/src/gdal/alg/gdalwarpoperation.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | /****************************************************************************** |
2 | | * |
3 | | * Project: High Performance Image Reprojector |
4 | | * Purpose: Implementation of the GDALWarpOperation class. |
5 | | * Author: Frank Warmerdam, warmerdam@pobox.com |
6 | | * |
7 | | ****************************************************************************** |
8 | | * Copyright (c) 2003, Frank Warmerdam <warmerdam@pobox.com> |
9 | | * Copyright (c) 2007-2012, Even Rouault <even dot rouault at spatialys.com> |
10 | | * |
11 | | * SPDX-License-Identifier: MIT |
12 | | ****************************************************************************/ |
13 | | |
14 | | #include "cpl_port.h" |
15 | | #include "gdalwarper.h" |
16 | | |
17 | | #include <cctype> |
18 | | #include <climits> |
19 | | #include <cmath> |
20 | | #include <cstddef> |
21 | | #include <cstdlib> |
22 | | #include <cstring> |
23 | | |
24 | | #include <algorithm> |
25 | | #include <limits> |
26 | | #include <map> |
27 | | #include <memory> |
28 | | #include <mutex> |
29 | | |
30 | | #include "cpl_config.h" |
31 | | #include "cpl_conv.h" |
32 | | #include "cpl_error.h" |
33 | | #include "cpl_error_internal.h" |
34 | | #include "cpl_mask.h" |
35 | | #include "cpl_multiproc.h" |
36 | | #include "cpl_string.h" |
37 | | #include "cpl_vsi.h" |
38 | | #include "gdal.h" |
39 | | #include "gdal_priv.h" |
40 | | #include "gdal_alg_priv.h" |
41 | | #include "ogr_api.h" |
42 | | #include "ogr_core.h" |
43 | | |
44 | | struct _GDALWarpChunk |
45 | | { |
46 | | int dx, dy, dsx, dsy; |
47 | | int sx, sy, ssx, ssy; |
48 | | double sExtraSx, sExtraSy; |
49 | | }; |
50 | | |
51 | | struct GDALWarpPrivateData |
52 | | { |
53 | | int nStepCount = 0; |
54 | | std::vector<int> abSuccess{}; |
55 | | std::vector<double> adfDstX{}; |
56 | | std::vector<double> adfDstY{}; |
57 | | }; |
58 | | |
59 | | static std::mutex gMutex{}; |
60 | | static std::map<GDALWarpOperation *, std::unique_ptr<GDALWarpPrivateData>> |
61 | | gMapPrivate{}; |
62 | | |
63 | | static GDALWarpPrivateData * |
64 | | GetWarpPrivateData(GDALWarpOperation *poWarpOperation) |
65 | 0 | { |
66 | 0 | std::lock_guard<std::mutex> oLock(gMutex); |
67 | 0 | auto oItem = gMapPrivate.find(poWarpOperation); |
68 | 0 | if (oItem != gMapPrivate.end()) |
69 | 0 | { |
70 | 0 | return oItem->second.get(); |
71 | 0 | } |
72 | 0 | else |
73 | 0 | { |
74 | 0 | gMapPrivate[poWarpOperation] = |
75 | 0 | std::unique_ptr<GDALWarpPrivateData>(new GDALWarpPrivateData()); |
76 | 0 | return gMapPrivate[poWarpOperation].get(); |
77 | 0 | } |
78 | 0 | } |
79 | | |
80 | | /************************************************************************/ |
81 | | /* ==================================================================== */ |
82 | | /* GDALWarpOperation */ |
83 | | /* ==================================================================== */ |
84 | | /************************************************************************/ |
85 | | |
86 | | /** |
87 | | * \class GDALWarpOperation "gdalwarper.h" |
88 | | * |
89 | | * High level image warping class. |
90 | | |
91 | | <h2>Warper Design</h2> |
92 | | |
93 | | The overall GDAL high performance image warper is split into a few components. |
94 | | |
95 | | - The transformation between input and output file coordinates is handled |
96 | | via GDALTransformerFunc() implementations such as the one returned by |
97 | | GDALCreateGenImgProjTransformer(). The transformers are ultimately responsible |
98 | | for translating pixel/line locations on the destination image to pixel/line |
99 | | locations on the source image. |
100 | | |
101 | | - In order to handle images too large to hold in RAM, the warper needs to |
102 | | segment large images. This is the responsibility of the GDALWarpOperation |
103 | | class. The GDALWarpOperation::ChunkAndWarpImage() invokes |
104 | | GDALWarpOperation::WarpRegion() on chunks of output and input image that |
105 | | are small enough to hold in the amount of memory allowed by the application. |
106 | | This process is described in greater detail in the <b>Image Chunking</b> |
107 | | section. |
108 | | |
109 | | - The GDALWarpOperation::WarpRegion() function creates and loads an output |
110 | | image buffer, and then calls WarpRegionToBuffer(). |
111 | | |
112 | | - GDALWarpOperation::WarpRegionToBuffer() is responsible for loading the |
113 | | source imagery corresponding to a particular output region, and generating |
114 | | masks and density masks from the source and destination imagery using |
115 | | the generator functions found in the GDALWarpOptions structure. Binds this |
116 | | all into an instance of GDALWarpKernel on which the |
117 | | GDALWarpKernel::PerformWarp() method is called. |
118 | | |
119 | | - GDALWarpKernel does the actual image warping, but is given an input image |
120 | | and an output image to operate on. The GDALWarpKernel does no IO, and in |
121 | | fact knows nothing about GDAL. It invokes the transformation function to |
122 | | get sample locations, builds output values based on the resampling algorithm |
123 | | in use. It also takes any validity and density masks into account during |
124 | | this operation. |
125 | | |
126 | | <h3>Chunk Size Selection</h3> |
127 | | |
128 | | The GDALWarpOptions ChunkAndWarpImage() method is responsible for invoking |
129 | | the WarpRegion() method on appropriate sized output chunks such that the |
130 | | memory required for the output image buffer, input image buffer and any |
131 | | required density and validity buffers is less than or equal to the application |
132 | | defined maximum memory available for use. |
133 | | |
134 | | It checks the memory required by walking the edges of the output region, |
135 | | transforming the locations back into source pixel/line coordinates and |
136 | | establishing a bounding rectangle of source imagery that would be required |
137 | | for the output area. This is actually accomplished by the private |
138 | | GDALWarpOperation::ComputeSourceWindow() method. |
139 | | |
140 | | Then memory requirements are used by totaling the memory required for all |
141 | | output bands, input bands, validity masks and density masks. If this is |
142 | | greater than the GDALWarpOptions::dfWarpMemoryLimit then the destination |
143 | | region is divided in two (splitting the longest dimension), and |
144 | | ChunkAndWarpImage() recursively invoked on each destination subregion. |
145 | | |
146 | | <h3>Validity and Density Masks Generation</h3> |
147 | | |
148 | | Fill in ways in which the validity and density masks may be generated here. |
149 | | Note that detailed semantics of the masks should be found in |
150 | | GDALWarpKernel. |
151 | | */ |
152 | | |
153 | | /************************************************************************/ |
154 | | /* GDALWarpOperation() */ |
155 | | /************************************************************************/ |
156 | | |
157 | 0 | GDALWarpOperation::GDALWarpOperation() = default; |
158 | | |
159 | | /************************************************************************/ |
160 | | /* ~GDALWarpOperation() */ |
161 | | /************************************************************************/ |
162 | | |
163 | | GDALWarpOperation::~GDALWarpOperation() |
164 | | |
165 | 0 | { |
166 | 0 | { |
167 | 0 | std::lock_guard<std::mutex> oLock(gMutex); |
168 | 0 | auto oItem = gMapPrivate.find(this); |
169 | 0 | if (oItem != gMapPrivate.end()) |
170 | 0 | { |
171 | 0 | gMapPrivate.erase(oItem); |
172 | 0 | } |
173 | 0 | } |
174 | |
|
175 | 0 | WipeOptions(); |
176 | |
|
177 | 0 | if (hIOMutex != nullptr) |
178 | 0 | { |
179 | 0 | CPLDestroyMutex(hIOMutex); |
180 | 0 | CPLDestroyMutex(hWarpMutex); |
181 | 0 | } |
182 | |
|
183 | 0 | WipeChunkList(); |
184 | 0 | if (psThreadData) |
185 | 0 | GWKThreadsEnd(psThreadData); |
186 | 0 | } |
187 | | |
188 | | /************************************************************************/ |
189 | | /* GetOptions() */ |
190 | | /************************************************************************/ |
191 | | |
192 | | /** Return warp options */ |
193 | | const GDALWarpOptions *GDALWarpOperation::GetOptions() |
194 | | |
195 | 0 | { |
196 | 0 | return psOptions; |
197 | 0 | } |
198 | | |
199 | | /************************************************************************/ |
200 | | /* WipeOptions() */ |
201 | | /************************************************************************/ |
202 | | |
203 | | void GDALWarpOperation::WipeOptions() |
204 | | |
205 | 0 | { |
206 | 0 | if (psOptions != nullptr) |
207 | 0 | { |
208 | 0 | GDALDestroyWarpOptions(psOptions); |
209 | 0 | psOptions = nullptr; |
210 | 0 | } |
211 | 0 | } |
212 | | |
213 | | /************************************************************************/ |
214 | | /* ValidateOptions() */ |
215 | | /************************************************************************/ |
216 | | |
217 | | int GDALWarpOperation::ValidateOptions() |
218 | | |
219 | 0 | { |
220 | 0 | if (psOptions == nullptr) |
221 | 0 | { |
222 | 0 | CPLError(CE_Failure, CPLE_IllegalArg, |
223 | 0 | "GDALWarpOptions.Validate(): " |
224 | 0 | "no options currently initialized."); |
225 | 0 | return FALSE; |
226 | 0 | } |
227 | | |
228 | 0 | if (psOptions->dfWarpMemoryLimit < 100000.0) |
229 | 0 | { |
230 | 0 | CPLError(CE_Failure, CPLE_IllegalArg, |
231 | 0 | "GDALWarpOptions.Validate(): " |
232 | 0 | "dfWarpMemoryLimit=%g is unreasonably small.", |
233 | 0 | psOptions->dfWarpMemoryLimit); |
234 | 0 | return FALSE; |
235 | 0 | } |
236 | | |
237 | 0 | if (psOptions->eResampleAlg != GRA_NearestNeighbour && |
238 | 0 | psOptions->eResampleAlg != GRA_Bilinear && |
239 | 0 | psOptions->eResampleAlg != GRA_Cubic && |
240 | 0 | psOptions->eResampleAlg != GRA_CubicSpline && |
241 | 0 | psOptions->eResampleAlg != GRA_Lanczos && |
242 | 0 | psOptions->eResampleAlg != GRA_Average && |
243 | 0 | psOptions->eResampleAlg != GRA_RMS && |
244 | 0 | psOptions->eResampleAlg != GRA_Mode && |
245 | 0 | psOptions->eResampleAlg != GRA_Max && |
246 | 0 | psOptions->eResampleAlg != GRA_Min && |
247 | 0 | psOptions->eResampleAlg != GRA_Med && |
248 | 0 | psOptions->eResampleAlg != GRA_Q1 && |
249 | 0 | psOptions->eResampleAlg != GRA_Q3 && psOptions->eResampleAlg != GRA_Sum) |
250 | 0 | { |
251 | 0 | CPLError(CE_Failure, CPLE_IllegalArg, |
252 | 0 | "GDALWarpOptions.Validate(): " |
253 | 0 | "eResampleArg=%d is not a supported value.", |
254 | 0 | psOptions->eResampleAlg); |
255 | 0 | return FALSE; |
256 | 0 | } |
257 | | |
258 | 0 | if (static_cast<int>(psOptions->eWorkingDataType) < 1 || |
259 | 0 | static_cast<int>(psOptions->eWorkingDataType) >= GDT_TypeCount) |
260 | 0 | { |
261 | 0 | CPLError(CE_Failure, CPLE_IllegalArg, |
262 | 0 | "GDALWarpOptions.Validate(): " |
263 | 0 | "eWorkingDataType=%d is not a supported value.", |
264 | 0 | psOptions->eWorkingDataType); |
265 | 0 | return FALSE; |
266 | 0 | } |
267 | | |
268 | 0 | if (GDALDataTypeIsComplex(psOptions->eWorkingDataType) != 0 && |
269 | 0 | (psOptions->eResampleAlg == GRA_Mode || |
270 | 0 | psOptions->eResampleAlg == GRA_Max || |
271 | 0 | psOptions->eResampleAlg == GRA_Min || |
272 | 0 | psOptions->eResampleAlg == GRA_Med || |
273 | 0 | psOptions->eResampleAlg == GRA_Q1 || |
274 | 0 | psOptions->eResampleAlg == GRA_Q3)) |
275 | 0 | { |
276 | |
|
277 | 0 | CPLError(CE_Failure, CPLE_NotSupported, |
278 | 0 | "GDALWarpOptions.Validate(): " |
279 | 0 | "min/max/qnt not supported for complex valued data."); |
280 | 0 | return FALSE; |
281 | 0 | } |
282 | | |
283 | 0 | if (psOptions->hSrcDS == nullptr) |
284 | 0 | { |
285 | 0 | CPLError(CE_Failure, CPLE_IllegalArg, |
286 | 0 | "GDALWarpOptions.Validate(): " |
287 | 0 | "hSrcDS is not set."); |
288 | 0 | return FALSE; |
289 | 0 | } |
290 | | |
291 | 0 | if (psOptions->nBandCount == 0) |
292 | 0 | { |
293 | 0 | CPLError(CE_Failure, CPLE_IllegalArg, |
294 | 0 | "GDALWarpOptions.Validate(): " |
295 | 0 | "nBandCount=0, no bands configured!"); |
296 | 0 | return FALSE; |
297 | 0 | } |
298 | | |
299 | 0 | if (psOptions->panSrcBands == nullptr) |
300 | 0 | { |
301 | 0 | CPLError(CE_Failure, CPLE_IllegalArg, |
302 | 0 | "GDALWarpOptions.Validate(): " |
303 | 0 | "panSrcBands is NULL."); |
304 | 0 | return FALSE; |
305 | 0 | } |
306 | | |
307 | 0 | if (psOptions->hDstDS != nullptr && psOptions->panDstBands == nullptr) |
308 | 0 | { |
309 | 0 | CPLError(CE_Failure, CPLE_IllegalArg, |
310 | 0 | "GDALWarpOptions.Validate(): " |
311 | 0 | "panDstBands is NULL."); |
312 | 0 | return FALSE; |
313 | 0 | } |
314 | | |
315 | 0 | for (int iBand = 0; iBand < psOptions->nBandCount; iBand++) |
316 | 0 | { |
317 | 0 | if (psOptions->panSrcBands[iBand] < 1 || |
318 | 0 | psOptions->panSrcBands[iBand] > |
319 | 0 | GDALGetRasterCount(psOptions->hSrcDS)) |
320 | 0 | { |
321 | 0 | CPLError(CE_Failure, CPLE_IllegalArg, |
322 | 0 | "panSrcBands[%d] = %d ... out of range for dataset.", |
323 | 0 | iBand, psOptions->panSrcBands[iBand]); |
324 | 0 | return FALSE; |
325 | 0 | } |
326 | 0 | if (psOptions->hDstDS != nullptr && |
327 | 0 | (psOptions->panDstBands[iBand] < 1 || |
328 | 0 | psOptions->panDstBands[iBand] > |
329 | 0 | GDALGetRasterCount(psOptions->hDstDS))) |
330 | 0 | { |
331 | 0 | CPLError(CE_Failure, CPLE_IllegalArg, |
332 | 0 | "panDstBands[%d] = %d ... out of range for dataset.", |
333 | 0 | iBand, psOptions->panDstBands[iBand]); |
334 | 0 | return FALSE; |
335 | 0 | } |
336 | | |
337 | 0 | if (psOptions->hDstDS != nullptr && |
338 | 0 | GDALGetRasterAccess(GDALGetRasterBand( |
339 | 0 | psOptions->hDstDS, psOptions->panDstBands[iBand])) == |
340 | 0 | GA_ReadOnly) |
341 | 0 | { |
342 | 0 | CPLError(CE_Failure, CPLE_IllegalArg, |
343 | 0 | "Destination band %d appears to be read-only.", |
344 | 0 | psOptions->panDstBands[iBand]); |
345 | 0 | return FALSE; |
346 | 0 | } |
347 | 0 | } |
348 | | |
349 | 0 | if (psOptions->nBandCount == 0) |
350 | 0 | { |
351 | 0 | CPLError(CE_Failure, CPLE_IllegalArg, |
352 | 0 | "GDALWarpOptions.Validate(): " |
353 | 0 | "nBandCount=0, no bands configured!"); |
354 | 0 | return FALSE; |
355 | 0 | } |
356 | | |
357 | 0 | if (psOptions->pfnProgress == nullptr) |
358 | 0 | { |
359 | 0 | CPLError(CE_Failure, CPLE_IllegalArg, |
360 | 0 | "GDALWarpOptions.Validate(): " |
361 | 0 | "pfnProgress is NULL."); |
362 | 0 | return FALSE; |
363 | 0 | } |
364 | | |
365 | 0 | if (psOptions->pfnTransformer == nullptr) |
366 | 0 | { |
367 | 0 | CPLError(CE_Failure, CPLE_IllegalArg, |
368 | 0 | "GDALWarpOptions.Validate(): " |
369 | 0 | "pfnTransformer is NULL."); |
370 | 0 | return FALSE; |
371 | 0 | } |
372 | | |
373 | 0 | { |
374 | 0 | CPLStringList aosWO(CSLDuplicate(psOptions->papszWarpOptions)); |
375 | | // A few internal/undocumented options |
376 | 0 | aosWO.SetNameValue("EXTRA_ELTS", nullptr); |
377 | 0 | aosWO.SetNameValue("USE_GENERAL_CASE", nullptr); |
378 | 0 | aosWO.SetNameValue("ERROR_THRESHOLD", nullptr); |
379 | 0 | aosWO.SetNameValue("ERROR_OUT_IF_EMPTY_SOURCE_WINDOW", nullptr); |
380 | 0 | aosWO.SetNameValue("MULT_FACTOR_VERTICAL_SHIFT_PIPELINE", nullptr); |
381 | 0 | aosWO.SetNameValue("SRC_FILL_RATIO_HEURISTICS", nullptr); |
382 | 0 | GDALValidateOptions(GDALWarpGetOptionList(), aosWO.List(), "option", |
383 | 0 | "warp options"); |
384 | 0 | } |
385 | |
|
386 | 0 | const char *pszSampleSteps = |
387 | 0 | CSLFetchNameValue(psOptions->papszWarpOptions, "SAMPLE_STEPS"); |
388 | 0 | if (pszSampleSteps) |
389 | 0 | { |
390 | 0 | if (!EQUAL(pszSampleSteps, "ALL") && atoi(pszSampleSteps) < 2) |
391 | 0 | { |
392 | 0 | CPLError(CE_Failure, CPLE_IllegalArg, |
393 | 0 | "GDALWarpOptions.Validate(): " |
394 | 0 | "SAMPLE_STEPS warp option has illegal value."); |
395 | 0 | return FALSE; |
396 | 0 | } |
397 | 0 | } |
398 | | |
399 | 0 | if (psOptions->nSrcAlphaBand > 0) |
400 | 0 | { |
401 | 0 | if (psOptions->hSrcDS == nullptr || |
402 | 0 | psOptions->nSrcAlphaBand > GDALGetRasterCount(psOptions->hSrcDS)) |
403 | 0 | { |
404 | 0 | CPLError(CE_Failure, CPLE_IllegalArg, |
405 | 0 | "nSrcAlphaBand = %d ... out of range for dataset.", |
406 | 0 | psOptions->nSrcAlphaBand); |
407 | 0 | return FALSE; |
408 | 0 | } |
409 | 0 | } |
410 | | |
411 | 0 | if (psOptions->nDstAlphaBand > 0) |
412 | 0 | { |
413 | 0 | if (psOptions->hDstDS == nullptr || |
414 | 0 | psOptions->nDstAlphaBand > GDALGetRasterCount(psOptions->hDstDS)) |
415 | 0 | { |
416 | 0 | CPLError(CE_Failure, CPLE_IllegalArg, |
417 | 0 | "nDstAlphaBand = %d ... out of range for dataset.", |
418 | 0 | psOptions->nDstAlphaBand); |
419 | 0 | return FALSE; |
420 | 0 | } |
421 | 0 | } |
422 | | |
423 | 0 | if (psOptions->nSrcAlphaBand > 0 && |
424 | 0 | psOptions->pfnSrcDensityMaskFunc != nullptr) |
425 | 0 | { |
426 | 0 | CPLError(CE_Failure, CPLE_IllegalArg, |
427 | 0 | "GDALWarpOptions.Validate(): " |
428 | 0 | "pfnSrcDensityMaskFunc provided as well as a SrcAlphaBand."); |
429 | 0 | return FALSE; |
430 | 0 | } |
431 | | |
432 | 0 | if (psOptions->nDstAlphaBand > 0 && |
433 | 0 | psOptions->pfnDstDensityMaskFunc != nullptr) |
434 | 0 | { |
435 | 0 | CPLError(CE_Failure, CPLE_IllegalArg, |
436 | 0 | "GDALWarpOptions.Validate(): " |
437 | 0 | "pfnDstDensityMaskFunc provided as well as a DstAlphaBand."); |
438 | 0 | return FALSE; |
439 | 0 | } |
440 | | |
441 | 0 | const bool bErrorOutIfEmptySourceWindow = CPLFetchBool( |
442 | 0 | psOptions->papszWarpOptions, "ERROR_OUT_IF_EMPTY_SOURCE_WINDOW", true); |
443 | 0 | if (!bErrorOutIfEmptySourceWindow && |
444 | 0 | CSLFetchNameValue(psOptions->papszWarpOptions, "INIT_DEST") == nullptr) |
445 | 0 | { |
446 | 0 | CPLError(CE_Failure, CPLE_IllegalArg, |
447 | 0 | "GDALWarpOptions.Validate(): " |
448 | 0 | "ERROR_OUT_IF_EMPTY_SOURCE_WINDOW=FALSE can only be used " |
449 | 0 | "if INIT_DEST is set"); |
450 | 0 | return FALSE; |
451 | 0 | } |
452 | | |
453 | 0 | return TRUE; |
454 | 0 | } |
455 | | |
456 | | /************************************************************************/ |
457 | | /* SetAlphaMax() */ |
458 | | /************************************************************************/ |
459 | | |
