/src/gdal/third_party/LercLib/Huffman.cpp
Line  | Count  | Source (jump to first uncovered line)  | 
1  |  | /*  | 
2  |  | Copyright 2015 Esri  | 
3  |  |  | 
4  |  | Licensed under the Apache License, Version 2.0 (the "License");  | 
5  |  | you may not use this file except in compliance with the License.  | 
6  |  | You may obtain a copy of the License at  | 
7  |  |  | 
8  |  | http://www.apache.org/licenses/LICENSE-2.0  | 
9  |  |  | 
10  |  | Unless required by applicable law or agreed to in writing, software  | 
11  |  | distributed under the License is distributed on an "AS IS" BASIS,  | 
12  |  | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  | 
13  |  | See the License for the specific language governing permissions and  | 
14  |  | limitations under the License.  | 
15  |  |  | 
16  |  | A local copy of the license and additional notices are located with the  | 
17  |  | source distribution at:  | 
18  |  |  | 
19  |  | http://github.com/Esri/lerc/  | 
20  |  |  | 
21  |  | Contributors:  Thomas Maurer  | 
22  |  | */  | 
23  |  |  | 
24  |  | #include <algorithm>  | 
25  |  | #include <queue>  | 
26  |  | #include "Defines.h"  | 
27  |  | #include "Huffman.h"  | 
28  |  | #include "BitStuffer2.h"  | 
29  |  |  | 
30  |  | using namespace std;  | 
31  |  | USING_NAMESPACE_LERC  | 
32  |  |  | 
33  |  | // -------------------------------------------------------------------------- ;  | 
34  |  |  | 
35  |  | bool Huffman::ComputeCodes(const vector<int>& histo)  | 
36  | 0  | { | 
37  | 0  |   if (histo.empty() || histo.size() >= m_maxHistoSize)  | 
38  | 0  |     return false;  | 
39  |  |  | 
40  | 0  |   priority_queue<Node, vector<Node>, less<Node> > pq;  | 
41  |  | 
  | 
42  | 0  |   int numNodes = 0;  | 
43  |  | 
  | 
44  | 0  |   int size = (int)histo.size();  | 
45  | 0  |   for (int i = 0; i < size; i++)    // add all leaf nodes  | 
46  | 0  |     if (histo[i] > 0)  | 
47  | 0  |       pq.push(Node((short)i, histo[i]));  | 
48  |  | 
  | 
49  | 0  |   if (pq.size() < 2)    // histo has only 0 or 1 bin that is not empty; quit Huffman and give it to Lerc  | 
50  | 0  |     return false;  | 
51  |  |  | 
52  | 0  |   while (pq.size() > 1)    // build the Huffman tree  | 
53  | 0  |   { | 
54  | 0  |     Node* child0 = new Node(pq.top());  | 
55  | 0  |     numNodes++;  | 
56  | 0  |     pq.pop();  | 
57  | 0  |     Node* child1 = new Node(pq.top());  | 
58  | 0  |     numNodes++;  | 
59  | 0  |     pq.pop();  | 
60  | 0  |     pq.push(Node(child0, child1));  | 
61  | 0  |   }  | 
62  |  | 
  | 
63  | 0  |   m_codeTable.resize(size);  | 
64  | 0  |   std::fill(m_codeTable.begin(), m_codeTable.end(),  | 
65  | 0  |     std::pair<unsigned short, unsigned int>((short)0, 0));  | 
66  |  | 
  | 
67  | 0  |   if (!pq.top().TreeToLUT(0, 0, m_codeTable))    // fill the LUT  | 
68  | 0  |     return false;  | 
69  |  |  | 
70  |  |   //pq.top().FreeTree(numNodes);    // Linux compiler complains  | 
71  | 0  |   Node nodeNonConst = pq.top();  | 
72  | 0  |   nodeNonConst.FreeTree(numNodes);    // free all the nodes  | 
73  |  | 
  | 
