/src/gdal/frmts/gtiff/libtiff/tif_lzw.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright (c) 1988-1997 Sam Leffler |
3 | | * Copyright (c) 1991-1997 Silicon Graphics, Inc. |
4 | | * Copyright (c) 2022 Even Rouault |
5 | | * |
6 | | * Permission to use, copy, modify, distribute, and sell this software and |
7 | | * its documentation for any purpose is hereby granted without fee, provided |
8 | | * that (i) the above copyright notices and this permission notice appear in |
9 | | * all copies of the software and related documentation, and (ii) the names of |
10 | | * Sam Leffler and Silicon Graphics may not be used in any advertising or |
11 | | * publicity relating to the software without the specific, prior written |
12 | | * permission of Sam Leffler and Silicon Graphics. |
13 | | * |
14 | | * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, |
15 | | * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY |
16 | | * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. |
17 | | * |
18 | | * IN NO EVENT SHALL SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR |
19 | | * ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, |
20 | | * OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, |
21 | | * WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF |
22 | | * LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE |
23 | | * OF THIS SOFTWARE. |
24 | | */ |
25 | | |
26 | | #include "tiffiop.h" |
27 | | #ifdef LZW_SUPPORT |
28 | | /* |
29 | | * TIFF Library. |
30 | | * Rev 5.0 Lempel-Ziv & Welch Compression Support |
31 | | * |
32 | | * This code is derived from the compress program whose code is |
33 | | * derived from software contributed to Berkeley by James A. Woods, |
34 | | * derived from original work by Spencer Thomas and Joseph Orost. |
35 | | * |
36 | | * The original Berkeley copyright notice appears below in its entirety. |
37 | | */ |
38 | | #include "tif_predict.h" |
39 | | |
40 | | #include <stdbool.h> |
41 | | #include <stdio.h> |
42 | | #include <stdlib.h> |
43 | | |
44 | | /* Select the plausible largest natural integer type for the architecture */ |
45 | 0 | #define SIZEOF_WORDTYPE SIZEOF_SIZE_T |
46 | | typedef size_t WordType; |
47 | | |
48 | | /* |
49 | | * NB: The 5.0 spec describes a different algorithm than Aldus |
50 | | * implements. Specifically, Aldus does code length transitions |
51 | | * one code earlier than should be done (for real LZW). |
52 | | * Earlier versions of this library implemented the correct |
53 | | * LZW algorithm, but emitted codes in a bit order opposite |
54 | | * to the TIFF spec. Thus, to maintain compatibility w/ Aldus |
55 | | * we interpret MSB-LSB ordered codes to be images written w/ |
56 | | * old versions of this library, but otherwise adhere to the |
57 | | * Aldus "off by one" algorithm. |
58 | | * |
59 | | * Future revisions to the TIFF spec are expected to "clarify this issue". |
60 | | */ |
61 | | #define LZW_COMPAT /* include backwards compatibility code */ |
62 | | |
63 | 0 | #define MAXCODE(n) ((1L << (n)) - 1) |
64 | | /* |
65 | | * The TIFF spec specifies that encoded bit |
66 | | * strings range from 9 to 12 bits. |
67 | | */ |
68 | 0 | #define BITS_MIN 9 /* start with 9 bits */ |
69 | 0 | #define BITS_MAX 12 /* max of 12 bit strings */ |
70 | | /* predefined codes */ |
71 | 0 | #define CODE_CLEAR 256 /* code to clear string table */ |
72 | 0 | #define CODE_EOI 257 /* end-of-information code */ |
73 | 0 | #define CODE_FIRST 258 /* first free code entry */ |
74 | 0 | #define CODE_MAX MAXCODE(BITS_MAX) |
75 | 0 | #define HSIZE 9001L /* 91% occupancy */ |
76 | 0 | #define HSHIFT (13 - 8) |
77 | | #ifdef LZW_COMPAT |
78 | | /* NB: +1024 is for compatibility with old files */ |
79 | 0 | #define CSIZE (MAXCODE(BITS_MAX) + 1024L) |
80 | | #else |
81 | | #define CSIZE (MAXCODE(BITS_MAX) + 1L) |
82 | | #endif |
83 | | |
84 | | /* |
85 | | * State block for each open TIFF file using LZW |
86 | | * compression/decompression. Note that the predictor |
87 | | * state block must be first in this data structure. |
88 | | */ |
89 | | typedef struct |
90 | | { |
91 | | TIFFPredictorState predict; /* predictor super class */ |
92 | | |
93 | | unsigned short nbits; /* # of bits/code */ |
94 | | unsigned short maxcode; /* maximum code for lzw_nbits */ |
95 | | unsigned short free_ent; /* next free entry in hash table */ |
96 | | WordType nextdata; /* next bits of i/o */ |
97 | | long nextbits; /* # of valid bits in lzw_nextdata */ |
98 | | |
99 | | int rw_mode; /* preserve rw_mode from init */ |
100 | | } LZWBaseState; |
101 | | |
102 | 0 | #define lzw_nbits base.nbits |
103 | 0 | #define lzw_maxcode base.maxcode |
104 | 0 | #define lzw_free_ent base.free_ent |
105 | 0 | #define lzw_nextdata base.nextdata |
106 | 0 | #define lzw_nextbits base.nextbits |
107 | | |
108 | | /* |
109 | | * Encoding-specific state. |
110 | | */ |
111 | | typedef uint16_t hcode_t; /* codes fit in 16 bits */ |
112 | | typedef struct |
113 | | { |
114 | | long hash; |
115 | | hcode_t code; |
116 | | } hash_t; |
117 | | |
118 | | /* |
119 | | * Decoding-specific state. |
120 | | */ |
121 | | typedef struct code_ent |
122 | | { |
123 | | struct code_ent *next; |
124 | | unsigned short length; /* string len, including this token */ |
125 | | /* firstchar should be placed immediately before value in this structure */ |
126 | | unsigned char firstchar; /* first token of string */ |
127 | | unsigned char value; /* data value */ |
128 | | bool repeated; |
129 | | } code_t; |
130 | | |
131 | | typedef int (*decodeFunc)(TIFF *, uint8_t *, tmsize_t, uint16_t); |
132 | | |
133 | | typedef struct |
134 | | { |
135 | | LZWBaseState base; |
136 | | |
137 | | /* Decoding specific data */ |
138 | | long dec_nbitsmask; /* lzw_nbits 1 bits, right adjusted */ |
139 | | tmsize_t dec_restart; /* restart count */ |
140 | | uint64_t dec_bitsleft; /* available bits in raw data */ |
141 | | tmsize_t old_tif_rawcc; /* value of tif_rawcc at the end of the previous |
142 | | TIFLZWDecode() call */ |
143 | | decodeFunc dec_decode; /* regular or backwards compatible */ |
144 | | code_t *dec_codep; /* current recognized code */ |
145 | | code_t *dec_oldcodep; /* previously recognized code */ |
