/src/gdal/build/frmts/jpeg/libjpeg12/jcdctmgr12.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * jcdctmgr.c |
3 | | * |
4 | | * Copyright (C) 1994-1996, Thomas G. Lane. |
5 | | * This file is part of the Independent JPEG Group's software. |
6 | | * For conditions of distribution and use, see the accompanying README file. |
7 | | * |
8 | | * This file contains the forward-DCT management logic. |
9 | | * This code selects a particular DCT implementation to be used, |
10 | | * and it performs related housekeeping chores including coefficient |
11 | | * quantization. |
12 | | */ |
13 | | |
14 | | #define JPEG_INTERNALS |
15 | | #include "jinclude.h" |
16 | | #include "jpeglib.h" |
17 | | #include "jdct.h" /* Private declarations for DCT subsystem */ |
18 | | |
19 | | |
20 | | /* Private subobject for this module */ |
21 | | |
22 | | typedef struct { |
23 | | struct jpeg_forward_dct pub; /* public fields */ |
24 | | |
25 | | /* Pointer to the DCT routine actually in use */ |
26 | | forward_DCT_method_ptr do_dct; |
27 | | |
28 | | /* The actual post-DCT divisors --- not identical to the quant table |
29 | | * entries, because of scaling (especially for an unnormalized DCT). |
30 | | * Each table is given in normal array order. |
31 | | */ |
32 | | DCTELEM * divisors[NUM_QUANT_TBLS]; |
33 | | |
34 | | #ifdef DCT_FLOAT_SUPPORTED |
35 | | /* Same as above for the floating-point case. */ |
36 | | float_DCT_method_ptr do_float_dct; |
37 | | FAST_FLOAT * float_divisors[NUM_QUANT_TBLS]; |
38 | | #endif |
39 | | } my_fdct_controller; |
40 | | |
41 | | typedef my_fdct_controller * my_fdct_ptr; |
42 | | |
43 | | |
44 | | /* |
45 | | * Initialize for a processing pass. |
46 | | * Verify that all referenced Q-tables are present, and set up |
47 | | * the divisor table for each one. |
48 | | * In the current implementation, DCT of all components is done during |
49 | | * the first pass, even if only some components will be output in the |
50 | | * first scan. Hence all components should be examined here. |
51 | | */ |
52 | | |
53 | | METHODDEF(void) |
54 | | start_pass_fdctmgr (j_compress_ptr cinfo) |
55 | 0 | { |
56 | 0 | my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct; |
57 | 0 | int ci, qtblno, i; |
58 | 0 | jpeg_component_info *compptr; |
59 | 0 | JQUANT_TBL * qtbl; |
60 | 0 | DCTELEM * dtbl; |
61 | |
|
62 | 0 | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
63 | 0 | ci++, compptr++) { |
64 | 0 | qtblno = compptr->quant_tbl_no; |
65 | | /* Make sure specified quantization table is present */ |
66 | 0 | if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS || |
67 | 0 | cinfo->quant_tbl_ptrs[qtblno] == NULL) |
68 | 0 | ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno); |
69 | 0 | qtbl = cinfo->quant_tbl_ptrs[qtblno]; |
70 | | /* Compute divisors for this quant table */ |
71 | | /* We may do this more than once for same table, but it's not a big deal */ |
72 | 0 | switch (cinfo->dct_method) { |
73 | 0 | #ifdef DCT_ISLOW_SUPPORTED |
74 | 0 | case JDCT_ISLOW: |
75 | | /* For LL&M IDCT method, divisors are equal to raw quantization |
76 | | * coefficients multiplied by 8 (to counteract scaling). |
77 | | */ |
78 | 0 | if (fdct->divisors[qtblno] == NULL) { |
79 | 0 | fdct->divisors[qtblno] = (DCTELEM *) |
80 | 0 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
81 | 0 | DCTSIZE2 * SIZEOF(DCTELEM)); |
82 | 0 | } |
83 | 0 | dtbl = fdct->divisors[qtblno]; |
84 | 0 | for (i = 0; i < DCTSIZE2; i++) { |
85 | 0 | dtbl[i] = ((DCTELEM) qtbl->quantval[i]) << 3; |
86 | 0 | } |
87 | 0 | break; |
88 | 0 | #endif |
89 | 0 | #ifdef DCT_IFAST_SUPPORTED |
90 | 0 | case JDCT_IFAST: |
91 | 0 | { |
92 | | /* For AA&N IDCT method, divisors are equal to quantization |
93 | | * coefficients scaled by scalefactor[row]*scalefactor[col], where |
94 | | * scalefactor[0] = 1 |
95 | | * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 |
96 | | * We apply a further scale factor of 8. |
