/src/gdal/build/frmts/jpeg/libjpeg12/jdhuff12.c
Line  | Count  | Source (jump to first uncovered line)  | 
1  |  | /*  | 
2  |  |  * jdhuff.c  | 
3  |  |  *  | 
4  |  |  * Copyright (C) 1991-1997, Thomas G. Lane.  | 
5  |  |  * This file is part of the Independent JPEG Group's software.  | 
6  |  |  * For conditions of distribution and use, see the accompanying README file.  | 
7  |  |  *  | 
8  |  |  * This file contains Huffman entropy decoding routines.  | 
9  |  |  *  | 
10  |  |  * Much of the complexity here has to do with supporting input suspension.  | 
11  |  |  * If the data source module demands suspension, we want to be able to back  | 
12  |  |  * up to the start of the current MCU.  To do this, we copy state variables  | 
13  |  |  * into local working storage, and update them back to the permanent  | 
14  |  |  * storage only upon successful completion of an MCU.  | 
15  |  |  */  | 
16  |  |  | 
17  |  | #define JPEG_INTERNALS  | 
18  |  | #include "jinclude.h"  | 
19  |  | #include "jpeglib.h"  | 
20  |  | #include "jdhuff.h"   /* Declarations shared with jdphuff.c */  | 
21  |  |  | 
22  |  | #if BITS_IN_JSAMPLE == 8  | 
23  |  | #include "jstdhuff.c"  | 
24  |  | #endif  | 
25  |  |  | 
26  |  | /*  | 
27  |  |  * Expanded entropy decoder object for Huffman decoding.  | 
28  |  |  *  | 
29  |  |  * The savable_state subrecord contains fields that change within an MCU,  | 
30  |  |  * but must not be updated permanently until we complete the MCU.  | 
31  |  |  */  | 
32  |  |  | 
33  |  | typedef struct { | 
34  |  |   int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */  | 
35  |  | } savable_state;  | 
36  |  |  | 
37  |  | /* This macro is to work around compilers with missing or broken  | 
38  |  |  * structure assignment.  You'll need to fix this code if you have  | 
39  |  |  * such a compiler and you change MAX_COMPS_IN_SCAN.  | 
40  |  |  */  | 
41  |  |  | 
42  |  | #ifndef NO_STRUCT_ASSIGN  | 
43  | 0  | #define ASSIGN_STATE(dest,src)  ((dest) = (src))  | 
44  |  | #else  | 
45  |  | #if MAX_COMPS_IN_SCAN == 4  | 
46  |  | #define ASSIGN_STATE(dest,src)  \  | 
47  |  |   ((dest).last_dc_val[0] = (src).last_dc_val[0], \  | 
48  |  |    (dest).last_dc_val[1] = (src).last_dc_val[1], \  | 
49  |  |    (dest).last_dc_val[2] = (src).last_dc_val[2], \  | 
50  |  |    (dest).last_dc_val[3] = (src).last_dc_val[3])  | 
51  |  | #endif  | 
52  |  | #endif  | 
53  |  |  | 
54  |  |  | 
55  |  | typedef struct { | 
56  |  |   struct jpeg_entropy_decoder pub; /* public fields */  | 
57  |  |  | 
58  |  |   /* These fields are loaded into local variables at start of each MCU.  | 
59  |  |    * In case of suspension, we exit WITHOUT updating them.  | 
60  |  |    */  | 
61  |  |   bitread_perm_state bitstate;  /* Bit buffer at start of MCU */  | 
62  |  |   savable_state saved;    /* Other state at start of MCU */  | 
63  |  |  | 
64  |  |   /* These fields are NOT loaded into local working state. */  | 
65  |  |   unsigned int restarts_to_go;  /* MCUs left in this restart interval */  | 
66  |  |  | 
67  |  |   /* Pointers to derived tables (these workspaces have image lifespan) */  | 
68  |  |   d_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];  | 
69  |  |   d_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];  | 
70  |  |  | 
71  |  |   /* Precalculated info set up by start_pass for use in decode_mcu: */  | 
