Coverage Report

Created: 2025-06-13 06:29

/src/gdal/build/frmts/jpeg/libjpeg12/jquant112.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * jquant1.c
3
 *
4
 * Copyright (C) 1991-1996, Thomas G. Lane.
5
 * This file is part of the Independent JPEG Group's software.
6
 * For conditions of distribution and use, see the accompanying README file.
7
 *
8
 * This file contains 1-pass color quantization (color mapping) routines.
9
 * These routines provide mapping to a fixed color map using equally spaced
10
 * color values.  Optional Floyd-Steinberg or ordered dithering is available.
11
 */
12
13
#define JPEG_INTERNALS
14
#include "jinclude.h"
15
#include "jpeglib.h"
16
17
#include "cpl_port.h"
18
19
#ifdef QUANT_1PASS_SUPPORTED
20
21
22
/*
23
 * The main purpose of 1-pass quantization is to provide a fast, if not very
24
 * high quality, colormapped output capability.  A 2-pass quantizer usually
25
 * gives better visual quality; however, for quantized grayscale output this
26
 * quantizer is perfectly adequate.  Dithering is highly recommended with this
27
 * quantizer, though you can turn it off if you really want to.
28
 *
29
 * In 1-pass quantization the colormap must be chosen in advance of seeing the
30
 * image.  We use a map consisting of all combinations of Ncolors[i] color
31
 * values for the i'th component.  The Ncolors[] values are chosen so that
32
 * their product, the total number of colors, is no more than that requested.
33
 * (In most cases, the product will be somewhat less.)
34
 *
35
 * Since the colormap is orthogonal, the representative value for each color
36
 * component can be determined without considering the other components;
37
 * then these indexes can be combined into a colormap index by a standard
38
 * N-dimensional-array-subscript calculation.  Most of the arithmetic involved
39
 * can be precalculated and stored in the lookup table colorindex[].
40
 * colorindex[i][j] maps pixel value j in component i to the nearest
41
 * representative value (grid plane) for that component; this index is
42
 * multiplied by the array stride for component i, so that the
43
 * index of the colormap entry closest to a given pixel value is just
44
 *    sum( colorindex[component-number][pixel-component-value] )
45
 * Aside from being fast, this scheme allows for variable spacing between
46
 * representative values with no additional lookup cost.
47
 *
48
 * If gamma correction has been applied in color conversion, it might be wise
49
 * to adjust the color grid spacing so that the representative colors are
50
 * equidistant in linear space.  At this writing, gamma correction is not
51
 * implemented by jdcolor, so nothing is done here.
52
 */
53
54
55
/* Declarations for ordered dithering.
56
 *
57
 * We use a standard 16x16 ordered dither array.  The basic concept of ordered
58
 * dithering is described in many references, for instance Dale Schumacher's
59
 * chapter II.2 of Graphics Gems II (James Arvo, ed. Academic Press, 1991).
60
 * In place of Schumacher's comparisons against a "threshold" value, we add a
61
 * "dither" value to the input pixel and then round the result to the nearest
62
 * output value.  The dither value is equivalent to (0.5 - threshold) times
63
 * the distance between output values.  For ordered dithering, we assume that
64
 * the output colors are equally spaced; if not, results will probably be
65
 * worse, since the dither may be too much or too little at a given point.
66
 *
67
 * The normal calculation would be to form pixel value + dither, range-limit
68
 * this to 0..MAXJSAMPLE, and then index into the colorindex table as usual.
69
 * We can skip the separate range-limiting step by extending the colorindex
70
 * table in both directions.
71
 */
72
73
0
#define ODITHER_SIZE  16  /* dimension of dither matrix */
74
/* NB: if ODITHER_SIZE is not a power of 2, ODITHER_MASK uses will break */
75
0
#define ODITHER_CELLS (ODITHER_SIZE*ODITHER_SIZE)  /* # cells in matrix */
76
0
#define ODITHER_MASK  (ODITHER_SIZE-1) /* mask for wrapping around counters */
77
78
typedef int ODITHER_MATRIX[ODITHER_SIZE][ODITHER_SIZE];
79
typedef int (*ODITHER_MATRIX_PTR)[ODITHER_SIZE];
80
81
static const UINT8 base_dither_matrix[ODITHER_SIZE][ODITHER_SIZE] = {
82
  /* Bayer's order-4 dither array.  Generated by the code given in
83
   * Stephen Hawley's article "Ordered Dithering" in Graphics Gems I.
84
   * The values in this array must range from 0 to ODITHER_CELLS-1.
