Coverage Report

Created: 2025-06-13 06:18

/src/gdal/build/frmts/jpeg/libjpeg12/jidctflt12.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * jidctflt.c
3
 *
4
 * Copyright (C) 1994-1998, Thomas G. Lane.
5
 * This file is part of the Independent JPEG Group's software.
6
 * For conditions of distribution and use, see the accompanying README file.
7
 *
8
 * This file contains a floating-point implementation of the
9
 * inverse DCT (Discrete Cosine Transform).  In the IJG code, this routine
10
 * must also perform dequantization of the input coefficients.
11
 *
12
 * This implementation should be more accurate than either of the integer
13
 * IDCT implementations.  However, it may not give the same results on all
14
 * machines because of differences in roundoff behavior.  Speed will depend
15
 * on the hardware's floating point capacity.
16
 *
17
 * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
18
 * on each row (or vice versa, but it's more convenient to emit a row at
19
 * a time).  Direct algorithms are also available, but they are much more
20
 * complex and seem not to be any faster when reduced to code.
21
 *
22
 * This implementation is based on Arai, Agui, and Nakajima's algorithm for
23
 * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in
24
 * Japanese, but the algorithm is described in the Pennebaker & Mitchell
25
 * JPEG textbook (see REFERENCES section in file README).  The following code
26
 * is based directly on figure 4-8 in P&M.
27
 * While an 8-point DCT cannot be done in less than 11 multiplies, it is
28
 * possible to arrange the computation so that many of the multiplies are
29
 * simple scalings of the final outputs.  These multiplies can then be
30
 * folded into the multiplications or divisions by the JPEG quantization
31
 * table entries.  The AA&N method leaves only 5 multiplies and 29 adds
32
 * to be done in the DCT itself.
33
 * The primary disadvantage of this method is that with a fixed-point
34
 * implementation, accuracy is lost due to imprecise representation of the
35
 * scaled quantization values.  However, that problem does not arise if
36
 * we use floating point arithmetic.
37
 */
38
39
#define JPEG_INTERNALS
40
#include "jinclude.h"
41
#include "jpeglib.h"
42
#include "jdct.h"   /* Private declarations for DCT subsystem */
43
44
#ifdef DCT_FLOAT_SUPPORTED
45
46
47
/*
48
 * This module is specialized to the case DCTSIZE = 8.
49
 */
50
51
#if DCTSIZE != 8
52
  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
53
#endif
54
55
56
/* Dequantize a coefficient by multiplying it by the multiplier-table
57
 * entry; produce a float result.
58
 */
59
60
0
#define DEQUANTIZE(coef,quantval)  (((FAST_FLOAT) (coef)) * (quantval))
61
62
63
/*
64
 * Perform dequantization and inverse DCT on one block of coefficients.
65
 */
66
67
GLOBAL(void)
68
jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr,
69
     JCOEFPTR coef_block,
70
     JSAMPARRAY output_buf, JDIMENSION output_col)
71
0
{
72
0
  FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
73
0
  FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
74
0
  FAST_FLOAT z5, z10, z11, z12, z13;
75
0
  JCOEFPTR inptr;
76
0
  FLOAT_MULT_TYPE * quantptr;
77
0
  FAST_FLOAT * wsptr;
78
0
  JSAMPROW outptr;
79
0
  JSAMPLE *range_limit = IDCT_range_limit(cinfo);
80
0
  int ctr;
81
0
  FAST_FLOAT workspace[DCTSIZE2]; /* buffers data between passes */
82
  SHIFT_TEMPS
83
84
  /* Pass 1: process columns from input, store into work array. */
85
86
0
  inptr = coef_block;
87
0
  quantptr = (FLOAT_MULT_TYPE *) compptr->dct_table;
88
0
  wsptr = workspace;
89
0
  for (ctr = DCTSIZE; ctr > 0; ctr--) {
90
    /* Due to quantization, we will usually find that many of the input
91
     * coefficients are zero, especially the AC terms.  We can exploit this
92
     * by short-circuiting the IDCT calculation for any column in which all
93
     * the AC terms are zero.  In that case each output is equal to the
94
     * DC coefficient (with scale factor as needed).
95
     * With typical images and quantization tables, half or more of the
96
     * column DCT calculations can be simplified this way.
97
     */
98
    
99
0
    if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
100
0
  inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
101
0
  inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
102
0
  inptr[DCTSIZE*7] == 0) {
103
      /* AC terms all zero */
104
0
      FAST_FLOAT dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
105
      
106
0
      wsptr[DCTSIZE*0] = dcval;
107
0
      wsptr[DCTSIZE*1] = dcval;
108
0
      wsptr[DCTSIZE*2] = dcval;
109
0
      wsptr[DCTSIZE*3] = dcval;
110
0
      wsptr[DCTSIZE*4] = dcval;
111
0
      wsptr[DCTSIZE*5] = dcval;
112
0
      wsptr[DCTSIZE*6] = dcval;
113
0
      wsptr[DCTSIZE*7] = dcval;
114
      
115
0
      inptr++;      /* advance pointers to next column */
116
0
      quantptr++;
117
0
      wsptr++;
118
0
      continue;
119
0
    }
120
    
