/src/gdal/build/frmts/jpeg/libjpeg12/jccoefct12.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * jccoefct.c |
3 | | * |
4 | | * Copyright (C) 1994-1997, Thomas G. Lane. |
5 | | * This file is part of the Independent JPEG Group's software. |
6 | | * For conditions of distribution and use, see the accompanying README file. |
7 | | * |
8 | | * This file contains the coefficient buffer controller for compression. |
9 | | * This controller is the top level of the JPEG compressor proper. |
10 | | * The coefficient buffer lies between forward-DCT and entropy encoding steps. |
11 | | */ |
12 | | |
13 | | #define JPEG_INTERNALS |
14 | | #include "jinclude.h" |
15 | | #include "jpeglib.h" |
16 | | |
17 | | #include "cpl_port.h" |
18 | | |
19 | | /* We use a full-image coefficient buffer when doing Huffman optimization, |
20 | | * and also for writing multiple-scan JPEG files. In all cases, the DCT |
21 | | * step is run during the first pass, and subsequent passes need only read |
22 | | * the buffered coefficients. |
23 | | */ |
24 | | #ifdef ENTROPY_OPT_SUPPORTED |
25 | | #define FULL_COEF_BUFFER_SUPPORTED |
26 | | #else |
27 | | #ifdef C_MULTISCAN_FILES_SUPPORTED |
28 | | #define FULL_COEF_BUFFER_SUPPORTED |
29 | | #endif |
30 | | #endif |
31 | | |
32 | | |
33 | | /* Private buffer controller object */ |
34 | | |
35 | | typedef struct { |
36 | | struct jpeg_c_coef_controller pub; /* public fields */ |
37 | | |
38 | | JDIMENSION iMCU_row_num; /* iMCU row # within image */ |
39 | | JDIMENSION mcu_ctr; /* counts MCUs processed in current row */ |
40 | | int MCU_vert_offset; /* counts MCU rows within iMCU row */ |
41 | | int MCU_rows_per_iMCU_row; /* number of such rows needed */ |
42 | | |
43 | | /* For single-pass compression, it's sufficient to buffer just one MCU |
44 | | * (although this may prove a bit slow in practice). We allocate a |
45 | | * workspace of C_MAX_BLOCKS_IN_MCU coefficient blocks, and reuse it for each |
46 | | * MCU constructed and sent. (On 80x86, the workspace is FAR even though |
47 | | * it's not really very big; this is to keep the module interfaces unchanged |
48 | | * when a large coefficient buffer is necessary.) |
49 | | * In multi-pass modes, this array points to the current MCU's blocks |
50 | | * within the virtual arrays. |
51 | | */ |
52 | | JBLOCKROW MCU_buffer[C_MAX_BLOCKS_IN_MCU]; |
53 | | |
54 | | /* In multi-pass modes, we need a virtual block array for each component. */ |
55 | | jvirt_barray_ptr whole_image[MAX_COMPONENTS]; |
56 | | } my_coef_controller; |
57 | | |
58 | | typedef my_coef_controller * my_coef_ptr; |
59 | | |
60 | | |
61 | | /* Forward declarations */ |
62 | | METHODDEF(boolean) compress_data |
63 | | JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf)); |
64 | | #ifdef FULL_COEF_BUFFER_SUPPORTED |
65 | | METHODDEF(boolean) compress_first_pass |
66 | | JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf)); |
67 | | METHODDEF(boolean) compress_output |
68 | | JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf)); |
69 | | #endif |
70 | | |
71 | | |
72 | | LOCAL(void) |
73 | | start_iMCU_row (j_compress_ptr cinfo) |
74 | | /* Reset within-iMCU-row counters for a new row */ |
75 | 0 | { |
76 | 0 | my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
77 | | |
78 | | /* In an interleaved scan, an MCU row is the same as an iMCU row. |
