Coverage Report

Created: 2025-06-13 06:18

/src/gdal/build/frmts/jpeg/libjpeg12/jmemmgr12.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * jmemmgr.c
3
 *
4
 * Copyright (C) 1991-1997, Thomas G. Lane.
5
 * This file is part of the Independent JPEG Group's software.
6
 * For conditions of distribution and use, see the accompanying README file.
7
 *
8
 * This file contains the JPEG system-independent memory management
9
 * routines.  This code is usable across a wide variety of machines; most
10
 * of the system dependencies have been isolated in a separate file.
11
 * The major functions provided here are:
12
 *   * pool-based allocation and freeing of memory;
13
 *   * policy decisions about how to divide available memory among the
14
 *     virtual arrays;
15
 *   * control logic for swapping virtual arrays between main memory and
16
 *     backing storage.
17
 * The separate system-dependent file provides the actual backing-storage
18
 * access code, and it contains the policy decision about how much total
19
 * main memory to use.
20
 * This file is system-dependent in the sense that some of its functions
21
 * are unnecessary in some systems.  For example, if there is enough virtual
22
 * memory so that backing storage will never be used, much of the virtual
23
 * array control logic could be removed.  (Of course, if you have that much
24
 * memory then you shouldn't care about a little bit of unused code...)
25
 */
26
27
#define JPEG_INTERNALS
28
#define AM_MEMORY_MANAGER /* we define jvirt_Xarray_control structs */
29
#include "jinclude.h"
30
#include "jpeglib.h"
31
#include "jmemsys.h"    /* import the system-dependent declarations */
32
33
#ifndef NO_GETENV
34
#ifndef HAVE_STDLIB_H   /* <stdlib.h> should declare getenv() */
35
extern char * getenv JPP((const char * name));
36
#endif
37
#endif
38
39
40
/*
41
 * Some important notes:
42
 *   The allocation routines provided here must never return NULL.
43
 *   They should exit to error_exit if unsuccessful.
44
 *
45
 *   It's not a good idea to try to merge the sarray and barray routines,
46
 *   even though they are textually almost the same, because samples are
47
 *   usually stored as bytes while coefficients are shorts or ints.  Thus,
48
 *   in machines where byte pointers have a different representation from
49
 *   word pointers, the resulting machine code could not be the same.
50
 */
51
52
53
/*
54
 * Many machines require storage alignment: longs must start on 4-byte
55
 * boundaries, doubles on 8-byte boundaries, etc.  On such machines, malloc()
56
 * always returns pointers that are multiples of the worst-case alignment
57
 * requirement, and we had better do so too.
58
 * There isn't any really portable way to determine the worst-case alignment
59
 * requirement.  This module assumes that the alignment requirement is
60
 * multiples of sizeof(ALIGN_TYPE).
61
 * By default, we define ALIGN_TYPE as double.  This is necessary on some
62
 * workstations (where doubles really do need 8-byte alignment) and will work
63
 * fine on nearly everything.  If your machine has lesser alignment needs,
64
 * you can save a few bytes by making ALIGN_TYPE smaller.
65
 * The only place I know of where this will NOT work is certain Macintosh
66
 * 680x0 compilers that define double as a 10-byte IEEE extended float.
67
 * Doing 10-byte alignment is counterproductive because longwords won't be
68
 * aligned well.  Put "#define ALIGN_TYPE long" in jconfig.h if you have
69
 * such a compiler.
70
 */
71
72
#ifndef ALIGN_TYPE    /* so can override from jconfig.h */
73
#define ALIGN_TYPE  double
74
#endif
75
76
77
/*
78
 * We allocate objects from "pools", where each pool is gotten with a single
79
 * request to jpeg_get_small() or jpeg_get_large().  There is no per-object
80
 * overhead within a pool, except for alignment padding.  Each pool has a
81
 * header with a link to the next pool of the same class.
82
 * Small and large pool headers are identical except that the latter's
83
 * link pointer must be FAR on 80x86 machines.
84
 * Notice that the "real" header fields are union'ed with a dummy ALIGN_TYPE
85
 * field.  This forces the compiler to make SIZEOF(small_pool_hdr) a multiple
86
 * of the alignment requirement of ALIGN_TYPE.
87
 */
88
89
typedef union small_pool_struct * small_pool_ptr;
90
91
typedef union small_pool_struct {
92
  struct {
93
    small_pool_ptr next;  /* next in list of pools */
94
    size_t bytes_used;    /* how many bytes already used within pool */
95
    size_t bytes_left;    /* bytes still available in this pool */
96
  } hdr;
97
  ALIGN_TYPE dummy;   /* included in union to ensure alignment */
98
} small_pool_hdr;
99
100
typedef union large_pool_struct FAR * large_pool_ptr;
101
102
typedef union large_pool_struct {
103
  struct {
104
    large_pool_ptr next;  /* next in list of pools */
105
    size_t bytes_used;    /* how many bytes already used within pool */
106
    size_t bytes_left;    /* bytes still available in this pool */
107
  } hdr;
108
  ALIGN_TYPE dummy;   /* included in union to ensure alignment */
109
} large_pool_hdr;
110
111
112
/*
113
 * Here is the full definition of a memory manager object.
114
 */
115
116
typedef struct {
117
  struct jpeg_memory_mgr pub; /* public fields */
118
119
  /* Each pool identifier (lifetime class) names a linked list of pools. */
120
  small_pool_ptr small_list[JPOOL_NUMPOOLS];
121
  large_pool_ptr large_list[JPOOL_NUMPOOLS];
122
123
  /* Since we only have one lifetime class of virtual arrays, only one
124
   * linked list is necessary (for each datatype).  Note that the virtual
125
   * array control blocks being linked together are actually stored somewhere
126
   * in the small-pool list.
127
   */
128
  jvirt_sarray_ptr virt_sarray_list;
129
  jvirt_barray_ptr virt_barray_list;
130
131
  /* This counts total space obtained from jpeg_get_small/large */
132
  long total_space_allocated;
133
134
  /* alloc_sarray and alloc_barray set this value for use by virtual
135
   * array routines.
