/src/gdal/build/frmts/jpeg/libjpeg12/jchuff12.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * jchuff.c |
3 | | * |
4 | | * Copyright (C) 1991-1997, Thomas G. Lane. |
5 | | * This file is part of the Independent JPEG Group's software. |
6 | | * For conditions of distribution and use, see the accompanying README file. |
7 | | * |
8 | | * This file contains Huffman entropy encoding routines. |
9 | | * |
10 | | * Much of the complexity here has to do with supporting output suspension. |
11 | | * If the data destination module demands suspension, we want to be able to |
12 | | * back up to the start of the current MCU. To do this, we copy state |
13 | | * variables into local working storage, and update them back to the |
14 | | * permanent JPEG objects only upon successful completion of an MCU. |
15 | | */ |
16 | | |
17 | | #define JPEG_INTERNALS |
18 | | #include "jinclude.h" |
19 | | #include "jpeglib.h" |
20 | | #include "jchuff.h" /* Declarations shared with jcphuff.c */ |
21 | | |
22 | | |
23 | | /* Expanded entropy encoder object for Huffman encoding. |
24 | | * |
25 | | * The savable_state subrecord contains fields that change within an MCU, |
26 | | * but must not be updated permanently until we complete the MCU. |
27 | | */ |
28 | | |
29 | | typedef struct { |
30 | | unsigned int put_buffer; /* current bit-accumulation buffer */ |
31 | | int put_bits; /* # of bits now in it */ |
32 | | int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ |
33 | | } savable_state; |
34 | | |
35 | | /* This macro is to work around compilers with missing or broken |
36 | | * structure assignment. You'll need to fix this code if you have |
37 | | * such a compiler and you change MAX_COMPS_IN_SCAN. |
38 | | */ |
39 | | |
40 | | #ifndef NO_STRUCT_ASSIGN |
41 | 0 | #define ASSIGN_STATE(dest,src) ((dest) = (src)) |
42 | | #else |
43 | | #if MAX_COMPS_IN_SCAN == 4 |
44 | | #define ASSIGN_STATE(dest,src) \ |
45 | | ((dest).put_buffer = (src).put_buffer, \ |
46 | | (dest).put_bits = (src).put_bits, \ |
47 | | (dest).last_dc_val[0] = (src).last_dc_val[0], \ |
48 | | (dest).last_dc_val[1] = (src).last_dc_val[1], \ |
49 | | (dest).last_dc_val[2] = (src).last_dc_val[2], \ |
50 | | (dest).last_dc_val[3] = (src).last_dc_val[3]) |
51 | | #endif |
52 | | #endif |
53 | | |
54 | | |
55 | | typedef struct { |
56 | | struct jpeg_entropy_encoder pub; /* public fields */ |
57 | | |
58 | | savable_state saved; /* Bit buffer & DC state at start of MCU */ |
59 | | |
60 | | /* These fields are NOT loaded into local working state. */ |
61 | | unsigned int restarts_to_go; /* MCUs left in this restart interval */ |
62 | | int next_restart_num; /* next restart number to write (0-7) */ |
63 | | |
64 | | /* Pointers to derived tables (these workspaces have image lifespan) */ |
65 | | c_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS]; |
66 | | c_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS]; |
67 | | |
68 | | #ifdef ENTROPY_OPT_SUPPORTED /* Statistics tables for optimization */ |
69 | | long * dc_count_ptrs[NUM_HUFF_TBLS]; |
70 | | long * ac_count_ptrs[NUM_HUFF_TBLS]; |
71 | | #endif |
72 | | } huff_entropy_encoder; |
73 | | |
74 | | typedef huff_entropy_encoder * huff_entropy_ptr; |
75 | | |
76 | | /* Working state while writing an MCU. |
77 | | * This struct contains all the fields that are needed by subroutines. |
78 | | */ |
79 | | |
80 | | typedef struct { |
81 | | JOCTET * next_output_byte; /* => next byte to write in buffer */ |
82 | | size_t free_in_buffer; /* # of byte spaces remaining in buffer */ |
83 | | savable_state cur; /* Current bit buffer & DC state */ |
84 | | j_compress_ptr cinfo; /* dump_buffer needs access to this */ |
85 | | } working_state; |
86 | | |
87 | | |
88 | | /* Forward declarations */ |
89 | | METHODDEF(boolean) encode_mcu_huff JPP((j_compress_ptr cinfo, |
90 | | JBLOCKROW *MCU_data)); |
91 | | METHODDEF(void) finish_pass_huff JPP((j_compress_ptr cinfo)); |
92 | | #ifdef ENTROPY_OPT_SUPPORTED |
93 | | METHODDEF(boolean) encode_mcu_gather JPP((j_compress_ptr cinfo, |
94 | | JBLOCKROW *MCU_data)); |
95 | | METHODDEF(void) finish_pass_gather JPP((j_compress_ptr cinfo)); |
96 | | #endif |
97 | | |
98 | | |
99 | | /* |
100 | | * Initialize for a Huffman-compressed scan. |
101 | | * If gather_statistics is TRUE, we do not output anything during the scan, |
102 | | * just count the Huffman symbols used and generate Huffman code tables. |
103 | | */ |
104 | | |
105 | | METHODDEF(void) |