146 | | code_t *dec_free_entp; /* next free entry */ |
147 | | code_t *dec_maxcodep; /* max available entry */ |
148 | | code_t *dec_codetab; /* kept separate for small machines */ |
149 | | int read_error; /* whether a read error has occurred, and which should cause |
150 | | further reads in the same strip/tile to be aborted */ |
151 | | |
152 | | /* Encoding specific data */ |
153 | | int enc_oldcode; /* last code encountered */ |
154 | | tmsize_t enc_checkpoint; /* point at which to clear table */ |
155 | 0 | #define CHECK_GAP 10000 /* enc_ratio check interval */ |
156 | | tmsize_t enc_ratio; /* current compression ratio */ |
157 | | tmsize_t enc_incount; /* (input) data bytes encoded */ |
158 | | tmsize_t enc_outcount; /* encoded (output) bytes */ |
159 | | uint8_t *enc_rawlimit; /* bound on tif_rawdata buffer */ |
160 | | hash_t *enc_hashtab; /* kept separate for small machines */ |
161 | | } LZWCodecState; |
162 | | |
163 | 0 | #define LZWState(tif) ((LZWBaseState *)(tif)->tif_data) |
164 | 0 | #define LZWDecoderState(tif) ((LZWCodecState *)LZWState(tif)) |
165 | 0 | #define LZWEncoderState(tif) ((LZWCodecState *)LZWState(tif)) |
166 | | |
167 | | static int LZWDecode(TIFF *tif, uint8_t *op0, tmsize_t occ0, uint16_t s); |
168 | | #ifdef LZW_COMPAT |
169 | | static int LZWDecodeCompat(TIFF *tif, uint8_t *op0, tmsize_t occ0, uint16_t s); |
170 | | #endif |
171 | | |
172 | | /* |
173 | | * LZW Decoder. |
174 | | */ |
175 | | |
176 | | static int LZWFixupTags(TIFF *tif) |
177 | 0 | { |
178 | 0 | (void)tif; |
179 | 0 | return (1); |
180 | 0 | } |
181 | | |
182 | | static int LZWSetupDecode(TIFF *tif) |
183 | 0 | { |
184 | 0 | static const char module[] = "LZWSetupDecode"; |
185 | 0 | LZWCodecState *sp = LZWDecoderState(tif); |
186 | 0 | int code; |
187 | |
|
188 | 0 | if (sp == NULL) |
189 | 0 | { |
190 | | /* |
191 | | * Allocate state block so tag methods have storage to record |
192 | | * values. |
193 | | */ |
194 | 0 | tif->tif_data = (uint8_t *)_TIFFmallocExt(tif, sizeof(LZWCodecState)); |
195 | 0 | if (tif->tif_data == NULL) |
196 | 0 | { |
197 | 0 | TIFFErrorExtR(tif, module, "No space for LZW state block"); |
198 | 0 | return (0); |
199 | 0 | } |
200 | | |
201 | 0 | sp = LZWDecoderState(tif); |
202 | 0 | sp->dec_codetab = NULL; |
203 | 0 | sp->dec_decode = NULL; |
204 | | |
205 | | /* |
206 | | * Setup predictor setup. |
207 | | */ |
208 | 0 | (void)TIFFPredictorInit(tif); |
209 | 0 | } |
210 | | |
211 | 0 | if (sp->dec_codetab == NULL) |
212 | 0 | { |
213 | 0 | sp->dec_codetab = (code_t *)_TIFFmallocExt(tif, CSIZE * sizeof(code_t)); |
214 | 0 | if (sp->dec_codetab == NULL) |
215 | 0 | { |
216 | 0 | TIFFErrorExtR(tif, module, "No space for LZW code table"); |
217 | 0 | return (0); |
218 | 0 | } |
219 | | /* |
220 | | * Pre-load the table. |
221 | | */ |
222 | 0 | code = 255; |
223 | 0 | do |
224 | 0 | { |
225 | 0 | sp->dec_codetab[code].firstchar = (unsigned char)code; |
226 | 0 | sp->dec_codetab[code].value = (unsigned char)code; |
227 | 0 | sp->dec_codetab[code].repeated = true; |
228 | 0 | sp->dec_codetab[code].length = 1; |
229 | 0 | sp->dec_codetab[code].next = NULL; |
230 | 0 | } while (code--); |
231 | | /* |
232 | | * Zero-out the unused entries */ |
233 | 0 | memset(&sp->dec_codetab[CODE_CLEAR], 0, |
234 | 0 | (CODE_FIRST - CODE_CLEAR) * sizeof(code_t)); |
235 | 0 | } |
236 | 0 | return (1); |
237 | 0 | } |
238 | | |
239 | | /* |
240 | | * Setup state for decoding a strip. |
241 | | */ |
242 | | static int LZWPreDecode(TIFF *tif, uint16_t s) |
243 | 0 | { |
244 | 0 | static const char module[] = "LZWPreDecode"; |
245 | 0 | LZWCodecState *sp = LZWDecoderState(tif); |
246 | |
|
247 | 0 | (void)s; |
248 | 0 | assert(sp != NULL); |
249 | 0 | if (sp->dec_codetab == NULL) |
250 | 0 | { |
251 | 0 | tif->tif_setupdecode(tif); |
252 | 0 | if (sp->dec_codetab == NULL) |
253 | 0 | return (0); |
254 | 0 | } |
255 | | |
256 | | /* |
257 | | * Check for old bit-reversed codes. |
258 | | */ |
259 | 0 | if (tif->tif_rawcc >= 2 && tif->tif_rawdata[0] == 0 && |
260 | 0 | (tif->tif_rawdata[1] & 0x1)) |
261 | 0 | { |
262 | 0 | #ifdef LZW_COMPAT |
263 | 0 | if (!sp->dec_decode) |
264 | 0 | { |
265 | 0 | TIFFWarningExtR(tif, module, "Old-style LZW codes, convert file"); |
266 | | /* |
267 | | * Override default decoding methods with |
268 | | * ones that deal with the old coding. |
269 | | * Otherwise the predictor versions set |
270 | | * above will call the compatibility routines |
271 | | * through the dec_decode method. |
272 | | */ |
273 | 0 | tif->tif_decoderow = LZWDecodeCompat; |
274 | 0 | tif->tif_decodestrip = LZWDecodeCompat; |
275 | 0 | tif->tif_decodetile = LZWDecodeCompat; |
276 | | /* |
277 | | * If doing horizontal differencing, must |
278 | | * re-setup the predictor logic since we |
279 | | * switched the basic decoder methods... |
280 | | */ |
281 | 0 | (*tif->tif_setupdecode)(tif); |
282 | 0 | sp->dec_decode = LZWDecodeCompat; |
283 | 0 | } |
284 | 0 | sp->lzw_maxcode = MAXCODE(BITS_MIN); |
285 | | #else /* !LZW_COMPAT */ |
286 | | if (!sp->dec_decode) |
287 | | { |
288 | | TIFFErrorExtR(tif, module, "Old-style LZW codes not supported"); |
289 | | sp->dec_decode = LZWDecode; |
290 | | } |
291 | | return (0); |
292 | | #endif /* !LZW_COMPAT */ |
293 | 0 | } |
294 | 0 | else |
295 | 0 | { |
296 | 0 | sp->lzw_maxcode = MAXCODE(BITS_MIN) - 1; |
297 | 0 | sp->dec_decode = LZWDecode; |
298 | 0 | } |
299 | 0 | sp->lzw_nbits = BITS_MIN; |
300 | 0 | sp->lzw_nextbits = 0; |
301 | 0 | sp->lzw_nextdata = 0; |
302 | |
|
303 | 0 | sp->dec_restart = 0; |
304 | 0 | sp->dec_nbitsmask = MAXCODE(BITS_MIN); |
305 | 0 | sp->dec_bitsleft = 0; |
306 | 0 | sp->old_tif_rawcc = 0; |
307 | 0 | sp->dec_free_entp = sp->dec_codetab - 1; // + CODE_FIRST; |
308 | | /* |
309 | | * Zero entries that are not yet filled in. We do |
310 | | * this to guard against bogus input data that causes |
311 | | * us to index into undefined entries. If you can |
312 | | * come up with a way to safely bounds-check input codes |
313 | | * while decoding then you can remove this operation. |
314 | | */ |
315 | 0 | sp->dec_oldcodep = &sp->dec_codetab[0]; |
316 | 0 | sp->dec_maxcodep = &sp->dec_codetab[sp->dec_nbitsmask - 1]; |
317 | 0 | sp->read_error = 0; |
318 | 0 | return (1); |
319 | 0 | } |
