/src/gdal/alg/gdal_rpc.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | /****************************************************************************** |
2 | | * |
3 | | * Project: Image Warper |
4 | | * Purpose: Implements a rational polynomial (RPC) based transformer. |
5 | | * Author: Frank Warmerdam, warmerdam@pobox.com |
6 | | * |
7 | | ****************************************************************************** |
8 | | * Copyright (c) 2003, Frank Warmerdam <warmerdam@pobox.com> |
9 | | * Copyright (c) 2009-2013, Even Rouault <even dot rouault at spatialys.com> |
10 | | * |
11 | | * SPDX-License-Identifier: MIT |
12 | | ****************************************************************************/ |
13 | | |
14 | | #include "cpl_port.h" |
15 | | #include "gdal_alg.h" |
16 | | |
17 | | #include <cmath> |
18 | | #include <cstddef> |
19 | | #include <cstdlib> |
20 | | #include <cstring> |
21 | | |
22 | | #include <algorithm> |
23 | | #include <limits> |
24 | | #include <string> |
25 | | |
26 | | #include "cpl_conv.h" |
27 | | #include "cpl_error.h" |
28 | | #include "cpl_mem_cache.h" |
29 | | #include "cpl_minixml.h" |
30 | | #include "cpl_string.h" |
31 | | #include "cpl_vsi.h" |
32 | | #include "gdal.h" |
33 | | #include "gdal_interpolateatpoint.h" |
34 | | #include "gdal_mdreader.h" |
35 | | #include "gdal_alg_priv.h" |
36 | | #include "gdal_priv.h" |
37 | | |
38 | | #ifdef USE_NEON_OPTIMIZATIONS |
39 | | #define USE_SSE2 |
40 | | #elif defined(__x86_64) || defined(_M_X64) |
41 | | #define USE_SSE2 |
42 | | #endif |
43 | | |
44 | | #ifdef USE_SSE2 |
45 | | #include "gdalsse_priv.h" |
46 | | #define USE_SSE2_OPTIM |
47 | | #endif |
48 | | |
49 | | #include "ogr_api.h" |
50 | | #include "ogr_geometry.h" |
51 | | #include "ogr_spatialref.h" |
52 | | #include "ogr_srs_api.h" |
53 | | #include "gdalresamplingkernels.h" |
54 | | |
55 | | // #define DEBUG_VERBOSE_EXTRACT_DEM |
56 | | |
57 | | CPL_C_START |
58 | | CPLXMLNode *GDALSerializeRPCTransformer(void *pTransformArg); |
59 | | void *GDALDeserializeRPCTransformer(CPLXMLNode *psTree); |
60 | | CPL_C_END |
61 | | |
62 | | constexpr int MAX_ABS_VALUE_WARNINGS = 20; |
63 | | constexpr double DEFAULT_PIX_ERR_THRESHOLD = 0.1; |
64 | | |
65 | | /************************************************************************/ |
66 | | /* RPCInfoToMD() */ |
67 | | /* */ |
68 | | /* Turn an RPCInfo structure back into its metadata format. */ |
69 | | /************************************************************************/ |
70 | | |
71 | | char **RPCInfoV1ToMD(GDALRPCInfoV1 *psRPCInfo) |
72 | | |
73 | 0 | { |
74 | 0 | GDALRPCInfoV2 sRPCInfo; |
75 | 0 | memcpy(&sRPCInfo, psRPCInfo, sizeof(GDALRPCInfoV1)); |
76 | 0 | sRPCInfo.dfERR_BIAS = std::numeric_limits<double>::quiet_NaN(); |
77 | 0 | sRPCInfo.dfERR_RAND = std::numeric_limits<double>::quiet_NaN(); |
78 | 0 | return RPCInfoV2ToMD(&sRPCInfo); |
79 | 0 | } |
80 | | |
81 | | char **RPCInfoV2ToMD(GDALRPCInfoV2 *psRPCInfo) |
82 | | |
83 | 0 | { |
84 | 0 | char **papszMD = nullptr; |
85 | 0 | CPLString osField, osMultiField; |
86 | |
|
87 | 0 | if (!std::isnan(psRPCInfo->dfERR_BIAS)) |
88 | 0 | { |
89 | 0 | osField.Printf("%.15g", psRPCInfo->dfERR_BIAS); |
90 | 0 | papszMD = CSLSetNameValue(papszMD, RPC_ERR_BIAS, osField); |
91 | 0 | } |
92 | |
|
93 | 0 | if (!std::isnan(psRPCInfo->dfERR_RAND)) |
94 | 0 | { |
95 | 0 | osField.Printf("%.15g", psRPCInfo->dfERR_RAND); |
96 | 0 | papszMD = CSLSetNameValue(papszMD, RPC_ERR_RAND, osField); |
97 | 0 | } |
98 | |
|
99 | 0 | osField.Printf("%.15g", psRPCInfo->dfLINE_OFF); |
100 | 0 | papszMD = CSLSetNameValue(papszMD, RPC_LINE_OFF, osField); |
101 | |
|
102 | 0 | osField.Printf("%.15g", psRPCInfo->dfSAMP_OFF); |
103 | 0 | papszMD = CSLSetNameValue(papszMD, RPC_SAMP_OFF, osField); |
104 | |
|
105 | 0 | osField.Printf("%.15g", psRPCInfo->dfLAT_OFF); |
106 | 0 | papszMD = CSLSetNameValue(papszMD, RPC_LAT_OFF, osField); |
107 | |
|
108 | 0 | osField.Printf("%.15g", psRPCInfo->dfLONG_OFF); |
109 | 0 | papszMD = CSLSetNameValue(papszMD, RPC_LONG_OFF, osField); |
110 | |
|
111 | 0 | osField.Printf("%.15g", psRPCInfo->dfHEIGHT_OFF); |
112 | 0 | papszMD = CSLSetNameValue(papszMD, RPC_HEIGHT_OFF, osField); |
113 | |
|
114 | 0 | osField.Printf("%.15g", psRPCInfo->dfLINE_SCALE); |
115 | 0 | papszMD = CSLSetNameValue(papszMD, RPC_LINE_SCALE, osField); |
116 | |
|
117 | 0 | osField.Printf("%.15g", psRPCInfo->dfSAMP_SCALE); |
118 | 0 | papszMD = CSLSetNameValue(papszMD, RPC_SAMP_SCALE, osField); |
119 | |
|
120 | 0 | osField.Printf("%.15g", psRPCInfo->dfLAT_SCALE); |
121 | 0 | papszMD = CSLSetNameValue(papszMD, RPC_LAT_SCALE, osField); |
122 | |
|
123 | 0 | osField.Printf("%.15g", psRPCInfo->dfLONG_SCALE); |
124 | 0 | papszMD = CSLSetNameValue(papszMD, RPC_LONG_SCALE, osField); |
125 | |
|
126 | 0 | osField.Printf("%.15g", psRPCInfo->dfHEIGHT_SCALE); |
127 | 0 | papszMD = CSLSetNameValue(papszMD, RPC_HEIGHT_SCALE, osField); |
128 | |
|
129 | 0 | osField.Printf("%.15g", psRPCInfo->dfMIN_LONG); |
130 | 0 | papszMD = CSLSetNameValue(papszMD, RPC_MIN_LONG, osField); |
131 | |
|
132 | 0 | osField.Printf("%.15g", psRPCInfo->dfMIN_LAT); |
133 | 0 | papszMD = CSLSetNameValue(papszMD, RPC_MIN_LAT, osField); |
134 | |
|
135 | 0 | osField.Printf("%.15g", psRPCInfo->dfMAX_LONG); |
136 | 0 | papszMD = CSLSetNameValue(papszMD, RPC_MAX_LONG, osField); |
137 | |
|
138 | 0 | osField.Printf("%.15g", psRPCInfo->dfMAX_LAT); |
139 | 0 | papszMD = CSLSetNameValue(papszMD, RPC_MAX_LAT, osField); |
140 | |
|
141 | 0 | for (int i = 0; i < 20; i++) |
142 | 0 | { |
143 | 0 | osField.Printf("%.15g", psRPCInfo->adfLINE_NUM_COEFF[i]); |
144 | 0 | if (i > 0) |
145 | 0 | osMultiField += " "; |
146 | 0 | else |
147 | 0 | osMultiField = ""; |
148 | 0 | osMultiField += osField; |
149 | 0 | } |
150 | 0 | papszMD = CSLSetNameValue(papszMD, "LINE_NUM_COEFF", osMultiField); |
151 | |
|
152 | 0 | for (int i = 0; i < 20; i++) |
153 | 0 | { |
154 | 0 | osField.Printf("%.15g", psRPCInfo->adfLINE_DEN_COEFF[i]); |
155 | 0 | if (i > 0) |
156 | 0 | osMultiField += " "; |
157 | 0 | else |
158 | 0 | osMultiField = ""; |
159 | 0 | osMultiField += osField; |
160 | 0 | } |
161 | 0 | papszMD = CSLSetNameValue(papszMD, "LINE_DEN_COEFF", osMultiField); |
162 | |
|
163 | 0 | for (int i = 0; i < 20; i++) |
164 | 0 | { |
165 | 0 | osField.Printf("%.15g", psRPCInfo->adfSAMP_NUM_COEFF[i]); |
166 | 0 | if (i > 0) |
167 | 0 | osMultiField += " "; |
168 | 0 | else |
169 | 0 | osMultiField = ""; |
170 | 0 | osMultiField += osField; |
171 | 0 | } |
172 | 0 | papszMD = CSLSetNameValue(papszMD, "SAMP_NUM_COEFF", osMultiField); |
173 | |
|
174 | 0 | for (int i = 0; i < 20; i++) |
175 | 0 | { |
176 | 0 | osField.Printf("%.15g", psRPCInfo->adfSAMP_DEN_COEFF[i]); |
177 | 0 | if (i > 0) |
178 | 0 | osMultiField += " "; |
179 | 0 | else |
180 | 0 | osMultiField = ""; |
181 | 0 | osMultiField += osField; |
182 | 0 | } |
183 | 0 | papszMD = CSLSetNameValue(papszMD, "SAMP_DEN_COEFF", osMultiField); |
184 | |
|
185 | 0 | return papszMD; |
186 | 0 | } |
187 | | |
188 | | /************************************************************************/ |
189 | | /* RPCComputeTerms() */ |
190 | | /************************************************************************/ |
191 | | |
192 | | static void RPCComputeTerms(double dfLong, double dfLat, double dfHeight, |
193 | | double *padfTerms) |
194 | | |
195 | 0 | { |
196 | 0 | padfTerms[0] = 1.0; |
197 | 0 | padfTerms[1] = dfLong; |
198 | 0 | padfTerms[2] = dfLat; |
199 | 0 | padfTerms[3] = dfHeight; |
200 | 0 | padfTerms[4] = dfLong * dfLat; |
201 | 0 | padfTerms[5] = dfLong * dfHeight; |
202 | 0 | padfTerms[6] = dfLat * dfHeight; |
203 | 0 | padfTerms[7] = dfLong * dfLong; |
204 | 0 | padfTerms[8] = dfLat * dfLat; |
205 | 0 | padfTerms[9] = dfHeight * dfHeight; |
206 | |
|
207 | 0 | padfTerms[10] = dfLong * dfLat * dfHeight; |
208 | 0 | padfTerms[11] = dfLong * dfLong * dfLong; |
209 | 0 | padfTerms[12] = dfLong * dfLat * dfLat; |
210 | 0 | padfTerms[13] = dfLong * dfHeight * dfHeight; |
211 | 0 | padfTerms[14] = dfLong * dfLong * dfLat; |
212 | 0 | padfTerms[15] = dfLat * dfLat * dfLat; |
213 | 0 | padfTerms[16] = dfLat * dfHeight * dfHeight; |
214 | 0 | padfTerms[17] = dfLong * dfLong * dfHeight; |
215 | 0 | padfTerms[18] = dfLat * dfLat * dfHeight; |
216 | 0 | padfTerms[19] = dfHeight * dfHeight * dfHeight; |
217 | 0 | } |
218 | | |
219 | | /************************************************************************/ |
220 | | /* ==================================================================== */ |
221 | | /* GDALRPCTransformer */ |
222 | | /* ==================================================================== */ |
223 | | /************************************************************************/ |
224 | | |
225 | | /*! DEM Resampling Algorithm */ |
226 | | typedef enum |
227 | | { |
228 | | /*! Nearest neighbour (select on one input pixel) */ DRA_NearestNeighbour = |
229 | | 0, |
230 | | /*! Bilinear (2x2 kernel) */ DRA_Bilinear = 1, |
231 | | /*! Cubic Convolution Approximation (4x4 kernel) */ DRA_CubicSpline = 2 |
232 | | } DEMResampleAlg; |
233 | | |
234 | | typedef struct |
235 | | { |
236 | | |
237 | | GDALTransformerInfo sTI; |
238 | | |
239 | | GDALRPCInfoV2 sRPC; |
240 | | |
241 | | double adfPLToLatLongGeoTransform[6]; |
242 | | double dfRefZ; |
243 | | |
244 | | int bReversed; |
245 | | |
246 | | double dfPixErrThreshold; |
247 | | |
248 | | double dfHeightOffset; |
249 | | |
250 | | double dfHeightScale; |
251 | | |
252 | | char *pszDEMPath; |
253 | | |
254 | | DEMResampleAlg eResampleAlg; |
255 | | |
256 | | int bHasDEMMissingValue; |
257 | | double dfDEMMissingValue; |
258 | | char *pszDEMSRS; |
259 | | int bApplyDEMVDatumShift; |
260 | | |
261 | | GDALDataset *poDS; |
262 | | // the key is (nYBlock << 32) | nXBlock) |
263 | | lru11::Cache<uint64_t, std::shared_ptr<std::vector<double>>> *poCacheDEM; |
264 | | |
265 | | OGRCoordinateTransformation *poCT; |
266 | | |
267 | | int nMaxIterations; |
268 | | |
269 | | double adfDEMGeoTransform[6]; |
270 | | double adfDEMReverseGeoTransform[6]; |
271 | | |
272 | | #ifdef USE_SSE2_OPTIM |
273 | | double adfDoubles[20 * 4 + 1]; |
274 | | // LINE_NUM_COEFF, LINE_DEN_COEFF, SAMP_NUM_COEFF and then SAMP_DEN_COEFF. |
275 | | double *padfCoeffs; |
276 | | #endif |
277 | | |
278 | | bool bRPCInverseVerbose; |
279 | | char *pszRPCInverseLog; |
280 | | |
281 | | char *pszRPCFootprint; |
282 | | OGRGeometry *poRPCFootprintGeom; |
283 | | OGRPreparedGeometry *poRPCFootprintPreparedGeom; |
284 | | |
285 | | } GDALRPCTransformInfo; |
286 | | |
287 | | static bool GDALRPCOpenDEM(GDALRPCTransformInfo *psTransform); |
288 | | |
289 | | /************************************************************************/ |
290 | | /* RPCEvaluate() */ |
291 | | /************************************************************************/ |
292 | | #ifdef USE_SSE2_OPTIM |
293 | | |
294 | | static void RPCEvaluate4(const double *padfTerms, const double *padfCoefs, |
295 | | double &dfSum1, double &dfSum2, double &dfSum3, |
296 | | double &dfSum4) |
297 | | |
298 | 0 | { |
299 | 0 | XMMReg2Double sum1 = XMMReg2Double::Zero(); |
300 | 0 | XMMReg2Double sum2 = XMMReg2Double::Zero(); |
301 | 0 | XMMReg2Double sum3 = XMMReg2Double::Zero(); |
302 | 0 | XMMReg2Double sum4 = XMMReg2Double::Zero(); |
303 | 0 | for (int i = 0; i < 20; i += 2) |
304 | 0 | { |
305 | 0 | const XMMReg2Double terms = |
306 | 0 | XMMReg2Double::Load2ValAligned(padfTerms + i); |
