/src/proj/src/projections/sch.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | /****************************************************************************** |
2 | | * Project: SCH Coordinate system |
3 | | * Purpose: Implementation of SCH Coordinate system |
4 | | * References : |
5 | | * 1. Hensley. Scott. SCH Coordinates and various transformations. June 15, |
6 | | *2000. |
7 | | * 2. Buckley, Sean Monroe. Radar interferometry measurement of land |
8 | | *subsidence. 2000.. PhD Thesis. UT Austin. (Appendix) |
9 | | * 3. Hensley, Scott, Elaine Chapin, and T. Michel. "Improved processing of |
10 | | *AIRSAR data based on the GeoSAR processor." Airsar earth science and |
11 | | *applications workshop, March. 2002. |
12 | | *(http://airsar.jpl.nasa.gov/documents/workshop2002/papers/T3.pdf) |
13 | | * |
14 | | * Author: Piyush Agram (piyush.agram@jpl.nasa.gov) |
15 | | * Copyright (c) 2015 California Institute of Technology. |
16 | | * Government sponsorship acknowledged. |
17 | | * |
18 | | * NOTE: The SCH coordinate system is a sensor aligned coordinate system |
19 | | * developed at JPL for radar mapping missions. Details pertaining to the |
20 | | * coordinate system have been release in the public domain (see references |
21 | | *above). This code is an independent implementation of the SCH coordinate |
22 | | *system that conforms to the PROJ.4 conventions and uses the details presented |
23 | | *in these publicly released documents. All credit for the development of the |
24 | | *coordinate system and its use should be directed towards the original |
25 | | *developers at JPL. |
26 | | ****************************************************************************** |
27 | | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS |
28 | | * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
29 | | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
30 | | * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
31 | | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
32 | | * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER |
33 | | * DEALINGS IN THE SOFTWARE. |
34 | | ****************************************************************************/ |
35 | | |
36 | | #include <errno.h> |
37 | | #include <math.h> |
38 | | |
39 | | #include "proj.h" |
40 | | #include "proj_internal.h" |
41 | | |
42 | | namespace { // anonymous namespace |
43 | | struct pj_sch_data { |
44 | | double plat; /*Peg Latitude */ |
45 | | double plon; /*Peg Longitude*/ |
46 | | double phdg; /*Peg heading */ |
47 | | double h0; /*Average altitude */ |
48 | | double transMat[9]; |
49 | | double xyzoff[3]; |
50 | | double rcurv; |
51 | | PJ *cart; |
52 | | PJ *cart_sph; |
53 | | }; |
54 | | } // anonymous namespace |
55 | | |
56 | | PROJ_HEAD(sch, "Spherical Cross-track Height") |
57 | | "\n\tMisc\n\tplat_0= plon_0= phdg_0= [h_0=]"; |
58 | | |
59 | 0 | static PJ_LPZ sch_inverse3d(PJ_XYZ xyz, PJ *P) { |
60 | 0 | struct pj_sch_data *Q = static_cast<struct pj_sch_data *>(P->opaque); |
61 | |
|
62 | 0 | PJ_LPZ lpz; |
63 | 0 | lpz.lam = xyz.x * (P->a / Q->rcurv); |
64 | 0 | lpz.phi = xyz.y * (P->a / Q->rcurv); |
65 | 0 | lpz.z = xyz.z; |
66 | 0 | xyz = Q->cart_sph->fwd3d(lpz, Q->cart_sph); |