74  | 0  |   if (numNodes != 0)    // check the ref count  | 
75  | 0  |     return false;  | 
76  |  |  | 
77  | 0  |   if (!ConvertCodesToCanonical())  | 
78  | 0  |     return false;  | 
79  |  |  | 
80  | 0  |   return true;  | 
81  | 0  | }  | 
82  |  |  | 
83  |  | // -------------------------------------------------------------------------- ;  | 
84  |  |  | 
85  |  | bool Huffman::ComputeCompressedSize(const std::vector<int>& histo, int& numBytes, double& avgBpp) const  | 
86  | 0  | { | 
87  | 0  |   if (histo.empty() || histo.size() >= m_maxHistoSize)  | 
88  | 0  |     return false;  | 
89  |  |  | 
90  | 0  |   numBytes = 0;  | 
91  | 0  |   if (!ComputeNumBytesCodeTable(numBytes))    // header and code table  | 
92  | 0  |     return false;  | 
93  |  |  | 
94  | 0  |   int numBits = 0, numElem = 0;  | 
95  | 0  |   int size = (int)histo.size();  | 
96  | 0  |   for (int i = 0; i < size; i++)  | 
97  | 0  |     if (histo[i] > 0)  | 
98  | 0  |     { | 
99  | 0  |       numBits += histo[i] * m_codeTable[i].first;  | 
100  | 0  |       numElem += histo[i];  | 
101  | 0  |     }  | 
102  |  | 
  | 
103  | 0  |   if (numElem == 0)  | 
104  | 0  |     return false;  | 
105  |  |  | 
106  | 0  |   int numUInts = ((((numBits + 7) >> 3) + 3) >> 2) + 1;    // add one more as the decode LUT can read ahead  | 
107  | 0  |   numBytes += 4 * numUInts;    // data huffman coded  | 
108  | 0  |   avgBpp = 8 * numBytes / (double)numElem;  | 
109  |  | 
  | 
110  | 0  |   return true;  | 
111  | 0  | }  | 
112  |  |  | 
113  |  | // -------------------------------------------------------------------------- ;  | 
114  |  |  | 
115  |  | bool Huffman::SetCodes(const vector<pair<unsigned short, unsigned int> >& codeTable)  | 
116  | 0  | { | 
117  | 0  |   if (codeTable.empty() || codeTable.size() >= m_maxHistoSize)  | 
118  | 0  |     return false;  | 
119  |  |  | 
120  | 0  |   m_codeTable = codeTable;  | 
121  | 0  |   return true;  | 
122  | 0  | }  | 
123  |  |  | 
124  |  | // -------------------------------------------------------------------------- ;  | 
125  |  |  | 
126  |  | bool Huffman::WriteCodeTable(Byte** ppByte, int lerc2Version) const  | 
127  | 0  | { | 
128  | 0  |   if (!ppByte)  | 
129  | 0  |     return false;  | 
130  |  |  | 
131  | 0  |   int i0, i1, maxLen;  | 
132  | 0  |   if (!GetRange(i0, i1, maxLen))  | 
133  | 0  |     return false;  | 
134  |  |  | 
135  | 0  |   int size = (int)m_codeTable.size();  | 
136  | 0  |   vector<unsigned int> dataVec(i1 - i0, 0);  | 
137  |  | 
  | 
138  | 0  |   for (int i = i0; i < i1; i++)  | 
139  | 0  |   { | 
140  | 0  |     int k = GetIndexWrapAround(i, size);  | 
141  | 0  |     dataVec[i - i0] = m_codeTable[k].first;  | 
142  | 0  |   }  | 
143  |  |  | 
144  |  |   // header  | 
145  | 0  |   vector<int> intVec;  | 
146  | 0  |   intVec.push_back(4);    // huffman version; 4 guarantees canonical codes  | 
147  | 0  |   intVec.push_back(size);  | 
148  | 0  |   intVec.push_back(i0);   // code range  | 
149  | 0  |   intVec.push_back(i1);  | 
150  |  | 
  | 
151  | 0  |   Byte* ptr = *ppByte;  | 
152  |  | 
