/src/gdal/build/frmts/jpeg/libjpeg12/jidctfst12.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * jidctfst.c |
3 | | * |
4 | | * Copyright (C) 1994-1998, Thomas G. Lane. |
5 | | * This file is part of the Independent JPEG Group's software. |
6 | | * For conditions of distribution and use, see the accompanying README file. |
7 | | * |
8 | | * This file contains a fast, not so accurate integer implementation of the |
9 | | * inverse DCT (Discrete Cosine Transform). In the IJG code, this routine |
10 | | * must also perform dequantization of the input coefficients. |
11 | | * |
12 | | * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT |
13 | | * on each row (or vice versa, but it's more convenient to emit a row at |
14 | | * a time). Direct algorithms are also available, but they are much more |
15 | | * complex and seem not to be any faster when reduced to code. |
16 | | * |
17 | | * This implementation is based on Arai, Agui, and Nakajima's algorithm for |
18 | | * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in |
19 | | * Japanese, but the algorithm is described in the Pennebaker & Mitchell |
20 | | * JPEG textbook (see REFERENCES section in file README). The following code |
21 | | * is based directly on figure 4-8 in P&M. |
22 | | * While an 8-point DCT cannot be done in less than 11 multiplies, it is |
23 | | * possible to arrange the computation so that many of the multiplies are |
24 | | * simple scalings of the final outputs. These multiplies can then be |
25 | | * folded into the multiplications or divisions by the JPEG quantization |
26 | | * table entries. The AA&N method leaves only 5 multiplies and 29 adds |
27 | | * to be done in the DCT itself. |
28 | | * The primary disadvantage of this method is that with fixed-point math, |
29 | | * accuracy is lost due to imprecise representation of the scaled |
30 | | * quantization values. The smaller the quantization table entry, the less |
31 | | * precise the scaled value, so this implementation does worse with high- |
32 | | * quality-setting files than with low-quality ones. |
33 | | */ |
34 | | |
35 | | #define JPEG_INTERNALS |
36 | | #include "jinclude.h" |
37 | | #include "jpeglib.h" |
38 | | #include "jdct.h" /* Private declarations for DCT subsystem */ |
39 | | |
40 | | #ifdef DCT_IFAST_SUPPORTED |
41 | | |
42 | | |
43 | | /* |
44 | | * This module is specialized to the case DCTSIZE = 8. |
45 | | */ |
46 | | |
47 | | #if DCTSIZE != 8 |
48 | | Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ |
49 | | #endif |
50 | | |
51 | | |
52 | | /* Scaling decisions are generally the same as in the LL&M algorithm; |
53 | | * see jidctint.c for more details. However, we choose to descale |
54 | | * (right shift) multiplication products as soon as they are formed, |
55 | | * rather than carrying additional fractional bits into subsequent additions. |
56 | | * This compromises accuracy slightly, but it lets us save a few shifts. |
57 | | * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples) |
58 | | * everywhere except in the multiplications proper; this saves a good deal |
59 | | * of work on 16-bit-int machines. |
60 | | * |
61 | | * The dequantized coefficients are not integers because the AA&N scaling |