307 | | |
308 | | // LINE_NUM_COEFF. |
309 | 0 | const XMMReg2Double coefs1 = |
310 | 0 | XMMReg2Double::Load2ValAligned(padfCoefs + i); |
311 | | |
312 | | // LINE_DEN_COEFF. |
313 | 0 | const XMMReg2Double coefs2 = |
314 | 0 | XMMReg2Double::Load2ValAligned(padfCoefs + i + 20); |
315 | | |
316 | | // SAMP_NUM_COEFF. |
317 | 0 | const XMMReg2Double coefs3 = |
318 | 0 | XMMReg2Double::Load2ValAligned(padfCoefs + i + 40); |
319 | | |
320 | | // SAMP_DEN_COEFF. |
321 | 0 | const XMMReg2Double coefs4 = |
322 | 0 | XMMReg2Double::Load2ValAligned(padfCoefs + i + 60); |
323 | |
|
324 | 0 | sum1 += terms * coefs1; |
325 | 0 | sum2 += terms * coefs2; |
326 | 0 | sum3 += terms * coefs3; |
327 | 0 | sum4 += terms * coefs4; |
328 | 0 | } |
329 | 0 | dfSum1 = sum1.GetHorizSum(); |
330 | 0 | dfSum2 = sum2.GetHorizSum(); |
331 | 0 | dfSum3 = sum3.GetHorizSum(); |
332 | 0 | dfSum4 = sum4.GetHorizSum(); |
333 | 0 | } |
334 | | |
335 | | #else |
336 | | |
337 | | static double RPCEvaluate(const double *padfTerms, const double *padfCoefs) |
338 | | |
339 | | { |
340 | | double dfSum1 = 0.0; |
341 | | double dfSum2 = 0.0; |
342 | | |
343 | | for (int i = 0; i < 20; i += 2) |
344 | | { |
345 | | dfSum1 += padfTerms[i] * padfCoefs[i]; |
346 | | dfSum2 += padfTerms[i + 1] * padfCoefs[i + 1]; |
347 | | } |
348 | | |
349 | | return dfSum1 + dfSum2; |
350 | | } |
351 | | |
352 | | #endif |
353 | | |
354 | | /************************************************************************/ |
355 | | /* RPCTransformPoint() */ |
356 | | /************************************************************************/ |
357 | | |
358 | | static void RPCTransformPoint(const GDALRPCTransformInfo *psRPCTransformInfo, |
359 | | double dfLong, double dfLat, double dfHeight, |
360 | | double *pdfPixel, double *pdfLine) |
361 | | |
362 | 0 | { |
363 | 0 | double adfTermsWithMargin[20 + 1] = {}; |
364 | | // Make padfTerms aligned on 16-byte boundary for SSE2 aligned loads. |
365 | 0 | double *padfTerms = |
366 | 0 | adfTermsWithMargin + |
367 | 0 | (reinterpret_cast<GUIntptr_t>(adfTermsWithMargin) % 16) / 8; |
368 | | |
369 | | // Avoid dateline issues. |
370 | 0 | double diffLong = dfLong - psRPCTransformInfo->sRPC.dfLONG_OFF; |
371 | 0 | if (diffLong < -270) |
372 | 0 | { |
373 | 0 | diffLong += 360; |
374 | 0 | } |
375 | 0 | else if (diffLong > 270) |
376 | 0 | { |
377 | 0 | diffLong -= 360; |
378 | 0 | } |
379 | |
|
380 | 0 | const double dfNormalizedLong = |
381 | 0 | diffLong / psRPCTransformInfo->sRPC.dfLONG_SCALE; |
382 | 0 | const double dfNormalizedLat = |
383 | 0 | (dfLat - psRPCTransformInfo->sRPC.dfLAT_OFF) / |
384 | 0 | psRPCTransformInfo->sRPC.dfLAT_SCALE; |
385 | 0 | const double dfNormalizedHeight = |
386 | 0 | (dfHeight - psRPCTransformInfo->sRPC.dfHEIGHT_OFF) / |
387 | 0 | psRPCTransformInfo->sRPC.dfHEIGHT_SCALE; |
388 | | |
389 | | // The absolute values of the 3 above normalized values are supposed to be |
390 | | // below 1. Warn (as debug message) if it is not the case. We allow for some |
391 | | // margin above 1 (1.5, somewhat arbitrary chosen) before warning. |
392 | 0 | static int nCountWarningsAboutAboveOneNormalizedValues = 0; |
393 | 0 | if (nCountWarningsAboutAboveOneNormalizedValues < MAX_ABS_VALUE_WARNINGS) |
394 | 0 | { |
395 | 0 | bool bWarned = false; |
396 | 0 | if (fabs(dfNormalizedLong) > 1.5) |
397 | 0 | { |
398 | 0 | bWarned = true; |
399 | 0 | CPLDebug( |
400 | 0 | "RPC", |
401 | 0 | "Normalized %s for (lon,lat,height)=(%f,%f,%f) is %f, " |
402 | 0 | "i.e. with an absolute value of > 1, which may cause numeric " |
403 | 0 | "stability problems", |
404 | 0 | "longitude", dfLong, dfLat, dfHeight, dfNormalizedLong); |
405 | 0 | } |
406 | 0 | if (fabs(dfNormalizedLat) > 1.5) |
407 | 0 | { |
408 | 0 | bWarned = true; |
409 | 0 | CPLDebug( |
410 | 0 | "RPC", |
411 | 0 | "Normalized %s for (lon,lat,height)=(%f,%f,%f) is %f, " |
412 | 0 | "ie with an absolute value of > 1, which may cause numeric " |
413 | 0 | "stability problems", |
414 | 0 | "latitude", dfLong, dfLat, dfHeight, dfNormalizedLat); |
415 | 0 | } |
416 | 0 | if (fabs(dfNormalizedHeight) > 1.5) |
417 | 0 | { |
418 | 0 | bWarned = true; |
419 | 0 | CPLDebug( |
420 | 0 | "RPC", |
421 | 0 | "Normalized %s for (lon,lat,height)=(%f,%f,%f) is %f, " |
422 | 0 | "i.e. with an absolute value of > 1, which may cause numeric " |
423 | 0 | "stability problems", |
424 | 0 | "height", dfLong, dfLat, dfHeight, dfNormalizedHeight); |
425 | 0 | } |
426 | 0 | if (bWarned) |
427 | 0 | { |
428 | | // Limit the number of warnings. |
429 | 0 | nCountWarningsAboutAboveOneNormalizedValues++; |
430 | 0 | if (nCountWarningsAboutAboveOneNormalizedValues == |
431 | 0 | MAX_ABS_VALUE_WARNINGS) |
432 | 0 | { |
433 | 0 | CPLDebug("RPC", "No more such debug warnings will be emitted"); |
434 | 0 | } |
435 | 0 | } |
436 | 0 | } |
437 | |
|
438 | 0 | RPCComputeTerms(dfNormalizedLong, dfNormalizedLat, dfNormalizedHeight, |
439 | 0 | padfTerms); |
440 | |
|
441 | 0 | #ifdef USE_SSE2_OPTIM |
442 | 0 | double dfSampNum = 0.0; |
443 | 0 | double dfSampDen = 0.0; |
444 | 0 | double dfLineNum = 0.0; |
445 | 0 | double dfLineDen = 0.0; |
446 | 0 | RPCEvaluate4(padfTerms, psRPCTransformInfo->padfCoeffs, dfLineNum, |
447 | 0 | dfLineDen, dfSampNum, dfSampDen); |
448 | 0 | const double dfResultX = dfSampNum / dfSampDen; |
449 | 0 | const double dfResultY = dfLineNum / dfLineDen; |
450 | | #else |
451 | | const double dfResultX = |
452 | | RPCEvaluate(padfTerms, psRPCTransformInfo->sRPC.adfSAMP_NUM_COEFF) / |
453 | | RPCEvaluate(padfTerms, psRPCTransformInfo->sRPC.adfSAMP_DEN_COEFF); |
454 | | |
455 | | const double dfResultY = |
456 | | RPCEvaluate(padfTerms, psRPCTransformInfo->sRPC.adfLINE_NUM_COEFF) / |
457 | | RPCEvaluate(padfTerms, psRPCTransformInfo->sRPC.adfLINE_DEN_COEFF); |
458 | | #endif |
459 | | |
460 | | // RPCs are using the center of upper left pixel = 0,0 convention |
461 | | // convert to top left corner = 0,0 convention used in GDAL. |
462 | 0 | *pdfPixel = dfResultX * psRPCTransformInfo->sRPC.dfSAMP_SCALE + |
463 | 0 | psRPCTransformInfo->sRPC.dfSAMP_OFF + 0.5; |
464 | 0 | *pdfLine = dfResultY * psRPCTransformInfo->sRPC.dfLINE_SCALE + |
465 | 0 | psRPCTransformInfo->sRPC.dfLINE_OFF + 0.5; |
466 | 0 | } |
467 | | |
468 | | /************************************************************************/ |
469 | | /* GDALSerializeRPCDEMResample() */ |
470 | | /************************************************************************/ |
471 | | |
472 | | static const char *GDALSerializeRPCDEMResample(DEMResampleAlg eResampleAlg) |
473 | 0 | { |
474 | 0 | switch (eResampleAlg) |
475 | 0 | { |
476 | 0 | case DRA_NearestNeighbour: |
477 | 0 | return "near"; |
478 | 0 | case DRA_CubicSpline: |
479 | 0 | return "cubic"; |
480 | 0 | default: |
481 | 0 | case DRA_Bilinear: |
482 | 0 | return "bilinear"; |
483 | 0 | } |
484 | 0 | } |
485 | | |
486 | | /************************************************************************/ |
487 | | /* GDALCreateSimilarRPCTransformer() */ |
488 | | /************************************************************************/ |
489 | | |
490 | | static void *GDALCreateSimilarRPCTransformer(void *hTransformArg, |
491 | | double dfRatioX, double dfRatioY) |
492 | 0 | { |
493 | 0 | VALIDATE_POINTER1(hTransformArg, "GDALCreateSimilarRPCTransformer", |
494 | 0 | nullptr); |
495 | | |
496 | 0 | GDALRPCTransformInfo *psInfo = |
497 | 0 | static_cast<GDALRPCTransformInfo *>(hTransformArg); |
498 | |
|
499 | 0 | GDALRPCInfoV2 sRPC; |
500 | 0 | memcpy(&sRPC, &(psInfo->sRPC), sizeof(GDALRPCInfoV2)); |
501 | |
|
502 | 0 | if (dfRatioX != 1.0 || dfRatioY != 1.0) |
503 | 0 | { |
504 | 0 | sRPC.dfLINE_OFF /= dfRatioY; |
505 | 0 | sRPC.dfLINE_SCALE /= dfRatioY; |
506 | 0 | sRPC.dfSAMP_OFF /= dfRatioX; |
507 | 0 | sRPC.dfSAMP_SCALE /= dfRatioX; |
508 | 0 | } |
509 | |
|
510 | 0 | char **papszOptions = nullptr; |
511 | 0 | papszOptions = CSLSetNameValue(papszOptions, "RPC_HEIGHT", |
512 | 0 | CPLSPrintf("%.17g", psInfo->dfHeightOffset)); |
513 | 0 | papszOptions = CSLSetNameValue(papszOptions, "RPC_HEIGHT_SCALE", |
514 | 0 | CPLSPrintf("%.17g", psInfo->dfHeightScale)); |
515 | 0 | if (psInfo->pszDEMPath != nullptr) |
516 | 0 | { |
517 | 0 | papszOptions = |
518 | 0 | CSLSetNameValue(papszOptions, "RPC_DEM", psInfo->pszDEMPath); |
519 | 0 | papszOptions = |
520 | 0 | CSLSetNameValue(papszOptions, "RPC_DEMINTERPOLATION", |
521 | 0 | GDALSerializeRPCDEMResample(psInfo->eResampleAlg)); |
522 | 0 | if (psInfo->bHasDEMMissingValue) |
523 | 0 | papszOptions = |
524 | 0 | CSLSetNameValue(papszOptions, "RPC_DEM_MISSING_VALUE", |
525 | 0 | CPLSPrintf("%.17g", psInfo->dfDEMMissingValue)); |
526 | 0 | papszOptions = |
527 | 0 | CSLSetNameValue(papszOptions, "RPC_DEM_APPLY_VDATUM_SHIFT", |
528 | 0 | (psInfo->bApplyDEMVDatumShift) ? "TRUE" : "FALSE"); |
529 | 0 | } |
530 | 0 | papszOptions = CSLSetNameValue(papszOptions, "RPC_MAX_ITERATIONS", |
531 | 0 | CPLSPrintf("%d", psInfo->nMaxIterations)); |
532 | |
|
533 | 0 | GDALRPCTransformInfo *psNewInfo = |
534 | 0 | static_cast<GDALRPCTransformInfo *>(GDALCreateRPCTransformerV2( |
535 | 0 | &sRPC, psInfo->bReversed, psInfo->dfPixErrThreshold, papszOptions)); |
536 | 0 | CSLDestroy(papszOptions); |
537 | |
|
538 | 0 | return psNewInfo; |
539 | 0 | } |
540 | | |
541 | | /************************************************************************/ |
542 | | /* GDALRPCGetHeightAtLongLat() */ |
543 | | /************************************************************************/ |
544 | | |
545 | | static int GDALRPCGetDEMHeight(GDALRPCTransformInfo *psTransform, |
546 | | const double dfXIn, const double dfYIn, |
547 | | double *pdfDEMH); |
548 | | |
549 | | static bool GDALRPCGetHeightAtLongLat(GDALRPCTransformInfo *psTransform, |
550 | | const double dfXIn, const double dfYIn, |
551 | | double *pdfHeight, |
552 | | double *pdfDEMPixel = nullptr, |
553 | | double *pdfDEMLine = nullptr) |
554 | 0 | { |
555 | 0 | double dfVDatumShift = 0.0; |
556 | 0 | double dfDEMH = 0.0; |
557 | 0 | if (psTransform->poDS) |
558 | 0 | { |
559 | 0 | double dfX = 0.0; |
560 | 0 | double dfY = 0.0; |
561 | 0 | double dfXTemp = dfXIn; |
562 | 0 | double dfYTemp = dfYIn; |
563 | | // Check if dem is not in WGS84 and transform points padfX[i], padfY[i]. |
564 | 0 | if (psTransform->poCT) |
565 | 0 | { |
566 | 0 | double dfZ = 0.0; |
567 | 0 | if (!psTransform->poCT->Transform(1, &dfXTemp, &dfYTemp, &dfZ)) |
568 | 0 | { |
569 | 0 | return false; |
570 | 0 | } |
571 | | |
572 | | // We must take the opposite since poCT transforms from |
573 | | // WGS84 to geoid. And we are going to do the reverse: |
574 | | // take an elevation over the geoid and transforms it to WGS84. |
575 | 0 | if (psTransform->bApplyDEMVDatumShift) |
576 | 0 | dfVDatumShift = -dfZ; |
577 | 0 | } |
578 | | |
579 | 0 | bool bRetried = false; |
580 | 0 | retry: |
581 | 0 | GDALApplyGeoTransform(psTransform->adfDEMReverseGeoTransform, dfXTemp, |
582 | 0 | dfYTemp, &dfX, &dfY); |
583 | 0 | if (pdfDEMPixel) |
584 | 0 | *pdfDEMPixel = dfX; |
585 | 0 | if (pdfDEMLine) |
586 | 0 | *pdfDEMLine = dfY; |
587 | |
|
588 | 0 | if (!GDALRPCGetDEMHeight(psTransform, dfX, dfY, &dfDEMH)) |
589 | 0 | { |
590 | | // Try to handle the case where the DEM is in LL WGS84 and spans |
591 | | // over [-180,180], (or very close to it ), presumably with much |
592 | | // hole in the middle if using VRT, and the longitude goes beyond |
593 | | // that interval. |