136
   */
137
  JDIMENSION last_rowsperchunk; /* from most recent alloc_sarray/barray */
138
} my_memory_mgr;
139
140
typedef my_memory_mgr * my_mem_ptr;
141
142
143
/*
144
 * The control blocks for virtual arrays.
145
 * Note that these blocks are allocated in the "small" pool area.
146
 * System-dependent info for the associated backing store (if any) is hidden
147
 * inside the backing_store_info struct.
148
 */
149
150
struct jvirt_sarray_control {
151
  JSAMPARRAY mem_buffer;  /* => the in-memory buffer */
152
  JDIMENSION rows_in_array; /* total virtual array height */
153
  JDIMENSION samplesperrow; /* width of array (and of memory buffer) */
154
  JDIMENSION maxaccess;   /* max rows accessed by access_virt_sarray */
155
  JDIMENSION rows_in_mem; /* height of memory buffer */
156
  JDIMENSION rowsperchunk;  /* allocation chunk size in mem_buffer */
157
  JDIMENSION cur_start_row; /* first logical row # in the buffer */
158
  JDIMENSION first_undef_row; /* row # of first uninitialized row */
159
  boolean pre_zero;   /* pre-zero mode requested? */
160
  boolean dirty;    /* do current buffer contents need written? */
161
  boolean b_s_open;   /* is backing-store data valid? */
162
  jvirt_sarray_ptr next;  /* link to next virtual sarray control block */
163
  backing_store_info b_s_info;  /* System-dependent control info */
164
};
165
166
struct jvirt_barray_control {
167
  JBLOCKARRAY mem_buffer; /* => the in-memory buffer */
168
  JDIMENSION rows_in_array; /* total virtual array height */
169
  JDIMENSION blocksperrow;  /* width of array (and of memory buffer) */
170
  JDIMENSION maxaccess;   /* max rows accessed by access_virt_barray */
171
  JDIMENSION rows_in_mem; /* height of memory buffer */
172
  JDIMENSION rowsperchunk;  /* allocation chunk size in mem_buffer */
173
  JDIMENSION cur_start_row; /* first logical row # in the buffer */
174
  JDIMENSION first_undef_row; /* row # of first uninitialized row */
175
  boolean pre_zero;   /* pre-zero mode requested? */
176
  boolean dirty;    /* do current buffer contents need written? */
177
  boolean b_s_open;   /* is backing-store data valid? */
178
  jvirt_barray_ptr next;  /* link to next virtual barray control block */
179
  backing_store_info b_s_info;  /* System-dependent control info */
180
};
181
182
183
#ifdef MEM_STATS    /* optional extra stuff for statistics */
184
185
LOCAL(void)
186
print_mem_stats (j_common_ptr cinfo, int pool_id)
187
{
188
  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
189
  small_pool_ptr shdr_ptr;
190
  large_pool_ptr lhdr_ptr;
191
192
  /* Since this is only a debugging stub, we can cheat a little by using
193
   * fprintf directly rather than going through the trace message code.
194
   * This is helpful because message parm array can't handle longs.
195
   */
196
  fprintf(stderr, "Freeing pool %d, total space = %ld\n",
197
    pool_id, mem->total_space_allocated);
198
199
  for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL;
200
       lhdr_ptr = lhdr_ptr->hdr.next) {
201
    fprintf(stderr, "  Large chunk used %ld\n",
202
      (long) lhdr_ptr->hdr.bytes_used);
203
  }
204
205
  for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL;
206
       shdr_ptr = shdr_ptr->hdr.next) {
207
    fprintf(stderr, "  Small chunk used %ld free %ld\n",
208
      (long) shdr_ptr->hdr.bytes_used,
209
      (long) shdr_ptr->hdr.bytes_left);
210
  }
211
}
212
213
#endif /* MEM_STATS */
214
215
216
LOCAL(void)
217
out_of_memory (j_common_ptr cinfo, int which) LIBJPEG_NO_RETURN;
218
219
LOCAL(void)
220
out_of_memory (j_common_ptr cinfo, int which)
221
/* Report an out-of-memory error and stop execution */
222
/* If we compiled MEM_STATS support, report alloc requests before dying */
223
0
{
224
#ifdef MEM_STATS
225
  cinfo->err->trace_level = 2;  /* force self_destruct to report stats */
226
#endif
227
0
  ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which);
228
0
}
229
230
231
/*
232
 * Allocation of "small" objects.
233
 *
234
 * For these, we use pooled storage.  When a new pool must be created,
235
 * we try to get enough space for the current request plus a "slop" factor,
236
 * where the slop will be the amount of leftover space in the new pool.
237
 * The speed vs. space tradeoff is largely determined by the slop values.
238
 * A different slop value is provided for each pool class (lifetime),
239
 * and we also distinguish the first pool of a class from later ones.
240
 * NOTE: the values given work fairly well on both 16- and 32-bit-int
241
 * machines, but may be too small if longs are 64 bits or more.