97 | | */ |
98 | 0 | #define CONST_BITS 14 |
99 | 0 | static const INT16 aanscales[DCTSIZE2] = { |
100 | | /* precomputed values scaled up by 14 bits */ |
101 | 0 | 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, |
102 | 0 | 22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270, |
103 | 0 | 21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906, |
104 | 0 | 19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315, |
105 | 0 | 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, |
106 | 0 | 12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552, |
107 | 0 | 8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446, |
108 | 0 | 4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247 |
109 | 0 | }; |
110 | 0 | SHIFT_TEMPS |
111 | |
|
112 | 0 | if (fdct->divisors[qtblno] == NULL) { |
113 | 0 | fdct->divisors[qtblno] = (DCTELEM *) |
114 | 0 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
115 | 0 | DCTSIZE2 * SIZEOF(DCTELEM)); |
116 | 0 | } |
117 | 0 | dtbl = fdct->divisors[qtblno]; |
118 | 0 | for (i = 0; i < DCTSIZE2; i++) { |
119 | 0 | dtbl[i] = (DCTELEM) |
120 | 0 | DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i], |
121 | 0 | (INT32) aanscales[i]), |
122 | 0 | CONST_BITS-3); |
123 | 0 | } |
124 | 0 | } |
125 | 0 | break; |
126 | 0 | #endif |
127 | 0 | #ifdef DCT_FLOAT_SUPPORTED |
128 | 0 | case JDCT_FLOAT: |
129 | 0 | { |
130 | | /* For float AA&N IDCT method, divisors are equal to quantization |
131 | | * coefficients scaled by scalefactor[row]*scalefactor[col], where |
132 | | * scalefactor[0] = 1 |
133 | | * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 |
134 | | * We apply a further scale factor of 8. |
135 | | * What's actually stored is 1/divisor so that the inner loop can |
136 | | * use a multiplication rather than a division. |
137 | | */ |
138 | 0 | FAST_FLOAT * fdtbl; |
139 | 0 | int row, col; |
140 | 0 | static const double aanscalefactor[DCTSIZE] = { |
141 | 0 | 1.0, 1.387039845, 1.306562965, 1.175875602, |
142 | 0 | 1.0, 0.785694958, 0.541196100, 0.275899379 |
143 | 0 | }; |
144 | |
|
145 | 0 | if (fdct->float_divisors[qtblno] == NULL) { |
146 | 0 | fdct->float_divisors[qtblno] = (FAST_FLOAT *) |
147 | 0 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
148 | 0 | DCTSIZE2 * SIZEOF(FAST_FLOAT)); |
149 | 0 | } |
150 | 0 | fdtbl = fdct->float_divisors[qtblno]; |
151 | 0 | i = 0; |
152 | 0 | for (row = 0; row < DCTSIZE; row++) { |
153 | 0 | for (col = 0; col < DCTSIZE; col++) { |
154 | 0 | fdtbl[i] = (FAST_FLOAT) |
155 | 0 | (1.0 / (((double) qtbl->quantval[i] * |
156 | 0 | aanscalefactor[row] * aanscalefactor[col] * 8.0))); |
157 | 0 | i++; |
158 | 0 | } |
159 | 0 | } |
160 | 0 | } |
161 | 0 | break; |
162 | 0 | #endif |
163 | 0 | default: |
164 | 0 | ERREXIT(cinfo, JERR_NOT_COMPILED); |
165 | 0 | break; |
166 | 0 | } |
167 | 0 | } |
168 | 0 | } |
169 | | |
170 | | |
171 | | /* |
172 | | * Perform forward DCT on one or more blocks of a component. |
173 | | * |
174 | | * The input samples are taken from the sample_data[] array starting at |
175 | | * position start_row/start_col, and moving to the right for any additional |
176 | | * blocks. The quantized coefficients are returned in coef_blocks[]. |
177 | | */ |
178 | | |
179 | | METHODDEF(void) |
180 | | forward_DCT (j_compress_ptr cinfo, jpeg_component_info * compptr, |
181 | | JSAMPARRAY sample_data, JBLOCKROW coef_blocks, |
182 | | JDIMENSION start_row, JDIMENSION start_col, |
183 | | JDIMENSION num_blocks) |
184 | | /* This version is used for integer DCT implementations. */ |
185 | 0 | { |
186 | | /* This routine is heavily used, so it's worth coding it tightly. */ |
187 | 0 | my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct; |
188 | 0 | forward_DCT_method_ptr do_dct = fdct->do_dct; |
189 | 0 | DCTELEM * divisors = fdct->divisors[compptr->quant_tbl_no]; |
190 | 0 | DCTELEM workspace[DCTSIZE2]; /* work area for FDCT subroutine */ |