594 | 0 | if (!bRetried && psTransform->poCT == nullptr && |
595 | 0 | (dfXIn >= 180.0 || dfXIn <= -180.0)) |
596 | 0 | { |
597 | 0 | const int nRasterXSize = psTransform->poDS->GetRasterXSize(); |
598 | 0 | const double dfMinDEMLong = psTransform->adfDEMGeoTransform[0]; |
599 | 0 | const double dfMaxDEMLong = |
600 | 0 | psTransform->adfDEMGeoTransform[0] + |
601 | 0 | nRasterXSize * psTransform->adfDEMGeoTransform[1]; |
602 | 0 | if (fabs(dfMinDEMLong - -180) < 0.1 && |
603 | 0 | fabs(dfMaxDEMLong - 180) < 0.1) |
604 | 0 | { |
605 | 0 | if (dfXIn >= 180) |
606 | 0 | { |
607 | 0 | dfXTemp = dfXIn - 360; |
608 | 0 | dfYTemp = dfYIn; |
609 | 0 | } |
610 | 0 | else |
611 | 0 | { |
612 | 0 | dfXTemp = dfXIn + 360; |
613 | 0 | dfYTemp = dfYIn; |
614 | 0 | } |
615 | 0 | bRetried = true; |
616 | 0 | goto retry; |
617 | 0 | } |
618 | 0 | } |
619 | | |
620 | 0 | if (psTransform->bHasDEMMissingValue) |
621 | 0 | dfDEMH = psTransform->dfDEMMissingValue; |
622 | 0 | else |
623 | 0 | { |
624 | 0 | return false; |
625 | 0 | } |
626 | 0 | } |
627 | | #ifdef DEBUG_VERBOSE_EXTRACT_DEM |
628 | | CPLDebug("RPC_DEM", "X=%f, Y=%f -> Z=%f", dfX, dfY, dfDEMH); |
629 | | #endif |
630 | 0 | } |
631 | | |
632 | 0 | *pdfHeight = dfVDatumShift + (psTransform->dfHeightOffset + |
633 | 0 | dfDEMH * psTransform->dfHeightScale); |
634 | 0 | return true; |
635 | 0 | } |
636 | | |
637 | | /************************************************************************/ |
638 | | /* GDALCreateRPCTransformer() */ |
639 | | /************************************************************************/ |
640 | | |
641 | | void *GDALCreateRPCTransformerV1(GDALRPCInfoV1 *psRPCInfo, int bReversed, |
642 | | double dfPixErrThreshold, char **papszOptions) |
643 | | |
644 | 0 | { |
645 | 0 | GDALRPCInfoV2 sRPCInfo; |
646 | 0 | memcpy(&sRPCInfo, psRPCInfo, sizeof(GDALRPCInfoV1)); |
647 | 0 | sRPCInfo.dfERR_BIAS = std::numeric_limits<double>::quiet_NaN(); |
648 | 0 | sRPCInfo.dfERR_RAND = std::numeric_limits<double>::quiet_NaN(); |
649 | 0 | return GDALCreateRPCTransformerV2(&sRPCInfo, bReversed, dfPixErrThreshold, |
650 | 0 | papszOptions); |
651 | 0 | } |
652 | | |
653 | | /** |
654 | | * Create an RPC based transformer. |
655 | | * |
656 | | * The geometric sensor model describing the physical relationship between |
657 | | * image coordinates and ground coordinates is known as a Rigorous Projection |
658 | | * Model. A Rigorous Projection Model expresses the mapping of the image space |
659 | | * coordinates of rows and columns (r,c) onto the object space reference |
660 | | * surface geodetic coordinates (long, lat, height). |
661 | | * |
662 | | * A RPC supports a generic description of the Rigorous Projection Models. The |
663 | | * approximation used by GDAL (RPC00) is a set of rational polynomials |
664 | | * expressing the normalized row and column values, (rn , cn), as a function of |
665 | | * normalized geodetic latitude, longitude, and height, (P, L, H), given a |
666 | | * set of normalized polynomial coefficients (LINE_NUM_COEF_n, LINE_DEN_COEF_n, |
667 | | * SAMP_NUM_COEF_n, SAMP_DEN_COEF_n). Normalized values, rather than actual |
668 | | * values are used in order to minimize introduction of errors during the |
669 | | * calculations. The transformation between row and column values (r,c), and |
670 | | * normalized row and column values (rn, cn), and between the geodetic |
671 | | * latitude, longitude, and height and normalized geodetic latitude, |
672 | | * longitude, and height (P, L, H), is defined by a set of normalizing |
673 | | * translations (offsets) and scales that ensure all values are contained in |
674 | | * the range -1 to +1. |
675 | | * |
676 | | * This function creates a GDALTransformFunc compatible transformer |
677 | | * for going between image pixel/line and long/lat/height coordinates |
678 | | * using RPCs. The RPCs are provided in a GDALRPCInfo structure which is |
679 | | * normally read from metadata using GDALExtractRPCInfo(). |
680 | | * |
681 | | * GDAL RPC Metadata has the following entries (also described in GDAL RFC 22 |
682 | | * and the GeoTIFF RPC document http://geotiff.maptools.org/rpc_prop.html . |
683 | | * |
684 | | * <ul> |
685 | | * <li>ERR_BIAS: Error - Bias. The RMS bias error in meters per horizontal axis |
686 | | * of all points in the image (-1.0 if unknown) |
687 | | * <li>ERR_RAND: Error - Random. RMS random error in meters per horizontal axis |
688 | | * of each point in the image (-1.0 if unknown) |
689 | | * <li>LINE_OFF: Line Offset |
690 | | * <li>SAMP_OFF: Sample Offset |
691 | | * <li>LAT_OFF: Geodetic Latitude Offset |
692 | | * <li>LONG_OFF: Geodetic Longitude Offset |
693 | | * <li>HEIGHT_OFF: Geodetic Height Offset |
694 | | * <li>LINE_SCALE: Line Scale |
695 | | * <li>SAMP_SCALE: Sample Scale |
696 | | * <li>LAT_SCALE: Geodetic Latitude Scale |
697 | | * <li>LONG_SCALE: Geodetic Longitude Scale |
698 | | * <li>HEIGHT_SCALE: Geodetic Height Scale |
699 | | |
700 | | * <li>LINE_NUM_COEFF (1-20): Line Numerator Coefficients. Twenty coefficients |
701 | | * for the polynomial in the Numerator of the rn equation. (space separated) |
702 | | * <li>LINE_DEN_COEFF (1-20): Line Denominator Coefficients. Twenty coefficients |
703 | | * for the polynomial in the Denominator of the rn equation. (space separated) |
704 | | * <li>SAMP_NUM_COEFF (1-20): Sample Numerator Coefficients. Twenty coefficients |
705 | | * for the polynomial in the Numerator of the cn equation. (space separated) |
706 | | * <li>SAMP_DEN_COEFF (1-20): Sample Denominator Coefficients. Twenty |
707 | | * coefficients for the polynomial in the Denominator of the cn equation. (space |
708 | | * separated) |
709 | | * </ul> |
710 | | * |
711 | | * Some drivers (such as DIMAP) may also fill a HEIGHT_DEFAULT item that can be |
712 | | * used by GDALCreateGenImgProjTransformer2() to initialize the below RPC_HEIGHT |
713 | | * transformer option if none of RPC_HEIGHT and RPC_DEM are specified. |
714 | | * Otherwise, if none of RPC_HEIGHT and RPC_DEM are specified as transformer |
715 | | * options and if HEIGHT_DEFAULT is no available, a height of 0 will be used. |
716 | | * |
717 | | * The transformer normally maps from pixel/line/height to long/lat/height space |
718 | | * as a forward transformation though in RPC terms that would be considered |
719 | | * an inverse transformation (and is solved by iterative approximation using |
720 | | * long/lat/height to pixel/line transformations). The default direction can |
721 | | * be reversed by passing bReversed=TRUE. |
722 | | * |
723 | | * The iterative solution of pixel/line |
724 | | * to lat/long/height is currently run for up to 10 iterations or until |
725 | | * the apparent error is less than dfPixErrThreshold pixels. Passing zero |
726 | | * will not avoid all error, but will cause the operation to run for the maximum |
727 | | * number of iterations. |
728 | | * |
729 | | * Starting with GDAL 2.1, debugging of the RPC inverse transformer can be done |
730 | | * by setting the RPC_INVERSE_VERBOSE configuration option to YES (in which case |
731 | | * extra debug information will be displayed in the "RPC" debug category, so |
732 | | * requiring CPL_DEBUG to be also set) and/or by setting RPC_INVERSE_LOG to a |
733 | | * filename that will contain the content of iterations (this last option only |
734 | | * makes sense when debugging point by point, since each time |
735 | | * RPCInverseTransformPoint() is called, the file is rewritten). |
736 | | * |
737 | | * Additional options to the transformer can be supplied in papszOptions. |
738 | | * |
739 | | * Options: |
740 | | * |
741 | | * <ul> |
742 | | * <li> RPC_HEIGHT: a fixed height offset to be applied to all points passed |
743 | | * in. In this situation the Z passed into the transformation function is |
744 | | * assumed to be height above ground, and the RPC_HEIGHT is assumed to be |
745 | | * an average height above sea level for ground in the target scene.</li> |
746 | | * |
747 | | * <li> RPC_HEIGHT_SCALE: a factor used to multiply heights above ground. |
748 | | * Useful when elevation offsets of the DEM are not expressed in meters.</li> |
749 | | * |
750 | | * <li> RPC_DEM: the name of a GDAL dataset (a DEM file typically) used to |
751 | | * extract elevation offsets from. In this situation the Z passed into the |
752 | | * transformation function is assumed to be height above ground. This option |
753 | | * should be used in replacement of RPC_HEIGHT to provide a way of defining |
754 | | * a non uniform ground for the target scene</li> |
755 | | * |
756 | | * <li> RPC_DEMINTERPOLATION: the DEM interpolation ("near", "bilinear" or |
757 | | "cubic"). |
758 | | * Default is "bilinear".</li> |
759 | | * |
760 | | * <li> RPC_DEM_MISSING_VALUE: value of DEM height that must be used in case |
761 | | * the DEM has nodata value at the sampling point, or if its extent does not |
762 | | * cover the requested coordinate. When not specified, missing values will cause |
763 | | * a failed transform.</li> |
764 | | * |
765 | | * <li> RPC_DEM_SRS: (GDAL >= 3.2) WKT SRS, or any string recognized by |
766 | | * OGRSpatialReference::SetFromUserInput(), to be used as an override for DEM |
767 | | SRS. |
768 | | * Useful if DEM SRS does not have an explicit vertical component. </li> |
769 | | * |
770 | | * <li> RPC_DEM_APPLY_VDATUM_SHIFT: whether the vertical component of a compound |
771 | | * SRS for the DEM should be used (when it is present). This is useful so as to |
772 | | * be able to transform the "raw" values from the DEM expressed with respect to |
773 | | * a geoid to the heights with respect to the WGS84 ellipsoid. When this is |
774 | | * enabled, the GTIFF_REPORT_COMPD_CS configuration option will be also set |
775 | | * temporarily so as to get the vertical information from GeoTIFF |
776 | | * files. Defaults to TRUE. (GDAL >= 2.1.0)</li> |
777 | | * |
778 | | * <li> RPC_PIXEL_ERROR_THRESHOLD: overrides the dfPixErrThreshold parameter, ie |
779 | | the error (measured in pixels) allowed in the |
780 | | * iterative solution of pixel/line to lat/long computations (the other way |
781 | | * is always exact given the equations). (GDAL >= 2.1.0)</li> |
782 | | * |
783 | | * <li> RPC_MAX_ITERATIONS: maximum number of iterations allowed in the |
784 | | * iterative solution of pixel/line to lat/long computations. Default value is |
785 | | * 10 in the absence of a DEM, or 20 if there is a DEM. (GDAL >= 2.1.0)</li> |
786 | | * |
787 | | * <li> RPC_FOOTPRINT: WKT or GeoJSON polygon (in long / lat coordinate space) |
788 | | * with a validity footprint for the RPC. Any coordinate transformation that |
789 | | * goes from or arrive outside this footprint will be considered invalid. This |
790 | | * is useful in situations where the RPC values become highly unstable outside |
791 | | * of the area on which they have been computed for, potentially leading to |
792 | | * undesirable "echoes" / false positives. This requires GDAL to be built |
793 | | against |
794 | | * GEOS.</li> |
795 | | * |
796 | | * </ul> |
797 | | * |
798 | | * @param psRPCInfo Definition of the RPC parameters. |
799 | | * |
800 | | * @param bReversed If true "forward" transformation will be lat/long to |
801 | | * pixel/line instead of the normal pixel/line to lat/long. |
802 | | * |
803 | | * @param dfPixErrThreshold the error (measured in pixels) allowed in the |
