so let's just restrict to jit.
644
            "from numba import jit",
645
646
            // Not imports but still whitelisted, whereas other __ is banned
647
            "__init__",
648
            "__call__",
649
        };
650
        for (size_t i = 0; i < CPL_ARRAYSIZE(apszTrustedImports); ++i)
651
        {
652
            osCode.replaceAll(CPLString(apszTrustedImports[i]), "");
653
        }
654
655
        // Some dangerous built-in functions or numpy functions
656
        const char *const apszUntrusted[] = {
657
            "import",  // and __import__
658
            "eval",       "compile", "open",
659
            "load",        // reload, numpy.load
660
            "file",        // and exec_file, numpy.fromfile, numpy.tofile
661
            "input",       // and raw_input
662
            "save",        // numpy.save
663
            "memmap",      // numpy.memmap
664
            "DataSource",  // numpy.DataSource
665
            "genfromtxt",  // numpy.genfromtxt
666
            "getattr",
667
            "ctypeslib",  // numpy.ctypeslib
668
            "testing",    // numpy.testing
669
            "dump",       // numpy.ndarray.dump
670
            "fromregex",  // numpy.fromregex
671
            "__"};
672
        for (size_t i = 0; i < CPL_ARRAYSIZE(apszUntrusted); ++i)
673
        {
674
            if (osCode.find(apszUntrusted[i]) != std::string::npos)
675
            {
676
                CPLDebug("VRT", "Found '%s' word in Python code",
677
                         apszUntrusted[i]);
678
                bSafe = false;
679
            }
680
        }
681
682
        if (!bSafe)
683
        {
684
            CPLError(CE_Failure, CPLE_AppDefined,
685
                     "Python code needs to be executed, but we cannot verify "
686
                     "if it is safe, so this is disabled by default. "
687
                     "If you trust the code in %s, you can set the "
688
                     "GDAL_VRT_ENABLE_PYTHON configuration option to YES.",
689
                     GetDataset() ? GetDataset()->GetDescription()
690
                                  : "(unknown VRT)");
691
            return false;
692
        }
693
    }
694
#endif  // disabled_because_this_is_probably_broken_by_design
695
696
0
    else if (!EQUAL(osPythonEnabled, "YES") && !EQUAL(osPythonEnabled, "ON") &&
697
0
             !EQUAL(osPythonEnabled, "TRUE"))
698
0
    {
699
0
        if (pszPythonEnabled == nullptr)
700
0
        {
701
            // Note: this is dead code with our current default policy
702
            // GDAL_VRT_ENABLE_PYTHON == "TRUSTED_MODULES"
703
0
            CPLError(CE_Failure, CPLE_AppDefined,
704
0
                     "Python code needs to be executed, but this is "
705
0
                     "disabled by default. If you trust the code in %s, "
706
0
                     "you can set the GDAL_VRT_ENABLE_PYTHON configuration "
707
0
                     "option to YES.",
708
0
                     GetDataset() ? GetDataset()->GetDescription()
709
0
                                  : "(unknown VRT)");
710
0
        }
711
0
        else
712
0
        {
713
0
            CPLError(
714
0
                CE_Failure, CPLE_AppDefined,
715
0
                "Python code in %s needs to be executed, but this has been "
716
0
                "explicitly disabled.",
717
0
                GetDataset() ? GetDataset()->GetDescription()
718
0
                             : "(unknown VRT)");
719
0
        }
720
0
        return false;
721
0
    }
722
723
0
    if (!GDALPythonInitialize())
724
0
        return false;
725
726
    // Whether we should just use our own global mutex, in addition to Python
727
    // GIL locking.
728
0
    m_poPrivate->m_bExclusiveLock =
729
0
        CPLTestBool(CPLGetConfigOption("GDAL_VRT_PYTHON_EXCLUSIVE_LOCK", "NO"));
730
731
    // numba jit'ification doesn't seem to be thread-safe, so force use of
732
    // lock now and at first execution of function. Later executions seem to
733
    // be thread-safe. This problem doesn't seem to appear for code in
734
    // regular files
735
0
    const bool bUseExclusiveLock =
736
0
        m_poPrivate->m_bExclusiveLock ||
737
0
        m_poPrivate->m_osCode.find("@jit") != std::string::npos;
738
0
    GIL_Holder oHolder(bUseExclusiveLock);
739
740
    // As we don't want to depend on numpy C API/ABI, we use a trick to build
741
    // a numpy array object. We define a Python function to which we pass a
742
    // Python buffer object.
743
744
    // We need to build a unique module name, otherwise this will crash in
745
    // multithreaded use cases.
746
0
    CPLString osModuleName(CPLSPrintf("gdal_vrt_module_%p", this));
747
0
    PyObject *poCompiledString = Py_CompileString(
748
0
        ("import numpy\n"
749
0
         "def GDALCreateNumpyArray(buffer, dtype, height, width):\n"
750
0
         "    return numpy.frombuffer(buffer, str(dtype.decode('ascii')))."
751
0
         "reshape([height, width])\n"
752
0
         "\n" +
753
0
         m_poPrivate->m_osCode)
754
0
            .c_str(),
755
0
        osModuleName, Py_file_input);
756
0
    if (poCompiledString == nullptr || PyErr_Occurred())
757
0
    {
758
0
        CPLError(CE_Failure, CPLE_AppDefined, "Couldn't compile code:\n%s",
759
0
                 GetPyExceptionString().c_str());
760
0
        return false;
761
0
    }
762
0
    PyObject *poModule =
763
0
        PyImport_ExecCodeModule(osModuleName, poCompiledString);
764
0
    Py_DecRef(poCompiledString);
765
766
0
    if (poModule == nullptr || PyErr_Occurred())
767
0
    {
768
0
        CPLError(CE_Failure, CPLE_AppDefined, "%s",
769
0
                 GetPyExceptionString().c_str());
770
0
        return false;
771
0
    }
772
773
    // Fetch user computation function
774
0
    if (!osPythonModule.empty())
775
0
    {
776
0
        PyObject *poUserModule = PyImport_ImportModule(osPythonModule);
777
0
        if (poUserModule == nullptr || PyErr_Occurred())
778
0
        {
779
0
            CPLString osException = GetPyExceptionString();
780
0
            if (!osException.empty() && osException.back() == '\n')
781
0
            {
782
0
                osException.pop_back();
783
0
            }
784
0
            if (osException.find("ModuleNotFoundError") == 0)
785
0
            {
786
0
                osException += ". You may need to define PYTHONPATH";
787
0
            }
788
0
            CPLError(CE_Failure, CPLE_AppDefined, "%s", osException.c_str());
789
0
            Py_DecRef(poModule);
790
0
            return false;
791
0
        }
792
0
        m_poPrivate->m_poUserFunction =
793
0
            PyObject_GetAttrString(poUserModule, osPythonFunction);
794
0
        Py_DecRef(poUserModule);
795
0
    }
796
0
    else
797
0
    {
798
0
        m_poPrivate->m_poUserFunction =
799
0
            PyObject_GetAttrString(poModule, osPythonFunction);
800
0
    }
801
0
    if (m_poPrivate->m_poUserFunction == nullptr || PyErr_Occurred())
802
0
    {
803
0
        CPLError(CE_Failure, CPLE_AppDefined, "%s",
804
0
                 GetPyExceptionString().c_str());
805
0
        Py_DecRef(poModule);
806
0
        return false;
807
0
    }
808
0
    if (!PyCallable_Check(m_poPrivate->m_poUserFunction))
809
0
    {
810
0
        CPLError(CE_Failure, CPLE_AppDefined, "Object '%s' is not callable",
811
0
                 osPythonFunction.c_str());
812
0
        Py_DecRef(poModule);
813
0
        return false;
814
0
    }
815
816
    // Fetch our GDALCreateNumpyArray python function
817
0
    m_poPrivate->m_poGDALCreateNumpyArray =
818
0
        PyObject_GetAttrString(poModule, "GDALCreateNumpyArray");
819
0
    if (m_poPrivate->m_poGDALCreateNumpyArray == nullptr || PyErr_Occurred())
820
0
    {
821
        // Shouldn't happen normally...