106 | | start_pass_huff (j_compress_ptr cinfo, boolean gather_statistics) |
107 | 0 | { |
108 | 0 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
109 | 0 | int ci, dctbl, actbl; |
110 | 0 | jpeg_component_info * compptr; |
111 | |
|
112 | 0 | if (gather_statistics) { |
113 | 0 | #ifdef ENTROPY_OPT_SUPPORTED |
114 | 0 | entropy->pub.encode_mcu = encode_mcu_gather; |
115 | 0 | entropy->pub.finish_pass = finish_pass_gather; |
116 | | #else |
117 | | ERREXIT(cinfo, JERR_NOT_COMPILED); |
118 | | #endif |
119 | 0 | } else { |
120 | 0 | entropy->pub.encode_mcu = encode_mcu_huff; |
121 | 0 | entropy->pub.finish_pass = finish_pass_huff; |
122 | 0 | } |
123 | |
|
124 | 0 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
125 | 0 | compptr = cinfo->cur_comp_info[ci]; |
126 | 0 | dctbl = compptr->dc_tbl_no; |
127 | 0 | actbl = compptr->ac_tbl_no; |
128 | 0 | if (gather_statistics) { |
129 | 0 | #ifdef ENTROPY_OPT_SUPPORTED |
130 | | /* Check for invalid table indexes */ |
131 | | /* (make_c_derived_tbl does this in the other path) */ |
132 | 0 | if (dctbl < 0 || dctbl >= NUM_HUFF_TBLS) |
133 | 0 | ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, dctbl); |
134 | 0 | if (actbl < 0 || actbl >= NUM_HUFF_TBLS) |
135 | 0 | ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, actbl); |
136 | | /* Allocate and zero the statistics tables */ |
137 | | /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */ |
138 | 0 | if (entropy->dc_count_ptrs[dctbl] == NULL) |
139 | 0 | entropy->dc_count_ptrs[dctbl] = (long *) |
140 | 0 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
141 | 0 | 257 * SIZEOF(long)); |
142 | 0 | MEMZERO(entropy->dc_count_ptrs[dctbl], 257 * SIZEOF(long)); |
143 | 0 | if (entropy->ac_count_ptrs[actbl] == NULL) |
144 | 0 | entropy->ac_count_ptrs[actbl] = (long *) |
145 | 0 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
146 | 0 | 257 * SIZEOF(long)); |
147 | 0 | MEMZERO(entropy->ac_count_ptrs[actbl], 257 * SIZEOF(long)); |
148 | 0 | #endif |
149 | 0 | } else { |
150 | | /* Compute derived values for Huffman tables */ |
151 | | /* We may do this more than once for a table, but it's not expensive */ |
152 | 0 | jpeg_make_c_derived_tbl(cinfo, TRUE, dctbl, |
153 | 0 | & entropy->dc_derived_tbls[dctbl]); |
154 | 0 | jpeg_make_c_derived_tbl(cinfo, FALSE, actbl, |
155 | 0 | & entropy->ac_derived_tbls[actbl]); |
156 | 0 | } |
157 | | /* Initialize DC predictions to 0 */ |
158 | 0 | entropy->saved.last_dc_val[ci] = 0; |
159 | 0 | } |
160 | | |
161 | | /* Initialize bit buffer to empty */ |
162 | 0 | entropy->saved.put_buffer = 0; |
163 | 0 | entropy->saved.put_bits = 0; |
164 | | |
165 | | /* Initialize restart stuff */ |
166 | 0 | entropy->restarts_to_go = cinfo->restart_interval; |
167 | 0 | entropy->next_restart_num = 0; |
168 | 0 | } |
169 | | |
170 | | |
171 | | /* |
172 | | * Compute the derived values for a Huffman table. |
173 | | * This routine also performs some validation checks on the table. |
174 | | * |
175 | | * Note this is also used by jcphuff.c. |
176 | | */ |
177 | | |
178 | | GLOBAL(void) |
179 | | jpeg_make_c_derived_tbl (j_compress_ptr cinfo, boolean isDC, int tblno, |
180 | | c_derived_tbl ** pdtbl) |
181 | 0 | { |
182 | 0 | JHUFF_TBL *htbl; |
183 | 0 | c_derived_tbl *dtbl; |
184 | 0 | int p, i, l, lastp, si, maxsymbol; |
185 | 0 | char huffsize[257]; |
186 | 0 | unsigned int huffcode[257]; |
187 | 0 | unsigned int code; |
188 | | |
189 | | /* Note that huffsize[] and huffcode[] are filled in code-length order, |
190 | | * paralleling the order of the symbols themselves in htbl->huffval[]. |
191 | | */ |
192 | | |
193 | | /* Find the input Huffman table */ |
194 | 0 | if (tblno < 0 || tblno >= NUM_HUFF_TBLS) |
195 | 0 | ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); |
196 | 0 | htbl = |
197 | 0 | isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno]; |
198 | 0 | if (htbl == NULL) |
199 | 0 | ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); |
200 | | |
201 | | /* Allocate a workspace if we haven't already done so. */ |
202 | 0 | if (*pdtbl == NULL) |
203 | 0 | *pdtbl = (c_derived_tbl *) |
204 | 0 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
205 | 0 | SIZEOF(c_derived_tbl)); |
206 | 0 | dtbl = *pdtbl; |
207 | | |
208 | | /* Figure C.1: make table of Huffman code length for each symbol */ |
209 | |
|
210 | 0 | p = 0; |
211 | 0 | for (l = 1; l <= 16; l++) { |
212 | 0 | i = (int) htbl->bits[l]; |
213 | 0 | if (i < 0 || p + i > 256) /* protect against table overrun */ |
