/src/gdal/build/frmts/jpeg/libjpeg12/jidctint12.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * jidctint.c |
3 | | * |
4 | | * Copyright (C) 1991-1998, Thomas G. Lane. |
5 | | * This file is part of the Independent JPEG Group's software. |
6 | | * For conditions of distribution and use, see the accompanying README file. |
7 | | * |
8 | | * This file contains a slow-but-accurate integer implementation of the |
9 | | * inverse DCT (Discrete Cosine Transform). In the IJG code, this routine |
10 | | * must also perform dequantization of the input coefficients. |
11 | | * |
12 | | * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT |
13 | | * on each row (or vice versa, but it's more convenient to emit a row at |
14 | | * a time). Direct algorithms are also available, but they are much more |
15 | | * complex and seem not to be any faster when reduced to code. |
16 | | * |
17 | | * This implementation is based on an algorithm described in |
18 | | * C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT |
19 | | * Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics, |
20 | | * Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991. |
21 | | * The primary algorithm described there uses 11 multiplies and 29 adds. |
22 | | * We use their alternate method with 12 multiplies and 32 adds. |
23 | | * The advantage of this method is that no data path contains more than one |
24 | | * multiplication; this allows a very simple and accurate implementation in |
25 | | * scaled fixed-point arithmetic, with a minimal number of shifts. |
26 | | */ |
27 | | |
28 | | #define JPEG_INTERNALS |
29 | | #include "jinclude.h" |
30 | | #include "jpeglib.h" |
31 | | #include "jdct.h" /* Private declarations for DCT subsystem */ |
32 | | |
33 | | #ifdef DCT_ISLOW_SUPPORTED |
34 | | |
35 | | |
36 | | /* |
37 | | * This module is specialized to the case DCTSIZE = 8. |
38 | | */ |
39 | | |
40 | | #if DCTSIZE != 8 |
41 | | Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ |
42 | | #endif |
43 | | |
44 | | |
45 | | /* |
46 | | * The poop on this scaling stuff is as follows: |
47 | | * |
48 | | * Each 1-D IDCT step produces outputs which are a factor of sqrt(N) |
49 | | * larger than the true IDCT outputs. The final outputs are therefore |
50 | | * a factor of N larger than desired; since N=8 this can be cured by |
51 | | * a simple right shift at the end of the algorithm. The advantage of |
52 | | * this arrangement is that we save two multiplications per 1-D IDCT, |
53 | | * because the y0 and y4 inputs need not be divided by sqrt(N). |
54 | | * |
55 | | * We have to do addition and subtraction of the integer inputs, which |
56 | | * is no problem, and multiplication by fractional constants, which is |
57 | | * a problem to do in integer arithmetic. We multiply all the constants |
58 | | * by CONST_SCALE and convert them to integer constants (thus retaining |
59 | | * CONST_BITS bits of precision in the constants). After doing a |
60 | | * multiplication we have to divide the product by CONST_SCALE, with proper |
61 | | * rounding, to produce the correct output. This division can be done |
62 | | * cheaply as a right shift of CONST_BITS bits. We postpone shifting |
63 | | * as long as possible so that partial sums can be added together with |
64 | | * full fractional precision. |
65 | | * |
66 | | * The outputs of the first pass are scaled up by PASS1_BITS bits so that |
67 | | * they are represented to better-than-integral precision. These outputs |
68 | | * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word |