191 | 0 | JDIMENSION bi; |
192 | |
|
193 | 0 | sample_data += start_row; /* fold in the vertical offset once */ |
194 | |
|
195 | 0 | for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) { |
196 | | /* Load data into workspace, applying unsigned->signed conversion */ |
197 | 0 | { register DCTELEM *workspaceptr; |
198 | 0 | register JSAMPROW elemptr; |
199 | 0 | register int elemr; |
200 | |
|
201 | 0 | workspaceptr = workspace; |
202 | 0 | for (elemr = 0; elemr < DCTSIZE; elemr++) { |
203 | 0 | elemptr = sample_data[elemr] + start_col; |
204 | 0 | #if DCTSIZE == 8 /* unroll the inner loop */ |
205 | 0 | *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; |
206 | 0 | *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; |
207 | 0 | *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; |
208 | 0 | *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; |
209 | 0 | *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; |
210 | 0 | *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; |
211 | 0 | *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; |
212 | 0 | *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; |
213 | | #else |
214 | | { register int elemc; |
215 | | for (elemc = DCTSIZE; elemc > 0; elemc--) { |
216 | | *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; |
217 | | } |
218 | | } |
219 | | #endif |
220 | 0 | } |
221 | 0 | } |
222 | | |
223 | | /* Perform the DCT */ |
224 | 0 | (*do_dct) (workspace); |
225 | | |
226 | | /* Quantize/descale the coefficients, and store into coef_blocks[] */ |
227 | 0 | { register DCTELEM temp, qval; |
228 | 0 | register int i; |
229 | 0 | register JCOEFPTR output_ptr = coef_blocks[bi]; |
230 | |
|
231 | 0 | for (i = 0; i < DCTSIZE2; i++) { |
232 | 0 | qval = divisors[i]; |
233 | 0 | temp = workspace[i]; |
234 | | /* Divide the coefficient value by qval, ensuring proper rounding. |
235 | | * Since C does not specify the direction of rounding for negative |
236 | | * quotients, we have to force the dividend positive for portability. |
237 | | * |
238 | | * In most files, at least half of the output values will be zero |
239 | | * (at default quantization settings, more like three-quarters...) |
240 | | * so we should ensure that this case is fast. On many machines, |
241 | | * a comparison is enough cheaper than a divide to make a special test |
242 | | * a win. Since both inputs will be nonnegative, we need only test |
243 | | * for a < b to discover whether a/b is 0. |
244 | | * If your machine's division is fast enough, define FAST_DIVIDE. |
245 | | */ |
246 | | #ifdef FAST_DIVIDE |
247 | | #define DIVIDE_BY(a,b) a /= b |
248 | | #else |
249 | 0 | #define DIVIDE_BY(a,b) if (a >= b) a /= b; else a = 0 |
250 | 0 | #endif |
251 | 0 | if (temp < 0) { |
252 | 0 | temp = -temp; |
253 | 0 | temp += qval>>1; /* for rounding */ |
254 | 0 | DIVIDE_BY(temp, qval); |
255 | 0 | temp = -temp; |
256 | 0 | } else { |
257 | 0 | temp += qval>>1; /* for rounding */ |
258 | 0 | DIVIDE_BY(temp, qval); |
259 | 0 | } |
260 | 0 | output_ptr[i] = (JCOEF) temp; |
261 | 0 | } |
262 | 0 | } |
263 | 0 | } |
264 | 0 | } |
265 | | |
266 | | |
267 | | #ifdef DCT_FLOAT_SUPPORTED |
268 | | |
269 | | METHODDEF(void) |
270 | | forward_DCT_float (j_compress_ptr cinfo, jpeg_component_info * compptr, |
271 | | JSAMPARRAY sample_data, JBLOCKROW coef_blocks, |
272 | | JDIMENSION start_row, JDIMENSION start_col, |
273 | | JDIMENSION num_blocks) |
274 | | /* This version is used for floating-point DCT implementations. */ |
275 | 0 | { |
276 | | /* This routine is heavily used, so it's worth coding it tightly. */ |
277 | 0 | my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct; |
278 | 0 | float_DCT_method_ptr do_dct = fdct->do_float_dct; |
279 | 0 | FAST_FLOAT * divisors = fdct->float_divisors[compptr->quant_tbl_no]; |
280 | 0 | FAST_FLOAT workspace[DCTSIZE2]; /* work area for FDCT subroutine */ |
281 | 0 | JDIMENSION bi; |