  | 
153  | 0  |   size_t len = intVec.size() * sizeof(int);  | 
154  | 0  |   memcpy(ptr, &intVec[0], len);  | 
155  | 0  |   ptr += len;  | 
156  |  | 
  | 
157  | 0  |   BitStuffer2 bitStuffer2;  | 
158  | 0  |   if (!bitStuffer2.EncodeSimple(&ptr, dataVec, lerc2Version))    // code lengths, bit stuffed  | 
159  | 0  |     return false;  | 
160  |  |  | 
161  | 0  |   if (!BitStuffCodes(&ptr, i0, i1))    // variable length codes, bit stuffed  | 
162  | 0  |     return false;  | 
163  |  |  | 
164  | 0  |   *ppByte = ptr;  | 
165  | 0  |   return true;  | 
166  | 0  | }  | 
167  |  |  | 
168  |  | // -------------------------------------------------------------------------- ;  | 
169  |  |  | 
170  |  | bool Huffman::ReadCodeTable(const Byte** ppByte, size_t& nBytesRemainingInOut, int lerc2Version)  | 
171  | 0  | { | 
172  | 0  |   if (!ppByte || !(*ppByte))  | 
173  | 0  |     return false;  | 
174  |  |  | 
175  | 0  |   const Byte* ptr = *ppByte;  | 
176  | 0  |   size_t nBytesRemaining = nBytesRemainingInOut;  | 
177  |  | 
  | 
178  | 0  |   vector<int> intVec(4, 0);  | 
179  | 0  |   size_t len = intVec.size() * sizeof(int);  | 
180  |  | 
  | 
181  | 0  |   if (nBytesRemaining < len)  | 
182  | 0  |     return false;  | 
183  |  |  | 
184  | 0  |   memcpy(&intVec[0], ptr, len);  | 
185  | 0  |   ptr += len;  | 
186  | 0  |   nBytesRemaining -= len;  | 
187  |  | 
  | 
188  | 0  |   int version = intVec[0];  | 
189  |  | 
  | 
190  | 0  |   if (version < 2)    // allow forward compatibility; for updates that break old decoders increase Lerc2 version number;  | 
191  | 0  |     return false;  | 
192  |  |  | 
193  | 0  |   const int size = intVec[1];  | 
194  | 0  |   const int i0 = intVec[2];  | 
195  | 0  |   const int i1 = intVec[3];  | 
196  |  | 
  | 
197  | 0  |   if (i0 >= i1 || i0 < 0 || size < 0 || size > (int)m_maxHistoSize)  | 
198  | 0  |     return false;  | 
199  |  |  | 
200  | 0  |   if (GetIndexWrapAround(i0, size) >= size || GetIndexWrapAround(i1 - 1, size) >= size)  | 
201  | 0  |     return false;  | 
202  |  |  | 
203  | 0  |   try  | 
204  | 0  |   { | 
205  | 0  |     vector<unsigned int> dataVec(i1 - i0, 0);  | 
206  | 0  |     BitStuffer2 bitStuffer2;  | 
207  | 0  |     if (!bitStuffer2.Decode(&ptr, nBytesRemaining, dataVec, dataVec.size(), lerc2Version))    // unstuff the code lengths  | 
208  | 0  |       return false;  | 
209  |  |  | 
210  | 0  |     if (dataVec.size() != static_cast<size_t>(i1 - i0))  | 
211  | 0  |       return false;  | 
212  |  |  | 
213  | 0  |     m_codeTable.resize(size);  | 
214  | 0  |     std::fill(m_codeTable.begin(), m_codeTable.end(),  | 
215  | 0  |       std::pair<unsigned short, unsigned int>((short)0, 0));  | 
216  |  | 
  | 
217  | 0  |     for (int i = i0; i < i1; i++)  | 
218  | 0  |     { | 
219  | 0  |       int k = GetIndexWrapAround(i, size);  | 
220  | 0  |       m_codeTable[k].first = (unsigned short)dataVec[i - i0];  | 
221  | 0  |     }  | 
222  |  | 
  | 
223  | 0  |     if (!BitUnStuffCodes(&ptr, nBytesRemaining, i0, i1))    // unstuff the codes  | 
224  | 0  |       return false;  | 
