Coverage Report

Created: 2025-06-13 06:29

/src/gdal/build/frmts/jpeg/libjpeg12/jddctmgr12.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * jddctmgr.c
3
 *
4
 * Copyright (C) 1994-1996, Thomas G. Lane.
5
 * This file is part of the Independent JPEG Group's software.
6
 * For conditions of distribution and use, see the accompanying README file.
7
 *
8
 * This file contains the inverse-DCT management logic.
9
 * This code selects a particular IDCT implementation to be used,
10
 * and it performs related housekeeping chores.  No code in this file
11
 * is executed per IDCT step, only during output pass setup.
12
 *
13
 * Note that the IDCT routines are responsible for performing coefficient
14
 * dequantization as well as the IDCT proper.  This module sets up the
15
 * dequantization multiplier table needed by the IDCT routine.
16
 */
17
18
#define JPEG_INTERNALS
19
#include "jinclude.h"
20
#include "jpeglib.h"
21
#include "jdct.h"   /* Private declarations for DCT subsystem */
22
23
24
/*
25
 * The decompressor input side (jdinput.c) saves away the appropriate
26
 * quantization table for each component at the start of the first scan
27
 * involving that component.  (This is necessary in order to correctly
28
 * decode files that reuse Q-table slots.)
29
 * When we are ready to make an output pass, the saved Q-table is converted
30
 * to a multiplier table that will actually be used by the IDCT routine.
31
 * The multiplier table contents are IDCT-method-dependent.  To support
32
 * application changes in IDCT method between scans, we can remake the
33
 * multiplier tables if necessary.
34
 * In buffered-image mode, the first output pass may occur before any data
35
 * has been seen for some components, and thus before their Q-tables have
36
 * been saved away.  To handle this case, multiplier tables are preset
37
 * to zeroes; the result of the IDCT will be a neutral gray level.
38
 */
39
40
41
/* Private subobject for this module */
42
43
typedef struct {
44
  struct jpeg_inverse_dct pub;  /* public fields */
45
46
  /* This array contains the IDCT method code that each multiplier table
47
   * is currently set up for, or -1 if it's not yet set up.
48
   * The actual multiplier tables are pointed to by dct_table in the
49
   * per-component comp_info structures.
50
   */
51
  int cur_method[MAX_COMPONENTS];
52
} my_idct_controller;
53
54
typedef my_idct_controller * my_idct_ptr;
55
56
57
/* Allocated multiplier tables: big enough for any supported variant */
58
59
typedef union {
60
  ISLOW_MULT_TYPE islow_array[DCTSIZE2];
61
#ifdef DCT_IFAST_SUPPORTED
62
  IFAST_MULT_TYPE ifast_array[DCTSIZE2];
63
#endif
64
#ifdef DCT_FLOAT_SUPPORTED
65
  FLOAT_MULT_TYPE float_array[DCTSIZE2];
66
#endif
67
} multiplier_table;
68
69
70
/* The current scaled-IDCT routines require ISLOW-style multiplier tables,
71
 * so be sure to compile that code if either ISLOW or SCALING is requested.
72
 */
73
#ifdef DCT_ISLOW_SUPPORTED
74
#define PROVIDE_ISLOW_TABLES
75
#else
76
#ifdef IDCT_SCALING_SUPPORTED
77
#define PROVIDE_ISLOW_TABLES
78
#endif
79
#endif
80
81
82
/*
83
 * Prepare for an output pass.
84
 * Here we select the proper IDCT routine for each component and build
85
 * a matching multiplier table.