320 | | |
321 | | /* |
322 | | * Decode a "hunk of data". |
323 | | */ |
324 | | |
325 | | /* Get the next 32 or 64-bit from the input data */ |
326 | | #ifdef WORDS_BIGENDIAN |
327 | | #define GetNextData(nextdata, bp) memcpy(&nextdata, bp, sizeof(nextdata)) |
328 | | #elif SIZEOF_WORDTYPE == 8 |
329 | | #if defined(_M_X64) |
330 | | #define GetNextData(nextdata, bp) nextdata = _byteswap_uint64(*(uint64_t *)(bp)) |
331 | | #elif defined(__GNUC__) |
332 | | #define GetNextData(nextdata, bp) \ |
333 | 0 | memcpy(&nextdata, bp, sizeof(nextdata)); \ |
334 | 0 | nextdata = __builtin_bswap64(nextdata) |
335 | | #else |
336 | | #define GetNextData(nextdata, bp) \ |
337 | | nextdata = (((uint64_t)bp[0]) << 56) | (((uint64_t)bp[1]) << 48) | \ |
338 | | (((uint64_t)bp[2]) << 40) | (((uint64_t)bp[3]) << 32) | \ |
339 | | (((uint64_t)bp[4]) << 24) | (((uint64_t)bp[5]) << 16) | \ |
340 | | (((uint64_t)bp[6]) << 8) | (((uint64_t)bp[7])) |
341 | | #endif |
342 | | #elif SIZEOF_WORDTYPE == 4 |
343 | | #if defined(_M_X86) |
344 | | #define GetNextData(nextdata, bp) \ |
345 | | nextdata = _byteswap_ulong(*(unsigned long *)(bp)) |
346 | | #elif defined(__GNUC__) |
347 | | #define GetNextData(nextdata, bp) \ |
348 | | memcpy(&nextdata, bp, sizeof(nextdata)); \ |
349 | | nextdata = __builtin_bswap32(nextdata) |
350 | | #else |
351 | | #define GetNextData(nextdata, bp) \ |
352 | | nextdata = (((uint32_t)bp[0]) << 24) | (((uint32_t)bp[1]) << 16) | \ |
353 | | (((uint32_t)bp[2]) << 8) | (((uint32_t)bp[3])) |
354 | | #endif |
355 | | #else |
356 | | #error "Unhandled SIZEOF_WORDTYPE" |
357 | | #endif |
358 | | |
359 | | #define GetNextCodeLZW() \ |
360 | 0 | do \ |
361 | 0 | { \ |
362 | 0 | nextbits -= nbits; \ |
363 | 0 | if (nextbits < 0) \ |
364 | 0 | { \ |
365 | 0 | if (dec_bitsleft >= 8 * SIZEOF_WORDTYPE) \ |
366 | 0 | { \ |
367 | 0 | unsigned codetmp = (unsigned)(nextdata << (-nextbits)); \ |
368 | 0 | GetNextData(nextdata, bp); \ |
369 | 0 | bp += SIZEOF_WORDTYPE; \ |
370 | 0 | nextbits += 8 * SIZEOF_WORDTYPE; \ |
371 | 0 | dec_bitsleft -= 8 * SIZEOF_WORDTYPE; \ |
372 | 0 | code = (WordType)((codetmp | (nextdata >> nextbits)) & \ |
373 | 0 | nbitsmask); \ |
374 | 0 | break; \ |
375 | 0 | } \ |
376 | 0 | else \ |
377 | 0 | { \ |
378 | 0 | if (dec_bitsleft < 8) \ |
379 | 0 | { \ |
380 | 0 | goto no_eoi; \ |
381 | 0 | } \ |
382 | 0 | nextdata = (nextdata << 8) | *(bp)++; \ |
383 | 0 | nextbits += 8; \ |
384 | 0 | dec_bitsleft -= 8; \ |
385 | 0 | if (nextbits < 0) \ |
386 | 0 | { \ |
387 | 0 | if (dec_bitsleft < 8) \ |
388 | 0 | { \ |
389 | 0 | goto no_eoi; \ |
390 | 0 | } \ |
391 | 0 | nextdata = (nextdata << 8) | *(bp)++; \ |
392 | 0 | nextbits += 8; \ |
393 | 0 | dec_bitsleft -= 8; \ |
394 | 0 | } \ |
395 | 0 | } \ |
396 | 0 | } \ |
397 | 0 | code = (WordType)((nextdata >> nextbits) & nbitsmask); \ |
398 | 0 | } while (0) |
399 | | |
400 | | static int LZWDecode(TIFF *tif, uint8_t *op0, tmsize_t occ0, uint16_t s) |
401 | 0 | { |
402 | 0 | static const char module[] = "LZWDecode"; |
403 | 0 | LZWCodecState *sp = LZWDecoderState(tif); |
404 | 0 | uint8_t *op = (uint8_t *)op0; |
405 | 0 | tmsize_t occ = occ0; |
406 | 0 | uint8_t *bp; |
407 | 0 | long nbits, nextbits, nbitsmask; |
408 | 0 | WordType nextdata; |
409 | 0 | code_t *free_entp, *maxcodep, *oldcodep; |
410 | |
|
411 | 0 | (void)s; |
412 | 0 | assert(sp != NULL); |
413 | 0 | assert(sp->dec_codetab != NULL); |
414 | | |
415 | 0 | if (sp->read_error) |
416 | 0 | { |
417 | 0 | memset(op, 0, (size_t)occ); |
418 | 0 | TIFFErrorExtR(tif, module, |
419 | 0 | "LZWDecode: Scanline %" PRIu32 " cannot be read due to " |
420 | 0 | "previous error", |
421 | 0 | tif->tif_row); |
422 | 0 | return 0; |
423 | 0 | } |
424 | | |
425 | | /* |
426 | | * Restart interrupted output operation. |
427 | | */ |
428 | 0 | if (sp->dec_restart) |
429 | 0 | { |
430 | 0 | tmsize_t residue; |
431 | |
|
432 | 0 | code_t *codep = sp->dec_codep; |
433 | 0 | residue = codep->length - sp->dec_restart; |
434 | 0 | if (residue > occ) |
435 | 0 | { |
436 | | /* |
437 | | * Residue from previous decode is sufficient |
438 | | * to satisfy decode request. Skip to the |
439 | | * start of the decoded string, place decoded |
440 | | * values in the output buffer, and return. |
441 | | */ |
442 | 0 | sp->dec_restart += occ; |
443 | 0 | do |
444 | 0 | { |
445 | 0 | codep = codep->next; |
446 | 0 | } while (--residue > occ && codep); |
447 | 0 | if (codep) |
448 | 0 | { |
449 | 0 | uint8_t *tp = op + occ; |
450 | 0 | do |
451 | 0 | { |
452 | 0 | *--tp = codep->value; |
453 | 0 | codep = codep->next; |
454 | 0 | } while (--occ && codep); |
455 | 0 | } |
456 | 0 | return (1); |
457 | 0 | } |
458 | | /* |
459 | | * Residue satisfies only part of the decode request. |
460 | | */ |
461 | 0 | op += residue; |
462 | 0 | occ -= residue; |
463 | 0 | uint8_t *tp = op; |
464 | 0 | do |
465 | 0 | { |
466 | 0 | *--tp = codep->value; |
467 | 0 | codep = codep->next; |
468 | 0 | } while (--residue && codep); |
469 | 0 | sp->dec_restart = 0; |
470 | 0 | } |
471 | | |
472 | 0 | bp = (uint8_t *)tif->tif_rawcp; |
473 | 0 | sp->dec_bitsleft += (((uint64_t)tif->tif_rawcc - sp->old_tif_rawcc) << 3); |
474 | 0 | uint64_t dec_bitsleft = sp->dec_bitsleft; |
475 | 0 | nbits = sp->lzw_nbits; |
476 | 0 | nextdata = sp->lzw_nextdata; |
477 | 0 | nextbits = sp->lzw_nextbits; |
478 | 0 | nbitsmask = sp->dec_nbitsmask; |
479 | 0 | oldcodep = sp->dec_oldcodep; |
480 | 0 | free_entp = sp->dec_free_entp; |
481 | 0 | maxcodep = sp->dec_maxcodep; |
482 | 0 | code_t *const dec_codetab = sp->dec_codetab; |
483 | 0 | code_t *codep; |
484 | |
|
485 | 0 | if (occ == 0) |
486 | 0 | { |
487 | 0 | goto after_loop; |
488 | 0 | } |
489 | | |
490 | 0 | begin: |
491 | 0 | { |
492 | 0 | WordType code; |
493 | 0 | GetNextCodeLZW(); |
494 | 0 | codep = dec_codetab + code; |
495 | 0 | if (code >= CODE_FIRST) |
496 | 0 | goto code_above_or_equal_to_258; |
497 | 0 | if (code < 256) |
498 | 0 | goto code_below_256; |
499 | 0 | if (code == CODE_EOI) |
500 | 0 | goto after_loop; |
501 | 0 | goto code_clear; |
502 | | |
503 | 0 | code_below_256: |
504 | 0 | { |
505 | 0 | if (codep > free_entp) |
506 | 0 | goto error_code; |
507 | 0 | free_entp->next = oldcodep; |
508 | 0 | free_entp->firstchar = oldcodep->firstchar; |