225  |  |  | 
226  | 0  |     *ppByte = ptr;  | 
227  | 0  |     nBytesRemainingInOut = nBytesRemaining;  | 
228  | 0  |     return true;  | 
229  | 0  |   }  | 
230  | 0  |   catch (std::exception&)  | 
231  | 0  |   { | 
232  | 0  |     return false;  | 
233  | 0  |   }  | 
234  | 0  | }  | 
235  |  |  | 
236  |  | // -------------------------------------------------------------------------- ;  | 
237  |  |  | 
238  |  | bool Huffman::BuildTreeFromCodes(int& numBitsLUT)  | 
239  | 0  | { | 
240  | 0  |   int i0 = 0, i1 = 0, maxLen = 0;  | 
241  | 0  |   if (!GetRange(i0, i1, maxLen))  | 
242  | 0  |     return false;  | 
243  |  |  | 
244  |  |   // build decode LUT using max of 12 bits  | 
245  | 0  |   int size = (int)m_codeTable.size();  | 
246  | 0  |   int minNumZeroBits = 32;  | 
247  |  | 
  | 
248  | 0  |   bool bNeedTree = maxLen > m_maxNumBitsLUT;  | 
249  | 0  |   numBitsLUT = min(maxLen, m_maxNumBitsLUT);  | 
250  |  | 
  | 
251  | 0  |   int sizeLUT = 1 << numBitsLUT;  | 
252  |  | 
  | 
253  | 0  |   m_decodeLUT.clear();  | 
254  | 0  |   m_decodeLUT.assign((size_t)sizeLUT, pair<short, short>((short)-1, (short)-1));  | 
255  |  | 
  | 
256  | 0  |   for (int i = i0; i < i1; i++)  | 
257  | 0  |   { | 
258  | 0  |     int k = GetIndexWrapAround(i, size);  | 
259  | 0  |     int len = m_codeTable[k].first;  | 
260  |  | 
  | 
261  | 0  |     if (len == 0)  | 
262  | 0  |       continue;  | 
263  |  |  | 
264  | 0  |     unsigned int code = m_codeTable[k].second;  | 
265  |  | 
  | 
266  | 0  |     if (len <= numBitsLUT)  | 
267  | 0  |     { | 
268  | 0  |       code <<= (numBitsLUT - len);  | 
269  | 0  |       unsigned int numEntries = 1 << (numBitsLUT - len);  | 
270  |  | 
  | 
271  | 0  |       for (unsigned int j = 0; j < numEntries; j++)  | 
272  | 0  |       { | 
273  | 0  |         auto& entry = m_decodeLUT[code | j];  | 
274  | 0  |         entry.first = (short)len;    // add the duplicates  | 
275  | 0  |         entry.second = (short)k;    // add the duplicates  | 
276  | 0  |       }  | 
277  | 0  |     }  | 
278  | 0  |     else    // for the codes too long for the LUT, count how many leading bits are 0  | 
279  | 0  |     { | 
280  | 0  |       int shift = 1;  | 
281  | 0  |       while (code >>= 1) shift++;    // large canonical codes start with zero's  | 
282  | 0  |       minNumZeroBits = min(minNumZeroBits, len - shift);  | 
283  | 0  |     }  | 
284  | 0  |   }  | 
285  |  | 
  | 
286  | 0  |   m_numBitsToSkipInTree = bNeedTree? minNumZeroBits : 0;  | 
287  |  | 
  | 
288  | 0  |   if (!bNeedTree)    // decode LUT covers it all, no tree needed  | 
289  | 0  |     return true;  | 
290  |  |  | 
291  |  |   //m_numBitsToSkipInTree = 0;    // to disable skipping the 0 bits  | 
292  |  |  | 
293  | 0  |   ClearTree();  // if there  | 
294  |  | 
  | 
295  | 0  |   Node emptyNode((short)-1, 0);  | 
296  | 0  |   m_root = new Node(emptyNode);  | 
297  |  | 
  | 
298  | 0  |   for (int i = i0; i < i1; i++)  | 
299  | 0  |   { | 
300  | 0  |     int k = GetIndexWrapAround(i, size);  | 
301  | 0  |     int len = m_codeTable[k].first;  | 