85
   */
86
  {   0,192, 48,240, 12,204, 60,252,  3,195, 51,243, 15,207, 63,255 },
87
  { 128, 64,176,112,140, 76,188,124,131, 67,179,115,143, 79,191,127 },
88
  {  32,224, 16,208, 44,236, 28,220, 35,227, 19,211, 47,239, 31,223 },
89
  { 160, 96,144, 80,172,108,156, 92,163, 99,147, 83,175,111,159, 95 },
90
  {   8,200, 56,248,  4,196, 52,244, 11,203, 59,251,  7,199, 55,247 },
91
  { 136, 72,184,120,132, 68,180,116,139, 75,187,123,135, 71,183,119 },
92
  {  40,232, 24,216, 36,228, 20,212, 43,235, 27,219, 39,231, 23,215 },
93
  { 168,104,152, 88,164,100,148, 84,171,107,155, 91,167,103,151, 87 },
94
  {   2,194, 50,242, 14,206, 62,254,  1,193, 49,241, 13,205, 61,253 },
95
  { 130, 66,178,114,142, 78,190,126,129, 65,177,113,141, 77,189,125 },
96
  {  34,226, 18,210, 46,238, 30,222, 33,225, 17,209, 45,237, 29,221 },
97
  { 162, 98,146, 82,174,110,158, 94,161, 97,145, 81,173,109,157, 93 },
98
  {  10,202, 58,250,  6,198, 54,246,  9,201, 57,249,  5,197, 53,245 },
99
  { 138, 74,186,122,134, 70,182,118,137, 73,185,121,133, 69,181,117 },
100
  {  42,234, 26,218, 38,230, 22,214, 41,233, 25,217, 37,229, 21,213 },
101
  { 170,106,154, 90,166,102,150, 86,169,105,153, 89,165,101,149, 85 }
102
};
103
104
105
/* Declarations for Floyd-Steinberg dithering.
106
 *
107
 * Errors are accumulated into the array fserrors[], at a resolution of
108
 * 1/16th of a pixel count.  The error at a given pixel is propagated
109
 * to its not-yet-processed neighbors using the standard F-S fractions,
110
` *   ... (here)  7/16
111
 *    3/16  5/16  1/16
112
 * We work left-to-right on even rows, right-to-left on odd rows.
113
 *
114
 * We can get away with a single array (holding one row's worth of errors)
115
 * by using it to store the current row's errors at pixel columns not yet
116
 * processed, but the next row's errors at columns already processed.  We
117
 * need only a few extra variables to hold the errors immediately around the
118
 * current column.  (If we are lucky, those variables are in registers, but
119
 * even if not, they're probably cheaper to access than array elements are.)
120
 *
121
 * The fserrors[] array is indexed [component#][position].
122
 * We provide (#columns + 2) entries per component; the extra entry at each
123
 * end saves us from special-casing the first and last pixels.
124
 *
125
 * Note: on a wide image, we might not have enough room in a PC's near data
126
 * segment to hold the error array; so it is allocated with alloc_large.
127
 */
128
129
#if BITS_IN_JSAMPLE == 8
130
typedef INT16 FSERROR;    /* 16 bits should be enough */
131
typedef int LOCFSERROR;   /* use 'int' for calculation temps */
132
#else
133
typedef INT32 FSERROR;    /* may need more than 16 bits */
134
typedef INT32 LOCFSERROR; /* be sure calculation temps are big enough */
135
#endif
136
137
typedef FSERROR FAR *FSERRPTR;  /* pointer to error array (in FAR storage!) */
138
139
140
/* Private subobject */
141
142
0
#define MAX_Q_COMPS 4    /* max components I can handle */
143
144
typedef struct {
145
  struct jpeg_color_quantizer pub; /* public fields */
146
147
  /* Initially allocated colormap is saved here */
148
  JSAMPARRAY sv_colormap; /* The color map as a 2-D pixel array */
149
  int sv_actual;    /* number of entries in use */
150
151
  JSAMPARRAY colorindex;  /* Precomputed mapping for speed */
152
  /* colorindex[i][j] = index of color closest to pixel value j in component i,
153
   * premultiplied as described above.  Since colormap indexes must fit into
154
   * JSAMPLEs, the entries of this array will too.
155
   */
156
  boolean is_padded;    /* is the colorindex padded for odither? */
157
158
  int Ncolors[MAX_Q_COMPS]; /* # of values allocated to each component */
159
160
  /* Variables for ordered dithering */
161
  int row_index;    /* cur row's vertical index in dither matrix */
162
  ODITHER_MATRIX_PTR odither[MAX_Q_COMPS]; /* one dither array per component */
163
164
  /* Variables for Floyd-Steinberg dithering */
165
  FSERRPTR fserrors[MAX_Q_COMPS]; /* accumulated errors */
166
  boolean on_odd_row;   /* flag to remember which row we are on */
167
} my_cquantizer;
168
169
typedef my_cquantizer * my_cquantize_ptr;
170
171
172
/*
173
 * Policy-making subroutines for create_colormap and create_colorindex.
174
 * These routines determine the colormap to be used.  The rest of the module
175
 * only assumes that the colormap is orthogonal.
176
 *
177
 *  * select_ncolors decides how to divvy up the available colors
178
 *    among the components.
179
 *  * output_value defines the set of representative values for a component.
180
 *  * largest_input_value defines the mapping from input values to
181
 *    representative values for a component.