86
 */
87
88
METHODDEF(void)
89
start_pass (j_decompress_ptr cinfo)
90
0
{
91
0
  my_idct_ptr idct = (my_idct_ptr) cinfo->idct;
92
0
  int ci, i;
93
0
  jpeg_component_info *compptr;
94
0
  int method = 0;
95
0
  inverse_DCT_method_ptr method_ptr = NULL;
96
0
  JQUANT_TBL * qtbl;
97
98
0
  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
99
0
       ci++, compptr++) {
100
    /* Select the proper IDCT routine for this component's scaling */
101
0
    switch (compptr->DCT_scaled_size) {
102
0
#ifdef IDCT_SCALING_SUPPORTED
103
0
    case 1:
104
0
      method_ptr = jpeg_idct_1x1;
105
0
      method = JDCT_ISLOW;  /* jidctred uses islow-style table */
106
0
      break;
107
0
    case 2:
108
0
      method_ptr = jpeg_idct_2x2;
109
0
      method = JDCT_ISLOW;  /* jidctred uses islow-style table */
110
0
      break;
111
0
    case 4:
112
0
      method_ptr = jpeg_idct_4x4;
113
0
      method = JDCT_ISLOW;  /* jidctred uses islow-style table */
114
0
      break;
115
0
#endif
116
0
    case DCTSIZE:
117
0
      switch (cinfo->dct_method) {
118
0
#ifdef DCT_ISLOW_SUPPORTED
119
0
      case JDCT_ISLOW:
120
0
  method_ptr = jpeg_idct_islow;
121
0
  method = JDCT_ISLOW;
122
0
  break;
123
0
#endif
124
0
#ifdef DCT_IFAST_SUPPORTED
125
0
      case JDCT_IFAST:
126
0
  method_ptr = jpeg_idct_ifast;
127
0
  method = JDCT_IFAST;
128
0
  break;
129
0
#endif
130
0
#ifdef DCT_FLOAT_SUPPORTED
131
0
      case JDCT_FLOAT:
132
0
  method_ptr = jpeg_idct_float;
133
0
  method = JDCT_FLOAT;
134
0
  break;
135
0
#endif
136
0
      default:
137
0
  ERREXIT(cinfo, JERR_NOT_COMPILED);
138
0
  break;
139
0
      }
140
0
      break;
141
0
    default:
142
0
      ERREXIT1(cinfo, JERR_BAD_DCTSIZE, compptr->DCT_scaled_size);
143
0
      break;
144
0
    }
145
0
    idct->pub.inverse_DCT[ci] = method_ptr;
146
    /* Create multiplier table from quant table.
147
     * However, we can skip this if the component is uninteresting
148
     * or if we already built the table.  Also, if no quant table
149
     * has yet been saved for the component, we leave the
150
     * multiplier table all-zero; we'll be reading zeroes from the
151
     * coefficient controller's buffer anyway.
152
     */
153
0
    if (! compptr->component_needed || idct->cur_method[ci] == method)
154
0
      continue;
155
0
    qtbl = compptr->quant_table;
156
0
    if (qtbl == NULL)   /* happens if no data yet for component */
157
0
      continue;
158
0
    idct->cur_method[ci] = method;
159
0
    switch (method) {
160
0
#ifdef PROVIDE_ISLOW_TABLES
161
0
    case JDCT_ISLOW:
162
0
      {
163
  /* For LL&M IDCT method, multipliers are equal to raw quantization
164
   * coefficients, but are stored as ints to ensure access efficiency.
165
   */
166
0
  ISLOW_MULT_TYPE * ismtbl = (ISLOW_MULT_TYPE *) compptr->dct_table;
167
0
  for (i = 0; i < DCTSIZE2; i++) {
168
0
    ismtbl[i] = (ISLOW_MULT_TYPE) qtbl->quantval[i];
169
0
  }
170
0
      }
171
0
      break;
172
0
#endif
173
0
#ifdef DCT_IFAST_SUPPORTED
174
0
    case JDCT_IFAST:
175
0
      {
176
  /* For AA&N IDCT method, multipliers are equal to quantization
177
   * coefficients scaled by scalefactor[row]*scalefactor[col], where
178
   *   scalefactor[0] = 1
179
   *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7
180
   * For integer operation, the multiplier table is to be scaled by
181
   * IFAST_SCALE_BITS.