804 | | * iterative solution of pixel/line to lat/long computations (the other way |
805 | | * is always exact given the equations). Starting with GDAL 2.1, this may also |
806 | | * be set through the RPC_PIXEL_ERROR_THRESHOLD transformer option. |
807 | | * If a negative or null value is provided, then this defaults to 0.1 pixel. |
808 | | * |
809 | | * @param papszOptions Other transformer options (i.e. RPC_HEIGHT=z). |
810 | | * |
811 | | * @return transformer callback data (deallocate with GDALDestroyTransformer()). |
812 | | */ |
813 | | |
814 | | void *GDALCreateRPCTransformerV2(const GDALRPCInfoV2 *psRPCInfo, int bReversed, |
815 | | double dfPixErrThreshold, |
816 | | CSLConstList papszOptions) |
817 | | |
818 | 0 | { |
819 | | /* -------------------------------------------------------------------- */ |
820 | | /* Initialize core info. */ |
821 | | /* -------------------------------------------------------------------- */ |
822 | 0 | GDALRPCTransformInfo *psTransform = static_cast<GDALRPCTransformInfo *>( |
823 | 0 | CPLCalloc(sizeof(GDALRPCTransformInfo), 1)); |
824 | |
|
825 | 0 | memcpy(&(psTransform->sRPC), psRPCInfo, sizeof(GDALRPCInfoV2)); |
826 | 0 | psTransform->bReversed = bReversed; |
827 | 0 | const char *pszPixErrThreshold = |
828 | 0 | CSLFetchNameValue(papszOptions, "RPC_PIXEL_ERROR_THRESHOLD"); |
829 | 0 | if (pszPixErrThreshold != nullptr) |
830 | 0 | psTransform->dfPixErrThreshold = CPLAtof(pszPixErrThreshold); |
831 | 0 | else if (dfPixErrThreshold > 0) |
832 | 0 | psTransform->dfPixErrThreshold = dfPixErrThreshold; |
833 | 0 | else |
834 | 0 | psTransform->dfPixErrThreshold = DEFAULT_PIX_ERR_THRESHOLD; |
835 | 0 | psTransform->dfHeightOffset = 0.0; |
836 | 0 | psTransform->dfHeightScale = 1.0; |
837 | |
|
838 | 0 | memcpy(psTransform->sTI.abySignature, GDAL_GTI2_SIGNATURE, |
839 | 0 | strlen(GDAL_GTI2_SIGNATURE)); |
840 | 0 | psTransform->sTI.pszClassName = GDAL_RPC_TRANSFORMER_CLASS_NAME; |
841 | 0 | psTransform->sTI.pfnTransform = GDALRPCTransform; |
842 | 0 | psTransform->sTI.pfnCleanup = GDALDestroyRPCTransformer; |
843 | 0 | psTransform->sTI.pfnSerialize = GDALSerializeRPCTransformer; |
844 | 0 | psTransform->sTI.pfnCreateSimilar = GDALCreateSimilarRPCTransformer; |
845 | |
|
846 | 0 | #ifdef USE_SSE2_OPTIM |
847 | | // Make sure padfCoeffs is aligned on a 16-byte boundary for SSE2 aligned |
848 | | // loads. |
849 | 0 | psTransform->padfCoeffs = |
850 | 0 | psTransform->adfDoubles + |
851 | 0 | (reinterpret_cast<GUIntptr_t>(psTransform->adfDoubles) % 16) / 8; |
852 | 0 | memcpy(psTransform->padfCoeffs, psRPCInfo->adfLINE_NUM_COEFF, |
853 | 0 | 20 * sizeof(double)); |
854 | 0 | memcpy(psTransform->padfCoeffs + 20, psRPCInfo->adfLINE_DEN_COEFF, |
855 | 0 | 20 * sizeof(double)); |
856 | 0 | memcpy(psTransform->padfCoeffs + 40, psRPCInfo->adfSAMP_NUM_COEFF, |
857 | 0 | 20 * sizeof(double)); |
858 | 0 | memcpy(psTransform->padfCoeffs + 60, psRPCInfo->adfSAMP_DEN_COEFF, |
859 | 0 | 20 * sizeof(double)); |
860 | 0 | #endif |
861 | | |
862 | | /* -------------------------------------------------------------------- */ |
863 | | /* Do we have a "average height" that we want to consider all */ |
864 | | /* elevations to be relative to? */ |
865 | | /* -------------------------------------------------------------------- */ |
866 | 0 | const char *pszHeight = CSLFetchNameValue(papszOptions, "RPC_HEIGHT"); |
867 | 0 | if (pszHeight != nullptr) |
868 | 0 | psTransform->dfHeightOffset = CPLAtof(pszHeight); |
869 | | |
870 | | /* -------------------------------------------------------------------- */ |
871 | | /* The "height scale" */ |
872 | | /* -------------------------------------------------------------------- */ |
873 | 0 | const char *pszHeightScale = |
874 | 0 | CSLFetchNameValue(papszOptions, "RPC_HEIGHT_SCALE"); |
875 | 0 | if (pszHeightScale != nullptr) |
876 | 0 | psTransform->dfHeightScale = CPLAtof(pszHeightScale); |
877 | | |
878 | | /* -------------------------------------------------------------------- */ |
879 | | /* The DEM file name */ |
880 | | /* -------------------------------------------------------------------- */ |
881 | 0 | const char *pszDEMPath = CSLFetchNameValue(papszOptions, "RPC_DEM"); |
882 | 0 | if (pszDEMPath != nullptr) |
883 | 0 | { |
884 | 0 | psTransform->pszDEMPath = CPLStrdup(pszDEMPath); |
885 | 0 | } |
886 | | |
887 | | /* -------------------------------------------------------------------- */ |
888 | | /* The DEM interpolation */ |
889 | | /* -------------------------------------------------------------------- */ |
890 | 0 | const char *pszDEMInterpolation = |
891 | 0 | CSLFetchNameValueDef(papszOptions, "RPC_DEMINTERPOLATION", "bilinear"); |
892 | 0 | if (EQUAL(pszDEMInterpolation, "near")) |
893 | 0 | { |
894 | 0 | psTransform->eResampleAlg = DRA_NearestNeighbour; |
895 | 0 | } |
896 | 0 | else if (EQUAL(pszDEMInterpolation, "bilinear")) |
897 | 0 | { |
898 | 0 | psTransform->eResampleAlg = DRA_Bilinear; |
899 | 0 | } |
900 | 0 | else if (EQUAL(pszDEMInterpolation, "cubic")) |
901 | 0 | { |
902 | 0 | psTransform->eResampleAlg = DRA_CubicSpline; |
903 | 0 | } |
904 | 0 | else |
905 | 0 | { |
906 | 0 | CPLDebug("RPC", "Unknown interpolation %s. Defaulting to bilinear", |
907 | 0 | pszDEMInterpolation); |
908 | 0 | psTransform->eResampleAlg = DRA_Bilinear; |
909 | 0 | } |
910 | | |
911 | | /* -------------------------------------------------------------------- */ |
912 | | /* The DEM missing value */ |
913 | | /* -------------------------------------------------------------------- */ |
914 | 0 | const char *pszDEMMissingValue = |
915 | 0 | CSLFetchNameValue(papszOptions, "RPC_DEM_MISSING_VALUE"); |
916 | 0 | if (pszDEMMissingValue != nullptr) |
917 | 0 | { |
918 | 0 | psTransform->bHasDEMMissingValue = TRUE; |
919 | 0 | psTransform->dfDEMMissingValue = CPLAtof(pszDEMMissingValue); |
920 | 0 | } |
921 | | |
922 | | /* -------------------------------------------------------------------- */ |
923 | | /* The DEM SRS override */ |
924 | | /* -------------------------------------------------------------------- */ |
925 | 0 | const char *pszDEMSRS = CSLFetchNameValue(papszOptions, "RPC_DEM_SRS"); |
926 | 0 | if (pszDEMSRS != nullptr) |
927 | 0 | { |
928 | 0 | psTransform->pszDEMSRS = CPLStrdup(pszDEMSRS); |
929 | 0 | } |
930 | | |
931 | | /* -------------------------------------------------------------------- */ |
932 | | /* Whether to apply vdatum shift */ |
933 | | /* -------------------------------------------------------------------- */ |
934 | 0 | psTransform->bApplyDEMVDatumShift = |
935 | 0 | CPLFetchBool(papszOptions, "RPC_DEM_APPLY_VDATUM_SHIFT", true); |
936 | |
|
937 | 0 | psTransform->nMaxIterations = |
938 | 0 | atoi(CSLFetchNameValueDef(papszOptions, "RPC_MAX_ITERATIONS", "0")); |
939 | | |
940 | | /* -------------------------------------------------------------------- */ |
941 | | /* Debug */ |
942 | | /* -------------------------------------------------------------------- */ |
943 | 0 | psTransform->bRPCInverseVerbose = |
944 | 0 | CPLTestBool(CPLGetConfigOption("RPC_INVERSE_VERBOSE", "NO")); |
945 | 0 | const char *pszRPCInverseLog = |
946 | 0 | CPLGetConfigOption("RPC_INVERSE_LOG", nullptr); |
947 | 0 | if (pszRPCInverseLog != nullptr) |
948 | 0 | psTransform->pszRPCInverseLog = CPLStrdup(pszRPCInverseLog); |
949 | | |
950 | | /* -------------------------------------------------------------------- */ |
951 | | /* Footprint */ |
952 | | /* -------------------------------------------------------------------- */ |
953 | 0 | const char *pszFootprint = CSLFetchNameValue(papszOptions, "RPC_FOOTPRINT"); |
954 | 0 | if (pszFootprint != nullptr) |
955 | 0 | { |
956 | 0 | psTransform->pszRPCFootprint = CPLStrdup(pszFootprint); |
957 | 0 | if (pszFootprint[0] == '{') |
958 | 0 | { |
959 | 0 | psTransform->poRPCFootprintGeom = |
960 | 0 | OGRGeometryFactory::createFromGeoJson(pszFootprint); |
961 | 0 | } |
962 | 0 | else |
963 | 0 | { |
964 | 0 | OGRGeometryFactory::createFromWkt( |
965 | 0 | pszFootprint, nullptr, &(psTransform->poRPCFootprintGeom)); |
966 | 0 | } |
967 | 0 | if (psTransform->poRPCFootprintGeom) |
968 | 0 | { |
969 | 0 | if (OGRHasPreparedGeometrySupport()) |
970 | 0 | { |
971 | 0 | psTransform->poRPCFootprintPreparedGeom = |
972 | 0 | OGRCreatePreparedGeometry( |
973 | 0 | OGRGeometry::ToHandle(psTransform->poRPCFootprintGeom)); |
974 | 0 | } |
975 | 0 | else |
976 | 0 | { |
977 | 0 | CPLError(CE_Warning, CPLE_AppDefined, |
978 | 0 | "GEOS not available. RPC_FOOTPRINT will be ignored"); |
979 | 0 | } |
980 | 0 | } |
981 | 0 | } |
982 | | |
983 | | /* -------------------------------------------------------------------- */ |
984 | | /* Open DEM if needed. */ |
985 | | /* -------------------------------------------------------------------- */ |
986 | |
|
987 | 0 | if (psTransform->pszDEMPath != nullptr && !GDALRPCOpenDEM(psTransform)) |
988 | 0 | { |
989 | 0 | GDALDestroyRPCTransformer(psTransform); |
990 | 0 | return nullptr; |
991 | 0 | } |
992 | | |
993 | | /* -------------------------------------------------------------------- */ |
994 | | /* Establish a reference point for calcualating an affine */ |
995 | | /* geotransform approximate transformation. */ |
996 | | /* -------------------------------------------------------------------- */ |
997 | 0 | double adfGTFromLL[6] = {}; |
998 | 0 | double dfRefPixel = -1.0; |
999 | 0 | double dfRefLine = -1.0; |
1000 | 0 | double dfRefLong = 0.0; |
1001 | 0 | double dfRefLat = 0.0; |
1002 | |
|
1003 | 0 | if (psRPCInfo->dfMIN_LONG != -180 || psRPCInfo->dfMAX_LONG != 180) |
1004 | 0 | { |
1005 | 0 | dfRefLong = (psRPCInfo->dfMIN_LONG + psRPCInfo->dfMAX_LONG) * 0.5; |
1006 | 0 | dfRefLat = (psRPCInfo->dfMIN_LAT + psRPCInfo->dfMAX_LAT) * 0.5; |
1007 | |
|
1008 | 0 | double dfX = dfRefLong; |
1009 | 0 | double dfY = dfRefLat; |
1010 | 0 | double dfZ = 0.0; |
1011 | 0 | int nSuccess = 0; |
1012 | | // Try with DEM first. |
1013 | 0 | if (GDALRPCTransform(psTransform, !(psTransform->bReversed), 1, &dfX, |
1014 | 0 | &dfY, &dfZ, &nSuccess) && |
1015 | 0 | nSuccess) |
1016 | 0 | { |
1017 | 0 | dfRefPixel = dfX; |
1018 | 0 | dfRefLine = dfY; |
1019 | 0 | } |
1020 | 0 | else |
1021 | 0 | { |
1022 | 0 | RPCTransformPoint(psTransform, dfRefLong, dfRefLat, 0.0, |
1023 | 0 | &dfRefPixel, &dfRefLine); |
1024 | 0 | } |
1025 | 0 | } |
1026 | | |
1027 | | // Try with scale and offset if we don't can't use bounds or |
1028 | | // the results seem daft. |
1029 | 0 | if (dfRefPixel < 0.0 || dfRefLine < 0.0 || dfRefPixel > 100000 || |
1030 | 0 | dfRefLine > 100000) |
1031 | 0 | { |
1032 | 0 | dfRefLong = psRPCInfo->dfLONG_OFF; |
1033 | 0 | dfRefLat = psRPCInfo->dfLAT_OFF; |
1034 | |
|
1035 | 0 | double dfX = dfRefLong; |
1036 | 0 | double dfY = dfRefLat; |
1037 | 0 | double dfZ = 0.0; |
1038 | 0 | int nSuccess = 0; |
1039 | | // Try with DEM first. |
1040 | 0 | if (GDALRPCTransform(psTransform, !(psTransform->bReversed), 1, &dfX, |
1041 | 0 | &dfY, &dfZ, &nSuccess) && |
1042 | 0 | nSuccess) |
1043 | 0 | { |
1044 | 0 | dfRefPixel = dfX; |
1045 | 0 | dfRefLine = dfY; |
1046 | 0 | } |
1047 | 0 | else |
1048 | 0 | { |
1049 | 0 | RPCTransformPoint(psTransform, dfRefLong, dfRefLat, 0.0, |
1050 | 0 | &dfRefPixel, &dfRefLine); |
1051 | 0 | } |
1052 | 0 | } |
1053 | |
|
1054 | 0 | psTransform->dfRefZ = 0.0; |
1055 | 0 | GDALRPCGetHeightAtLongLat(psTransform, dfRefLong, dfRefLat, |
1056 | 0 | &psTransform->dfRefZ); |
1057 | | |