182
 * Note that the latter two routines may impose different policies for
183
 * different components, though this is not currently done.
184
 */
185
186
187
LOCAL(int)
188
select_ncolors (j_decompress_ptr cinfo, int Ncolors[])
189
/* Determine allocation of desired colors to components, */
190
/* and fill in Ncolors[] array to indicate choice. */
191
/* Return value is total number of colors (product of Ncolors[] values). */
192
0
{
193
0
  int nc = cinfo->out_color_components; /* number of color components */
194
0
  int max_colors = cinfo->desired_number_of_colors;
195
0
  int total_colors, iroot, i, j;
196
0
  boolean changed;
197
0
  long temp;
198
0
  static const int RGB_order[3] = { RGB_GREEN, RGB_RED, RGB_BLUE };
199
200
  /* We can allocate at least the nc'th root of max_colors per component. */
201
  /* Compute floor(nc'th root of max_colors). */
202
0
  iroot = 1;
203
0
  do {
204
0
    iroot++;
205
0
    temp = iroot;   /* set temp = iroot ** nc */
206
0
    for (i = 1; i < nc; i++)
207
0
      temp *= iroot;
208
0
  } while (temp <= (long) max_colors); /* repeat till iroot exceeds root */
209
0
  iroot--;      /* now iroot = floor(root) */
210
211
  /* Must have at least 2 color values per component */
212
0
  if (iroot < 2)
213
0
    ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, (int) temp);
214
215
  /* Initialize to iroot color values for each component */
216
0
  total_colors = 1;
217
0
  for (i = 0; i < nc; i++) {
218
0
    Ncolors[i] = iroot;
219
0
    total_colors *= iroot;
220
0
  }
221
  /* We may be able to increment the count for one or more components without
222
   * exceeding max_colors, though we know not all can be incremented.
223
   * Sometimes, the first component can be incremented more than once!
224
   * (Example: for 16 colors, we start at 2*2*2, go to 3*2*2, then 4*2*2.)
225
   * In RGB colorspace, try to increment G first, then R, then B.
226
   */
227
0
  do {
228
0
    changed = FALSE;
229
0
    for (i = 0; i < nc; i++) {
230
0
      j = (cinfo->out_color_space == JCS_RGB ? RGB_order[i] : i);
231
      /* calculate new total_colors if Ncolors[j] is incremented */
232
0
      temp = total_colors / Ncolors[j];
233
0
      temp *= Ncolors[j]+1; /* done in long arith to avoid oflo */
234
0
      if (temp > (long) max_colors)
235
0
  break;     /* won't fit, done with this pass */
236
0
      Ncolors[j]++;   /* OK, apply the increment */
237
0
      total_colors = (int) temp;
238
0
      changed = TRUE;
239
0
    }
240
0
  } while (changed);
241
242
0
  return total_colors;
243
0
}
244
245
246
LOCAL(int)
247
output_value (CPL_UNUSED j_decompress_ptr cinfo, CPL_UNUSED int ci, int j, int maxj)
248
/* Return j'th output value, where j will range from 0 to maxj */
249
/* The output values must fall in 0..MAXJSAMPLE in increasing order */
250
0
{
251
  /* We always provide values 0 and MAXJSAMPLE for each component;
252
   * any additional values are equally spaced between these limits.
253
   * (Forcing the upper and lower values to the limits ensures that
254
   * dithering can't produce a color outside the selected gamut.)
255
   */
256
0
  return (int) (((INT32) j * MAXJSAMPLE + maxj/2) / maxj);
257
0
}
258
259
260
LOCAL(int)
261
largest_input_value (CPL_UNUSED j_decompress_ptr cinfo, CPL_UNUSED int ci, int j, int maxj)
262
/* Return largest input value that should map to j'th output value */
263
/* Must have largest(j=0) >= 0, and largest(j=maxj) >= MAXJSAMPLE */
264
0
{
265
  /* Breakpoints are halfway between values returned by output_value */
266
0
  return (int) (((INT32) (2*j + 1) * MAXJSAMPLE + maxj) / (2*maxj));
267
0
}
268
269
270
/*
271
 * Create the colormap.