72  |  |  | 
73  |  |   /* Pointers to derived tables to be used for each block within an MCU */  | 
74  |  |   d_derived_tbl * dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];  | 
75  |  |   d_derived_tbl * ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];  | 
76  |  |   /* Whether we care about the DC and AC coefficient values for each block */  | 
77  |  |   boolean dc_needed[D_MAX_BLOCKS_IN_MCU];  | 
78  |  |   boolean ac_needed[D_MAX_BLOCKS_IN_MCU];  | 
79  |  | } huff_entropy_decoder;  | 
80  |  |  | 
81  |  | typedef huff_entropy_decoder * huff_entropy_ptr;  | 
82  |  |  | 
83  |  |  | 
84  |  | /*  | 
85  |  |  * Initialize for a Huffman-compressed scan.  | 
86  |  |  */  | 
87  |  |  | 
88  |  | METHODDEF(void)  | 
89  |  | start_pass_huff_decoder (j_decompress_ptr cinfo)  | 
90  | 0  | { | 
91  | 0  |   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;  | 
92  | 0  |   int ci, blkn, dctbl, actbl;  | 
93  | 0  |   jpeg_component_info * compptr;  | 
94  |  |  | 
95  |  |   /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.  | 
96  |  |    * This ought to be an error condition, but we make it a warning because  | 
97  |  |    * there are some baseline files out there with all zeroes in these bytes.  | 
98  |  |    */  | 
99  | 0  |   if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2-1 ||  | 
100  | 0  |       cinfo->Ah != 0 || cinfo->Al != 0)  | 
101  | 0  |     WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);  | 
102  |  | 
  | 
103  | 0  |   for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | 
104  | 0  |     compptr = cinfo->cur_comp_info[ci];  | 
105  | 0  |     dctbl = compptr->dc_tbl_no;  | 
106  | 0  |     actbl = compptr->ac_tbl_no;  | 
107  |  |     /* Compute derived values for Huffman tables */  | 
108  |  |     /* We may do this more than once for a table, but it's not expensive */  | 
109  | 0  |     if (dctbl < 0 || dctbl >= NUM_HUFF_TBLS)  | 
110  | 0  |       ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, dctbl);  | 
111  | 0  |     if (actbl < 0 || actbl >= NUM_HUFF_TBLS)  | 
112  | 0  |       ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, actbl);  | 
113  | 0  |     jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl,  | 
114  | 0  |           & entropy->dc_derived_tbls[dctbl]);  | 
115  | 0  |     jpeg_make_d_derived_tbl(cinfo, FALSE, actbl,  | 
116  | 0  |           & entropy->ac_derived_tbls[actbl]);  | 
117  |  |     /* Initialize DC predictions to 0 */  | 
118  | 0  |     entropy->saved.last_dc_val[ci] = 0;  | 
119  | 0  |   }  | 
120  |  |  | 
121  |  |   /* Precalculate decoding info for each block in an MCU of this scan */  | 
122  | 0  |   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { | 
123  | 0  |     ci = cinfo->MCU_membership[blkn];  | 
124  | 0  |     compptr = cinfo->cur_comp_info[ci];  | 
125  |  |     /* Precalculate which table to use for each block */  | 
126  | 0  |     entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];  | 
127  | 0  |     entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];  | 
128  |  |     /* Decide whether we really care about the coefficient values */  | 
129  | 0  |     if (compptr->component_needed) { | 
130  | 0  |       entropy->dc_needed[blkn] = TRUE;  | 
131  |  |       /* we don't need the ACs if producing a 1/8th-size image */  | 