62 | | * factors have been incorporated. We represent them scaled up by PASS1_BITS, |
63 | | * so that the first and second IDCT rounds have the same input scaling. |
64 | | * For 8-bit JSAMPLEs, we choose IFAST_SCALE_BITS = PASS1_BITS so as to |
65 | | * avoid a descaling shift; this compromises accuracy rather drastically |
66 | | * for small quantization table entries, but it saves a lot of shifts. |
67 | | * For 12-bit JSAMPLEs, there's no hope of using 16x16 multiplies anyway, |
68 | | * so we use a much larger scaling factor to preserve accuracy. |
69 | | * |
70 | | * A final compromise is to represent the multiplicative constants to only |
71 | | * 8 fractional bits, rather than 13. This saves some shifting work on some |
72 | | * machines, and may also reduce the cost of multiplication (since there |
73 | | * are fewer one-bits in the constants). |
74 | | */ |
75 | | |
76 | | #if BITS_IN_JSAMPLE == 8 |
77 | | #define CONST_BITS 8 |
78 | | #define PASS1_BITS 2 |
79 | | #else |
80 | | #define CONST_BITS 8 |
81 | | #define PASS1_BITS 1 /* lose a little precision to avoid overflow */ |
82 | | #endif |
83 | | |
84 | | /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus |
85 | | * causing a lot of useless floating-point operations at run time. |
86 | | * To get around this we use the following pre-calculated constants. |
87 | | * If you change CONST_BITS you may want to add appropriate values. |
88 | | * (With a reasonable C compiler, you can just rely on the FIX() macro...) |
89 | | */ |
90 | | |
91 | | #if CONST_BITS == 8 |
92 | | #define FIX_1_082392200 ((INT32) 277) /* FIX(1.082392200) */ |
93 | | #define FIX_1_414213562 ((INT32) 362) /* FIX(1.414213562) */ |
94 | | #define FIX_1_847759065 ((INT32) 473) /* FIX(1.847759065) */ |
95 | | #define FIX_2_613125930 ((INT32) 669) /* FIX(2.613125930) */ |
96 | | #else |
97 | | #define FIX_1_082392200 FIX(1.082392200) |
98 | | #define FIX_1_414213562 FIX(1.414213562) |
99 | | #define FIX_1_847759065 FIX(1.847759065) |
100 | | #define FIX_2_613125930 FIX(2.613125930) |
101 | | #endif |
102 | | |
103 | | |
104 | | /* We can gain a little more speed, with a further compromise in accuracy, |
105 | | * by omitting the addition in a descaling shift. This yields an incorrectly |
106 | | * rounded result half the time... |
107 | | */ |
108 | | |
109 | | #ifndef USE_ACCURATE_ROUNDING |
110 | | #undef DESCALE |
111 | 0 | #define DESCALE(x,n) RIGHT_SHIFT(x, n) |
112 | | #endif |
113 | | |
114 | | |
115 | | /* Multiply a DCTELEM variable by an INT32 constant, and immediately |
116 | | * descale to yield a DCTELEM result. |
117 | | */ |
118 | | |
119 | 0 | #define MULTIPLY(var,const) ((DCTELEM) DESCALE((var) * (const), CONST_BITS)) |
120 | | |
121 | | |
122 | | /* Dequantize a coefficient by multiplying it by the multiplier-table |
123 | | * entry; produce a DCTELEM result. For 8-bit data a 16x16->16 |
124 | | * multiplication will do. For 12-bit data, the multiplier table is |
125 | | * declared INT32, so a 32-bit multiply will be used. |
126 | | */ |
127 | | |
128 | | #if BITS_IN_JSAMPLE == 8 |
129 | | #define DEQUANTIZE(coef,quantval) (((IFAST_MULT_TYPE) (coef)) * (quantval)) |
130 | | #else |