79 | | * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows. |
80 | | * But at the bottom of the image, process only what's left. |
81 | | */ |
82 | 0 | if (cinfo->comps_in_scan > 1) { |
83 | 0 | coef->MCU_rows_per_iMCU_row = 1; |
84 | 0 | } else { |
85 | 0 | if (coef->iMCU_row_num < (cinfo->total_iMCU_rows-1)) |
86 | 0 | coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor; |
87 | 0 | else |
88 | 0 | coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height; |
89 | 0 | } |
90 | |
|
91 | 0 | coef->mcu_ctr = 0; |
92 | 0 | coef->MCU_vert_offset = 0; |
93 | 0 | } |
94 | | |
95 | | |
96 | | /* |
97 | | * Initialize for a processing pass. |
98 | | */ |
99 | | |
100 | | METHODDEF(void) |
101 | | start_pass_coef (j_compress_ptr cinfo, J_BUF_MODE pass_mode) |
102 | 0 | { |
103 | 0 | my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
104 | |
|
105 | 0 | coef->iMCU_row_num = 0; |
106 | 0 | start_iMCU_row(cinfo); |
107 | |
|
108 | 0 | switch (pass_mode) { |
109 | 0 | case JBUF_PASS_THRU: |
110 | 0 | if (coef->whole_image[0] != NULL) |
111 | 0 | ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); |
112 | 0 | coef->pub.compress_data = compress_data; |
113 | 0 | break; |
114 | 0 | #ifdef FULL_COEF_BUFFER_SUPPORTED |
115 | 0 | case JBUF_SAVE_AND_PASS: |
116 | 0 | if (coef->whole_image[0] == NULL) |
117 | 0 | ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); |
118 | 0 | coef->pub.compress_data = compress_first_pass; |
119 | 0 | break; |
120 | 0 | case JBUF_CRANK_DEST: |
121 | 0 | if (coef->whole_image[0] == NULL) |
122 | 0 | ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); |
123 | 0 | coef->pub.compress_data = compress_output; |
124 | 0 | break; |
125 | 0 | #endif |
126 | 0 | default: |
127 | 0 | ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); |
128 | 0 | break; |
129 | 0 | } |
130 | 0 | } |
131 | | |
132 | | |
133 | | /* |
134 | | * Process some data in the single-pass case. |
135 | | * We process the equivalent of one fully interleaved MCU row ("iMCU" row) |
136 | | * per call, i.e. v_samp_factor block rows for each component in the image. |
137 | | * Returns TRUE if the iMCU row is completed, FALSE if suspended. |
138 | | * |
139 | | * NB: input_buf contains a plane for each component in image, |
140 | | * which we index according to the component's SOF position. |
141 | | */ |
142 | | |
143 | | METHODDEF(boolean) |
144 | | compress_data (j_compress_ptr cinfo, JSAMPIMAGE input_buf) |
145 | 0 | { |
146 | 0 | my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
147 | 0 | JDIMENSION MCU_col_num; /* index of current MCU within row */ |
148 | 0 | JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1; |
149 | 0 | JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; |
150 | 0 | int blkn, bi, ci, yindex, yoffset, blockcnt; |
151 | 0 | JDIMENSION ypos, xpos; |
152 | 0 | jpeg_component_info *compptr; |
153 | | |
154 | | /* Loop to write as much as one whole iMCU row */ |
155 | 0 | for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; |
156 | 0 | yoffset++) { |
157 | 0 | for (MCU_col_num = coef->mcu_ctr; MCU_col_num <= last_MCU_col; |
158 | 0 | MCU_col_num++) { |
159 | | /* Determine where data comes from in input_buf and do the DCT thing. |
160 | | * Each call on forward_DCT processes a horizontal row of DCT blocks |
161 | | * as wide as an MCU; we rely on having allocated the MCU_buffer[] blocks |