132  | 0  |       entropy->ac_needed[blkn] = (compptr->DCT_scaled_size > 1);  | 
133  | 0  |     } else { | 
134  | 0  |       entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;  | 
135  | 0  |     }  | 
136  | 0  |   }  | 
137  |  |  | 
138  |  |   /* Initialize bitread state variables */  | 
139  | 0  |   entropy->bitstate.bits_left = 0;  | 
140  | 0  |   entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */  | 
141  | 0  |   entropy->pub.insufficient_data = FALSE;  | 
142  |  |  | 
143  |  |   /* Initialize restart counter */  | 
144  | 0  |   entropy->restarts_to_go = cinfo->restart_interval;  | 
145  | 0  | }  | 
146  |  |  | 
147  |  |  | 
148  |  | /*  | 
149  |  |  * Compute the derived values for a Huffman table.  | 
150  |  |  * This routine also performs some validation checks on the table.  | 
151  |  |  *  | 
152  |  |  * Note this is also used by jdphuff.c.  | 
153  |  |  */  | 
154  |  |  | 
155  |  | GLOBAL(void)  | 
156  |  | jpeg_make_d_derived_tbl (j_decompress_ptr cinfo, boolean isDC, int tblno,  | 
157  |  |        d_derived_tbl ** pdtbl)  | 
158  | 0  | { | 
159  | 0  |   JHUFF_TBL *htbl;  | 
160  | 0  |   d_derived_tbl *dtbl;  | 
161  | 0  |   int p, i, l, si, numsymbols;  | 
162  | 0  |   int lookbits, ctr;  | 
163  | 0  |   char huffsize[257];  | 
164  | 0  |   unsigned int huffcode[257];  | 
165  | 0  |   unsigned int code;  | 
166  |  |  | 
167  |  |   /* Note that huffsize[] and huffcode[] are filled in code-length order,  | 
168  |  |    * paralleling the order of the symbols themselves in htbl->huffval[].  | 
169  |  |    */  | 
170  |  |  | 
171  |  |   /* Find the input Huffman table */  | 
172  | 0  |   if (tblno < 0 || tblno >= NUM_HUFF_TBLS)  | 
173  | 0  |     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);  | 
174  | 0  |   htbl =  | 
175  | 0  |     isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];  | 
176  | 0  |   if (htbl == NULL)  | 
177  | 0  |     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);  | 
178  |  |  | 
179  |  |   /* Allocate a workspace if we haven't already done so. */  | 
180  | 0  |   if (*pdtbl == NULL)  | 
181  | 0  |     *pdtbl = (d_derived_tbl *)  | 
182  | 0  |       (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,  | 
183  | 0  |           SIZEOF(d_derived_tbl));  | 
184  | 0  |   dtbl = *pdtbl;  | 
185  | 0  |   dtbl->pub = htbl;   /* fill in back link */  | 
186  |  |     | 
187  |  |   /* Figure C.1: make table of Huffman code length for each symbol */  | 
188  |  | 
  | 
189  | 0  |   p = 0;  | 
190  | 0  |   for (l = 1; l <= 16; l++) { | 
191  | 0  |     i = (int) htbl->bits[l];  | 
192  | 0  |     if (i < 0 || p + i > 256) /* protect against table overrun */  | 
193  | 0  |       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);  | 
194  | 0  |     while (i--)  | 
195  | 0  |       huffsize[p++] = (char) l;  | 
196  | 0  |   }  | 
197  | 0  |   huffsize[p] = 0;  | 
198  | 0  |   numsymbols = p;  | 
199  |  |     | 
200  |  |   /* Figure C.2: generate the codes themselves */  | 
201  |  |   /* We also validate that the counts represent a legal Huffman code tree. */  | 
202  |  |     | 
203  | 0  |   code = 0;  | 
204  | 0  |   si = huffsize[0];  | 
205  | 0  |   p = 0;  | 
206  | 0  |   while (huffsize[p]) { | 
207  | 0  |     while (((int) huffsize[p]) == si) { | 