214 | 0 | ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); |
215 | 0 | while (i--) |
216 | 0 | huffsize[p++] = (char) l; |
217 | 0 | } |
218 | 0 | huffsize[p] = 0; |
219 | 0 | lastp = p; |
220 | | |
221 | | /* Figure C.2: generate the codes themselves */ |
222 | | /* We also validate that the counts represent a legal Huffman code tree. */ |
223 | |
|
224 | 0 | code = 0; |
225 | 0 | si = huffsize[0]; |
226 | 0 | p = 0; |
227 | 0 | while (huffsize[p]) { |
228 | 0 | while (((int) huffsize[p]) == si) { |
229 | 0 | huffcode[p++] = code; |
230 | 0 | code++; |
231 | 0 | } |
232 | | /* code is now 1 more than the last code used for codelength si; but |
233 | | * it must still fit in si bits, since no code is allowed to be all ones. |
234 | | */ |
235 | 0 | if (((INT32) code) >= (((INT32) 1) << si)) |
236 | 0 | ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); |
237 | 0 | code <<= 1; |
238 | 0 | si++; |
239 | 0 | } |
240 | | |
241 | | /* Figure C.3: generate encoding tables */ |
242 | | /* These are code and size indexed by symbol value */ |
243 | | |
244 | | /* Set all codeless symbols to have code length 0; |
245 | | * this lets us detect duplicate VAL entries here, and later |
246 | | * allows emit_bits to detect any attempt to emit such symbols. |
247 | | */ |
248 | 0 | MEMZERO(dtbl->ehufsi, SIZEOF(dtbl->ehufsi)); |
249 | | |
250 | | /* This is also a convenient place to check for out-of-range |
251 | | * and duplicated VAL entries. We allow 0..255 for AC symbols |
252 | | * but only 0..15 for DC. (We could constrain them further |
253 | | * based on data depth and mode, but this seems enough.) |
254 | | */ |
255 | 0 | maxsymbol = isDC ? 15 : 255; |
256 | |
|
257 | 0 | for (p = 0; p < lastp; p++) { |
258 | 0 | i = htbl->huffval[p]; |
259 | 0 | if (i < 0 || i > maxsymbol || dtbl->ehufsi[i]) |
260 | 0 | ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); |
261 | 0 | dtbl->ehufco[i] = huffcode[p]; |
262 | 0 | dtbl->ehufsi[i] = huffsize[p]; |
263 | 0 | } |
264 | 0 | } |
265 | | |
266 | | |
267 | | /* Outputting bytes to the file */ |
268 | | |
269 | | /* Emit a byte, taking 'action' if must suspend. */ |
270 | | #define emit_byte(state,val,action) \ |
271 | 0 | { *(state)->next_output_byte++ = (JOCTET) (val); \ |
272 | 0 | if (--(state)->free_in_buffer == 0) \ |
273 | 0 | if (! dump_buffer(state)) \ |
274 | 0 | { action; } } |
275 | | |
276 | | |
277 | | LOCAL(boolean) |
278 | | dump_buffer (working_state * state) |
279 | | /* Empty the output buffer; return TRUE if successful, FALSE if must suspend */ |
280 | 0 | { |
281 | 0 | struct jpeg_destination_mgr * dest = state->cinfo->dest; |
282 | |
|
283 | 0 | dest->next_output_byte = state->next_output_byte; |
284 | 0 | dest->free_in_buffer = state->free_in_buffer; |
285 | | |
286 | 0 | if (! (*dest->empty_output_buffer) (state->cinfo)) |
287 | 0 | return FALSE; |
288 | | /* After a successful buffer dump, must reset buffer pointers */ |
289 | 0 | state->next_output_byte = dest->next_output_byte; |
290 | 0 | state->free_in_buffer = dest->free_in_buffer; |
291 | 0 | return TRUE; |
292 | 0 | } |
293 | | |
294 | | |
295 | | /* Outputting bits to the file */ |
296 | | |
297 | | /* Only the right 24 bits of put_buffer are used; the valid bits are |
298 | | * left-justified in this part. At most 16 bits can be passed to emit_bits |
299 | | * in one call, and we never retain more than 7 bits in put_buffer |
300 | | * between calls, so 24 bits are sufficient. |
301 | | */ |
302 | | |
303 | | INLINE |
304 | | LOCAL(boolean) |
305 | | emit_bits (working_state * state, unsigned int code, int size) |
306 | | /* Emit some bits; return TRUE if successful, FALSE if must suspend */ |
307 | 0 | { |
308 | | /* This routine is heavily used, so it's worth coding tightly. */ |
309 | 0 | register unsigned int put_buffer = code; |
310 | 0 | register int put_bits = state->cur.put_bits; |
311 | | |
312 | | /* if size is 0, caller used an invalid Huffman table entry */ |
313 | 0 | if (size == 0) |
314 | 0 | ERREXIT(state->cinfo, JERR_HUFF_MISSING_CODE); |
315 | |
|
316 | 0 | put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */ |
317 | | |
318 | 0 | put_bits += size; /* new number of bits in buffer */ |
319 | | |
320 | 0 | put_buffer <<= 24 - put_bits; /* align incoming bits */ |
321 | |
|
322 | 0 | put_buffer |= state->cur.put_buffer; /* and merge with old buffer contents */ |
323 | | |
324 | 0 | while (put_bits >= 8) { |
325 | 0 | int c = (int) ((put_buffer >> 16) & 0xFF); |
326 | | |
327 | 0 | emit_byte(state, c, return FALSE); |