302  |  | 
  | 
303  | 0  |     if (len > 0 && len > numBitsLUT)    // add only codes not in the decode LUT  | 
304  | 0  |     { | 
305  | 0  |       unsigned int code = m_codeTable[k].second;  | 
306  | 0  |       Node* node = m_root;  | 
307  | 0  |       int j = len - m_numBitsToSkipInTree;    // reduce len by number of leading 0 bits from above  | 
308  |  | 
  | 
309  | 0  |       while (--j >= 0)    // go over the bits  | 
310  | 0  |       { | 
311  | 0  |         if (code & (1 << j))  | 
312  | 0  |         { | 
313  | 0  |           if (!node->child1)  | 
314  | 0  |             node->child1 = new Node(emptyNode);  | 
315  |  | 
  | 
316  | 0  |           node = node->child1;  | 
317  | 0  |         }  | 
318  | 0  |         else  | 
319  | 0  |         { | 
320  | 0  |           if (!node->child0)  | 
321  | 0  |             node->child0 = new Node(emptyNode);  | 
322  |  | 
  | 
323  | 0  |           node = node->child0;  | 
324  | 0  |         }  | 
325  |  | 
  | 
326  | 0  |         if (j == 0)    // last bit, leaf node  | 
327  | 0  |           node->value = (short)k;    // set the value  | 
328  | 0  |       }  | 
329  | 0  |     }  | 
330  | 0  |   }  | 
331  |  | 
  | 
332  | 0  |   return true;  | 
333  | 0  | }  | 
334  |  |  | 
335  |  | // -------------------------------------------------------------------------- ;  | 
336  |  |  | 
337  |  | void Huffman::Clear()  | 
338  | 0  | { | 
339  | 0  |   m_codeTable.clear();  | 
340  | 0  |   m_decodeLUT.clear();  | 
341  | 0  |   ClearTree();  | 
342  | 0  | }  | 
343  |  |  | 
344  |  | // -------------------------------------------------------------------------- ;  | 
345  |  |  | 
346  |  | void Huffman::ClearTree()  | 
347  | 0  | { | 
348  | 0  |   if (m_root)  | 
349  | 0  |   { | 
350  | 0  |     int n = 0;  | 
351  | 0  |     m_root->FreeTree(n);  | 
352  | 0  |     delete m_root;  | 
353  | 0  |     m_root = nullptr;  | 
354  | 0  |   }  | 
355  | 0  | }  | 
356  |  |  | 
357  |  | // -------------------------------------------------------------------------- ;  | 
358  |  | // -------------------------------------------------------------------------- ;  | 
359  |  |  | 
360  |  | bool Huffman::ComputeNumBytesCodeTable(int& numBytes) const  | 
361  | 0  | { | 
362  | 0  |   int i0, i1, maxLen;  | 
363  | 0  |   if (!GetRange(i0, i1, maxLen))  | 
364  | 0  |     return false;  | 
365  |  |  | 
366  | 0  |   int size = (int)m_codeTable.size();  | 
367  | 0  |   int sum = 0;  | 
368  | 0  |   for (int i = i0; i < i1; i++)  | 
369  | 0  |   { | 
370  | 0  |     int k = GetIndexWrapAround(i, size);  | 
371  | 0  |     sum += m_codeTable[k].first;  | 
372  | 0  |   }  | 
373  |  | 
  | 
374  | 0  |   numBytes = 4 * sizeof(int);    // version, size, first bin, (last + 1) bin  | 
375  |  | 
  | 
376  | 0  |   BitStuffer2 bitStuffer2;  | 
377  | 0  |   numBytes += bitStuffer2.ComputeNumBytesNeededSimple((unsigned int)(i1 - i0), (unsigned int)maxLen);    // code lengths  | 
378  | 0  |   int numUInts = (((sum + 7) >> 3) + 3) >> 2;  | 
379  | 0  |   numBytes += 4 * numUInts;    // byte array with the codes bit stuffed  | 