460 | | static void SetAlphaMax(GDALWarpOptions *psOptions, GDALRasterBandH hBand, |
461 | | const char *pszKey) |
462 | 0 | { |
463 | 0 | const char *pszNBits = |
464 | 0 | GDALGetMetadataItem(hBand, "NBITS", "IMAGE_STRUCTURE"); |
465 | 0 | const char *pszAlphaMax = nullptr; |
466 | 0 | if (pszNBits) |
467 | 0 | { |
468 | 0 | pszAlphaMax = CPLSPrintf("%u", (1U << atoi(pszNBits)) - 1U); |
469 | 0 | } |
470 | 0 | else if (GDALGetRasterDataType(hBand) == GDT_Int16) |
471 | 0 | { |
472 | 0 | pszAlphaMax = "32767"; |
473 | 0 | } |
474 | 0 | else if (GDALGetRasterDataType(hBand) == GDT_UInt16) |
475 | 0 | { |
476 | 0 | pszAlphaMax = "65535"; |
477 | 0 | } |
478 | |
|
479 | 0 | if (pszAlphaMax != nullptr) |
480 | 0 | psOptions->papszWarpOptions = |
481 | 0 | CSLSetNameValue(psOptions->papszWarpOptions, pszKey, pszAlphaMax); |
482 | 0 | else |
483 | 0 | CPLDebug("WARP", "SetAlphaMax: AlphaMax not set."); |
484 | 0 | } |
485 | | |
486 | | /************************************************************************/ |
487 | | /* SetTieStrategy() */ |
488 | | /************************************************************************/ |
489 | | |
490 | | static void SetTieStrategy(GDALWarpOptions *psOptions, CPLErr *peErr) |
491 | 0 | { |
492 | 0 | if (const char *pszTieStrategy = |
493 | 0 | CSLFetchNameValue(psOptions->papszWarpOptions, "MODE_TIES")) |
494 | 0 | { |
495 | 0 | if (EQUAL(pszTieStrategy, "FIRST")) |
496 | 0 | { |
497 | 0 | psOptions->eTieStrategy = GWKTS_First; |
498 | 0 | } |
499 | 0 | else if (EQUAL(pszTieStrategy, "MIN")) |
500 | 0 | { |
501 | 0 | psOptions->eTieStrategy = GWKTS_Min; |
502 | 0 | } |
503 | 0 | else if (EQUAL(pszTieStrategy, "MAX")) |
504 | 0 | { |
505 | 0 | psOptions->eTieStrategy = GWKTS_Max; |
506 | 0 | } |
507 | 0 | else |
508 | 0 | { |
509 | 0 | CPLError(CE_Failure, CPLE_IllegalArg, |
510 | 0 | "Unknown value of MODE_TIES: %s", pszTieStrategy); |
511 | 0 | *peErr = CE_Failure; |
512 | 0 | } |
513 | 0 | } |
514 | 0 | } |
515 | | |
516 | | /************************************************************************/ |
517 | | /* Initialize() */ |
518 | | /************************************************************************/ |
519 | | |
520 | | /** |
521 | | * \fn CPLErr GDALWarpOperation::Initialize( const GDALWarpOptions * ); |
522 | | * |
523 | | * This method initializes the GDALWarpOperation's concept of the warp |
524 | | * options in effect. It creates an internal copy of the GDALWarpOptions |
525 | | * structure and defaults a variety of additional fields in the internal |
526 | | * copy if not set in the provided warp options. |
527 | | * |
528 | | * Defaulting operations include: |
529 | | * - If the nBandCount is 0, it will be set to the number of bands in the |
530 | | * source image (which must match the output image) and the panSrcBands |
531 | | * and panDstBands will be populated. |
532 | | * |
533 | | * @param psNewOptions input set of warp options. These are copied and may |
534 | | * be destroyed after this call by the application. |
535 | | * @param pfnTransformer Transformer function that this GDALWarpOperation must use |
536 | | * and own, or NULL. When pfnTransformer is not NULL, this implies that |
537 | | * psNewOptions->pfnTransformer is NULL |
538 | | * @param psOwnedTransformerArg Transformer argument that this GDALWarpOperation |
539 | | * must use, and own, or NULL. When psOwnedTransformerArg is set, this implies that |
540 | | * psNewOptions->pTransformerArg is NULL |
541 | | * |
542 | | * @return CE_None on success or CE_Failure if an error occurs. |
543 | | */ |
544 | | |
545 | | CPLErr |
546 | | GDALWarpOperation::Initialize(const GDALWarpOptions *psNewOptions, |
547 | | GDALTransformerFunc pfnTransformer, |
548 | | GDALTransformerArgUniquePtr psOwnedTransformerArg) |
549 | | |
550 | 0 | { |
551 | | /* -------------------------------------------------------------------- */ |
552 | | /* Copy the passed in options. */ |
553 | | /* -------------------------------------------------------------------- */ |
554 | 0 | if (psOptions != nullptr) |
555 | 0 | WipeOptions(); |
556 | |
|
557 | 0 | CPLErr eErr = CE_None; |
558 | |
|
559 | 0 | psOptions = GDALCloneWarpOptions(psNewOptions); |
560 | |
|
561 | 0 | if (psOptions->pfnTransformer) |
562 | 0 | { |
563 | 0 | CPLAssert(pfnTransformer == nullptr); |
564 | 0 | CPLAssert(psOwnedTransformerArg.get() == nullptr); |
565 | 0 | } |
566 | 0 | else |
567 | 0 | { |
568 | 0 | m_psOwnedTransformerArg = std::move(psOwnedTransformerArg); |
569 | 0 | psOptions->pfnTransformer = pfnTransformer; |
570 | 0 | psOptions->pTransformerArg = m_psOwnedTransformerArg.get(); |
571 | 0 | } |
572 | | |
573 | 0 | psOptions->papszWarpOptions = |
574 | 0 | CSLSetNameValue(psOptions->papszWarpOptions, "EXTRA_ELTS", |
575 | 0 | CPLSPrintf("%d", WARP_EXTRA_ELTS)); |
576 | | |
577 | | /* -------------------------------------------------------------------- */ |
578 | | /* Default band mapping if missing. */ |
579 | | /* -------------------------------------------------------------------- */ |
580 | 0 | if (psOptions->nBandCount == 0 && psOptions->hSrcDS != nullptr && |
581 | 0 | psOptions->hDstDS != nullptr && |
582 | 0 | GDALGetRasterCount(psOptions->hSrcDS) == |
583 | 0 | GDALGetRasterCount(psOptions->hDstDS)) |
584 | 0 | { |
585 | 0 | GDALWarpInitDefaultBandMapping(psOptions, |
586 | 0 | GDALGetRasterCount(psOptions->hSrcDS)); |
587 | 0 | } |
588 | |
|
589 | 0 | GDALWarpResolveWorkingDataType(psOptions); |
590 | 0 | SetTieStrategy(psOptions, &eErr); |
591 | | |
592 | | /* -------------------------------------------------------------------- */ |
593 | | /* Default memory available. */ |
594 | | /* */ |
595 | | /* For now we default to 64MB of RAM, but eventually we should */ |
596 | | /* try various schemes to query physical RAM. This can */ |
597 | | /* certainly be done on Win32 and Linux. */ |
598 | | /* -------------------------------------------------------------------- */ |
599 | 0 | if (psOptions->dfWarpMemoryLimit == 0.0) |
600 | 0 | { |
601 | 0 | psOptions->dfWarpMemoryLimit = 64.0 * 1024 * 1024; |
602 | 0 | } |
603 | | |
604 | | /* -------------------------------------------------------------------- */ |
605 | | /* Are we doing timings? */ |
606 | | /* -------------------------------------------------------------------- */ |
607 | 0 | bReportTimings = |
608 | 0 | CPLFetchBool(psOptions->papszWarpOptions, "REPORT_TIMINGS", false); |
609 | | |
610 | | /* -------------------------------------------------------------------- */ |
611 | | /* Support creating cutline from text warpoption. */ |
612 | | /* -------------------------------------------------------------------- */ |
613 | 0 | const char *pszCutlineWKT = |
614 | 0 | CSLFetchNameValue(psOptions->papszWarpOptions, "CUTLINE"); |
615 | |
|
616 | 0 | if (pszCutlineWKT && psOptions->hCutline == nullptr) |
617 | 0 | { |
618 | 0 | char *pszWKTTmp = const_cast<char *>(pszCutlineWKT); |
619 | 0 | if (OGR_G_CreateFromWkt(&pszWKTTmp, nullptr, |
620 | 0 | reinterpret_cast<OGRGeometryH *>( |
621 | 0 | &(psOptions->hCutline))) != OGRERR_NONE) |
622 | 0 | { |
623 | 0 | eErr = CE_Failure; |
624 | 0 | CPLError(CE_Failure, CPLE_AppDefined, |
625 | 0 | "Failed to parse CUTLINE geometry wkt."); |
626 | 0 | } |
627 | 0 | } |
628 | 0 | const char *pszBD = |
629 | 0 | CSLFetchNameValue(psOptions->papszWarpOptions, "CUTLINE_BLEND_DIST"); |
630 | 0 | if (pszBD) |
631 | 0 | psOptions->dfCutlineBlendDist = CPLAtof(pszBD); |
632 | | |
633 | | /* -------------------------------------------------------------------- */ |
634 | | /* Set SRC_ALPHA_MAX if not provided. */ |
635 | | /* -------------------------------------------------------------------- */ |
636 | 0 | if (psOptions->hSrcDS != nullptr && psOptions->nSrcAlphaBand > 0 && |
637 | 0 | psOptions->nSrcAlphaBand <= GDALGetRasterCount(psOptions->hSrcDS) && |
638 | 0 | CSLFetchNameValue(psOptions->papszWarpOptions, "SRC_ALPHA_MAX") == |
639 | 0 | nullptr) |
640 | 0 | { |
641 | 0 | GDALRasterBandH hSrcAlphaBand = |
642 | 0 | GDALGetRasterBand(psOptions->hSrcDS, psOptions->nSrcAlphaBand); |
643 | 0 | SetAlphaMax(psOptions, hSrcAlphaBand, "SRC_ALPHA_MAX"); |
644 | 0 | } |
645 | | |
646 | | /* -------------------------------------------------------------------- */ |
647 | | /* Set DST_ALPHA_MAX if not provided. */ |
648 | | /* -------------------------------------------------------------------- */ |
649 | 0 | if (psOptions->hDstDS != nullptr && psOptions->nDstAlphaBand > 0 && |
650 | 0 | psOptions->nDstAlphaBand <= GDALGetRasterCount(psOptions->hDstDS) && |
651 | 0 | CSLFetchNameValue(psOptions->papszWarpOptions, "DST_ALPHA_MAX") == |
652 | 0 | nullptr) |
653 | 0 | { |
654 | 0 | GDALRasterBandH hDstAlphaBand = |
655 | 0 | GDALGetRasterBand(psOptions->hDstDS, psOptions->nDstAlphaBand); |
656 | 0 | SetAlphaMax(psOptions, hDstAlphaBand, "DST_ALPHA_MAX"); |
657 | 0 | } |
658 | | |
659 | | /* -------------------------------------------------------------------- */ |
660 | | /* If the options don't validate, then wipe them. */ |
661 | | /* -------------------------------------------------------------------- */ |
662 | 0 | if (!ValidateOptions()) |
663 | 0 | eErr = CE_Failure; |
664 | |
|
665 | 0 | if (eErr != CE_None) |
666 | 0 | { |
667 | 0 | WipeOptions(); |
668 | 0 | } |
669 | 0 | else |
670 | 0 | { |
671 | 0 | psThreadData = GWKThreadsCreate(psOptions->papszWarpOptions, |
672 | 0 | psOptions->pfnTransformer, |
673 | 0 | psOptions->pTransformerArg); |
674 | 0 | if (psThreadData == nullptr) |
675 | 0 | eErr = CE_Failure; |
676 | | |
677 | | /* -------------------------------------------------------------------- |
678 | | */ |
679 | | /* Compute dstcoordinates of a few special points. */ |
680 | | /* -------------------------------------------------------------------- |
681 | | */ |
682 | | |
683 | | // South and north poles. Do not exactly take +/-90 as the |
684 | | // round-tripping of the longitude value fails with some projections. |
685 | 0 | for (double dfY : {-89.9999, 89.9999}) |
686 | 0 | { |
687 | 0 | double dfX = 0; |
688 | 0 | if ((GDALIsTransformer(psOptions->pTransformerArg, |
689 | 0 | GDAL_APPROX_TRANSFORMER_CLASS_NAME) && |
690 | 0 | GDALTransformLonLatToDestApproxTransformer( |
691 | 0 | psOptions->pTransformerArg, &dfX, &dfY)) || |
692 | 0 | (GDALIsTransformer(psOptions->pTransformerArg, |
693 | 0 | GDAL_GEN_IMG_TRANSFORMER_CLASS_NAME) && |
694 | 0 | GDALTransformLonLatToDestGenImgProjTransformer( |
695 | 0 | psOptions->pTransformerArg, &dfX, &dfY))) |
696 | 0 | { |
697 | 0 | aDstXYSpecialPoints.emplace_back( |
698 | 0 | std::pair<double, double>(dfX, dfY)); |
699 | 0 | } |
700 | 0 | } |
701 | |
|
702 | 0 | m_bIsTranslationOnPixelBoundaries = |
703 | 0 | GDALTransformIsTranslationOnPixelBoundaries( |
704 | 0 | psOptions->pfnTransformer, psOptions->pTransformerArg) && |
705 | 0 | CPLTestBool( |
706 | 0 | CPLGetConfigOption("GDAL_WARP_USE_TRANSLATION_OPTIM", "YES")); |
707 | 0 | if (m_bIsTranslationOnPixelBoundaries) |
708 | 0 | { |
709 | 0 | CPLDebug("WARP", |
710 | 0 | "Using translation-on-pixel-boundaries optimization"); |
711 | 0 | } |
712 | 0 | } |
713 | |
|
714 | 0 | return eErr; |
715 | 0 | } |
716 | | |
717 | | /** |
718 | | * \fn void* GDALWarpOperation::CreateDestinationBuffer( |
719 | | int nDstXSize, int nDstYSize, int *pbInitialized); |
720 | | * |
721 | | * This method creates a destination buffer for use with WarpRegionToBuffer. |
722 | | * The output is initialized based on the INIT_DEST settings. |
723 | | * |
724 | | * @param nDstXSize Width of output window on destination buffer to be produced. |
725 | | * @param nDstYSize Height of output window on destination buffer to be |
726 | | produced. |
727 | | * @param pbInitialized Filled with boolean indicating if the buffer was |
728 | | initialized. |
729 | | * |
730 | | * @return Buffer capable for use as a warp operation output destination |
731 | | */ |
732 | | void *GDALWarpOperation::CreateDestinationBuffer(int nDstXSize, int nDstYSize, |
733 | | int *pbInitialized) |
734 | 0 | { |
735 | | |
736 | | /* -------------------------------------------------------------------- */ |
737 | | /* Allocate block of memory large enough to hold all the bands */ |
738 | | /* for this block. */ |
739 | | /* -------------------------------------------------------------------- */ |
740 | 0 | const int nWordSize = GDALGetDataTypeSizeBytes(psOptions->eWorkingDataType); |
741 | |
|
742 | 0 | void *pDstBuffer = VSI_MALLOC3_VERBOSE( |
743 | 0 | cpl::fits_on<int>(nWordSize * psOptions->nBandCount), nDstXSize, |
744 | 0 | nDstYSize); |
745 | 0 | if (pDstBuffer) |
746 | 0 | { |
747 | 0 | auto eErr = InitializeDestinationBuffer(pDstBuffer, nDstXSize, |
748 | 0 | nDstYSize, pbInitialized); |
749 | 0 | if (eErr != CE_None) |
750 | 0 | { |
751 | 0 | CPLFree(pDstBuffer); |
752 | 0 | return nullptr; |
753 | 0 | } |
754 | 0 | } |
755 | 0 | return pDstBuffer; |
756 | 0 | } |
757 | | |
758 | | /** |
759 | | * This method initializes a destination buffer for use with WarpRegionToBuffer. |
760 | | * |
761 | | * It is initialized based on the INIT_DEST settings. |
762 | | * |
763 | | * This method is called by CreateDestinationBuffer(). |
764 | | * It is meant at being used by callers that have already allocated the |
765 | | * destination buffer without using CreateDestinationBuffer(). |
766 | | * |
767 | | * @param pDstBuffer Buffer of size |
768 | | * GDALGetDataTypeSizeBytes(psOptions->eWorkingDataType) * |
769 | | * nDstXSize * nDstYSize * psOptions->nBandCount bytes. |
770 | | * @param nDstXSize Width of output window on destination buffer to be produced. |
771 | | * @param nDstYSize Height of output window on destination buffer to be |
772 | | * produced. |
773 | | * @param pbInitialized Filled with boolean indicating if the buffer was |
774 | | * initialized. |
775 | | * @since 3.10 |
776 | | */ |
777 | | CPLErr GDALWarpOperation::InitializeDestinationBuffer(void *pDstBuffer, |
778 | | int nDstXSize, |
779 | | int nDstYSize, |
780 | | int *pbInitialized) const |
781 | 0 | { |
782 | 0 | const int nWordSize = GDALGetDataTypeSizeBytes(psOptions->eWorkingDataType); |
783 | |
|
784 | 0 | const GPtrDiff_t nBandSize = |
785 | 0 | static_cast<GPtrDiff_t>(nWordSize) * nDstXSize * nDstYSize; |
786 | | |
787 | | /* -------------------------------------------------------------------- */ |
788 | | /* Initialize if requested in the options */ |
789 | | /* -------------------------------------------------------------------- */ |
790 | 0 | const char *pszInitDest = |
791 | 0 | CSLFetchNameValue(psOptions->papszWarpOptions, "INIT_DEST"); |
792 | |
|
793 | 0 | if (pszInitDest == nullptr || EQUAL(pszInitDest, "")) |
794 | 0 | { |
795 | 0 | if (pbInitialized != nullptr) |
796 | 0 | { |
797 | 0 | *pbInitialized = FALSE; |
798 | 0 | } |
799 | 0 | return CE_None; |
800 | 0 | } |
801 | | |
802 | 0 | if (pbInitialized != nullptr) |
803 | 0 | { |
804 | 0 | *pbInitialized = TRUE; |
805 | 0 | } |
806 | |
|
807 | 0 | CPLStringList aosInitValues( |
808 | 0 | CSLTokenizeStringComplex(pszInitDest, ",", FALSE, FALSE)); |
809 | 0 | const int nInitCount = aosInitValues.Count(); |
810 | |
|
811 | 0 | for (int iBand = 0; iBand < psOptions->nBandCount; iBand++) |
812 | 0 | { |
813 | 0 | double adfInitRealImag[2] = {0.0, 0.0}; |
814 | 0 | const char *pszBandInit = |
815 | 0 | aosInitValues[std::min(iBand, nInitCount - 1)]; |
816 | |
|
817 | 0 | if (EQUAL(pszBandInit, "NO_DATA")) |
818 | 0 | { |
819 | 0 | if (psOptions->padfDstNoDataReal == nullptr) |
820 | 0 | { |
821 | | // TODO: Change to CE_Failure for GDAL 3.12 |
822 | | // See https://github.com/OSGeo/gdal/pull/12189 |
823 | 0 | CPLError(CE_Warning, CPLE_AppDefined, |
824 | 0 | "INIT_DEST was set to NO_DATA, but a NoData value was " |
825 | 0 | "not defined. This warning will become a failure in a " |
826 | 0 | "future GDAL release."); |
827 | 0 | return CE_Failure; |
828 | 0 | } |
829 | | |
830 | 0 | adfInitRealImag[0] = psOptions->padfDstNoDataReal[iBand]; |
831 | 0 | if (psOptions->padfDstNoDataImag != nullptr) |
832 | 0 | { |
833 | 0 | adfInitRealImag[1] = psOptions->padfDstNoDataImag[iBand]; |
834 | 0 | } |
835 | 0 | } |
836 | 0 | else |
837 | 0 | { |
838 | 0 | if (CPLStringToComplex(pszBandInit, &adfInitRealImag[0], |
839 | 0 | &adfInitRealImag[1]) != CE_None) |
840 | 0 | { |
841 | 0 | CPLError(CE_Failure, CPLE_AppDefined, |
842 | 0 | "Error parsing INIT_DEST"); |
843 | 0 | return CE_Failure; |
844 | 0 | } |
845 | 0 | } |
846 | | |
847 | 0 | GByte *pBandData = static_cast<GByte *>(pDstBuffer) + iBand * nBandSize; |
848 | |
|
849 | 0 | if (psOptions->eWorkingDataType == GDT_Byte) |
850 | 0 | { |
851 | 0 | memset(pBandData, |
852 | 0 | std::max( |
853 | 0 | 0, std::min(255, static_cast<int>(adfInitRealImag[0]))), |
854 | 0 | nBandSize); |
855 | 0 | } |
856 | 0 | else if (!std::isnan(adfInitRealImag[0]) && adfInitRealImag[0] == 0.0 && |
857 | 0 | !std::isnan(adfInitRealImag[1]) && adfInitRealImag[1] == 0.0) |
858 | 0 | { |
859 | 0 | memset(pBandData, 0, nBandSize); |
860 | 0 | } |
861 | 0 | else if (!std::isnan(adfInitRealImag[1]) && adfInitRealImag[1] == 0.0) |
862 | 0 | { |
863 | 0 | GDALCopyWords64(&adfInitRealImag, GDT_Float64, 0, pBandData, |
864 | 0 | psOptions->eWorkingDataType, nWordSize, |
865 | 0 | static_cast<GPtrDiff_t>(nDstXSize) * nDstYSize); |
866 | 0 | } |
867 | 0 | else |
868 | 0 | { |
869 | 0 | GDALCopyWords64(&adfInitRealImag, GDT_CFloat64, 0, pBandData, |
870 | 0 | psOptions->eWorkingDataType, nWordSize, |
871 | 0 | static_cast<GPtrDiff_t>(nDstXSize) * nDstYSize); |
872 | 0 | } |
873 | 0 | } |
874 | | |
875 | 0 | return CE_None; |
876 | 0 | } |
877 | | |
878 | | /** |
879 | | * \fn void GDALWarpOperation::DestroyDestinationBuffer( void *pDstBuffer ) |
880 | | * |
881 | | * This method destroys a buffer previously retrieved from |
882 | | * CreateDestinationBuffer |
883 | | * |
884 | | * @param pDstBuffer destination buffer to be destroyed |
885 | | * |
886 | | */ |
887 | | void GDALWarpOperation::DestroyDestinationBuffer(void *pDstBuffer) |
888 | 0 | { |
889 | 0 | VSIFree(pDstBuffer); |
890 | 0 | } |
891 | | |
892 | | /************************************************************************/ |
893 | | /* GDALCreateWarpOperation() */ |