131 | | #define DEQUANTIZE(coef,quantval) \ |
132 | 0 | DESCALE((coef)*(quantval), IFAST_SCALE_BITS-PASS1_BITS) |
133 | | #endif |
134 | | |
135 | | |
136 | | /* Like DESCALE, but applies to a DCTELEM and produces an int. |
137 | | * We assume that int right shift is unsigned if INT32 right shift is. |
138 | | */ |
139 | | |
140 | | #ifdef RIGHT_SHIFT_IS_UNSIGNED |
141 | | #define ISHIFT_TEMPS DCTELEM ishift_temp; |
142 | | #if BITS_IN_JSAMPLE == 8 |
143 | | #define DCTELEMBITS 16 /* DCTELEM may be 16 or 32 bits */ |
144 | | #else |
145 | | #define DCTELEMBITS 32 /* DCTELEM must be 32 bits */ |
146 | | #endif |
147 | | #define IRIGHT_SHIFT(x,shft) \ |
148 | | ((ishift_temp = (x)) < 0 ? \ |
149 | | (ishift_temp >> (shft)) | ((~((DCTELEM) 0)) << (DCTELEMBITS-(shft))) : \ |
150 | | (ishift_temp >> (shft))) |
151 | | #else |
152 | | #define ISHIFT_TEMPS |
153 | 0 | #define IRIGHT_SHIFT(x,shft) ((x) >> (shft)) |
154 | | #endif |
155 | | |
156 | | #ifdef USE_ACCURATE_ROUNDING |
157 | | #define IDESCALE(x,n) ((int) IRIGHT_SHIFT((x) + (1 << ((n)-1)), n)) |
158 | | #else |
159 | 0 | #define IDESCALE(x,n) ((int) IRIGHT_SHIFT(x, n)) |
160 | | #endif |
161 | | |
162 | | |
163 | | /* |
164 | | * Perform dequantization and inverse DCT on one block of coefficients. |
165 | | */ |
166 | | |
167 | | GLOBAL(void) |
168 | | jpeg_idct_ifast (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
169 | | JCOEFPTR coef_block, |
170 | | JSAMPARRAY output_buf, JDIMENSION output_col) |
171 | 0 | { |
172 | 0 | DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; |
173 | 0 | DCTELEM tmp10, tmp11, tmp12, tmp13; |
174 | 0 | DCTELEM z5, z10, z11, z12, z13; |
175 | 0 | JCOEFPTR inptr; |
176 | 0 | IFAST_MULT_TYPE * quantptr; |
177 | 0 | int * wsptr; |
178 | 0 | JSAMPROW outptr; |
179 | 0 | JSAMPLE *range_limit = IDCT_range_limit(cinfo); |
180 | 0 | int ctr; |
181 | 0 | int workspace[DCTSIZE2]; /* buffers data between passes */ |
182 | | SHIFT_TEMPS /* for DESCALE */ |
183 | | ISHIFT_TEMPS /* for IDESCALE */ |
184 | | |
185 | | /* Pass 1: process columns from input, store into work array. */ |
186 | |
|
187 | 0 | inptr = coef_block; |
188 | 0 | quantptr = (IFAST_MULT_TYPE *) compptr->dct_table; |
189 | 0 | wsptr = workspace; |
190 | 0 | for (ctr = DCTSIZE; ctr > 0; ctr--) { |
191 | | /* Due to quantization, we will usually find that many of the input |
192 | | * coefficients are zero, especially the AC terms. We can exploit this |
193 | | * by short-circuiting the IDCT calculation for any column in which all |
194 | | * the AC terms are zero. In that case each output is equal to the |
195 | | * DC coefficient (with scale factor as needed). |
196 | | * With typical images and quantization tables, half or more of the |
197 | | * column DCT calculations can be simplified this way. |
198 | | */ |
199 | | |
200 | 0 | if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 && |
201 | 0 | inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 && |
202 | 0 | inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 && |
203 | 0 | inptr[DCTSIZE*7] == 0) { |
204 | | /* AC terms all zero */ |
205 | 0 | int dcval = (int) DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); |
206 | |
|
207 | 0 | wsptr[DCTSIZE*0] = dcval; |