242
 */
243
244
static const size_t first_pool_slop[JPOOL_NUMPOOLS] = 
245
{
246
  1600,     /* first PERMANENT pool */
247
  16000     /* first IMAGE pool */
248
};
249
250
static const size_t extra_pool_slop[JPOOL_NUMPOOLS] = 
251
{
252
  0,      /* additional PERMANENT pools */
253
  5000      /* additional IMAGE pools */
254
};
255
256
0
#define MIN_SLOP  50    /* greater than 0 to avoid futile looping */
257
258
259
METHODDEF(void *)
260
alloc_small (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
261
/* Allocate a "small" object */
262
0
{
263
0
  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
264
0
  small_pool_ptr hdr_ptr, prev_hdr_ptr;
265
0
  char * data_ptr;
266
0
  size_t odd_bytes, min_request, slop;
267
268
  /* Check for unsatisfiable request (do now to ensure no overflow below) */
269
0
  if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(small_pool_hdr)))
270
0
    out_of_memory(cinfo, 1); /* request exceeds malloc's ability */
271
272
  /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
273
0
  odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);
274
0
  if (odd_bytes > 0)
275
0
    sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;
276
277
  /* See if space is available in any existing pool */
278
0
  if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
279
0
    ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
280
0
  prev_hdr_ptr = NULL;
281
0
  hdr_ptr = mem->small_list[pool_id];
282
0
  while (hdr_ptr != NULL) {
283
0
    if (hdr_ptr->hdr.bytes_left >= sizeofobject)
284
0
      break;     /* found pool with enough space */
285
0
    prev_hdr_ptr = hdr_ptr;
286
0
    hdr_ptr = hdr_ptr->hdr.next;
287
0
  }
288
289
  /* Time to make a new pool? */
290
0
  if (hdr_ptr == NULL) {
291
    /* min_request is what we need now, slop is what will be leftover */
292
0
    min_request = sizeofobject + SIZEOF(small_pool_hdr);
293
0
    if (prev_hdr_ptr == NULL) /* first pool in class? */
294
0
      slop = first_pool_slop[pool_id];
295
0
    else
296
0
      slop = extra_pool_slop[pool_id];
297
    /* Don't ask for more than MAX_ALLOC_CHUNK */
298
0
    if (slop > (size_t) (MAX_ALLOC_CHUNK-min_request))
299
0
      slop = (size_t) (MAX_ALLOC_CHUNK-min_request);
300
    /* Try to get space, if fail reduce slop and try again */
301
0
    for (;;) {
302
0
      hdr_ptr = (small_pool_ptr) jpeg_get_small(cinfo, min_request + slop);
303
0
      if (hdr_ptr != NULL)
304
0
  break;
305
0
      slop /= 2;
306
0
      if (slop < MIN_SLOP) /* give up when it gets real small */
307
0
  out_of_memory(cinfo, 2); /* jpeg_get_small failed */
308
0
    }
309
0
    mem->total_space_allocated += (long)(min_request + slop);
310
    /* Success, initialize the new pool header and add to end of list */
311
0
    hdr_ptr->hdr.next = NULL;
312
0
    hdr_ptr->hdr.bytes_used = 0;
313
0
    hdr_ptr->hdr.bytes_left = sizeofobject + slop;
314
0
    if (prev_hdr_ptr == NULL) /* first pool in class? */
315
0
      mem->small_list[pool_id] = hdr_ptr;
316
0
    else
317
0
      prev_hdr_ptr->hdr.next = hdr_ptr;
318
0
  }
319
320
  /* OK, allocate the object from the current pool */
321
0
  data_ptr = (char *) (hdr_ptr + 1); /* point to first data byte in pool */
322
0
  data_ptr += hdr_ptr->hdr.bytes_used; /* point to place for object */
323
0
  hdr_ptr->hdr.bytes_used += sizeofobject;
324
0
  hdr_ptr->hdr.bytes_left -= sizeofobject;
325
326
0
  return (void *) data_ptr;
327
0
}
328
329
330
/*
331
 * Allocation of "large" objects.
332
 *
333
 * The external semantics of these are the same as "small" objects,
334
 * except that FAR pointers are used on 80x86.  However the pool
335
 * management heuristics are quite different.  We assume that each
336
 * request is large enough that it may as well be passed directly to
337
 * jpeg_get_large; the pool management just links everything together
338
 * so that we can free it all on demand.
339
 * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY
340
 * structures.  The routines that create these structures (see below)
341
 * deliberately bunch rows together to ensure a large request size.
342
 */
343
344
METHODDEF(void FAR *)
345
alloc_large (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
346
/* Allocate a "large" object */
347
0
{
348
0
  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
349
0
  large_pool_ptr hdr_ptr;
350
0
  size_t odd_bytes;
351
352
  /* Check for unsatisfiable request (do now to ensure no overflow below) */
353
0
  if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)))
354
0
    out_of_memory(cinfo, 3); /* request exceeds malloc's ability */
355
356
  /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
357
0
  odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);
358
0
  if (odd_bytes > 0)
359
0
    sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;
360
361
  /* Always make a new pool */
362
0
  if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
363
0
    ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
364
365
0
  hdr_ptr = (large_pool_ptr) jpeg_get_large(cinfo, sizeofobject +
366
0
              SIZEOF(large_pool_hdr));
367
0
  if (hdr_ptr == NULL)
368
0
    out_of_memory(cinfo, 4); /* jpeg_get_large failed */
369
0
  mem->total_space_allocated += (long)(sizeofobject + SIZEOF(large_pool_hdr));
370
371
  /* Success, initialize the new pool header and add to list */
372
0
  hdr_ptr->hdr.next = mem->large_list[pool_id];
373
  /* We maintain space counts in each pool header for statistical purposes,
374
   * even though they are not needed for allocation.
375
   */
376
0
  hdr_ptr->hdr.bytes_used = sizeofobject;
377
0
  hdr_ptr->hdr.bytes_left = 0;
378
0
  mem->large_list[pool_id] = hdr_ptr;
379
380
0
  return (void FAR *) (hdr_ptr + 1); /* point to first data byte in pool */
381
0
}
382
383
384
/*
385
 * Creation of 2-D sample arrays.
386
 * The pointers are in near heap, the samples themselves in FAR heap.
387
 *
388
 * To minimize allocation overhead and to allow I/O of large contiguous
389
 * blocks, we allocate the sample rows in groups of as many rows as possible
390
 * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request.
391
 * NB: the virtual array control routines, later in this file, know about
392
 * this chunking of rows.  The rowsperchunk value is left in the mem manager
393
 * object so that it can be saved away if this sarray is the workspace for
394
 * a virtual array.