894 | | /************************************************************************/ |
895 | | |
896 | | /** |
897 | | * @see GDALWarpOperation::Initialize() |
898 | | */ |
899 | | |
900 | | GDALWarpOperationH GDALCreateWarpOperation(const GDALWarpOptions *psNewOptions) |
901 | 0 | { |
902 | 0 | GDALWarpOperation *poOperation = new GDALWarpOperation; |
903 | 0 | if (poOperation->Initialize(psNewOptions) != CE_None) |
904 | 0 | { |
905 | 0 | delete poOperation; |
906 | 0 | return nullptr; |
907 | 0 | } |
908 | | |
909 | 0 | return reinterpret_cast<GDALWarpOperationH>(poOperation); |
910 | 0 | } |
911 | | |
912 | | /************************************************************************/ |
913 | | /* GDALDestroyWarpOperation() */ |
914 | | /************************************************************************/ |
915 | | |
916 | | /** |
917 | | * @see GDALWarpOperation::~GDALWarpOperation() |
918 | | */ |
919 | | |
920 | | void GDALDestroyWarpOperation(GDALWarpOperationH hOperation) |
921 | 0 | { |
922 | 0 | if (hOperation) |
923 | 0 | delete static_cast<GDALWarpOperation *>(hOperation); |
924 | 0 | } |
925 | | |
926 | | /************************************************************************/ |
927 | | /* CollectChunkList() */ |
928 | | /************************************************************************/ |
929 | | |
930 | | void GDALWarpOperation::CollectChunkList(int nDstXOff, int nDstYOff, |
931 | | int nDstXSize, int nDstYSize) |
932 | | |
933 | 0 | { |
934 | | /* -------------------------------------------------------------------- */ |
935 | | /* Collect the list of chunks to operate on. */ |
936 | | /* -------------------------------------------------------------------- */ |
937 | 0 | WipeChunkList(); |
938 | 0 | CollectChunkListInternal(nDstXOff, nDstYOff, nDstXSize, nDstYSize); |
939 | | |
940 | | // Sort chunks from top to bottom, and for equal y, from left to right. |
941 | 0 | if (nChunkListCount > 1) |
942 | 0 | { |
943 | 0 | std::sort(pasChunkList, pasChunkList + nChunkListCount, |
944 | 0 | [](const GDALWarpChunk &a, const GDALWarpChunk &b) |
945 | 0 | { |
946 | 0 | if (a.dy < b.dy) |
947 | 0 | return true; |
948 | 0 | if (a.dy > b.dy) |
949 | 0 | return false; |
950 | 0 | return a.dx < b.dx; |
951 | 0 | }); |
952 | 0 | } |
953 | | |
954 | | /* -------------------------------------------------------------------- */ |
955 | | /* Find the global source window. */ |
956 | | /* -------------------------------------------------------------------- */ |
957 | |
|
958 | 0 | const int knIntMax = std::numeric_limits<int>::max(); |
959 | 0 | const int knIntMin = std::numeric_limits<int>::min(); |
960 | 0 | int nSrcXOff = knIntMax; |
961 | 0 | int nSrcYOff = knIntMax; |
962 | 0 | int nSrcX2Off = knIntMin; |
963 | 0 | int nSrcY2Off = knIntMin; |
964 | 0 | double dfApproxAccArea = 0; |
965 | 0 | for (int iChunk = 0; pasChunkList != nullptr && iChunk < nChunkListCount; |
966 | 0 | iChunk++) |
967 | 0 | { |
968 | 0 | GDALWarpChunk *pasThisChunk = pasChunkList + iChunk; |
969 | 0 | nSrcXOff = std::min(nSrcXOff, pasThisChunk->sx); |
970 | 0 | nSrcYOff = std::min(nSrcYOff, pasThisChunk->sy); |
971 | 0 | nSrcX2Off = std::max(nSrcX2Off, pasThisChunk->sx + pasThisChunk->ssx); |
972 | 0 | nSrcY2Off = std::max(nSrcY2Off, pasThisChunk->sy + pasThisChunk->ssy); |
973 | 0 | dfApproxAccArea += |
974 | 0 | static_cast<double>(pasThisChunk->ssx) * pasThisChunk->ssy; |
975 | 0 | } |
976 | 0 | if (nSrcXOff < nSrcX2Off) |
977 | 0 | { |
978 | 0 | const double dfTotalArea = |
979 | 0 | static_cast<double>(nSrcX2Off - nSrcXOff) * (nSrcY2Off - nSrcYOff); |
980 | | // This is really a gross heuristics, but should work in most cases |
981 | 0 | if (dfApproxAccArea >= dfTotalArea * 0.80) |
982 | 0 | { |
983 | 0 | GDALDataset::FromHandle(psOptions->hSrcDS) |
984 | 0 | ->AdviseRead(nSrcXOff, nSrcYOff, nSrcX2Off - nSrcXOff, |
985 | 0 | nSrcY2Off - nSrcYOff, nDstXSize, nDstYSize, |
986 | 0 | psOptions->eWorkingDataType, psOptions->nBandCount, |
987 | 0 | psOptions->panSrcBands, nullptr); |
988 | 0 | } |
989 | 0 | } |
990 | 0 | } |
991 | | |
992 | | /************************************************************************/ |
993 | | /* ChunkAndWarpImage() */ |
994 | | /************************************************************************/ |
995 | | |
996 | | /** |
997 | | * \fn CPLErr GDALWarpOperation::ChunkAndWarpImage( |
998 | | int nDstXOff, int nDstYOff, int nDstXSize, int nDstYSize ); |
999 | | * |
1000 | | * This method does a complete warp of the source image to the destination |
1001 | | * image for the indicated region with the current warp options in effect. |
1002 | | * Progress is reported to the installed progress monitor, if any. |
1003 | | * |
1004 | | * This function will subdivide the region and recursively call itself |
1005 | | * until the total memory required to process a region chunk will all fit |
1006 | | * in the memory pool defined by GDALWarpOptions::dfWarpMemoryLimit. |
1007 | | * |
1008 | | * Once an appropriate region is selected GDALWarpOperation::WarpRegion() |
1009 | | * is invoked to do the actual work. |
1010 | | * |
1011 | | * @param nDstXOff X offset to window of destination data to be produced. |
1012 | | * @param nDstYOff Y offset to window of destination data to be produced. |
1013 | | * @param nDstXSize Width of output window on destination file to be produced. |
1014 | | * @param nDstYSize Height of output window on destination file to be produced. |
1015 | | * |
1016 | | * @return CE_None on success or CE_Failure if an error occurs. |
1017 | | */ |
1018 | | |
1019 | | CPLErr GDALWarpOperation::ChunkAndWarpImage(int nDstXOff, int nDstYOff, |
1020 | | int nDstXSize, int nDstYSize) |
1021 | | |
1022 | 0 | { |
1023 | | /* -------------------------------------------------------------------- */ |
1024 | | /* Collect the list of chunks to operate on. */ |
1025 | | /* -------------------------------------------------------------------- */ |
1026 | 0 | CollectChunkList(nDstXOff, nDstYOff, nDstXSize, nDstYSize); |
1027 | | |
1028 | | /* -------------------------------------------------------------------- */ |
1029 | | /* Total up output pixels to process. */ |
1030 | | /* -------------------------------------------------------------------- */ |
1031 | 0 | double dfTotalPixels = 0.0; |
1032 | |
|
1033 | 0 | for (int iChunk = 0; pasChunkList != nullptr && iChunk < nChunkListCount; |
1034 | 0 | iChunk++) |
1035 | 0 | { |
1036 | 0 | GDALWarpChunk *pasThisChunk = pasChunkList + iChunk; |
1037 | 0 | const double dfChunkPixels = |
1038 | 0 | pasThisChunk->dsx * static_cast<double>(pasThisChunk->dsy); |
1039 | |
|
1040 | 0 | dfTotalPixels += dfChunkPixels; |
1041 | 0 | } |
1042 | | |
1043 | | /* -------------------------------------------------------------------- */ |
1044 | | /* Process them one at a time, updating the progress */ |
1045 | | /* information for each region. */ |
1046 | | /* -------------------------------------------------------------------- */ |
1047 | 0 | double dfPixelsProcessed = 0.0; |
1048 | |
|
1049 | 0 | for (int iChunk = 0; pasChunkList != nullptr && iChunk < nChunkListCount; |
1050 | 0 | iChunk++) |
1051 | 0 | { |
1052 | 0 | GDALWarpChunk *pasThisChunk = pasChunkList + iChunk; |
1053 | 0 | const double dfChunkPixels = |
1054 | 0 | pasThisChunk->dsx * static_cast<double>(pasThisChunk->dsy); |
1055 | |
|
1056 | 0 | const double dfProgressBase = dfPixelsProcessed / dfTotalPixels; |
1057 | 0 | const double dfProgressScale = dfChunkPixels / dfTotalPixels; |
1058 | |
|
1059 | 0 | CPLErr eErr = WarpRegion( |
1060 | 0 | pasThisChunk->dx, pasThisChunk->dy, pasThisChunk->dsx, |
1061 | 0 | pasThisChunk->dsy, pasThisChunk->sx, pasThisChunk->sy, |
1062 | 0 | pasThisChunk->ssx, pasThisChunk->ssy, pasThisChunk->sExtraSx, |
1063 | 0 | pasThisChunk->sExtraSy, dfProgressBase, dfProgressScale); |
1064 | |
|
1065 | 0 | if (eErr != CE_None) |
1066 | 0 | return eErr; |
1067 | | |
1068 | 0 | dfPixelsProcessed += dfChunkPixels; |
1069 | 0 | } |
1070 | | |
1071 | 0 | WipeChunkList(); |
1072 | |
|
1073 | 0 | psOptions->pfnProgress(1.0, "", psOptions->pProgressArg); |
1074 | |
|
1075 | 0 | return CE_None; |
1076 | 0 | } |
1077 | | |
1078 | | /************************************************************************/ |
1079 | | /* GDALChunkAndWarpImage() */ |
1080 | | /************************************************************************/ |
1081 | | |
1082 | | /** |
1083 | | * @see GDALWarpOperation::ChunkAndWarpImage() |
1084 | | */ |
1085 | | |
1086 | | CPLErr GDALChunkAndWarpImage(GDALWarpOperationH hOperation, int nDstXOff, |
1087 | | int nDstYOff, int nDstXSize, int nDstYSize) |
1088 | 0 | { |
1089 | 0 | VALIDATE_POINTER1(hOperation, "GDALChunkAndWarpImage", CE_Failure); |
1090 | | |
1091 | 0 | return reinterpret_cast<GDALWarpOperation *>(hOperation) |
1092 | 0 | ->ChunkAndWarpImage(nDstXOff, nDstYOff, nDstXSize, nDstYSize); |
1093 | 0 | } |
1094 | | |
1095 | | /************************************************************************/ |
1096 | | /* ChunkThreadMain() */ |
1097 | | /************************************************************************/ |
1098 | | |
1099 | | struct ChunkThreadData |
1100 | | { |
1101 | | GDALWarpOperation *poOperation = nullptr; |
1102 | | GDALWarpChunk *pasChunkInfo = nullptr; |
1103 | | CPLJoinableThread *hThreadHandle = nullptr; |
1104 | | CPLErr eErr = CE_None; |
1105 | | double dfProgressBase = 0; |
1106 | | double dfProgressScale = 0; |
1107 | | CPLMutex *hIOMutex = nullptr; |
1108 | | |
1109 | | CPLMutex *hCondMutex = nullptr; |
1110 | | volatile int bIOMutexTaken = 0; |
1111 | | CPLCond *hCond = nullptr; |
1112 | | |
1113 | | CPLErrorAccumulator *poErrorAccumulator = nullptr; |
1114 | | }; |
1115 | | |
1116 | | static void ChunkThreadMain(void *pThreadData) |
1117 | | |
1118 | 0 | { |
1119 | 0 | volatile ChunkThreadData *psData = |
1120 | 0 | static_cast<volatile ChunkThreadData *>(pThreadData); |
1121 | |
|
1122 | 0 | GDALWarpChunk *pasChunkInfo = psData->pasChunkInfo; |
1123 | | |
1124 | | /* -------------------------------------------------------------------- */ |
1125 | | /* Acquire IO mutex. */ |
1126 | | /* -------------------------------------------------------------------- */ |
1127 | 0 | if (!CPLAcquireMutex(psData->hIOMutex, 600.0)) |
1128 | 0 | { |
1129 | 0 | CPLError(CE_Failure, CPLE_AppDefined, |
1130 | 0 | "Failed to acquire IOMutex in WarpRegion()."); |
1131 | 0 | psData->eErr = CE_Failure; |
1132 | 0 | } |
1133 | 0 | else |
1134 | 0 | { |
1135 | 0 | if (psData->hCond != nullptr) |
1136 | 0 | { |
1137 | 0 | CPLAcquireMutex(psData->hCondMutex, 1.0); |
1138 | 0 | psData->bIOMutexTaken = TRUE; |
1139 | 0 | CPLCondSignal(psData->hCond); |
1140 | 0 | CPLReleaseMutex(psData->hCondMutex); |
1141 | 0 | } |
1142 | |
|
1143 | 0 | auto oAccumulator = |
1144 | 0 | psData->poErrorAccumulator->InstallForCurrentScope(); |
1145 | 0 | CPL_IGNORE_RET_VAL(oAccumulator); |
1146 | |
|
1147 | 0 | psData->eErr = psData->poOperation->WarpRegion( |
1148 | 0 | pasChunkInfo->dx, pasChunkInfo->dy, pasChunkInfo->dsx, |
1149 | 0 | pasChunkInfo->dsy, pasChunkInfo->sx, pasChunkInfo->sy, |
1150 | 0 | pasChunkInfo->ssx, pasChunkInfo->ssy, pasChunkInfo->sExtraSx, |
1151 | 0 | pasChunkInfo->sExtraSy, psData->dfProgressBase, |
1152 | 0 | psData->dfProgressScale); |
1153 | | |
1154 | | /* -------------------------------------------------------------------- |
1155 | | */ |
1156 | | /* Release the IO mutex. */ |
1157 | | /* -------------------------------------------------------------------- |
1158 | | */ |
1159 | 0 | CPLReleaseMutex(psData->hIOMutex); |
1160 | 0 | } |
1161 | 0 | } |
1162 | | |
1163 | | /************************************************************************/ |
1164 | | /* ChunkAndWarpMulti() */ |
1165 | | /************************************************************************/ |
1166 | | |
1167 | | /** |
1168 | | * \fn CPLErr GDALWarpOperation::ChunkAndWarpMulti( |
1169 | | int nDstXOff, int nDstYOff, int nDstXSize, int nDstYSize ); |
1170 | | * |
1171 | | * This method does a complete warp of the source image to the destination |
1172 | | * image for the indicated region with the current warp options in effect. |
1173 | | * Progress is reported to the installed progress monitor, if any. |
1174 | | * |
1175 | | * Externally this method operates the same as ChunkAndWarpImage(), but |
1176 | | * internally this method uses multiple threads to interleave input/output |
1177 | | * for one region while the processing is being done for another. |
1178 | | * |
1179 | | * @param nDstXOff X offset to window of destination data to be produced. |
1180 | | * @param nDstYOff Y offset to window of destination data to be produced. |
1181 | | * @param nDstXSize Width of output window on destination file to be produced. |
1182 | | * @param nDstYSize Height of output window on destination file to be produced. |
1183 | | * |
1184 | | * @return CE_None on success or CE_Failure if an error occurs. |
1185 | | */ |
1186 | | |
1187 | | CPLErr GDALWarpOperation::ChunkAndWarpMulti(int nDstXOff, int nDstYOff, |
1188 | | int nDstXSize, int nDstYSize) |
1189 | | |
1190 | 0 | { |
1191 | 0 | hIOMutex = CPLCreateMutex(); |
1192 | 0 | hWarpMutex = CPLCreateMutex(); |
1193 | |
|
1194 | 0 | CPLReleaseMutex(hIOMutex); |
1195 | 0 | CPLReleaseMutex(hWarpMutex); |
1196 | |
|
1197 | 0 | CPLCond *hCond = CPLCreateCond(); |
1198 | 0 | CPLMutex *hCondMutex = CPLCreateMutex(); |
1199 | 0 | CPLReleaseMutex(hCondMutex); |
1200 | | |
1201 | | /* -------------------------------------------------------------------- */ |
1202 | | /* Collect the list of chunks to operate on. */ |
1203 | | /* -------------------------------------------------------------------- */ |
1204 | 0 | CollectChunkList(nDstXOff, nDstYOff, nDstXSize, nDstYSize); |
1205 | | |
1206 | | /* -------------------------------------------------------------------- */ |
1207 | | /* Process them one at a time, updating the progress */ |
1208 | | /* information for each region. */ |
1209 | | /* -------------------------------------------------------------------- */ |
1210 | 0 | ChunkThreadData volatile asThreadData[2] = {}; |
1211 | 0 | CPLErrorAccumulator oErrorAccumulator; |
1212 | 0 | for (int i = 0; i < 2; ++i) |
1213 | 0 | { |
1214 | 0 | asThreadData[i].poOperation = this; |
1215 | 0 | asThreadData[i].hIOMutex = hIOMutex; |
1216 | 0 | asThreadData[i].poErrorAccumulator = &oErrorAccumulator; |
1217 | 0 | } |
1218 | |
|
1219 | 0 | double dfPixelsProcessed = 0.0; |
1220 | 0 | double dfTotalPixels = static_cast<double>(nDstXSize) * nDstYSize; |
1221 | |
|
1222 | 0 | CPLErr eErr = CE_None; |
1223 | 0 | for (int iChunk = 0; iChunk < nChunkListCount + 1; iChunk++) |
1224 | 0 | { |
1225 | 0 | int iThread = iChunk % 2; |
1226 | | |
1227 | | /* -------------------------------------------------------------------- |
1228 | | */ |
1229 | | /* Launch thread for this chunk. */ |
1230 | | /* -------------------------------------------------------------------- |
1231 | | */ |
1232 | 0 | if (pasChunkList != nullptr && iChunk < nChunkListCount) |
1233 | 0 | { |
1234 | 0 | GDALWarpChunk *pasThisChunk = pasChunkList + iChunk; |
1235 | 0 | const double dfChunkPixels = |
1236 | 0 | pasThisChunk->dsx * static_cast<double>(pasThisChunk->dsy); |
1237 | |
|
1238 | 0 | asThreadData[iThread].dfProgressBase = |
1239 | 0 | dfPixelsProcessed / dfTotalPixels; |
1240 | 0 | asThreadData[iThread].dfProgressScale = |
1241 | 0 | dfChunkPixels / dfTotalPixels; |
1242 | |
|
1243 | 0 | dfPixelsProcessed += dfChunkPixels; |
1244 | |
|
1245 | 0 | asThreadData[iThread].pasChunkInfo = pasThisChunk; |
1246 | |
|
1247 | 0 | if (iChunk == 0) |
1248 | 0 | { |
1249 | 0 | asThreadData[iThread].hCond = hCond; |
1250 | 0 | asThreadData[iThread].hCondMutex = hCondMutex; |
1251 | 0 | } |
1252 | 0 | else |
1253 | 0 | { |
1254 | 0 | asThreadData[iThread].hCond = nullptr; |
1255 | 0 | asThreadData[iThread].hCondMutex = nullptr; |
1256 | 0 | } |
1257 | 0 | asThreadData[iThread].bIOMutexTaken = FALSE; |
1258 | |
|
1259 | 0 | CPLDebug("GDAL", "Start chunk %d / %d.", iChunk, nChunkListCount); |
1260 | 0 | asThreadData[iThread].hThreadHandle = CPLCreateJoinableThread( |
1261 | 0 | ChunkThreadMain, |
1262 | 0 | const_cast<ChunkThreadData *>(&asThreadData[iThread])); |
1263 | 0 | if (asThreadData[iThread].hThreadHandle == nullptr) |
1264 | 0 | { |
1265 | 0 | CPLError( |
1266 | 0 | CE_Failure, CPLE_AppDefined, |
1267 | 0 | "CPLCreateJoinableThread() failed in ChunkAndWarpMulti()"); |
1268 | 0 | eErr = CE_Failure; |
1269 | 0 | break; |
1270 | 0 | } |
1271 | | |
1272 | | // Wait that the first thread has acquired the IO mutex before |
1273 | | // proceeding. This will ensure that the first thread will run |
1274 | | // before the second one. |
1275 | 0 | if (iChunk == 0) |
1276 | 0 | { |
1277 | 0 | CPLAcquireMutex(hCondMutex, 1.0); |
1278 | 0 | while (asThreadData[iThread].bIOMutexTaken == FALSE) |
1279 | 0 | CPLCondWait(hCond, hCondMutex); |
1280 | 0 | CPLReleaseMutex(hCondMutex); |
1281 | 0 | } |
1282 | 0 | } |
1283 | | |
1284 | | /* -------------------------------------------------------------------- |
1285 | | */ |
1286 | | /* Wait for previous chunks thread to complete. */ |
1287 | | /* -------------------------------------------------------------------- |
1288 | | */ |
1289 | 0 | if (iChunk > 0) |
1290 | 0 | { |
1291 | 0 | iThread = (iChunk - 1) % 2; |
1292 | | |
1293 | | // Wait for thread to finish. |
1294 | 0 | CPLJoinThread(asThreadData[iThread].hThreadHandle); |
1295 | 0 | asThreadData[iThread].hThreadHandle = nullptr; |
1296 | |
|
1297 | 0 | CPLDebug("GDAL", "Finished chunk %d / %d.", iChunk - 1, |
1298 | 0 | nChunkListCount); |
1299 | |
|
1300 | 0 | eErr = asThreadData[iThread].eErr; |
1301 | |
|
1302 | 0 | if (eErr != CE_None) |
1303 | 0 | break; |
1304 | 0 | } |
1305 | 0 | } |
1306 | | |
1307 | | /* -------------------------------------------------------------------- */ |
1308 | | /* Wait for all threads to complete. */ |
1309 | | /* -------------------------------------------------------------------- */ |
1310 | 0 | for (int iThread = 0; iThread < 2; iThread++) |
1311 | 0 | { |
1312 | 0 | if (asThreadData[iThread].hThreadHandle) |