328 | 0 | if (c == 0xFF) { /* need to stuff a zero byte? */ |
329 | 0 | emit_byte(state, 0, return FALSE); |
330 | 0 | } |
331 | 0 | put_buffer <<= 8; |
332 | 0 | put_bits -= 8; |
333 | 0 | } |
334 | | |
335 | 0 | state->cur.put_buffer = put_buffer; /* update state variables */ |
336 | 0 | state->cur.put_bits = put_bits; |
337 | |
|
338 | 0 | return TRUE; |
339 | 0 | } |
340 | | |
341 | | |
342 | | LOCAL(boolean) |
343 | | flush_bits (working_state * state) |
344 | 0 | { |
345 | 0 | if (! emit_bits(state, 0x7F, 7)) /* fill any partial byte with ones */ |
346 | 0 | return FALSE; |
347 | 0 | state->cur.put_buffer = 0; /* and reset bit-buffer to empty */ |
348 | 0 | state->cur.put_bits = 0; |
349 | 0 | return TRUE; |
350 | 0 | } |
351 | | |
352 | | |
353 | | /* Encode a single block's worth of coefficients */ |
354 | | |
355 | | LOCAL(boolean) |
356 | | encode_one_block (working_state * state, JCOEFPTR block, int last_dc_val, |
357 | | c_derived_tbl *dctbl, c_derived_tbl *actbl) |
358 | 0 | { |
359 | 0 | register int temp, temp2; |
360 | 0 | register int nbits; |
361 | 0 | register int k, r, i; |
362 | | |
363 | | /* Encode the DC coefficient difference per section F.1.2.1 */ |
364 | | |
365 | 0 | temp = temp2 = block[0] - last_dc_val; |
366 | |
|
367 | 0 | if (temp < 0) { |
368 | 0 | temp = -temp; /* temp is abs value of input */ |
369 | | /* For a negative input, want temp2 = bitwise complement of abs(input) */ |
370 | | /* This code assumes we are on a two's complement machine */ |
371 | 0 | temp2--; |
372 | 0 | } |
373 | | |
374 | | /* Find the number of bits needed for the magnitude of the coefficient */ |
375 | 0 | nbits = 0; |
376 | 0 | while (temp) { |
377 | 0 | nbits++; |
378 | 0 | temp >>= 1; |
379 | 0 | } |
380 | | /* Check for out-of-range coefficient values. |
381 | | * Since we're encoding a difference, the range limit is twice as much. |
382 | | */ |
383 | 0 | if (nbits > MAX_COEF_BITS+1) |
384 | 0 | ERREXIT(state->cinfo, JERR_BAD_DCT_COEF); |
385 | | |
386 | | /* Emit the Huffman-coded symbol for the number of bits */ |
387 | 0 | if (! emit_bits(state, dctbl->ehufco[nbits], dctbl->ehufsi[nbits])) |
388 | 0 | return FALSE; |
389 | | |
390 | | /* Emit that number of bits of the value, if positive, */ |
391 | | /* or the complement of its magnitude, if negative. */ |
392 | 0 | if (nbits) /* emit_bits rejects calls with size 0 */ |
393 | 0 | if (! emit_bits(state, (unsigned int) temp2, nbits)) |
394 | 0 | return FALSE; |
395 | | |
396 | | /* Encode the AC coefficients per section F.1.2.2 */ |
397 | | |
398 | 0 | r = 0; /* r = run length of zeros */ |
399 | | |
400 | 0 | for (k = 1; k < DCTSIZE2; k++) { |
401 | 0 | if ((temp = block[jpeg_natural_order[k]]) == 0) { |
402 | 0 | r++; |
403 | 0 | } else { |
404 | | /* if run length > 15, must emit special run-length-16 codes (0xF0) */ |
405 | 0 | while (r > 15) { |
406 | 0 | if (! emit_bits(state, actbl->ehufco[0xF0], actbl->ehufsi[0xF0])) |
407 | 0 | return FALSE; |
408 | 0 | r -= 16; |
409 | 0 | } |
410 | | |
411 | 0 | temp2 = temp; |
412 | 0 | if (temp < 0) { |
413 | 0 | temp = -temp; /* temp is abs value of input */ |
414 | | /* This code assumes we are on a two's complement machine */ |
415 | 0 | temp2--; |
416 | 0 | } |
417 | | |
418 | | /* Find the number of bits needed for the magnitude of the coefficient */ |
419 | 0 | nbits = 1; /* there must be at least one 1 bit */ |
420 | 0 | while ((temp >>= 1)) |
421 | 0 | nbits++; |
422 | | /* Check for out-of-range coefficient values */ |
423 | 0 | if (nbits > MAX_COEF_BITS) |
424 | 0 | ERREXIT(state->cinfo, JERR_BAD_DCT_COEF); |
425 | | |
426 | | /* Emit Huffman symbol for run length / number of bits */ |
427 | 0 | i = (r << 4) + nbits; |
428 | 0 | if (! emit_bits(state, actbl->ehufco[i], actbl->ehufsi[i])) |
429 | 0 | return FALSE; |
430 | | |
431 | | /* Emit that number of bits of the value, if positive, */ |
432 | | /* or the complement of its magnitude, if negative. */ |
433 | 0 | if (! emit_bits(state, (unsigned int) temp2, nbits)) |
434 | 0 | return FALSE; |
435 | | |
436 | 0 | r = 0; |
437 | 0 | } |
438 | 0 | } |
439 | | |
440 | | /* If the last coef(s) were zero, emit an end-of-block code */ |
441 | 0 | if (r > 0) |
442 | 0 | if (! emit_bits(state, actbl->ehufco[0], actbl->ehufsi[0])) |
443 | 0 | return FALSE; |
444 | | |
445 | 0 | return TRUE; |
446 | 0 | } |
447 | | |
448 | | |
449 | | /* |
450 | | * Emit a restart marker & resynchronize predictions. |
451 | | */ |
452 | | |