822
0
        CPLError(CE_Failure, CPLE_AppDefined, "%s",
823
0
                 GetPyExceptionString().c_str());
824
0
        Py_DecRef(poModule);
825
0
        return false;
826
0
    }
827
0
    Py_DecRef(poModule);
828
829
0
    m_poPrivate->m_bPythonInitializationSuccess = true;
830
0
    return true;
831
0
}
832
833
CPLErr VRTDerivedRasterBand::GetPixelFunctionArguments(
834
    const CPLString &osMetadata,
835
    const std::vector<int> &anMapBufferIdxToSourceIdx,
836
    std::vector<std::pair<CPLString, CPLString>> &oAdditionalArgs)
837
0
{
838
839
0
    auto poArgs = CPLXMLTreeCloser(CPLParseXMLString(osMetadata));
840
0
    if (poArgs != nullptr && poArgs->eType == CXT_Element &&
841
0
        !strcmp(poArgs->pszValue, "PixelFunctionArgumentsList"))
842
0
    {
843
0
        for (CPLXMLNode *psIter = poArgs->psChild; psIter != nullptr;
844
0
             psIter = psIter->psNext)
845
0
        {
846
0
            if (psIter->eType == CXT_Element &&
847
0
                !strcmp(psIter->pszValue, "Argument"))
848
0
            {
849
0
                CPLString osName, osType, osValue;
850
0
                auto pszName = CPLGetXMLValue(psIter, "name", nullptr);
851
0
                if (pszName != nullptr)
852
0
                    osName = pszName;
853
0
                auto pszType = CPLGetXMLValue(psIter, "type", nullptr);
854
0
                if (pszType != nullptr)
855
0
                    osType = pszType;
856
0
                auto pszValue = CPLGetXMLValue(psIter, "value", nullptr);
857
0
                if (pszValue != nullptr)
858
0
                    osValue = pszValue;
859
0
                if (osType == "constant" && osValue != "" && osName != "")
860
0
                    oAdditionalArgs.push_back(
861
0
                        std::pair<CPLString, CPLString>(osName, osValue));
862
0
                if (osType == "builtin")
863
0
                {
864
0
                    const CPLString &osArgName = osValue;
865
0
                    CPLString osVal;
866
0
                    double dfVal = 0;
867
868
0
                    int success;
869
0
                    if (osArgName == "NoData")
870
0
                        dfVal = this->GetNoDataValue(&success);
871
0
                    else if (osArgName == "scale")
872
0
                        dfVal = this->GetScale(&success);
873
0
                    else if (osArgName == "offset")
874
0
                        dfVal = this->GetOffset(&success);
875
0
                    else if (osArgName == "source_names")
876
0
                    {
877
0
                        for (size_t iBuffer = 0;
878
0
                             iBuffer < anMapBufferIdxToSourceIdx.size();
879
0
                             iBuffer++)
880
0
                        {
881
0
                            int iSource = anMapBufferIdxToSourceIdx[iBuffer];
882
0
                            const VRTSource *poSource = papoSources[iSource];
883
884
0
                            if (iBuffer > 0)
885
0
                            {
886
0
                                osVal += "|";
887
0
                            }
888
889
0
                            const auto &osSourceName = poSource->GetName();
890
0
                            if (osSourceName.empty())
891
0
                            {
892
0
                                osVal += "B" + std::to_string(iBuffer + 1);
893
0
                            }
894
0
                            else
895
0
                            {
896
0
                                osVal += osSourceName;
897
0
                            }
898
0
                        }
899
900
0
                        success = true;
901
0
                    }
902
0
                    else
903
0
                    {
904
0
                        CPLError(
905
0
                            CE_Failure, CPLE_NotSupported,
906
0
                            "PixelFunction builtin argument %s not supported",
907
0
                            osArgName.c_str());
908
0
                        return CE_Failure;
909
0
                    }
910
0
                    if (!success)
911
0
                    {
912
0
                        if (CPLTestBool(
913
0
                                CPLGetXMLValue(psIter, "optional", "false")))
914
0
                            continue;
915
916
0
                        CPLError(CE_Failure, CPLE_AppDefined,
917
0
                                 "Raster has no %s", osValue.c_str());
918
0
                        return CE_Failure;
919
0
                    }
920
921
0
                    if (osVal.empty())
922
0
                    {
923
0
                        osVal = CPLSPrintf("%.17g", dfVal);
924
0
                    }
925
926
0
                    oAdditionalArgs.push_back(
927
0
                        std::pair<CPLString, CPLString>(osArgName, osVal));
928
0
                    CPLDebug("VRT",
929
0
                             "Added builtin pixel function argument %s = %s",
930
0
                             osArgName.c_str(), osVal.c_str());
931
0
                }
932
0
            }
933
0
        }
934
0
    }
935
936
0
    return CE_None;
937
0
}
938
939
/************************************************************************/
940
/*                             IRasterIO()                              */
941
/************************************************************************/
942
943
/**
944
 * Read/write a region of image data for this band.
945
 *
946
 * Each of the sources for this derived band will be read and passed to
947
 * the derived band pixel function.  The pixel function is responsible
948
 * for applying whatever algorithm is necessary to generate this band's
949
 * pixels from the sources.
950
 *
951
 * The sources will be read using the transfer type specified for sources
952
 * using SetSourceTransferType().  If no transfer type has been set for
953
 * this derived band, the band's data type will be used as the transfer type.
954
 *
955
 * @see gdalrasterband
956
 *
957
 * @param eRWFlag Either GF_Read to read a region of data, or GT_Write to
958
 * write a region of data.
959
 *
960
 * @param nXOff The pixel offset to the top left corner of the region
961
 * of the band to be accessed.  This would be zero to start from the left side.
962
 *
963
 * @param nYOff The line offset to the top left corner of the region
964
 * of the band to be accessed.  This would be zero to start from the top.
965
 *
966
 * @param nXSize The width of the region of the band to be accessed in pixels.
967
 *
968
 * @param nYSize The height of the region of the band to be accessed in lines.
969
 *
970
 * @param pData The buffer into which the data should be read, or from which
971
 * it should be written.  This buffer must contain at least nBufXSize *
972
 * nBufYSize words of type eBufType.  It is organized in left to right,
973
 * top to bottom pixel order.  Spacing is controlled by the nPixelSpace,
974
 * and nLineSpace parameters.
975
 *
976
 * @param nBufXSize The width of the buffer image into which the desired
977
 * region is to be read, or from which it is to be written.