1313 | 0 | CPLJoinThread(asThreadData[iThread].hThreadHandle); |
1314 | 0 | } |
1315 | |
|
1316 | 0 | CPLDestroyCond(hCond); |
1317 | 0 | CPLDestroyMutex(hCondMutex); |
1318 | |
|
1319 | 0 | WipeChunkList(); |
1320 | |
|
1321 | 0 | oErrorAccumulator.ReplayErrors(); |
1322 | |
|
1323 | 0 | psOptions->pfnProgress(1.0, "", psOptions->pProgressArg); |
1324 | |
|
1325 | 0 | return eErr; |
1326 | 0 | } |
1327 | | |
1328 | | /************************************************************************/ |
1329 | | /* GDALChunkAndWarpMulti() */ |
1330 | | /************************************************************************/ |
1331 | | |
1332 | | /** |
1333 | | * @see GDALWarpOperation::ChunkAndWarpMulti() |
1334 | | */ |
1335 | | |
1336 | | CPLErr GDALChunkAndWarpMulti(GDALWarpOperationH hOperation, int nDstXOff, |
1337 | | int nDstYOff, int nDstXSize, int nDstYSize) |
1338 | 0 | { |
1339 | 0 | VALIDATE_POINTER1(hOperation, "GDALChunkAndWarpMulti", CE_Failure); |
1340 | | |
1341 | 0 | return reinterpret_cast<GDALWarpOperation *>(hOperation) |
1342 | 0 | ->ChunkAndWarpMulti(nDstXOff, nDstYOff, nDstXSize, nDstYSize); |
1343 | 0 | } |
1344 | | |
1345 | | /************************************************************************/ |
1346 | | /* WipeChunkList() */ |
1347 | | /************************************************************************/ |
1348 | | |
1349 | | void GDALWarpOperation::WipeChunkList() |
1350 | | |
1351 | 0 | { |
1352 | 0 | CPLFree(pasChunkList); |
1353 | 0 | pasChunkList = nullptr; |
1354 | 0 | nChunkListCount = 0; |
1355 | 0 | nChunkListMax = 0; |
1356 | 0 | } |
1357 | | |
1358 | | /************************************************************************/ |
1359 | | /* GetWorkingMemoryForWindow() */ |
1360 | | /************************************************************************/ |
1361 | | |
1362 | | /** Returns the amount of working memory, in bytes, required to process |
1363 | | * a warped window of source dimensions nSrcXSize x nSrcYSize and target |
1364 | | * dimensions nDstXSize x nDstYSize. |
1365 | | */ |
1366 | | double GDALWarpOperation::GetWorkingMemoryForWindow(int nSrcXSize, |
1367 | | int nSrcYSize, |
1368 | | int nDstXSize, |
1369 | | int nDstYSize) const |
1370 | 0 | { |
1371 | | /* -------------------------------------------------------------------- */ |
1372 | | /* Based on the types of masks in use, how many bits will each */ |
1373 | | /* source pixel cost us? */ |
1374 | | /* -------------------------------------------------------------------- */ |
1375 | 0 | int nSrcPixelCostInBits = GDALGetDataTypeSize(psOptions->eWorkingDataType) * |
1376 | 0 | psOptions->nBandCount; |
1377 | |
|
1378 | 0 | if (psOptions->pfnSrcDensityMaskFunc != nullptr) |
1379 | 0 | nSrcPixelCostInBits += 32; // Float mask? |
1380 | |
|
1381 | 0 | GDALRasterBandH hSrcBand = nullptr; |
1382 | 0 | if (psOptions->nBandCount > 0) |
1383 | 0 | hSrcBand = |
1384 | 0 | GDALGetRasterBand(psOptions->hSrcDS, psOptions->panSrcBands[0]); |
1385 | |
|
1386 | 0 | if (psOptions->nSrcAlphaBand > 0 || psOptions->hCutline != nullptr) |
1387 | 0 | nSrcPixelCostInBits += 32; // UnifiedSrcDensity float mask. |
1388 | 0 | else if (hSrcBand != nullptr && |
1389 | 0 | (GDALGetMaskFlags(hSrcBand) & GMF_PER_DATASET)) |
1390 | 0 | nSrcPixelCostInBits += 1; // UnifiedSrcValid bit mask. |
1391 | |
|
1392 | 0 | if (psOptions->papfnSrcPerBandValidityMaskFunc != nullptr || |
1393 | 0 | psOptions->padfSrcNoDataReal != nullptr) |
1394 | 0 | nSrcPixelCostInBits += psOptions->nBandCount; // Bit/band mask. |
1395 | |
|
1396 | 0 | if (psOptions->pfnSrcValidityMaskFunc != nullptr) |
1397 | 0 | nSrcPixelCostInBits += 1; // Bit mask. |
1398 | | |
1399 | | /* -------------------------------------------------------------------- */ |
1400 | | /* What about the cost for the destination. */ |
1401 | | /* -------------------------------------------------------------------- */ |
1402 | 0 | int nDstPixelCostInBits = GDALGetDataTypeSize(psOptions->eWorkingDataType) * |
1403 | 0 | psOptions->nBandCount; |
1404 | |
|
1405 | 0 | if (psOptions->pfnDstDensityMaskFunc != nullptr) |
1406 | 0 | nDstPixelCostInBits += 32; |
1407 | |
|
1408 | 0 | if (psOptions->padfDstNoDataReal != nullptr || |
1409 | 0 | psOptions->pfnDstValidityMaskFunc != nullptr) |
1410 | 0 | nDstPixelCostInBits += psOptions->nBandCount; |
1411 | |
|
1412 | 0 | if (psOptions->nDstAlphaBand > 0) |
1413 | 0 | nDstPixelCostInBits += 32; // DstDensity float mask. |
1414 | |
|
1415 | 0 | const double dfTotalMemoryUse = |
1416 | 0 | (static_cast<double>(nSrcPixelCostInBits) * nSrcXSize * nSrcYSize + |
1417 | 0 | static_cast<double>(nDstPixelCostInBits) * nDstXSize * nDstYSize) / |
1418 | 0 | 8.0; |
1419 | 0 | return dfTotalMemoryUse; |
1420 | 0 | } |
1421 | | |
1422 | | /************************************************************************/ |
1423 | | /* CollectChunkListInternal() */ |
1424 | | /************************************************************************/ |
1425 | | |
1426 | | CPLErr GDALWarpOperation::CollectChunkListInternal(int nDstXOff, int nDstYOff, |
1427 | | int nDstXSize, int nDstYSize) |
1428 | | |
1429 | 0 | { |
1430 | | /* -------------------------------------------------------------------- */ |
1431 | | /* Compute the bounds of the input area corresponding to the */ |
1432 | | /* output area. */ |
1433 | | /* -------------------------------------------------------------------- */ |
1434 | 0 | int nSrcXOff = 0; |
1435 | 0 | int nSrcYOff = 0; |
1436 | 0 | int nSrcXSize = 0; |
1437 | 0 | int nSrcYSize = 0; |
1438 | 0 | double dfSrcXExtraSize = 0.0; |
1439 | 0 | double dfSrcYExtraSize = 0.0; |
1440 | 0 | double dfSrcFillRatio = 0.0; |
1441 | 0 | CPLErr eErr; |
1442 | 0 | { |
1443 | 0 | CPLTurnFailureIntoWarningBackuper oBackuper; |
1444 | 0 | eErr = ComputeSourceWindow(nDstXOff, nDstYOff, nDstXSize, nDstYSize, |
1445 | 0 | &nSrcXOff, &nSrcYOff, &nSrcXSize, &nSrcYSize, |
1446 | 0 | &dfSrcXExtraSize, &dfSrcYExtraSize, |
1447 | 0 | &dfSrcFillRatio); |
1448 | 0 | } |
1449 | |
|
1450 | 0 | if (eErr != CE_None) |
1451 | 0 | { |
1452 | 0 | const bool bErrorOutIfEmptySourceWindow = |
1453 | 0 | CPLFetchBool(psOptions->papszWarpOptions, |
1454 | 0 | "ERROR_OUT_IF_EMPTY_SOURCE_WINDOW", true); |
1455 | 0 | if (bErrorOutIfEmptySourceWindow) |
1456 | 0 | { |
1457 | 0 | CPLError(CE_Warning, CPLE_AppDefined, |
1458 | 0 | "Unable to compute source region for " |
1459 | 0 | "output window %d,%d,%d,%d, skipping.", |
1460 | 0 | nDstXOff, nDstYOff, nDstXSize, nDstYSize); |
1461 | 0 | } |
1462 | 0 | else |
1463 | 0 | { |
1464 | 0 | CPLDebug("WARP", |
1465 | 0 | "Unable to compute source region for " |
1466 | 0 | "output window %d,%d,%d,%d, skipping.", |
1467 | 0 | nDstXOff, nDstYOff, nDstXSize, nDstYSize); |
1468 | 0 | } |
1469 | 0 | } |
1470 | | |
1471 | | /* -------------------------------------------------------------------- */ |
1472 | | /* If we are allowed to drop no-source regions, do so now if */ |
1473 | | /* appropriate. */ |
1474 | | /* -------------------------------------------------------------------- */ |
1475 | 0 | if ((nSrcXSize == 0 || nSrcYSize == 0) && |
1476 | 0 | CPLFetchBool(psOptions->papszWarpOptions, "SKIP_NOSOURCE", false)) |
1477 | 0 | return CE_None; |
1478 | | |
1479 | | /* -------------------------------------------------------------------- */ |
1480 | | /* Does the cost of the current rectangle exceed our memory */ |
1481 | | /* limit? If so, split the destination along the longest */ |
1482 | | /* dimension and recurse. */ |
1483 | | /* -------------------------------------------------------------------- */ |
1484 | 0 | const double dfTotalMemoryUse = |
1485 | 0 | GetWorkingMemoryForWindow(nSrcXSize, nSrcYSize, nDstXSize, nDstYSize); |
1486 | | |
1487 | | // If size of working buffers need exceed the allow limit, then divide |
1488 | | // the target area |
1489 | | // Do it also if the "fill ratio" of the source is too low (#3120), but |
1490 | | // only if there's at least some source pixel intersecting. The |
1491 | | // SRC_FILL_RATIO_HEURISTICS warping option is undocumented and only here |
1492 | | // in case the heuristics would cause issues. |
1493 | | #if DEBUG_VERBOSE |
1494 | | CPLDebug("WARP", |
1495 | | "dst=(%d,%d,%d,%d) src=(%d,%d,%d,%d) srcfillratio=%.17g, " |
1496 | | "dfTotalMemoryUse=%.1f MB", |
1497 | | nDstXOff, nDstYOff, nDstXSize, nDstYSize, nSrcXOff, nSrcYOff, |
1498 | | nSrcXSize, nSrcYSize, dfSrcFillRatio, |
1499 | | dfTotalMemoryUse / (1024 * 1024)); |
1500 | | #endif |
1501 | 0 | if ((dfTotalMemoryUse > psOptions->dfWarpMemoryLimit && |
1502 | 0 | (nDstXSize > 2 || nDstYSize > 2)) || |
1503 | 0 | (dfSrcFillRatio > 0 && dfSrcFillRatio < 0.5 && |
1504 | 0 | (nDstXSize > 100 || nDstYSize > 100) && |
1505 | 0 | CPLFetchBool(psOptions->papszWarpOptions, "SRC_FILL_RATIO_HEURISTICS", |
1506 | 0 | true))) |
1507 | 0 | { |
1508 | 0 | int nBlockXSize = 1; |
1509 | 0 | int nBlockYSize = 1; |
1510 | 0 | if (psOptions->hDstDS) |
1511 | 0 | { |
1512 | 0 | GDALGetBlockSize(GDALGetRasterBand(psOptions->hDstDS, 1), |
1513 | 0 | &nBlockXSize, &nBlockYSize); |
1514 | 0 | } |
1515 | |
|
1516 | 0 | int bStreamableOutput = CPLFetchBool(psOptions->papszWarpOptions, |
1517 | 0 | "STREAMABLE_OUTPUT", false); |
1518 | 0 | const char *pszOptimizeSize = |
1519 | 0 | CSLFetchNameValue(psOptions->papszWarpOptions, "OPTIMIZE_SIZE"); |
1520 | 0 | const bool bOptimizeSizeAuto = |
1521 | 0 | !pszOptimizeSize || EQUAL(pszOptimizeSize, "AUTO"); |
1522 | 0 | const bool bOptimizeSize = |
1523 | 0 | !bStreamableOutput && |
1524 | 0 | ((pszOptimizeSize && !bOptimizeSizeAuto && |
1525 | 0 | CPLTestBool(pszOptimizeSize)) || |
1526 | | // Auto-enable optimize-size mode if output region is at least |
1527 | | // 2x2 blocks large and the shapes of the source and target regions |
1528 | | // are not excessively different. All those thresholds are a bit |
1529 | | // arbitrary |
1530 | 0 | (bOptimizeSizeAuto && nSrcXSize > 0 && nDstYSize > 0 && |
1531 | 0 | (nDstXSize > nDstYSize ? fabs(double(nDstXSize) / nDstYSize - |
1532 | 0 | double(nSrcXSize) / nSrcYSize) < |
1533 | 0 | 5 * double(nDstXSize) / nDstYSize |
1534 | 0 | : fabs(double(nDstYSize) / nDstXSize - |
1535 | 0 | double(nSrcYSize) / nSrcXSize) < |
1536 | 0 | 5 * double(nDstYSize) / nDstXSize) && |
1537 | 0 | nDstXSize / 2 >= nBlockXSize && nDstYSize / 2 >= nBlockYSize)); |
1538 | | |
1539 | | // If the region width is greater than the region height, |
1540 | | // cut in half in the width. When we want to optimize the size |
1541 | | // of a compressed output dataset, do this only if each half part |
1542 | | // is at least as wide as the block width. |
1543 | 0 | bool bHasDivided = false; |
1544 | 0 | CPLErr eErr2 = CE_None; |
1545 | 0 | if (nDstXSize > nDstYSize && |
1546 | 0 | ((!bOptimizeSize && !bStreamableOutput) || |
1547 | 0 | (bOptimizeSize && |
1548 | 0 | (nDstXSize / 2 >= nBlockXSize || nDstYSize == 1)) || |
1549 | 0 | (bStreamableOutput && nDstXSize / 2 >= nBlockXSize && |
1550 | 0 | nDstYSize == nBlockYSize))) |
1551 | 0 | { |
1552 | 0 | bHasDivided = true; |
1553 | 0 | int nChunk1 = nDstXSize / 2; |
1554 | | |
1555 | | // In the optimize size case, try to stick on target block |
1556 | | // boundaries. |
1557 | 0 | if ((bOptimizeSize || bStreamableOutput) && nChunk1 > nBlockXSize) |
1558 | 0 | nChunk1 = (nChunk1 / nBlockXSize) * nBlockXSize; |
1559 | |
|
1560 | 0 | int nChunk2 = nDstXSize - nChunk1; |
1561 | |
|
1562 | 0 | eErr = CollectChunkListInternal(nDstXOff, nDstYOff, nChunk1, |
1563 | 0 | nDstYSize); |
1564 | |
|
1565 | 0 | eErr2 = CollectChunkListInternal(nDstXOff + nChunk1, nDstYOff, |
1566 | 0 | nChunk2, nDstYSize); |
1567 | 0 | } |
1568 | 0 | else if (!(bStreamableOutput && nDstYSize / 2 < nBlockYSize)) |
1569 | 0 | { |
1570 | 0 | bHasDivided = true; |
1571 | 0 | int nChunk1 = nDstYSize / 2; |
1572 | | |
1573 | | // In the optimize size case, try to stick on target block |
1574 | | // boundaries. |
1575 | 0 | if ((bOptimizeSize || bStreamableOutput) && nChunk1 > nBlockYSize) |
1576 | 0 | nChunk1 = (nChunk1 / nBlockYSize) * nBlockYSize; |
1577 | |
|
1578 | 0 | const int nChunk2 = nDstYSize - nChunk1; |
1579 | |
|
1580 | 0 | eErr = CollectChunkListInternal(nDstXOff, nDstYOff, nDstXSize, |
1581 | 0 | nChunk1); |
1582 | |
|
1583 | 0 | eErr2 = CollectChunkListInternal(nDstXOff, nDstYOff + nChunk1, |
1584 | 0 | nDstXSize, nChunk2); |
1585 | 0 | } |
1586 | |
|
1587 | 0 | if (bHasDivided) |
1588 | 0 | { |
1589 | 0 | if (eErr == CE_None) |
1590 | 0 | return eErr2; |
1591 | 0 | else |
1592 | 0 | return eErr; |
1593 | 0 | } |
1594 | 0 | } |
1595 | | |
1596 | | /* -------------------------------------------------------------------- */ |
1597 | | /* OK, everything fits, so add to the chunk list. */ |
1598 | | /* -------------------------------------------------------------------- */ |
1599 | 0 | if (nChunkListCount == nChunkListMax) |
1600 | 0 | { |
1601 | 0 | nChunkListMax = nChunkListMax * 2 + 1; |
1602 | 0 | pasChunkList = static_cast<GDALWarpChunk *>( |
1603 | 0 | CPLRealloc(pasChunkList, sizeof(GDALWarpChunk) * nChunkListMax)); |
1604 | 0 | } |
1605 | |
|
1606 | 0 | pasChunkList[nChunkListCount].dx = nDstXOff; |
1607 | 0 | pasChunkList[nChunkListCount].dy = nDstYOff; |
1608 | 0 | pasChunkList[nChunkListCount].dsx = nDstXSize; |
1609 | 0 | pasChunkList[nChunkListCount].dsy = nDstYSize; |
1610 | 0 | pasChunkList[nChunkListCount].sx = nSrcXOff; |
1611 | 0 | pasChunkList[nChunkListCount].sy = nSrcYOff; |
1612 | 0 | pasChunkList[nChunkListCount].ssx = nSrcXSize; |
1613 | 0 | pasChunkList[nChunkListCount].ssy = nSrcYSize; |
1614 | 0 | pasChunkList[nChunkListCount].sExtraSx = dfSrcXExtraSize; |
1615 | 0 | pasChunkList[nChunkListCount].sExtraSy = dfSrcYExtraSize; |
1616 | |
|
1617 | 0 | nChunkListCount++; |
1618 | |
|
1619 | 0 | return CE_None; |
1620 | 0 | } |
1621 | | |
1622 | | /************************************************************************/ |
1623 | | /* WarpRegion() */ |
1624 | | /************************************************************************/ |
1625 | | |
1626 | | /** |
1627 | | * This method requests the indicated region of the output file be generated. |
1628 | | * |
1629 | | * Note that WarpRegion() will produce the requested area in one low level warp |
1630 | | * operation without verifying that this does not exceed the stated memory |
1631 | | * limits for the warp operation. Applications should take care not to call |
1632 | | * WarpRegion() on too large a region! This function |
1633 | | * is normally called by ChunkAndWarpImage(), the normal entry point for |
1634 | | * applications. Use it instead if staying within memory constraints is |
1635 | | * desired. |
1636 | | * |
1637 | | * Progress is reported from dfProgressBase to dfProgressBase + dfProgressScale |
1638 | | * for the indicated region. |
1639 | | * |
1640 | | * @param nDstXOff X offset to window of destination data to be produced. |
1641 | | * @param nDstYOff Y offset to window of destination data to be produced. |
1642 | | * @param nDstXSize Width of output window on destination file to be produced. |
1643 | | * @param nDstYSize Height of output window on destination file to be produced. |
1644 | | * @param nSrcXOff source window X offset (computed if window all zero) |
1645 | | * @param nSrcYOff source window Y offset (computed if window all zero) |
1646 | | * @param nSrcXSize source window X size (computed if window all zero) |
1647 | | * @param nSrcYSize source window Y size (computed if window all zero) |
1648 | | * @param dfProgressBase minimum progress value reported |
1649 | | * @param dfProgressScale value such as dfProgressBase + dfProgressScale is the |
1650 | | * maximum progress value reported |
1651 | | * |
1652 | | * @return CE_None on success or CE_Failure if an error occurs. |
1653 | | */ |
1654 | | |
1655 | | CPLErr GDALWarpOperation::WarpRegion(int nDstXOff, int nDstYOff, int nDstXSize, |
1656 | | int nDstYSize, int nSrcXOff, int nSrcYOff, |
1657 | | int nSrcXSize, int nSrcYSize, |
1658 | | double dfProgressBase, |
1659 | | double dfProgressScale) |
1660 | 0 | { |
1661 | 0 | return WarpRegion(nDstXOff, nDstYOff, nDstXSize, nDstYSize, nSrcXOff, |
1662 | 0 | nSrcYOff, nSrcXSize, nSrcYSize, 0, 0, dfProgressBase, |
1663 | 0 | dfProgressScale); |
1664 | 0 | } |
1665 | | |
1666 | | /** |
1667 | | * This method requests the indicated region of the output file be generated. |
1668 | | * |
1669 | | * Note that WarpRegion() will produce the requested area in one low level warp |
1670 | | * operation without verifying that this does not exceed the stated memory |
1671 | | * limits for the warp operation. Applications should take care not to call |
1672 | | * WarpRegion() on too large a region! This function |
1673 | | * is normally called by ChunkAndWarpImage(), the normal entry point for |
1674 | | * applications. Use it instead if staying within memory constraints is |
1675 | | * desired. |
1676 | | * |
1677 | | * Progress is reported from dfProgressBase to dfProgressBase + dfProgressScale |
1678 | | * for the indicated region. |
1679 | | * |
1680 | | * @param nDstXOff X offset to window of destination data to be produced. |
1681 | | * @param nDstYOff Y offset to window of destination data to be produced. |
1682 | | * @param nDstXSize Width of output window on destination file to be produced. |
1683 | | * @param nDstYSize Height of output window on destination file to be produced. |
1684 | | * @param nSrcXOff source window X offset (computed if window all zero) |
1685 | | * @param nSrcYOff source window Y offset (computed if window all zero) |
1686 | | * @param nSrcXSize source window X size (computed if window all zero) |
1687 | | * @param nSrcYSize source window Y size (computed if window all zero) |
1688 | | * @param dfSrcXExtraSize Extra pixels (included in nSrcXSize) reserved |
1689 | | * for filter window. Should be ignored in scale computation |
1690 | | * @param dfSrcYExtraSize Extra pixels (included in nSrcYSize) reserved |
1691 | | * for filter window. Should be ignored in scale computation |
1692 | | * @param dfProgressBase minimum progress value reported |
1693 | | * @param dfProgressScale value such as dfProgressBase + dfProgressScale is the |