453 | | LOCAL(boolean) |
454 | | emit_restart (working_state * state, int restart_num) |
455 | 0 | { |
456 | 0 | int ci; |
457 | |
|
458 | 0 | if (! flush_bits(state)) |
459 | 0 | return FALSE; |
460 | | |
461 | 0 | emit_byte(state, 0xFF, return FALSE); |
462 | 0 | emit_byte(state, JPEG_RST0 + restart_num, return FALSE); |
463 | | |
464 | | /* Re-initialize DC predictions to 0 */ |
465 | 0 | for (ci = 0; ci < state->cinfo->comps_in_scan; ci++) |
466 | 0 | state->cur.last_dc_val[ci] = 0; |
467 | | |
468 | | /* The restart counter is not updated until we successfully write the MCU. */ |
469 | |
|
470 | 0 | return TRUE; |
471 | 0 | } |
472 | | |
473 | | |
474 | | /* |
475 | | * Encode and output one MCU's worth of Huffman-compressed coefficients. |
476 | | */ |
477 | | |
478 | | METHODDEF(boolean) |
479 | | encode_mcu_huff (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
480 | 0 | { |
481 | 0 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
482 | 0 | working_state state; |
483 | 0 | int blkn, ci; |
484 | 0 | jpeg_component_info * compptr; |
485 | | |
486 | | /* Load up working state */ |
487 | 0 | state.next_output_byte = cinfo->dest->next_output_byte; |
488 | 0 | state.free_in_buffer = cinfo->dest->free_in_buffer; |
489 | 0 | ASSIGN_STATE(state.cur, entropy->saved); |
490 | 0 | state.cinfo = cinfo; |
491 | | |
492 | | /* Emit restart marker if needed */ |
493 | 0 | if (cinfo->restart_interval) { |
494 | 0 | if (entropy->restarts_to_go == 0) |
495 | 0 | if (! emit_restart(&state, entropy->next_restart_num)) |
496 | 0 | return FALSE; |
497 | 0 | } |
498 | | |
499 | | /* Encode the MCU data blocks */ |
500 | 0 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
501 | 0 | ci = cinfo->MCU_membership[blkn]; |
502 | 0 | compptr = cinfo->cur_comp_info[ci]; |
503 | 0 | if (! encode_one_block(&state, |
504 | 0 | MCU_data[blkn][0], state.cur.last_dc_val[ci], |
505 | 0 | entropy->dc_derived_tbls[compptr->dc_tbl_no], |
506 | 0 | entropy->ac_derived_tbls[compptr->ac_tbl_no])) |
507 | 0 | return FALSE; |
508 | | /* Update last_dc_val */ |
509 | 0 | state.cur.last_dc_val[ci] = MCU_data[blkn][0][0]; |
510 | 0 | } |
511 | | |
512 | | /* Completed MCU, so update state */ |
513 | 0 | cinfo->dest->next_output_byte = state.next_output_byte; |
514 | 0 | cinfo->dest->free_in_buffer = state.free_in_buffer; |
515 | 0 | ASSIGN_STATE(entropy->saved, state.cur); |
516 | | |
517 | | /* Update restart-interval state too */ |
518 | 0 | if (cinfo->restart_interval) { |
519 | 0 | if (entropy->restarts_to_go == 0) { |
520 | 0 | entropy->restarts_to_go = cinfo->restart_interval; |
521 | 0 | entropy->next_restart_num++; |
522 | 0 | entropy->next_restart_num &= 7; |
523 | 0 | } |
524 | 0 | entropy->restarts_to_go--; |
525 | 0 | } |
526 | |
|
527 | 0 | return TRUE; |
528 | 0 | } |
529 | | |
530 | | |
531 | | /* |
532 | | * Finish up at the end of a Huffman-compressed scan. |
533 | | */ |
534 | | |
535 | | METHODDEF(void) |
536 | | finish_pass_huff (j_compress_ptr cinfo) |
537 | 0 | { |
538 | 0 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
539 | 0 | working_state state; |
540 | | |
541 | | /* Load up working state ... flush_bits needs it */ |
542 | 0 | state.next_output_byte = cinfo->dest->next_output_byte; |
543 | 0 | state.free_in_buffer = cinfo->dest->free_in_buffer; |
544 | 0 | ASSIGN_STATE(state.cur, entropy->saved); |
545 | 0 | state.cinfo = cinfo; |
546 | | |
547 | | /* Flush out the last data */ |
548 | 0 | if (! flush_bits(&state)) |
549 | 0 | ERREXIT(cinfo, JERR_CANT_SUSPEND); |
550 | | |
551 | | /* Update state */ |
552 | 0 | cinfo->dest->next_output_byte = state.next_output_byte; |
553 | 0 | cinfo->dest->free_in_buffer = state.free_in_buffer; |
554 | 0 | ASSIGN_STATE(entropy->saved, state.cur); |
555 | 0 | } |
556 | | |
557 | | |
558 | | /* |
559 | | * Huffman coding optimization. |
560 | | * |
561 | | * We first scan the supplied data and count the number of uses of each symbol |
562 | | * that is to be Huffman-coded. (This process MUST agree with the code above.) |
563 | | * Then we build a Huffman coding tree for the observed counts. |
564 | | * Symbols which are not needed at all for the particular image are not |
565 | | * assigned any code, which saves space in the DHT marker as well as in |
566 | | * the compressed data. |
567 | | */ |
568 | | |
569 | | #ifdef ENTROPY_OPT_SUPPORTED |
570 | | |
571 | | |
572 | | /* Process a single block's worth of coefficients */ |
573 | | |
574 | | LOCAL(void) |