208 | 0 | wsptr[DCTSIZE*1] = dcval; |
209 | 0 | wsptr[DCTSIZE*2] = dcval; |
210 | 0 | wsptr[DCTSIZE*3] = dcval; |
211 | 0 | wsptr[DCTSIZE*4] = dcval; |
212 | 0 | wsptr[DCTSIZE*5] = dcval; |
213 | 0 | wsptr[DCTSIZE*6] = dcval; |
214 | 0 | wsptr[DCTSIZE*7] = dcval; |
215 | | |
216 | 0 | inptr++; /* advance pointers to next column */ |
217 | 0 | quantptr++; |
218 | 0 | wsptr++; |
219 | 0 | continue; |
220 | 0 | } |
221 | | |
222 | | /* Even part */ |
223 | | |
224 | 0 | tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); |
225 | 0 | tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); |
226 | 0 | tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); |
227 | 0 | tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); |
228 | |
|
229 | 0 | tmp10 = tmp0 + tmp2; /* phase 3 */ |
230 | 0 | tmp11 = tmp0 - tmp2; |
231 | |
|
232 | 0 | tmp13 = tmp1 + tmp3; /* phases 5-3 */ |
233 | 0 | tmp12 = MULTIPLY(tmp1 - tmp3, FIX_1_414213562) - tmp13; /* 2*c4 */ |
234 | |
|
235 | 0 | tmp0 = tmp10 + tmp13; /* phase 2 */ |
236 | 0 | tmp3 = tmp10 - tmp13; |
237 | 0 | tmp1 = tmp11 + tmp12; |
238 | 0 | tmp2 = tmp11 - tmp12; |
239 | | |
240 | | /* Odd part */ |
241 | |
|
242 | 0 | tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); |
243 | 0 | tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); |
244 | 0 | tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); |
245 | 0 | tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); |
246 | |
|
247 | 0 | z13 = tmp6 + tmp5; /* phase 6 */ |
248 | 0 | z10 = tmp6 - tmp5; |
249 | 0 | z11 = tmp4 + tmp7; |
250 | 0 | z12 = tmp4 - tmp7; |
251 | |
|
252 | 0 | tmp7 = z11 + z13; /* phase 5 */ |
253 | 0 | tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */ |
254 | |
|
255 | 0 | z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */ |
256 | 0 | tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */ |
257 | 0 | tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */ |
258 | |
|
259 | 0 | tmp6 = tmp12 - tmp7; /* phase 2 */ |
260 | 0 | tmp5 = tmp11 - tmp6; |
261 | 0 | tmp4 = tmp10 + tmp5; |
262 | |
|
263 | 0 | wsptr[DCTSIZE*0] = (int) (tmp0 + tmp7); |
264 | 0 | wsptr[DCTSIZE*7] = (int) (tmp0 - tmp7); |
265 | 0 | wsptr[DCTSIZE*1] = (int) (tmp1 + tmp6); |
266 | 0 | wsptr[DCTSIZE*6] = (int) (tmp1 - tmp6); |
267 | 0 | wsptr[DCTSIZE*2] = (int) (tmp2 + tmp5); |
268 | 0 | wsptr[DCTSIZE*5] = (int) (tmp2 - tmp5); |
269 | 0 | wsptr[DCTSIZE*4] = (int) (tmp3 + tmp4); |
270 | 0 | wsptr[DCTSIZE*3] = (int) (tmp3 - tmp4); |
271 | |
|
272 | 0 | inptr++; /* advance pointers to next column */ |
273 | 0 | quantptr++; |
274 | 0 | wsptr++; |
275 | 0 | } |
276 | | |
277 | | /* Pass 2: process rows from work array, store into output array. */ |
278 | | /* Note that we must descale the results by a factor of 8 == 2**3, */ |
279 | | /* and also undo the PASS1_BITS scaling. */ |
280 | |
|
281 | 0 | wsptr = workspace; |
282 | 0 | for (ctr = 0; ctr < DCTSIZE; ctr++) { |
283 | 0 | outptr = output_buf[ctr] + output_col; |
284 | | /* Rows of zeroes can be exploited in the same way as we did with columns. |
285 | | * However, the column calculation has created many nonzero AC terms, so |
286 | | * the simplification applies less often (typically 5% to 10% of the time). |