272
 */
273
274
LOCAL(void)
275
create_colormap (j_decompress_ptr cinfo)
276
0
{
277
0
  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
278
0
  JSAMPARRAY colormap;    /* Created colormap */
279
0
  int total_colors;   /* Number of distinct output colors */
280
0
  int i,j,k, nci, blksize, blkdist, ptr, val;
281
282
  /* Select number of colors for each component */
283
0
  total_colors = select_ncolors(cinfo, cquantize->Ncolors);
284
285
  /* Report selected color counts */
286
0
  if (cinfo->out_color_components == 3)
287
0
    TRACEMS4(cinfo, 1, JTRC_QUANT_3_NCOLORS,
288
0
       total_colors, cquantize->Ncolors[0],
289
0
       cquantize->Ncolors[1], cquantize->Ncolors[2]);
290
0
  else
291
0
    TRACEMS1(cinfo, 1, JTRC_QUANT_NCOLORS, total_colors);
292
293
  /* Allocate and fill in the colormap. */
294
  /* The colors are ordered in the map in standard row-major order, */
295
  /* i.e. rightmost (highest-indexed) color changes most rapidly. */
296
297
0
  colormap = (*cinfo->mem->alloc_sarray)
298
0
    ((j_common_ptr) cinfo, JPOOL_IMAGE,
299
0
     (JDIMENSION) total_colors, (JDIMENSION) cinfo->out_color_components);
300
301
  /* blksize is number of adjacent repeated entries for a component */
302
  /* blkdist is distance between groups of identical entries for a component */
303
0
  blkdist = total_colors;
304
305
0
  for (i = 0; i < cinfo->out_color_components; i++) {
306
    /* fill in colormap entries for i'th color component */
307
0
    nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
308
0
    blksize = blkdist / nci;
309
0
    for (j = 0; j < nci; j++) {
310
      /* Compute j'th output value (out of nci) for component */
311
0
      val = output_value(cinfo, i, j, nci-1);
312
      /* Fill in all colormap entries that have this value of this component */
313
0
      for (ptr = j * blksize; ptr < total_colors; ptr += blkdist) {
314
  /* fill in blksize entries beginning at ptr */
315
0
  for (k = 0; k < blksize; k++)
316
0
    colormap[i][ptr+k] = (JSAMPLE) val;
317
0
      }
318
0
    }
319
0
    blkdist = blksize;    /* blksize of this color is blkdist of next */
320
0
  }
321
322
  /* Save the colormap in private storage,
323
   * where it will survive color quantization mode changes.
324
   */
325
0
  cquantize->sv_colormap = colormap;
326
0
  cquantize->sv_actual = total_colors;
327
0
}
328
329
330
/*
331
 * Create the color index table.
332
 */
333
334
LOCAL(void)
335
create_colorindex (j_decompress_ptr cinfo)
336
0
{
337
0
  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
338
0
  JSAMPROW indexptr;
339
0
  int i,j,k, nci, blksize, val, pad;
340
341
  /* For ordered dither, we pad the color index tables by MAXJSAMPLE in
342
   * each direction (input index values can be -MAXJSAMPLE .. 2*MAXJSAMPLE).
343
   * This is not necessary in the other dithering modes.  However, we
344
   * flag whether it was done in case user changes dithering mode.
345
   */
346
0
  if (cinfo->dither_mode == JDITHER_ORDERED) {
347
0
    pad = MAXJSAMPLE*2;
348
0
    cquantize->is_padded = TRUE;
349
0
  } else {
350
0
    pad = 0;
351
0
    cquantize->is_padded = FALSE;
352
0
  }
353
354
0
  cquantize->colorindex = (*cinfo->mem->alloc_sarray)
355
0
    ((j_common_ptr) cinfo, JPOOL_IMAGE,
356
0
     (JDIMENSION) (MAXJSAMPLE+1 + pad),
357
0
     (JDIMENSION) cinfo->out_color_components);
358
359
  /* blksize is number of adjacent repeated entries for a component */
360
0
  blksize = cquantize->sv_actual;
361
362
0
  for (i = 0; i < cinfo->out_color_components; i++) {
363
    /* fill in colorindex entries for i'th color component */
364
0
    nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
365
0
    blksize = blksize / nci;
366
367
    /* adjust colorindex pointers to provide padding at negative indexes. */
368
0
    if (pad)
369
0
      cquantize->colorindex[i] += MAXJSAMPLE;
370
371
    /* in loop, val = index of current output value, */
372
    /* and k = largest j that maps to current val */
373
0
    indexptr = cquantize->colorindex[i];
374
0
    val = 0;
375
0
    k = largest_input_value(cinfo, i, 0, nci-1);
376
0
    for (j = 0; j <= MAXJSAMPLE; j++) {
377
0
      while (j > k)   /* advance val if past boundary */
378
0
  k = largest_input_value(cinfo, i, ++val, nci-1);
379
      /* premultiply so that no multiplication needed in main processing */
380
0
      indexptr[j] = (JSAMPLE) (val * blksize);
381
0
    }
382
    /* Pad at both ends if necessary */
383
0
    if (pad)
384
0
      for (j = 1; j <= MAXJSAMPLE; j++) {
385
0
  indexptr[-j] = indexptr[0];
386
0
  indexptr[MAXJSAMPLE+j] = indexptr[MAXJSAMPLE];
387
0
      }
388
0
  }
389
0
}
390
391
392
/*
393
 * Create an ordered-dither array for a component having ncolors
394
 * distinct output values.
395
 */
396
397
LOCAL(ODITHER_MATRIX_PTR)
398
make_odither_array (j_decompress_ptr cinfo, int ncolors)
399
0
{
400
0
  ODITHER_MATRIX_PTR odither;
401
0
  int j,k;
402
0
  INT32 num,den;
403
404
0
  odither = (ODITHER_MATRIX_PTR)
405
0
    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
406
0
        SIZEOF(ODITHER_MATRIX));
407
  /* The inter-value distance for this color is MAXJSAMPLE/(ncolors-1).