395
 */
396
397
METHODDEF(JSAMPARRAY)
398
alloc_sarray (j_common_ptr cinfo, int pool_id,
399
        JDIMENSION samplesperrow, JDIMENSION numrows)
400
/* Allocate a 2-D sample array */
401
0
{
402
0
  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
403
0
  JSAMPARRAY result;
404
0
  JSAMPROW workspace;
405
0
  JDIMENSION rowsperchunk, currow, i;
406
0
  long ltemp;
407
408
  /* Calculate max # of rows allowed in one allocation chunk */
409
0
  ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
410
0
    ((long) samplesperrow * SIZEOF(JSAMPLE));
411
0
  if (ltemp <= 0)
412
0
    ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
413
0
  if (ltemp < (long) numrows)
414
0
    rowsperchunk = (JDIMENSION) ltemp;
415
0
  else
416
0
    rowsperchunk = numrows;
417
0
  mem->last_rowsperchunk = rowsperchunk;
418
419
  /* Get space for row pointers (small object) */
420
0
  result = (JSAMPARRAY) alloc_small(cinfo, pool_id,
421
0
            (size_t) (numrows * SIZEOF(JSAMPROW)));
422
423
  /* Get the rows themselves (large objects) */
424
0
  currow = 0;
425
0
  while (currow < numrows) {
426
0
    rowsperchunk = MIN(rowsperchunk, numrows - currow);
427
0
    workspace = (JSAMPROW) alloc_large(cinfo, pool_id,
428
0
  (size_t) ((size_t) rowsperchunk * (size_t) samplesperrow
429
0
      * SIZEOF(JSAMPLE)));
430
0
    for (i = rowsperchunk; i > 0; i--) {
431
0
      result[currow++] = workspace;
432
0
      workspace += samplesperrow;
433
0
    }
434
0
  }
435
436
0
  return result;
437
0
}
438
439
440
/*
441
 * Creation of 2-D coefficient-block arrays.
442
 * This is essentially the same as the code for sample arrays, above.
443
 */
444
445
METHODDEF(JBLOCKARRAY)
446
alloc_barray (j_common_ptr cinfo, int pool_id,
447
        JDIMENSION blocksperrow, JDIMENSION numrows)
448
/* Allocate a 2-D coefficient-block array */
449
0
{
450
0
  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
451
0
  JBLOCKARRAY result;
452
0
  JBLOCKROW workspace;
453
0
  JDIMENSION rowsperchunk, currow, i;
454
0
  long ltemp;
455
456
  /* Calculate max # of rows allowed in one allocation chunk */
457
0
  ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
458
0
    ((long) blocksperrow * SIZEOF(JBLOCK));
459
0
  if (ltemp <= 0)
460
0
    ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
461
0
  if (ltemp < (long) numrows)
462
0
    rowsperchunk = (JDIMENSION) ltemp;
463
0
  else
464
0
    rowsperchunk = numrows;
465
0
  mem->last_rowsperchunk = rowsperchunk;
466
467
  /* Get space for row pointers (small object) */
468
0
  result = (JBLOCKARRAY) alloc_small(cinfo, pool_id,
469
0
             (size_t) (numrows * SIZEOF(JBLOCKROW)));
470
471
  /* Get the rows themselves (large objects) */
472
0
  currow = 0;
473
0
  while (currow < numrows) {
474
0
    rowsperchunk = MIN(rowsperchunk, numrows - currow);
475
0
    workspace = (JBLOCKROW) alloc_large(cinfo, pool_id,
476
0
  (size_t) ((size_t) rowsperchunk * (size_t) blocksperrow
477
0
      * SIZEOF(JBLOCK)));
478
0
    for (i = rowsperchunk; i > 0; i--) {
479
0
      result[currow++] = workspace;
480
0
      workspace += blocksperrow;
481
0
    }
482
0
  }
483
484
0
  return result;
485
0
}
486
487
488
/*
489
 * About virtual array management:
490
 *
491
 * The above "normal" array routines are only used to allocate strip buffers
492
 * (as wide as the image, but just a few rows high).  Full-image-sized buffers
493
 * are handled as "virtual" arrays.  The array is still accessed a strip at a
494
 * time, but the memory manager must save the whole array for repeated
495
 * accesses.  The intended implementation is that there is a strip buffer in
496
 * memory (as high as is possible given the desired memory limit), plus a
497
 * backing file that holds the rest of the array.
498
 *
499
 * The request_virt_array routines are told the total size of the image and
500
 * the maximum number of rows that will be accessed at once.  The in-memory
501
 * buffer must be at least as large as the maxaccess value.
502
 *
503
 * The request routines create control blocks but not the in-memory buffers.
504
 * That is postponed until realize_virt_arrays is called.  At that time the
505
 * total amount of space needed is known (approximately, anyway), so free
506
 * memory can be divided up fairly.
507
 *
508
 * The access_virt_array routines are responsible for making a specific strip
509
 * area accessible (after reading or writing the backing file, if necessary).
510
 * Note that the access routines are told whether the caller intends to modify
511
 * the accessed strip; during a read-only pass this saves having to rewrite
512
 * data to disk.  The access routines are also responsible for pre-zeroing
513
 * any newly accessed rows, if pre-zeroing was requested.
514
 *
515
 * In current usage, the access requests are usually for nonoverlapping
516
 * strips; that is, successive access start_row numbers differ by exactly
517
 * num_rows = maxaccess.  This means we can get good performance with simple
518
 * buffer dump/reload logic, by making the in-memory buffer be a multiple
519
 * of the access height; then there will never be accesses across bufferload
520
 * boundaries.  The code will still work with overlapping access requests,
521
 * but it doesn't handle bufferload overlaps very efficiently.