380  |  | 
  | 
381  | 0  |   return true;  | 
382  | 0  | }  | 
383  |  |  | 
384  |  | // -------------------------------------------------------------------------- ;  | 
385  |  |  | 
386  |  | bool Huffman::GetRange(int& i0, int& i1, int& maxCodeLength) const  | 
387  | 0  | { | 
388  | 0  |   if (m_codeTable.empty() || m_codeTable.size() >= m_maxHistoSize)  | 
389  | 0  |     return false;  | 
390  |  |  | 
391  |  |   // first, check for peak somewhere in the middle with 0 stretches left and right  | 
392  | 0  |   int size = (int)m_codeTable.size();  | 
393  | 0  |   { | 
394  | 0  |     int i = 0;  | 
395  | 0  |     while (i < size && m_codeTable[i].first == 0) i++;  | 
396  | 0  |     i0 = i;  | 
397  | 0  |     i = size - 1;  | 
398  | 0  |     while (i >= 0 && m_codeTable[i].first == 0) i--;  | 
399  | 0  |     i1 = i + 1;    // exclusive  | 
400  | 0  |   }  | 
401  |  | 
  | 
402  | 0  |   if (i1 <= i0)  | 
403  | 0  |     return false;  | 
404  |  |  | 
405  |  |   // second, cover the common case that the peak is close to 0  | 
406  | 0  |   pair<int, int> segm(0, 0);  | 
407  | 0  |   int j = 0;  | 
408  | 0  |   while (j < size)    // find the largest stretch of 0's, if any  | 
409  | 0  |   { | 
410  | 0  |     while (j < size && m_codeTable[j].first > 0) j++;  | 
411  | 0  |     int k0 = j;  | 
412  | 0  |     while (j < size && m_codeTable[j].first == 0) j++;  | 
413  | 0  |     int k1 = j;  | 
414  |  | 
  | 
415  | 0  |     if (k1 - k0 > segm.second)  | 
416  | 0  |       segm = pair<int, int>(k0, k1 - k0);  | 
417  | 0  |   }  | 
418  |  | 
  | 
419  | 0  |   if (size - segm.second < i1 - i0)  | 
420  | 0  |   { | 
421  | 0  |     i0 = segm.first + segm.second;  | 
422  | 0  |     i1 = segm.first + size;    // do wrap around  | 
423  | 0  |   }  | 
424  |  | 
  | 
425  | 0  |   if (i1 <= i0)  | 
426  | 0  |     return false;  | 
427  |  |  | 
428  | 0  |   int maxLen = 0;  | 
429  | 0  |   for (int i = i0; i < i1; i++)  | 
430  | 0  |   { | 
431  | 0  |     int k = GetIndexWrapAround(i, size);  | 
432  | 0  |     int len = m_codeTable[k].first;  | 
433  | 0  |     maxLen = max(maxLen, len);  | 
434  | 0  |   }  | 
435  |  | 
  | 
436  | 0  |   if (maxLen <= 0 || maxLen > 32)  | 
437  | 0  |     return false;  | 
438  |  |  | 
439  | 0  |   maxCodeLength = maxLen;  | 
440  | 0  |   return true;  | 
441  | 0  | }  | 
442  |  |  | 
443  |  | // -------------------------------------------------------------------------- ;  | 
444  |  |  | 
445  |  | bool Huffman::BitStuffCodes(Byte** ppByte, int i0, int i1) const  | 
446  | 0  | { | 
447  | 0  |   if (!ppByte)  | 
448  | 0  |     return false;  | 
449  |  |  | 
450  | 0  |   unsigned int* arr = (unsigned int*)(*ppByte);  | 
451  | 0  |   unsigned int* dstPtr = arr;  | 
452  | 0  |   int size = (int)m_codeTable.size();  | 
453  | 0  |   int bitPos = 0;  | 
454  |  | 
  | 
455  | 0  |   for (int i = i0; i < i1; i++)  | 
456  | 0  |   { | 
457  | 0  |     int k = GetIndexWrapAround(i, size);  | 
458  | 0  |     int len = m_codeTable[k].first;  | 