408
   * Hence the dither value for the matrix cell with fill order f
409
   * (f=0..N-1) should be (N-1-2*f)/(2*N) * MAXJSAMPLE/(ncolors-1).
410
   * On 16-bit-int machine, be careful to avoid overflow.
411
   */
412
0
  den = 2 * ODITHER_CELLS * ((INT32) (ncolors - 1));
413
0
  for (j = 0; j < ODITHER_SIZE; j++) {
414
0
    for (k = 0; k < ODITHER_SIZE; k++) {
415
0
      num = ((INT32) (ODITHER_CELLS-1 - 2*((int)base_dither_matrix[j][k])))
416
0
      * MAXJSAMPLE;
417
      /* Ensure round towards zero despite C's lack of consistency
418
       * about rounding negative values in integer division...
419
       */
420
0
      odither[j][k] = (int) (num<0 ? -((-num)/den) : num/den);
421
0
    }
422
0
  }
423
0
  return odither;
424
0
}
425
426
427
/*
428
 * Create the ordered-dither tables.
429
 * Components having the same number of representative colors may 
430
 * share a dither table.
431
 */
432
433
LOCAL(void)
434
create_odither_tables (j_decompress_ptr cinfo)
435
0
{
436
0
  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
437
0
  ODITHER_MATRIX_PTR odither;
438
0
  int i, j, nci;
439
440
0
  for (i = 0; i < cinfo->out_color_components; i++) {
441
0
    nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
442
0
    odither = NULL;   /* search for matching prior component */
443
0
    for (j = 0; j < i; j++) {
444
0
      if (nci == cquantize->Ncolors[j]) {
445
0
  odither = cquantize->odither[j];
446
0
  break;
447
0
      }
448
0
    }
449
0
    if (odither == NULL) /* need a new table? */
450
0
      odither = make_odither_array(cinfo, nci);
451
0
    cquantize->odither[i] = odither;
452
0
  }
453
0
}
454
455
456
/*
457
 * Map some rows of pixels to the output colormapped representation.
458
 */
459
460
METHODDEF(void)
461
color_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
462
    JSAMPARRAY output_buf, int num_rows)
463
/* General case, no dithering */
464
0
{
465
0
  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
466
0
  JSAMPARRAY colorindex = cquantize->colorindex;
467
0
  register int pixcode, ci;
468
0
  register JSAMPROW ptrin, ptrout;
469
0
  int row;
470
0
  JDIMENSION col;
471
0
  JDIMENSION width = cinfo->output_width;
472
0
  register int nc = cinfo->out_color_components;
473
474
0
  for (row = 0; row < num_rows; row++) {
475
0
    ptrin = input_buf[row];
476
0
    ptrout = output_buf[row];
477
0
    for (col = width; col > 0; col--) {
478
0
      pixcode = 0;
479
0
      for (ci = 0; ci < nc; ci++) {
480
0
  pixcode += GETJSAMPLE(colorindex[ci][GETJSAMPLE(*ptrin++)]);
481
0
      }
482
0
      *ptrout++ = (JSAMPLE) pixcode;
483
0
    }
484
0
  }
485
0
}
486
487
488
METHODDEF(void)
489
color_quantize3 (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
490
     JSAMPARRAY output_buf, int num_rows)
491
/* Fast path for out_color_components==3, no dithering */
492
0
{
493
0
  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
494
0
  register int pixcode;
495
0
  register JSAMPROW ptrin, ptrout;
496
0
  JSAMPROW colorindex0 = cquantize->colorindex[0];
497
0
  JSAMPROW colorindex1 = cquantize->colorindex[1];
498
0
  JSAMPROW colorindex2 = cquantize->colorindex[2];
499
0
  int row;
500
0
  JDIMENSION col;
501
0
  JDIMENSION width = cinfo->output_width;
502
503
0
  for (row = 0; row < num_rows; row++) {
504
0
    ptrin = input_buf[row];
505
0
    ptrout = output_buf[row];
506
0
    for (col = width; col > 0; col--) {
507
0
      pixcode  = GETJSAMPLE(colorindex0[GETJSAMPLE(*ptrin++)]);
508
0
      pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*ptrin++)]);
509
0
      pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*ptrin++)]);
510
0
      *ptrout++ = (JSAMPLE) pixcode;
511
0
    }
512
0
  }
513
0
}
514
515
516
METHODDEF(void)
517
quantize_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
518
         JSAMPARRAY output_buf, int num_rows)
519
/* General case, with ordered dithering */
520
0
{
521
0
  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
522
0
  register JSAMPROW input_ptr;
523
0
  register JSAMPROW output_ptr;
524
0
  JSAMPROW colorindex_ci;
525
0
  int * dither;     /* points to active row of dither matrix */
526
0
  int row_index, col_index; /* current indexes into dither matrix */
527
0
  int nc = cinfo->out_color_components;
528
0
  int ci;
529
0
  int row;
530
0
  JDIMENSION col;
531
0
  JDIMENSION width = cinfo->output_width;
532
533
0
  for (row = 0; row < num_rows; row++) {
534
    /* Initialize output values to 0 so can process components separately */
535
0
    jzero_far((void FAR *) output_buf[row],
536
0
        (size_t) (width * SIZEOF(JSAMPLE)));
537
0
    row_index = cquantize->row_index;
538
0
    for (ci = 0; ci < nc; ci++) {
539
0
      input_ptr = input_buf[row] + ci;
540
0
      output_ptr = output_buf[row];
541
0
      colorindex_ci = cquantize->colorindex[ci];
542
0
      dither = cquantize->odither[ci][row_index];
543
0
      col_index = 0;
544
545
0
      for (col = width; col > 0; col--) {
546
  /* Form pixel value + dither, range-limit to 0..MAXJSAMPLE,
547
   * select output value, accumulate into output code for this pixel.