575 | | htest_one_block (j_compress_ptr cinfo, JCOEFPTR block, int last_dc_val, |
576 | | long dc_counts[], long ac_counts[]) |
577 | 0 | { |
578 | 0 | register int temp; |
579 | 0 | register int nbits; |
580 | 0 | register int k, r; |
581 | | |
582 | | /* Encode the DC coefficient difference per section F.1.2.1 */ |
583 | | |
584 | 0 | temp = block[0] - last_dc_val; |
585 | 0 | if (temp < 0) |
586 | 0 | temp = -temp; |
587 | | |
588 | | /* Find the number of bits needed for the magnitude of the coefficient */ |
589 | 0 | nbits = 0; |
590 | 0 | while (temp) { |
591 | 0 | nbits++; |
592 | 0 | temp >>= 1; |
593 | 0 | } |
594 | | /* Check for out-of-range coefficient values. |
595 | | * Since we're encoding a difference, the range limit is twice as much. |
596 | | */ |
597 | 0 | if (nbits > MAX_COEF_BITS+1) |
598 | 0 | ERREXIT(cinfo, JERR_BAD_DCT_COEF); |
599 | | |
600 | | /* Count the Huffman symbol for the number of bits */ |
601 | 0 | dc_counts[nbits]++; |
602 | | |
603 | | /* Encode the AC coefficients per section F.1.2.2 */ |
604 | | |
605 | 0 | r = 0; /* r = run length of zeros */ |
606 | | |
607 | 0 | for (k = 1; k < DCTSIZE2; k++) { |
608 | 0 | if ((temp = block[jpeg_natural_order[k]]) == 0) { |
609 | 0 | r++; |
610 | 0 | } else { |
611 | | /* if run length > 15, must emit special run-length-16 codes (0xF0) */ |
612 | 0 | while (r > 15) { |
613 | 0 | ac_counts[0xF0]++; |
614 | 0 | r -= 16; |
615 | 0 | } |
616 | | |
617 | | /* Find the number of bits needed for the magnitude of the coefficient */ |
618 | 0 | if (temp < 0) |
619 | 0 | temp = -temp; |
620 | | |
621 | | /* Find the number of bits needed for the magnitude of the coefficient */ |
622 | 0 | nbits = 1; /* there must be at least one 1 bit */ |
623 | 0 | while ((temp >>= 1)) |
624 | 0 | nbits++; |
625 | | /* Check for out-of-range coefficient values */ |
626 | 0 | if (nbits > MAX_COEF_BITS) |
627 | 0 | ERREXIT(cinfo, JERR_BAD_DCT_COEF); |
628 | | |
629 | | /* Count Huffman symbol for run length / number of bits */ |
630 | 0 | ac_counts[(r << 4) + nbits]++; |
631 | | |
632 | 0 | r = 0; |
633 | 0 | } |
634 | 0 | } |
635 | | |
636 | | /* If the last coef(s) were zero, emit an end-of-block code */ |
637 | 0 | if (r > 0) |
638 | 0 | ac_counts[0]++; |
639 | 0 | } |
640 | | |
641 | | |
642 | | /* |
643 | | * Trial-encode one MCU's worth of Huffman-compressed coefficients. |
644 | | * No data is actually output, so no suspension return is possible. |
645 | | */ |
646 | | |
647 | | METHODDEF(boolean) |
648 | | encode_mcu_gather (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
649 | 0 | { |
650 | 0 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
651 | 0 | int blkn, ci; |
652 | 0 | jpeg_component_info * compptr; |
653 | | |
654 | | /* Take care of restart intervals if needed */ |
655 | 0 | if (cinfo->restart_interval) { |
656 | 0 | if (entropy->restarts_to_go == 0) { |
657 | | /* Re-initialize DC predictions to 0 */ |
658 | 0 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) |
659 | 0 | entropy->saved.last_dc_val[ci] = 0; |
660 | | /* Update restart state */ |
661 | 0 | entropy->restarts_to_go = cinfo->restart_interval; |
662 | 0 | } |
663 | 0 | entropy->restarts_to_go--; |
664 | 0 | } |
665 | |
|
666 | 0 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
667 | 0 | ci = cinfo->MCU_membership[blkn]; |
668 | 0 | compptr = cinfo->cur_comp_info[ci]; |
669 | 0 | htest_one_block(cinfo, MCU_data[blkn][0], entropy->saved.last_dc_val[ci], |
670 | 0 | entropy->dc_count_ptrs[compptr->dc_tbl_no], |
671 | 0 | entropy->ac_count_ptrs[compptr->ac_tbl_no]); |
672 | 0 | entropy->saved.last_dc_val[ci] = MCU_data[blkn][0][0]; |
673 | 0 | } |
674 | |
|
675 | 0 | return TRUE; |
676 | 0 | } |
677 | | |
678 | | |
679 | | /* |
680 | | * Generate the best Huffman code table for the given counts, fill htbl. |
681 | | * Note this is also used by jcphuff.c. |
682 | | * |
683 | | * The JPEG standard requires that no symbol be assigned a codeword of all |
684 | | * one bits (so that padding bits added at the end of a compressed segment |
685 | | * can't look like a valid code). Because of the canonical ordering of |
686 | | * codewords, this just means that there must be an unused slot in the |
687 | | * longest codeword length category. Section K.2 of the JPEG spec suggests |
688 | | * reserving such a slot by pretending that symbol 256 is a valid symbol |
689 | | * with count 1. In theory that's not optimal; giving it count zero but |
690 | | * including it in the symbol set anyway should give a better Huffman code. |