162 | | * sequentially. Dummy blocks at the right or bottom edge are filled in |
163 | | * specially. The data in them does not matter for image reconstruction, |
164 | | * so we fill them with values that will encode to the smallest amount of |
165 | | * data, viz: all zeroes in the AC entries, DC entries equal to previous |
166 | | * block's DC value. (Thanks to Thomas Kinsman for this idea.) |
167 | | */ |
168 | 0 | blkn = 0; |
169 | 0 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
170 | 0 | compptr = cinfo->cur_comp_info[ci]; |
171 | 0 | blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width |
172 | 0 | : compptr->last_col_width; |
173 | 0 | xpos = MCU_col_num * compptr->MCU_sample_width; |
174 | 0 | ypos = yoffset * DCTSIZE; /* ypos == (yoffset+yindex) * DCTSIZE */ |
175 | 0 | for (yindex = 0; yindex < compptr->MCU_height; yindex++) { |
176 | 0 | if (coef->iMCU_row_num < last_iMCU_row || |
177 | 0 | yoffset+yindex < compptr->last_row_height) { |
178 | 0 | (*cinfo->fdct->forward_DCT) (cinfo, compptr, |
179 | 0 | input_buf[compptr->component_index], |
180 | 0 | coef->MCU_buffer[blkn], |
181 | 0 | ypos, xpos, (JDIMENSION) blockcnt); |
182 | 0 | if (blockcnt < compptr->MCU_width) { |
183 | | /* Create some dummy blocks at the right edge of the image. */ |
184 | 0 | jzero_far((void FAR *) coef->MCU_buffer[blkn + blockcnt], |
185 | 0 | (compptr->MCU_width - blockcnt) * SIZEOF(JBLOCK)); |
186 | 0 | for (bi = blockcnt; bi < compptr->MCU_width; bi++) { |
187 | 0 | coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn+bi-1][0][0]; |
188 | 0 | } |
189 | 0 | } |
190 | 0 | } else { |
191 | | /* Create a row of dummy blocks at the bottom of the image. */ |
192 | 0 | jzero_far((void FAR *) coef->MCU_buffer[blkn], |
193 | 0 | compptr->MCU_width * SIZEOF(JBLOCK)); |
194 | 0 | for (bi = 0; bi < compptr->MCU_width; bi++) { |
195 | 0 | coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn-1][0][0]; |
196 | 0 | } |
197 | 0 | } |
198 | 0 | blkn += compptr->MCU_width; |
199 | 0 | ypos += DCTSIZE; |
200 | 0 | } |
201 | 0 | } |
202 | | /* Try to write the MCU. In event of a suspension failure, we will |
203 | | * re-DCT the MCU on restart (a bit inefficient, could be fixed...) |
204 | | */ |
205 | 0 | if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) { |
206 | | /* Suspension forced; update state counters and exit */ |
207 | 0 | coef->MCU_vert_offset = yoffset; |
208 | 0 | coef->mcu_ctr = MCU_col_num; |
209 | 0 | return FALSE; |
210 | 0 | } |
211 | 0 | } |
212 | | /* Completed an MCU row, but perhaps not an iMCU row */ |
213 | 0 | coef->mcu_ctr = 0; |
214 | 0 | } |
215 | | /* Completed the iMCU row, advance counters for next one */ |
216 | 0 | coef->iMCU_row_num++; |
217 | 0 | start_iMCU_row(cinfo); |
218 | 0 | return TRUE; |
219 | 0 | } |
220 | | |
221 | | |
222 | | #ifdef FULL_COEF_BUFFER_SUPPORTED |
223 | | |
224 | | /* |
225 | | * Process some data in the first pass of a multi-pass case. |
226 | | * We process the equivalent of one fully interleaved MCU row ("iMCU" row) |
227 | | * per call, i.e. v_samp_factor block rows for each component in the image. |
228 | | * This amount of data is read from the source buffer, DCT'd and quantized, |
229 | | * and saved into the virtual arrays. We also generate suitable dummy blocks |
230 | | * as needed at the right and lower edges. (The dummy blocks are constructed |