459  | 0  |     if (len > 0)  | 
460  | 0  |     { | 
461  | 0  |       unsigned int val = m_codeTable[k].second;  | 
462  | 0  |       if (32 - bitPos >= len)  | 
463  | 0  |       { | 
464  | 0  |         if (bitPos == 0)  | 
465  | 0  |           *dstPtr = 0;  | 
466  |  | 
  | 
467  | 0  |         *dstPtr |= val << (32 - bitPos - len);  | 
468  | 0  |         bitPos += len;  | 
469  | 0  |         if (bitPos == 32)  | 
470  | 0  |         { | 
471  | 0  |           bitPos = 0;  | 
472  | 0  |           dstPtr++;  | 
473  | 0  |         }  | 
474  | 0  |       }  | 
475  | 0  |       else  | 
476  | 0  |       { | 
477  | 0  |         bitPos += len - 32;  | 
478  | 0  |         *dstPtr++ |= val >> bitPos;    // bitPos > 0  | 
479  | 0  |         *dstPtr = val << (32 - bitPos);  | 
480  | 0  |       }  | 
481  | 0  |     }  | 
482  | 0  |   }  | 
483  |  | 
  | 
484  | 0  |   size_t numUInts = dstPtr - arr + (bitPos > 0 ? 1 : 0);  | 
485  | 0  |   *ppByte += numUInts * sizeof(unsigned int);  | 
486  | 0  |   return true;  | 
487  | 0  | }  | 
488  |  |  | 
489  |  | // -------------------------------------------------------------------------- ;  | 
490  |  |  | 
491  |  | bool Huffman::BitUnStuffCodes(const Byte** ppByte, size_t& nBytesRemainingInOut, int i0, int i1)  | 
492  | 0  | { | 
493  | 0  |   if (!ppByte || !(*ppByte))  | 
494  | 0  |     return false;  | 
495  |  |  | 
496  | 0  |   size_t nBytesRemaining = nBytesRemainingInOut;  | 
497  |  | 
  | 
498  | 0  |   const unsigned int* arr = (const unsigned int*)(*ppByte);  | 
499  | 0  |   const unsigned int* srcPtr = arr;  | 
500  | 0  |   const size_t sizeUInt = sizeof(*srcPtr);  | 
501  |  | 
  | 
502  | 0  |   int size = (int)m_codeTable.size();  | 
503  | 0  |   int bitPos = 0;  | 
504  |  | 
  | 
505  | 0  |   for (int i = i0; i < i1; i++)  | 
506  | 0  |   { | 
507  | 0  |     int k = GetIndexWrapAround(i, size);  | 
508  | 0  |     int len = m_codeTable[k].first;  | 
509  | 0  |     if (len > 0)  | 
510  | 0  |     { | 
511  | 0  |       if (nBytesRemaining < sizeUInt || len > 32)  | 
512  | 0  |         return false;  | 
513  |  |  | 
514  | 0  |       m_codeTable[k].second = ((*srcPtr) << bitPos) >> (32 - len);  | 
515  |  | 
  | 
516  | 0  |       if (32 - bitPos >= len)  | 
517  | 0  |       { | 
518  | 0  |         bitPos += len;  | 
519  | 0  |         if (bitPos == 32)  | 
520  | 0  |         { | 
521  | 0  |           bitPos = 0;  | 
522  | 0  |           srcPtr++;  | 
523  | 0  |           nBytesRemaining -= sizeUInt;  | 
524  | 0  |         }  | 
525  | 0  |       }  | 
526  | 0  |       else  | 
527  | 0  |       { | 
528  | 0  |         bitPos += len - 32;  | 
529  | 0  |         srcPtr++;  | 
530  | 0  |         nBytesRemaining -= sizeUInt;  | 
531  |  | 
  | 
532  | 0  |         if (nBytesRemaining < sizeUInt)  | 
533  | 0  |           return false;  | 
534  |  |  | 
535  | 0  |         m_codeTable[k].second |= (*srcPtr) >> (32 - bitPos);    // bitPos > 0  | 
536  | 0  |       }  | 
537  | 0  |     }  | 
538  | 0  |   }  | 
539  |  |  | 
540  | 0  |   size_t numUInts = srcPtr - arr + (bitPos > 0 ? 1 : 0);  | 