548
   * Range-limiting need not be done explicitly, as we have extended
549
   * the colorindex table to produce the right answers for out-of-range
550
   * inputs.  The maximum dither is +- MAXJSAMPLE; this sets the
551
   * required amount of padding.
552
   */
553
0
  *output_ptr += colorindex_ci[GETJSAMPLE(*input_ptr)+dither[col_index]];
554
0
  input_ptr += nc;
555
0
  output_ptr++;
556
0
  col_index = (col_index + 1) & ODITHER_MASK;
557
0
      }
558
0
    }
559
    /* Advance row index for next row */
560
0
    row_index = (row_index + 1) & ODITHER_MASK;
561
0
    cquantize->row_index = row_index;
562
0
  }
563
0
}
564
565
566
METHODDEF(void)
567
quantize3_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
568
          JSAMPARRAY output_buf, int num_rows)
569
/* Fast path for out_color_components==3, with ordered dithering */
570
0
{
571
0
  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
572
0
  register int pixcode;
573
0
  register JSAMPROW input_ptr;
574
0
  register JSAMPROW output_ptr;
575
0
  JSAMPROW colorindex0 = cquantize->colorindex[0];
576
0
  JSAMPROW colorindex1 = cquantize->colorindex[1];
577
0
  JSAMPROW colorindex2 = cquantize->colorindex[2];
578
0
  int * dither0;    /* points to active row of dither matrix */
579
0
  int * dither1;
580
0
  int * dither2;
581
0
  int row_index, col_index; /* current indexes into dither matrix */
582
0
  int row;
583
0
  JDIMENSION col;
584
0
  JDIMENSION width = cinfo->output_width;
585
586
0
  for (row = 0; row < num_rows; row++) {
587
0
    row_index = cquantize->row_index;
588
0
    input_ptr = input_buf[row];
589
0
    output_ptr = output_buf[row];
590
0
    dither0 = cquantize->odither[0][row_index];
591
0
    dither1 = cquantize->odither[1][row_index];
592
0
    dither2 = cquantize->odither[2][row_index];
593
0
    col_index = 0;
594
595
0
    for (col = width; col > 0; col--) {
596
0
      pixcode  = GETJSAMPLE(colorindex0[GETJSAMPLE(*input_ptr++) +
597
0
          dither0[col_index]]);
598
0
      pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*input_ptr++) +
599
0
          dither1[col_index]]);
600
0
      pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*input_ptr++) +
601
0
          dither2[col_index]]);
602
0
      *output_ptr++ = (JSAMPLE) pixcode;
603
0
      col_index = (col_index + 1) & ODITHER_MASK;
604
0
    }
605
0
    row_index = (row_index + 1) & ODITHER_MASK;
606
0
    cquantize->row_index = row_index;
607
0
  }
608
0
}
609
610
611
METHODDEF(void)
612
quantize_fs_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
613
        JSAMPARRAY output_buf, int num_rows)
614
/* General case, with Floyd-Steinberg dithering */
615
0
{
616
0
  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
617
0
  register LOCFSERROR cur;  /* current error or pixel value */
618
0
  LOCFSERROR belowerr;    /* error for pixel below cur */
619
0
  LOCFSERROR bpreverr;    /* error for below/prev col */
620
0
  LOCFSERROR bnexterr;    /* error for below/next col */
621
0
  LOCFSERROR delta;
622
0
  register FSERRPTR errorptr; /* => fserrors[] at column before current */
623
0
  register JSAMPROW input_ptr;
624
0
  register JSAMPROW output_ptr;
625
0
  JSAMPROW colorindex_ci;
626
0
  JSAMPROW colormap_ci;
627
0
  int pixcode;
628
0
  int nc = cinfo->out_color_components;
629
0
  int dir;      /* 1 for left-to-right, -1 for right-to-left */
630
0
  int dirnc;      /* dir * nc */
631
0
  int ci;
632
0
  int row;
633
0
  JDIMENSION col;
634
0
  JDIMENSION width = cinfo->output_width;
635
0
  JSAMPLE *range_limit = cinfo->sample_range_limit;
636
0
  SHIFT_TEMPS
637
638
0
  for (row = 0; row < num_rows; row++) {
639
    /* Initialize output values to 0 so can process components separately */
640
0
    jzero_far((void FAR *) output_buf[row],
641
0
        (size_t) (width * SIZEOF(JSAMPLE)));
642
0
    for (ci = 0; ci < nc; ci++) {
643
0
      input_ptr = input_buf[row] + ci;
644
0
      output_ptr = output_buf[row];
645
0
      if (cquantize->on_odd_row) {
646