69 | | * with the recommended scaling. (To scale up 12-bit sample data further, an |
70 | | * intermediate INT32 array would be needed.) |
71 | | * |
72 | | * To avoid overflow of the 32-bit intermediate results in pass 2, we must |
73 | | * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis |
74 | | * shows that the values given below are the most effective. |
75 | | */ |
76 | | |
77 | | #if BITS_IN_JSAMPLE == 8 |
78 | | #define CONST_BITS 13 |
79 | | #define PASS1_BITS 2 |
80 | | #else |
81 | | #define CONST_BITS 13 |
82 | | #define PASS1_BITS 1 /* lose a little precision to avoid overflow */ |
83 | | #endif |
84 | | |
85 | | /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus |
86 | | * causing a lot of useless floating-point operations at run time. |
87 | | * To get around this we use the following pre-calculated constants. |
88 | | * If you change CONST_BITS you may want to add appropriate values. |
89 | | * (With a reasonable C compiler, you can just rely on the FIX() macro...) |
90 | | */ |
91 | | |
92 | | #if CONST_BITS == 13 |
93 | | #define FIX_0_298631336 ((INT32) 2446) /* FIX(0.298631336) */ |
94 | | #define FIX_0_390180644 ((INT32) 3196) /* FIX(0.390180644) */ |
95 | | #define FIX_0_541196100 ((INT32) 4433) /* FIX(0.541196100) */ |
96 | | #define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */ |
97 | | #define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */ |
98 | | #define FIX_1_175875602 ((INT32) 9633) /* FIX(1.175875602) */ |
99 | | #define FIX_1_501321110 ((INT32) 12299) /* FIX(1.501321110) */ |
100 | | #define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */ |
101 | | #define FIX_1_961570560 ((INT32) 16069) /* FIX(1.961570560) */ |
102 | | #define FIX_2_053119869 ((INT32) 16819) /* FIX(2.053119869) */ |
103 | | #define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */ |
104 | | #define FIX_3_072711026 ((INT32) 25172) /* FIX(3.072711026) */ |
105 | | #else |
106 | | #define FIX_0_298631336 FIX(0.298631336) |
107 | | #define FIX_0_390180644 FIX(0.390180644) |
108 | | #define FIX_0_541196100 FIX(0.541196100) |
109 | | #define FIX_0_765366865 FIX(0.765366865) |
110 | | #define FIX_0_899976223 FIX(0.899976223) |
111 | | #define FIX_1_175875602 FIX(1.175875602) |
112 | | #define FIX_1_501321110 FIX(1.501321110) |
113 | | #define FIX_1_847759065 FIX(1.847759065) |
114 | | #define FIX_1_961570560 FIX(1.961570560) |
115 | | #define FIX_2_053119869 FIX(2.053119869) |
116 | | #define FIX_2_562915447 FIX(2.562915447) |
117 | | #define FIX_3_072711026 FIX(3.072711026) |
118 | | #endif |
119 | | |
120 | | |
121 | | /* Multiply an INT32 variable by an INT32 constant to yield an INT32 result. |
122 | | * For 8-bit samples with the recommended scaling, all the variable |
123 | | * and constant values involved are no more than 16 bits wide, so a |
124 | | * 16x16->32 bit multiply can be used instead of a full 32x32 multiply. |
125 | | * For 12-bit samples, a full 32-bit multiplication will be needed. |
126 | | */ |
127 | | |
128 | | #if BITS_IN_JSAMPLE == 8 |
129 | | #define MULTIPLY(var,const) MULTIPLY16C16(var,const) |
130 | | #else |
131 | 0 | #define MULTIPLY(var,const) ((var) * (const)) |
132 | | #endif |
133 | | |
134 | | |
135 | | /* Dequantize a coefficient by multiplying it by the multiplier-table |
136 | | * entry; produce an int result. In this module, both inputs and result |
137 | | * are 16 bits or less, so either int or short multiply will work. |
138 | | */ |
139 | | |