541  | 0  |   size_t len = numUInts * sizeUInt;  | 
542  |  | 
  | 
543  | 0  |   if (nBytesRemainingInOut < len)  | 
544  | 0  |     return false;  | 
545  |  |  | 
546  | 0  |   *ppByte += len;  | 
547  | 0  |   nBytesRemainingInOut -= len;  | 
548  |  | 
  | 
549  | 0  |   if (nBytesRemaining != nBytesRemainingInOut && nBytesRemaining != nBytesRemainingInOut + sizeUInt)    // the real check  | 
550  | 0  |     return false;  | 
551  |  |  | 
552  | 0  |   return true;  | 
553  | 0  | }  | 
554  |  |  | 
555  |  | // -------------------------------------------------------------------------- ;  | 
556  |  |  | 
557  |  | //struct MyLargerThanOp  | 
558  |  | //{ | 
559  |  | //  inline bool operator() (const pair<int, unsigned int>& p0,  | 
560  |  | //                          const pair<int, unsigned int>& p1)  { return p0.first > p1.first; } | 
561  |  | //};  | 
562  |  |  | 
563  |  | // -------------------------------------------------------------------------- ;  | 
564  |  |  | 
565  |  | bool Huffman::ConvertCodesToCanonical()  | 
566  | 0  | { | 
567  |  |   // from the non canonical code book, create an array to be sorted in descending order:  | 
568  |  |   //   codeLength * tableSize - index  | 
569  |  | 
  | 
570  | 0  |   unsigned int tableSize = (unsigned int)m_codeTable.size();  | 
571  | 0  |   if (tableSize == 0)  | 
572  | 0  |     return true;  | 
573  | 0  |   vector<pair<int, unsigned int> > sortVec(tableSize, pair<int, unsigned int>(0, 0));  | 
574  |  |   //memset(&sortVec[0], 0, tableSize * sizeof(pair<int, unsigned int>));  | 
575  |  | 
  | 
576  | 0  |   for (unsigned int i = 0; i < tableSize; i++)  | 
577  | 0  |     if (m_codeTable[i].first > 0)  | 
578  | 0  |       sortVec[i] = pair<int, unsigned int>(m_codeTable[i].first * tableSize - i, i);  | 
579  |  |  | 
580  |  |   // sort descending  | 
581  |  |   //std::sort(sortVec.begin(), sortVec.end(), MyLargerThanOp());  | 
582  |  | 
  | 
583  | 0  |   std::sort(sortVec.begin(), sortVec.end(),  | 
584  | 0  |     [](const pair<int, unsigned int>& p0,  | 
585  | 0  |        const pair<int, unsigned int>& p1) { return p0.first > p1.first; }); | 
586  |  |  | 
587  |  |   // create canonical codes and assign to orig code table  | 
588  | 0  |   unsigned int index = sortVec[0].second;  | 
589  | 0  |   unsigned short codeLen = m_codeTable[index].first;    // max code length for this table  | 
590  | 0  |   unsigned int i = 0, codeCanonical = 0;  | 
591  |  | 
  | 
592  | 0  |   while (i < tableSize && sortVec[i].first > 0)  | 
593  | 0  |   { | 
594  | 0  |     index = sortVec[i++].second;  | 
595  | 0  |     short delta = codeLen - m_codeTable[index].first;  // difference of 2 consecutive code lengths, >= 0 as sorted  | 
596  | 0  |     codeCanonical >>= delta;  | 
597  | 0  |     codeLen -= delta;  | 
598  | 0  |     m_codeTable[index].second = codeCanonical++;  | 
599  | 0  |   }  | 
600  |  | 
  | 
601  | 0  |   return true;  | 
602  | 0  | }  | 
603  |  |  | 
604  |  | // -------------------------------------------------------------------------- ;  |