509 | 0 | free_entp->length = oldcodep->length + 1; |
510 | 0 | free_entp->value = (uint8_t)code; |
511 | 0 | free_entp->repeated = |
512 | 0 | (bool)(oldcodep->repeated & (oldcodep->value == code)); |
513 | 0 | if (++free_entp > maxcodep) |
514 | 0 | { |
515 | 0 | if (++nbits > BITS_MAX) /* should not happen for a conformant encoder */ |
516 | 0 | nbits = BITS_MAX; |
517 | 0 | nbitsmask = MAXCODE(nbits); |
518 | 0 | maxcodep = dec_codetab + nbitsmask - 1; |
519 | 0 | if (free_entp >= &dec_codetab[CSIZE]) |
520 | 0 | { |
521 | | /* At that point, the next valid states are either EOI or a */ |
522 | | /* CODE_CLEAR. If a regular code is read, at the next */ |
523 | | /* attempt at registering a new entry, we will error out */ |
524 | | /* due to setting free_entp before any valid code */ |
525 | 0 | free_entp = dec_codetab - 1; |
526 | 0 | } |
527 | 0 | } |
528 | 0 | oldcodep = codep; |
529 | 0 | *op++ = (uint8_t)code; |
530 | 0 | occ--; |
531 | 0 | if (occ == 0) |
532 | 0 | goto after_loop; |
533 | 0 | goto begin; |
534 | 0 | } |
535 | | |
536 | 0 | code_above_or_equal_to_258: |
537 | 0 | { |
538 | | /* |
539 | | * Add the new entry to the code table. |
540 | | */ |
541 | |
|
542 | 0 | if (codep >= free_entp) |
543 | 0 | { |
544 | 0 | if (codep != free_entp) |
545 | 0 | goto error_code; |
546 | 0 | free_entp->value = oldcodep->firstchar; |
547 | 0 | } |
548 | 0 | else |
549 | 0 | { |
550 | 0 | free_entp->value = codep->firstchar; |
551 | 0 | } |
552 | 0 | free_entp->repeated = |
553 | 0 | (bool)(oldcodep->repeated & (oldcodep->value == free_entp->value)); |
554 | 0 | free_entp->next = oldcodep; |
555 | |
|
556 | 0 | free_entp->firstchar = oldcodep->firstchar; |
557 | 0 | free_entp->length = oldcodep->length + 1; |
558 | 0 | if (++free_entp > maxcodep) |
559 | 0 | { |
560 | 0 | if (++nbits > BITS_MAX) /* should not happen for a conformant encoder */ |
561 | 0 | nbits = BITS_MAX; |
562 | 0 | nbitsmask = MAXCODE(nbits); |
563 | 0 | maxcodep = dec_codetab + nbitsmask - 1; |
564 | 0 | if (free_entp >= &dec_codetab[CSIZE]) |
565 | 0 | { |
566 | | /* At that point, the next valid states are either EOI or a */ |
567 | | /* CODE_CLEAR. If a regular code is read, at the next */ |
568 | | /* attempt at registering a new entry, we will error out */ |
569 | | /* due to setting free_entp before any valid code */ |
570 | 0 | free_entp = dec_codetab - 1; |
571 | 0 | } |
572 | 0 | } |
573 | 0 | oldcodep = codep; |
574 | | |
575 | | /* |
576 | | * Code maps to a string, copy string |
577 | | * value to output (written in reverse). |
578 | | */ |
579 | | /* tiny bit faster on x86_64 to store in unsigned short than int */ |
580 | 0 | unsigned short len = codep->length; |
581 | |
|
582 | 0 | if (len < 3) /* equivalent to len == 2 given all other conditions */ |
583 | 0 | { |
584 | 0 | if (occ <= 2) |
585 | 0 | { |
586 | 0 | if (occ == 2) |
587 | 0 | { |
588 | 0 | memcpy(op, &(codep->firstchar), 2); |
589 | 0 | op += 2; |
590 | 0 | occ -= 2; |
591 | 0 | goto after_loop; |
592 | 0 | } |
593 | 0 | goto too_short_buffer; |
594 | 0 | } |
595 | | |
596 | 0 | memcpy(op, &(codep->firstchar), 2); |
597 | 0 | op += 2; |
598 | 0 | occ -= 2; |
599 | 0 | goto begin; /* we can save the comparison occ > 0 */ |
600 | 0 | } |
601 | | |
602 | 0 | if (len == 3) |
603 | 0 | { |
604 | 0 | if (occ <= 3) |
605 | 0 | { |
606 | 0 | if (occ == 3) |
607 | 0 | { |
608 | 0 | op[0] = codep->firstchar; |
609 | 0 | op[1] = codep->next->value; |
610 | 0 | op[2] = codep->value; |
611 | 0 | op += 3; |
612 | 0 | occ -= 3; |
613 | 0 | goto after_loop; |
614 | 0 | } |
615 | 0 | goto too_short_buffer; |
616 | 0 | } |
617 | | |
618 | 0 | op[0] = codep->firstchar; |
619 | 0 | op[1] = codep->next->value; |
620 | 0 | op[2] = codep->value; |
621 | 0 | op += 3; |
622 | 0 | occ -= 3; |
623 | 0 | goto begin; /* we can save the comparison occ > 0 */ |
624 | 0 | } |
625 | | |
626 | 0 | if (len > occ) |
627 | 0 | { |
628 | 0 | goto too_short_buffer; |
629 | 0 | } |
630 | | |
631 | 0 | if (codep->repeated) |
632 | 0 | { |
633 | 0 | memset(op, codep->value, len); |
634 | 0 | op += len; |
635 | 0 | occ -= len; |
636 | 0 | if (occ == 0) |
637 | 0 | goto after_loop; |
638 | 0 | goto begin; |
639 | 0 | } |
640 | | |
641 | 0 | uint8_t *tp = op + len; |
642 | |
|
643 | 0 | assert(len >= 4); |
644 | | |
645 | 0 | *--tp = codep->value; |
646 | 0 | codep = codep->next; |
647 | 0 | *--tp = codep->value; |
648 | 0 | codep = codep->next; |
649 | 0 | *--tp = codep->value; |
650 | 0 | codep = codep->next; |
651 | 0 | *--tp = codep->value; |
652 | 0 | if (tp > op) |
653 | 0 | { |
654 | 0 | do |
655 | 0 | { |
656 | 0 | codep = codep->next; |
657 | 0 | *--tp = codep->value; |
658 | 0 | } while (tp > op); |
659 | 0 | } |
660 | |
|
661 | 0 | assert(occ >= len); |
662 | 0 | op += len; |
663 | 0 | occ -= len; |
664 | 0 | if (occ == 0) |
665 | 0 | goto after_loop; |
666 | 0 | goto begin; |
667 | 0 | } |
668 | | |
669 | 0 | code_clear: |
670 | 0 | { |
671 | 0 | free_entp = dec_codetab + CODE_FIRST; |
672 | 0 | nbits = BITS_MIN; |
673 | 0 | nbitsmask = MAXCODE(BITS_MIN); |
674 | 0 | maxcodep = dec_codetab + nbitsmask - 1; |
675 | 0 | do |
676 | 0 | { |
677 | 0 | GetNextCodeLZW(); |
678 | 0 | } while (code == CODE_CLEAR); /* consecutive CODE_CLEAR codes */ |
679 | 0 | if (code == CODE_EOI) |
680 | 0 | goto after_loop; |
681 | 0 | if (code > CODE_EOI) |
682 | 0 | { |
683 | 0 | goto error_code; |
684 | 0 | } |
685 | 0 | *op++ = (uint8_t)code; |
686 | 0 | occ--; |
687 | 0 | oldcodep = dec_codetab + code; |
688 | 0 | if (occ == 0) |
689 | 0 | goto after_loop; |
690 | 0 | goto begin; |
691 | 0 | } |
692 | 0 | } |
693 | | |
694 | 0 | too_short_buffer: |
695 | 0 | { |
696 | | /* |
697 | | * String is too long for decode buffer, |
698 | | * locate portion that will fit, copy to |
699 | | * the decode buffer, and setup restart |
700 | | * logic for the next decoding call. |
701 | | */ |
702 | 0 | sp->dec_codep = codep; |
703 | 0 | do |
704 | 0 | { |
705 | 0 | codep = codep->next; |
706 | 0 | } while (codep->length > occ); |
707 | |
|
708 | 0 | sp->dec_restart = occ; |
709 | 0 | uint8_t *tp = op + occ; |
710 | 0 | do |
711 | 0 | { |
712 | 0 | *--tp = codep->value; |
713 | 0 | codep = codep->next; |
714 | 0 | } while (--occ); |