1058 | | /* -------------------------------------------------------------------- */ |
1059 | | /* Transform nearby locations to establish affine direction */ |
1060 | | /* vectors. */ |
1061 | | /* -------------------------------------------------------------------- */ |
1062 | 0 | double dfRefPixelDelta = 0.0; |
1063 | 0 | double dfRefLineDelta = 0.0; |
1064 | 0 | double dfLLDelta = 0.0001; |
1065 | |
|
1066 | 0 | RPCTransformPoint(psTransform, dfRefLong + dfLLDelta, dfRefLat, |
1067 | 0 | psTransform->dfRefZ, &dfRefPixelDelta, &dfRefLineDelta); |
1068 | 0 | adfGTFromLL[1] = (dfRefPixelDelta - dfRefPixel) / dfLLDelta; |
1069 | 0 | adfGTFromLL[4] = (dfRefLineDelta - dfRefLine) / dfLLDelta; |
1070 | |
|
1071 | 0 | RPCTransformPoint(psTransform, dfRefLong, dfRefLat + dfLLDelta, |
1072 | 0 | psTransform->dfRefZ, &dfRefPixelDelta, &dfRefLineDelta); |
1073 | 0 | adfGTFromLL[2] = (dfRefPixelDelta - dfRefPixel) / dfLLDelta; |
1074 | 0 | adfGTFromLL[5] = (dfRefLineDelta - dfRefLine) / dfLLDelta; |
1075 | |
|
1076 | 0 | adfGTFromLL[0] = |
1077 | 0 | dfRefPixel - adfGTFromLL[1] * dfRefLong - adfGTFromLL[2] * dfRefLat; |
1078 | 0 | adfGTFromLL[3] = |
1079 | 0 | dfRefLine - adfGTFromLL[4] * dfRefLong - adfGTFromLL[5] * dfRefLat; |
1080 | |
|
1081 | 0 | if (!GDALInvGeoTransform(adfGTFromLL, |
1082 | 0 | psTransform->adfPLToLatLongGeoTransform)) |
1083 | 0 | { |
1084 | 0 | CPLError(CE_Failure, CPLE_AppDefined, "Cannot invert geotransform"); |
1085 | 0 | GDALDestroyRPCTransformer(psTransform); |
1086 | 0 | return nullptr; |
1087 | 0 | } |
1088 | | |
1089 | 0 | return psTransform; |
1090 | 0 | } |
1091 | | |
1092 | | /************************************************************************/ |
1093 | | /* GDALDestroyReprojectionTransformer() */ |
1094 | | /************************************************************************/ |
1095 | | |
1096 | | /** Destroy RPC transformer */ |
1097 | | void GDALDestroyRPCTransformer(void *pTransformAlg) |
1098 | | |
1099 | 0 | { |
1100 | 0 | if (pTransformAlg == nullptr) |
1101 | 0 | return; |
1102 | | |
1103 | 0 | GDALRPCTransformInfo *psTransform = |
1104 | 0 | static_cast<GDALRPCTransformInfo *>(pTransformAlg); |
1105 | |
|
1106 | 0 | CPLFree(psTransform->pszDEMPath); |
1107 | 0 | CPLFree(psTransform->pszDEMSRS); |
1108 | |
|
1109 | 0 | if (psTransform->poDS) |
1110 | 0 | GDALClose(psTransform->poDS); |
1111 | 0 | delete psTransform->poCacheDEM; |
1112 | 0 | if (psTransform->poCT) |
1113 | 0 | OCTDestroyCoordinateTransformation( |
1114 | 0 | reinterpret_cast<OGRCoordinateTransformationH>(psTransform->poCT)); |
1115 | 0 | CPLFree(psTransform->pszRPCInverseLog); |
1116 | |
|
1117 | 0 | CPLFree(psTransform->pszRPCFootprint); |
1118 | 0 | delete psTransform->poRPCFootprintGeom; |
1119 | 0 | OGRDestroyPreparedGeometry(psTransform->poRPCFootprintPreparedGeom); |
1120 | |
|
1121 | 0 | CPLFree(pTransformAlg); |
1122 | 0 | } |
1123 | | |
1124 | | /************************************************************************/ |
1125 | | /* RPCInverseTransformPoint() */ |
1126 | | /************************************************************************/ |
1127 | | |
1128 | | static bool RPCInverseTransformPoint(GDALRPCTransformInfo *psTransform, |
1129 | | double dfPixel, double dfLine, |
1130 | | double dfUserHeight, double *pdfLong, |
1131 | | double *pdfLat) |
1132 | | |
1133 | 0 | { |
1134 | | // Memo: |
1135 | | // Known to work with 40 iterations with DEM on all points (int coord and |
1136 | | // +0.5,+0.5 shift) of flock1.20160216_041050_0905.tif, especially on (0,0). |
1137 | | |
1138 | | /* -------------------------------------------------------------------- */ |
1139 | | /* Compute an initial approximation based on linear */ |
1140 | | /* interpolation from our reference point. */ |
1141 | | /* -------------------------------------------------------------------- */ |
1142 | 0 | double dfResultX = psTransform->adfPLToLatLongGeoTransform[0] + |
1143 | 0 | psTransform->adfPLToLatLongGeoTransform[1] * dfPixel + |
1144 | 0 | psTransform->adfPLToLatLongGeoTransform[2] * dfLine; |
1145 | |
|
1146 | 0 | double dfResultY = psTransform->adfPLToLatLongGeoTransform[3] + |
1147 | 0 | psTransform->adfPLToLatLongGeoTransform[4] * dfPixel + |
1148 | 0 | psTransform->adfPLToLatLongGeoTransform[5] * dfLine; |
1149 | |
|
1150 | 0 | if (psTransform->bRPCInverseVerbose) |
1151 | 0 | { |
1152 | 0 | CPLDebug("RPC", "Computing inverse transform for (pixel,line)=(%f,%f)", |
1153 | 0 | dfPixel, dfLine); |
1154 | 0 | } |
1155 | 0 | VSILFILE *fpLog = nullptr; |
1156 | 0 | if (psTransform->pszRPCInverseLog) |
1157 | 0 | { |
1158 | 0 | fpLog = VSIFOpenL( |
1159 | 0 | CPLResetExtensionSafe(psTransform->pszRPCInverseLog, "csvt") |
1160 | 0 | .c_str(), |
1161 | 0 | "wb"); |
1162 | 0 | if (fpLog != nullptr) |
1163 | 0 | { |
1164 | 0 | VSIFPrintfL(fpLog, "Integer,Real,Real,Real,String,Real,Real\n"); |
1165 | 0 | VSIFCloseL(fpLog); |
1166 | 0 | } |
1167 | 0 | fpLog = VSIFOpenL(psTransform->pszRPCInverseLog, "wb"); |
1168 | 0 | if (fpLog != nullptr) |
1169 | 0 | VSIFPrintfL( |
1170 | 0 | fpLog, |
1171 | 0 | "iter,long,lat,height,WKT,error_pixel_x,error_pixel_y\n"); |
1172 | 0 | } |
1173 | | |
1174 | | /* -------------------------------------------------------------------- */ |
1175 | | /* Now iterate, trying to find a closer LL location that will */ |
1176 | | /* back transform to the indicated pixel and line. */ |
1177 | | /* -------------------------------------------------------------------- */ |
1178 | 0 | double dfPixelDeltaX = 0.0; |
1179 | 0 | double dfPixelDeltaY = 0.0; |
1180 | 0 | double dfLastResultX = 0.0; |
1181 | 0 | double dfLastResultY = 0.0; |
1182 | 0 | double dfLastPixelDeltaX = 0.0; |
1183 | 0 | double dfLastPixelDeltaY = 0.0; |
1184 | 0 | bool bLastPixelDeltaValid = false; |
1185 | 0 | const int nMaxIterations = (psTransform->nMaxIterations > 0) |
1186 | 0 | ? psTransform->nMaxIterations |
1187 | 0 | : (psTransform->poDS != nullptr) ? 20 |
1188 | 0 | : 10; |
1189 | 0 | int nCountConsecutiveErrorBelow2 = 0; |
1190 | |
|
1191 | 0 | int iIter = 0; // Used after for. |
1192 | 0 | for (; iIter < nMaxIterations; iIter++) |
1193 | 0 | { |
1194 | 0 | double dfBackPixel = 0.0; |
1195 | 0 | double dfBackLine = 0.0; |
1196 | | |
1197 | | // Update DEMH. |
1198 | 0 | double dfDEMH = 0.0; |
1199 | 0 | double dfDEMPixel = 0.0; |
1200 | 0 | double dfDEMLine = 0.0; |
1201 | 0 | if (!GDALRPCGetHeightAtLongLat(psTransform, dfResultX, dfResultY, |
1202 | 0 | &dfDEMH, &dfDEMPixel, &dfDEMLine)) |
1203 | 0 | { |
1204 | 0 | if (psTransform->poDS) |
1205 | 0 | { |
1206 | 0 | CPLDebug("RPC", "DEM (pixel, line) = (%g, %g)", dfDEMPixel, |
1207 | 0 | dfDEMLine); |
1208 | 0 | } |
1209 | | |
1210 | | // The first time, the guess might be completely out of the |
1211 | | // validity of the DEM, so pickup the "reference Z" as the |
1212 | | // first guess or the closest point of the DEM by snapping to it. |
1213 | 0 | if (iIter == 0) |
1214 | 0 | { |
1215 | 0 | bool bUseRefZ = true; |
1216 | 0 | if (psTransform->poDS) |
1217 | 0 | { |
1218 | 0 | if (dfDEMPixel >= psTransform->poDS->GetRasterXSize()) |
1219 | 0 | dfDEMPixel = psTransform->poDS->GetRasterXSize() - 0.5; |
1220 | 0 | else if (dfDEMPixel < 0) |
1221 | 0 | dfDEMPixel = 0.5; |
1222 | 0 | if (dfDEMLine >= psTransform->poDS->GetRasterYSize()) |
1223 | 0 | dfDEMLine = psTransform->poDS->GetRasterYSize() - 0.5; |
1224 | 0 | else if (dfDEMPixel < 0) |
1225 | 0 | dfDEMPixel = 0.5; |
1226 | 0 | if (GDALRPCGetDEMHeight(psTransform, dfDEMPixel, dfDEMLine, |
1227 | 0 | &dfDEMH)) |
1228 | 0 | { |
1229 | 0 | bUseRefZ = false; |
1230 | 0 | CPLDebug("RPC", |
1231 | 0 | "Iteration %d for (pixel, line) = (%g, %g): " |
1232 | 0 | "No elevation value at %.15g %.15g. " |
1233 | 0 | "Using elevation %g at DEM (pixel, line) = " |
1234 | 0 | "(%g, %g) (snapping to boundaries) instead", |
1235 | 0 | iIter, dfPixel, dfLine, dfResultX, dfResultY, |
1236 | 0 | dfDEMH, dfDEMPixel, dfDEMLine); |
1237 | 0 | } |
1238 | 0 | } |
1239 | 0 | if (bUseRefZ) |
1240 | 0 | { |
1241 | 0 | dfDEMH = psTransform->dfRefZ; |
1242 | 0 | CPLDebug("RPC", |
1243 | 0 | "Iteration %d for (pixel, line) = (%g, %g): " |
1244 | 0 | "No elevation value at %.15g %.15g. " |
1245 | 0 | "Using elevation %g of reference point instead", |
1246 | 0 | iIter, dfPixel, dfLine, dfResultX, dfResultY, |
1247 | 0 | dfDEMH); |
1248 | 0 | } |
1249 | 0 | } |
1250 | 0 | else |
1251 | 0 | { |
1252 | 0 | CPLDebug("RPC", |
1253 | 0 | "Iteration %d for (pixel, line) = (%g, %g): " |
1254 | 0 | "No elevation value at %.15g %.15g. Erroring out", |
1255 | 0 | iIter, dfPixel, dfLine, dfResultX, dfResultY); |
1256 | 0 | if (fpLog) |
1257 | 0 | VSIFCloseL(fpLog); |
1258 | 0 | return false; |
1259 | 0 | } |
1260 | 0 | } |
1261 | | |
1262 | 0 | RPCTransformPoint(psTransform, dfResultX, dfResultY, |
1263 | 0 | dfUserHeight + dfDEMH, &dfBackPixel, &dfBackLine); |
1264 | |
|
1265 | 0 | dfPixelDeltaX = dfBackPixel - dfPixel; |
1266 | 0 | dfPixelDeltaY = dfBackLine - dfLine; |
1267 | |
|
1268 | 0 | if (psTransform->bRPCInverseVerbose) |
1269 | 0 | { |
1270 | 0 | CPLDebug("RPC", |
1271 | 0 | "Iter %d: dfPixelDeltaX=%.02f, dfPixelDeltaY=%.02f, " |
1272 | 0 | "long=%f, lat=%f, height=%f", |
1273 | 0 | iIter, dfPixelDeltaX, dfPixelDeltaY, dfResultX, dfResultY, |
1274 | 0 | dfUserHeight + dfDEMH); |
1275 | 0 | } |
1276 | 0 | if (fpLog != nullptr) |
1277 | 0 | { |
1278 | 0 | VSIFPrintfL(fpLog, |
1279 | 0 | "%d,%.12f,%.12f,%f,\"POINT(%.12f %.12f)\",%f,%f\n", |
1280 | 0 | iIter, dfResultX, dfResultY, dfUserHeight + dfDEMH, |
1281 | 0 | dfResultX, dfResultY, dfPixelDeltaX, dfPixelDeltaY); |
1282 | 0 | } |
1283 | |
|
1284 | 0 | const double dfError = |
1285 | 0 | std::max(std::abs(dfPixelDeltaX), std::abs(dfPixelDeltaY)); |
1286 | 0 | if (dfError < psTransform->dfPixErrThreshold) |
1287 | 0 | { |
1288 | 0 | iIter = -1; |
1289 | 0 | if (psTransform->bRPCInverseVerbose) |
1290 | 0 | { |
1291 | 0 | CPLDebug("RPC", "Converged!"); |
1292 | 0 | } |
1293 | 0 | break; |
1294 | 0 | } |
1295 | 0 | else if (psTransform->poDS != nullptr && bLastPixelDeltaValid && |
1296 | 0 | dfPixelDeltaX * dfLastPixelDeltaX < 0 && |
1297 | 0 | dfPixelDeltaY * dfLastPixelDeltaY < 0) |
1298 | 0 | { |
1299 | | // When there is a DEM, if the error changes sign, we might |
1300 | | // oscillate forever, so take a mean position as a new guess. |
1301 | 0 | if (psTransform->bRPCInverseVerbose) |
1302 | 0 | { |
1303 | 0 | CPLDebug("RPC", |
1304 | 0 | "Oscillation detected. " |
1305 | 0 | "Taking mean of 2 previous results as new guess"); |
1306 | 0 | } |
1307 | 0 | dfResultX = (fabs(dfPixelDeltaX) * dfLastResultX + |
1308 | 0 | fabs(dfLastPixelDeltaX) * dfResultX) / |
1309 | 0 | (fabs(dfPixelDeltaX) + fabs(dfLastPixelDeltaX)); |
1310 | 0 | dfResultY = (fabs(dfPixelDeltaY) * dfLastResultY + |
1311 | 0 | fabs(dfLastPixelDeltaY) * dfResultY) / |
1312 | 0 | (fabs(dfPixelDeltaY) + fabs(dfLastPixelDeltaY)); |
1313 | 0 | bLastPixelDeltaValid = false; |
1314 | 0 | nCountConsecutiveErrorBelow2 = 0; |
1315 | 0 | continue; |
1316 | 0 | } |
1317 | | |
1318 | 0 | double dfBoostFactor = 1.0; |
1319 | 0 | if (psTransform->poDS != nullptr && nCountConsecutiveErrorBelow2 >= 5 && |
1320 | 0 | dfError < 2) |
1321 | 0 | { |
1322 | | // When there is a DEM, if we remain below a given threshold |
1323 | | // (somewhat arbitrarily set to 2 pixels) for some time, apply a |
1324 | | // "boost factor" for the new guessed result, in the hope we will go |
1325 | | // out of the somewhat current stuck situation. |