287 | | * On machines with very fast multiplication, it's possible that the |
288 | | * test takes more time than it's worth. In that case this section |
289 | | * may be commented out. |
290 | | */ |
291 | | |
292 | 0 | #ifndef NO_ZERO_ROW_TEST |
293 | 0 | if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 && |
294 | 0 | wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) { |
295 | | /* AC terms all zero */ |
296 | 0 | JSAMPLE dcval = range_limit[IDESCALE(wsptr[0], PASS1_BITS+3) |
297 | 0 | & RANGE_MASK]; |
298 | | |
299 | 0 | outptr[0] = dcval; |
300 | 0 | outptr[1] = dcval; |
301 | 0 | outptr[2] = dcval; |
302 | 0 | outptr[3] = dcval; |
303 | 0 | outptr[4] = dcval; |
304 | 0 | outptr[5] = dcval; |
305 | 0 | outptr[6] = dcval; |
306 | 0 | outptr[7] = dcval; |
307 | |
|
308 | 0 | wsptr += DCTSIZE; /* advance pointer to next row */ |
309 | 0 | continue; |
310 | 0 | } |
311 | 0 | #endif |
312 | | |
313 | | /* Even part */ |
314 | | |
315 | 0 | tmp10 = ((DCTELEM) wsptr[0] + (DCTELEM) wsptr[4]); |
316 | 0 | tmp11 = ((DCTELEM) wsptr[0] - (DCTELEM) wsptr[4]); |
317 | |
|
318 | 0 | tmp13 = ((DCTELEM) wsptr[2] + (DCTELEM) wsptr[6]); |
319 | 0 | tmp12 = MULTIPLY((DCTELEM) wsptr[2] - (DCTELEM) wsptr[6], FIX_1_414213562) |
320 | 0 | - tmp13; |
321 | |
|
322 | 0 | tmp0 = tmp10 + tmp13; |
323 | 0 | tmp3 = tmp10 - tmp13; |
324 | 0 | tmp1 = tmp11 + tmp12; |
325 | 0 | tmp2 = tmp11 - tmp12; |
326 | | |
327 | | /* Odd part */ |
328 | |
|
329 | 0 | z13 = (DCTELEM) wsptr[5] + (DCTELEM) wsptr[3]; |
330 | 0 | z10 = (DCTELEM) wsptr[5] - (DCTELEM) wsptr[3]; |
331 | 0 | z11 = (DCTELEM) wsptr[1] + (DCTELEM) wsptr[7]; |
332 | 0 | z12 = (DCTELEM) wsptr[1] - (DCTELEM) wsptr[7]; |
333 | |
|
334 | 0 | tmp7 = z11 + z13; /* phase 5 */ |
335 | 0 | tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */ |
336 | |
|
337 | 0 | z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */ |
338 | 0 | tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */ |
339 | 0 | tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */ |
340 | |
|
341 | 0 | tmp6 = tmp12 - tmp7; /* phase 2 */ |
342 | 0 | tmp5 = tmp11 - tmp6; |
343 | 0 | tmp4 = tmp10 + tmp5; |
344 | | |
345 | | /* Final output stage: scale down by a factor of 8 and range-limit */ |
346 | |
|
347 | 0 | outptr[0] = range_limit[IDESCALE(tmp0 + tmp7, PASS1_BITS+3) |
348 | 0 | & RANGE_MASK]; |
349 | 0 | outptr[7] = range_limit[IDESCALE(tmp0 - tmp7, PASS1_BITS+3) |
350 | 0 | & RANGE_MASK]; |
351 | 0 | outptr[1] = range_limit[IDESCALE(tmp1 + tmp6, PASS1_BITS+3) |
352 | 0 | & RANGE_MASK]; |
353 | 0 | outptr[6] = range_limit[IDESCALE(tmp1 - tmp6, PASS1_BITS+3) |
354 | 0 | & RANGE_MASK]; |
355 | 0 | outptr[2] = range_limit[IDESCALE(tmp2 + tmp5, PASS1_BITS+3) |
356 | 0 | & RANGE_MASK]; |
357 | 0 | outptr[5] = range_limit[IDESCALE(tmp2 - tmp5, PASS1_BITS+3) |
358 | 0 | & RANGE_MASK]; |
359 | 0 | outptr[4] = range_limit[IDESCALE(tmp3 + tmp4, PASS1_BITS+3) |
360 | 0 | & RANGE_MASK]; |
361 | 0 | outptr[3] = range_limit[IDESCALE(tmp3 - tmp4, PASS1_BITS+3) |
362 | 0 | & RANGE_MASK]; |
363 | |
|
364 | 0 | wsptr += DCTSIZE; /* advance pointer to next row */ |
365 | 0 | } |
366 | 0 | } |
367 | | |
368 | | #endif /* DCT_IFAST_SUPPORTED */ |