691 | | * But the theoretically better code actually seems to come out worse in |
692 | | * practice, because it produces more all-ones bytes (which incur stuffed |
693 | | * zero bytes in the final file). In any case the difference is tiny. |
694 | | * |
695 | | * The JPEG standard requires Huffman codes to be no more than 16 bits long. |
696 | | * If some symbols have a very small but nonzero probability, the Huffman tree |
697 | | * must be adjusted to meet the code length restriction. We currently use |
698 | | * the adjustment method suggested in JPEG section K.2. This method is *not* |
699 | | * optimal; it may not choose the best possible limited-length code. But |
700 | | * typically only very-low-frequency symbols will be given less-than-optimal |
701 | | * lengths, so the code is almost optimal. Experimental comparisons against |
702 | | * an optimal limited-length-code algorithm indicate that the difference is |
703 | | * microscopic --- usually less than a hundredth of a percent of total size. |
704 | | * So the extra complexity of an optimal algorithm doesn't seem worthwhile. |
705 | | */ |
706 | | |
707 | | GLOBAL(void) |
708 | | jpeg_gen_optimal_table (j_compress_ptr cinfo, JHUFF_TBL * htbl, long freq[]) |
709 | 0 | { |
710 | 0 | #define MAX_CLEN 32 /* assumed maximum initial code length */ |
711 | 0 | UINT8 bits[MAX_CLEN+1]; /* bits[k] = # of symbols with code length k */ |
712 | 0 | int codesize[257]; /* codesize[k] = code length of symbol k */ |
713 | 0 | int others[257]; /* next symbol in current branch of tree */ |
714 | 0 | int c1, c2; |
715 | 0 | int p, i, j; |
716 | 0 | long v; |
717 | | |
718 | | /* This algorithm is explained in section K.2 of the JPEG standard */ |
719 | |
|
720 | 0 | MEMZERO(bits, SIZEOF(bits)); |
721 | 0 | MEMZERO(codesize, SIZEOF(codesize)); |
722 | 0 | for (i = 0; i < 257; i++) |
723 | 0 | others[i] = -1; /* init links to empty */ |
724 | | |
725 | 0 | freq[256] = 1; /* make sure 256 has a nonzero count */ |
726 | | /* Including the pseudo-symbol 256 in the Huffman procedure guarantees |
727 | | * that no real symbol is given code-value of all ones, because 256 |
728 | | * will be placed last in the largest codeword category. |
729 | | */ |
730 | | |
731 | | /* Huffman's basic algorithm to assign optimal code lengths to symbols */ |
732 | |
|
733 | 0 | for (;;) { |
734 | | /* Find the smallest nonzero frequency, set c1 = its symbol */ |
735 | | /* In case of ties, take the larger symbol number */ |
736 | 0 | c1 = -1; |
737 | 0 | v = 1000000000L; |
738 | 0 | for (i = 0; i <= 256; i++) { |
739 | 0 | if (freq[i] && freq[i] <= v) { |
740 | 0 | v = freq[i]; |
741 | 0 | c1 = i; |
742 | 0 | } |
743 | 0 | } |
744 | | |
745 | | /* Find the next smallest nonzero frequency, set c2 = its symbol */ |
746 | | /* In case of ties, take the larger symbol number */ |
747 | 0 | c2 = -1; |
748 | 0 | v = 1000000000L; |
749 | 0 | for (i = 0; i <= 256; i++) { |
750 | 0 | if (freq[i] && freq[i] <= v && i != c1) { |
751 | 0 | v = freq[i]; |
752 | 0 | c2 = i; |
753 | 0 | } |
754 | 0 | } |
755 | | |
756 | | /* Done if we've merged everything into one frequency */ |
757 | 0 | if (c2 < 0) |
758 | 0 | break; |
759 | | |
760 | | /* Else merge the two counts/trees */ |
761 | 0 | freq[c1] += freq[c2]; |
762 | 0 | freq[c2] = 0; |
763 | | |
764 | | /* Increment the codesize of everything in c1's tree branch */ |
765 | 0 | codesize[c1]++; |
766 | 0 | while (others[c1] >= 0) { |
767 | 0 | c1 = others[c1]; |
768 | 0 | codesize[c1]++; |
769 | 0 | } |
770 | | |
771 | 0 | others[c1] = c2; /* chain c2 onto c1's tree branch */ |
772 | | |
773 | | /* Increment the codesize of everything in c2's tree branch */ |
774 | 0 | codesize[c2]++; |
775 | 0 | while (others[c2] >= 0) { |
776 | 0 | c2 = others[c2]; |
777 | 0 | codesize[c2]++; |
778 | 0 | } |
779 | 0 | } |
780 | | |
781 | | /* Now count the number of symbols of each code length */ |
782 | 0 | for (i = 0; i <= 256; i++) { |
783 | 0 | if (codesize[i]) { |
784 | | /* The JPEG standard seems to think that this can't happen, */ |
785 | | /* but I'm paranoid... */ |
786 | 0 | if (codesize[i] > MAX_CLEN) |
787 | 0 | ERREXIT(cinfo, JERR_HUFF_CLEN_OVERFLOW); |
788 | |
|
789 | 0 | bits[codesize[i]]++; |
790 | 0 | } |
791 | 0 | } |
792 | | |
793 | | /* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure |
794 | | * Huffman procedure assigned any such lengths, we must adjust the coding. |
795 | | * Here is what the JPEG spec says about how this next bit works: |