978
 *
979
 * @param nBufYSize The height of the buffer image into which the desired
980
 * region is to be read, or from which it is to be written.
981
 *
982
 * @param eBufType The type of the pixel values in the pData data buffer.  The
983
 * pixel values will automatically be translated to/from the GDALRasterBand
984
 * data type as needed.
985
 *
986
 * @param nPixelSpace The byte offset from the start of one pixel value in
987
 * pData to the start of the next pixel value within a scanline.  If defaulted
988
 * (0) the size of the datatype eBufType is used.
989
 *
990
 * @param nLineSpace The byte offset from the start of one scanline in
991
 * pData to the start of the next.  If defaulted the size of the datatype
992
 * eBufType * nBufXSize is used.
993
 *
994
 * @return CE_Failure if the access fails, otherwise CE_None.
995
 */
996
CPLErr VRTDerivedRasterBand::IRasterIO(
997
    GDALRWFlag eRWFlag, int nXOff, int nYOff, int nXSize, int nYSize,
998
    void *pData, int nBufXSize, int nBufYSize, GDALDataType eBufType,
999
    GSpacing nPixelSpace, GSpacing nLineSpace, GDALRasterIOExtraArg *psExtraArg)
1000
0
{
1001
0
    if (eRWFlag == GF_Write)
1002
0
    {
1003
0
        CPLError(CE_Failure, CPLE_AppDefined,
1004
0
                 "Writing through VRTSourcedRasterBand is not supported.");
1005
0
        return CE_Failure;
1006
0
    }
1007
1008
    if constexpr (sizeof(GSpacing) > sizeof(int))
1009
0
    {
1010
0
        if (nLineSpace > INT_MAX)
1011
0
        {
1012
0
            if (nBufYSize == 1)
1013
0
            {
1014
0
                nLineSpace = 0;
1015
0
            }
1016
0
            else
1017
0
            {
1018
0
                CPLError(CE_Failure, CPLE_NotSupported,
1019
0
                         "VRTDerivedRasterBand::IRasterIO(): nLineSpace > "
1020
0
                         "INT_MAX not supported");
1021
0
                return CE_Failure;
1022
0
            }
1023
0
        }
1024
0
    }
1025
1026
0
    const int nBufTypeSize = GDALGetDataTypeSizeBytes(eBufType);
1027
0
    GDALDataType eSrcType = eSourceTransferType;
1028
0
    if (eSrcType == GDT_Unknown || eSrcType >= GDT_TypeCount)
1029
0
    {
1030
        // Check the largest data type for all sources
1031
0
        GDALDataType eAllSrcType = GDT_Unknown;
1032
0
        for (int iSource = 0; iSource < nSources; iSource++)
1033
0
        {
1034
0
            if (papoSources[iSource]->GetType() ==
1035
0
                VRTSimpleSource::GetTypeStatic())
1036
0
            {
1037
0
                const auto poSS =
1038
0
                    static_cast<VRTSimpleSource *>(papoSources[iSource]);
1039
0
                auto l_poBand = poSS->GetRasterBand();
1040
0
                if (l_poBand)
1041
0
                {
1042
0
                    eAllSrcType = GDALDataTypeUnion(
1043
0
                        eAllSrcType, l_poBand->GetRasterDataType());
1044
0
                }
1045
0
                else
1046
0
                {
1047
0
                    eAllSrcType = GDT_Unknown;
1048
0
                    break;
1049
0
                }
1050
0
            }
1051
0
            else
1052
0
            {
1053
0
                eAllSrcType = GDT_Unknown;
1054
0
                break;
1055
0
            }
1056
0
        }
1057
1058
0
        if (eAllSrcType != GDT_Unknown)
1059
0
            eSrcType = eAllSrcType;
1060
0
        else
1061
0
            eSrcType = eBufType;
1062
0
    }
1063
0
    const int nSrcTypeSize = GDALGetDataTypeSizeBytes(eSrcType);
1064
1065
    // If acquiring the region of interest in a single time is going
1066
    // to consume too much RAM, split in halves, and that recursively
1067
    // until we get below m_nAllowedRAMUsage.
1068
0
    if (m_poPrivate->m_nAllowedRAMUsage > 0 && nSources > 0 &&
1069
0
        nSrcTypeSize > 0 && nBufXSize == nXSize && nBufYSize == nYSize &&
1070
0
        static_cast<GIntBig>(nBufXSize) * nBufYSize >
1071
0
            m_poPrivate->m_nAllowedRAMUsage / (nSources * nSrcTypeSize))
1072
0
    {
1073
0
        CPLErr eErr = SplitRasterIO(eRWFlag, nXOff, nYOff, nXSize, nYSize,
1074
0
                                    pData, nBufXSize, nBufYSize, eBufType,
1075
0
                                    nPixelSpace, nLineSpace, psExtraArg);
1076
0
        if (eErr != CE_Warning)
1077
0
            return eErr;
1078
0
    }
1079
1080
    /* -------------------------------------------------------------------- */
1081
    /*      Do we have overviews that would be appropriate to satisfy       */
1082
    /*      this request?                                                   */
1083
    /* -------------------------------------------------------------------- */
1084
0
    if ((nBufXSize < nXSize || nBufYSize < nYSize) && GetOverviewCount() > 0)
1085
0
    {
1086
0
        if (OverviewRasterIO(eRWFlag, nXOff, nYOff, nXSize, nYSize, pData,
1087
0
                             nBufXSize, nBufYSize, eBufType, nPixelSpace,
1088
0
                             nLineSpace, psExtraArg) == CE_None)
1089
0
            return CE_None;
1090
0
    }
1091
1092
    /* ---- Get pixel function for band ---- */
1093
0
    const std::pair<PixelFunc, std::string> *poPixelFunc = nullptr;
1094
0
    std::vector<std::pair<CPLString, CPLString>> oAdditionalArgs;
1095
1096
0
    if (EQUAL(m_poPrivate->m_osLanguage, "C"))
1097
0
    {
1098
0
        poPixelFunc =
1099
0
            VRTDerivedRasterBand::GetPixelFunction(osFuncName.c_str());
1100
0
        if (poPixelFunc == nullptr)
1101
0
        {
1102
0
            CPLError(CE_Failure, CPLE_IllegalArg,
1103
0
                     "VRTDerivedRasterBand::IRasterIO:"
1104
0
                     "Derived band pixel function '%s' not registered.",
1105
0
                     osFuncName.c_str());
1106
0
            return CE_Failure;
1107
0
        }
1108
0
    }
1109
1110
    /* TODO: It would be nice to use a MallocBlock function for each
1111
       individual buffer that would recycle blocks of memory from a
1112
       cache by reassigning blocks that are nearly the same size.
1113
       A corresponding FreeBlock might only truly free if the total size
1114
       of freed blocks gets to be too great of a percentage of the size
1115
       of the allocated blocks. */
1116
1117
    // Get buffers for each source.