121
    /* Even part */
122
123
0
    tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
124
0
    tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
125
0
    tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
126
0
    tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
127
128
0
    tmp10 = tmp0 + tmp2;  /* phase 3 */
129
0
    tmp11 = tmp0 - tmp2;
130
131
0
    tmp13 = tmp1 + tmp3;  /* phases 5-3 */
132
0
    tmp12 = (tmp1 - tmp3) * ((FAST_FLOAT) 1.414213562) - tmp13; /* 2*c4 */
133
134
0
    tmp0 = tmp10 + tmp13; /* phase 2 */
135
0
    tmp3 = tmp10 - tmp13;
136
0
    tmp1 = tmp11 + tmp12;
137
0
    tmp2 = tmp11 - tmp12;
138
    
139
    /* Odd part */
140
141
0
    tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
142
0
    tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
143
0
    tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
144
0
    tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
145
146
0
    z13 = tmp6 + tmp5;    /* phase 6 */
147
0
    z10 = tmp6 - tmp5;
148
0
    z11 = tmp4 + tmp7;
149
0
    z12 = tmp4 - tmp7;
150
151
0
    tmp7 = z11 + z13;   /* phase 5 */
152
0
    tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); /* 2*c4 */
153
154
0
    z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
155
0
    tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */
156
0
    tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */
157
158
0
    tmp6 = tmp12 - tmp7;  /* phase 2 */
159
0
    tmp5 = tmp11 - tmp6;
160
0
    tmp4 = tmp10 + tmp5;
161
162
0
    wsptr[DCTSIZE*0] = tmp0 + tmp7;
163
0
    wsptr[DCTSIZE*7] = tmp0 - tmp7;
164
0
    wsptr[DCTSIZE*1] = tmp1 + tmp6;
165
0
    wsptr[DCTSIZE*6] = tmp1 - tmp6;
166
0
    wsptr[DCTSIZE*2] = tmp2 + tmp5;
167
0
    wsptr[DCTSIZE*5] = tmp2 - tmp5;
168
0
    wsptr[DCTSIZE*4] = tmp3 + tmp4;
169
0
    wsptr[DCTSIZE*3] = tmp3 - tmp4;
170
171
0
    inptr++;      /* advance pointers to next column */
172
0
    quantptr++;
173
0
    wsptr++;
174
0
  }
175
  
176
  /* Pass 2: process rows from work array, store into output array. */
177
  /* Note that we must descale the results by a factor of 8 == 2**3. */
178
179
0
  wsptr = workspace;
180
0
  for (ctr = 0; ctr < DCTSIZE; ctr++) {
181
0
    outptr = output_buf[ctr] + output_col;
182
    /* Rows of zeroes can be exploited in the same way as we did with columns.
183
     * However, the column calculation has created many nonzero AC terms, so
184
     * the simplification applies less often (typically 5% to 10% of the time).
185
     * And testing floats for zero is relatively expensive, so we don't bother.
186
     */
187
    
188
    /* Even part */
189
190
0
    tmp10 = wsptr[0] + wsptr[4];
191
0
    tmp11 = wsptr[0] - wsptr[4];
192
193
0
    tmp13 = wsptr[2] + wsptr[6];
194
0
    tmp12 = (wsptr[2] - wsptr[6]) * ((FAST_FLOAT) 1.414213562) - tmp13;
195
196
0
    tmp0 = tmp10 + tmp13;
197
0
    tmp3 = tmp10 - tmp13;
198
0
    tmp1 = tmp11 + tmp12;
199
0
    tmp2 = tmp11 - tmp12;
200
201
    /* Odd part */
202
203
0
    z13 = wsptr[5] + wsptr[3];
204
0
    z10 = wsptr[5] - wsptr[3];
205
0
    z11 = wsptr[1] + wsptr[7];
206
0
    z12 = wsptr[1] - wsptr[7];
207
208
0
    tmp7 = z11 + z13;
209
0
    tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562);
210
211
0
    z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
212
0
    tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */
213
0
    tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */
214
215
0
    tmp6 = tmp12 - tmp7;
216
0
    tmp5 = tmp11 - tmp6;
217
0
    tmp4 = tmp10 + tmp5;
218
219
    /* Final output stage: scale down by a factor of 8 and range-limit */
220
221
0
    outptr[0] = range_limit[(int) DESCALE((INT32) (tmp0 + tmp7), 3)
222
0
          & RANGE_MASK];
223
0
    outptr[7] = range_limit[(int) DESCALE((INT32) (tmp0 - tmp7), 3)
224
0
          & RANGE_MASK];
225
0
    outptr[1] = range_limit[(int) DESCALE((INT32) (tmp1 + tmp6), 3)
226
0
          & RANGE_MASK];
227
0
    outptr[6] = range_limit[(int) DESCALE((INT32) (tmp1 - tmp6), 3)
228
0
          & RANGE_MASK];
229
0
    outptr[2] = range_limit[(int) DESCALE((INT32) (tmp2 + tmp5), 3)
230
0
          & RANGE_MASK];
231
0
    outptr[5] = range_limit[(int) DESCALE((INT32) (tmp2 - tmp5), 3)
232
0
          & RANGE_MASK];
233
0
    outptr[4] = range_limit[(int) DESCALE((INT32) (tmp3 + tmp4), 3)
234
0
          & RANGE_MASK];
235
0
    outptr[3] = range_limit[(int) DESCALE((INT32) (tmp3 - tmp4), 3)
236
0
          & RANGE_MASK];
237
    
238
0
    wsptr += DCTSIZE;   /* advance pointer to next row */
239
0
  }
240
0
}
241
242
#endif /* DCT_FLOAT_SUPPORTED */