208  | 0  |       huffcode[p++] = code;  | 
209  | 0  |       code++;  | 
210  | 0  |     }  | 
211  |  |     /* code is now 1 more than the last code used for codelength si; but  | 
212  |  |      * it must still fit in si bits, since no code is allowed to be all ones.  | 
213  |  |      */  | 
214  | 0  |     if (((INT32) code) >= (((INT32) 1) << si))  | 
215  | 0  |       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);  | 
216  | 0  |     code <<= 1;  | 
217  | 0  |     si++;  | 
218  | 0  |   }  | 
219  |  |  | 
220  |  |   /* Figure F.15: generate decoding tables for bit-sequential decoding */  | 
221  |  | 
  | 
222  | 0  |   p = 0;  | 
223  | 0  |   for (l = 1; l <= 16; l++) { | 
224  | 0  |     if (htbl->bits[l]) { | 
225  |  |       /* valoffset[l] = huffval[] index of 1st symbol of code length l,  | 
226  |  |        * minus the minimum code of length l  | 
227  |  |        */  | 
228  | 0  |       dtbl->valoffset[l] = (INT32) p - (INT32) huffcode[p];  | 
229  | 0  |       p += htbl->bits[l];  | 
230  | 0  |       dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */  | 
231  | 0  |     } else { | 
232  | 0  |       dtbl->maxcode[l] = -1;  /* -1 if no codes of this length */  | 
233  | 0  |     }  | 
234  | 0  |   }  | 
235  | 0  |   dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */  | 
236  |  |  | 
237  |  |   /* Compute lookahead tables to speed up decoding.  | 
238  |  |    * First we set all the table entries to 0, indicating "too long";  | 
239  |  |    * then we iterate through the Huffman codes that are short enough and  | 
240  |  |    * fill in all the entries that correspond to bit sequences starting  | 
241  |  |    * with that code.  | 
242  |  |    */  | 
243  |  | 
  | 
244  | 0  |   MEMZERO(dtbl->look_nbits, SIZEOF(dtbl->look_nbits));  | 
245  |  | 
  | 
246  | 0  |   p = 0;  | 
247  | 0  |   for (l = 1; l <= HUFF_LOOKAHEAD; l++) { | 
248  | 0  |     for (i = 1; i <= (int) htbl->bits[l]; i++, p++) { | 
249  |  |       /* l = current code's length, p = its index in huffcode[] & huffval[]. */  | 
250  |  |       /* Generate left-justified code followed by all possible bit sequences */  | 
251  | 0  |       lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l);  | 
252  | 0  |       for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--) { | 
253  | 0  |   dtbl->look_nbits[lookbits] = l;  | 
254  | 0  |   dtbl->look_sym[lookbits] = htbl->huffval[p];  | 
255  | 0  |   lookbits++;  | 
256  | 0  |       }  | 
257  | 0  |     }  | 
258  | 0  |   }  | 
259  |  |  | 
260  |  |   /* Validate symbols as being reasonable.  | 
261  |  |    * For AC tables, we make no check, but accept all byte values 0..255.  | 
262  |  |    * For DC tables, we require the symbols to be in range 0..15.  | 
263  |  |    * (Tighter bounds could be applied depending on the data depth and mode,  | 
264  |  |    * but this is sufficient to ensure safe decoding.)  | 
265  |  |    */  | 
266  | 0  |   if (isDC) { | 
267  | 0  |     for (i = 0; i < numsymbols; i++) { | 
268  | 0  |       int sym = htbl->huffval[i];  | 
269  | 0  |       if (sym < 0 || sym > 15)  | 
270  | 0  |   ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);  | 
271  | 0  |     }  | 
272  | 0  |   }  | 
273  | 0  | }  | 
274  |  |  | 
275  |  |  | 
276  |  | /*  | 
277  |  |  * Out-of-line code for bit fetching (shared with jdphuff.c).  | 