1118
0
    const int nBufferRadius = m_poPrivate->m_nBufferRadius;
1119
0
    if (nBufferRadius > (INT_MAX - nBufXSize) / 2 ||
1120
0
        nBufferRadius > (INT_MAX - nBufYSize) / 2)
1121
0
    {
1122
0
        CPLError(CE_Failure, CPLE_AppDefined,
1123
0
                 "Integer overflow: "
1124
0
                 "nBufferRadius > (INT_MAX - nBufXSize) / 2 || "
1125
0
                 "nBufferRadius > (INT_MAX - nBufYSize) / 2)");
1126
0
        return CE_Failure;
1127
0
    }
1128
0
    const int nExtBufXSize = nBufXSize + 2 * nBufferRadius;
1129
0
    const int nExtBufYSize = nBufYSize + 2 * nBufferRadius;
1130
0
    int nBufferCount = 0;
1131
1132
0
    std::vector<std::unique_ptr<void, VSIFreeReleaser>> apBuffers(nSources);
1133
0
    std::vector<int> anMapBufferIdxToSourceIdx(nSources);
1134
0
    bool bSkipOutputBufferInitialization = nSources > 0;
1135
0
    for (int iSource = 0; iSource < nSources; iSource++)
1136
0
    {
1137
0
        if (m_poPrivate->m_bSkipNonContributingSources &&
1138
0
            papoSources[iSource]->IsSimpleSource())
1139
0
        {
1140
0
            bool bError = false;
1141
0
            double dfReqXOff, dfReqYOff, dfReqXSize, dfReqYSize;
1142
0
            int nReqXOff, nReqYOff, nReqXSize, nReqYSize;
1143
0
            int nOutXOff, nOutYOff, nOutXSize, nOutYSize;
1144
0
            auto poSource =
1145
0
                static_cast<VRTSimpleSource *>(papoSources[iSource]);
1146
0
            if (!poSource->GetSrcDstWindow(
1147
0
                    nXOff, nYOff, nXSize, nYSize, nBufXSize, nBufYSize,
1148
0
                    &dfReqXOff, &dfReqYOff, &dfReqXSize, &dfReqYSize, &nReqXOff,
1149
0
                    &nReqYOff, &nReqXSize, &nReqYSize, &nOutXOff, &nOutYOff,
1150
0
                    &nOutXSize, &nOutYSize, bError))
1151
0
            {
1152
0
                if (bError)
1153
0
                {
1154
0
                    return CE_Failure;
1155
0
                }
1156
1157
                // Skip non contributing source
1158
0
                bSkipOutputBufferInitialization = false;
1159
0
                continue;
1160
0
            }
1161
0
        }
1162
1163
0
        anMapBufferIdxToSourceIdx[nBufferCount] = iSource;
1164
0
        apBuffers[nBufferCount].reset(
1165
0
            VSI_MALLOC3_VERBOSE(nSrcTypeSize, nExtBufXSize, nExtBufYSize));
1166
0
        if (apBuffers[nBufferCount] == nullptr)
1167
0
        {
1168
0
            return CE_Failure;
1169
0
        }
1170
1171
0
        bool bBufferInit = true;
1172
0
        if (papoSources[iSource]->IsSimpleSource())
1173
0
        {
1174
0
            const auto poSS =
1175
0
                static_cast<VRTSimpleSource *>(papoSources[iSource]);
1176
0
            auto l_poBand = poSS->GetRasterBand();
1177
0
            if (l_poBand != nullptr && poSS->m_dfSrcXOff == 0.0 &&
1178
0
                poSS->m_dfSrcYOff == 0.0 &&
1179
0
                poSS->m_dfSrcXOff + poSS->m_dfSrcXSize ==
1180
0
                    l_poBand->GetXSize() &&
1181
0
                poSS->m_dfSrcYOff + poSS->m_dfSrcYSize ==
1182
0
                    l_poBand->GetYSize() &&
1183
0
                poSS->m_dfDstXOff == 0.0 && poSS->m_dfDstYOff == 0.0 &&
1184
0
                poSS->m_dfDstXOff + poSS->m_dfDstXSize == nRasterXSize &&
1185
0
                poSS->m_dfDstYOff + poSS->m_dfDstYSize == nRasterYSize)
1186
0
            {
1187
0
                if (papoSources[iSource]->GetType() ==
1188
0
                    VRTSimpleSource::GetTypeStatic())
1189
0
                    bBufferInit = false;
1190
0
            }
1191
0
            else
1192
0
            {
1193
0
                bSkipOutputBufferInitialization = false;
1194
0
            }
1195
0
        }
1196
0
        else
1197
0
        {
1198
0
            bSkipOutputBufferInitialization = false;
1199
0
        }
1200
0
        if (bBufferInit)
1201
0
        {
1202
            /* ------------------------------------------------------------ */
1203
            /* #4045: Initialize the newly allocated buffers before handing */
1204
            /* them off to the sources. These buffers are packed, so we     */
1205
            /* don't need any special line-by-line handling when a nonzero  */
1206
            /* nodata value is set.                                         */
1207
            /* ------------------------------------------------------------ */
1208
0
            if (!m_bNoDataValueSet || m_dfNoDataValue == 0)
1209
0
            {
1210
0
                memset(apBuffers[nBufferCount].get(), 0,
1211
0
                       static_cast<size_t>(nSrcTypeSize) * nExtBufXSize *
1212
0
                           nExtBufYSize);
1213
0
            }
1214
0
            else
1215
0
            {
1216
0
                GDALCopyWords64(
1217
0
                    &m_dfNoDataValue, GDT_Float64, 0,
1218
0
                    static_cast<GByte *>(apBuffers[nBufferCount].get()),
1219
0
                    eSrcType, nSrcTypeSize,
1220
0
                    static_cast<GPtrDiff_t>(nExtBufXSize) * nExtBufYSize);
1221
0
            }
1222
0
        }
1223
1224
0
        ++nBufferCount;
1225
0
    }
1226
1227
    /* -------------------------------------------------------------------- */
1228
    /*      Initialize the buffer to some background value. Use the         */
1229
    /*      nodata value if available.                                      */
1230
    /* -------------------------------------------------------------------- */
1231
0
    if (bSkipOutputBufferInitialization)
1232
0
    {
1233
        // Do nothing
1234
0
    }
1235
0
    else if (nPixelSpace == nBufTypeSize &&
1236
0
             (!m_bNoDataValueSet || m_dfNoDataValue == 0))
1237
0
    {
1238
0
        memset(pData, 0,
1239
0
               static_cast<size_t>(nBufXSize) * nBufYSize * nBufTypeSize);
1240
0
    }
1241
0
    else if (m_bNoDataValueSet)
1242
0
    {
1243
0
        double dfWriteValue = m_dfNoDataValue;
1244
1245
0
        for (int iLine = 0; iLine < nBufYSize; iLine++)
1246
0
        {
1247
0
            GDALCopyWords64(&dfWriteValue, GDT_Float64, 0,
1248
0
                            static_cast<GByte *>(pData) + nLineSpace * iLine,
1249
0
                            eBufType, static_cast<int>(nPixelSpace), nBufXSize);
1250
0
        }
1251
0
    }
1252
1253
    // No contributing sources and SkipNonContributingSources mode ?
1254
    // Do not call the pixel function and just return the 0/nodata initialized
1255
    // output buffer.