140 | 0 | #define DEQUANTIZE(coef,quantval) (((ISLOW_MULT_TYPE) (coef)) * (quantval)) |
141 | | |
142 | | |
143 | | /* |
144 | | * Perform dequantization and inverse DCT on one block of coefficients. |
145 | | */ |
146 | | |
147 | | GLOBAL(void) |
148 | | jpeg_idct_islow (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
149 | | JCOEFPTR coef_block, |
150 | | JSAMPARRAY output_buf, JDIMENSION output_col) |
151 | 0 | { |
152 | 0 | INT32 tmp0, tmp1, tmp2, tmp3; |
153 | 0 | INT32 tmp10, tmp11, tmp12, tmp13; |
154 | 0 | INT32 z1, z2, z3, z4, z5; |
155 | 0 | JCOEFPTR inptr; |
156 | 0 | ISLOW_MULT_TYPE * quantptr; |
157 | 0 | int * wsptr; |
158 | 0 | JSAMPROW outptr; |
159 | 0 | JSAMPLE *range_limit = IDCT_range_limit(cinfo); |
160 | 0 | int ctr; |
161 | 0 | int workspace[DCTSIZE2]; /* buffers data between passes */ |
162 | | SHIFT_TEMPS |
163 | | |
164 | | /* Pass 1: process columns from input, store into work array. */ |
165 | | /* Note results are scaled up by sqrt(8) compared to a true IDCT; */ |
166 | | /* furthermore, we scale the results by 2**PASS1_BITS. */ |
167 | |
|
168 | 0 | inptr = coef_block; |
169 | 0 | quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; |
170 | 0 | wsptr = workspace; |
171 | 0 | for (ctr = DCTSIZE; ctr > 0; ctr--) { |
172 | | /* Due to quantization, we will usually find that many of the input |
173 | | * coefficients are zero, especially the AC terms. We can exploit this |
174 | | * by short-circuiting the IDCT calculation for any column in which all |
175 | | * the AC terms are zero. In that case each output is equal to the |
176 | | * DC coefficient (with scale factor as needed). |
177 | | * With typical images and quantization tables, half or more of the |
178 | | * column DCT calculations can be simplified this way. |
179 | | */ |
180 | | |
181 | 0 | if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 && |
182 | 0 | inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 && |
183 | 0 | inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 && |
184 | 0 | inptr[DCTSIZE*7] == 0) { |
185 | | /* AC terms all zero */ |
186 | 0 | int dcval = (int)LEFT_SHIFT(DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]), |
187 | 0 | PASS1_BITS); |
188 | |
|
189 | 0 | wsptr[DCTSIZE*0] = dcval; |
190 | 0 | wsptr[DCTSIZE*1] = dcval; |
191 | 0 | wsptr[DCTSIZE*2] = dcval; |
192 | 0 | wsptr[DCTSIZE*3] = dcval; |
193 | 0 | wsptr[DCTSIZE*4] = dcval; |
194 | 0 | wsptr[DCTSIZE*5] = dcval; |
195 | 0 | wsptr[DCTSIZE*6] = dcval; |
196 | 0 | wsptr[DCTSIZE*7] = dcval; |
197 | | |
198 | 0 | inptr++; /* advance pointers to next column */ |
199 | 0 | quantptr++; |
200 | 0 | wsptr++; |
201 | 0 | continue; |
202 | 0 | } |
203 | | |
204 | | /* Even part: reverse the even part of the forward DCT. */ |
205 | | /* The rotator is sqrt(2)*c(-6). */ |
206 | | |
207 | 0 | z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); |
208 | 0 | z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); |
209 | | |
210 | 0 | z1 = MULTIPLY(z2 + z3, FIX_0_541196100); |
211 | 0 | tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065); |
212 | 0 | tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865); |
213 | | |
214 | 0 | z2 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); |
215 | 0 | z3 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); |
216 | |
|
217 | 0 | tmp0 = LEFT_SHIFT(z2 + z3, CONST_BITS); |
218 | 0 | tmp1 = LEFT_SHIFT(z2 - z3, CONST_BITS); |
219 | |
|
220 | 0 | tmp10 = tmp0 + tmp3; |
221 | 0 | tmp13 = tmp0 - tmp3; |
222 | 0 | tmp11 = tmp1 + tmp2; |
223 | 0 | tmp12 = tmp1 - tmp2; |