231 | | * in the virtual arrays, which have been padded appropriately.) This makes |
232 | | * it possible for subsequent passes not to worry about real vs. dummy blocks. |
233 | | * |
234 | | * We must also emit the data to the entropy encoder. This is conveniently |
235 | | * done by calling compress_output() after we've loaded the current strip |
236 | | * of the virtual arrays. |
237 | | * |
238 | | * NB: input_buf contains a plane for each component in image. All |
239 | | * components are DCT'd and loaded into the virtual arrays in this pass. |
240 | | * However, it may be that only a subset of the components are emitted to |
241 | | * the entropy encoder during this first pass; be careful about looking |
242 | | * at the scan-dependent variables (MCU dimensions, etc). |
243 | | */ |
244 | | |
245 | | METHODDEF(boolean) |
246 | | compress_first_pass (j_compress_ptr cinfo, JSAMPIMAGE input_buf) |
247 | 0 | { |
248 | 0 | my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
249 | 0 | JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; |
250 | 0 | JDIMENSION blocks_across, MCUs_across, MCUindex; |
251 | 0 | int bi, ci, h_samp_factor, block_row, block_rows, ndummy; |
252 | 0 | JCOEF lastDC; |
253 | 0 | jpeg_component_info *compptr; |
254 | 0 | JBLOCKARRAY buffer; |
255 | 0 | JBLOCKROW thisblockrow, lastblockrow; |
256 | |
|
257 | 0 | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
258 | 0 | ci++, compptr++) { |
259 | | /* Align the virtual buffer for this component. */ |
260 | 0 | buffer = (*cinfo->mem->access_virt_barray) |
261 | 0 | ((j_common_ptr) cinfo, coef->whole_image[ci], |
262 | 0 | coef->iMCU_row_num * compptr->v_samp_factor, |
263 | 0 | (JDIMENSION) compptr->v_samp_factor, TRUE); |
264 | | /* Count non-dummy DCT block rows in this iMCU row. */ |
265 | 0 | if (coef->iMCU_row_num < last_iMCU_row) |
266 | 0 | block_rows = compptr->v_samp_factor; |
267 | 0 | else { |
268 | | /* NB: can't use last_row_height here, since may not be set! */ |
269 | 0 | block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor); |
270 | 0 | if (block_rows == 0) block_rows = compptr->v_samp_factor; |
271 | 0 | } |
272 | 0 | blocks_across = compptr->width_in_blocks; |
273 | 0 | h_samp_factor = compptr->h_samp_factor; |
274 | | /* Count number of dummy blocks to be added at the right margin. */ |
275 | 0 | ndummy = (int) (blocks_across % h_samp_factor); |
276 | 0 | if (ndummy > 0) |
277 | 0 | ndummy = h_samp_factor - ndummy; |
278 | | /* Perform DCT for all non-dummy blocks in this iMCU row. Each call |
279 | | * on forward_DCT processes a complete horizontal row of DCT blocks. |
280 | | */ |
281 | 0 | for (block_row = 0; block_row < block_rows; block_row++) { |
282 | 0 | thisblockrow = buffer[block_row]; |
283 | 0 | (*cinfo->fdct->forward_DCT) (cinfo, compptr, |
284 | 0 | input_buf[ci], thisblockrow, |
285 | 0 | (JDIMENSION) (block_row * DCTSIZE), |
286 | 0 | (JDIMENSION) 0, blocks_across); |
287 | 0 | if (ndummy > 0) { |
288 | | /* Create dummy blocks at the right edge of the image. */ |
289 | 0 | thisblockrow += blocks_across; /* => first dummy block */ |
290 | 0 | jzero_far((void FAR *) thisblockrow, ndummy * SIZEOF(JBLOCK)); |
291 | 0 | lastDC = thisblockrow[-1][0]; |
292 | 0 | for (bi = 0; bi < ndummy; bi++) { |
293 | 0 | thisblockrow[bi][0] = lastDC; |
294 | 0 | } |
295 | 0 | } |
296 | 0 | } |