522
 */
523
524
525
METHODDEF(jvirt_sarray_ptr)
526
request_virt_sarray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
527
         JDIMENSION samplesperrow, JDIMENSION numrows,
528
         JDIMENSION maxaccess)
529
/* Request a virtual 2-D sample array */
530
0
{
531
0
  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
532
0
  jvirt_sarray_ptr result;
533
534
  /* Only IMAGE-lifetime virtual arrays are currently supported */
535
0
  if (pool_id != JPOOL_IMAGE)
536
0
    ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
537
538
  /* get control block */
539
0
  result = (jvirt_sarray_ptr) alloc_small(cinfo, pool_id,
540
0
            SIZEOF(struct jvirt_sarray_control));
541
542
0
  result->mem_buffer = NULL;  /* marks array not yet realized */
543
0
  result->rows_in_array = numrows;
544
0
  result->samplesperrow = samplesperrow;
545
0
  result->maxaccess = maxaccess;
546
0
  result->pre_zero = pre_zero;
547
0
  result->b_s_open = FALSE; /* no associated backing-store object */
548
0
  result->next = mem->virt_sarray_list; /* add to list of virtual arrays */
549
0
  mem->virt_sarray_list = result;
550
551
0
  return result;
552
0
}
553
554
555
METHODDEF(jvirt_barray_ptr)
556
request_virt_barray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
557
         JDIMENSION blocksperrow, JDIMENSION numrows,
558
         JDIMENSION maxaccess)
559
/* Request a virtual 2-D coefficient-block array */
560
0
{
561
0
  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
562
0
  jvirt_barray_ptr result;
563
564
  /* Only IMAGE-lifetime virtual arrays are currently supported */
565
0
  if (pool_id != JPOOL_IMAGE)
566
0
    ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
567
568
  /* get control block */
569
0
  result = (jvirt_barray_ptr) alloc_small(cinfo, pool_id,
570
0
            SIZEOF(struct jvirt_barray_control));
571
572
0
  result->mem_buffer = NULL;  /* marks array not yet realized */
573
0
  result->rows_in_array = numrows;
574
0
  result->blocksperrow = blocksperrow;
575
0
  result->maxaccess = maxaccess;
576
0
  result->pre_zero = pre_zero;
577
0
  result->b_s_open = FALSE; /* no associated backing-store object */
578
0
  result->next = mem->virt_barray_list; /* add to list of virtual arrays */
579
0
  mem->virt_barray_list = result;
580
581
0
  return result;
582
0
}
583
584
585
METHODDEF(void)
586
realize_virt_arrays (j_common_ptr cinfo)
587
/* Allocate the in-memory buffers for any unrealized virtual arrays */
588
0
{
589
0
  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
590
0
  long space_per_minheight, maximum_space, avail_mem;
591
0
  long minheights, max_minheights;
592
0
  jvirt_sarray_ptr sptr;
593
0
  jvirt_barray_ptr bptr;
594
595
  /* Compute the minimum space needed (maxaccess rows in each buffer)
596
   * and the maximum space needed (full image height in each buffer).
597
   * These may be of use to the system-dependent jpeg_mem_available routine.
598
   */
599
0
  space_per_minheight = 0;
600
0
  maximum_space = 0;
601
0
  for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
602
0
    if (sptr->mem_buffer == NULL) { /* if not realized yet */
603
0
      space_per_minheight += (long) sptr->maxaccess *
604
0
           (long) sptr->samplesperrow * SIZEOF(JSAMPLE);
605
0
      maximum_space += (long) sptr->rows_in_array *
606
0
           (long) sptr->samplesperrow * SIZEOF(JSAMPLE);
607
0
    }
608
0
  }
609
0
  for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
610
0
    if (bptr->mem_buffer == NULL) { /* if not realized yet */
611
0
      space_per_minheight += (long) bptr->maxaccess *
612
0
           (long) bptr->blocksperrow * SIZEOF(JBLOCK);
613
0
      maximum_space += (long) bptr->rows_in_array *
614
0
           (long) bptr->blocksperrow * SIZEOF(JBLOCK);
615
0
    }
616
0
  }
617
618
0
  if (space_per_minheight <= 0)
619
0
    return;     /* no unrealized arrays, no work */
620
621
  /* Determine amount of memory to actually use; this is system-dependent. */
622
0
  avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space,
623
0
         mem->total_space_allocated);
624
625
  /* If the maximum space needed is available, make all the buffers full
626
   * height; otherwise parcel it out with the same number of minheights
627
   * in each buffer.
628
   */
629
0
  if (avail_mem >= maximum_space)
630
0
    max_minheights = 1000000000L;
631
0
  else {
632
0
    max_minheights = avail_mem / space_per_minheight;
633
    /* If there doesn't seem to be enough space, try to get the minimum
634
     * anyway.  This allows a "stub" implementation of jpeg_mem_available().
635
     */
636
0
    if (max_minheights <= 0)
637
0
      max_minheights = 1;
638
0
  }
639
640
  /* Allocate the in-memory buffers and initialize backing store as needed. */
641
642
0
  for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
643
0
    if (sptr->mem_buffer == NULL) { /* if not realized yet */
644
0
      minheights = ((long) sptr->rows_in_array - 1L) / sptr->maxaccess + 1L;
645
0
      if (minheights <= max_minheights) {
646
  /* This buffer fits in memory */
647
0
  sptr->rows_in_mem = sptr->rows_in_array;
648
0
      } else {
649
  /* It doesn't fit in memory, create backing store. */
650
0
  sptr->rows_in_mem = (JDIMENSION) (max_minheights * sptr->maxaccess);
651
0
  jpeg_open_backing_store(cinfo, & sptr->b_s_info,
652
0
        (long) sptr->rows_in_array *
653
0
        (long) sptr->samplesperrow *
654
0
        (long) SIZEOF(JSAMPLE));
655
0
  sptr->b_s_open = TRUE;
656
0
      }
657
0
      sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE,
658
0
              sptr->samplesperrow, sptr->rows_in_mem);
659
0
      sptr->rowsperchunk = mem->last_rowsperchunk;
660
0
      sptr->cur_start_row = 0;
661
0
      sptr->first_undef_row = 0;
662
0
      sptr->dirty = FALSE;
663
0
    }
664
0
  }
665
666
0
  for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
667
0
    if (bptr->mem_buffer == NULL) { /* if not realized yet */
668
0
      minheights = ((long) bptr->rows_in_array - 1L) / bptr->maxaccess + 1L;
669
0
      if (minheights <= max_minheights) {
670
  /* This buffer fits in memory */
671
0