1326 | 0 | dfBoostFactor = 10; |
1327 | 0 | if (psTransform->bRPCInverseVerbose) |
1328 | 0 | { |
1329 | 0 | CPLDebug("RPC", "Applying boost factor 10"); |
1330 | 0 | } |
1331 | 0 | } |
1332 | |
|
1333 | 0 | if (dfError < 2) |
1334 | 0 | nCountConsecutiveErrorBelow2++; |
1335 | 0 | else |
1336 | 0 | nCountConsecutiveErrorBelow2 = 0; |
1337 | |
|
1338 | 0 | const double dfNewResultX = |
1339 | 0 | dfResultX - |
1340 | 0 | (dfPixelDeltaX * psTransform->adfPLToLatLongGeoTransform[1] * |
1341 | 0 | dfBoostFactor) - |
1342 | 0 | (dfPixelDeltaY * psTransform->adfPLToLatLongGeoTransform[2] * |
1343 | 0 | dfBoostFactor); |
1344 | 0 | const double dfNewResultY = |
1345 | 0 | dfResultY - |
1346 | 0 | (dfPixelDeltaX * psTransform->adfPLToLatLongGeoTransform[4] * |
1347 | 0 | dfBoostFactor) - |
1348 | 0 | (dfPixelDeltaY * psTransform->adfPLToLatLongGeoTransform[5] * |
1349 | 0 | dfBoostFactor); |
1350 | |
|
1351 | 0 | dfLastResultX = dfResultX; |
1352 | 0 | dfLastResultY = dfResultY; |
1353 | 0 | dfResultX = dfNewResultX; |
1354 | 0 | dfResultY = dfNewResultY; |
1355 | 0 | dfLastPixelDeltaX = dfPixelDeltaX; |
1356 | 0 | dfLastPixelDeltaY = dfPixelDeltaY; |
1357 | 0 | bLastPixelDeltaValid = true; |
1358 | 0 | } |
1359 | 0 | if (fpLog != nullptr) |
1360 | 0 | VSIFCloseL(fpLog); |
1361 | |
|
1362 | 0 | if (iIter != -1) |
1363 | 0 | { |
1364 | 0 | CPLDebug("RPC", "Failed Iterations %d: Got: %.16g,%.16g Offset=%g,%g", |
1365 | 0 | iIter, dfResultX, dfResultY, dfPixelDeltaX, dfPixelDeltaY); |
1366 | 0 | return false; |
1367 | 0 | } |
1368 | | |
1369 | 0 | *pdfLong = dfResultX; |
1370 | 0 | *pdfLat = dfResultY; |
1371 | 0 | return true; |
1372 | 0 | } |
1373 | | |
1374 | | /************************************************************************/ |
1375 | | /* GDALRPCGetDEMHeight() */ |
1376 | | /************************************************************************/ |
1377 | | |
1378 | | static int GDALRPCGetDEMHeight(GDALRPCTransformInfo *psTransform, |
1379 | | const double dfXIn, const double dfYIn, |
1380 | | double *pdfDEMH) |
1381 | 0 | { |
1382 | 0 | GDALRIOResampleAlg eResample = GDALRIOResampleAlg::GRIORA_NearestNeighbour; |
1383 | 0 | switch (psTransform->eResampleAlg) |
1384 | 0 | { |
1385 | 0 | case DEMResampleAlg::DRA_NearestNeighbour: |
1386 | 0 | eResample = GDALRIOResampleAlg::GRIORA_NearestNeighbour; |
1387 | 0 | break; |
1388 | 0 | case DEMResampleAlg::DRA_Bilinear: |
1389 | 0 | eResample = GDALRIOResampleAlg::GRIORA_Bilinear; |
1390 | 0 | break; |
1391 | 0 | case DEMResampleAlg::DRA_CubicSpline: |
1392 | 0 | eResample = GDALRIOResampleAlg::GRIORA_CubicSpline; |
1393 | 0 | break; |
1394 | 0 | } |
1395 | | |
1396 | 0 | std::unique_ptr<DoublePointsCache> cacheDEM{psTransform->poCacheDEM}; |
1397 | 0 | int res = |
1398 | 0 | GDALInterpolateAtPoint(psTransform->poDS->GetRasterBand(1), eResample, |
1399 | 0 | cacheDEM, dfXIn, dfYIn, pdfDEMH, nullptr); |
1400 | 0 | psTransform->poCacheDEM = cacheDEM.release(); |
1401 | 0 | return res; |
1402 | 0 | } |
1403 | | |
1404 | | /************************************************************************/ |
1405 | | /* RPCIsValidLongLat() */ |
1406 | | /************************************************************************/ |
1407 | | |
1408 | | static bool RPCIsValidLongLat(const GDALRPCTransformInfo *psTransform, |
1409 | | double dfLong, double dfLat) |
1410 | 0 | { |
1411 | 0 | if (!psTransform->poRPCFootprintPreparedGeom) |
1412 | 0 | return true; |
1413 | | |
1414 | 0 | OGRPoint p(dfLong, dfLat); |
1415 | 0 | return CPL_TO_BOOL(OGRPreparedGeometryContains( |
1416 | 0 | psTransform->poRPCFootprintPreparedGeom, OGRGeometry::ToHandle(&p))); |
1417 | 0 | } |
1418 | | |
1419 | | /************************************************************************/ |
1420 | | /* GDALRPCTransformWholeLineWithDEM() */ |
1421 | | /************************************************************************/ |
1422 | | |
1423 | | static int |
1424 | | GDALRPCTransformWholeLineWithDEM(const GDALRPCTransformInfo *psTransform, |
1425 | | int nPointCount, double *padfX, double *padfY, |
1426 | | double *padfZ, int *panSuccess, int nXLeft, |
1427 | | int nXWidth, int nYTop, int nYHeight) |
1428 | 0 | { |
1429 | 0 | double *padfDEMBuffer = static_cast<double *>( |
1430 | 0 | VSI_MALLOC3_VERBOSE(sizeof(double), nXWidth, nYHeight)); |
1431 | 0 | if (padfDEMBuffer == nullptr) |
1432 | 0 | { |
1433 | 0 | for (int i = 0; i < nPointCount; i++) |
1434 | 0 | panSuccess[i] = FALSE; |
1435 | 0 | return FALSE; |
1436 | 0 | } |
1437 | 0 | CPLErr eErr = psTransform->poDS->GetRasterBand(1)->RasterIO( |
1438 | 0 | GF_Read, nXLeft, nYTop, nXWidth, nYHeight, padfDEMBuffer, nXWidth, |
1439 | 0 | nYHeight, GDT_Float64, 0, 0, nullptr); |
1440 | 0 | if (eErr != CE_None) |
1441 | 0 | { |
1442 | 0 | for (int i = 0; i < nPointCount; i++) |
1443 | 0 | panSuccess[i] = FALSE; |
1444 | 0 | VSIFree(padfDEMBuffer); |
1445 | 0 | return FALSE; |
1446 | 0 | } |
1447 | | |
1448 | 0 | int bGotNoDataValue = FALSE; |
1449 | 0 | const double dfNoDataValue = |
1450 | 0 | psTransform->poDS->GetRasterBand(1)->GetNoDataValue(&bGotNoDataValue); |
1451 | | |
1452 | | // dfY in pixel center convention. |
1453 | 0 | const double dfY = psTransform->adfDEMReverseGeoTransform[3] + |
1454 | 0 | padfY[0] * psTransform->adfDEMReverseGeoTransform[5] - |
1455 | 0 | 0.5; |
1456 | 0 | const int nY = static_cast<int>(dfY); |
1457 | 0 | const double dfDeltaY = dfY - nY; |
1458 | |
|
1459 | 0 | int bRet = TRUE; |
1460 | 0 | for (int i = 0; i < nPointCount; i++) |
1461 | 0 | { |
1462 | 0 | if (padfX[i] == HUGE_VAL) |
1463 | 0 | { |
1464 | 0 | bRet = FALSE; |
1465 | 0 | panSuccess[i] = FALSE; |
1466 | 0 | continue; |
1467 | 0 | } |
1468 | | |
1469 | 0 | double dfDEMH = 0.0; |
1470 | 0 | const double dfZ_i = padfZ ? padfZ[i] : 0.0; |
1471 | |
|
1472 | 0 | if (psTransform->eResampleAlg == DRA_CubicSpline) |
1473 | 0 | { |
1474 | | // dfX in pixel center convention. |
1475 | 0 | const double dfX = |
1476 | 0 | psTransform->adfDEMReverseGeoTransform[0] + |
1477 | 0 | padfX[i] * psTransform->adfDEMReverseGeoTransform[1] - 0.5; |
1478 | 0 | const int nX = static_cast<int>(dfX); |
1479 | 0 | const double dfDeltaX = dfX - nX; |
1480 | |
|
1481 | 0 | const int nXNew = nX - 1; |
1482 | |
|
1483 | 0 | double dfSumH = 0.0; |
1484 | 0 | double dfSumWeight = 0.0; |
1485 | 0 | for (int k_i = 0; k_i < 4; k_i++) |
1486 | 0 | { |
1487 | | // Loop across the X axis. |
1488 | 0 | for (int k_j = 0; k_j < 4; k_j++) |
1489 | 0 | { |
1490 | | // Calculate the weight for the specified pixel according |
1491 | | // to the bicubic b-spline kernel we're using for |
1492 | | // interpolation. |
1493 | 0 | const int dKernIndX = k_j - 1; |
1494 | 0 | const int dKernIndY = k_i - 1; |
1495 | 0 | const double dfPixelWeight = |
1496 | 0 | CubicSplineKernel(dKernIndX - dfDeltaX) * |
1497 | 0 | CubicSplineKernel(dKernIndY - dfDeltaY); |
1498 | | |
1499 | | // Create a sum of all values |
1500 | | // adjusted for the pixel's calculated weight. |
1501 | 0 | const double dfElev = |
1502 | 0 | padfDEMBuffer[k_i * nXWidth + nXNew - nXLeft + k_j]; |
1503 | 0 | if (bGotNoDataValue && |
1504 | 0 | ARE_REAL_EQUAL(dfNoDataValue, dfElev)) |
1505 | 0 | continue; |
1506 | | |
1507 | 0 | dfSumH += dfElev * dfPixelWeight; |
1508 | 0 | dfSumWeight += dfPixelWeight; |
1509 | 0 | } |
1510 | 0 | } |
1511 | 0 | if (dfSumWeight == 0.0) |
1512 | 0 | { |
1513 | 0 | if (psTransform->bHasDEMMissingValue) |
1514 | 0 | dfDEMH = psTransform->dfDEMMissingValue; |
1515 | 0 | else |
1516 | 0 | { |
1517 | 0 | bRet = FALSE; |
1518 | 0 | panSuccess[i] = FALSE; |
1519 | 0 | continue; |
1520 | 0 | } |
1521 | 0 | } |
1522 | 0 | else |
1523 | 0 | dfDEMH = dfSumH / dfSumWeight; |
1524 | 0 | } |
1525 | 0 | else if (psTransform->eResampleAlg == DRA_Bilinear) |
1526 | 0 | { |
1527 | | // dfX in pixel center convention. |
1528 | 0 | const double dfX = |
1529 | 0 | psTransform->adfDEMReverseGeoTransform[0] + |
1530 | 0 | padfX[i] * psTransform->adfDEMReverseGeoTransform[1] - 0.5; |
1531 | 0 | const int nX = static_cast<int>(dfX); |
1532 | 0 | const double dfDeltaX = dfX - nX; |
1533 | | |
1534 | | // Bilinear interpolation. |
1535 | 0 | double adfElevData[4] = {}; |
1536 | 0 | memcpy(adfElevData, padfDEMBuffer + nX - nXLeft, |
1537 | 0 | 2 * sizeof(double)); |
1538 | 0 | memcpy(adfElevData + 2, padfDEMBuffer + nXWidth + nX - nXLeft, |
1539 | 0 | 2 * sizeof(double)); |
1540 | |
|
1541 | 0 | int bFoundNoDataElev = FALSE; |
1542 | 0 | if (bGotNoDataValue) |
1543 | 0 | { |
1544 | 0 | int k_valid_sample = -1; |
1545 | 0 | for (int k_i = 0; k_i < 4; k_i++) |
1546 | 0 | { |
1547 | 0 | if (ARE_REAL_EQUAL(dfNoDataValue, adfElevData[k_i])) |
1548 | 0 | { |
1549 | 0 | bFoundNoDataElev = TRUE; |
1550 | 0 | } |
1551 | 0 | else if (k_valid_sample < 0) |
1552 | 0 | { |
1553 | 0 | k_valid_sample = k_i; |
1554 | 0 | } |
1555 | 0 | } |
1556 | 0 | if (bFoundNoDataElev) |
1557 | 0 | { |
1558 | 0 | if (k_valid_sample >= 0) |
1559 | 0 | { |
1560 | 0 | if (!RPCIsValidLongLat(psTransform, padfX[i], padfY[i])) |
1561 | 0 | { |
1562 | 0 | bRet = FALSE; |
1563 | 0 | panSuccess[i] = FALSE; |
1564 | 0 | padfX[i] = HUGE_VAL; |
1565 | 0 | padfY[i] = HUGE_VAL; |
1566 | 0 | continue; |
1567 | 0 | } |
1568 | 0 | dfDEMH = adfElevData[k_valid_sample]; |
1569 | 0 | RPCTransformPoint( |
1570 | 0 | psTransform, padfX[i], padfY[i], |
1571 | 0 | dfZ_i + (psTransform->dfHeightOffset + dfDEMH) * |
1572 | 0 | psTransform->dfHeightScale, |
1573 | 0 | padfX + i, padfY + i); |
1574 | |
|
1575 | 0 | panSuccess[i] = TRUE; |
1576 | 0 | continue; |
1577 | 0 | } |
1578 | 0 | else if (psTransform->bHasDEMMissingValue) |
1579 | 0 | { |
1580 | 0 | if (!RPCIsValidLongLat(psTransform, padfX[i], padfY[i])) |
1581 | 0 | { |
1582 | 0 | bRet = FALSE; |
1583 | 0 | panSuccess[i] = FALSE; |
1584 | 0 | padfX[i] = HUGE_VAL; |
1585 | 0 | padfY[i] = HUGE_VAL; |
1586 | 0 | continue; |
1587 | 0 | } |
1588 | 0 | dfDEMH = psTransform->dfDEMMissingValue; |
1589 | 0 | RPCTransformPoint( |
1590 | 0 | psTransform, padfX[i], padfY[i], |
1591 | 0 | dfZ_i + (psTransform->dfHeightOffset + dfDEMH) * |
1592 | 0 | psTransform->dfHeightScale, |
1593 | 0 | padfX + i, padfY + i); |
1594 | |
|
1595 | 0 | panSuccess[i] = TRUE; |
1596 | 0 | continue; |
1597 | 0 | } |
1598 | 0 | else |
1599 | 0 | { |
1600 | 0 | bRet = FALSE; |
1601 | 0 | panSuccess[i] = FALSE; |
1602 | 0 | padfX[i] = HUGE_VAL; |
1603 | 0 | padfY[i] = HUGE_VAL; |
1604 | 0 | continue; |
1605 | 0 | } |
1606 | 0 | } |
1607 | 0 | } |
1608 | 0 | const double dfDeltaX1 = 1.0 - dfDeltaX; |
1609 | 0 | const double dfDeltaY1 = 1.0 - dfDeltaY; |
1610 | |
|
1611 | 0 | const double dfXZ1 = |
1612 | 0 | adfElevData[0] * dfDeltaX1 + adfElevData[1] * dfDeltaX; |
1613 | 0 | const double dfXZ2 = |
1614 | 0 | adfElevData[2] * dfDeltaX1 + adfElevData[3] * dfDeltaX; |
1615 | 0 | const double dfYZ = dfXZ1 * dfDeltaY1 + dfXZ2 * dfDeltaY; |
1616 | 0 | dfDEMH = dfYZ; |
1617 | 0 | } |
1618 | 0 | else |
1619 | 0 | { |
1620 | 0 | const double dfX = |
1621 | 0 | psTransform->adfDEMReverseGeoTransform[0] + |
1622 | 0 | padfX[i] * psTransform->adfDEMReverseGeoTransform[1]; |
1623 | 0 | const int nX = int(dfX); |
1624 | |
|
1625 | 0 | dfDEMH = padfDEMBuffer[nX - nXLeft]; |
1626 | 0 | if (bGotNoDataValue && ARE_REAL_EQUAL(dfNoDataValue, dfDEMH)) |
1627 | 0 | { |
1628 | 0 | if (psTransform->bHasDEMMissingValue) |
1629 | 0 | dfDEMH = psTransform->dfDEMMissingValue; |
1630 | 0 | else |
1631 | 0 | { |