1256
0
    if (nBufferCount == 0 && m_poPrivate->m_bSkipNonContributingSources)
1257
0
    {
1258
0
        return CE_None;
1259
0
    }
1260
1261
0
    GDALRasterIOExtraArg sExtraArg;
1262
0
    GDALCopyRasterIOExtraArg(&sExtraArg, psExtraArg);
1263
1264
0
    int nXShiftInBuffer = 0;
1265
0
    int nYShiftInBuffer = 0;
1266
0
    int nExtBufXSizeReq = nExtBufXSize;
1267
0
    int nExtBufYSizeReq = nExtBufYSize;
1268
1269
0
    int nXOffExt = nXOff;
1270
0
    int nYOffExt = nYOff;
1271
0
    int nXSizeExt = nXSize;
1272
0
    int nYSizeExt = nYSize;
1273
1274
0
    if (nBufferRadius)
1275
0
    {
1276
0
        double dfXRatio = static_cast<double>(nXSize) / nBufXSize;
1277
0
        double dfYRatio = static_cast<double>(nYSize) / nBufYSize;
1278
1279
0
        if (!sExtraArg.bFloatingPointWindowValidity)
1280
0
        {
1281
0
            sExtraArg.dfXOff = nXOff;
1282
0
            sExtraArg.dfYOff = nYOff;
1283
0
            sExtraArg.dfXSize = nXSize;
1284
0
            sExtraArg.dfYSize = nYSize;
1285
0
        }
1286
1287
0
        sExtraArg.dfXOff -= dfXRatio * nBufferRadius;
1288
0
        sExtraArg.dfYOff -= dfYRatio * nBufferRadius;
1289
0
        sExtraArg.dfXSize += 2 * dfXRatio * nBufferRadius;
1290
0
        sExtraArg.dfYSize += 2 * dfYRatio * nBufferRadius;
1291
0
        if (sExtraArg.dfXOff < 0)
1292
0
        {
1293
0
            nXShiftInBuffer = -static_cast<int>(sExtraArg.dfXOff / dfXRatio);
1294
0
            nExtBufXSizeReq -= nXShiftInBuffer;
1295
0
            sExtraArg.dfXSize += sExtraArg.dfXOff;
1296
0
            sExtraArg.dfXOff = 0;
1297
0
        }
1298
0
        if (sExtraArg.dfYOff < 0)
1299
0
        {
1300
0
            nYShiftInBuffer = -static_cast<int>(sExtraArg.dfYOff / dfYRatio);
1301
0
            nExtBufYSizeReq -= nYShiftInBuffer;
1302
0
            sExtraArg.dfYSize += sExtraArg.dfYOff;
1303
0
            sExtraArg.dfYOff = 0;
1304
0
        }
1305
0
        if (sExtraArg.dfXOff + sExtraArg.dfXSize > nRasterXSize)
1306
0
        {
1307
0
            nExtBufXSizeReq -= static_cast<int>(
1308
0
                (sExtraArg.dfXOff + sExtraArg.dfXSize - nRasterXSize) /
1309
0
                dfXRatio);
1310
0
            sExtraArg.dfXSize = nRasterXSize - sExtraArg.dfXOff;
1311
0
        }
1312
0
        if (sExtraArg.dfYOff + sExtraArg.dfYSize > nRasterYSize)
1313
0
        {
1314
0
            nExtBufYSizeReq -= static_cast<int>(
1315
0
                (sExtraArg.dfYOff + sExtraArg.dfYSize - nRasterYSize) /
1316
0
                dfYRatio);
1317
0
            sExtraArg.dfYSize = nRasterYSize - sExtraArg.dfYOff;
1318
0
        }
1319
1320
0
        nXOffExt = static_cast<int>(sExtraArg.dfXOff);
1321
0
        nYOffExt = static_cast<int>(sExtraArg.dfYOff);
1322
0
        nXSizeExt = std::min(static_cast<int>(sExtraArg.dfXSize + 0.5),
1323
0
                             nRasterXSize - nXOffExt);
1324
0
        nYSizeExt = std::min(static_cast<int>(sExtraArg.dfYSize + 0.5),
1325
0
                             nRasterYSize - nYOffExt);
1326
0
    }
1327
1328
    // Load values for sources into packed buffers.
1329
0
    CPLErr eErr = CE_None;
1330
0
    VRTSource::WorkingState oWorkingState;
1331
0
    for (int iBuffer = 0; iBuffer < nBufferCount && eErr == CE_None; iBuffer++)
1332
0
    {
1333
0
        const int iSource = anMapBufferIdxToSourceIdx[iBuffer];
1334
0
        GByte *pabyBuffer = static_cast<GByte *>(apBuffers[iBuffer].get());
1335
0
        eErr = static_cast<VRTSource *>(papoSources[iSource])
1336
0
                   ->RasterIO(
1337
0
                       eSrcType, nXOffExt, nYOffExt, nXSizeExt, nYSizeExt,
1338
0
                       pabyBuffer + (static_cast<size_t>(nYShiftInBuffer) *
1339
0
                                         nExtBufXSize +
1340
0
                                     nXShiftInBuffer) *
1341
0
                                        nSrcTypeSize,
1342
0
                       nExtBufXSizeReq, nExtBufYSizeReq, eSrcType, nSrcTypeSize,
1343
0
                       static_cast<GSpacing>(nSrcTypeSize) * nExtBufXSize,
1344
0
                       &sExtraArg, oWorkingState);
1345
1346
        // Extend first lines
1347
0
        for (int iY = 0; iY < nYShiftInBuffer; iY++)
1348
0
        {
1349
0
            memcpy(pabyBuffer +
1350
0
                       static_cast<size_t>(iY) * nExtBufXSize * nSrcTypeSize,
1351
0
                   pabyBuffer + static_cast<size_t>(nYShiftInBuffer) *
1352
0
                                    nExtBufXSize * nSrcTypeSize,
1353
0
                   static_cast<size_t>(nExtBufXSize) * nSrcTypeSize);
1354
0
        }
1355
        // Extend last lines
1356
0
        for (int iY = nYShiftInBuffer + nExtBufYSizeReq; iY < nExtBufYSize;
1357
0
             iY++)
1358
0
        {
1359
0
            memcpy(pabyBuffer +
1360
0
                       static_cast<size_t>(iY) * nExtBufXSize * nSrcTypeSize,
1361
0
                   pabyBuffer + static_cast<size_t>(nYShiftInBuffer +
1362
0
                                                    nExtBufYSizeReq - 1) *
1363
0
                                    nExtBufXSize * nSrcTypeSize,
1364
0
                   static_cast<size_t>(nExtBufXSize) * nSrcTypeSize);
1365
0
        }
1366
        // Extend first cols
1367
0
        if (nXShiftInBuffer)
1368
0
        {
1369
0
            for (int iY = 0; iY < nExtBufYSize; iY++)
1370
0
            {
1371
0
                for (int iX = 0; iX < nXShiftInBuffer; iX++)
1372
0
                {
1373
0
                    memcpy(pabyBuffer +
1374
0
                               static_cast<size_t>(iY * nExtBufXSize + iX) *
1375
0
                                   nSrcTypeSize,
1376
0
                           pabyBuffer +
1377
0
                               (static_cast<size_t>(iY) * nExtBufXSize +
1378
0
                                nXShiftInBuffer) *
1379
0
                                   nSrcTypeSize,
1380
0
                           nSrcTypeSize);
1381
0
                }
1382
0
            }
1383
0
        }
1384
        // Extent last cols
1385
0
        if (nXShiftInBuffer + nExtBufXSizeReq < nExtBufXSize)
1386
0
        {
1387
0
            for (int iY = 0; iY < nExtBufYSize; iY++)
1388
0
            {
1389
0
                for (int iX = nXShiftInBuffer + nExtBufXSizeReq;
1390
0
                     iX < nExtBufXSize; iX++)
1391
0
                {
1392
0
                    memcpy(pabyBuffer +
1393
0
                               (static_cast<size_t>(iY) * nExtBufXSize + iX) *
1394
0
                                   nSrcTypeSize,
1395
0
                           pabyBuffer +
1396
0
                               (static_cast<size_t>(iY) * nExtBufXSize +
1397
0
                                nXShiftInBuffer + nExtBufXSizeReq - 1) *
1398
0
                                   nSrcTypeSize,
1399
0
                           nSrcTypeSize);
1400
0
                }
1401
0
            }
1402
0
        }
1403
0
    }
1404
1405
    // Collect any pixel function arguments
1406
0
    if (poPixelFunc != nullptr && !poPixelFunc->second.empty())
1407
0
    {
1408
0
        if (GetPixelFunctionArguments(poPixelFunc->second,
1409
0
                                      anMapBufferIdxToSourceIdx,
1410
0
                                      oAdditionalArgs) != CE_None)
1411
0
        {
1412
0
            eErr = CE_Failure;
1413
0
        }
1414
0
    }
1415
1416
    // Apply pixel function.