1694 | | * maximum progress value reported |
1695 | | * |
1696 | | * @return CE_None on success or CE_Failure if an error occurs. |
1697 | | */ |
1698 | | |
1699 | | CPLErr GDALWarpOperation::WarpRegion( |
1700 | | int nDstXOff, int nDstYOff, int nDstXSize, int nDstYSize, int nSrcXOff, |
1701 | | int nSrcYOff, int nSrcXSize, int nSrcYSize, double dfSrcXExtraSize, |
1702 | | double dfSrcYExtraSize, double dfProgressBase, double dfProgressScale) |
1703 | | |
1704 | 0 | { |
1705 | 0 | ReportTiming(nullptr); |
1706 | | |
1707 | | /* -------------------------------------------------------------------- */ |
1708 | | /* Allocate the output buffer. */ |
1709 | | /* -------------------------------------------------------------------- */ |
1710 | 0 | int bDstBufferInitialized = FALSE; |
1711 | 0 | void *pDstBuffer = |
1712 | 0 | CreateDestinationBuffer(nDstXSize, nDstYSize, &bDstBufferInitialized); |
1713 | 0 | if (pDstBuffer == nullptr) |
1714 | 0 | { |
1715 | 0 | return CE_Failure; |
1716 | 0 | } |
1717 | | |
1718 | | /* -------------------------------------------------------------------- */ |
1719 | | /* If we aren't doing fixed initialization of the output buffer */ |
1720 | | /* then read it from disk so we can overlay on existing imagery. */ |
1721 | | /* -------------------------------------------------------------------- */ |
1722 | 0 | GDALDataset *poDstDS = GDALDataset::FromHandle(psOptions->hDstDS); |
1723 | 0 | if (!bDstBufferInitialized) |
1724 | 0 | { |
1725 | 0 | CPLErr eErr = CE_None; |
1726 | 0 | if (psOptions->nBandCount == 1) |
1727 | 0 | { |
1728 | | // Particular case to simplify the stack a bit. |
1729 | | // TODO(rouault): Need an explanation of what and why r34502 helps. |
1730 | 0 | eErr = poDstDS->GetRasterBand(psOptions->panDstBands[0]) |
1731 | 0 | ->RasterIO(GF_Read, nDstXOff, nDstYOff, nDstXSize, |
1732 | 0 | nDstYSize, pDstBuffer, nDstXSize, nDstYSize, |
1733 | 0 | psOptions->eWorkingDataType, 0, 0, nullptr); |
1734 | 0 | } |
1735 | 0 | else |
1736 | 0 | { |
1737 | 0 | eErr = poDstDS->RasterIO(GF_Read, nDstXOff, nDstYOff, nDstXSize, |
1738 | 0 | nDstYSize, pDstBuffer, nDstXSize, |
1739 | 0 | nDstYSize, psOptions->eWorkingDataType, |
1740 | 0 | psOptions->nBandCount, |
1741 | 0 | psOptions->panDstBands, 0, 0, 0, nullptr); |
1742 | 0 | } |
1743 | |
|
1744 | 0 | if (eErr != CE_None) |
1745 | 0 | { |
1746 | 0 | DestroyDestinationBuffer(pDstBuffer); |
1747 | 0 | return eErr; |
1748 | 0 | } |
1749 | | |
1750 | 0 | ReportTiming("Output buffer read"); |
1751 | 0 | } |
1752 | | |
1753 | | /* -------------------------------------------------------------------- */ |
1754 | | /* Perform the warp. */ |
1755 | | /* -------------------------------------------------------------------- */ |
1756 | 0 | CPLErr eErr = nSrcXSize == 0 |
1757 | 0 | ? CE_None |
1758 | 0 | : WarpRegionToBuffer( |
1759 | 0 | nDstXOff, nDstYOff, nDstXSize, nDstYSize, |
1760 | 0 | pDstBuffer, psOptions->eWorkingDataType, nSrcXOff, |
1761 | 0 | nSrcYOff, nSrcXSize, nSrcYSize, dfSrcXExtraSize, |
1762 | 0 | dfSrcYExtraSize, dfProgressBase, dfProgressScale); |
1763 | | |
1764 | | /* -------------------------------------------------------------------- */ |
1765 | | /* Write the output data back to disk if all went well. */ |
1766 | | /* -------------------------------------------------------------------- */ |
1767 | 0 | if (eErr == CE_None) |
1768 | 0 | { |
1769 | 0 | if (psOptions->nBandCount == 1) |
1770 | 0 | { |
1771 | | // Particular case to simplify the stack a bit. |
1772 | 0 | eErr = poDstDS->GetRasterBand(psOptions->panDstBands[0]) |
1773 | 0 | ->RasterIO(GF_Write, nDstXOff, nDstYOff, nDstXSize, |
1774 | 0 | nDstYSize, pDstBuffer, nDstXSize, nDstYSize, |
1775 | 0 | psOptions->eWorkingDataType, 0, 0, nullptr); |
1776 | 0 | } |
1777 | 0 | else |
1778 | 0 | { |
1779 | 0 | eErr = poDstDS->RasterIO(GF_Write, nDstXOff, nDstYOff, nDstXSize, |
1780 | 0 | nDstYSize, pDstBuffer, nDstXSize, |
1781 | 0 | nDstYSize, psOptions->eWorkingDataType, |
1782 | 0 | psOptions->nBandCount, |
1783 | 0 | psOptions->panDstBands, 0, 0, 0, nullptr); |
1784 | 0 | } |
1785 | |
|
1786 | 0 | if (eErr == CE_None && |
1787 | 0 | CPLFetchBool(psOptions->papszWarpOptions, "WRITE_FLUSH", false)) |
1788 | 0 | { |
1789 | 0 | const CPLErr eOldErr = CPLGetLastErrorType(); |
1790 | 0 | const CPLString osLastErrMsg = CPLGetLastErrorMsg(); |
1791 | 0 | GDALFlushCache(psOptions->hDstDS); |
1792 | 0 | const CPLErr eNewErr = CPLGetLastErrorType(); |
1793 | 0 | if (eNewErr != eOldErr || |
1794 | 0 | osLastErrMsg.compare(CPLGetLastErrorMsg()) != 0) |
1795 | 0 | eErr = CE_Failure; |
1796 | 0 | } |
1797 | 0 | ReportTiming("Output buffer write"); |
1798 | 0 | } |
1799 | | |
1800 | | /* -------------------------------------------------------------------- */ |
1801 | | /* Cleanup and return. */ |
1802 | | /* -------------------------------------------------------------------- */ |
1803 | 0 | DestroyDestinationBuffer(pDstBuffer); |
1804 | |
|
1805 | 0 | return eErr; |
1806 | 0 | } |
1807 | | |
1808 | | /************************************************************************/ |
1809 | | /* GDALWarpRegion() */ |
1810 | | /************************************************************************/ |
1811 | | |
1812 | | /** |
1813 | | * @see GDALWarpOperation::WarpRegion() |
1814 | | */ |
1815 | | |
1816 | | CPLErr GDALWarpRegion(GDALWarpOperationH hOperation, int nDstXOff, int nDstYOff, |
1817 | | int nDstXSize, int nDstYSize, int nSrcXOff, int nSrcYOff, |
1818 | | int nSrcXSize, int nSrcYSize) |
1819 | | |
1820 | 0 | { |
1821 | 0 | VALIDATE_POINTER1(hOperation, "GDALWarpRegion", CE_Failure); |
1822 | | |
1823 | 0 | return reinterpret_cast<GDALWarpOperation *>(hOperation) |
1824 | 0 | ->WarpRegion(nDstXOff, nDstYOff, nDstXSize, nDstYSize, nSrcXOff, |
1825 | 0 | nSrcYOff, nSrcXSize, nSrcYSize); |
1826 | 0 | } |
1827 | | |
1828 | | /************************************************************************/ |
1829 | | /* WarpRegionToBuffer() */ |
1830 | | /************************************************************************/ |
1831 | | |
1832 | | /** |
1833 | | * This method requests that a particular window of the output dataset |
1834 | | * be warped and the result put into the provided data buffer. The output |
1835 | | * dataset doesn't even really have to exist to use this method as long as |
1836 | | * the transformation function in the GDALWarpOptions is setup to map to |
1837 | | * a virtual pixel/line space. |
1838 | | * |
1839 | | * This method will do the whole region in one chunk, so be wary of the |
1840 | | * amount of memory that might be used. |
1841 | | * |
1842 | | * @param nDstXOff X offset to window of destination data to be produced. |
1843 | | * @param nDstYOff Y offset to window of destination data to be produced. |
1844 | | * @param nDstXSize Width of output window on destination file to be produced. |
1845 | | * @param nDstYSize Height of output window on destination file to be produced. |
1846 | | * @param pDataBuf the data buffer to place result in, of type eBufDataType. |
1847 | | * @param eBufDataType the type of the output data buffer. For now this |
1848 | | * must match GDALWarpOptions::eWorkingDataType. |
1849 | | * @param nSrcXOff source window X offset (computed if window all zero) |
1850 | | * @param nSrcYOff source window Y offset (computed if window all zero) |
1851 | | * @param nSrcXSize source window X size (computed if window all zero) |
1852 | | * @param nSrcYSize source window Y size (computed if window all zero) |
1853 | | * @param dfProgressBase minimum progress value reported |
1854 | | * @param dfProgressScale value such as dfProgressBase + dfProgressScale is the |
1855 | | * maximum progress value reported |
1856 | | * |
1857 | | * @return CE_None on success or CE_Failure if an error occurs. |
1858 | | */ |
1859 | | |
1860 | | CPLErr GDALWarpOperation::WarpRegionToBuffer( |
1861 | | int nDstXOff, int nDstYOff, int nDstXSize, int nDstYSize, void *pDataBuf, |
1862 | | GDALDataType eBufDataType, int nSrcXOff, int nSrcYOff, int nSrcXSize, |
1863 | | int nSrcYSize, double dfProgressBase, double dfProgressScale) |
1864 | 0 | { |
1865 | 0 | return WarpRegionToBuffer(nDstXOff, nDstYOff, nDstXSize, nDstYSize, |
1866 | 0 | pDataBuf, eBufDataType, nSrcXOff, nSrcYOff, |
1867 | 0 | nSrcXSize, nSrcYSize, 0, 0, dfProgressBase, |
1868 | 0 | dfProgressScale); |
1869 | 0 | } |
1870 | | |
1871 | | /** |
1872 | | * This method requests that a particular window of the output dataset |
1873 | | * be warped and the result put into the provided data buffer. The output |
1874 | | * dataset doesn't even really have to exist to use this method as long as |
1875 | | * the transformation function in the GDALWarpOptions is setup to map to |
1876 | | * a virtual pixel/line space. |
1877 | | * |
1878 | | * This method will do the whole region in one chunk, so be wary of the |
1879 | | * amount of memory that might be used. |
1880 | | * |
1881 | | * @param nDstXOff X offset to window of destination data to be produced. |
1882 | | * @param nDstYOff Y offset to window of destination data to be produced. |
1883 | | * @param nDstXSize Width of output window on destination file to be produced. |
1884 | | * @param nDstYSize Height of output window on destination file to be produced. |
1885 | | * @param pDataBuf the data buffer to place result in, of type eBufDataType. |
1886 | | * @param eBufDataType the type of the output data buffer. For now this |
1887 | | * must match GDALWarpOptions::eWorkingDataType. |
1888 | | * @param nSrcXOff source window X offset (computed if window all zero) |
1889 | | * @param nSrcYOff source window Y offset (computed if window all zero) |
1890 | | * @param nSrcXSize source window X size (computed if window all zero) |
1891 | | * @param nSrcYSize source window Y size (computed if window all zero) |
1892 | | * @param dfSrcXExtraSize Extra pixels (included in nSrcXSize) reserved |
1893 | | * for filter window. Should be ignored in scale computation |
1894 | | * @param dfSrcYExtraSize Extra pixels (included in nSrcYSize) reserved |
1895 | | * for filter window. Should be ignored in scale computation |
1896 | | * @param dfProgressBase minimum progress value reported |
1897 | | * @param dfProgressScale value such as dfProgressBase + dfProgressScale is the |
1898 | | * maximum progress value reported |
1899 | | * |
1900 | | * @return CE_None on success or CE_Failure if an error occurs. |
1901 | | */ |
1902 | | |
1903 | | CPLErr GDALWarpOperation::WarpRegionToBuffer( |
1904 | | int nDstXOff, int nDstYOff, int nDstXSize, int nDstYSize, void *pDataBuf, |
1905 | | // Only in a CPLAssert. |
1906 | | CPL_UNUSED GDALDataType eBufDataType, int nSrcXOff, int nSrcYOff, |
1907 | | int nSrcXSize, int nSrcYSize, double dfSrcXExtraSize, |
1908 | | double dfSrcYExtraSize, double dfProgressBase, double dfProgressScale) |
1909 | | |
1910 | 0 | { |
1911 | 0 | const int nWordSize = GDALGetDataTypeSizeBytes(psOptions->eWorkingDataType); |
1912 | |
|
1913 | 0 | CPLAssert(eBufDataType == psOptions->eWorkingDataType); |
1914 | | |
1915 | | /* -------------------------------------------------------------------- */ |
1916 | | /* If not given a corresponding source window compute one now. */ |
1917 | | /* -------------------------------------------------------------------- */ |
1918 | 0 | if (nSrcXSize == 0 && nSrcYSize == 0) |
1919 | 0 | { |
1920 | | // TODO: This taking of the warp mutex is suboptimal. We could get rid |
1921 | | // of it, but that would require making sure ComputeSourceWindow() |
1922 | | // uses a different pTransformerArg than the warp kernel. |
1923 | 0 | if (hWarpMutex != nullptr && !CPLAcquireMutex(hWarpMutex, 600.0)) |
1924 | 0 | { |
1925 | 0 | CPLError(CE_Failure, CPLE_AppDefined, |
1926 | 0 | "Failed to acquire WarpMutex in WarpRegion()."); |
1927 | 0 | return CE_Failure; |
1928 | 0 | } |
1929 | 0 | const CPLErr eErr = |
1930 | 0 | ComputeSourceWindow(nDstXOff, nDstYOff, nDstXSize, nDstYSize, |
1931 | 0 | &nSrcXOff, &nSrcYOff, &nSrcXSize, &nSrcYSize, |
1932 | 0 | &dfSrcXExtraSize, &dfSrcYExtraSize, nullptr); |
1933 | 0 | if (hWarpMutex != nullptr) |
1934 | 0 | CPLReleaseMutex(hWarpMutex); |
1935 | 0 | if (eErr != CE_None) |
1936 | 0 | { |
1937 | 0 | const bool bErrorOutIfEmptySourceWindow = |
1938 | 0 | CPLFetchBool(psOptions->papszWarpOptions, |
1939 | 0 | "ERROR_OUT_IF_EMPTY_SOURCE_WINDOW", true); |
1940 | 0 | if (!bErrorOutIfEmptySourceWindow) |
1941 | 0 | return CE_None; |
1942 | 0 | return eErr; |
1943 | 0 | } |
1944 | 0 | } |
1945 | | |
1946 | | /* -------------------------------------------------------------------- */ |
1947 | | /* Prepare a WarpKernel object to match this operation. */ |
1948 | | /* -------------------------------------------------------------------- */ |
1949 | 0 | GDALWarpKernel oWK; |
1950 | |
|
1951 | 0 | oWK.eResample = m_bIsTranslationOnPixelBoundaries ? GRA_NearestNeighbour |
1952 | 0 | : psOptions->eResampleAlg; |
1953 | 0 | oWK.eTieStrategy = psOptions->eTieStrategy; |
1954 | 0 | oWK.nBands = psOptions->nBandCount; |
1955 | 0 | oWK.eWorkingDataType = psOptions->eWorkingDataType; |
1956 | |
|
1957 | 0 | oWK.pfnTransformer = psOptions->pfnTransformer; |
1958 | 0 | oWK.pTransformerArg = psOptions->pTransformerArg; |
1959 | |
|
1960 | 0 | oWK.pfnProgress = psOptions->pfnProgress; |
1961 | 0 | oWK.pProgress = psOptions->pProgressArg; |
1962 | 0 | oWK.dfProgressBase = dfProgressBase; |
1963 | 0 | oWK.dfProgressScale = dfProgressScale; |
1964 | |
|
1965 | 0 | oWK.papszWarpOptions = psOptions->papszWarpOptions; |
1966 | 0 | oWK.psThreadData = psThreadData; |
1967 | |
|
1968 | 0 | oWK.padfDstNoDataReal = psOptions->padfDstNoDataReal; |
1969 | | |
1970 | | /* -------------------------------------------------------------------- */ |
1971 | | /* Setup the source buffer. */ |
1972 | | /* */ |
1973 | | /* Eventually we may need to take advantage of pixel */ |
1974 | | /* interleaved reading here. */ |
1975 | | /* -------------------------------------------------------------------- */ |
1976 | 0 | oWK.nSrcXOff = nSrcXOff; |
1977 | 0 | oWK.nSrcYOff = nSrcYOff; |
1978 | 0 | oWK.nSrcXSize = nSrcXSize; |
1979 | 0 | oWK.nSrcYSize = nSrcYSize; |
1980 | 0 | oWK.dfSrcXExtraSize = dfSrcXExtraSize; |
1981 | 0 | oWK.dfSrcYExtraSize = dfSrcYExtraSize; |
1982 | |
|
1983 | 0 | GInt64 nAlloc64 = |
1984 | 0 | nWordSize * |
1985 | 0 | (static_cast<GInt64>(nSrcXSize) * nSrcYSize + WARP_EXTRA_ELTS) * |
1986 | 0 | psOptions->nBandCount; |
1987 | | #if SIZEOF_VOIDP == 4 |
1988 | | if (nAlloc64 != static_cast<GInt64>(static_cast<size_t>(nAlloc64))) |
1989 | | { |
1990 | | CPLError(CE_Failure, CPLE_AppDefined, |
1991 | | "Integer overflow : nSrcXSize=%d, nSrcYSize=%d", nSrcXSize, |
1992 | | nSrcYSize); |
1993 | | return CE_Failure; |
1994 | | } |
1995 | | #endif |
1996 | |
|
1997 | 0 | oWK.papabySrcImage = static_cast<GByte **>( |
1998 | 0 | CPLCalloc(sizeof(GByte *), psOptions->nBandCount)); |
1999 | 0 | oWK.papabySrcImage[0] = |
2000 | 0 | static_cast<GByte *>(VSI_MALLOC_VERBOSE(static_cast<size_t>(nAlloc64))); |
2001 | |
|
2002 | 0 | CPLErr eErr = |
2003 | 0 | nSrcXSize != 0 && nSrcYSize != 0 && oWK.papabySrcImage[0] == nullptr |
2004 | 0 | ? CE_Failure |
2005 | 0 | : CE_None; |
2006 | |
|
2007 | 0 | for (int i = 0; i < psOptions->nBandCount && eErr == CE_None; i++) |
2008 | 0 | oWK.papabySrcImage[i] = |
2009 | 0 | reinterpret_cast<GByte *>(oWK.papabySrcImage[0]) + |
2010 | 0 | nWordSize * |
2011 | 0 | (static_cast<GPtrDiff_t>(nSrcXSize) * nSrcYSize + |
2012 | 0 | WARP_EXTRA_ELTS) * |
2013 | 0 | i; |
2014 | |
|
2015 | 0 | if (eErr == CE_None && nSrcXSize > 0 && nSrcYSize > 0) |
2016 | 0 | { |
2017 | 0 | GDALDataset *poSrcDS = GDALDataset::FromHandle(psOptions->hSrcDS); |
2018 | 0 | if (psOptions->nBandCount == 1) |
2019 | 0 | { |
2020 | | // Particular case to simplify the stack a bit. |
2021 | 0 | eErr = poSrcDS->GetRasterBand(psOptions->panSrcBands[0]) |
2022 | 0 | ->RasterIO(GF_Read, nSrcXOff, nSrcYOff, nSrcXSize, |
2023 | 0 | nSrcYSize, oWK.papabySrcImage[0], nSrcXSize, |
2024 | 0 | nSrcYSize, psOptions->eWorkingDataType, 0, 0, |
2025 | 0 | nullptr); |
2026 | 0 | } |
2027 | 0 | else |
2028 | 0 | { |
2029 | 0 | eErr = poSrcDS->RasterIO( |
2030 | 0 | GF_Read, nSrcXOff, nSrcYOff, nSrcXSize, nSrcYSize, |
2031 | 0 | oWK.papabySrcImage[0], nSrcXSize, nSrcYSize, |
2032 | 0 | psOptions->eWorkingDataType, psOptions->nBandCount, |
2033 | 0 | psOptions->panSrcBands, 0, 0, |
2034 | 0 | nWordSize * (static_cast<GPtrDiff_t>(nSrcXSize) * nSrcYSize + |
2035 | 0 | WARP_EXTRA_ELTS), |
2036 | 0 | nullptr); |
2037 | 0 | } |
2038 | 0 | } |
2039 | |
|
2040 | 0 | ReportTiming("Input buffer read"); |
2041 | | |
2042 | | /* -------------------------------------------------------------------- */ |
2043 | | /* Initialize destination buffer. */ |
2044 | | /* -------------------------------------------------------------------- */ |
2045 | 0 | oWK.nDstXOff = nDstXOff; |
2046 | 0 | oWK.nDstYOff = nDstYOff; |
2047 | 0 | oWK.nDstXSize = nDstXSize; |
2048 | 0 | oWK.nDstYSize = nDstYSize; |
2049 | |
|
2050 | 0 | oWK.papabyDstImage = reinterpret_cast<GByte **>( |
2051 | 0 | CPLCalloc(sizeof(GByte *), psOptions->nBandCount)); |
2052 | |
|
2053 | 0 | for (int i = 0; i < psOptions->nBandCount && eErr == CE_None; i++) |
2054 | 0 | { |
2055 | 0 | oWK.papabyDstImage[i] = |
2056 | 0 | static_cast<GByte *>(pDataBuf) + |
2057 | 0 | i * static_cast<GPtrDiff_t>(nDstXSize) * nDstYSize * nWordSize; |
2058 | 0 | } |
2059 | | |
2060 | | /* -------------------------------------------------------------------- */ |
2061 | | /* Eventually we need handling for a whole bunch of the */ |
2062 | | /* validity and density masks here. */ |
2063 | | /* -------------------------------------------------------------------- */ |
2064 | | |
2065 | | // TODO |
2066 | | |
2067 | | /* -------------------------------------------------------------------- */ |
2068 | | /* Generate a source density mask if we have a source alpha band */ |
2069 | | /* -------------------------------------------------------------------- */ |
2070 | 0 | if (eErr == CE_None && psOptions->nSrcAlphaBand > 0 && nSrcXSize > 0 && |
2071 | 0 | nSrcYSize > 0) |
2072 | 0 | { |