  /* work right to left in this row */
647
0
  input_ptr += (width-1) * nc; /* so point to rightmost pixel */
648
0
  output_ptr += width-1;
649
0
  dir = -1;
650
0
  dirnc = -nc;
651
0
  errorptr = cquantize->fserrors[ci] + (width+1); /* => entry after last column */
652
0
      } else {
653
  /* work left to right in this row */
654
0
  dir = 1;
655
0
  dirnc = nc;
656
0
  errorptr = cquantize->fserrors[ci]; /* => entry before first column */
657
0
      }
658
0
      colorindex_ci = cquantize->colorindex[ci];
659
0
      colormap_ci = cquantize->sv_colormap[ci];
660
      /* Preset error values: no error propagated to first pixel from left */
661
0
      cur = 0;
662
      /* and no error propagated to row below yet */
663
0
      belowerr = bpreverr = 0;
664
665
0
      for (col = width; col > 0; col--) {
666
  /* cur holds the error propagated from the previous pixel on the
667
   * current line.  Add the error propagated from the previous line
668
   * to form the complete error correction term for this pixel, and
669
   * round the error term (which is expressed * 16) to an integer.
670
   * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
671
   * for either sign of the error value.
672
   * Note: errorptr points to *previous* column's array entry.
673
   */
674
0
  cur = RIGHT_SHIFT(cur + errorptr[dir] + 8, 4);
675
  /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
676
   * The maximum error is +- MAXJSAMPLE; this sets the required size
677
   * of the range_limit array.
678
   */
679
0
  cur += GETJSAMPLE(*input_ptr);
680
0
  cur = GETJSAMPLE(range_limit[cur]);
681
  /* Select output value, accumulate into output code for this pixel */
682
0
  pixcode = GETJSAMPLE(colorindex_ci[cur]);
683
0
  *output_ptr += (JSAMPLE) pixcode;
684
  /* Compute actual representation error at this pixel */
685
  /* Note: we can do this even though we don't have the final */
686
  /* pixel code, because the colormap is orthogonal. */
687
0
  cur -= GETJSAMPLE(colormap_ci[pixcode]);
688
  /* Compute error fractions to be propagated to adjacent pixels.
689
   * Add these into the running sums, and simultaneously shift the
690
   * next-line error sums left by 1 column.
691
   */
692
0
  bnexterr = cur;
693
0
  delta = cur * 2;
694
0
  cur += delta;   /* form error * 3 */
695
0
  errorptr[0] = (FSERROR) (bpreverr + cur);
696
0
  cur += delta;   /* form error * 5 */
697
0
  bpreverr = belowerr + cur;
698
0
  belowerr = bnexterr;
699
0
  cur += delta;   /* form error * 7 */
700
  /* At this point cur contains the 7/16 error value to be propagated
701
   * to the next pixel on the current line, and all the errors for the
702
   * next line have been shifted over. We are therefore ready to move on.
703
   */
704
0
  input_ptr += dirnc; /* advance input ptr to next column */
705
0
  output_ptr += dir;  /* advance output ptr to next column */
706
0
  errorptr += dir;  /* advance errorptr to current column */
707
0
      }
708
      /* Post-loop cleanup: we must unload the final error value into the
709
       * final fserrors[] entry.  Note we need not unload belowerr because
710
       * it is for the dummy column before or after the actual array.
711
       */
712
0
      errorptr[0] = (FSERROR) bpreverr; /* unload prev err into array */
713
0
    }
714
0
    cquantize->on_odd_row = (cquantize->on_odd_row ? FALSE : TRUE);
715
0
  }
716
0
}
717
718
719
/*
720
 * Allocate workspace for Floyd-Steinberg errors.
721
 */
722
723
LOCAL(void)
724
alloc_fs_workspace (j_decompress_ptr cinfo)
725
0
{
726
0
  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
727
0
  size_t arraysize;
728
0
  int i;
729
730
0
  arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR));
731
0
  for (i = 0; i < cinfo->out_color_components; i++) {
732
0
    cquantize->fserrors[i] = (FSERRPTR)
733
0
      (*cinfo->mem->alloc_large)((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize);
734
0
  }
735
0
}
736
737
738
/*
739
 * Initialize for one-pass color quantization.