224 | | |
225 | | /* Odd part per figure 8; the matrix is unitary and hence its |
226 | | * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. |
227 | | */ |
228 | | |
229 | 0 | tmp0 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); |
230 | 0 | tmp1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); |
231 | 0 | tmp2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); |
232 | 0 | tmp3 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); |
233 | | |
234 | 0 | z1 = tmp0 + tmp3; |
235 | 0 | z2 = tmp1 + tmp2; |
236 | 0 | z3 = tmp0 + tmp2; |
237 | 0 | z4 = tmp1 + tmp3; |
238 | 0 | z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */ |
239 | | |
240 | 0 | tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */ |
241 | 0 | tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */ |
242 | 0 | tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */ |
243 | 0 | tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */ |
244 | 0 | z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */ |
245 | 0 | z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */ |
246 | 0 | z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */ |
247 | 0 | z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */ |
248 | | |
249 | 0 | z3 += z5; |
250 | 0 | z4 += z5; |
251 | | |
252 | 0 | tmp0 += z1 + z3; |
253 | 0 | tmp1 += z2 + z4; |
254 | 0 | tmp2 += z2 + z3; |
255 | 0 | tmp3 += z1 + z4; |
256 | | |
257 | | /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ |
258 | | |
259 | 0 | wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp3, CONST_BITS-PASS1_BITS); |
260 | 0 | wsptr[DCTSIZE*7] = (int) DESCALE(tmp10 - tmp3, CONST_BITS-PASS1_BITS); |
261 | 0 | wsptr[DCTSIZE*1] = (int) DESCALE(tmp11 + tmp2, CONST_BITS-PASS1_BITS); |
262 | 0 | wsptr[DCTSIZE*6] = (int) DESCALE(tmp11 - tmp2, CONST_BITS-PASS1_BITS); |
263 | 0 | wsptr[DCTSIZE*2] = (int) DESCALE(tmp12 + tmp1, CONST_BITS-PASS1_BITS); |
264 | 0 | wsptr[DCTSIZE*5] = (int) DESCALE(tmp12 - tmp1, CONST_BITS-PASS1_BITS); |
265 | 0 | wsptr[DCTSIZE*3] = (int) DESCALE(tmp13 + tmp0, CONST_BITS-PASS1_BITS); |
266 | 0 | wsptr[DCTSIZE*4] = (int) DESCALE(tmp13 - tmp0, CONST_BITS-PASS1_BITS); |
267 | | |
268 | 0 | inptr++; /* advance pointers to next column */ |
269 | 0 | quantptr++; |
270 | 0 | wsptr++; |
271 | 0 | } |
272 | | |
273 | | /* Pass 2: process rows from work array, store into output array. */ |
274 | | /* Note that we must descale the results by a factor of 8 == 2**3, */ |
275 | | /* and also undo the PASS1_BITS scaling. */ |
276 | |
|
277 | 0 | wsptr = workspace; |
278 | 0 | for (ctr = 0; ctr < DCTSIZE; ctr++) { |
279 | 0 | outptr = output_buf[ctr] + output_col; |
280 | | /* Rows of zeroes can be exploited in the same way as we did with columns. |
281 | | * However, the column calculation has created many nonzero AC terms, so |
282 | | * the simplification applies less often (typically 5% to 10% of the time). |
283 | | * On machines with very fast multiplication, it's possible that the |
284 | | * test takes more time than it's worth. In that case this section |
285 | | * may be commented out. |
286 | | */ |
287 | | |
288 | 0 | #ifndef NO_ZERO_ROW_TEST |
289 | 0 | if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 && |
290 | 0 | wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) { |
291 | | /* AC terms all zero */ |
292 | 0 | JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3) |
293 | 0 | & RANGE_MASK]; |
294 | | |
295 | 0 | outptr[0] = dcval; |
296 | 0 | outptr[1] = dcval; |
297 | 0 | outptr[2] = dcval; |