278  |  |  * See jdhuff.h for info about usage.  | 
279  |  |  * Note: current values of get_buffer and bits_left are passed as parameters,  | 
280  |  |  * but are returned in the corresponding fields of the state struct.  | 
281  |  |  *  | 
282  |  |  * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width  | 
283  |  |  * of get_buffer to be used.  (On machines with wider words, an even larger  | 
284  |  |  * buffer could be used.)  However, on some machines 32-bit shifts are  | 
285  |  |  * quite slow and take time proportional to the number of places shifted.  | 
286  |  |  * (This is true with most PC compilers, for instance.)  In this case it may  | 
287  |  |  * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the  | 
288  |  |  * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.  | 
289  |  |  */  | 
290  |  |  | 
291  |  | #ifdef SLOW_SHIFT_32  | 
292  |  | #define MIN_GET_BITS  15  /* minimum allowable value */  | 
293  |  | #else  | 
294  | 0  | #define MIN_GET_BITS  (BIT_BUF_SIZE-7)  | 
295  |  | #endif  | 
296  |  |  | 
297  |  |  | 
298  |  | GLOBAL(boolean)  | 
299  |  | jpeg_fill_bit_buffer (bitread_working_state * state,  | 
300  |  |           register bit_buf_type get_buffer, register int bits_left,  | 
301  |  |           int nbits)  | 
302  |  | /* Load up the bit buffer to a depth of at least nbits */  | 
303  | 0  | { | 
304  |  |   /* Copy heavily used state fields into locals (hopefully registers) */  | 
305  | 0  |   register const JOCTET * next_input_byte = state->next_input_byte;  | 
306  | 0  |   register size_t bytes_in_buffer = state->bytes_in_buffer;  | 
307  | 0  |   j_decompress_ptr cinfo = state->cinfo;  | 
308  |  |  | 
309  |  |   /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */  | 
310  |  |   /* (It is assumed that no request will be for more than that many bits.) */  | 
311  |  |   /* We fail to do so only if we hit a marker or are forced to suspend. */  | 
312  |  | 
  | 
313  | 0  |   if (cinfo->unread_marker == 0) { /* cannot advance past a marker */ | 
314  | 0  |     while (bits_left < MIN_GET_BITS) { | 
315  | 0  |       register int c;  | 
316  |  |  | 
317  |  |       /* Attempt to read a byte */  | 
318  | 0  |       if (bytes_in_buffer == 0) { | 
319  |  | 
  | 
320  | 0  |         cinfo->src->next_input_byte = next_input_byte;  | 
321  | 0  |         cinfo->src->bytes_in_buffer = bytes_in_buffer;  | 
322  |  |           | 
323  | 0  |         if (! (*cinfo->src->fill_input_buffer) (cinfo))  | 
324  | 0  |     return FALSE;  | 
325  | 0  |   next_input_byte = cinfo->src->next_input_byte;  | 
326  | 0  |   bytes_in_buffer = cinfo->src->bytes_in_buffer;  | 
327  | 0  |       }  | 
328  | 0  |       bytes_in_buffer--;  | 
329  | 0  |       c = GETJOCTET(*next_input_byte++);  | 
330  |  |  | 
331  |  |       /* If it's 0xFF, check and discard stuffed zero byte */  | 
332  | 0  |       if (c == 0xFF) { | 
333  |  |   /* Loop here to discard any padding FF's on terminating marker,  | 
334  |  |    * so that we can save a valid unread_marker value.  NOTE: we will  | 
335  |  |    * accept multiple FF's followed by a 0 as meaning a single FF data  | 
336  |  |    * byte.  This data pattern is not valid according to the standard.  | 
337  |  |    */  | 
338  | 0  |   do { | 
339  | 0  |     if (bytes_in_buffer == 0) { | 