715 | 0 | } |
716 | |
|
717 | 0 | after_loop: |
718 | 0 | tif->tif_rawcc -= (tmsize_t)((uint8_t *)bp - tif->tif_rawcp); |
719 | 0 | tif->tif_rawcp = (uint8_t *)bp; |
720 | 0 | sp->old_tif_rawcc = tif->tif_rawcc; |
721 | 0 | sp->dec_bitsleft = dec_bitsleft; |
722 | 0 | sp->lzw_nbits = (unsigned short)nbits; |
723 | 0 | sp->lzw_nextdata = nextdata; |
724 | 0 | sp->lzw_nextbits = nextbits; |
725 | 0 | sp->dec_nbitsmask = nbitsmask; |
726 | 0 | sp->dec_oldcodep = oldcodep; |
727 | 0 | sp->dec_free_entp = free_entp; |
728 | 0 | sp->dec_maxcodep = maxcodep; |
729 | |
|
730 | 0 | if (occ > 0) |
731 | 0 | { |
732 | 0 | memset(op, 0, (size_t)occ); |
733 | 0 | sp->read_error = 1; |
734 | 0 | TIFFErrorExtR(tif, module, |
735 | 0 | "Not enough data at scanline %" PRIu32 " (short %" PRIu64 |
736 | 0 | " bytes)", |
737 | 0 | tif->tif_row, (uint64_t)occ); |
738 | 0 | return (0); |
739 | 0 | } |
740 | 0 | return (1); |
741 | | |
742 | 0 | no_eoi: |
743 | 0 | memset(op, 0, (size_t)occ); |
744 | 0 | sp->read_error = 1; |
745 | 0 | TIFFErrorExtR(tif, module, |
746 | 0 | "LZWDecode: Strip %" PRIu32 " not terminated with EOI code", |
747 | 0 | tif->tif_curstrip); |
748 | 0 | return 0; |
749 | 0 | error_code: |
750 | 0 | memset(op, 0, (size_t)occ); |
751 | 0 | sp->read_error = 1; |
752 | 0 | TIFFErrorExtR(tif, tif->tif_name, "Using code not yet in table"); |
753 | 0 | return 0; |
754 | 0 | } |
755 | | |
756 | | #ifdef LZW_COMPAT |
757 | | |
758 | | /* |
759 | | * This check shouldn't be necessary because each |
760 | | * strip is suppose to be terminated with CODE_EOI. |
761 | | */ |
762 | | #define NextCode(_tif, _sp, _bp, _code, _get, dec_bitsleft) \ |
763 | 0 | { \ |
764 | 0 | if (dec_bitsleft < (uint64_t)nbits) \ |
765 | 0 | { \ |
766 | 0 | TIFFWarningExtR(_tif, module, \ |
767 | 0 | "LZWDecode: Strip %" PRIu32 \ |
768 | 0 | " not terminated with EOI code", \ |
769 | 0 | _tif->tif_curstrip); \ |
770 | 0 | _code = CODE_EOI; \ |
771 | 0 | } \ |
772 | 0 | else \ |
773 | 0 | { \ |
774 | 0 | _get(_sp, _bp, _code); \ |
775 | 0 | dec_bitsleft -= nbits; \ |
776 | 0 | } \ |
777 | 0 | } |
778 | | |
779 | | /* |
780 | | * Decode a "hunk of data" for old images. |
781 | | */ |
782 | | #define GetNextCodeCompat(sp, bp, code) \ |
783 | 0 | { \ |
784 | 0 | nextdata |= (unsigned long)*(bp)++ << nextbits; \ |
785 | 0 | nextbits += 8; \ |
786 | 0 | if (nextbits < nbits) \ |
787 | 0 | { \ |
788 | 0 | nextdata |= (unsigned long)*(bp)++ << nextbits; \ |
789 | 0 | nextbits += 8; \ |
790 | 0 | } \ |
791 | 0 | code = (hcode_t)(nextdata & nbitsmask); \ |
792 | 0 | nextdata >>= nbits; \ |
793 | 0 | nextbits -= nbits; \ |
794 | 0 | } |
795 | | |
796 | | static int LZWDecodeCompat(TIFF *tif, uint8_t *op0, tmsize_t occ0, uint16_t s) |
797 | 0 | { |
798 | 0 | static const char module[] = "LZWDecodeCompat"; |
799 | 0 | LZWCodecState *sp = LZWDecoderState(tif); |
800 | 0 | uint8_t *op = (uint8_t *)op0; |
801 | 0 | tmsize_t occ = occ0; |
802 | 0 | uint8_t *tp; |
803 | 0 | uint8_t *bp; |
804 | 0 | int code, nbits; |
805 | 0 | int len; |
806 | 0 | long nextbits, nbitsmask; |
807 | 0 | WordType nextdata; |
808 | 0 | code_t *codep, *free_entp, *maxcodep, *oldcodep; |
809 | |
|
810 | 0 | (void)s; |
811 | 0 | assert(sp != NULL); |
812 | | |
813 | | /* |
814 | | * Restart interrupted output operation. |
815 | | */ |
816 | 0 | if (sp->dec_restart) |
817 | 0 | { |
818 | 0 | tmsize_t residue; |
819 | |
|
820 | 0 | codep = sp->dec_codep; |
821 | 0 | residue = codep->length - sp->dec_restart; |
822 | 0 | if (residue > occ) |
823 | 0 | { |
824 | | /* |
825 | | * Residue from previous decode is sufficient |
826 | | * to satisfy decode request. Skip to the |
827 | | * start of the decoded string, place decoded |
828 | | * values in the output buffer, and return. |
829 | | */ |
830 | 0 | sp->dec_restart += occ; |
831 | 0 | do |
832 | 0 | { |
833 | 0 | codep = codep->next; |
834 | 0 | } while (--residue > occ); |
835 | 0 | tp = op + occ; |
836 | 0 | do |
837 | 0 | { |
838 | 0 | *--tp = codep->value; |
839 | 0 | codep = codep->next; |
840 | 0 | } while (--occ); |
841 | 0 | return (1); |
842 | 0 | } |
843 | | /* |
844 | | * Residue satisfies only part of the decode request. |
845 | | */ |
846 | 0 | op += residue; |
847 | 0 | occ -= residue; |
848 | 0 | tp = op; |
849 | 0 | do |
850 | 0 | { |
851 | 0 | *--tp = codep->value; |
852 | 0 | codep = codep->next; |
853 | 0 | } while (--residue); |
854 | 0 | sp->dec_restart = 0; |
855 | 0 | } |
856 | | |
857 | 0 | bp = (uint8_t *)tif->tif_rawcp; |
858 | |
|
859 | 0 | sp->dec_bitsleft += (((uint64_t)tif->tif_rawcc - sp->old_tif_rawcc) << 3); |
860 | 0 | uint64_t dec_bitsleft = sp->dec_bitsleft; |
861 | |
|
862 | 0 | nbits = sp->lzw_nbits; |
863 | 0 | nextdata = sp->lzw_nextdata; |
864 | 0 | nextbits = sp->lzw_nextbits; |
865 | 0 | nbitsmask = sp->dec_nbitsmask; |
866 | 0 | oldcodep = sp->dec_oldcodep; |
867 | 0 | free_entp = sp->dec_free_entp; |
868 | 0 | maxcodep = sp->dec_maxcodep; |
869 | |
|
870 | 0 | while (occ > 0) |
871 | 0 | { |
872 | 0 | NextCode(tif, sp, bp, code, GetNextCodeCompat, dec_bitsleft); |
873 | 0 | if (code == CODE_EOI) |
874 | 0 | break; |
875 | 0 | if (code == CODE_CLEAR) |
876 | 0 | { |
877 | 0 | do |
878 | 0 | { |
879 | 0 | free_entp = sp->dec_codetab + CODE_FIRST; |
880 | 0 | _TIFFmemset(free_entp, 0, |
881 | 0 | (CSIZE - CODE_FIRST) * sizeof(code_t)); |
882 | 0 | nbits = BITS_MIN; |
883 | 0 | nbitsmask = MAXCODE(BITS_MIN); |
884 | 0 | maxcodep = sp->dec_codetab + nbitsmask; |
885 | 0 | NextCode(tif, sp, bp, code, GetNextCodeCompat, dec_bitsleft); |
886 | 0 | } while (code == CODE_CLEAR); /* consecutive CODE_CLEAR codes */ |
887 | 0 | if (code == CODE_EOI) |
888 | 0 | break; |
889 | 0 | if (code > CODE_CLEAR) |
890 | 0 | { |
891 | 0 | TIFFErrorExtR( |
892 | 0 | tif, tif->tif_name, |
893 | 0 | "LZWDecode: Corrupted LZW table at scanline %" PRIu32, |
894 | 0 | tif->tif_row); |
895 | 0 | return (0); |
896 | 0 | } |
897 | 0 | *op++ = (uint8_t)code; |
898 | 0 | occ--; |
899 | 0 | oldcodep = sp->dec_codetab + code; |
900 | 0 | continue; |
901 | 0 | } |
902 | 0 | codep = sp->dec_codetab + code; |
903 | | |
904 | | /* |
905 | | * Add the new entry to the code table. |
906 | | */ |
907 | 0 | if (free_entp < &sp->dec_codetab[0] || |