740
 */
741
742
METHODDEF(void)
743
start_pass_1_quant (j_decompress_ptr cinfo, CPL_UNUSED boolean is_pre_scan)
744
0
{
745
0
  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
746
0
  size_t arraysize;
747
0
  int i;
748
749
  /* Install my colormap. */
750
0
  cinfo->colormap = cquantize->sv_colormap;
751
0
  cinfo->actual_number_of_colors = cquantize->sv_actual;
752
753
  /* Initialize for desired dithering mode. */
754
0
  switch (cinfo->dither_mode) {
755
0
  case JDITHER_NONE:
756
0
    if (cinfo->out_color_components == 3)
757
0
      cquantize->pub.color_quantize = color_quantize3;
758
0
    else
759
0
      cquantize->pub.color_quantize = color_quantize;
760
0
    break;
761
0
  case JDITHER_ORDERED:
762
0
    if (cinfo->out_color_components == 3)
763
0
      cquantize->pub.color_quantize = quantize3_ord_dither;
764
0
    else
765
0
      cquantize->pub.color_quantize = quantize_ord_dither;
766
0
    cquantize->row_index = 0; /* initialize state for ordered dither */
767
    /* If user changed to ordered dither from another mode,
768
     * we must recreate the color index table with padding.
769
     * This will cost extra space, but probably isn't very likely.
770
     */
771
0
    if (! cquantize->is_padded)
772
0
      create_colorindex(cinfo);
773
    /* Create ordered-dither tables if we didn't already. */
774
0
    if (cquantize->odither[0] == NULL)
775
0
      create_odither_tables(cinfo);
776
0
    break;
777
0
  case JDITHER_FS:
778
0
    cquantize->pub.color_quantize = quantize_fs_dither;
779
0
    cquantize->on_odd_row = FALSE; /* initialize state for F-S dither */
780
    /* Allocate Floyd-Steinberg workspace if didn't already. */
781
0
    if (cquantize->fserrors[0] == NULL)
782
0
      alloc_fs_workspace(cinfo);
783
    /* Initialize the propagated errors to zero. */
784
0
    arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR));
785
0
    for (i = 0; i < cinfo->out_color_components; i++)
786
0
      jzero_far((void FAR *) cquantize->fserrors[i], arraysize);
787
0
    break;
788
0
  default:
789
0
    ERREXIT(cinfo, JERR_NOT_COMPILED);
790
0
    break;
791
0
  }
792
0
}
793
794
795
/*
796
 * Finish up at the end of the pass.
797
 */
798
799
METHODDEF(void)
800
finish_pass_1_quant (CPL_UNUSED j_decompress_ptr cinfo)
801
0
{
802
  /* no work in 1-pass case */
803
0
}
804
805
806
/*
807
 * Switch to a new external colormap between output passes.
808
 * Shouldn't get to this module!
809
 */
810
811
METHODDEF(void)
812
new_color_map_1_quant (j_decompress_ptr cinfo)
813
0
{
814
0
  ERREXIT(cinfo, JERR_MODE_CHANGE);
815
0
}
816
817
818
/*
819
 * Module initialization routine for 1-pass color quantization.
820
 */
821
822
GLOBAL(void)
823
jinit_1pass_quantizer (j_decompress_ptr cinfo)
824
0
{
825
0
  my_cquantize_ptr cquantize;
826
827
0
  cquantize = (my_cquantize_ptr)
828
0
    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
829
0
        SIZEOF(my_cquantizer));
830
0
  cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize;
831
0
  cquantize->pub.start_pass = start_pass_1_quant;
832
0
  cquantize->pub.finish_pass = finish_pass_1_quant;
833
0
  cquantize->pub.new_color_map = new_color_map_1_quant;
834
0
  cquantize->fserrors[0] = NULL; /* Flag FS workspace not allocated */
835
0
  cquantize->odither[0] = NULL; /* Also flag odither arrays not allocated */
836
837
  /* Make sure my internal arrays won't overflow */
838
0
  if (cinfo->out_color_components > MAX_Q_COMPS)
839
0
    ERREXIT1(cinfo, JERR_QUANT_COMPONENTS, MAX_Q_COMPS);
840
  /* Make sure colormap indexes can be represented by JSAMPLEs */
841
0
  if (cinfo->desired_number_of_colors > (MAXJSAMPLE+1))
842
0
    ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXJSAMPLE+1);
843
844
  /* Create the colormap and color index table. */
845
0
  create_colormap(cinfo);
846
0
  create_colorindex(cinfo);
847
848
  /* Allocate Floyd-Steinberg workspace now if requested.
849
   * We do this now since it is FAR storage and may affect the memory
850
   * manager's space calculations.  If the user changes to FS dither
851
   * mode in a later pass, we will allocate the space then, and will
852
   * possibly overrun the max_memory_to_use setting.
853
   */
854
0
  if (cinfo->dither_mode == JDITHER_FS)
855
0
    alloc_fs_workspace(cinfo);
856
0
}
857
858
#endif /* QUANT_1PASS_SUPPORTED */