182
   */
183
0
  IFAST_MULT_TYPE * ifmtbl = (IFAST_MULT_TYPE *) compptr->dct_table;
184
0
#define CONST_BITS 14
185
0
  static const INT16 aanscales[DCTSIZE2] = {
186
    /* precomputed values scaled up by 14 bits */
187
0
    16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520,
188
0
    22725, 31521, 29692, 26722, 22725, 17855, 12299,  6270,
189
0
    21407, 29692, 27969, 25172, 21407, 16819, 11585,  5906,
190
0
    19266, 26722, 25172, 22654, 19266, 15137, 10426,  5315,
191
0
    16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520,
192
0
    12873, 17855, 16819, 15137, 12873, 10114,  6967,  3552,
193
0
     8867, 12299, 11585, 10426,  8867,  6967,  4799,  2446,
194
0
     4520,  6270,  5906,  5315,  4520,  3552,  2446,  1247
195
0
  };
196
0
  SHIFT_TEMPS
197
198
0
  for (i = 0; i < DCTSIZE2; i++) {
199
0
    ifmtbl[i] = (IFAST_MULT_TYPE)
200
0
      DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i],
201
0
          (INT32) aanscales[i]),
202
0
        CONST_BITS-IFAST_SCALE_BITS);
203
0
  }
204
0
      }
205
0
      break;
206
0
#endif
207
0
#ifdef DCT_FLOAT_SUPPORTED
208
0
    case JDCT_FLOAT:
209
0
      {
210
  /* For float AA&N IDCT method, multipliers are equal to quantization
211
   * coefficients scaled by scalefactor[row]*scalefactor[col], where
212
   *   scalefactor[0] = 1
213
   *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7
214
   */
215
0
  FLOAT_MULT_TYPE * fmtbl = (FLOAT_MULT_TYPE *) compptr->dct_table;
216
0
  int row, col;
217
0
  static const double aanscalefactor[DCTSIZE] = {
218
0
    1.0, 1.387039845, 1.306562965, 1.175875602,
219
0
    1.0, 0.785694958, 0.541196100, 0.275899379
220
0
  };
221
222
0
  i = 0;
223
0
  for (row = 0; row < DCTSIZE; row++) {
224
0
    for (col = 0; col < DCTSIZE; col++) {
225
0
      fmtbl[i] = (FLOAT_MULT_TYPE)
226
0
        ((double) qtbl->quantval[i] *
227
0
         aanscalefactor[row] * aanscalefactor[col]);
228
0
      i++;
229
0
    }
230
0
  }
231
0
      }
232
0
      break;
233
0
#endif
234
0
    default:
235
0
      ERREXIT(cinfo, JERR_NOT_COMPILED);
236
0
      break;
237
0
    }
238
0
  }
239
0
}
240
241
242
/*
243
 * Initialize IDCT manager.
244
 */
245
246
GLOBAL(void)
247
jinit_inverse_dct (j_decompress_ptr cinfo)
248
0
{
249
0
  my_idct_ptr idct;
250
0
  int ci;
251
0
  jpeg_component_info *compptr;
252
253
0
  idct = (my_idct_ptr)
254
0
    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
255
0
        SIZEOF(my_idct_controller));
256
0
  cinfo->idct = (struct jpeg_inverse_dct *) idct;
257
0
  idct->pub.start_pass = start_pass;
258
259
0
  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
260
0
       ci++, compptr++) {
261
    /* Allocate and pre-zero a multiplier table for each component */
262
0
    compptr->dct_table =
263
0
      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
264
0
          SIZEOF(multiplier_table));
265
0
    MEMZERO(compptr->dct_table, SIZEOF(multiplier_table));
266
    /* Mark multiplier table not yet set up for any method */
267
0
    idct->cur_method[ci] = -1;
268
0
  }
269
0
}