908 | 0 | free_entp >= &sp->dec_codetab[CSIZE]) |
909 | 0 | { |
910 | 0 | TIFFErrorExtR(tif, module, |
911 | 0 | "Corrupted LZW table at scanline %" PRIu32, |
912 | 0 | tif->tif_row); |
913 | 0 | return (0); |
914 | 0 | } |
915 | | |
916 | 0 | free_entp->next = oldcodep; |
917 | 0 | if (free_entp->next < &sp->dec_codetab[0] || |
918 | 0 | free_entp->next >= &sp->dec_codetab[CSIZE]) |
919 | 0 | { |
920 | 0 | TIFFErrorExtR(tif, module, |
921 | 0 | "Corrupted LZW table at scanline %" PRIu32, |
922 | 0 | tif->tif_row); |
923 | 0 | return (0); |
924 | 0 | } |
925 | 0 | free_entp->firstchar = free_entp->next->firstchar; |
926 | 0 | free_entp->length = free_entp->next->length + 1; |
927 | 0 | free_entp->value = |
928 | 0 | (codep < free_entp) ? codep->firstchar : free_entp->firstchar; |
929 | 0 | if (++free_entp > maxcodep) |
930 | 0 | { |
931 | 0 | if (++nbits > BITS_MAX) /* should not happen */ |
932 | 0 | nbits = BITS_MAX; |
933 | 0 | nbitsmask = MAXCODE(nbits); |
934 | 0 | maxcodep = sp->dec_codetab + nbitsmask; |
935 | 0 | } |
936 | 0 | oldcodep = codep; |
937 | 0 | if (code >= 256) |
938 | 0 | { |
939 | | /* |
940 | | * Code maps to a string, copy string |
941 | | * value to output (written in reverse). |
942 | | */ |
943 | 0 | if (codep->length == 0) |
944 | 0 | { |
945 | 0 | TIFFErrorExtR( |
946 | 0 | tif, module, |
947 | 0 | "Wrong length of decoded " |
948 | 0 | "string: data probably corrupted at scanline %" PRIu32, |
949 | 0 | tif->tif_row); |
950 | 0 | return (0); |
951 | 0 | } |
952 | 0 | if (codep->length > occ) |
953 | 0 | { |
954 | | /* |
955 | | * String is too long for decode buffer, |
956 | | * locate portion that will fit, copy to |
957 | | * the decode buffer, and setup restart |
958 | | * logic for the next decoding call. |
959 | | */ |
960 | 0 | sp->dec_codep = codep; |
961 | 0 | do |
962 | 0 | { |
963 | 0 | codep = codep->next; |
964 | 0 | } while (codep->length > occ); |
965 | 0 | sp->dec_restart = occ; |
966 | 0 | tp = op + occ; |
967 | 0 | do |
968 | 0 | { |
969 | 0 | *--tp = codep->value; |
970 | 0 | codep = codep->next; |
971 | 0 | } while (--occ); |
972 | 0 | break; |
973 | 0 | } |
974 | 0 | len = codep->length; |
975 | 0 | tp = op + len; |
976 | 0 | do |
977 | 0 | { |
978 | 0 | *--tp = codep->value; |
979 | 0 | codep = codep->next; |
980 | 0 | } while (codep && tp > op); |
981 | 0 | assert(occ >= len); |
982 | 0 | op += len; |
983 | 0 | occ -= len; |
984 | 0 | } |
985 | 0 | else |
986 | 0 | { |
987 | 0 | *op++ = (uint8_t)code; |
988 | 0 | occ--; |
989 | 0 | } |
990 | 0 | } |
991 | | |
992 | 0 | tif->tif_rawcc -= (tmsize_t)((uint8_t *)bp - tif->tif_rawcp); |
993 | 0 | tif->tif_rawcp = (uint8_t *)bp; |
994 | |
|
995 | 0 | sp->old_tif_rawcc = tif->tif_rawcc; |
996 | 0 | sp->dec_bitsleft = dec_bitsleft; |
997 | |
|
998 | 0 | sp->lzw_nbits = (unsigned short)nbits; |
999 | 0 | sp->lzw_nextdata = nextdata; |
1000 | 0 | sp->lzw_nextbits = nextbits; |
1001 | 0 | sp->dec_nbitsmask = nbitsmask; |
1002 | 0 | sp->dec_oldcodep = oldcodep; |
1003 | 0 | sp->dec_free_entp = free_entp; |
1004 | 0 | sp->dec_maxcodep = maxcodep; |
1005 | |
|
1006 | 0 | if (occ > 0) |
1007 | 0 | { |
1008 | 0 | TIFFErrorExtR(tif, module, |
1009 | 0 | "Not enough data at scanline %" PRIu32 " (short %" PRIu64 |
1010 | 0 | " bytes)", |
1011 | 0 | tif->tif_row, (uint64_t)occ); |
1012 | 0 | return (0); |
1013 | 0 | } |
1014 | 0 | return (1); |
1015 | 0 | } |
1016 | | #endif /* LZW_COMPAT */ |
1017 | | |
1018 | | #ifndef LZW_READ_ONLY |
1019 | | |
1020 | | static void cl_hash(LZWCodecState *); |
1021 | | |
1022 | | /* |
1023 | | * LZW Encoding. |
1024 | | */ |
1025 | | |
1026 | | static int LZWSetupEncode(TIFF *tif) |
1027 | 0 | { |
1028 | 0 | static const char module[] = "LZWSetupEncode"; |
1029 | 0 | LZWCodecState *sp = LZWEncoderState(tif); |
1030 | |
|
1031 | 0 | assert(sp != NULL); |
1032 | 0 | sp->enc_hashtab = (hash_t *)_TIFFmallocExt(tif, HSIZE * sizeof(hash_t)); |
1033 | 0 | if (sp->enc_hashtab == NULL) |
1034 | 0 | { |
1035 | 0 | TIFFErrorExtR(tif, module, "No space for LZW hash table"); |
1036 | 0 | return (0); |
1037 | 0 | } |
1038 | 0 | return (1); |
1039 | 0 | } |
1040 | | |
1041 | | /* |
1042 | | * Reset encoding state at the start of a strip. |
1043 | | */ |
1044 | | static int LZWPreEncode(TIFF *tif, uint16_t s) |
1045 | 0 | { |
1046 | 0 | LZWCodecState *sp = LZWEncoderState(tif); |
1047 | |
|
1048 | 0 | (void)s; |
1049 | 0 | assert(sp != NULL); |
1050 | | |
1051 | 0 | if (sp->enc_hashtab == NULL) |
1052 | 0 | { |
1053 | 0 | tif->tif_setupencode(tif); |
1054 | 0 | } |
1055 | |
|
1056 | 0 | sp->lzw_nbits = BITS_MIN; |
1057 | 0 | sp->lzw_maxcode = MAXCODE(BITS_MIN); |
1058 | 0 | sp->lzw_free_ent = CODE_FIRST; |
1059 | 0 | sp->lzw_nextbits = 0; |
1060 | 0 | sp->lzw_nextdata = 0; |
1061 | 0 | sp->enc_checkpoint = CHECK_GAP; |
1062 | 0 | sp->enc_ratio = 0; |
1063 | 0 | sp->enc_incount = 0; |
1064 | 0 | sp->enc_outcount = 0; |
1065 | | /* |
1066 | | * The 4 here insures there is space for 2 max-sized |
1067 | | * codes in LZWEncode and LZWPostDecode. |
1068 | | */ |
1069 | 0 | sp->enc_rawlimit = tif->tif_rawdata + tif->tif_rawdatasize - 1 - 4; |
1070 | 0 | cl_hash(sp); /* clear hash table */ |
1071 | 0 | sp->enc_oldcode = (hcode_t)-1; /* generates CODE_CLEAR in LZWEncode */ |
1072 | 0 | return (1); |
1073 | 0 | } |
1074 | | |
1075 | | #define CALCRATIO(sp, rat) \ |
1076 | 0 | { \ |
1077 | 0 | if (incount > 0x007fffff) \ |
1078 | 0 | { /* NB: shift will overflow */ \ |
1079 | 0 | rat = outcount >> 8; \ |
1080 | 0 | rat = (rat == 0 ? 0x7fffffff : incount / rat); \ |
1081 | 0 | } \ |
1082 | 0 | else \ |
1083 | 0 | rat = (incount << 8) / outcount; \ |
1084 | 0 | } |
1085 | | |
1086 | | /* Explicit 0xff masking to make icc -check=conversions happy */ |
1087 | | #define PutNextCode(op, c) \ |
1088 | 0 | { \ |
1089 | 0 | nextdata = (nextdata << nbits) | c; \ |
1090 | 0 | nextbits += nbits; \ |
1091 | 0 | *op++ = (unsigned char)((nextdata >> (nextbits - 8)) & 0xff); \ |
1092 | 0 | nextbits -= 8; \ |
1093 | 0 | if (nextbits >= 8) \ |
1094 | 0 | { \ |
1095 | 0 | *op++ = (unsigned char)((nextdata >> (nextbits - 8)) & 0xff); \ |
1096 | 0 | nextbits -= 8; \ |
1097 | 0 | } \ |
1098 | 0 | outcount += nbits; \ |
1099 | 0 | } |
1100 | | |
1101 | | /* |
1102 | | * Encode a chunk of pixels. |