796 | | * Since symbols are paired for the longest Huffman code, the symbols are |
797 | | * removed from this length category two at a time. The prefix for the pair |
798 | | * (which is one bit shorter) is allocated to one of the pair; then, |
799 | | * skipping the BITS entry for that prefix length, a code word from the next |
800 | | * shortest nonzero BITS entry is converted into a prefix for two code words |
801 | | * one bit longer. |
802 | | */ |
803 | | |
804 | 0 | for (i = MAX_CLEN; i > 16; i--) { |
805 | 0 | while (bits[i] > 0) { |
806 | 0 | j = i - 2; /* find length of new prefix to be used */ |
807 | 0 | while (bits[j] == 0) |
808 | 0 | j--; |
809 | | |
810 | 0 | bits[i] -= 2; /* remove two symbols */ |
811 | 0 | bits[i-1]++; /* one goes in this length */ |
812 | 0 | bits[j+1] += 2; /* two new symbols in this length */ |
813 | 0 | bits[j]--; /* symbol of this length is now a prefix */ |
814 | 0 | } |
815 | 0 | } |
816 | | |
817 | | /* Remove the count for the pseudo-symbol 256 from the largest codelength */ |
818 | 0 | while (bits[i] == 0) /* find largest codelength still in use */ |
819 | 0 | i--; |
820 | 0 | bits[i]--; |
821 | | |
822 | | /* Return final symbol counts (only for lengths 0..16) */ |
823 | 0 | MEMCOPY(htbl->bits, bits, SIZEOF(htbl->bits)); |
824 | | |
825 | | /* Return a list of the symbols sorted by code length */ |
826 | | /* It's not real clear to me why we don't need to consider the codelength |
827 | | * changes made above, but the JPEG spec seems to think this works. |
828 | | */ |
829 | 0 | p = 0; |
830 | 0 | for (i = 1; i <= MAX_CLEN; i++) { |
831 | 0 | for (j = 0; j <= 255; j++) { |
832 | 0 | if (codesize[j] == i) { |
833 | 0 | htbl->huffval[p] = (UINT8) j; |
834 | 0 | p++; |
835 | 0 | } |
836 | 0 | } |
837 | 0 | } |
838 | | |
839 | | /* Set sent_table FALSE so updated table will be written to JPEG file. */ |
840 | 0 | htbl->sent_table = FALSE; |
841 | 0 | } |
842 | | |
843 | | |
844 | | /* |
845 | | * Finish up a statistics-gathering pass and create the new Huffman tables. |
846 | | */ |
847 | | |
848 | | METHODDEF(void) |
849 | | finish_pass_gather (j_compress_ptr cinfo) |
850 | 0 | { |
851 | 0 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
852 | 0 | int ci, dctbl, actbl; |
853 | 0 | jpeg_component_info * compptr; |
854 | 0 | JHUFF_TBL **htblptr; |
855 | 0 | boolean did_dc[NUM_HUFF_TBLS]; |
856 | 0 | boolean did_ac[NUM_HUFF_TBLS]; |
857 | | |
858 | | /* It's important not to apply jpeg_gen_optimal_table more than once |
859 | | * per table, because it clobbers the input frequency counts! |
860 | | */ |
861 | 0 | MEMZERO(did_dc, SIZEOF(did_dc)); |
862 | 0 | MEMZERO(did_ac, SIZEOF(did_ac)); |
863 | |
|
864 | 0 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
865 | 0 | compptr = cinfo->cur_comp_info[ci]; |
866 | 0 | dctbl = compptr->dc_tbl_no; |
867 | 0 | actbl = compptr->ac_tbl_no; |
868 | 0 | if (! did_dc[dctbl]) { |
869 | 0 | htblptr = & cinfo->dc_huff_tbl_ptrs[dctbl]; |
870 | 0 | if (*htblptr == NULL) |
871 | 0 | *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo); |
872 | 0 | jpeg_gen_optimal_table(cinfo, *htblptr, entropy->dc_count_ptrs[dctbl]); |
873 | 0 | did_dc[dctbl] = TRUE; |
874 | 0 | } |
875 | 0 | if (! did_ac[actbl]) { |
876 | 0 | htblptr = & cinfo->ac_huff_tbl_ptrs[actbl]; |
877 | 0 | if (*htblptr == NULL) |
878 | 0 | *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo); |
879 | 0 | jpeg_gen_optimal_table(cinfo, *htblptr, entropy->ac_count_ptrs[actbl]); |
880 | 0 | did_ac[actbl] = TRUE; |
881 | 0 | } |
882 | 0 | } |
883 | 0 | } |
884 | | |
885 | | |
886 | | #endif /* ENTROPY_OPT_SUPPORTED */ |
887 | | |
888 | | |
889 | | /* |
890 | | * Module initialization routine for Huffman entropy encoding. |
891 | | */ |
892 | | |
893 | | GLOBAL(void) |
894 | | jinit_huff_encoder (j_compress_ptr cinfo) |
895 | 0 | { |
896 | 0 | huff_entropy_ptr entropy; |
897 | 0 | int i; |
898 | |
|
899 | 0 | entropy = (huff_entropy_ptr) |
900 | 0 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
901 | 0 | SIZEOF(huff_entropy_encoder)); |
902 | 0 | cinfo->entropy = (struct jpeg_entropy_encoder *) entropy; |
903 | 0 | entropy->pub.start_pass = start_pass_huff; |
904 | | |
905 | | /* Mark tables unallocated */ |
906 | 0 | for (i = 0; i < NUM_HUFF_TBLS; i++) { |
907 | 0 | entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL; |
908 | 0 | #ifdef ENTROPY_OPT_SUPPORTED |
909 | 0 | entropy->dc_count_ptrs[i] = entropy->ac_count_ptrs[i] = NULL; |
910 | 0 | #endif |
911 | 0 | } |
912 | 0 | } |