297 | | /* If at end of image, create dummy block rows as needed. |
298 | | * The tricky part here is that within each MCU, we want the DC values |
299 | | * of the dummy blocks to match the last real block's DC value. |
300 | | * This squeezes a few more bytes out of the resulting file... |
301 | | */ |
302 | 0 | if (coef->iMCU_row_num == last_iMCU_row) { |
303 | 0 | blocks_across += ndummy; /* include lower right corner */ |
304 | 0 | MCUs_across = blocks_across / h_samp_factor; |
305 | 0 | for (block_row = block_rows; block_row < compptr->v_samp_factor; |
306 | 0 | block_row++) { |
307 | 0 | thisblockrow = buffer[block_row]; |
308 | 0 | lastblockrow = buffer[block_row-1]; |
309 | 0 | jzero_far((void FAR *) thisblockrow, |
310 | 0 | (size_t) (blocks_across * SIZEOF(JBLOCK))); |
311 | 0 | for (MCUindex = 0; MCUindex < MCUs_across; MCUindex++) { |
312 | 0 | lastDC = lastblockrow[h_samp_factor-1][0]; |
313 | 0 | for (bi = 0; bi < h_samp_factor; bi++) { |
314 | 0 | thisblockrow[bi][0] = lastDC; |
315 | 0 | } |
316 | 0 | thisblockrow += h_samp_factor; /* advance to next MCU in row */ |
317 | 0 | lastblockrow += h_samp_factor; |
318 | 0 | } |
319 | 0 | } |
320 | 0 | } |
321 | 0 | } |
322 | | /* NB: compress_output will increment iMCU_row_num if successful. |
323 | | * A suspension return will result in redoing all the work above next time. |
324 | | */ |
325 | | |
326 | | /* Emit data to the entropy encoder, sharing code with subsequent passes */ |
327 | 0 | return compress_output(cinfo, input_buf); |
328 | 0 | } |
329 | | |
330 | | |
331 | | /* |
332 | | * Process some data in subsequent passes of a multi-pass case. |
333 | | * We process the equivalent of one fully interleaved MCU row ("iMCU" row) |
334 | | * per call, ie, v_samp_factor block rows for each component in the scan. |
335 | | * The data is obtained from the virtual arrays and fed to the entropy coder. |
336 | | * Returns TRUE if the iMCU row is completed, FALSE if suspended. |
337 | | * |
338 | | * NB: input_buf is ignored; it is likely to be a NULL pointer. |
339 | | */ |
340 | | |
341 | | METHODDEF(boolean) |
342 | | compress_output (j_compress_ptr cinfo, CPL_UNUSED JSAMPIMAGE input_buf) |
343 | 0 | { |
344 | 0 | my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
345 | 0 | JDIMENSION MCU_col_num; /* index of current MCU within row */ |
346 | 0 | int blkn, ci, xindex, yindex, yoffset; |
347 | 0 | JDIMENSION start_col; |
348 | 0 | JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN]; |
349 | 0 | JBLOCKROW buffer_ptr; |
350 | 0 | jpeg_component_info *compptr; |
351 | | |
352 | | /* Align the virtual buffers for the components used in this scan. |
353 | | * NB: during first pass, this is safe only because the buffers will |
354 | | * already be aligned properly, so jmemmgr.c won't need to do any I/O. |
355 | | */ |
356 | 0 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
357 | 0 | compptr = cinfo->cur_comp_info[ci]; |
358 | 0 | buffer[ci] = (*cinfo->mem->access_virt_barray) |
359 | 0 | ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index], |
360 | 0 | coef->iMCU_row_num * compptr->v_samp_factor, |
361 | 0 | (JDIMENSION) compptr->v_samp_factor, FALSE); |
362 | 0 | } |
363 | | |
364 | | /* Loop to process one whole iMCU row */ |
365 | 0 | for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; |
366 | 0 | yoffset++) { |