67 | | |
68 | | /* Apply rotation */ |
69 | 0 | xyz = {Q->transMat[0] * xyz.x + Q->transMat[1] * xyz.y + |
70 | 0 | Q->transMat[2] * xyz.z, |
71 | 0 | Q->transMat[3] * xyz.x + Q->transMat[4] * xyz.y + |
72 | 0 | Q->transMat[5] * xyz.z, |
73 | 0 | Q->transMat[6] * xyz.x + Q->transMat[7] * xyz.y + |
74 | 0 | Q->transMat[8] * xyz.z}; |
75 | | |
76 | | /* Apply offset */ |
77 | 0 | xyz.x += Q->xyzoff[0]; |
78 | 0 | xyz.y += Q->xyzoff[1]; |
79 | 0 | xyz.z += Q->xyzoff[2]; |
80 | | |
81 | | /* Convert geocentric coordinates to lat long */ |
82 | 0 | return Q->cart->inv3d(xyz, Q->cart); |
83 | 0 | } |
84 | | |
85 | 0 | static PJ_XYZ sch_forward3d(PJ_LPZ lpz, PJ *P) { |
86 | 0 | struct pj_sch_data *Q = static_cast<struct pj_sch_data *>(P->opaque); |
87 | | |
88 | | /* Convert lat long to geocentric coordinates */ |
89 | 0 | PJ_XYZ xyz = Q->cart->fwd3d(lpz, Q->cart); |
90 | | |
91 | | /* Adjust for offset */ |
92 | 0 | xyz.x -= Q->xyzoff[0]; |
93 | 0 | xyz.y -= Q->xyzoff[1]; |
94 | 0 | xyz.z -= Q->xyzoff[2]; |
95 | | |
96 | | /* Apply rotation */ |
97 | 0 | xyz = {Q->transMat[0] * xyz.x + Q->transMat[3] * xyz.y + |
98 | 0 | Q->transMat[6] * xyz.z, |
99 | 0 | Q->transMat[1] * xyz.x + Q->transMat[4] * xyz.y + |
100 | 0 | Q->transMat[7] * xyz.z, |
101 | 0 | Q->transMat[2] * xyz.x + Q->transMat[5] * xyz.y + |
102 | 0 | Q->transMat[8] * xyz.z}; |
103 | | |
104 | | /* Convert to local lat,long */ |
105 | 0 | lpz = Q->cart_sph->inv3d(xyz, Q->cart_sph); |
106 | | |
107 | | /* Scale by radius */ |
108 | 0 | xyz.x = lpz.lam * (Q->rcurv / P->a); |
109 | 0 | xyz.y = lpz.phi * (Q->rcurv / P->a); |
110 | 0 | xyz.z = lpz.z; |
111 | |
|
112 | 0 | return xyz; |
113 | 0 | } |
114 | | |
115 | 0 | static PJ *pj_sch_destructor(PJ *P, int errlev) { |
116 | 0 | if (nullptr == P) |
117 | 0 | return nullptr; |
118 | | |
119 | 0 | auto Q = static_cast<struct pj_sch_data *>(P->opaque); |
120 | 0 | if (Q) { |
121 | 0 | if (Q->cart) |
122 | 0 | Q->cart->destructor(Q->cart, errlev); |
123 | 0 | if (Q->cart_sph) |
124 | 0 | Q->cart_sph->destructor(Q->cart_sph, errlev); |
125 | 0 | } |
126 | |
|
127 | 0 | return pj_default_destructor(P, errlev); |
128 | 0 | } |
129 | | |
130 | 0 | static PJ *pj_sch_setup(PJ *P) { /* general initialization */ |
131 | 0 | struct pj_sch_data *Q = static_cast<struct pj_sch_data *>(P->opaque); |
132 | | |
133 | | /* Setup original geocentric system */ |
134 | | // Pass a dummy ellipsoid definition that will be overridden just afterwards |
135 | 0 | Q->cart = proj_create(P->ctx, "+proj=cart +a=1"); |
136 | 0 | if (Q->cart == nullptr) |
137 | 0 | return pj_sch_destructor(P, PROJ_ERR_OTHER /*ENOMEM*/); |
138 | | |
139 | | /* inherit ellipsoid definition from P to Q->cart */ |
140 | 0 | pj_inherit_ellipsoid_def(P, Q->cart); |
141 | |
|
142 | 0 | const double clt = cos(Q->plat); |
143 | 0 | const double slt = sin(Q->plat); |
144 | 0 | const double clo = cos(Q->plon); |
145 | 0 | const double slo = sin(Q->plon); |
146 | | |
147 | | /* Estimate the radius of curvature for given peg */ |
148 | 0 | const double temp = sqrt(1.0 - (P->es) * slt * slt); |
149 | 0 | const double reast = (P->a) / temp; |
150 | 0 | const double rnorth = (P->a) * (1.0 - (P->es)) / pow(temp, 3); |