1417
0
    if (eErr == CE_None && EQUAL(m_poPrivate->m_osLanguage, "Python"))
1418
0
    {
1419
        // numpy doesn't have native cint16/cint32/cfloat16
1420
0
        if (eSrcType == GDT_CInt16 || eSrcType == GDT_CInt32 ||
1421
0
            eSrcType == GDT_CFloat16)
1422
0
        {
1423
0
            CPLError(CE_Failure, CPLE_AppDefined,
1424
0
                     "CInt16/CInt32/CFloat16 data type not supported for "
1425
0
                     "SourceTransferType");
1426
0
            return CE_Failure;
1427
0
        }
1428
0
        if (eDataType == GDT_CInt16 || eDataType == GDT_CInt32 ||
1429
0
            eDataType == GDT_CFloat16)
1430
0
        {
1431
0
            CPLError(
1432
0
                CE_Failure, CPLE_AppDefined,
1433
0
                "CInt16/CInt32/CFloat16 data type not supported for data type");
1434
0
            return CE_Failure;
1435
0
        }
1436
1437
0
        if (!InitializePython())
1438
0
            return CE_Failure;
1439
1440
0
        std::unique_ptr<GByte, VSIFreeReleaser> pabyTmpBuffer;
1441
        // Do we need a temporary buffer or can we use directly the output
1442
        // buffer ?
1443
0
        if (nBufferRadius != 0 || eDataType != eBufType ||
1444
0
            nPixelSpace != nBufTypeSize ||
1445
0
            nLineSpace != static_cast<GSpacing>(nBufTypeSize) * nBufXSize)
1446
0
        {
1447
0
            pabyTmpBuffer.reset(static_cast<GByte *>(VSI_CALLOC_VERBOSE(
1448
0
                static_cast<size_t>(nExtBufXSize) * nExtBufYSize,
1449
0
                GDALGetDataTypeSizeBytes(eDataType))));
1450
0
            if (!pabyTmpBuffer)
1451
0
                return CE_Failure;
1452
0
        }
1453
1454
0
        {
1455
0
            const bool bUseExclusiveLock =
1456
0
                m_poPrivate->m_bExclusiveLock ||
1457
0
                (m_poPrivate->m_bFirstTime &&
1458
0
                 m_poPrivate->m_osCode.find("@jit") != std::string::npos);
1459
0
            m_poPrivate->m_bFirstTime = false;
1460
0
            GIL_Holder oHolder(bUseExclusiveLock);
1461
1462
            // Prepare target numpy array
1463
0
            PyObject *poPyDstArray = GDALCreateNumpyArray(
1464
0
                m_poPrivate->m_poGDALCreateNumpyArray,
1465
0
                pabyTmpBuffer ? pabyTmpBuffer.get() : pData, eDataType,
1466
0
                nExtBufYSize, nExtBufXSize);
1467
0
            if (!poPyDstArray)
1468
0
            {
1469
0
                return CE_Failure;
1470
0
            }
1471
1472
            // Wrap source buffers as input numpy arrays
1473
0
            PyObject *pyArgInputArray = PyTuple_New(nBufferCount);
1474
0
            for (int i = 0; i < nBufferCount; i++)
1475
0
            {
1476
0
                GByte *pabyBuffer = static_cast<GByte *>(apBuffers[i].get());
1477
0
                PyObject *poPySrcArray = GDALCreateNumpyArray(
1478
0
                    m_poPrivate->m_poGDALCreateNumpyArray, pabyBuffer, eSrcType,
1479
0
                    nExtBufYSize, nExtBufXSize);
1480
0
                CPLAssert(poPySrcArray);
1481
0
                PyTuple_SetItem(pyArgInputArray, i, poPySrcArray);
1482
0
            }
1483
1484
            // Create arguments
1485
0
            PyObject *pyArgs = PyTuple_New(10);
1486
0
            PyTuple_SetItem(pyArgs, 0, pyArgInputArray);
1487
0
            PyTuple_SetItem(pyArgs, 1, poPyDstArray);
1488
0
            PyTuple_SetItem(pyArgs, 2, PyLong_FromLong(nXOff));
1489
0
            PyTuple_SetItem(pyArgs, 3, PyLong_FromLong(nYOff));
1490
0
            PyTuple_SetItem(pyArgs, 4, PyLong_FromLong(nXSize));
1491
0
            PyTuple_SetItem(pyArgs, 5, PyLong_FromLong(nYSize));
1492
0
            PyTuple_SetItem(pyArgs, 6, PyLong_FromLong(nRasterXSize));
1493
0
            PyTuple_SetItem(pyArgs, 7, PyLong_FromLong(nRasterYSize));
1494
0
            PyTuple_SetItem(pyArgs, 8, PyLong_FromLong(nBufferRadius));
1495
1496
0
            double adfGeoTransform[6];
1497
0
            adfGeoTransform[0] = 0;
1498
0
            adfGeoTransform[1] = 1;
1499
0
            adfGeoTransform[2] = 0;
1500
0
            adfGeoTransform[3] = 0;
1501
0
            adfGeoTransform[4] = 0;
1502
0
            adfGeoTransform[5] = 1;
1503
0
            if (GetDataset())
1504
0
                GetDataset()->GetGeoTransform(adfGeoTransform);
1505
0
            PyObject *pyGT = PyTuple_New(6);
1506
0
            for (int i = 0; i < 6; i++)
1507
0
                PyTuple_SetItem(pyGT, i,
1508
0
                                PyFloat_FromDouble(adfGeoTransform[i]));
1509
0
            PyTuple_SetItem(pyArgs, 9, pyGT);
1510
1511
            // Prepare kwargs
1512
0
            PyObject *pyKwargs = PyDict_New();
1513
0
            for (size_t i = 0; i < m_poPrivate->m_oFunctionArgs.size(); ++i)
1514
0
            {
1515
0
                const char *pszKey =
1516
0
                    m_poPrivate->m_oFunctionArgs[i].first.c_str();
1517
0
                const char *pszValue =
1518
0
                    m_poPrivate->m_oFunctionArgs[i].second.c_str();
1519
0
                PyDict_SetItemString(
1520
0
                    pyKwargs, pszKey,
1521
0
                    PyBytes_FromStringAndSize(pszValue, strlen(pszValue)));
1522
0
            }
1523
1524
            // Call user function
1525
0
            PyObject *pRetValue =
1526
0
                PyObject_Call(m_poPrivate->m_poUserFunction, pyArgs, pyKwargs);
1527
1528
0
            Py_DecRef(pyArgs);
1529
0
            Py_DecRef(pyKwargs);
1530
1531
0
            if (ErrOccurredEmitCPLError())
1532
0
            {
1533
0
                eErr = CE_Failure;
1534
0
            }
1535
0
            if (pRetValue)
1536
0
                Py_DecRef(pRetValue);
1537
0