2073 | 0 | CPLAssert(oWK.pafUnifiedSrcDensity == nullptr); |
2074 | | |
2075 | 0 | eErr = CreateKernelMask(&oWK, 0 /* not used */, "UnifiedSrcDensity"); |
2076 | |
|
2077 | 0 | if (eErr == CE_None) |
2078 | 0 | { |
2079 | 0 | int bOutAllOpaque = FALSE; |
2080 | 0 | eErr = GDALWarpSrcAlphaMasker( |
2081 | 0 | psOptions, psOptions->nBandCount, psOptions->eWorkingDataType, |
2082 | 0 | oWK.nSrcXOff, oWK.nSrcYOff, oWK.nSrcXSize, oWK.nSrcYSize, |
2083 | 0 | oWK.papabySrcImage, TRUE, oWK.pafUnifiedSrcDensity, |
2084 | 0 | &bOutAllOpaque); |
2085 | 0 | if (bOutAllOpaque) |
2086 | 0 | { |
2087 | | #if DEBUG_VERBOSE |
2088 | | CPLDebug("WARP", |
2089 | | "No need for a source density mask as all values " |
2090 | | "are opaque"); |
2091 | | #endif |
2092 | 0 | CPLFree(oWK.pafUnifiedSrcDensity); |
2093 | 0 | oWK.pafUnifiedSrcDensity = nullptr; |
2094 | 0 | } |
2095 | 0 | } |
2096 | 0 | } |
2097 | | |
2098 | | /* -------------------------------------------------------------------- */ |
2099 | | /* Generate a source density mask if we have a source cutline. */ |
2100 | | /* -------------------------------------------------------------------- */ |
2101 | 0 | if (eErr == CE_None && psOptions->hCutline != nullptr && nSrcXSize > 0 && |
2102 | 0 | nSrcYSize > 0) |
2103 | 0 | { |
2104 | 0 | const bool bUnifiedSrcDensityJustCreated = |
2105 | 0 | (oWK.pafUnifiedSrcDensity == nullptr); |
2106 | 0 | if (bUnifiedSrcDensityJustCreated) |
2107 | 0 | { |
2108 | 0 | eErr = |
2109 | 0 | CreateKernelMask(&oWK, 0 /* not used */, "UnifiedSrcDensity"); |
2110 | |
|
2111 | 0 | if (eErr == CE_None) |
2112 | 0 | { |
2113 | 0 | for (GPtrDiff_t j = 0; |
2114 | 0 | j < static_cast<GPtrDiff_t>(oWK.nSrcXSize) * oWK.nSrcYSize; |
2115 | 0 | j++) |
2116 | 0 | oWK.pafUnifiedSrcDensity[j] = 1.0; |
2117 | 0 | } |
2118 | 0 | } |
2119 | |
|
2120 | 0 | int nValidityFlag = 0; |
2121 | 0 | if (eErr == CE_None) |
2122 | 0 | eErr = GDALWarpCutlineMaskerEx( |
2123 | 0 | psOptions, psOptions->nBandCount, psOptions->eWorkingDataType, |
2124 | 0 | oWK.nSrcXOff, oWK.nSrcYOff, oWK.nSrcXSize, oWK.nSrcYSize, |
2125 | 0 | oWK.papabySrcImage, TRUE, oWK.pafUnifiedSrcDensity, |
2126 | 0 | &nValidityFlag); |
2127 | 0 | if (nValidityFlag == GCMVF_CHUNK_FULLY_WITHIN_CUTLINE && |
2128 | 0 | bUnifiedSrcDensityJustCreated) |
2129 | 0 | { |
2130 | 0 | VSIFree(oWK.pafUnifiedSrcDensity); |
2131 | 0 | oWK.pafUnifiedSrcDensity = nullptr; |
2132 | 0 | } |
2133 | 0 | } |
2134 | | |
2135 | | /* -------------------------------------------------------------------- */ |
2136 | | /* Generate a destination density mask if we have a destination */ |
2137 | | /* alpha band. */ |
2138 | | /* -------------------------------------------------------------------- */ |
2139 | 0 | if (eErr == CE_None && psOptions->nDstAlphaBand > 0) |
2140 | 0 | { |
2141 | 0 | CPLAssert(oWK.pafDstDensity == nullptr); |
2142 | | |
2143 | 0 | eErr = CreateKernelMask(&oWK, 0 /* not used */, "DstDensity"); |
2144 | |
|
2145 | 0 | if (eErr == CE_None) |
2146 | 0 | eErr = GDALWarpDstAlphaMasker( |
2147 | 0 | psOptions, psOptions->nBandCount, psOptions->eWorkingDataType, |
2148 | 0 | oWK.nDstXOff, oWK.nDstYOff, oWK.nDstXSize, oWK.nDstYSize, |
2149 | 0 | oWK.papabyDstImage, TRUE, oWK.pafDstDensity); |
2150 | 0 | } |
2151 | | |
2152 | | /* -------------------------------------------------------------------- */ |
2153 | | /* If we have source nodata values create the validity mask. */ |
2154 | | /* -------------------------------------------------------------------- */ |
2155 | 0 | if (eErr == CE_None && psOptions->padfSrcNoDataReal != nullptr && |
2156 | 0 | nSrcXSize > 0 && nSrcYSize > 0) |
2157 | 0 | { |
2158 | 0 | CPLAssert(oWK.papanBandSrcValid == nullptr); |
2159 | | |
2160 | 0 | bool bAllBandsAllValid = true; |
2161 | 0 | for (int i = 0; i < psOptions->nBandCount && eErr == CE_None; i++) |
2162 | 0 | { |
2163 | 0 | eErr = CreateKernelMask(&oWK, i, "BandSrcValid"); |
2164 | 0 | if (eErr == CE_None) |
2165 | 0 | { |
2166 | 0 | double adfNoData[2] = {psOptions->padfSrcNoDataReal[i], |
2167 | 0 | psOptions->padfSrcNoDataImag != nullptr |
2168 | 0 | ? psOptions->padfSrcNoDataImag[i] |
2169 | 0 | : 0.0}; |
2170 | |
|
2171 | 0 | int bAllValid = FALSE; |
2172 | 0 | eErr = GDALWarpNoDataMasker( |
2173 | 0 | adfNoData, 1, psOptions->eWorkingDataType, oWK.nSrcXOff, |
2174 | 0 | oWK.nSrcYOff, oWK.nSrcXSize, oWK.nSrcYSize, |
2175 | 0 | &(oWK.papabySrcImage[i]), FALSE, oWK.papanBandSrcValid[i], |
2176 | 0 | &bAllValid); |
2177 | 0 | if (!bAllValid) |
2178 | 0 | bAllBandsAllValid = false; |
2179 | 0 | } |
2180 | 0 | } |
2181 | | |
2182 | | // Optimization: if all pixels in all bands are valid, |
2183 | | // we don't need a mask. |
2184 | 0 | if (bAllBandsAllValid) |
2185 | 0 | { |
2186 | | #if DEBUG_VERBOSE |
2187 | | CPLDebug( |
2188 | | "WARP", |
2189 | | "No need for a source nodata mask as all values are valid"); |
2190 | | #endif |
2191 | 0 | for (int k = 0; k < psOptions->nBandCount; k++) |
2192 | 0 | CPLFree(oWK.papanBandSrcValid[k]); |
2193 | 0 | CPLFree(oWK.papanBandSrcValid); |
2194 | 0 | oWK.papanBandSrcValid = nullptr; |
2195 | 0 | } |
2196 | | |
2197 | | /* -------------------------------------------------------------------- |
2198 | | */ |
2199 | | /* If there's just a single band, then transfer */ |
2200 | | /* papanBandSrcValid[0] as panUnifiedSrcValid. */ |
2201 | | /* -------------------------------------------------------------------- |
2202 | | */ |
2203 | 0 | if (oWK.papanBandSrcValid != nullptr && psOptions->nBandCount == 1) |
2204 | 0 | { |
2205 | 0 | oWK.panUnifiedSrcValid = oWK.papanBandSrcValid[0]; |
2206 | 0 | CPLFree(oWK.papanBandSrcValid); |
2207 | 0 | oWK.papanBandSrcValid = nullptr; |
2208 | 0 | } |
2209 | | |
2210 | | /* -------------------------------------------------------------------- |
2211 | | */ |
2212 | | /* Compute a unified input pixel mask if and only if all bands */ |
2213 | | /* nodata is true. That is, we only treat a pixel as nodata if */ |
2214 | | /* all bands match their respective nodata values. */ |
2215 | | /* -------------------------------------------------------------------- |
2216 | | */ |
2217 | 0 | else if (oWK.papanBandSrcValid != nullptr && eErr == CE_None) |
2218 | 0 | { |
2219 | 0 | bool bAtLeastOneBandAllValid = false; |
2220 | 0 | for (int k = 0; k < psOptions->nBandCount; k++) |
2221 | 0 | { |
2222 | 0 | if (oWK.papanBandSrcValid[k] == nullptr) |
2223 | 0 | { |
2224 | 0 | bAtLeastOneBandAllValid = true; |
2225 | 0 | break; |
2226 | 0 | } |
2227 | 0 | } |
2228 | |
|
2229 | 0 | const char *pszUnifiedSrcNoData = CSLFetchNameValue( |
2230 | 0 | psOptions->papszWarpOptions, "UNIFIED_SRC_NODATA"); |
2231 | 0 | if (!bAtLeastOneBandAllValid && (pszUnifiedSrcNoData == nullptr || |
2232 | 0 | CPLTestBool(pszUnifiedSrcNoData))) |
2233 | 0 | { |
2234 | 0 | auto nMaskBits = |
2235 | 0 | static_cast<GPtrDiff_t>(oWK.nSrcXSize) * oWK.nSrcYSize; |
2236 | |
|
2237 | 0 | eErr = |
2238 | 0 | CreateKernelMask(&oWK, 0 /* not used */, "UnifiedSrcValid"); |
2239 | |
|
2240 | 0 | if (eErr == CE_None) |
2241 | 0 | { |
2242 | 0 | CPLMaskClearAll(oWK.panUnifiedSrcValid, nMaskBits); |
2243 | |
|
2244 | 0 | for (int k = 0; k < psOptions->nBandCount; k++) |
2245 | 0 | { |
2246 | 0 | CPLMaskMerge(oWK.panUnifiedSrcValid, |
2247 | 0 | oWK.papanBandSrcValid[k], nMaskBits); |
2248 | 0 | } |
2249 | | |
2250 | | // If UNIFIED_SRC_NODATA is set, then we will ignore the |
2251 | | // individual nodata status of each band. If it is not set, |
2252 | | // both mechanism apply: |
2253 | | // - if panUnifiedSrcValid[] indicates a pixel is invalid |
2254 | | // (that is all its bands are at nodata), then the output |
2255 | | // pixel will be invalid |
2256 | | // - otherwise, the status band per band will be check with |
2257 | | // papanBandSrcValid[iBand][], and the output pixel will |
2258 | | // be valid |
2259 | 0 | if (pszUnifiedSrcNoData != nullptr && |
2260 | 0 | !EQUAL(pszUnifiedSrcNoData, "PARTIAL")) |
2261 | 0 | { |
2262 | 0 | for (int k = 0; k < psOptions->nBandCount; k++) |
2263 | 0 | CPLFree(oWK.papanBandSrcValid[k]); |
2264 | 0 | CPLFree(oWK.papanBandSrcValid); |
2265 | 0 | oWK.papanBandSrcValid = nullptr; |
2266 | 0 | } |
2267 | 0 | } |
2268 | 0 | } |
2269 | 0 | } |
2270 | 0 | } |
2271 | | |
2272 | | /* -------------------------------------------------------------------- */ |
2273 | | /* Generate a source validity mask if we have a source mask for */ |
2274 | | /* the whole input dataset (and didn't already treat it as */ |
2275 | | /* alpha band). */ |
2276 | | /* -------------------------------------------------------------------- */ |
2277 | 0 | GDALRasterBandH hSrcBand = |
2278 | 0 | psOptions->nBandCount < 1 |
2279 | 0 | ? nullptr |
2280 | 0 | : GDALGetRasterBand(psOptions->hSrcDS, psOptions->panSrcBands[0]); |
2281 | |
|
2282 | 0 | if (eErr == CE_None && oWK.pafUnifiedSrcDensity == nullptr && |
2283 | 0 | oWK.panUnifiedSrcValid == nullptr && psOptions->nSrcAlphaBand <= 0 && |
2284 | 0 | (GDALGetMaskFlags(hSrcBand) & GMF_PER_DATASET) |
2285 | | // Need to double check for -nosrcalpha case. |
2286 | 0 | && !(GDALGetMaskFlags(hSrcBand) & GMF_ALPHA) && nSrcXSize > 0 && |
2287 | 0 | nSrcYSize > 0) |
2288 | | |
2289 | 0 | { |
2290 | 0 | eErr = CreateKernelMask(&oWK, 0 /* not used */, "UnifiedSrcValid"); |
2291 | |
|
2292 | 0 | if (eErr == CE_None) |
2293 | 0 | eErr = GDALWarpSrcMaskMasker( |
2294 | 0 | psOptions, psOptions->nBandCount, psOptions->eWorkingDataType, |
2295 | 0 | oWK.nSrcXOff, oWK.nSrcYOff, oWK.nSrcXSize, oWK.nSrcYSize, |
2296 | 0 | oWK.papabySrcImage, FALSE, oWK.panUnifiedSrcValid); |
2297 | 0 | } |
2298 | | |
2299 | | /* -------------------------------------------------------------------- */ |
2300 | | /* If we have destination nodata values create the */ |
2301 | | /* validity mask. We set the DstValid for any pixel that we */ |
2302 | | /* do no have valid data in *any* of the source bands. */ |
2303 | | /* */ |
2304 | | /* Note that we don't support any concept of unified nodata on */ |
2305 | | /* the destination image. At some point that should be added */ |
2306 | | /* and then this logic will be significantly different. */ |
2307 | | /* -------------------------------------------------------------------- */ |
2308 | 0 | if (eErr == CE_None && psOptions->padfDstNoDataReal != nullptr) |
2309 | 0 | { |
2310 | 0 | CPLAssert(oWK.panDstValid == nullptr); |
2311 | | |
2312 | 0 | const GPtrDiff_t nMaskBits = |
2313 | 0 | static_cast<GPtrDiff_t>(oWK.nDstXSize) * oWK.nDstYSize; |
2314 | |
|
2315 | 0 | eErr = CreateKernelMask(&oWK, 0 /* not used */, "DstValid"); |
2316 | 0 | GUInt32 *panBandMask = |
2317 | 0 | eErr == CE_None ? CPLMaskCreate(nMaskBits, true) : nullptr; |
2318 | |
|
2319 | 0 | if (eErr == CE_None && panBandMask != nullptr) |
2320 | 0 | { |
2321 | 0 | for (int iBand = 0; iBand < psOptions->nBandCount; iBand++) |
2322 | 0 | { |
2323 | 0 | CPLMaskSetAll(panBandMask, nMaskBits); |
2324 | |
|
2325 | 0 | double adfNoData[2] = {psOptions->padfDstNoDataReal[iBand], |
2326 | 0 | psOptions->padfDstNoDataImag != nullptr |
2327 | 0 | ? psOptions->padfDstNoDataImag[iBand] |
2328 | 0 | : 0.0}; |
2329 | |
|
2330 | 0 | int bAllValid = FALSE; |
2331 | 0 | eErr = GDALWarpNoDataMasker( |
2332 | 0 | adfNoData, 1, psOptions->eWorkingDataType, oWK.nDstXOff, |
2333 | 0 | oWK.nDstYOff, oWK.nDstXSize, oWK.nDstYSize, |
2334 | 0 | oWK.papabyDstImage + iBand, FALSE, panBandMask, &bAllValid); |
2335 | | |
2336 | | // Optimization: if there's a single band and all pixels are |
2337 | | // valid then we don't need a mask. |
2338 | 0 | if (bAllValid && psOptions->nBandCount == 1) |
2339 | 0 | { |
2340 | | #if DEBUG_VERBOSE |
2341 | | CPLDebug("WARP", "No need for a destination nodata mask as " |
2342 | | "all values are valid"); |
2343 | | #endif |
2344 | 0 | CPLFree(oWK.panDstValid); |
2345 | 0 | oWK.panDstValid = nullptr; |
2346 | 0 | break; |
2347 | 0 | } |
2348 | | |
2349 | 0 | CPLMaskMerge(oWK.panDstValid, panBandMask, nMaskBits); |
2350 | 0 | } |
2351 | 0 | CPLFree(panBandMask); |
2352 | 0 | } |
2353 | 0 | } |
2354 | | |
2355 | | /* -------------------------------------------------------------------- */ |
2356 | | /* Release IO Mutex, and acquire warper mutex. */ |
2357 | | /* -------------------------------------------------------------------- */ |
2358 | 0 | if (hIOMutex != nullptr) |
2359 | 0 | { |
2360 | 0 | CPLReleaseMutex(hIOMutex); |
2361 | 0 | if (!CPLAcquireMutex(hWarpMutex, 600.0)) |
2362 | 0 | { |
2363 | 0 | CPLError(CE_Failure, CPLE_AppDefined, |
2364 | 0 | "Failed to acquire WarpMutex in WarpRegion()."); |
2365 | 0 | return CE_Failure; |
2366 | 0 | } |
2367 | 0 | } |
2368 | | |
2369 | | /* -------------------------------------------------------------------- */ |
2370 | | /* Optional application provided prewarp chunk processor. */ |
2371 | | /* -------------------------------------------------------------------- */ |
2372 | 0 | if (eErr == CE_None && psOptions->pfnPreWarpChunkProcessor != nullptr) |
2373 | 0 | eErr = psOptions->pfnPreWarpChunkProcessor( |
2374 | 0 | &oWK, psOptions->pPreWarpProcessorArg); |
2375 | | |
2376 | | /* -------------------------------------------------------------------- */ |
2377 | | /* Perform the warp. */ |
2378 | | /* -------------------------------------------------------------------- */ |
2379 | 0 | if (eErr == CE_None) |
2380 | 0 | { |
2381 | 0 | eErr = oWK.PerformWarp(); |
2382 | 0 | ReportTiming("In memory warp operation"); |
2383 | 0 | } |
2384 | | |
2385 | | /* -------------------------------------------------------------------- */ |
2386 | | /* Optional application provided postwarp chunk processor. */ |
2387 | | /* -------------------------------------------------------------------- */ |
2388 | 0 | if (eErr == CE_None && psOptions->pfnPostWarpChunkProcessor != nullptr) |
2389 | 0 | eErr = psOptions->pfnPostWarpChunkProcessor( |
2390 | 0 | &oWK, psOptions->pPostWarpProcessorArg); |
2391 | | |
2392 | | /* -------------------------------------------------------------------- */ |
2393 | | /* Release Warp Mutex, and acquire io mutex. */ |
2394 | | /* -------------------------------------------------------------------- */ |
2395 | 0 | if (hIOMutex != nullptr) |
2396 | 0 | { |
2397 | 0 | CPLReleaseMutex(hWarpMutex); |
2398 | 0 | if (!CPLAcquireMutex(hIOMutex, 600.0)) |
2399 | 0 | { |
2400 | 0 | CPLError(CE_Failure, CPLE_AppDefined, |
2401 | 0 | "Failed to acquire IOMutex in WarpRegion()."); |
2402 | 0 | return CE_Failure; |
2403 | 0 | } |
2404 | 0 | } |
2405 | | |
2406 | | /* -------------------------------------------------------------------- */ |
2407 | | /* Write destination alpha if available. */ |
2408 | | /* -------------------------------------------------------------------- */ |
2409 | 0 | if (eErr == CE_None && psOptions->nDstAlphaBand > 0) |
2410 | 0 | { |
2411 | 0 | eErr = GDALWarpDstAlphaMasker( |
2412 | 0 | psOptions, -psOptions->nBandCount, psOptions->eWorkingDataType, |
2413 | 0 | oWK.nDstXOff, oWK.nDstYOff, oWK.nDstXSize, oWK.nDstYSize, |
2414 | 0 | oWK.papabyDstImage, TRUE, oWK.pafDstDensity); |
2415 | 0 | } |
2416 | | |
2417 | | /* -------------------------------------------------------------------- */ |
2418 | | /* Cleanup. */ |
2419 | | /* -------------------------------------------------------------------- */ |
2420 | 0 | CPLFree(oWK.papabySrcImage[0]); |
2421 | 0 | CPLFree(oWK.papabySrcImage); |
2422 | 0 | CPLFree(oWK.papabyDstImage); |
2423 | |
|
2424 | 0 | if (oWK.papanBandSrcValid != nullptr) |
2425 | 0 | { |
2426 | 0 | for (int i = 0; i < oWK.nBands; i++) |
2427 | 0 | CPLFree(oWK.papanBandSrcValid[i]); |
2428 | 0 | CPLFree(oWK.papanBandSrcValid); |
2429 | 0 | } |
2430 | 0 | CPLFree(oWK.panUnifiedSrcValid); |
2431 | 0 | CPLFree(oWK.pafUnifiedSrcDensity); |
2432 | 0 | CPLFree(oWK.panDstValid); |
2433 | 0 | CPLFree(oWK.pafDstDensity); |
2434 | |
|
2435 | 0 | return eErr; |
2436 | 0 | } |
2437 | | |
2438 | | /************************************************************************/ |
2439 | | /* GDALWarpRegionToBuffer() */ |
2440 | | /************************************************************************/ |
2441 | | |
2442 | | /** |
2443 | | * @see GDALWarpOperation::WarpRegionToBuffer() |
2444 | | */ |
2445 | | |
2446 | | CPLErr GDALWarpRegionToBuffer(GDALWarpOperationH hOperation, int nDstXOff, |
2447 | | int nDstYOff, int nDstXSize, int nDstYSize, |
2448 | | void *pDataBuf, GDALDataType eBufDataType, |
2449 | | int nSrcXOff, int nSrcYOff, int nSrcXSize, |
2450 | | int nSrcYSize) |
2451 | | |
2452 | 0 | { |
2453 | 0 | VALIDATE_POINTER1(hOperation, "GDALWarpRegionToBuffer", CE_Failure); |
2454 | | |
2455 | 0 | return reinterpret_cast<GDALWarpOperation *>(hOperation) |
2456 | 0 | ->WarpRegionToBuffer(nDstXOff, nDstYOff, nDstXSize, nDstYSize, pDataBuf, |
2457 | 0 | eBufDataType, nSrcXOff, nSrcYOff, nSrcXSize, |
2458 | 0 | nSrcYSize); |
2459 | 0 | } |
2460 | | |
2461 | | /************************************************************************/ |
2462 | | /* CreateKernelMask() */ |
2463 | | /* */ |
2464 | | /* If mask does not yet exist, create it. Supported types are */ |
2465 | | /* the name of the variable in question. That is */ |
2466 | | /* "BandSrcValid", "UnifiedSrcValid", "UnifiedSrcDensity", */ |
2467 | | /* "DstValid", and "DstDensity". */ |
2468 | | /************************************************************************/ |
2469 | | |
2470 | | CPLErr GDALWarpOperation::CreateKernelMask(GDALWarpKernel *poKernel, int iBand, |
2471 | | const char *pszType) |
2472 | | |
2473 | 0 | { |
2474 | 0 | void **ppMask = nullptr; |
2475 | 0 | int nXSize = 0; |
2476 | 0 | int nYSize = 0; |
2477 | 0 | int nBitsPerPixel = 0; |
2478 | 0 | int nDefault = 0; |
2479 | 0 | int nExtraElts = 0; |
2480 | 0 | bool bDoMemset = true; |
2481 | | |
2482 | | /* -------------------------------------------------------------------- */ |
2483 | | /* Get particulars of mask to be updated. */ |
2484 | | /* -------------------------------------------------------------------- */ |
2485 | 0 | if (EQUAL(pszType, "BandSrcValid")) |
2486 | 0 | { |
2487 | 0 | if (poKernel->papanBandSrcValid == nullptr) |
2488 | 0 | poKernel->papanBandSrcValid = static_cast<GUInt32 **>( |
2489 | 0 | CPLCalloc(sizeof(void *), poKernel->nBands)); |