  bptr->rows_in_mem = bptr->rows_in_array;
672
0
      } else {
673
  /* It doesn't fit in memory, create backing store. */
674
0
  bptr->rows_in_mem = (JDIMENSION) (max_minheights * bptr->maxaccess);
675
0
  jpeg_open_backing_store(cinfo, & bptr->b_s_info,
676
0
        (long) bptr->rows_in_array *
677
0
        (long) bptr->blocksperrow *
678
0
        (long) SIZEOF(JBLOCK));
679
0
  bptr->b_s_open = TRUE;
680
0
      }
681
0
      bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE,
682
0
              bptr->blocksperrow, bptr->rows_in_mem);
683
0
      bptr->rowsperchunk = mem->last_rowsperchunk;
684
0
      bptr->cur_start_row = 0;
685
0
      bptr->first_undef_row = 0;
686
0
      bptr->dirty = FALSE;
687
0
    }
688
0
  }
689
0
}
690
691
692
LOCAL(void)
693
do_sarray_io (j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing)
694
/* Do backing store read or write of a virtual sample array */
695
0
{
696
0
  long bytesperrow, file_offset, byte_count, rows, thisrow, i;
697
698
0
  bytesperrow = (long) ptr->samplesperrow * SIZEOF(JSAMPLE);
699
0
  file_offset = ptr->cur_start_row * bytesperrow;
700
  /* Loop to read or write each allocation chunk in mem_buffer */
701
0
  for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
702
    /* One chunk, but check for short chunk at end of buffer */
703
0
    rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
704
    /* Transfer no more than is currently defined */
705
0
    thisrow = (long) ptr->cur_start_row + i;
706
0
    rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
707
    /* Transfer no more than fits in file */
708
0
    rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
709
0
    if (rows <= 0)   /* this chunk might be past end of file! */
710
0
      break;
711
0
    byte_count = rows * bytesperrow;
712
0
    if (writing)
713
0
      (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
714
0
              (void FAR *) ptr->mem_buffer[i],
715
0
              file_offset, byte_count);
716
0
    else
717
0
      (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
718
0
             (void FAR *) ptr->mem_buffer[i],
719
0
             file_offset, byte_count);
720
0
    file_offset += byte_count;
721
0
  }
722
0
}
723
724
725
LOCAL(void)
726
do_barray_io (j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing)
727
/* Do backing store read or write of a virtual coefficient-block array */
728
0
{
729
0
  long bytesperrow, file_offset, byte_count, rows, thisrow, i;
730
731
0
  bytesperrow = (long) ptr->blocksperrow * SIZEOF(JBLOCK);
732
0
  file_offset = ptr->cur_start_row * bytesperrow;
733
  /* Loop to read or write each allocation chunk in mem_buffer */
734
0
  for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
735
    /* One chunk, but check for short chunk at end of buffer */
736
0
    rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
737
    /* Transfer no more than is currently defined */
738
0
    thisrow = (long) ptr->cur_start_row + i;
739
0
    rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
740
    /* Transfer no more than fits in file */
741
0
    rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
742
0
    if (rows <= 0)   /* this chunk might be past end of file! */
743
0
      break;
744
0
    byte_count = rows * bytesperrow;
745
0
    if (writing)
746
0
      (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
747
0
              (void FAR *) ptr->mem_buffer[i],
748
0
              file_offset, byte_count);
749
0
    else
750
0
      (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
751
0
             (void FAR *) ptr->mem_buffer[i],
752
0
             file_offset, byte_count);
753
0
    file_offset += byte_count;
754
0
  }
755
0
}
756
757
758
METHODDEF(JSAMPARRAY)
759
access_virt_sarray (j_common_ptr cinfo, jvirt_sarray_ptr ptr,
760
        JDIMENSION start_row, JDIMENSION num_rows,
761
        boolean writable)
762
/* Access the part of a virtual sample array starting at start_row */
763
/* and extending for num_rows rows.  writable is true if  */
764
/* caller intends to modify the accessed area. */
765
0
{
766
0
  JDIMENSION end_row = start_row + num_rows;
767
0
  JDIMENSION undef_row;
768
769
  /* debugging check */
770
0
  if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
771
0
      ptr->mem_buffer == NULL)
772
0
    ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
773
774
  /* Make the desired part of the virtual array accessible */
775
0
  if (start_row < ptr->cur_start_row ||
776
0
      end_row > ptr->cur_start_row+ptr->rows_in_mem) {
777
0
    if (! ptr->b_s_open)
778
0
      ERREXIT(cinfo, JERR_VIRTUAL_BUG);
779
    /* Flush old buffer contents if necessary */
780
0
    if (ptr->dirty) {
781
0
      do_sarray_io(cinfo, ptr, TRUE);
782
0
      ptr->dirty = FALSE;
783
0
    }
784
    /* Decide what part of virtual array to access.
785
     * Algorithm: if target address > current window, assume forward scan,
786
     * load starting at target address.  If target address < current window,
787
     * assume backward scan, load so that target area is top of window.
788
     * Note that when switching from forward write to forward read, will have
789
     * start_row = 0, so the limiting case applies and we load from 0 anyway.
790
     */
791
0
    if (start_row > ptr->cur_start_row) {
792
0
      ptr->cur_start_row = start_row;
793
0
    } else {
794
      /* use long arithmetic here to avoid overflow & unsigned problems */
795
0
      long ltemp;
796
797
0
      ltemp = (long) end_row - (long) ptr->rows_in_mem;
798
0
      if (ltemp < 0)
799
0
  ltemp = 0;   /* don't fall off front end of file */
800
0
      ptr->cur_start_row = (JDIMENSION) ltemp;
801
0
    }
802
    /* Read in the selected part of the array.
803
     * During the initial write pass, we will do no actual read
804
     * because the selected part is all undefined.
805
     */
806
0
    do_sarray_io(cinfo, ptr, FALSE);
807
0
  }
808
  /* Ensure the accessed part of the array is defined; prezero if needed.
809
   * To improve locality of access, we only prezero the part of the array
810
   * that the caller is about to access, not the entire in-memory array.