        }  // End of GIL section
1538
1539
0
        if (pabyTmpBuffer)
1540
0
        {
1541
            // Copy numpy destination array to user buffer
1542
0
            for (int iY = 0; iY < nBufYSize; iY++)
1543
0
            {
1544
0
                size_t nSrcOffset =
1545
0
                    (static_cast<size_t>(iY + nBufferRadius) * nExtBufXSize +
1546
0
                     nBufferRadius) *
1547
0
                    GDALGetDataTypeSizeBytes(eDataType);
1548
0
                GDALCopyWords64(pabyTmpBuffer.get() + nSrcOffset, eDataType,
1549
0
                                GDALGetDataTypeSizeBytes(eDataType),
1550
0
                                static_cast<GByte *>(pData) + iY * nLineSpace,
1551
0
                                eBufType, static_cast<int>(nPixelSpace),
1552
0
                                nBufXSize);
1553
0
            }
1554
0
        }
1555
0
    }
1556
0
    else if (eErr == CE_None && poPixelFunc != nullptr)
1557
0
    {
1558
0
        CPLStringList aosArgs;
1559
1560
0
        oAdditionalArgs.insert(oAdditionalArgs.end(),
1561
0
                               m_poPrivate->m_oFunctionArgs.begin(),
1562
0
                               m_poPrivate->m_oFunctionArgs.end());
1563
0
        for (const auto &oArg : oAdditionalArgs)
1564
0
        {
1565
0
            const char *pszKey = oArg.first.c_str();
1566
0
            const char *pszValue = oArg.second.c_str();
1567
0
            aosArgs.SetNameValue(pszKey, pszValue);
1568
0
        }
1569
1570
0
        static_assert(sizeof(apBuffers[0]) == sizeof(void *));
1571
0
        eErr = (poPixelFunc->first)(
1572
            // We cast vector<unique_ptr<void>>.data() as void**. This is OK
1573
            // given above static_assert
1574
0
            reinterpret_cast<void **>(apBuffers.data()), nBufferCount, pData,
1575
0
            nBufXSize, nBufYSize, eSrcType, eBufType,
1576
0
            static_cast<int>(nPixelSpace), static_cast<int>(nLineSpace),
1577
0
            aosArgs.List());
1578
0
    }
1579
1580
0
    return eErr;
1581
0
}
1582
1583
/************************************************************************/
1584
/*                         IGetDataCoverageStatus()                     */
1585
/************************************************************************/
1586
1587
int VRTDerivedRasterBand::IGetDataCoverageStatus(
1588
    int /* nXOff */, int /* nYOff */, int /* nXSize */, int /* nYSize */,
1589
    int /* nMaskFlagStop */, double *pdfDataPct)
1590
0
{
1591
0
    if (pdfDataPct != nullptr)
1592
0
        *pdfDataPct = -1.0;
1593
0
    return GDAL_DATA_COVERAGE_STATUS_UNIMPLEMENTED |
1594
0
           GDAL_DATA_COVERAGE_STATUS_DATA;
1595
0
}
1596
1597
/************************************************************************/
1598
/*                              XMLInit()                               */
1599
/************************************************************************/
1600
1601
CPLErr VRTDerivedRasterBand::XMLInit(const CPLXMLNode *psTree,
1602
                                     const char *pszVRTPath,
1603
                                     VRTMapSharedResources &oMapSharedSources)
1604
1605
0
{
1606
0
    const CPLErr eErr =
1607
0
        VRTSourcedRasterBand::XMLInit(psTree, pszVRTPath, oMapSharedSources);
1608
0
    if (eErr != CE_None)
1609
0
        return eErr;
1610
1611
    // Read derived pixel function type.
1612
0
    SetPixelFunctionName(CPLGetXMLValue(psTree, "PixelFunctionType", nullptr));
1613
0
    if (osFuncName.empty())
1614
0
    {
1615
0
        CPLError(CE_Failure, CPLE_AppDefined, "PixelFunctionType missing");
1616
0
        return CE_Failure;
1617
0
    }
1618
1619
0
    m_poPrivate->m_osLanguage =
1620
0
        CPLGetXMLValue(psTree, "PixelFunctionLanguage", "C");
1621
0
    if (!EQUAL(m_poPrivate->m_osLanguage, "C") &&
1622
0
        !EQUAL(m_poPrivate->m_osLanguage, "Python"))
1623
0
    {
1624
0
        CPLError(CE_Failure, CPLE_NotSupported,
1625
0
                 "Unsupported PixelFunctionLanguage");
1626
0
        return CE_Failure;
1627
0
    }
1628
1629
0
    m_poPrivate->m_osCode = CPLGetXMLValue(psTree, "PixelFunctionCode", "");
1630
0
    if (!m_poPrivate->m_osCode.empty() &&
1631
0
        !EQUAL(m_poPrivate->m_osLanguage, "Python"))
1632
0
    {
1633
0
        CPLError(CE_Failure, CPLE_NotSupported,
1634
0
                 "PixelFunctionCode can only be used with Python");
1635
0
        return CE_Failure;
1636
0
    }
1637
1638
0
    m_poPrivate->m_nBufferRadius =
1639
0
        atoi(CPLGetXMLValue(psTree, "BufferRadius", "0"));
1640
0
    if (m_poPrivate->m_nBufferRadius < 0 || m_poPrivate->m_nBufferRadius > 1024)
1641
0
    {
1642
0
        CPLError(CE_Failure, CPLE_AppDefined, "Invalid value for BufferRadius");
1643
0
        return CE_Failure;
1644
0
    }
1645
0
    if (m_poPrivate->m_nBufferRadius != 0 &&
1646
0
        !EQUAL(m_poPrivate->m_osLanguage, "Python"))
1647
0
    {
1648
0
        CPLError(CE_Failure, CPLE_NotSupported,
1649
0
                 "BufferRadius can only be used with Python");
1650
0
        return CE_Failure;
1651
0
    }
1652
1653
0
    const CPLXMLNode *const psArgs =
1654
0
        CPLGetXMLNode(psTree, "PixelFunctionArguments");
1655
0
    if (psArgs != nullptr)
1656
0
    {
1657
0
        for (const CPLXMLNode *psIter = psArgs->psChild; psIter;
1658
0
             psIter = psIter->psNext)
1659
0
        {
1660
0
            if (psIter->eType == CXT_Attribute)
1661
0
            {
1662
0
                AddPixelFunctionArgument(psIter->pszValue,
1663
0
                                         psIter->psChild->pszValue);
1664
0
            }
1665
0
        }
1666
0
    }
1667
1668
    // Read optional source transfer data type.