367 | 0 | for (MCU_col_num = coef->mcu_ctr; MCU_col_num < cinfo->MCUs_per_row; |
368 | 0 | MCU_col_num++) { |
369 | | /* Construct list of pointers to DCT blocks belonging to this MCU */ |
370 | 0 | blkn = 0; /* index of current DCT block within MCU */ |
371 | 0 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
372 | 0 | compptr = cinfo->cur_comp_info[ci]; |
373 | 0 | start_col = MCU_col_num * compptr->MCU_width; |
374 | 0 | for (yindex = 0; yindex < compptr->MCU_height; yindex++) { |
375 | 0 | buffer_ptr = buffer[ci][yindex+yoffset] + start_col; |
376 | 0 | for (xindex = 0; xindex < compptr->MCU_width; xindex++) { |
377 | 0 | coef->MCU_buffer[blkn++] = buffer_ptr++; |
378 | 0 | } |
379 | 0 | } |
380 | 0 | } |
381 | | /* Try to write the MCU. */ |
382 | 0 | if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) { |
383 | | /* Suspension forced; update state counters and exit */ |
384 | 0 | coef->MCU_vert_offset = yoffset; |
385 | 0 | coef->mcu_ctr = MCU_col_num; |
386 | 0 | return FALSE; |
387 | 0 | } |
388 | 0 | } |
389 | | /* Completed an MCU row, but perhaps not an iMCU row */ |
390 | 0 | coef->mcu_ctr = 0; |
391 | 0 | } |
392 | | /* Completed the iMCU row, advance counters for next one */ |
393 | 0 | coef->iMCU_row_num++; |
394 | 0 | start_iMCU_row(cinfo); |
395 | 0 | return TRUE; |
396 | 0 | } |
397 | | |
398 | | #endif /* FULL_COEF_BUFFER_SUPPORTED */ |
399 | | |
400 | | |
401 | | /* |
402 | | * Initialize coefficient buffer controller. |
403 | | */ |
404 | | |
405 | | GLOBAL(void) |
406 | | jinit_c_coef_controller (j_compress_ptr cinfo, boolean need_full_buffer) |
407 | 0 | { |
408 | 0 | my_coef_ptr coef; |
409 | |
|
410 | 0 | coef = (my_coef_ptr) |
411 | 0 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
412 | 0 | SIZEOF(my_coef_controller)); |
413 | 0 | cinfo->coef = (struct jpeg_c_coef_controller *) coef; |
414 | 0 | coef->pub.start_pass = start_pass_coef; |
415 | | |
416 | | /* Create the coefficient buffer. */ |
417 | 0 | if (need_full_buffer) { |
418 | 0 | #ifdef FULL_COEF_BUFFER_SUPPORTED |
419 | | /* Allocate a full-image virtual array for each component, */ |
420 | | /* padded to a multiple of samp_factor DCT blocks in each direction. */ |
421 | 0 | int ci; |
422 | 0 | jpeg_component_info *compptr; |
423 | |
|
424 | 0 | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
425 | 0 | ci++, compptr++) { |
426 | 0 | coef->whole_image[ci] = (*cinfo->mem->request_virt_barray) |
427 | 0 | ((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE, |
428 | 0 | (JDIMENSION) jround_up((long) compptr->width_in_blocks, |
429 | 0 | (long) compptr->h_samp_factor), |
430 | 0 | (JDIMENSION) jround_up((long) compptr->height_in_blocks, |
431 | 0 | (long) compptr->v_samp_factor), |
432 | 0 | (JDIMENSION) compptr->v_samp_factor); |
433 | 0 | } |
434 | | #else |
435 | | ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); |
436 | | #endif |
437 | 0 | } else { |
438 | | /* We only need a single-MCU buffer. */ |
439 | 0 | JBLOCKROW buffer; |
440 | 0 | int i; |
441 | |
|
442 | 0 | buffer = (JBLOCKROW) |
443 | 0 | (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
444 | 0 | C_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK)); |
445 | 0 | for (i = 0; i < C_MAX_BLOCKS_IN_MCU; i++) { |
446 | 0 | coef->MCU_buffer[i] = buffer + i; |
447 | 0 | } |
448 | 0 | coef->whole_image[0] = NULL; /* flag for no virtual arrays */ |
449 | 0 | } |
450 | 0 | } |