151 | |
|
152 | 0 | const double chdg = cos(Q->phdg); |
153 | 0 | const double shdg = sin(Q->phdg); |
154 | |
|
155 | 0 | Q->rcurv = |
156 | 0 | Q->h0 + (reast * rnorth) / (reast * chdg * chdg + rnorth * shdg * shdg); |
157 | | |
158 | | /* Set up local sphere at the given peg point */ |
159 | 0 | Q->cart_sph = proj_create(P->ctx, "+proj=cart +a=1"); |
160 | 0 | if (Q->cart_sph == nullptr) |
161 | 0 | return pj_sch_destructor(P, PROJ_ERR_OTHER /*ENOMEM*/); |
162 | 0 | pj_calc_ellipsoid_params(Q->cart_sph, Q->rcurv, 0); |
163 | | |
164 | | /* Set up the transformation matrices */ |
165 | 0 | Q->transMat[0] = clt * clo; |
166 | 0 | Q->transMat[1] = -shdg * slo - slt * clo * chdg; |
167 | 0 | Q->transMat[2] = slo * chdg - slt * clo * shdg; |
168 | 0 | Q->transMat[3] = clt * slo; |
169 | 0 | Q->transMat[4] = clo * shdg - slt * slo * chdg; |
170 | 0 | Q->transMat[5] = -clo * chdg - slt * slo * shdg; |
171 | 0 | Q->transMat[6] = slt; |
172 | 0 | Q->transMat[7] = clt * chdg; |
173 | 0 | Q->transMat[8] = clt * shdg; |
174 | |
|
175 | 0 | PJ_LPZ lpz; |
176 | 0 | lpz.lam = Q->plon; |
177 | 0 | lpz.phi = Q->plat; |
178 | 0 | lpz.z = Q->h0; |
179 | 0 | PJ_XYZ xyz = Q->cart->fwd3d(lpz, Q->cart); |
180 | 0 | Q->xyzoff[0] = xyz.x - (Q->rcurv) * clt * clo; |
181 | 0 | Q->xyzoff[1] = xyz.y - (Q->rcurv) * clt * slo; |
182 | 0 | Q->xyzoff[2] = xyz.z - (Q->rcurv) * slt; |
183 | |
|
184 | 0 | P->fwd3d = sch_forward3d; |
185 | 0 | P->inv3d = sch_inverse3d; |
186 | 0 | return P; |
187 | 0 | } |
188 | | |
189 | 4 | PJ *PJ_PROJECTION(sch) { |
190 | 4 | struct pj_sch_data *Q = static_cast<struct pj_sch_data *>( |
191 | 4 | calloc(1, sizeof(struct pj_sch_data))); |
192 | 4 | if (nullptr == Q) |
193 | 0 | return pj_default_destructor(P, PROJ_ERR_OTHER /*ENOMEM*/); |
194 | 4 | P->opaque = Q; |
195 | 4 | P->destructor = pj_sch_destructor; |
196 | | |
197 | 4 | Q->h0 = 0.0; |
198 | | |
199 | | /* Check if peg latitude was defined */ |
200 | 4 | if (pj_param(P->ctx, P->params, "tplat_0").i) |
201 | 0 | Q->plat = pj_param(P->ctx, P->params, "rplat_0").f; |
202 | 4 | else { |
203 | 4 | proj_log_error(P, _("Missing parameter plat_0.")); |
204 | 4 | return pj_default_destructor(P, PROJ_ERR_INVALID_OP_MISSING_ARG); |
205 | 4 | } |
206 | | |
207 | | /* Check if peg longitude was defined */ |
208 | 0 | if (pj_param(P->ctx, P->params, "tplon_0").i) |
209 | 0 | Q->plon = pj_param(P->ctx, P->params, "rplon_0").f; |
210 | 0 | else { |
211 | 0 | proj_log_error(P, _("Missing parameter plon_0.")); |
212 | 0 | return pj_default_destructor(P, PROJ_ERR_INVALID_OP_MISSING_ARG); |
213 | 0 | } |
214 | | |
215 | | /* Check if peg heading is defined */ |
216 | 0 | if (pj_param(P->ctx, P->params, "tphdg_0").i) |
217 | 0 | Q->phdg = pj_param(P->ctx, P->params, "rphdg_0").f; |
218 | 0 | else { |
219 | 0 | proj_log_error(P, _("Missing parameter phdg_0.")); |
220 | 0 | return pj_default_destructor(P, PROJ_ERR_INVALID_OP_MISSING_ARG); |
221 | 0 | } |
222 | | |
223 | | /* Check if average height was defined - If so read it in */ |
224 | 0 | if (pj_param(P->ctx, P->params, "th_0").i) |
225 | 0 | Q->h0 = pj_param(P->ctx, P->params, "dh_0").f; |
226 | |
|
227 | 0 | return pj_sch_setup(P); |
228 | 0 | } |