1632 | 0 | bRet = FALSE; |
1633 | 0 | panSuccess[i] = FALSE; |
1634 | 0 | padfX[i] = HUGE_VAL; |
1635 | 0 | padfY[i] = HUGE_VAL; |
1636 | 0 | continue; |
1637 | 0 | } |
1638 | 0 | } |
1639 | 0 | } |
1640 | | |
1641 | 0 | if (!RPCIsValidLongLat(psTransform, padfX[i], padfY[i])) |
1642 | 0 | { |
1643 | 0 | bRet = FALSE; |
1644 | 0 | panSuccess[i] = FALSE; |
1645 | 0 | padfX[i] = HUGE_VAL; |
1646 | 0 | padfY[i] = HUGE_VAL; |
1647 | 0 | continue; |
1648 | 0 | } |
1649 | 0 | RPCTransformPoint(psTransform, padfX[i], padfY[i], |
1650 | 0 | dfZ_i + (psTransform->dfHeightOffset + dfDEMH) * |
1651 | 0 | psTransform->dfHeightScale, |
1652 | 0 | padfX + i, padfY + i); |
1653 | |
|
1654 | 0 | panSuccess[i] = TRUE; |
1655 | 0 | } |
1656 | |
|
1657 | 0 | VSIFree(padfDEMBuffer); |
1658 | |
|
1659 | 0 | return bRet; |
1660 | 0 | } |
1661 | | |
1662 | | /************************************************************************/ |
1663 | | /* GDALRPCOpenDEM() */ |
1664 | | /************************************************************************/ |
1665 | | |
1666 | | static bool GDALRPCOpenDEM(GDALRPCTransformInfo *psTransform) |
1667 | 0 | { |
1668 | 0 | CPLAssert(psTransform->pszDEMPath != nullptr); |
1669 | | |
1670 | 0 | bool bIsValid = false; |
1671 | |
|
1672 | 0 | CPLString osPrevValueConfigOption; |
1673 | 0 | if (psTransform->bApplyDEMVDatumShift) |
1674 | 0 | { |
1675 | 0 | osPrevValueConfigOption = |
1676 | 0 | CPLGetThreadLocalConfigOption("GTIFF_REPORT_COMPD_CS", ""); |
1677 | 0 | CPLSetThreadLocalConfigOption("GTIFF_REPORT_COMPD_CS", "YES"); |
1678 | 0 | } |
1679 | 0 | CPLConfigOptionSetter oSetter("CPL_ALLOW_VSISTDIN", "NO", true); |
1680 | 0 | psTransform->poDS = |
1681 | 0 | GDALDataset::FromHandle(GDALOpen(psTransform->pszDEMPath, GA_ReadOnly)); |
1682 | 0 | if (psTransform->poDS != nullptr && |
1683 | 0 | psTransform->poDS->GetRasterCount() >= 1) |
1684 | 0 | { |
1685 | 0 | OGRSpatialReference oDEMSRS; |
1686 | 0 | if (psTransform->pszDEMSRS != nullptr) |
1687 | 0 | { |
1688 | 0 | oDEMSRS.SetFromUserInput(psTransform->pszDEMSRS); |
1689 | 0 | oDEMSRS.SetAxisMappingStrategy(OAMS_TRADITIONAL_GIS_ORDER); |
1690 | 0 | } |
1691 | |
|
1692 | 0 | auto poDSSpaRefSrc = psTransform->pszDEMSRS != nullptr |
1693 | 0 | ? &oDEMSRS |
1694 | 0 | : psTransform->poDS->GetSpatialRef(); |
1695 | 0 | if (poDSSpaRefSrc) |
1696 | 0 | { |
1697 | 0 | auto poDSSpaRef = poDSSpaRefSrc->Clone(); |
1698 | |
|
1699 | 0 | if (!psTransform->bApplyDEMVDatumShift) |
1700 | 0 | poDSSpaRef->StripVertical(); |
1701 | |
|
1702 | 0 | auto wkt_EPSG_4979 = |
1703 | 0 | "GEODCRS[\"WGS 84\",\n" |
1704 | 0 | " DATUM[\"World Geodetic System 1984\",\n" |
1705 | 0 | " ELLIPSOID[\"WGS 84\",6378137,298.257223563,\n" |
1706 | 0 | " LENGTHUNIT[\"metre\",1]]],\n" |
1707 | 0 | " PRIMEM[\"Greenwich\",0,\n" |
1708 | 0 | " ANGLEUNIT[\"degree\",0.0174532925199433]],\n" |
1709 | 0 | " CS[ellipsoidal,3],\n" |
1710 | 0 | " AXIS[\"geodetic latitude (Lat)\",north,\n" |
1711 | 0 | " ORDER[1],\n" |
1712 | 0 | " ANGLEUNIT[\"degree\",0.0174532925199433]],\n" |
1713 | 0 | " AXIS[\"geodetic longitude (Lon)\",east,\n" |
1714 | 0 | " ORDER[2],\n" |
1715 | 0 | " ANGLEUNIT[\"degree\",0.0174532925199433]],\n" |
1716 | 0 | " AXIS[\"ellipsoidal height (h)\",up,\n" |
1717 | 0 | " ORDER[3],\n" |
1718 | 0 | " LENGTHUNIT[\"metre\",1]],\n" |
1719 | 0 | " AREA[\"World (by country)\"],\n" |
1720 | 0 | " BBOX[-90,-180,90,180],\n" |
1721 | 0 | " ID[\"EPSG\",4979]]"; |
1722 | 0 | OGRSpatialReference *poWGSSpaRef = new OGRSpatialReference( |
1723 | 0 | poDSSpaRef->IsCompound() ? wkt_EPSG_4979 |
1724 | 0 | : SRS_WKT_WGS84_LAT_LONG); |
1725 | 0 | poWGSSpaRef->SetAxisMappingStrategy(OAMS_TRADITIONAL_GIS_ORDER); |
1726 | |
|
1727 | 0 | if (!poWGSSpaRef->IsSame(poDSSpaRef)) |
1728 | 0 | psTransform->poCT = |
1729 | 0 | OGRCreateCoordinateTransformation(poWGSSpaRef, poDSSpaRef); |
1730 | |
|
1731 | 0 | if (psTransform->poCT != nullptr && !poDSSpaRef->IsCompound()) |
1732 | 0 | { |
1733 | | // Empiric attempt to guess if the coordinate transformation |
1734 | | // to WGS84 is a no-op. For example for NED13 datasets in |
1735 | | // NAD83. |
1736 | 0 | double adfX[] = {-179.0, 179.0, 179.0, -179.0, 0.0, 0.0}; |
1737 | 0 | double adfY[] = {89.0, 89.0, -89.0, -89.0, 0.0, 0.0}; |
1738 | 0 | double adfZ[] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; |
1739 | | |
1740 | | // Also test with a "reference point" from the RPC values. |
1741 | 0 | double dfRefLong = 0.0; |
1742 | 0 | double dfRefLat = 0.0; |
1743 | 0 | if (psTransform->sRPC.dfMIN_LONG != -180 || |
1744 | 0 | psTransform->sRPC.dfMAX_LONG != 180) |
1745 | 0 | { |
1746 | 0 | dfRefLong = (psTransform->sRPC.dfMIN_LONG + |
1747 | 0 | psTransform->sRPC.dfMAX_LONG) * |
1748 | 0 | 0.5; |
1749 | 0 | dfRefLat = (psTransform->sRPC.dfMIN_LAT + |
1750 | 0 | psTransform->sRPC.dfMAX_LAT) * |
1751 | 0 | 0.5; |
1752 | 0 | } |
1753 | 0 | else |
1754 | 0 | { |
1755 | 0 | dfRefLong = psTransform->sRPC.dfLONG_OFF; |
1756 | 0 | dfRefLat = psTransform->sRPC.dfLAT_OFF; |
1757 | 0 | } |
1758 | 0 | adfX[5] = dfRefLong; |
1759 | 0 | adfY[5] = dfRefLat; |
1760 | |
|
1761 | 0 | if (psTransform->poCT->Transform(6, adfX, adfY, adfZ) && |
1762 | 0 | fabs(adfX[0] - -179.0) < 1.0e-12 && |
1763 | 0 | fabs(adfY[0] - 89.0) < 1.0e-12 && |
1764 | 0 | fabs(adfX[1] - 179.0) < 1.0e-12 && |
1765 | 0 | fabs(adfY[1] - 89.0) < 1.0e-12 && |
1766 | 0 | fabs(adfX[2] - 179.0) < 1.0e-12 && |
1767 | 0 | fabs(adfY[2] - -89.0) < 1.0e-12 && |
1768 | 0 | fabs(adfX[3] - -179.0) < 1.0e-12 && |
1769 | 0 | fabs(adfY[3] - -89.0) < 1.0e-12 && |
1770 | 0 | fabs(adfX[4] - 0.0) < 1.0e-12 && |
1771 | 0 | fabs(adfY[4] - 0.0) < 1.0e-12 && |
1772 | 0 | fabs(adfX[5] - dfRefLong) < 1.0e-12 && |
1773 | 0 | fabs(adfY[5] - dfRefLat) < 1.0e-12) |
1774 | 0 | { |
1775 | 0 | CPLDebug("RPC", |
1776 | 0 | "Short-circuiting coordinate transformation " |
1777 | 0 | "from DEM SRS to WGS 84 due to apparent nop"); |
1778 | 0 | delete psTransform->poCT; |
1779 | 0 | psTransform->poCT = nullptr; |
1780 | 0 | } |
1781 | 0 | } |
1782 | |
|
1783 | 0 | delete poWGSSpaRef; |
1784 | 0 | delete poDSSpaRef; |
1785 | 0 | } |
1786 | |
|
1787 | 0 | if (psTransform->poDS->GetGeoTransform( |
1788 | 0 | psTransform->adfDEMGeoTransform) == CE_None && |
1789 | 0 | GDALInvGeoTransform(psTransform->adfDEMGeoTransform, |
1790 | 0 | psTransform->adfDEMReverseGeoTransform)) |
1791 | 0 | { |
1792 | 0 | bIsValid = true; |
1793 | 0 | } |
1794 | 0 | } |
1795 | |
|
1796 | 0 | if (psTransform->bApplyDEMVDatumShift) |
1797 | 0 | { |
1798 | 0 | CPLSetThreadLocalConfigOption("GTIFF_REPORT_COMPD_CS", |
1799 | 0 | !osPrevValueConfigOption.empty() |
1800 | 0 | ? osPrevValueConfigOption.c_str() |
1801 | 0 | : nullptr); |
1802 | 0 | } |
1803 | |
|
1804 | 0 | return bIsValid; |
1805 | 0 | } |
1806 | | |
1807 | | /************************************************************************/ |
1808 | | /* GDALRPCTransform() */ |
1809 | | /************************************************************************/ |
1810 | | |
1811 | | /** RPC transform */ |
1812 | | int GDALRPCTransform(void *pTransformArg, int bDstToSrc, int nPointCount, |
1813 | | double *padfX, double *padfY, double *padfZ, |
1814 | | int *panSuccess) |
1815 | | |
1816 | 0 | { |
1817 | 0 | VALIDATE_POINTER1(pTransformArg, "GDALRPCTransform", 0); |
1818 | | |
1819 | 0 | GDALRPCTransformInfo *psTransform = |
1820 | 0 | static_cast<GDALRPCTransformInfo *>(pTransformArg); |
1821 | |
|
1822 | 0 | if (psTransform->bReversed) |
1823 | 0 | bDstToSrc = !bDstToSrc; |
1824 | | |
1825 | | /* -------------------------------------------------------------------- */ |
1826 | | /* The simple case is transforming from lat/long to pixel/line. */ |
1827 | | /* Just apply the equations directly. */ |
1828 | | /* -------------------------------------------------------------------- */ |
1829 | 0 | if (bDstToSrc) |
1830 | 0 | { |
1831 | | // Optimization to avoid doing too many picking in DEM in the particular |
1832 | | // case where each point to transform is on a single line of the DEM. |
1833 | | // To make it simple and fast we check that all input latitudes are |
1834 | | // identical, that the DEM is in WGS84 geodetic and that it has no |
1835 | | // rotation. Such case is for example triggered when doing gdalwarp |
1836 | | // with a target SRS of EPSG:4326 or EPSG:3857. |
1837 | 0 | if (nPointCount >= 10 && psTransform->poDS != nullptr && |
1838 | 0 | psTransform->poCT == nullptr && |
1839 | 0 | padfY[0] == padfY[nPointCount - 1] && |
1840 | 0 | padfY[0] == padfY[nPointCount / 2] && |
1841 | 0 | psTransform->adfDEMReverseGeoTransform[1] > 0.0 && |
1842 | 0 | psTransform->adfDEMReverseGeoTransform[2] == 0.0 && |
1843 | 0 | psTransform->adfDEMReverseGeoTransform[4] == 0.0 && |
1844 | 0 | CPLTestBool(CPLGetConfigOption("GDAL_RPC_DEM_OPTIM", "YES"))) |
1845 | 0 | { |
1846 | 0 | bool bUseOptimized = true; |
1847 | 0 | double dfMinX = padfX[0]; |
1848 | 0 | double dfMaxX = padfX[0]; |
1849 | 0 | for (int i = 1; i < nPointCount; i++) |
1850 | 0 | { |
1851 | 0 | if (padfY[i] != padfY[0]) |
1852 | 0 | { |
1853 | 0 | bUseOptimized = false; |
1854 | 0 | break; |
1855 | 0 | } |
1856 | 0 | if (padfX[i] < dfMinX) |
1857 | 0 | dfMinX = padfX[i]; |
1858 | 0 | if (padfX[i] > dfMaxX) |
1859 | 0 | dfMaxX = padfX[i]; |
1860 | 0 | } |
1861 | 0 | if (bUseOptimized) |
1862 | 0 | { |
1863 | 0 | double dfX1 = 0.0; |
1864 | 0 | double dfY1 = 0.0; |
1865 | 0 | double dfX2 = 0.0; |
1866 | 0 | double dfY2 = 0.0; |
1867 | 0 | GDALApplyGeoTransform(psTransform->adfDEMReverseGeoTransform, |
1868 | 0 | dfMinX, padfY[0], &dfX1, &dfY1); |
1869 | 0 | GDALApplyGeoTransform(psTransform->adfDEMReverseGeoTransform, |
1870 | 0 | dfMaxX, padfY[0], &dfX2, &dfY2); |
1871 | | |
1872 | | // Convert to center of pixel convention for reading the image |
1873 | | // data. |
1874 | 0 | if (psTransform->eResampleAlg != DRA_NearestNeighbour) |
1875 | 0 | { |
1876 | 0 | dfX1 -= 0.5; |
1877 | 0 | dfY1 -= 0.5; |
1878 | 0 | dfX2 -= 0.5; |
1879 | | // dfY2 -= 0.5; |
1880 | 0 | } |
1881 | 0 | int nXLeft = static_cast<int>(floor(dfX1)); |
1882 | 0 | int nXRight = static_cast<int>(floor(dfX2)); |
1883 | 0 | int nXWidth = nXRight - nXLeft + 1; |
1884 | 0 | int nYTop = static_cast<int>(floor(dfY1)); |
1885 | 0 | int nYHeight; |
1886 | 0 | if (psTransform->eResampleAlg == DRA_CubicSpline) |
1887 | 0 | { |
1888 | 0 | nXLeft--; |
1889 | 0 | nXWidth += 3; |
1890 | 0 | nYTop--; |
1891 | 0 | nYHeight = 4; |
1892 | 0 | } |
1893 | 0 | else if (psTransform->eResampleAlg == DRA_Bilinear) |
1894 | 0 | { |
1895 | 0 | nXWidth++; |
1896 | 0 | nYHeight = 2; |
1897 | 0 | } |
1898 | 0 | else |
1899 | 0 | { |
1900 | 0 | nYHeight = 1; |
1901 | 0 | } |
1902 | 0 | if (nXLeft >= 0 && |
1903 | 0 | nXLeft + nXWidth <= psTransform->poDS->GetRasterXSize() && |
1904 | 0 | nYTop >= 0 && |
1905 | 0 | nYTop + nYHeight <= psTransform->poDS->GetRasterYSize()) |
1906 | 0 | { |
1907 | 0 | static bool bOnce = false; |
1908 | 0 | if (!bOnce) |
1909 | 0 | { |
1910 | 0 | bOnce = true; |
1911 | 0 | CPLDebug("RPC", |
1912 | 0 | "Using GDALRPCTransformWholeLineWithDEM"); |
1913 | 0 | } |
1914 | 0 | return GDALRPCTransformWholeLineWithDEM( |
1915 | 0 | psTransform, nPointCount, padfX, padfY, padfZ, |
1916 | 0 | panSuccess, nXLeft, nXWidth, nYTop, nYHeight); |
1917 | 0 | } |
1918 | 0 | } |
1919 | 0 | } |
1920 | | |
1921 | 0 | int bRet = TRUE; |
1922 | 0 | for (int i = 0; i < nPointCount; i++) |
1923 | 0 | { |
1924 | 0 | if (!RPCIsValidLongLat(psTransform, padfX[i], padfY[i])) |