298 | 0 | outptr[3] = dcval; |
299 | 0 | outptr[4] = dcval; |
300 | 0 | outptr[5] = dcval; |
301 | 0 | outptr[6] = dcval; |
302 | 0 | outptr[7] = dcval; |
303 | |
|
304 | 0 | wsptr += DCTSIZE; /* advance pointer to next row */ |
305 | 0 | continue; |
306 | 0 | } |
307 | 0 | #endif |
308 | | |
309 | | /* Even part: reverse the even part of the forward DCT. */ |
310 | | /* The rotator is sqrt(2)*c(-6). */ |
311 | | |
312 | 0 | z2 = (INT32) wsptr[2]; |
313 | 0 | z3 = (INT32) wsptr[6]; |
314 | | |
315 | 0 | z1 = MULTIPLY(z2 + z3, FIX_0_541196100); |
316 | 0 | tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065); |
317 | 0 | tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865); |
318 | |
|
319 | 0 | tmp0 = LEFT_SHIFT((INT32) wsptr[0] + (INT32) wsptr[4], CONST_BITS); |
320 | 0 | tmp1 = LEFT_SHIFT((INT32) wsptr[0] - (INT32) wsptr[4], CONST_BITS); |
321 | |
|
322 | 0 | tmp10 = tmp0 + tmp3; |
323 | 0 | tmp13 = tmp0 - tmp3; |
324 | 0 | tmp11 = tmp1 + tmp2; |
325 | 0 | tmp12 = tmp1 - tmp2; |
326 | | |
327 | | /* Odd part per figure 8; the matrix is unitary and hence its |
328 | | * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. |
329 | | */ |
330 | | |
331 | 0 | tmp0 = (INT32) wsptr[7]; |
332 | 0 | tmp1 = (INT32) wsptr[5]; |
333 | 0 | tmp2 = (INT32) wsptr[3]; |
334 | 0 | tmp3 = (INT32) wsptr[1]; |
335 | | |
336 | 0 | z1 = tmp0 + tmp3; |
337 | 0 | z2 = tmp1 + tmp2; |
338 | 0 | z3 = tmp0 + tmp2; |
339 | 0 | z4 = tmp1 + tmp3; |
340 | 0 | z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */ |
341 | | |
342 | 0 | tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */ |
343 | 0 | tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */ |
344 | 0 | tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */ |
345 | 0 | tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */ |
346 | 0 | z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */ |
347 | 0 | z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */ |
348 | 0 | z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */ |
349 | 0 | z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */ |
350 | | |
351 | 0 | z3 += z5; |
352 | 0 | z4 += z5; |
353 | | |
354 | 0 | tmp0 += z1 + z3; |
355 | 0 | tmp1 += z2 + z4; |
356 | 0 | tmp2 += z2 + z3; |
357 | 0 | tmp3 += z1 + z4; |
358 | | |
359 | | /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ |
360 | | |
361 | 0 | outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp3, |
362 | 0 | CONST_BITS+PASS1_BITS+3) |
363 | 0 | & RANGE_MASK]; |
364 | 0 | outptr[7] = range_limit[(int) DESCALE(tmp10 - tmp3, |
365 | 0 | CONST_BITS+PASS1_BITS+3) |
366 | 0 | & RANGE_MASK]; |
367 | 0 | outptr[1] = range_limit[(int) DESCALE(tmp11 + tmp2, |
368 | 0 | CONST_BITS+PASS1_BITS+3) |
369 | 0 | & RANGE_MASK]; |
370 | 0 | outptr[6] = range_limit[(int) DESCALE(tmp11 - tmp2, |
371 | 0 | CONST_BITS+PASS1_BITS+3) |
372 | 0 | & RANGE_MASK]; |
373 | 0 | outptr[2] = range_limit[(int) DESCALE(tmp12 + tmp1, |
374 | 0 | CONST_BITS+PASS1_BITS+3) |
375 | 0 | & RANGE_MASK]; |
376 | 0 | outptr[5] = range_limit[(int) DESCALE(tmp12 - tmp1, |
377 | 0 | CONST_BITS+PASS1_BITS+3) |
378 | 0 | & RANGE_MASK]; |
379 | 0 | outptr[3] = range_limit[(int) DESCALE(tmp13 + tmp0, |
380 | 0 | CONST_BITS+PASS1_BITS+3) |
381 | 0 | & RANGE_MASK]; |
382 | 0 | outptr[4] = range_limit[(int) DESCALE(tmp13 - tmp0, |
383 | 0 | CONST_BITS+PASS1_BITS+3) |
384 | 0 | & RANGE_MASK]; |
385 | | |
386 | 0 | wsptr += DCTSIZE; /* advance pointer to next row */ |
387 | 0 | } |
388 | 0 | } |
389 | | |
390 | | #endif /* DCT_ISLOW_SUPPORTED */ |