1669
0
    const char *pszTypeName =
1670
0
        CPLGetXMLValue(psTree, "SourceTransferType", nullptr);
1671
0
    if (pszTypeName != nullptr)
1672
0
    {
1673
0
        eSourceTransferType = GDALGetDataTypeByName(pszTypeName);
1674
0
    }
1675
1676
    // Whether to skip non contributing sources
1677
0
    const char *pszSkipNonContributingSources =
1678
0
        CPLGetXMLValue(psTree, "SkipNonContributingSources", nullptr);
1679
0
    if (pszSkipNonContributingSources)
1680
0
    {
1681
0
        SetSkipNonContributingSources(
1682
0
            CPLTestBool(pszSkipNonContributingSources));
1683
0
    }
1684
1685
0
    return CE_None;
1686
0
}
1687
1688
/************************************************************************/
1689
/*                           SerializeToXML()                           */
1690
/************************************************************************/
1691
1692
CPLXMLNode *VRTDerivedRasterBand::SerializeToXML(const char *pszVRTPath,
1693
                                                 bool &bHasWarnedAboutRAMUsage,
1694
                                                 size_t &nAccRAMUsage)
1695
0
{
1696
0
    CPLXMLNode *psTree = VRTSourcedRasterBand::SerializeToXML(
1697
0
        pszVRTPath, bHasWarnedAboutRAMUsage, nAccRAMUsage);
1698
1699
    /* -------------------------------------------------------------------- */
1700
    /*      Set subclass.                                                   */
1701
    /* -------------------------------------------------------------------- */
1702
0
    CPLCreateXMLNode(CPLCreateXMLNode(psTree, CXT_Attribute, "subClass"),
1703
0
                     CXT_Text, "VRTDerivedRasterBand");
1704
1705
    /* ---- Encode DerivedBand-specific fields ---- */
1706
0
    if (!EQUAL(m_poPrivate->m_osLanguage, "C"))
1707
0
    {
1708
0
        CPLSetXMLValue(psTree, "PixelFunctionLanguage",
1709
0
                       m_poPrivate->m_osLanguage);
1710
0
    }
1711
0
    if (!osFuncName.empty())
1712
0
        CPLSetXMLValue(psTree, "PixelFunctionType", osFuncName.c_str());
1713
0
    if (!m_poPrivate->m_oFunctionArgs.empty())
1714
0
    {
1715
0
        CPLXMLNode *psArgs =
1716
0
            CPLCreateXMLNode(psTree, CXT_Element, "PixelFunctionArguments");
1717
0
        for (size_t i = 0; i < m_poPrivate->m_oFunctionArgs.size(); ++i)
1718
0
        {
1719
0
            const char *pszKey = m_poPrivate->m_oFunctionArgs[i].first.c_str();
1720
0
            const char *pszValue =
1721
0
                m_poPrivate->m_oFunctionArgs[i].second.c_str();
1722
0
            CPLCreateXMLNode(CPLCreateXMLNode(psArgs, CXT_Attribute, pszKey),
1723
0
                             CXT_Text, pszValue);
1724
0
        }
1725
0
    }
1726
0
    if (!m_poPrivate->m_osCode.empty())
1727
0
    {
1728
0
        if (m_poPrivate->m_osCode.find("<![CDATA[") == std::string::npos)
1729
0
        {
1730
0
            CPLCreateXMLNode(
1731
0
                CPLCreateXMLNode(psTree, CXT_Element, "PixelFunctionCode"),
1732
0
                CXT_Literal,
1733
0
                ("<![CDATA[" + m_poPrivate->m_osCode + "]]>").c_str());
1734
0
        }
1735
0
        else
1736
0
        {
1737
0
            CPLSetXMLValue(psTree, "PixelFunctionCode", m_poPrivate->m_osCode);
1738
0
        }
1739
0
    }
1740
0
    if (m_poPrivate->m_nBufferRadius != 0)
1741
0
        CPLSetXMLValue(psTree, "BufferRadius",
1742
0
                       CPLSPrintf("%d", m_poPrivate->m_nBufferRadius));
1743
0
    if (this->eSourceTransferType != GDT_Unknown)
1744
0
        CPLSetXMLValue(psTree, "SourceTransferType",
1745
0
                       GDALGetDataTypeName(eSourceTransferType));
1746
1747
0
    if (m_poPrivate->m_bSkipNonContributingSourcesSpecified)
1748
0
    {
1749
0
        CPLSetXMLValue(psTree, "SkipNonContributingSources",
1750
0
                       m_poPrivate->m_bSkipNonContributingSources ? "true"
1751
0
                                                                  : "false");
1752
0
    }
1753
1754
0
    return psTree;
1755
0
}
1756
1757
/************************************************************************/
1758
/*                             GetMinimum()                             */
1759
/************************************************************************/
1760
1761
double VRTDerivedRasterBand::GetMinimum(int *pbSuccess)
1762
0
{
1763
0
    return GDALRasterBand::GetMinimum(pbSuccess);
1764
0
}
1765
1766
/************************************************************************/
1767
/*                             GetMaximum()                             */
1768
/************************************************************************/
1769
1770
double VRTDerivedRasterBand::GetMaximum(int *pbSuccess)
1771
0
{
1772
0
    return GDALRasterBand::GetMaximum(pbSuccess);
1773
0
}
1774
1775
/************************************************************************/
1776
/*                       ComputeRasterMinMax()                          */
1777
/************************************************************************/
1778
1779
CPLErr VRTDerivedRasterBand::ComputeRasterMinMax(int bApproxOK,
1780
                                                 double *adfMinMax)
1781
0
{
1782
0
    return GDALRasterBand::ComputeRasterMinMax(bApproxOK, adfMinMax);
1783
0
}
1784
1785
/************************************************************************/
1786
/*                         ComputeStatistics()                          */
1787
/************************************************************************/
1788
1789
CPLErr VRTDerivedRasterBand::ComputeStatistics(int bApproxOK, double *pdfMin,
1790
                                               double *pdfMax, double *pdfMean,
1791
                                               double *pdfStdDev,
1792
                                               GDALProgressFunc pfnProgress,
1793
                                               void *pProgressData)
1794
1795
0
{
1796
0
    return GDALRasterBand::ComputeStatistics(bApproxOK, pdfMin, pdfMax, pdfMean,
1797
0
                                             pdfStdDev, pfnProgress,
1798
0
                                             pProgressData);
1799
0
}
1800
1801
/************************************************************************/
1802
/*                            GetHistogram()                            */
1803
/************************************************************************/
1804
1805
CPLErr VRTDerivedRasterBand::GetHistogram(double dfMin, double dfMax,
1806
                                          int nBuckets, GUIntBig *panHistogram,
1807
                                          int bIncludeOutOfRange, int bApproxOK,
1808
                                          GDALProgressFunc pfnProgress,
1809
                                          void *pProgressData)
1810
1811
0
{
1812
0
    return VRTRasterBand::GetHistogram(dfMin, dfMax, nBuckets, panHistogram,
1813
0
                                       bIncludeOutOfRange, bApproxOK,
1814
0
                                       pfnProgress, pProgressData);
1815
0
}
1816
1817
/*! @endcond */