340  | 0  |             cinfo->src->next_input_byte = next_input_byte;  | 
341  | 0  |             cinfo->src->bytes_in_buffer = bytes_in_buffer;  | 
342  | 0  |       if (! (*cinfo->src->fill_input_buffer) (cinfo))  | 
343  | 0  |         return FALSE;  | 
344  | 0  |       next_input_byte = cinfo->src->next_input_byte;  | 
345  | 0  |       bytes_in_buffer = cinfo->src->bytes_in_buffer;  | 
346  | 0  |     }  | 
347  | 0  |     bytes_in_buffer--;  | 
348  | 0  |     c = GETJOCTET(*next_input_byte++);  | 
349  | 0  |   } while (c == 0xFF);  | 
350  |  |  | 
351  | 0  |   if (c == 0) { | 
352  |  |     /* Found FF/00, which represents an FF data byte */  | 
353  | 0  |     c = 0xFF;  | 
354  | 0  |   } else { | 
355  |  |     /* Oops, it's actually a marker indicating end of compressed data.  | 
356  |  |      * Save the marker code for later use.  | 
357  |  |      * Fine point: it might appear that we should save the marker into  | 
358  |  |      * bitread working state, not straight into permanent state.  But  | 
359  |  |      * once we have hit a marker, we cannot need to suspend within the  | 
360  |  |      * current MCU, because we will read no more bytes from the data  | 
361  |  |      * source.  So it is OK to update permanent state right away.  | 
362  |  |      */  | 
363  | 0  |     cinfo->unread_marker = c;  | 
364  |  |     /* See if we need to insert some fake zero bits. */  | 
365  | 0  |     goto no_more_bytes;  | 
366  | 0  |   }  | 
367  | 0  |       }  | 
368  |  |  | 
369  |  |       /* OK, load c into get_buffer */  | 
370  | 0  |       get_buffer = (get_buffer << 8) | c;  | 
371  | 0  |       bits_left += 8;  | 
372  | 0  |     } /* end while */  | 
373  | 0  |   } else { | 
374  | 0  |   no_more_bytes:  | 
375  |  |     /* We get here if we've read the marker that terminates the compressed  | 
376  |  |      * data segment.  There should be enough bits in the buffer register  | 
377  |  |      * to satisfy the request; if so, no problem.  | 
378  |  |      */  | 
379  | 0  |     if (nbits > bits_left) { | 
380  |  |       /* Uh-oh.  Report corrupted data to user and stuff zeroes into  | 
381  |  |        * the data stream, so that we can produce some kind of image.  | 
382  |  |        * We use a nonvolatile flag to ensure that only one warning message  | 
383  |  |        * appears per data segment.  | 
384  |  |        */  | 
385  | 0  |       if (! cinfo->entropy->insufficient_data) { | 
386  | 0  |   WARNMS(cinfo, JWRN_HIT_MARKER);  | 
387  | 0  |   cinfo->entropy->insufficient_data = TRUE;  | 
388  | 0  |       }  | 
389  |  |       /* Fill the buffer with zero bits */  | 
390  | 0  |       get_buffer <<= MIN_GET_BITS - bits_left;  | 
391  | 0  |       bits_left = MIN_GET_BITS;  | 
392  | 0  |     }  | 
393  | 0  |   }  | 
394  |  |  | 
395  |  |   /* Unload the local registers */  | 
396  | 0  |   state->next_input_byte = next_input_byte;  | 
397  | 0  |   state->bytes_in_buffer = bytes_in_buffer;  | 
398  | 0  |   state->get_buffer = get_buffer;  | 
399  | 0  |   state->bits_left = bits_left;  | 
400  |  | 
  | 
401  | 0  |   return TRUE;  | 
402  | 0  | }  | 
403  |  |  | 
404  |  |  | 
405  |  | /*  | 
406  |  |  * Out-of-line code for Huffman code decoding.  | 
407  |  |  * See jdhuff.h for info about usage.  | 
408  |  |  */  | 
409  |  |  | 
410  |  | GLOBAL(int)  | 