2490 | |
|
2491 | 0 | ppMask = |
2492 | 0 | reinterpret_cast<void **>(&(poKernel->papanBandSrcValid[iBand])); |
2493 | 0 | nExtraElts = WARP_EXTRA_ELTS; |
2494 | 0 | nXSize = poKernel->nSrcXSize; |
2495 | 0 | nYSize = poKernel->nSrcYSize; |
2496 | 0 | nBitsPerPixel = 1; |
2497 | 0 | nDefault = 0xff; |
2498 | 0 | } |
2499 | 0 | else if (EQUAL(pszType, "UnifiedSrcValid")) |
2500 | 0 | { |
2501 | 0 | ppMask = reinterpret_cast<void **>(&(poKernel->panUnifiedSrcValid)); |
2502 | 0 | nExtraElts = WARP_EXTRA_ELTS; |
2503 | 0 | nXSize = poKernel->nSrcXSize; |
2504 | 0 | nYSize = poKernel->nSrcYSize; |
2505 | 0 | nBitsPerPixel = 1; |
2506 | 0 | nDefault = 0xff; |
2507 | 0 | } |
2508 | 0 | else if (EQUAL(pszType, "UnifiedSrcDensity")) |
2509 | 0 | { |
2510 | 0 | ppMask = reinterpret_cast<void **>(&(poKernel->pafUnifiedSrcDensity)); |
2511 | 0 | nExtraElts = WARP_EXTRA_ELTS; |
2512 | 0 | nXSize = poKernel->nSrcXSize; |
2513 | 0 | nYSize = poKernel->nSrcYSize; |
2514 | 0 | nBitsPerPixel = 32; |
2515 | 0 | nDefault = 0; |
2516 | 0 | bDoMemset = false; |
2517 | 0 | } |
2518 | 0 | else if (EQUAL(pszType, "DstValid")) |
2519 | 0 | { |
2520 | 0 | ppMask = reinterpret_cast<void **>(&(poKernel->panDstValid)); |
2521 | 0 | nXSize = poKernel->nDstXSize; |
2522 | 0 | nYSize = poKernel->nDstYSize; |
2523 | 0 | nBitsPerPixel = 1; |
2524 | 0 | nDefault = 0; |
2525 | 0 | } |
2526 | 0 | else if (EQUAL(pszType, "DstDensity")) |
2527 | 0 | { |
2528 | 0 | ppMask = reinterpret_cast<void **>(&(poKernel->pafDstDensity)); |
2529 | 0 | nXSize = poKernel->nDstXSize; |
2530 | 0 | nYSize = poKernel->nDstYSize; |
2531 | 0 | nBitsPerPixel = 32; |
2532 | 0 | nDefault = 0; |
2533 | 0 | bDoMemset = false; |
2534 | 0 | } |
2535 | 0 | else |
2536 | 0 | { |
2537 | 0 | CPLError(CE_Failure, CPLE_AppDefined, |
2538 | 0 | "Internal error in CreateKernelMask(%s).", pszType); |
2539 | 0 | return CE_Failure; |
2540 | 0 | } |
2541 | | |
2542 | | /* -------------------------------------------------------------------- */ |
2543 | | /* Allocate if needed. */ |
2544 | | /* -------------------------------------------------------------------- */ |
2545 | 0 | if (*ppMask == nullptr) |
2546 | 0 | { |
2547 | 0 | const GIntBig nBytes = |
2548 | 0 | nBitsPerPixel == 32 |
2549 | 0 | ? (static_cast<GIntBig>(nXSize) * nYSize + nExtraElts) * 4 |
2550 | 0 | : (static_cast<GIntBig>(nXSize) * nYSize + nExtraElts + 31) / 8; |
2551 | |
|
2552 | 0 | const size_t nByteSize_t = static_cast<size_t>(nBytes); |
2553 | | #if SIZEOF_VOIDP == 4 |
2554 | | if (static_cast<GIntBig>(nByteSize_t) != nBytes) |
2555 | | { |
2556 | | CPLError(CE_Failure, CPLE_OutOfMemory, |
2557 | | "Cannot allocate " CPL_FRMT_GIB " bytes", nBytes); |
2558 | | return CE_Failure; |
2559 | | } |
2560 | | #endif |
2561 | |
|
2562 | 0 | *ppMask = VSI_MALLOC_VERBOSE(nByteSize_t); |
2563 | |
|
2564 | 0 | if (*ppMask == nullptr) |
2565 | 0 | { |
2566 | 0 | return CE_Failure; |
2567 | 0 | } |
2568 | | |
2569 | 0 | if (bDoMemset) |
2570 | 0 | memset(*ppMask, nDefault, nByteSize_t); |
2571 | 0 | } |
2572 | | |
2573 | 0 | return CE_None; |
2574 | 0 | } |
2575 | | |
2576 | | /************************************************************************/ |
2577 | | /* ComputeSourceWindowStartingFromSource() */ |
2578 | | /************************************************************************/ |
2579 | | |
2580 | | constexpr int DEFAULT_STEP_COUNT = 21; |
2581 | | |
2582 | | void GDALWarpOperation::ComputeSourceWindowStartingFromSource( |
2583 | | int nDstXOff, int nDstYOff, int nDstXSize, int nDstYSize, |
2584 | | double *padfSrcMinX, double *padfSrcMinY, double *padfSrcMaxX, |
2585 | | double *padfSrcMaxY) |
2586 | 0 | { |
2587 | 0 | const int nSrcRasterXSize = GDALGetRasterXSize(psOptions->hSrcDS); |
2588 | 0 | const int nSrcRasterYSize = GDALGetRasterYSize(psOptions->hSrcDS); |
2589 | 0 | if (nSrcRasterXSize == 0 || nSrcRasterYSize == 0) |
2590 | 0 | return; |
2591 | | |
2592 | 0 | GDALWarpPrivateData *privateData = GetWarpPrivateData(this); |
2593 | 0 | if (privateData->nStepCount == 0) |
2594 | 0 | { |
2595 | 0 | int nStepCount = DEFAULT_STEP_COUNT; |
2596 | 0 | std::vector<double> adfDstZ{}; |
2597 | |
|
2598 | 0 | const char *pszSampleSteps = |
2599 | 0 | CSLFetchNameValue(psOptions->papszWarpOptions, "SAMPLE_STEPS"); |
2600 | 0 | constexpr int knIntMax = std::numeric_limits<int>::max(); |
2601 | 0 | if (pszSampleSteps && !EQUAL(pszSampleSteps, "ALL")) |
2602 | 0 | { |
2603 | 0 | nStepCount = atoi( |
2604 | 0 | CSLFetchNameValue(psOptions->papszWarpOptions, "SAMPLE_STEPS")); |
2605 | 0 | nStepCount = std::max(2, nStepCount); |
2606 | 0 | } |
2607 | |
|
2608 | 0 | const double dfStepSize = 1.0 / (nStepCount - 1); |
2609 | 0 | if (nStepCount > knIntMax - 2 || |
2610 | 0 | (nStepCount + 2) > knIntMax / (nStepCount + 2)) |
2611 | 0 | { |
2612 | 0 | CPLError(CE_Failure, CPLE_AppDefined, "Too many steps : %d", |
2613 | 0 | nStepCount); |
2614 | 0 | return; |
2615 | 0 | } |
2616 | 0 | const int nSampleMax = (nStepCount + 2) * (nStepCount + 2); |
2617 | |
|
2618 | 0 | try |
2619 | 0 | { |
2620 | 0 | privateData->abSuccess.resize(nSampleMax); |
2621 | 0 | privateData->adfDstX.resize(nSampleMax); |
2622 | 0 | privateData->adfDstY.resize(nSampleMax); |
2623 | 0 | adfDstZ.resize(nSampleMax); |
2624 | 0 | } |
2625 | 0 | catch (const std::exception &) |
2626 | 0 | { |
2627 | 0 | return; |
2628 | 0 | } |
2629 | | |
2630 | | /* -------------------------------------------------------------------- |
2631 | | */ |
2632 | | /* Setup sample points on a grid pattern throughout the source */ |
2633 | | /* raster. */ |
2634 | | /* -------------------------------------------------------------------- |
2635 | | */ |
2636 | 0 | int iPoint = 0; |
2637 | 0 | for (int iY = 0; iY < nStepCount + 2; iY++) |
2638 | 0 | { |
2639 | 0 | const double dfRatioY = (iY == 0) ? 0.5 / nSrcRasterYSize |
2640 | 0 | : (iY <= nStepCount) |
2641 | 0 | ? (iY - 1) * dfStepSize |
2642 | 0 | : 1 - 0.5 / nSrcRasterYSize; |
2643 | 0 | for (int iX = 0; iX < nStepCount + 2; iX++) |
2644 | 0 | { |
2645 | 0 | const double dfRatioX = (iX == 0) ? 0.5 / nSrcRasterXSize |
2646 | 0 | : (iX <= nStepCount) |
2647 | 0 | ? (iX - 1) * dfStepSize |
2648 | 0 | : 1 - 0.5 / nSrcRasterXSize; |
2649 | 0 | privateData->adfDstX[iPoint] = dfRatioX * nSrcRasterXSize; |
2650 | 0 | privateData->adfDstY[iPoint] = dfRatioY * nSrcRasterYSize; |
2651 | 0 | iPoint++; |
2652 | 0 | } |
2653 | 0 | } |
2654 | 0 | CPLAssert(iPoint == nSampleMax); |
2655 | | |
2656 | | /* -------------------------------------------------------------------- |
2657 | | */ |
2658 | | /* Transform them to the output pixel coordinate space */ |
2659 | | /* -------------------------------------------------------------------- |
2660 | | */ |
2661 | 0 | psOptions->pfnTransformer(psOptions->pTransformerArg, FALSE, nSampleMax, |
2662 | 0 | privateData->adfDstX.data(), |
2663 | 0 | privateData->adfDstY.data(), adfDstZ.data(), |
2664 | 0 | privateData->abSuccess.data()); |
2665 | 0 | privateData->nStepCount = nStepCount; |
2666 | 0 | } |
2667 | | |
2668 | | /* -------------------------------------------------------------------- */ |
2669 | | /* Collect the bounds, ignoring any failed points. */ |
2670 | | /* -------------------------------------------------------------------- */ |
2671 | 0 | const int nStepCount = privateData->nStepCount; |
2672 | 0 | const double dfStepSize = 1.0 / (nStepCount - 1); |
2673 | 0 | int iPoint = 0; |
2674 | 0 | #ifdef DEBUG |
2675 | 0 | const size_t nSampleMax = |
2676 | 0 | static_cast<size_t>(nStepCount + 2) * (nStepCount + 2); |
2677 | 0 | CPL_IGNORE_RET_VAL(nSampleMax); |
2678 | 0 | CPLAssert(privateData->adfDstX.size() == nSampleMax); |
2679 | 0 | CPLAssert(privateData->adfDstY.size() == nSampleMax); |
2680 | 0 | CPLAssert(privateData->abSuccess.size() == nSampleMax); |
2681 | 0 | #endif |
2682 | 0 | for (int iY = 0; iY < nStepCount + 2; iY++) |
2683 | 0 | { |
2684 | 0 | const double dfRatioY = (iY == 0) ? 0.5 / nSrcRasterYSize |
2685 | 0 | : (iY <= nStepCount) |
2686 | 0 | ? (iY - 1) * dfStepSize |
2687 | 0 | : 1 - 0.5 / nSrcRasterYSize; |
2688 | 0 | for (int iX = 0; iX < nStepCount + 2; iX++) |
2689 | 0 | { |
2690 | 0 | if (privateData->abSuccess[iPoint] && |
2691 | 0 | privateData->adfDstX[iPoint] >= nDstXOff && |
2692 | 0 | privateData->adfDstX[iPoint] <= nDstXOff + nDstXSize && |
2693 | 0 | privateData->adfDstY[iPoint] >= nDstYOff && |
2694 | 0 | privateData->adfDstY[iPoint] <= nDstYOff + nDstYSize) |
2695 | 0 | { |
2696 | 0 | const double dfRatioX = (iX == 0) ? 0.5 / nSrcRasterXSize |
2697 | 0 | : (iX <= nStepCount) |
2698 | 0 | ? (iX - 1) * dfStepSize |
2699 | 0 | : 1 - 0.5 / nSrcRasterXSize; |
2700 | 0 | double dfSrcX = dfRatioX * nSrcRasterXSize; |
2701 | 0 | double dfSrcY = dfRatioY * nSrcRasterYSize; |
2702 | 0 | *padfSrcMinX = std::min(*padfSrcMinX, dfSrcX); |
2703 | 0 | *padfSrcMinY = std::min(*padfSrcMinY, dfSrcY); |
2704 | 0 | *padfSrcMaxX = std::max(*padfSrcMaxX, dfSrcX); |
2705 | 0 | *padfSrcMaxY = std::max(*padfSrcMaxY, dfSrcY); |
2706 | 0 | } |
2707 | 0 | iPoint++; |
2708 | 0 | } |
2709 | 0 | } |
2710 | 0 | } |
2711 | | |
2712 | | /************************************************************************/ |
2713 | | /* ComputeSourceWindowTransformPoints() */ |
2714 | | /************************************************************************/ |
2715 | | |
2716 | | bool GDALWarpOperation::ComputeSourceWindowTransformPoints( |
2717 | | int nDstXOff, int nDstYOff, int nDstXSize, int nDstYSize, bool bUseGrid, |
2718 | | bool bAll, int nStepCount, bool bTryWithCheckWithInvertProj, |
2719 | | double &dfMinXOut, double &dfMinYOut, double &dfMaxXOut, double &dfMaxYOut, |
2720 | | int &nSamplePoints, int &nFailedCount) |
2721 | 0 | { |
2722 | 0 | nSamplePoints = 0; |
2723 | 0 | nFailedCount = 0; |
2724 | |
|
2725 | 0 | const double dfStepSize = bAll ? 0 : 1.0 / (nStepCount - 1); |
2726 | 0 | constexpr int knIntMax = std::numeric_limits<int>::max(); |
2727 | 0 | int nSampleMax = 0; |
2728 | 0 | if (bUseGrid) |
2729 | 0 | { |
2730 | 0 | if (bAll) |
2731 | 0 | { |
2732 | 0 | if (nDstYSize > knIntMax / (nDstXSize + 1) - 1) |
2733 | 0 | { |
2734 | 0 | CPLError(CE_Failure, CPLE_AppDefined, "Too many steps"); |
2735 | 0 | return false; |
2736 | 0 | } |
2737 | 0 | nSampleMax = (nDstXSize + 1) * (nDstYSize + 1); |
2738 | 0 | } |
2739 | 0 | else |
2740 | 0 | { |
2741 | 0 | if (nStepCount > knIntMax - 2 || |
2742 | 0 | (nStepCount + 2) > knIntMax / (nStepCount + 2)) |
2743 | 0 | { |
2744 | 0 | CPLError(CE_Failure, CPLE_AppDefined, "Too many steps : %d", |
2745 | 0 | nStepCount); |
2746 | 0 | return false; |
2747 | 0 | } |
2748 | 0 | nSampleMax = (nStepCount + 2) * (nStepCount + 2); |
2749 | 0 | } |
2750 | 0 | } |
2751 | 0 | else |
2752 | 0 | { |
2753 | 0 | if (bAll) |
2754 | 0 | { |
2755 | 0 | if (nDstXSize > (knIntMax - 2 * nDstYSize) / 2) |
2756 | 0 | { |
2757 | | // Extremely unlikely ! |
2758 | 0 | CPLError(CE_Failure, CPLE_AppDefined, "Too many steps"); |
2759 | 0 | return false; |
2760 | 0 | } |
2761 | 0 | nSampleMax = 2 * (nDstXSize + nDstYSize); |
2762 | 0 | } |
2763 | 0 | else |
2764 | 0 | { |
2765 | 0 | if (nStepCount > knIntMax / 4) |
2766 | 0 | { |
2767 | 0 | CPLError(CE_Failure, CPLE_AppDefined, "Too many steps : %d * 4", |
2768 | 0 | nStepCount); |
2769 | 0 | return false; |
2770 | 0 | } |
2771 | 0 | nSampleMax = nStepCount * 4; |
2772 | 0 | } |
2773 | 0 | } |
2774 | | |
2775 | 0 | int *pabSuccess = |
2776 | 0 | static_cast<int *>(VSI_MALLOC2_VERBOSE(sizeof(int), nSampleMax)); |
2777 | 0 | double *padfX = static_cast<double *>( |
2778 | 0 | VSI_MALLOC2_VERBOSE(sizeof(double) * 3, nSampleMax)); |
2779 | 0 | if (pabSuccess == nullptr || padfX == nullptr) |
2780 | 0 | { |
2781 | 0 | CPLFree(padfX); |
2782 | 0 | CPLFree(pabSuccess); |
2783 | 0 | return false; |
2784 | 0 | } |
2785 | 0 | double *padfY = padfX + nSampleMax; |
2786 | 0 | double *padfZ = padfX + nSampleMax * 2; |
2787 | | |
2788 | | /* -------------------------------------------------------------------- */ |
2789 | | /* Setup sample points on a grid pattern throughout the area. */ |
2790 | | /* -------------------------------------------------------------------- */ |
2791 | 0 | if (bUseGrid) |
2792 | 0 | { |
2793 | 0 | if (bAll) |
2794 | 0 | { |
2795 | 0 | for (int iY = 0; iY <= nDstYSize; ++iY) |
2796 | 0 | { |
2797 | 0 | for (int iX = 0; iX <= nDstXSize; ++iX) |
2798 | 0 | { |
2799 | 0 | padfX[nSamplePoints] = nDstXOff + iX; |
2800 | 0 | padfY[nSamplePoints] = nDstYOff + iY; |
2801 | 0 | padfZ[nSamplePoints++] = 0.0; |
2802 | 0 | } |
2803 | 0 | } |
2804 | 0 | } |
2805 | 0 | else |
2806 | 0 | { |
2807 | 0 | for (int iY = 0; iY < nStepCount + 2; iY++) |
2808 | 0 | { |
2809 | 0 | const double dfRatioY = (iY == 0) ? 0.5 / nDstXSize |
2810 | 0 | : (iY <= nStepCount) |
2811 | 0 | ? (iY - 1) * dfStepSize |
2812 | 0 | : 1 - 0.5 / nDstXSize; |
2813 | 0 | for (int iX = 0; iX < nStepCount + 2; iX++) |
2814 | 0 | { |
2815 | 0 | const double dfRatioX = (iX == 0) ? 0.5 / nDstXSize |
2816 | 0 | : (iX <= nStepCount) |
2817 | 0 | ? (iX - 1) * dfStepSize |
2818 | 0 | : 1 - 0.5 / nDstXSize; |
2819 | 0 | padfX[nSamplePoints] = dfRatioX * nDstXSize + nDstXOff; |
2820 | 0 | padfY[nSamplePoints] = dfRatioY * nDstYSize + nDstYOff; |
2821 | 0 | padfZ[nSamplePoints++] = 0.0; |
2822 | 0 | } |
2823 | 0 | } |
2824 | 0 | } |
2825 | 0 | } |
2826 | | /* -------------------------------------------------------------------- */ |
2827 | | /* Setup sample points all around the edge of the output raster. */ |
2828 | | /* -------------------------------------------------------------------- */ |
2829 | 0 | else |
2830 | 0 | { |
2831 | 0 | if (bAll) |
2832 | 0 | { |
2833 | 0 | for (int iX = 0; iX <= nDstXSize; ++iX) |
2834 | 0 | { |
2835 | | // Along top |
2836 | 0 | padfX[nSamplePoints] = nDstXOff + iX; |
2837 | 0 | padfY[nSamplePoints] = nDstYOff; |
2838 | 0 | padfZ[nSamplePoints++] = 0.0; |
2839 | | |
2840 | | // Along bottom |
2841 | 0 | padfX[nSamplePoints] = nDstXOff + iX; |
2842 | 0 | padfY[nSamplePoints] = nDstYOff + nDstYSize; |
2843 | 0 | padfZ[nSamplePoints++] = 0.0; |
2844 | 0 | } |
2845 | |
|
2846 | 0 | for (int iY = 1; iY < nDstYSize; ++iY) |
2847 | 0 | { |
2848 | | // Along left |
2849 | 0 | padfX[nSamplePoints] = nDstXOff; |
2850 | 0 | padfY[nSamplePoints] = nDstYOff + iY; |
2851 | 0 | padfZ[nSamplePoints++] = 0.0; |
2852 | | |
2853 | | // Along right |
2854 | 0 | padfX[nSamplePoints] = nDstXOff + nDstXSize; |
2855 | 0 | padfY[nSamplePoints] = nDstYOff + iY; |
2856 | 0 | padfZ[nSamplePoints++] = 0.0; |
2857 | 0 | } |
2858 | 0 | } |
2859 | 0 | else |
2860 | 0 | { |
2861 | 0 | for (double dfRatio = 0.0; dfRatio <= 1.0 + dfStepSize * 0.5; |
2862 | 0 | dfRatio += dfStepSize) |
2863 | 0 | { |
2864 | | // Along top |
2865 | 0 | padfX[nSamplePoints] = dfRatio * nDstXSize + nDstXOff; |
2866 | 0 | padfY[nSamplePoints] = nDstYOff; |
2867 | 0 | padfZ[nSamplePoints++] = 0.0; |
2868 | | |
2869 | | // Along bottom |
2870 | 0 | padfX[nSamplePoints] = dfRatio * nDstXSize + nDstXOff; |
2871 | 0 | padfY[nSamplePoints] = nDstYOff + nDstYSize; |
2872 | 0 | padfZ[nSamplePoints++] = 0.0; |
2873 | | |
2874 | | // Along left |
2875 | 0 | padfX[nSamplePoints] = nDstXOff; |
2876 | 0 | padfY[nSamplePoints] = dfRatio * nDstYSize + nDstYOff; |
2877 | 0 | padfZ[nSamplePoints++] = 0.0; |
2878 | | |
2879 | | // Along right |
2880 | 0 | padfX[nSamplePoints] = nDstXSize + nDstXOff; |
2881 | 0 | padfY[nSamplePoints] = dfRatio * nDstYSize + nDstYOff; |
2882 | 0 | padfZ[nSamplePoints++] = 0.0; |
2883 | 0 | } |
2884 | 0 | } |
2885 | 0 | } |
2886 | |
|
2887 | 0 | CPLAssert(nSamplePoints == nSampleMax); |
2888 | | |
2889 | | /* -------------------------------------------------------------------- */ |
2890 | | /* Transform them to the input pixel coordinate space */ |
2891 | | /* -------------------------------------------------------------------- */ |
2892 | | |
2893 | 0 | const auto RefreshTransformer = [this]() |
2894 | 0 | { |
2895 | 0 | if (GDALIsTransformer(psOptions->pTransformerArg, |
2896 | 0 | GDAL_GEN_IMG_TRANSFORMER_CLASS_NAME)) |
2897 | 0 | { |
2898 | 0 | GDALRefreshGenImgProjTransformer(psOptions->pTransformerArg); |
2899 | 0 | } |
2900 | 0 | else if (GDALIsTransformer(psOptions->pTransformerArg, |
2901 | 0 | GDAL_APPROX_TRANSFORMER_CLASS_NAME)) |
2902 | 0 | { |
2903 | 0 | GDALRefreshApproxTransformer(psOptions->pTransformerArg); |
2904 | 0 | } |
2905 | 0 | }; |
2906 | |
|
2907 | 0 | if (bTryWithCheckWithInvertProj) |
2908 | 0 | { |
2909 | 0 | CPLSetThreadLocalConfigOption("CHECK_WITH_INVERT_PROJ", "YES"); |
2910 | 0 | RefreshTransformer(); |
2911 | 0 | } |
2912 | 0 | psOptions->pfnTransformer(psOptions->pTransformerArg, TRUE, nSamplePoints, |
2913 | 0 | padfX, padfY, padfZ, pabSuccess); |
2914 | 0 | if (bTryWithCheckWithInvertProj) |
2915 | 0 | { |
2916 | 0 | CPLSetThreadLocalConfigOption("CHECK_WITH_INVERT_PROJ", nullptr); |
2917 | 0 | RefreshTransformer(); |
2918 | 0 | } |
2919 | | |
2920 | | /* -------------------------------------------------------------------- */ |
2921 | | /* Collect the bounds, ignoring any failed points. */ |
2922 | | /* -------------------------------------------------------------------- */ |
2923 | 0 | for (int i = 0; i < nSamplePoints; i++) |
2924 | 0 | { |
2925 | 0 | if (!pabSuccess[i]) |
2926 | 0 | { |
2927 | 0 | nFailedCount++; |
2928 | 0 | continue; |
2929 | 0 | } |
2930 | | |
2931 | | // If this happens this is likely the symptom of a bug somewhere. |
2932 | 0 | if (std::isnan(padfX[i]) || std::isnan(padfY[i])) |
2933 | 0 | { |
2934 | 0 | static bool bNanCoordFound = false; |
2935 | 0 | if (!bNanCoordFound) |
2936 | 0 | { |
2937 | 0 | CPLDebug("WARP", |
2938 | 0 | "ComputeSourceWindow(): " |
2939 | 0 | "NaN coordinate found on point %d.", |
2940 | 0 | i); |
2941 | 0 | bNanCoordFound = true; |
2942 | 0 | } |
2943 | 0 | nFailedCount++; |
2944 | 0 | continue; |
2945 | 0 | } |
2946 | | |
2947 | 0 | dfMinXOut = std::min(dfMinXOut, padfX[i]); |
2948 | 0 | dfMinYOut = std::min(dfMinYOut, padfY[i]); |
2949 | 0 | dfMaxXOut = std::max(dfMaxXOut, padfX[i]); |
2950 | 0 | dfMaxYOut = std::max(dfMaxYOut, padfY[i]); |
2951 | 0 | } |
2952 | |
|
2953 | 0 | CPLFree(padfX); |