811
   */
812
0
  if (ptr->first_undef_row < end_row) {
813
0
    if (ptr->first_undef_row < start_row) {
814
0
      if (writable)   /* writer skipped over a section of array */
815
0
  ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
816
0
      undef_row = start_row;  /* but reader is allowed to read ahead */
817
0
    } else {
818
0
      undef_row = ptr->first_undef_row;
819
0
    }
820
0
    if (writable)
821
0
      ptr->first_undef_row = end_row;
822
0
    if (ptr->pre_zero) {
823
0
      size_t bytesperrow = (size_t) ptr->samplesperrow * SIZEOF(JSAMPLE);
824
0
      undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
825
0
      end_row -= ptr->cur_start_row;
826
0
      while (undef_row < end_row) {
827
0
  jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
828
0
  undef_row++;
829
0
      }
830
0
    } else {
831
0
      if (! writable)   /* reader looking at undefined data */
832
0
  ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
833
0
    }
834
0
  }
835
  /* Flag the buffer dirty if caller will write in it */
836
0
  if (writable)
837
0
    ptr->dirty = TRUE;
838
  /* Return address of proper part of the buffer */
839
0
  return ptr->mem_buffer + (start_row - ptr->cur_start_row);
840
0
}
841
842
843
METHODDEF(JBLOCKARRAY)
844
access_virt_barray (j_common_ptr cinfo, jvirt_barray_ptr ptr,
845
        JDIMENSION start_row, JDIMENSION num_rows,
846
        boolean writable)
847
/* Access the part of a virtual block array starting at start_row */
848
/* and extending for num_rows rows.  writable is true if  */
849
/* caller intends to modify the accessed area. */
850
0
{
851
0
  JDIMENSION end_row = start_row + num_rows;
852
0
  JDIMENSION undef_row;
853
854
  /* debugging check */
855
0
  if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
856
0
      ptr->mem_buffer == NULL)
857
0
    ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
858
859
  /* Make the desired part of the virtual array accessible */
860
0
  if (start_row < ptr->cur_start_row ||
861
0
      end_row > ptr->cur_start_row+ptr->rows_in_mem) {
862
0
    if (! ptr->b_s_open)
863
0
      ERREXIT(cinfo, JERR_VIRTUAL_BUG);
864
    /* Flush old buffer contents if necessary */
865
0
    if (ptr->dirty) {
866
0
      do_barray_io(cinfo, ptr, TRUE);
867
0
      ptr->dirty = FALSE;
868
0
    }
869
    /* Decide what part of virtual array to access.
870
     * Algorithm: if target address > current window, assume forward scan,
871
     * load starting at target address.  If target address < current window,
872
     * assume backward scan, load so that target area is top of window.
873
     * Note that when switching from forward write to forward read, will have
874
     * start_row = 0, so the limiting case applies and we load from 0 anyway.
875
     */
876
0
    if (start_row > ptr->cur_start_row) {
877
0
      ptr->cur_start_row = start_row;
878
0
    } else {
879
      /* use long arithmetic here to avoid overflow & unsigned problems */
880
0
      long ltemp;
881
882
0
      ltemp = (long) end_row - (long) ptr->rows_in_mem;
883
0
      if (ltemp < 0)
884
0
  ltemp = 0;   /* don't fall off front end of file */
885
0
      ptr->cur_start_row = (JDIMENSION) ltemp;
886
0
    }
887
    /* Read in the selected part of the array.
888
     * During the initial write pass, we will do no actual read
889
     * because the selected part is all undefined.
890
     */
891
0
    do_barray_io(cinfo, ptr, FALSE);
892
0
  }
893
  /* Ensure the accessed part of the array is defined; prezero if needed.
894
   * To improve locality of access, we only prezero the part of the array
895
   * that the caller is about to access, not the entire in-memory array.
896
   */
897
0
  if (ptr->first_undef_row < end_row) {
898
0
    if (ptr->first_undef_row < start_row) {
899
0
      if (writable)   /* writer skipped over a section of array */
900
0
  ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
901
0
      undef_row = start_row;  /* but reader is allowed to read ahead */
902
0
    } else {
903
0
      undef_row = ptr->first_undef_row;
904
0
    }
905
0
    if (writable)
906
0
      ptr->first_undef_row = end_row;
907
0
    if (ptr->pre_zero) {
908
0
      size_t bytesperrow = (size_t) ptr->blocksperrow * SIZEOF(JBLOCK);
909
0
      undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
910
0
      end_row -= ptr->cur_start_row;
911
0
      while (undef_row < end_row) {
912
0
  jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
913
0
  undef_row++;
914
0
      }
915
0
    } else {
916
0
      if (! writable)   /* reader looking at undefined data */
917
0
  ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
918
0
    }
919
0
  }
920
  /* Flag the buffer dirty if caller will write in it */
921
0
  if (writable)
922
0
    ptr->dirty = TRUE;
923
  /* Return address of proper part of the buffer */
924
0
  return ptr->mem_buffer + (start_row - ptr->cur_start_row);
925
0
}
926
927
928
/*
929
 * Release all objects belonging to a specified pool.
930
 */
931
932
METHODDEF(void)
933
free_pool (j_common_ptr cinfo, int pool_id)
934
0
{
935
0
  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
936
0
  small_pool_ptr shdr_ptr;
937
0
  large_pool_ptr lhdr_ptr;
938
0
  size_t space_freed;
939
940
0
  if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
941
0
    ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
942
943
#ifdef MEM_STATS
944
  if (cinfo->err->trace_level > 1)
945
    print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */
946
#endif
947
948
  /* If freeing IMAGE pool, close any virtual arrays first */
949
0
  if (pool_id == JPOOL_IMAGE) {
950
0
    jvirt_sarray_ptr sptr;
951
0
    jvirt_barray_ptr bptr;
952
953
0
    for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
954
0
      if (sptr->b_s_open) { /* there may be no backing store */
955
0
  sptr->b_s_open = FALSE; /* prevent recursive close if error */
956
0
  (*sptr->b_s_info.close_backing_store) (cinfo, & sptr->b_s_info);
957
0
      }
958
0
    }
959
0
    mem->virt_sarray_list = NULL;
960
0
    for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
961
0
      if (bptr->b_s_open) { /* there may be no backing store */
962
0
  bptr->b_s_open = FALSE; /* prevent recursive close if error */
963
0
  (*bptr->b_s_info.close_backing_store) (cinfo, & bptr->b_s_info);
964
0
      }
965
0
    }
966
0
    mem->virt_barray_list = NULL;
967
0
  }
968
969
  /* Release large objects */
970
0
  lhdr_ptr = mem->large_list[pool_id];
971
0
  mem->large_list[pool_id] = NULL;
972
973
0
  while (lhdr_ptr != NULL) {
974
0
    large_pool_ptr next_lhdr_ptr = lhdr_ptr->hdr.next;
975
0
    space_freed = lhdr_ptr->hdr.bytes_used +
976
0
      lhdr_ptr->hdr.bytes_left +
977
0
      SIZEOF(large_pool_hdr);
978
0
    jpeg_free_large(cinfo, (void FAR *) lhdr_ptr, space_freed);
979
0
    mem->total_space_allocated -= (long)space_freed;
980
0
    lhdr_ptr = next_lhdr_ptr;
981
0
  }
982
983
  /* Release small objects */
984
0
  shdr_ptr = mem->small_list[pool_id];
985
0
  mem->small_list[pool_id] = NULL;
986
987
0
  while (shdr_ptr != NULL) {
988
0
    small_pool_ptr next_shdr_ptr = shdr_ptr->hdr.next;
989
0
    space_freed = shdr_ptr->hdr.bytes_used +
990
0
      shdr_ptr->hdr.bytes_left +
991
0
      SIZEOF(small_pool_hdr);
992
0
    jpeg_free_small(cinfo, (void *) shdr_ptr, space_freed);
993
0
    mem->total_space_allocated -= (long)space_freed;
994
0
    shdr_ptr = next_shdr_ptr;
995
0
  }
996
0
}
997
998
999
/*
1000
 * Close up shop entirely.