1925 | 0 | { |
1926 | 0 | bRet = FALSE; |
1927 | 0 | panSuccess[i] = FALSE; |
1928 | 0 | padfX[i] = HUGE_VAL; |
1929 | 0 | padfY[i] = HUGE_VAL; |
1930 | 0 | continue; |
1931 | 0 | } |
1932 | 0 | double dfHeight = 0.0; |
1933 | 0 | if (!GDALRPCGetHeightAtLongLat(psTransform, padfX[i], padfY[i], |
1934 | 0 | &dfHeight)) |
1935 | 0 | { |
1936 | 0 | bRet = FALSE; |
1937 | 0 | panSuccess[i] = FALSE; |
1938 | 0 | padfX[i] = HUGE_VAL; |
1939 | 0 | padfY[i] = HUGE_VAL; |
1940 | 0 | continue; |
1941 | 0 | } |
1942 | | |
1943 | 0 | RPCTransformPoint(psTransform, padfX[i], padfY[i], |
1944 | 0 | (padfZ ? padfZ[i] : 0.0) + dfHeight, padfX + i, |
1945 | 0 | padfY + i); |
1946 | 0 | panSuccess[i] = TRUE; |
1947 | 0 | } |
1948 | |
|
1949 | 0 | return bRet; |
1950 | 0 | } |
1951 | | |
1952 | 0 | if (padfZ == nullptr) |
1953 | 0 | { |
1954 | 0 | CPLError(CE_Failure, CPLE_NotSupported, |
1955 | 0 | "Z array should be provided for reverse RPC computation"); |
1956 | 0 | for (int i = 0; i < nPointCount; i++) |
1957 | 0 | panSuccess[i] = FALSE; |
1958 | 0 | return FALSE; |
1959 | 0 | } |
1960 | | |
1961 | | /* -------------------------------------------------------------------- */ |
1962 | | /* Compute the inverse (pixel/line/height to lat/long). This */ |
1963 | | /* function uses an iterative method from an initial linear */ |
1964 | | /* approximation. */ |
1965 | | /* -------------------------------------------------------------------- */ |
1966 | 0 | int bRet = TRUE; |
1967 | 0 | for (int i = 0; i < nPointCount; i++) |
1968 | 0 | { |
1969 | 0 | double dfResultX = 0.0; |
1970 | 0 | double dfResultY = 0.0; |
1971 | |
|
1972 | 0 | if (!RPCInverseTransformPoint(psTransform, padfX[i], padfY[i], padfZ[i], |
1973 | 0 | &dfResultX, &dfResultY)) |
1974 | 0 | { |
1975 | 0 | bRet = FALSE; |
1976 | 0 | panSuccess[i] = FALSE; |
1977 | 0 | padfX[i] = HUGE_VAL; |
1978 | 0 | padfY[i] = HUGE_VAL; |
1979 | 0 | continue; |
1980 | 0 | } |
1981 | 0 | if (!RPCIsValidLongLat(psTransform, padfX[i], padfY[i])) |
1982 | 0 | { |
1983 | 0 | bRet = FALSE; |
1984 | 0 | panSuccess[i] = FALSE; |
1985 | 0 | padfX[i] = HUGE_VAL; |
1986 | 0 | padfY[i] = HUGE_VAL; |
1987 | 0 | continue; |
1988 | 0 | } |
1989 | | |
1990 | 0 | padfX[i] = dfResultX; |
1991 | 0 | padfY[i] = dfResultY; |
1992 | |
|
1993 | 0 | panSuccess[i] = TRUE; |
1994 | 0 | } |
1995 | |
|
1996 | 0 | return bRet; |
1997 | 0 | } |
1998 | | |
1999 | | /************************************************************************/ |
2000 | | /* GDALSerializeRPCTransformer() */ |
2001 | | /************************************************************************/ |
2002 | | |
2003 | | CPLXMLNode *GDALSerializeRPCTransformer(void *pTransformArg) |
2004 | | |
2005 | 0 | { |
2006 | 0 | VALIDATE_POINTER1(pTransformArg, "GDALSerializeRPCTransformer", nullptr); |
2007 | | |
2008 | 0 | GDALRPCTransformInfo *psInfo = |
2009 | 0 | static_cast<GDALRPCTransformInfo *>(pTransformArg); |
2010 | |
|
2011 | 0 | CPLXMLNode *psTree = |
2012 | 0 | CPLCreateXMLNode(nullptr, CXT_Element, "RPCTransformer"); |
2013 | | |
2014 | | /* -------------------------------------------------------------------- */ |
2015 | | /* Serialize bReversed. */ |
2016 | | /* -------------------------------------------------------------------- */ |
2017 | 0 | CPLCreateXMLElementAndValue(psTree, "Reversed", |
2018 | 0 | CPLString().Printf("%d", psInfo->bReversed)); |
2019 | | |
2020 | | /* -------------------------------------------------------------------- */ |
2021 | | /* Serialize Height Offset. */ |
2022 | | /* -------------------------------------------------------------------- */ |
2023 | 0 | CPLCreateXMLElementAndValue( |
2024 | 0 | psTree, "HeightOffset", |
2025 | 0 | CPLString().Printf("%.15g", psInfo->dfHeightOffset)); |
2026 | | |
2027 | | /* -------------------------------------------------------------------- */ |
2028 | | /* Serialize Height Scale. */ |
2029 | | /* -------------------------------------------------------------------- */ |
2030 | 0 | if (psInfo->dfHeightScale != 1.0) |
2031 | 0 | CPLCreateXMLElementAndValue( |
2032 | 0 | psTree, "HeightScale", |
2033 | 0 | CPLString().Printf("%.15g", psInfo->dfHeightScale)); |
2034 | | |
2035 | | /* -------------------------------------------------------------------- */ |
2036 | | /* Serialize DEM path. */ |
2037 | | /* -------------------------------------------------------------------- */ |
2038 | 0 | if (psInfo->pszDEMPath != nullptr) |
2039 | 0 | { |
2040 | 0 | CPLCreateXMLElementAndValue( |
2041 | 0 | psTree, "DEMPath", CPLString().Printf("%s", psInfo->pszDEMPath)); |
2042 | | |
2043 | | /* -------------------------------------------------------------------- |
2044 | | */ |
2045 | | /* Serialize DEM interpolation */ |
2046 | | /* -------------------------------------------------------------------- |
2047 | | */ |
2048 | 0 | CPLCreateXMLElementAndValue( |
2049 | 0 | psTree, "DEMInterpolation", |
2050 | 0 | GDALSerializeRPCDEMResample(psInfo->eResampleAlg)); |
2051 | |
|
2052 | 0 | if (psInfo->bHasDEMMissingValue) |
2053 | 0 | { |
2054 | 0 | CPLCreateXMLElementAndValue( |
2055 | 0 | psTree, "DEMMissingValue", |
2056 | 0 | CPLSPrintf("%.17g", psInfo->dfDEMMissingValue)); |
2057 | 0 | } |
2058 | |
|
2059 | 0 | CPLCreateXMLElementAndValue(psTree, "DEMApplyVDatumShift", |
2060 | 0 | psInfo->bApplyDEMVDatumShift ? "true" |
2061 | 0 | : "false"); |
2062 | | |
2063 | | /* -------------------------------------------------------------------- |
2064 | | */ |
2065 | | /* Serialize DEM SRS */ |
2066 | | /* -------------------------------------------------------------------- |
2067 | | */ |
2068 | 0 | if (psInfo->pszDEMSRS != nullptr) |
2069 | 0 | { |
2070 | 0 | CPLCreateXMLElementAndValue(psTree, "DEMSRS", psInfo->pszDEMSRS); |
2071 | 0 | } |
2072 | 0 | } |
2073 | | |
2074 | | /* -------------------------------------------------------------------- */ |
2075 | | /* Serialize pixel error threshold. */ |
2076 | | /* -------------------------------------------------------------------- */ |
2077 | 0 | CPLCreateXMLElementAndValue( |
2078 | 0 | psTree, "PixErrThreshold", |
2079 | 0 | CPLString().Printf("%.15g", psInfo->dfPixErrThreshold)); |
2080 | | |
2081 | | /* -------------------------------------------------------------------- */ |
2082 | | /* RPC metadata. */ |
2083 | | /* -------------------------------------------------------------------- */ |
2084 | 0 | char **papszMD = RPCInfoV2ToMD(&(psInfo->sRPC)); |
2085 | 0 | CPLXMLNode *psMD = CPLCreateXMLNode(psTree, CXT_Element, "Metadata"); |
2086 | |
|
2087 | 0 | for (int i = 0; papszMD != nullptr && papszMD[i] != nullptr; i++) |
2088 | 0 | { |
2089 | 0 | char *pszKey = nullptr; |
2090 | |
|
2091 | 0 | const char *pszRawValue = CPLParseNameValue(papszMD[i], &pszKey); |
2092 | |
|
2093 | 0 | CPLXMLNode *psMDI = CPLCreateXMLNode(psMD, CXT_Element, "MDI"); |
2094 | 0 | CPLSetXMLValue(psMDI, "#key", pszKey); |
2095 | 0 | CPLCreateXMLNode(psMDI, CXT_Text, pszRawValue); |
2096 | |
|
2097 | 0 | CPLFree(pszKey); |
2098 | 0 | } |
2099 | |
|
2100 | 0 | CSLDestroy(papszMD); |
2101 | |
|
2102 | 0 | return psTree; |
2103 | 0 | } |
2104 | | |
2105 | | /************************************************************************/ |
2106 | | /* GDALDeserializeRPCTransformer() */ |
2107 | | /************************************************************************/ |
2108 | | |
2109 | | void *GDALDeserializeRPCTransformer(CPLXMLNode *psTree) |
2110 | | |
2111 | 0 | { |
2112 | 0 | char **papszOptions = nullptr; |
2113 | | |
2114 | | /* -------------------------------------------------------------------- */ |
2115 | | /* Collect metadata. */ |
2116 | | /* -------------------------------------------------------------------- */ |
2117 | 0 | CPLXMLNode *psMetadata = CPLGetXMLNode(psTree, "Metadata"); |
2118 | |
|
2119 | 0 | if (psMetadata == nullptr || psMetadata->eType != CXT_Element || |
2120 | 0 | !EQUAL(psMetadata->pszValue, "Metadata")) |
2121 | 0 | return nullptr; |
2122 | | |
2123 | 0 | char **papszMD = nullptr; |
2124 | 0 | for (CPLXMLNode *psMDI = psMetadata->psChild; psMDI != nullptr; |
2125 | 0 | psMDI = psMDI->psNext) |
2126 | 0 | { |
2127 | 0 | if (!EQUAL(psMDI->pszValue, "MDI") || psMDI->eType != CXT_Element || |
2128 | 0 | psMDI->psChild == nullptr || psMDI->psChild->psNext == nullptr || |
2129 | 0 | psMDI->psChild->eType != CXT_Attribute || |
2130 | 0 | psMDI->psChild->psChild == nullptr) |
2131 | 0 | continue; |
2132 | | |
2133 | 0 | papszMD = CSLSetNameValue(papszMD, psMDI->psChild->psChild->pszValue, |
2134 | 0 | psMDI->psChild->psNext->pszValue); |
2135 | 0 | } |
2136 | |
|
2137 | 0 | GDALRPCInfoV2 sRPC; |
2138 | 0 | if (!GDALExtractRPCInfoV2(papszMD, &sRPC)) |
2139 | 0 | { |
2140 | 0 | CPLError(CE_Failure, CPLE_AppDefined, |
2141 | 0 | "Failed to reconstitute RPC transformer."); |
2142 | 0 | CSLDestroy(papszMD); |
2143 | 0 | return nullptr; |
2144 | 0 | } |
2145 | | |
2146 | 0 | CSLDestroy(papszMD); |
2147 | | |
2148 | | /* -------------------------------------------------------------------- */ |
2149 | | /* Get other flags. */ |
2150 | | /* -------------------------------------------------------------------- */ |
2151 | 0 | const int bReversed = atoi(CPLGetXMLValue(psTree, "Reversed", "0")); |
2152 | |
|
2153 | 0 | const double dfPixErrThreshold = |
2154 | 0 | CPLAtof(CPLGetXMLValue(psTree, "PixErrThreshold", |
2155 | 0 | CPLSPrintf("%f", DEFAULT_PIX_ERR_THRESHOLD))); |
2156 | |
|
2157 | 0 | papszOptions = CSLSetNameValue(papszOptions, "RPC_HEIGHT", |
2158 | 0 | CPLGetXMLValue(psTree, "HeightOffset", "0")); |
2159 | 0 | papszOptions = CSLSetNameValue(papszOptions, "RPC_HEIGHT_SCALE", |
2160 | 0 | CPLGetXMLValue(psTree, "HeightScale", "1")); |
2161 | 0 | const char *pszDEMPath = CPLGetXMLValue(psTree, "DEMPath", nullptr); |
2162 | 0 | if (pszDEMPath != nullptr) |
2163 | 0 | papszOptions = CSLSetNameValue(papszOptions, "RPC_DEM", pszDEMPath); |
2164 | |
|
2165 | 0 | const char *pszDEMInterpolation = |
2166 | 0 | CPLGetXMLValue(psTree, "DEMInterpolation", "bilinear"); |
2167 | 0 | if (pszDEMInterpolation != nullptr) |
2168 | 0 | papszOptions = CSLSetNameValue(papszOptions, "RPC_DEMINTERPOLATION", |
2169 | 0 | pszDEMInterpolation); |
2170 | |
|
2171 | 0 | const char *pszDEMMissingValue = |
2172 | 0 | CPLGetXMLValue(psTree, "DEMMissingValue", nullptr); |
2173 | 0 | if (pszDEMMissingValue != nullptr) |
2174 | 0 | papszOptions = CSLSetNameValue(papszOptions, "RPC_DEM_MISSING_VALUE", |
2175 | 0 | pszDEMMissingValue); |
2176 | |
|
2177 | 0 | const char *pszDEMApplyVDatumShift = |
2178 | 0 | CPLGetXMLValue(psTree, "DEMApplyVDatumShift", nullptr); |
2179 | 0 | if (pszDEMApplyVDatumShift != nullptr) |
2180 | 0 | papszOptions = CSLSetNameValue( |
2181 | 0 | papszOptions, "RPC_DEM_APPLY_VDATUM_SHIFT", pszDEMApplyVDatumShift); |
2182 | 0 | const char *pszDEMSRS = CPLGetXMLValue(psTree, "DEMSRS", nullptr); |
2183 | 0 | if (pszDEMSRS != nullptr) |
2184 | 0 | papszOptions = CSLSetNameValue(papszOptions, "RPC_DEM_SRS", pszDEMSRS); |
2185 | | |
2186 | | /* -------------------------------------------------------------------- */ |
2187 | | /* Generate transformation. */ |
2188 | | /* -------------------------------------------------------------------- */ |
2189 | 0 | void *pResult = GDALCreateRPCTransformerV2(&sRPC, bReversed, |
2190 | 0 | dfPixErrThreshold, papszOptions); |
2191 | |
|
2192 | 0 | CSLDestroy(papszOptions); |
2193 | |
|
2194 | 0 | return pResult; |
2195 | 0 | } |