2954 | 0 | CPLFree(pabSuccess); |
2955 | 0 | return true; |
2956 | 0 | } |
2957 | | |
2958 | | /************************************************************************/ |
2959 | | /* ComputeSourceWindow() */ |
2960 | | /************************************************************************/ |
2961 | | |
2962 | | /** Given a target window starting at pixel (nDstOff, nDstYOff) and of |
2963 | | * dimension (nDstXSize, nDstYSize), compute the corresponding window in |
2964 | | * the source raster, and return the source position in (*pnSrcXOff, *pnSrcYOff), |
2965 | | * the source dimension in (*pnSrcXSize, *pnSrcYSize). |
2966 | | * If pdfSrcXExtraSize is not null, its pointed value will be filled with the |
2967 | | * number of extra source pixels in X dimension to acquire to take into account |
2968 | | * the size of the resampling kernel. Similarly for pdfSrcYExtraSize for the |
2969 | | * Y dimension. |
2970 | | * If pdfSrcFillRatio is not null, its pointed value will be filled with the |
2971 | | * the ratio of the clamped source raster window size over the unclamped source |
2972 | | * raster window size. When this ratio is too low, this might be an indication |
2973 | | * that it might be beneficial to split the target window to avoid requesting |
2974 | | * too many source pixels. |
2975 | | */ |
2976 | | CPLErr GDALWarpOperation::ComputeSourceWindow( |
2977 | | int nDstXOff, int nDstYOff, int nDstXSize, int nDstYSize, int *pnSrcXOff, |
2978 | | int *pnSrcYOff, int *pnSrcXSize, int *pnSrcYSize, double *pdfSrcXExtraSize, |
2979 | | double *pdfSrcYExtraSize, double *pdfSrcFillRatio) |
2980 | | |
2981 | 0 | { |
2982 | | /* -------------------------------------------------------------------- */ |
2983 | | /* Figure out whether we just want to do the usual "along the */ |
2984 | | /* edge" sampling, or using a grid. The grid usage is */ |
2985 | | /* important in some weird "inside out" cases like WGS84 to */ |
2986 | | /* polar stereographic around the pole. Also figure out the */ |
2987 | | /* sampling rate. */ |
2988 | | /* -------------------------------------------------------------------- */ |
2989 | 0 | int nStepCount = DEFAULT_STEP_COUNT; |
2990 | 0 | bool bAll = false; |
2991 | |
|
2992 | 0 | bool bUseGrid = |
2993 | 0 | CPLFetchBool(psOptions->papszWarpOptions, "SAMPLE_GRID", false); |
2994 | |
|
2995 | 0 | const char *pszSampleSteps = |
2996 | 0 | CSLFetchNameValue(psOptions->papszWarpOptions, "SAMPLE_STEPS"); |
2997 | 0 | if (pszSampleSteps) |
2998 | 0 | { |
2999 | 0 | if (EQUAL(pszSampleSteps, "ALL")) |
3000 | 0 | { |
3001 | 0 | bAll = true; |
3002 | 0 | } |
3003 | 0 | else |
3004 | 0 | { |
3005 | 0 | nStepCount = atoi(pszSampleSteps); |
3006 | 0 | nStepCount = std::max(2, nStepCount); |
3007 | 0 | } |
3008 | 0 | } |
3009 | 0 | else if (!bUseGrid) |
3010 | 0 | { |
3011 | | // Detect if at least one of the 4 corner in destination raster fails |
3012 | | // to project back to source. |
3013 | | // Helps for long-lat to orthographic on areas that are partly in |
3014 | | // space / partly on Earth. Cf https://github.com/OSGeo/gdal/issues/9056 |
3015 | 0 | double adfCornerX[4]; |
3016 | 0 | double adfCornerY[4]; |
3017 | 0 | double adfCornerZ[4] = {0, 0, 0, 0}; |
3018 | 0 | int anCornerSuccess[4] = {FALSE, FALSE, FALSE, FALSE}; |
3019 | 0 | adfCornerX[0] = nDstXOff; |
3020 | 0 | adfCornerY[0] = nDstYOff; |
3021 | 0 | adfCornerX[1] = nDstXOff + nDstXSize; |
3022 | 0 | adfCornerY[1] = nDstYOff; |
3023 | 0 | adfCornerX[2] = nDstXOff; |
3024 | 0 | adfCornerY[2] = nDstYOff + nDstYSize; |
3025 | 0 | adfCornerX[3] = nDstXOff + nDstXSize; |
3026 | 0 | adfCornerY[3] = nDstYOff + nDstYSize; |
3027 | 0 | if (!psOptions->pfnTransformer(psOptions->pTransformerArg, TRUE, 4, |
3028 | 0 | adfCornerX, adfCornerY, adfCornerZ, |
3029 | 0 | anCornerSuccess) || |
3030 | 0 | !anCornerSuccess[0] || !anCornerSuccess[1] || !anCornerSuccess[2] || |
3031 | 0 | !anCornerSuccess[3]) |
3032 | 0 | { |
3033 | 0 | bAll = true; |
3034 | 0 | } |
3035 | 0 | } |
3036 | |
|
3037 | 0 | bool bTryWithCheckWithInvertProj = false; |
3038 | 0 | double dfMinXOut = std::numeric_limits<double>::infinity(); |
3039 | 0 | double dfMinYOut = std::numeric_limits<double>::infinity(); |
3040 | 0 | double dfMaxXOut = -std::numeric_limits<double>::infinity(); |
3041 | 0 | double dfMaxYOut = -std::numeric_limits<double>::infinity(); |
3042 | |
|
3043 | 0 | int nSamplePoints = 0; |
3044 | 0 | int nFailedCount = 0; |
3045 | 0 | if (!ComputeSourceWindowTransformPoints( |
3046 | 0 | nDstXOff, nDstYOff, nDstXSize, nDstYSize, bUseGrid, bAll, |
3047 | 0 | nStepCount, bTryWithCheckWithInvertProj, dfMinXOut, dfMinYOut, |
3048 | 0 | dfMaxXOut, dfMaxYOut, nSamplePoints, nFailedCount)) |
3049 | 0 | { |
3050 | 0 | return CE_Failure; |
3051 | 0 | } |
3052 | | |
3053 | | // Use grid sampling as soon as a special point falls into the extent of |
3054 | | // the target raster. |
3055 | 0 | if (!bUseGrid && psOptions->hDstDS) |
3056 | 0 | { |
3057 | 0 | for (const auto &xy : aDstXYSpecialPoints) |
3058 | 0 | { |
3059 | 0 | if (0 <= xy.first && |
3060 | 0 | GDALGetRasterXSize(psOptions->hDstDS) >= xy.first && |
3061 | 0 | 0 <= xy.second && |
3062 | 0 | GDALGetRasterYSize(psOptions->hDstDS) >= xy.second) |
3063 | 0 | { |
3064 | 0 | bUseGrid = true; |
3065 | 0 | bAll = false; |
3066 | 0 | if (!ComputeSourceWindowTransformPoints( |
3067 | 0 | nDstXOff, nDstYOff, nDstXSize, nDstYSize, bUseGrid, |
3068 | 0 | bAll, nStepCount, bTryWithCheckWithInvertProj, |
3069 | 0 | dfMinXOut, dfMinYOut, dfMaxXOut, dfMaxYOut, |
3070 | 0 | nSamplePoints, nFailedCount)) |
3071 | 0 | { |
3072 | 0 | return CE_Failure; |
3073 | 0 | } |
3074 | 0 | break; |
3075 | 0 | } |
3076 | 0 | } |
3077 | 0 | } |
3078 | | |
3079 | 0 | const int nRasterXSize = GDALGetRasterXSize(psOptions->hSrcDS); |
3080 | 0 | const int nRasterYSize = GDALGetRasterYSize(psOptions->hSrcDS); |
3081 | | |
3082 | | // Try to detect crazy values coming from reprojection that would not |
3083 | | // have resulted in a PROJ error. Could happen for example with PROJ |
3084 | | // <= 4.9.2 with inverse UTM/tmerc (Snyder approximation without sanity |
3085 | | // check) when being far away from the central meridian. But might be worth |
3086 | | // keeping that even for later versions in case some exotic projection isn't |
3087 | | // properly sanitized. |
3088 | 0 | if (nFailedCount == 0 && !bTryWithCheckWithInvertProj && |
3089 | 0 | (dfMinXOut < -1e6 || dfMinYOut < -1e6 || |
3090 | 0 | dfMaxXOut > nRasterXSize + 1e6 || dfMaxYOut > nRasterYSize + 1e6) && |
3091 | 0 | !CPLTestBool(CPLGetConfigOption("CHECK_WITH_INVERT_PROJ", "NO"))) |
3092 | 0 | { |
3093 | 0 | CPLDebug("WARP", |
3094 | 0 | "ComputeSourceWindow(): bogus source dataset window " |
3095 | 0 | "returned. Trying again with CHECK_WITH_INVERT_PROJ=YES"); |
3096 | 0 | bTryWithCheckWithInvertProj = true; |
3097 | | |
3098 | | // We should probably perform the coordinate transformation in the |
3099 | | // warp kernel under CHECK_WITH_INVERT_PROJ too... |
3100 | 0 | if (!ComputeSourceWindowTransformPoints( |
3101 | 0 | nDstXOff, nDstYOff, nDstXSize, nDstYSize, bUseGrid, bAll, |
3102 | 0 | nStepCount, bTryWithCheckWithInvertProj, dfMinXOut, dfMinYOut, |
3103 | 0 | dfMaxXOut, dfMaxYOut, nSamplePoints, nFailedCount)) |
3104 | 0 | { |
3105 | 0 | return CE_Failure; |
3106 | 0 | } |
3107 | 0 | } |
3108 | | |
3109 | | /* -------------------------------------------------------------------- */ |
3110 | | /* If we got any failures when not using a grid, we should */ |
3111 | | /* really go back and try again with the grid. Sorry for the */ |
3112 | | /* goto. */ |
3113 | | /* -------------------------------------------------------------------- */ |
3114 | 0 | if (!bUseGrid && nFailedCount > 0) |
3115 | 0 | { |
3116 | 0 | bUseGrid = true; |
3117 | 0 | bAll = false; |
3118 | 0 | if (!ComputeSourceWindowTransformPoints( |
3119 | 0 | nDstXOff, nDstYOff, nDstXSize, nDstYSize, bUseGrid, bAll, |
3120 | 0 | nStepCount, bTryWithCheckWithInvertProj, dfMinXOut, dfMinYOut, |
3121 | 0 | dfMaxXOut, dfMaxYOut, nSamplePoints, nFailedCount)) |
3122 | 0 | { |
3123 | 0 | return CE_Failure; |
3124 | 0 | } |
3125 | 0 | } |
3126 | | |
3127 | | /* -------------------------------------------------------------------- */ |
3128 | | /* If we get hardly any points (or none) transforming, we give */ |
3129 | | /* up. */ |
3130 | | /* -------------------------------------------------------------------- */ |
3131 | 0 | if (nFailedCount > nSamplePoints - 5) |
3132 | 0 | { |
3133 | 0 | const bool bErrorOutIfEmptySourceWindow = |
3134 | 0 | CPLFetchBool(psOptions->papszWarpOptions, |
3135 | 0 | "ERROR_OUT_IF_EMPTY_SOURCE_WINDOW", true); |
3136 | 0 | if (bErrorOutIfEmptySourceWindow) |
3137 | 0 | { |
3138 | 0 | CPLError(CE_Failure, CPLE_AppDefined, |
3139 | 0 | "Too many points (%d out of %d) failed to transform, " |
3140 | 0 | "unable to compute output bounds.", |
3141 | 0 | nFailedCount, nSamplePoints); |
3142 | 0 | } |
3143 | 0 | else |
3144 | 0 | { |
3145 | 0 | CPLDebug("WARP", "Cannot determine source window for %d,%d,%d,%d", |
3146 | 0 | nDstXOff, nDstYOff, nDstXSize, nDstYSize); |
3147 | 0 | } |
3148 | 0 | return CE_Failure; |
3149 | 0 | } |
3150 | | |
3151 | 0 | if (nFailedCount > 0) |
3152 | 0 | CPLDebug("GDAL", |
3153 | 0 | "GDALWarpOperation::ComputeSourceWindow() %d out of %d " |
3154 | 0 | "points failed to transform.", |
3155 | 0 | nFailedCount, nSamplePoints); |
3156 | | |
3157 | | /* -------------------------------------------------------------------- */ |
3158 | | /* In some cases (see https://github.com/OSGeo/gdal/issues/862) */ |
3159 | | /* the reverse transform does not work at some points, so try by */ |
3160 | | /* transforming from source raster space to target raster space and */ |
3161 | | /* see which source coordinates end up being in the AOI in the target */ |
3162 | | /* raster space. */ |
3163 | | /* -------------------------------------------------------------------- */ |
3164 | 0 | if (bUseGrid) |
3165 | 0 | { |
3166 | 0 | ComputeSourceWindowStartingFromSource(nDstXOff, nDstYOff, nDstXSize, |
3167 | 0 | nDstYSize, &dfMinXOut, &dfMinYOut, |
3168 | 0 | &dfMaxXOut, &dfMaxYOut); |
3169 | 0 | } |
3170 | | |
3171 | | /* -------------------------------------------------------------------- */ |
3172 | | /* Early exit to avoid crazy values to cause a huge nResWinSize that */ |
3173 | | /* would result in a result window wrongly covering the whole raster. */ |
3174 | | /* -------------------------------------------------------------------- */ |
3175 | 0 | if (dfMinXOut > nRasterXSize || dfMaxXOut < 0 || dfMinYOut > nRasterYSize || |
3176 | 0 | dfMaxYOut < 0) |
3177 | 0 | { |
3178 | 0 | *pnSrcXOff = 0; |
3179 | 0 | *pnSrcYOff = 0; |
3180 | 0 | *pnSrcXSize = 0; |
3181 | 0 | *pnSrcYSize = 0; |
3182 | 0 | if (pdfSrcXExtraSize) |
3183 | 0 | *pdfSrcXExtraSize = 0.0; |
3184 | 0 | if (pdfSrcYExtraSize) |
3185 | 0 | *pdfSrcYExtraSize = 0.0; |
3186 | 0 | if (pdfSrcFillRatio) |
3187 | 0 | *pdfSrcFillRatio = 0.0; |
3188 | 0 | return CE_None; |
3189 | 0 | } |
3190 | | |
3191 | | // For scenarios where warping is used as a "decoration", try to clamp |
3192 | | // source pixel coordinates to integer when very close. |
3193 | 0 | const auto roundIfCloseEnough = [](double dfVal) |
3194 | 0 | { |
3195 | 0 | const double dfRounded = std::round(dfVal); |
3196 | 0 | if (std::fabs(dfRounded - dfVal) < 1e-6) |
3197 | 0 | return dfRounded; |
3198 | 0 | return dfVal; |
3199 | 0 | }; |
3200 | |
|
3201 | 0 | dfMinXOut = roundIfCloseEnough(dfMinXOut); |
3202 | 0 | dfMinYOut = roundIfCloseEnough(dfMinYOut); |
3203 | 0 | dfMaxXOut = roundIfCloseEnough(dfMaxXOut); |
3204 | 0 | dfMaxYOut = roundIfCloseEnough(dfMaxYOut); |
3205 | |
|
3206 | 0 | if (m_bIsTranslationOnPixelBoundaries) |
3207 | 0 | { |
3208 | 0 | CPLAssert(dfMinXOut == std::round(dfMinXOut)); |
3209 | 0 | CPLAssert(dfMinYOut == std::round(dfMinYOut)); |
3210 | 0 | CPLAssert(dfMaxXOut == std::round(dfMaxXOut)); |
3211 | 0 | CPLAssert(dfMaxYOut == std::round(dfMaxYOut)); |
3212 | 0 | CPLAssert(std::round(dfMaxXOut - dfMinXOut) == nDstXSize); |
3213 | 0 | CPLAssert(std::round(dfMaxYOut - dfMinYOut) == nDstYSize); |
3214 | 0 | } |
3215 | | |
3216 | | /* -------------------------------------------------------------------- */ |
3217 | | /* How much of a window around our source pixel might we need */ |
3218 | | /* to collect data from based on the resampling kernel? Even */ |
3219 | | /* if the requested central pixel falls off the source image, */ |
3220 | | /* we may need to collect data if some portion of the */ |
3221 | | /* resampling kernel could be on-image. */ |
3222 | | /* -------------------------------------------------------------------- */ |
3223 | 0 | const int nResWinSize = m_bIsTranslationOnPixelBoundaries |
3224 | 0 | ? 0 |
3225 | 0 | : GWKGetFilterRadius(psOptions->eResampleAlg); |
3226 | | |
3227 | | // Take scaling into account. |
3228 | | // Avoid ridiculous small scaling factors to avoid potential further integer |
3229 | | // overflows |
3230 | 0 | const double dfXScale = std::max(1e-3, static_cast<double>(nDstXSize) / |
3231 | 0 | (dfMaxXOut - dfMinXOut)); |
3232 | 0 | const double dfYScale = std::max(1e-3, static_cast<double>(nDstYSize) / |
3233 | 0 | (dfMaxYOut - dfMinYOut)); |
3234 | 0 | int nXRadius = dfXScale < 0.95 |
3235 | 0 | ? static_cast<int>(ceil(nResWinSize / dfXScale)) |
3236 | 0 | : nResWinSize; |
3237 | 0 | int nYRadius = dfYScale < 0.95 |
3238 | 0 | ? static_cast<int>(ceil(nResWinSize / dfYScale)) |
3239 | 0 | : nResWinSize; |
3240 | | |
3241 | | /* -------------------------------------------------------------------- */ |
3242 | | /* Allow addition of extra sample pixels to source window to */ |
3243 | | /* avoid missing pixels due to sampling error. In fact, */ |
3244 | | /* fallback to adding a bit to the window if any points failed */ |
3245 | | /* to transform. */ |
3246 | | /* -------------------------------------------------------------------- */ |
3247 | 0 | if (CSLFetchNameValue(psOptions->papszWarpOptions, "SOURCE_EXTRA") != |
3248 | 0 | nullptr) |
3249 | 0 | { |
3250 | 0 | const int nSrcExtra = atoi( |
3251 | 0 | CSLFetchNameValue(psOptions->papszWarpOptions, "SOURCE_EXTRA")); |
3252 | 0 | nXRadius += nSrcExtra; |
3253 | 0 | nYRadius += nSrcExtra; |
3254 | 0 | } |
3255 | 0 | else if (nFailedCount > 0) |
3256 | 0 | { |
3257 | 0 | nXRadius += 10; |
3258 | 0 | nYRadius += 10; |
3259 | 0 | } |
3260 | | |
3261 | | /* -------------------------------------------------------------------- */ |
3262 | | /* return bounds. */ |
3263 | | /* -------------------------------------------------------------------- */ |
3264 | | #if DEBUG_VERBOSE |
3265 | | CPLDebug("WARP", |
3266 | | "dst=(%d,%d,%d,%d) raw " |
3267 | | "src=(minx=%.17g,miny=%.17g,maxx=%.17g,maxy=%.17g)", |
3268 | | nDstXOff, nDstYOff, nDstXSize, nDstYSize, dfMinXOut, dfMinYOut, |
3269 | | dfMaxXOut, dfMaxYOut); |
3270 | | #endif |
3271 | 0 | const int nMinXOutClamped = static_cast<int>(std::max(0.0, dfMinXOut)); |
3272 | 0 | const int nMinYOutClamped = static_cast<int>(std::max(0.0, dfMinYOut)); |
3273 | 0 | const int nMaxXOutClamped = static_cast<int>( |
3274 | 0 | std::min(ceil(dfMaxXOut), static_cast<double>(nRasterXSize))); |
3275 | 0 | const int nMaxYOutClamped = static_cast<int>( |
3276 | 0 | std::min(ceil(dfMaxYOut), static_cast<double>(nRasterYSize))); |
3277 | |
|
3278 | 0 | const double dfSrcXSizeRaw = std::max( |
3279 | 0 | 0.0, std::min(static_cast<double>(nRasterXSize - nMinXOutClamped), |
3280 | 0 | dfMaxXOut - dfMinXOut)); |
3281 | 0 | const double dfSrcYSizeRaw = std::max( |
3282 | 0 | 0.0, std::min(static_cast<double>(nRasterYSize - nMinYOutClamped), |
3283 | 0 | dfMaxYOut - dfMinYOut)); |
3284 | | |
3285 | | // If we cover more than 90% of the width, then use it fully (helps for |
3286 | | // anti-meridian discontinuities) |
3287 | 0 | if (nMaxXOutClamped - nMinXOutClamped > 0.9 * nRasterXSize) |
3288 | 0 | { |
3289 | 0 | *pnSrcXOff = 0; |
3290 | 0 | *pnSrcXSize = nRasterXSize; |
3291 | 0 | } |
3292 | 0 | else |
3293 | 0 | { |
3294 | 0 | *pnSrcXOff = |
3295 | 0 | std::max(0, std::min(nMinXOutClamped - nXRadius, nRasterXSize)); |
3296 | 0 | *pnSrcXSize = |
3297 | 0 | std::max(0, std::min(nRasterXSize - *pnSrcXOff, |
3298 | 0 | nMaxXOutClamped - *pnSrcXOff + nXRadius)); |
3299 | 0 | } |
3300 | |
|
3301 | 0 | if (nMaxYOutClamped - nMinYOutClamped > 0.9 * nRasterYSize) |
3302 | 0 | { |
3303 | 0 | *pnSrcYOff = 0; |
3304 | 0 | *pnSrcYSize = nRasterYSize; |
3305 | 0 | } |
3306 | 0 | else |
3307 | 0 | { |
3308 | 0 | *pnSrcYOff = |
3309 | 0 | std::max(0, std::min(nMinYOutClamped - nYRadius, nRasterYSize)); |
3310 | 0 | *pnSrcYSize = |
3311 | 0 | std::max(0, std::min(nRasterYSize - *pnSrcYOff, |
3312 | 0 | nMaxYOutClamped - *pnSrcYOff + nYRadius)); |
3313 | 0 | } |
3314 | |
|
3315 | 0 | if (pdfSrcXExtraSize) |
3316 | 0 | *pdfSrcXExtraSize = *pnSrcXSize - dfSrcXSizeRaw; |
3317 | 0 | if (pdfSrcYExtraSize) |
3318 | 0 | *pdfSrcYExtraSize = *pnSrcYSize - dfSrcYSizeRaw; |
3319 | | |
3320 | | // Computed the ratio of the clamped source raster window size over |
3321 | | // the unclamped source raster window size. |
3322 | 0 | if (pdfSrcFillRatio) |
3323 | 0 | *pdfSrcFillRatio = |
3324 | 0 | static_cast<double>(*pnSrcXSize) * (*pnSrcYSize) / |
3325 | 0 | std::max(1.0, (dfMaxXOut - dfMinXOut + 2 * nXRadius) * |
3326 | 0 | (dfMaxYOut - dfMinYOut + 2 * nYRadius)); |
3327 | |
|
3328 | 0 | return CE_None; |
3329 | 0 | } |
3330 | | |
3331 | | /************************************************************************/ |
3332 | | /* ReportTiming() */ |
3333 | | /************************************************************************/ |
3334 | | |
3335 | | void GDALWarpOperation::ReportTiming(const char *pszMessage) |
3336 | | |
3337 | 0 | { |
3338 | 0 | if (!bReportTimings) |
3339 | 0 | return; |
3340 | | |
3341 | 0 | const unsigned long nNewTime = VSITime(nullptr); |
3342 | |
|
3343 | 0 | if (pszMessage != nullptr) |
3344 | 0 | { |
3345 | 0 | CPLDebug("WARP_TIMING", "%s: %lds", pszMessage, |
3346 | 0 | static_cast<long>(nNewTime - nLastTimeReported)); |
3347 | 0 | } |
3348 | |
|
3349 | 0 | nLastTimeReported = nNewTime; |
3350 | 0 | } |