1001
 * Note that this cannot be called unless cinfo->mem is non-NULL.
1002
 */
1003
1004
METHODDEF(void)
1005
self_destruct (j_common_ptr cinfo)
1006
0
{
1007
0
  int pool;
1008
1009
  /* Close all backing store, release all memory.
1010
   * Releasing pools in reverse order might help avoid fragmentation
1011
   * with some (brain-damaged) malloc libraries.
1012
   */
1013
0
  for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
1014
0
    free_pool(cinfo, pool);
1015
0
  }
1016
1017
  /* Release the memory manager control block too. */
1018
0
  jpeg_free_small(cinfo, (void *) cinfo->mem, SIZEOF(my_memory_mgr));
1019
0
  cinfo->mem = NULL;    /* ensures I will be called only once */
1020
1021
0
  jpeg_mem_term(cinfo);    /* system-dependent cleanup */
1022
0
}
1023
1024
1025
/*
1026
 * Memory manager initialization.
1027
 * When this is called, only the error manager pointer is valid in cinfo!
1028
 */
1029
1030
GLOBAL(void)
1031
jinit_memory_mgr (j_common_ptr cinfo)
1032
0
{
1033
0
  my_mem_ptr mem;
1034
0
  long max_to_use;
1035
0
  int pool;
1036
0
  size_t test_mac;
1037
1038
0
  cinfo->mem = NULL;    /* for safety if init fails */
1039
1040
  /* Check for configuration errors.
1041
   * SIZEOF(ALIGN_TYPE) should be a power of 2; otherwise, it probably
1042
   * doesn't reflect any real hardware alignment requirement.
1043
   * The test is a little tricky: for X>0, X and X-1 have no one-bits
1044
   * in common if and only if X is a power of 2, ie has only one one-bit.
1045
   * Some compilers may give an "unreachable code" warning here; ignore it.
1046
   */
1047
0
  if ((SIZEOF(ALIGN_TYPE) & (SIZEOF(ALIGN_TYPE)-1)) != 0)
1048
0
    ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE);
1049
  /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be
1050
   * a multiple of SIZEOF(ALIGN_TYPE).
1051
   * Again, an "unreachable code" warning may be ignored here.
1052
   * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK.
1053
   */
1054
0
  test_mac = (size_t) MAX_ALLOC_CHUNK;
1055
0
  if ((long) test_mac != MAX_ALLOC_CHUNK ||
1056
0
      (MAX_ALLOC_CHUNK % SIZEOF(ALIGN_TYPE)) != 0)
1057
0
    ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK);
1058
1059
0
  max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */
1060
1061
  /* Attempt to allocate memory manager's control block */
1062
0
  mem = (my_mem_ptr) jpeg_get_small(cinfo, SIZEOF(my_memory_mgr));
1063
1064
0
  if (mem == NULL) {
1065
0
    jpeg_mem_term(cinfo);  /* system-dependent cleanup */
1066
0
    ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0);
1067
0
    return;
1068
0
  }
1069
1070
  /* OK, fill in the method pointers */
1071
0
  mem->pub.alloc_small = alloc_small;
1072
0
  mem->pub.alloc_large = alloc_large;
1073
0
  mem->pub.alloc_sarray = alloc_sarray;
1074
0
  mem->pub.alloc_barray = alloc_barray;
1075
0
  mem->pub.request_virt_sarray = request_virt_sarray;
1076
0
  mem->pub.request_virt_barray = request_virt_barray;
1077
0
  mem->pub.realize_virt_arrays = realize_virt_arrays;
1078
0
  mem->pub.access_virt_sarray = access_virt_sarray;
1079
0
  mem->pub.access_virt_barray = access_virt_barray;
1080
0
  mem->pub.free_pool = free_pool;
1081
0
  mem->pub.self_destruct = self_destruct;
1082
1083
  /* Make MAX_ALLOC_CHUNK accessible to other modules */
1084
0
  mem->pub.max_alloc_chunk = MAX_ALLOC_CHUNK;
1085
1086
  /* Initialize working state */
1087
0
  mem->pub.max_memory_to_use = max_to_use;
1088
1089
0
  for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
1090
0
    mem->small_list[pool] = NULL;
1091
0
    mem->large_list[pool] = NULL;
1092
0
  }
1093
0
  mem->virt_sarray_list = NULL;
1094
0
  mem->virt_barray_list = NULL;
1095
1096
0
  mem->total_space_allocated = SIZEOF(my_memory_mgr);
1097
1098
  /* Declare ourselves open for business */
1099
0
  cinfo->mem = & mem->pub;
1100
1101
  /* Check for an environment variable JPEGMEM; if found, override the
1102
   * default max_memory setting from jpeg_mem_init.  Note that the
1103
   * surrounding application may again override this value.
1104
   * If your system doesn't support getenv(), define NO_GETENV to disable
1105
   * this feature.
1106
   */
1107
0
#ifndef NO_GETENV
1108
0
  { char * memenv;
1109
1110
0
    if ((memenv = getenv("JPEGMEM")) != NULL) {
1111
0
      char ch = 'x';
1112
1113
0
      if (sscanf(memenv, "%ld%c", &max_to_use, &ch) > 0) {
1114
0
  if (ch == 'm' || ch == 'M')
1115
0
    max_to_use *= 1000L;
1116
0
  mem->pub.max_memory_to_use = max_to_use * 1000L;
1117
0
      }
1118
0
    }
1119
0
  }
1120
0
#endif
1121
1122
0
}