1103 | | * |
1104 | | * Uses an open addressing double hashing (no chaining) on the |
1105 | | * prefix code/next character combination. We do a variant of |
1106 | | * Knuth's algorithm D (vol. 3, sec. 6.4) along with G. Knott's |
1107 | | * relatively-prime secondary probe. Here, the modular division |
1108 | | * first probe is gives way to a faster exclusive-or manipulation. |
1109 | | * Also do block compression with an adaptive reset, whereby the |
1110 | | * code table is cleared when the compression ratio decreases, |
1111 | | * but after the table fills. The variable-length output codes |
1112 | | * are re-sized at this point, and a CODE_CLEAR is generated |
1113 | | * for the decoder. |
1114 | | */ |
1115 | | static int LZWEncode(TIFF *tif, uint8_t *bp, tmsize_t cc, uint16_t s) |
1116 | 0 | { |
1117 | 0 | register LZWCodecState *sp = LZWEncoderState(tif); |
1118 | 0 | register long fcode; |
1119 | 0 | register hash_t *hp; |
1120 | 0 | register int h, c; |
1121 | 0 | hcode_t ent; |
1122 | 0 | long disp; |
1123 | 0 | tmsize_t incount, outcount, checkpoint; |
1124 | 0 | WordType nextdata; |
1125 | 0 | long nextbits; |
1126 | 0 | int free_ent, maxcode, nbits; |
1127 | 0 | uint8_t *op; |
1128 | 0 | uint8_t *limit; |
1129 | |
|
1130 | 0 | (void)s; |
1131 | 0 | if (sp == NULL) |
1132 | 0 | return (0); |
1133 | | |
1134 | 0 | assert(sp->enc_hashtab != NULL); |
1135 | | |
1136 | | /* |
1137 | | * Load local state. |
1138 | | */ |
1139 | 0 | incount = sp->enc_incount; |
1140 | 0 | outcount = sp->enc_outcount; |
1141 | 0 | checkpoint = sp->enc_checkpoint; |
1142 | 0 | nextdata = sp->lzw_nextdata; |
1143 | 0 | nextbits = sp->lzw_nextbits; |
1144 | 0 | free_ent = sp->lzw_free_ent; |
1145 | 0 | maxcode = sp->lzw_maxcode; |
1146 | 0 | nbits = sp->lzw_nbits; |
1147 | 0 | op = tif->tif_rawcp; |
1148 | 0 | limit = sp->enc_rawlimit; |
1149 | 0 | ent = (hcode_t)sp->enc_oldcode; |
1150 | |
|
1151 | 0 | if (ent == (hcode_t)-1 && cc > 0) |
1152 | 0 | { |
1153 | | /* |
1154 | | * NB: This is safe because it can only happen |
1155 | | * at the start of a strip where we know there |
1156 | | * is space in the data buffer. |
1157 | | */ |
1158 | 0 | PutNextCode(op, CODE_CLEAR); |
1159 | 0 | ent = *bp++; |
1160 | 0 | cc--; |
1161 | 0 | incount++; |
1162 | 0 | } |
1163 | 0 | while (cc > 0) |
1164 | 0 | { |
1165 | 0 | c = *bp++; |
1166 | 0 | cc--; |
1167 | 0 | incount++; |
1168 | 0 | fcode = ((long)c << BITS_MAX) + ent; |
1169 | 0 | h = (c << HSHIFT) ^ ent; /* xor hashing */ |
1170 | | #ifdef _WINDOWS |
1171 | | /* |
1172 | | * Check hash index for an overflow. |
1173 | | */ |
1174 | | if (h >= HSIZE) |
1175 | | h -= HSIZE; |
1176 | | #endif |
1177 | 0 | hp = &sp->enc_hashtab[h]; |
1178 | 0 | if (hp->hash == fcode) |
1179 | 0 | { |
1180 | 0 | ent = hp->code; |
1181 | 0 | continue; |
1182 | 0 | } |
1183 | 0 | if (hp->hash >= 0) |
1184 | 0 | { |
1185 | | /* |
1186 | | * Primary hash failed, check secondary hash. |
1187 | | */ |
1188 | 0 | disp = HSIZE - h; |
1189 | 0 | if (h == 0) |
1190 | 0 | disp = 1; |
1191 | 0 | do |
1192 | 0 | { |
1193 | | /* |
1194 | | * Avoid pointer arithmetic because of |
1195 | | * wraparound problems with segments. |
1196 | | */ |
1197 | 0 | if ((h -= disp) < 0) |
1198 | 0 | h += HSIZE; |
1199 | 0 | hp = &sp->enc_hashtab[h]; |
1200 | 0 | if (hp->hash == fcode) |
1201 | 0 | { |
1202 | 0 | ent = hp->code; |
1203 | 0 | goto hit; |
1204 | 0 | } |
1205 | 0 | } while (hp->hash >= 0); |
1206 | 0 | } |
1207 | | /* |
1208 | | * New entry, emit code and add to table. |
1209 | | */ |
1210 | | /* |
1211 | | * Verify there is space in the buffer for the code |
1212 | | * and any potential Clear code that might be emitted |
1213 | | * below. The value of limit is setup so that there |
1214 | | * are at least 4 bytes free--room for 2 codes. |
1215 | | */ |
1216 | 0 | if (op > limit) |
1217 | 0 | { |
1218 | 0 | tif->tif_rawcc = (tmsize_t)(op - tif->tif_rawdata); |
1219 | 0 | if (!TIFFFlushData1(tif)) |
1220 | 0 | return 0; |
1221 | 0 | op = tif->tif_rawdata; |
1222 | 0 | } |
1223 | 0 | PutNextCode(op, ent); |
1224 | 0 | ent = (hcode_t)c; |
1225 | 0 | hp->code = (hcode_t)(free_ent++); |
1226 | 0 | hp->hash = fcode; |
1227 | 0 | if (free_ent == CODE_MAX - 1) |
1228 | 0 | { |
1229 | | /* table is full, emit clear code and reset */ |
1230 | 0 | cl_hash(sp); |
1231 | 0 | sp->enc_ratio = 0; |
1232 | 0 | incount = 0; |
1233 | 0 | outcount = 0; |
1234 | 0 | free_ent = CODE_FIRST; |
1235 | 0 | PutNextCode(op, CODE_CLEAR); |
1236 | 0 | nbits = BITS_MIN; |
1237 | 0 | maxcode = MAXCODE(BITS_MIN); |
1238 | 0 | } |
1239 | 0 | else |
1240 | 0 | { |
1241 | | /* |
1242 | | * If the next entry is going to be too big for |
1243 | | * the code size, then increase it, if possible. |
1244 | | */ |
1245 | 0 | if (free_ent > maxcode) |
1246 | 0 | { |
1247 | 0 | nbits++; |
1248 | 0 | assert(nbits <= BITS_MAX); |
1249 | 0 | maxcode = (int)MAXCODE(nbits); |
1250 | 0 | } |
1251 | 0 | else if (incount >= checkpoint) |
1252 | 0 | { |
1253 | 0 | tmsize_t rat; |
1254 | | /* |
1255 | | * Check compression ratio and, if things seem |
1256 | | * to be slipping, clear the hash table and |
1257 | | * reset state. The compression ratio is a |
1258 | | * 24+8-bit fractional number. |
1259 | | */ |
1260 | 0 | checkpoint = incount + CHECK_GAP; |
1261 | 0 | CALCRATIO(sp, rat); |
1262 | 0 | if (rat <= sp->enc_ratio) |
1263 | 0 | { |
1264 | 0 | cl_hash(sp); |
1265 | 0 | sp->enc_ratio = 0; |
1266 | 0 | incount = 0; |
1267 | 0 | outcount = 0; |
1268 | 0 | free_ent = CODE_FIRST; |
1269 | 0 | PutNextCode(op, CODE_CLEAR); |
1270 | 0 | nbits = BITS_MIN; |
1271 | 0 | maxcode = MAXCODE(BITS_MIN); |
1272 | 0 | } |
1273 | 0 | else |
1274 | 0 | sp->enc_ratio = rat; |
1275 | 0 | } |
1276 | 0 | } |
1277 | 0 | hit:; |
1278 | 0 | } |
1279 | | |
1280 | | /* |
1281 | | * Restore global state. |
1282 | | */ |
1283 | 0 | sp->enc_incount = incount; |
1284 | 0 | sp->enc_outcount = outcount; |
1285 | 0 | sp->enc_checkpoint = checkpoint; |
1286 | 0 | sp->enc_oldcode = ent; |
1287 | 0 | sp->lzw_nextdata = nextdata; |
1288 | 0 | sp->lzw_nextbits = nextbits; |
1289 | 0 | sp->lzw_free_ent = (unsigned short)free_ent; |
1290 | 0 | sp->lzw_maxcode = (unsigned short)maxcode; |
1291 | 0 | sp->lzw_nbits = (unsigned short)nbits; |