282 | |
|
283 | 0 | sample_data += start_row; /* fold in the vertical offset once */ |
284 | |
|
285 | 0 | for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) { |
286 | | /* Load data into workspace, applying unsigned->signed conversion */ |
287 | 0 | { register FAST_FLOAT *workspaceptr; |
288 | 0 | register JSAMPROW elemptr; |
289 | 0 | register int elemr; |
290 | |
|
291 | 0 | workspaceptr = workspace; |
292 | 0 | for (elemr = 0; elemr < DCTSIZE; elemr++) { |
293 | 0 | elemptr = sample_data[elemr] + start_col; |
294 | 0 | #if DCTSIZE == 8 /* unroll the inner loop */ |
295 | 0 | *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); |
296 | 0 | *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); |
297 | 0 | *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); |
298 | 0 | *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); |
299 | 0 | *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); |
300 | 0 | *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); |
301 | 0 | *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); |
302 | 0 | *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); |
303 | | #else |
304 | | { register int elemc; |
305 | | for (elemc = DCTSIZE; elemc > 0; elemc--) { |
306 | | *workspaceptr++ = (FAST_FLOAT) |
307 | | (GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); |
308 | | } |
309 | | } |
310 | | #endif |
311 | 0 | } |
312 | 0 | } |
313 | | |
314 | | /* Perform the DCT */ |
315 | 0 | (*do_dct) (workspace); |
316 | | |
317 | | /* Quantize/descale the coefficients, and store into coef_blocks[] */ |
318 | 0 | { register FAST_FLOAT temp; |
319 | 0 | register int i; |
320 | 0 | register JCOEFPTR output_ptr = coef_blocks[bi]; |
321 | |
|
322 | 0 | for (i = 0; i < DCTSIZE2; i++) { |
323 | | /* Apply the quantization and scaling factor */ |
324 | 0 | temp = workspace[i] * divisors[i]; |
325 | | /* Round to nearest integer. |
326 | | * Since C does not specify the direction of rounding for negative |
327 | | * quotients, we have to force the dividend positive for portability. |
328 | | * The maximum coefficient size is +-16K (for 12-bit data), so this |
329 | | * code should work for either 16-bit or 32-bit ints. |
330 | | */ |
331 | 0 | output_ptr[i] = (JCOEF) ((int) (temp + (FAST_FLOAT) 16384.5) - 16384); |
332 | 0 | } |
333 | 0 | } |
334 | 0 | } |
335 | 0 | } |
336 | | |
337 | | #endif /* DCT_FLOAT_SUPPORTED */ |
338 | | |
339 | | |
340 | | /* |
341 | | * Initialize FDCT manager. |
342 | | */ |
343 | | |
344 | | GLOBAL(void) |
345 | | jinit_forward_dct (j_compress_ptr cinfo) |
346 | 0 | { |
347 | 0 | my_fdct_ptr fdct; |
348 | 0 | int i; |
349 | |
|
350 | 0 | fdct = (my_fdct_ptr) |
351 | 0 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
352 | 0 | SIZEOF(my_fdct_controller)); |
353 | 0 | cinfo->fdct = (struct jpeg_forward_dct *) fdct; |
354 | 0 | fdct->pub.start_pass = start_pass_fdctmgr; |
355 | |
|
356 | 0 | switch (cinfo->dct_method) { |
357 | 0 | #ifdef DCT_ISLOW_SUPPORTED |
358 | 0 | case JDCT_ISLOW: |
359 | 0 | fdct->pub.forward_DCT = forward_DCT; |
360 | 0 | fdct->do_dct = jpeg_fdct_islow; |
361 | 0 | break; |
362 | 0 | #endif |
363 | 0 | #ifdef DCT_IFAST_SUPPORTED |
364 | 0 | case JDCT_IFAST: |
365 | 0 | fdct->pub.forward_DCT = forward_DCT; |
366 | 0 | fdct->do_dct = jpeg_fdct_ifast; |
367 | 0 | break; |
368 | 0 | #endif |
369 | 0 | #ifdef DCT_FLOAT_SUPPORTED |
370 | 0 | case JDCT_FLOAT: |
371 | 0 | fdct->pub.forward_DCT = forward_DCT_float; |
372 | 0 | fdct->do_float_dct = jpeg_fdct_float; |
373 | 0 | break; |
374 | 0 | #endif |
375 | 0 | default: |
376 | 0 | ERREXIT(cinfo, JERR_NOT_COMPILED); |
377 | 0 | break; |
378 | 0 | } |
379 | | |
380 | | /* Mark divisor tables unallocated */ |
381 | 0 | for (i = 0; i < NUM_QUANT_TBLS; i++) { |
382 | 0 | fdct->divisors[i] = NULL; |
383 | 0 | #ifdef DCT_FLOAT_SUPPORTED |
384 | 0 | fdct->float_divisors[i] = NULL; |
385 | 0 | #endif |
386 | 0 | } |
387 | 0 | } |