1292 | 0 | tif->tif_rawcp = op; |
1293 | 0 | return (1); |
1294 | 0 | } |
1295 | | |
1296 | | /* |
1297 | | * Finish off an encoded strip by flushing the last |
1298 | | * string and tacking on an End Of Information code. |
1299 | | */ |
1300 | | static int LZWPostEncode(TIFF *tif) |
1301 | 0 | { |
1302 | 0 | register LZWCodecState *sp = LZWEncoderState(tif); |
1303 | 0 | uint8_t *op = tif->tif_rawcp; |
1304 | 0 | long nextbits = sp->lzw_nextbits; |
1305 | 0 | WordType nextdata = sp->lzw_nextdata; |
1306 | 0 | tmsize_t outcount = sp->enc_outcount; |
1307 | 0 | int nbits = sp->lzw_nbits; |
1308 | |
|
1309 | 0 | if (op > sp->enc_rawlimit) |
1310 | 0 | { |
1311 | 0 | tif->tif_rawcc = (tmsize_t)(op - tif->tif_rawdata); |
1312 | 0 | if (!TIFFFlushData1(tif)) |
1313 | 0 | return 0; |
1314 | 0 | op = tif->tif_rawdata; |
1315 | 0 | } |
1316 | 0 | if (sp->enc_oldcode != (hcode_t)-1) |
1317 | 0 | { |
1318 | 0 | int free_ent = sp->lzw_free_ent; |
1319 | |
|
1320 | 0 | PutNextCode(op, sp->enc_oldcode); |
1321 | 0 | sp->enc_oldcode = (hcode_t)-1; |
1322 | 0 | free_ent++; |
1323 | |
|
1324 | 0 | if (free_ent == CODE_MAX - 1) |
1325 | 0 | { |
1326 | | /* table is full, emit clear code and reset */ |
1327 | 0 | outcount = 0; |
1328 | 0 | PutNextCode(op, CODE_CLEAR); |
1329 | 0 | nbits = BITS_MIN; |
1330 | 0 | } |
1331 | 0 | else |
1332 | 0 | { |
1333 | | /* |
1334 | | * If the next entry is going to be too big for |
1335 | | * the code size, then increase it, if possible. |
1336 | | */ |
1337 | 0 | if (free_ent > sp->lzw_maxcode) |
1338 | 0 | { |
1339 | 0 | nbits++; |
1340 | 0 | assert(nbits <= BITS_MAX); |
1341 | 0 | } |
1342 | 0 | } |
1343 | 0 | } |
1344 | 0 | PutNextCode(op, CODE_EOI); |
1345 | | /* Explicit 0xff masking to make icc -check=conversions happy */ |
1346 | 0 | if (nextbits > 0) |
1347 | 0 | *op++ = (unsigned char)((nextdata << (8 - nextbits)) & 0xff); |
1348 | 0 | tif->tif_rawcc = (tmsize_t)(op - tif->tif_rawdata); |
1349 | 0 | (void)outcount; |
1350 | 0 | return (1); |
1351 | 0 | } |
1352 | | |
1353 | | /* |
1354 | | * Reset encoding hash table. |
1355 | | */ |
1356 | | static void cl_hash(LZWCodecState *sp) |
1357 | 0 | { |
1358 | 0 | register hash_t *hp = &sp->enc_hashtab[HSIZE - 1]; |
1359 | 0 | register long i = HSIZE - 8; |
1360 | |
|
1361 | 0 | do |
1362 | 0 | { |
1363 | 0 | i -= 8; |
1364 | 0 | hp[-7].hash = -1; |
1365 | 0 | hp[-6].hash = -1; |
1366 | 0 | hp[-5].hash = -1; |
1367 | 0 | hp[-4].hash = -1; |
1368 | 0 | hp[-3].hash = -1; |
1369 | 0 | hp[-2].hash = -1; |
1370 | 0 | hp[-1].hash = -1; |
1371 | 0 | hp[0].hash = -1; |
1372 | 0 | hp -= 8; |
1373 | 0 | } while (i >= 0); |
1374 | 0 | for (i += 8; i > 0; i--, hp--) |
1375 | 0 | hp->hash = -1; |
1376 | 0 | } |
1377 | | |
1378 | | #endif |
1379 | | |
1380 | | static void LZWCleanup(TIFF *tif) |
1381 | 0 | { |
1382 | 0 | (void)TIFFPredictorCleanup(tif); |
1383 | |
|
1384 | 0 | assert(tif->tif_data != NULL); |
1385 | | |
1386 | 0 | if (LZWDecoderState(tif)->dec_codetab) |
1387 | 0 | _TIFFfreeExt(tif, LZWDecoderState(tif)->dec_codetab); |
1388 | |
|
1389 | 0 | if (LZWEncoderState(tif)->enc_hashtab) |
1390 | 0 | _TIFFfreeExt(tif, LZWEncoderState(tif)->enc_hashtab); |
1391 | |
|
1392 | 0 | _TIFFfreeExt(tif, tif->tif_data); |
1393 | 0 | tif->tif_data = NULL; |
1394 | |
|
1395 | 0 | _TIFFSetDefaultCompressionState(tif); |
1396 | 0 | } |
1397 | | |
1398 | | int TIFFInitLZW(TIFF *tif, int scheme) |
1399 | 0 | { |
1400 | 0 | static const char module[] = "TIFFInitLZW"; |
1401 | 0 | (void)scheme; |
1402 | 0 | assert(scheme == COMPRESSION_LZW); |
1403 | | /* |
1404 | | * Allocate state block so tag methods have storage to record values. |
1405 | | */ |
1406 | 0 | tif->tif_data = (uint8_t *)_TIFFmallocExt(tif, sizeof(LZWCodecState)); |
1407 | 0 | if (tif->tif_data == NULL) |
1408 | 0 | goto bad; |
1409 | 0 | LZWDecoderState(tif)->dec_codetab = NULL; |
1410 | 0 | LZWDecoderState(tif)->dec_decode = NULL; |
1411 | 0 | LZWEncoderState(tif)->enc_hashtab = NULL; |
1412 | 0 | LZWState(tif)->rw_mode = tif->tif_mode; |
1413 | | |
1414 | | /* |
1415 | | * Install codec methods. |
1416 | | */ |
1417 | 0 | tif->tif_fixuptags = LZWFixupTags; |
1418 | 0 | tif->tif_setupdecode = LZWSetupDecode; |
1419 | 0 | tif->tif_predecode = LZWPreDecode; |
1420 | 0 | tif->tif_decoderow = LZWDecode; |
1421 | 0 | tif->tif_decodestrip = LZWDecode; |
1422 | 0 | tif->tif_decodetile = LZWDecode; |
1423 | 0 | #ifndef LZW_READ_ONLY |
1424 | 0 | tif->tif_setupencode = LZWSetupEncode; |
1425 | 0 | tif->tif_preencode = LZWPreEncode; |
1426 | 0 | tif->tif_postencode = LZWPostEncode; |
1427 | 0 | tif->tif_encoderow = LZWEncode; |
1428 | 0 | tif->tif_encodestrip = LZWEncode; |
1429 | 0 | tif->tif_encodetile = LZWEncode; |
1430 | 0 | #endif |
1431 | 0 | tif->tif_cleanup = LZWCleanup; |
1432 | | /* |
1433 | | * Setup predictor setup. |
1434 | | */ |
1435 | 0 | (void)TIFFPredictorInit(tif); |
1436 | 0 | return (1); |
1437 | 0 | bad: |
1438 | 0 | TIFFErrorExtR(tif, module, "No space for LZW state block"); |
1439 | 0 | return (0); |
1440 | 0 | } |
1441 | | |
1442 | | /* |
1443 | | * Copyright (c) 1985, 1986 The Regents of the University of California. |
1444 | | * All rights reserved. |
1445 | | * |
1446 | | * This code is derived from software contributed to Berkeley by |
1447 | | * James A. Woods, derived from original work by Spencer Thomas |
1448 | | * and Joseph Orost. |
1449 | | * |
1450 | | * Redistribution and use in source and binary forms are permitted |
1451 | | * provided that the above copyright notice and this paragraph are |
1452 | | * duplicated in all such forms and that any documentation, |
1453 | | * advertising materials, and other materials related to such |
1454 | | * distribution and use acknowledge that the software was developed |
1455 | | * by the University of California, Berkeley. The name of the |
1456 | | * University may not be used to endorse or promote products derived |
1457 | | * from this software without specific prior written permission. |
1458 | | * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR |
1459 | | * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED |
1460 | | * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. |
1461 | | */ |
1462 | | #endif /* LZW_SUPPORT */ |