411  |  | jpeg_huff_decode (bitread_working_state * state,  | 
412  |  |       register bit_buf_type get_buffer, register int bits_left,  | 
413  |  |       d_derived_tbl * htbl, int min_bits)  | 
414  | 0  | { | 
415  | 0  |   register int l = min_bits;  | 
416  | 0  |   register INT32 code;  | 
417  |  |  | 
418  |  |   /* HUFF_DECODE has determined that the code is at least min_bits */  | 
419  |  |   /* bits long, so fetch that many bits in one swoop. */  | 
420  |  | 
  | 
421  | 0  |   CHECK_BIT_BUFFER(*state, l, return -1);  | 
422  | 0  |   code = GET_BITS(l);  | 
423  |  |  | 
424  |  |   /* Collect the rest of the Huffman code one bit at a time. */  | 
425  |  |   /* This is per Figure F.16 in the JPEG spec. */  | 
426  |  | 
  | 
427  | 0  |   while (code > htbl->maxcode[l]) { | 
428  | 0  |     code <<= 1;  | 
429  | 0  |     CHECK_BIT_BUFFER(*state, 1, return -1);  | 
430  | 0  |     code |= GET_BITS(1);  | 
431  | 0  |     l++;  | 
432  | 0  |   }  | 
433  |  |  | 
434  |  |   /* Unload the local registers */  | 
435  | 0  |   state->get_buffer = get_buffer;  | 
436  | 0  |   state->bits_left = bits_left;  | 
437  |  |  | 
438  |  |   /* With garbage input we may reach the sentinel value l = 17. */  | 
439  |  | 
  | 
440  | 0  |   if (l > 16) { | 
441  | 0  |     WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);  | 
442  | 0  |     return 0;     /* fake a zero as the safest result */  | 
443  | 0  |   }  | 
444  |  |  | 
445  | 0  |   return htbl->pub->huffval[ (int) (code + htbl->valoffset[l]) ];  | 
446  | 0  | }  | 
447  |  |  | 
448  |  |  | 
449  |  | /*  | 
450  |  |  * Figure F.12: extend sign bit.  | 
451  |  |  * On some machines, a shift and add will be faster than a table lookup.  | 
452  |  |  */  | 
453  |  |  | 
454  | 0  | #define NEG_1 ((unsigned int)-1)  | 
455  |  | #define AVOID_TABLES  | 
456  |  | #ifdef AVOID_TABLES  | 
457  |  |  | 
458  | 0  | #define HUFF_EXTEND(x,s)  ((x) + ((((x) - (1<<((s)-1))) >> 31) & (((NEG_1)<<(s)) + 1)))  | 
459  |  |  | 
460  |  | #else  | 
461  |  |  | 
462  |  | #define HUFF_EXTEND(x,s)  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))  | 
463  |  |  | 
464  |  | static const int extend_test[16] =   /* entry n is 2**(n-1) */  | 
465  |  |   { 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, | 
466  |  |     0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 };  | 
467  |  |  | 
468  |  | static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */  | 
469  |  |   { 0, -1, -3, -7, -15, -31, -63, -127, -255, -511, -1023, -2047, -4095, -8191, -16383, -32767 }; | 
470  |  |  | 
471  |  | #endif /* AVOID_TABLES */  | 
472  |  |  | 
473  |  |  | 
474  |  | /*  | 
475  |  |  * Check for a restart marker & resynchronize decoder.  | 
476  |  |  * Returns FALSE if must suspend.  | 
477  |  |  */  | 
478  |  |  | 
479  |  | LOCAL(boolean)  | 
480  |  | process_restart (j_decompress_ptr cinfo)  | 
481  | 0  | { | 
482  | 0  |   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;  | 
483  | 0  |   int ci;  | 
484  |  |  | 
485  |  |   /* Throw away any unused bits remaining in bit buffer; */  | 
486  |  |   /* include any full bytes in next_marker's count of discarded bytes */  | 
487  | 0  |   cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;  | 
488  | 0  |   entropy->bitstate.bits_left = 0;  | 
489  |  |  | 
490  |  |   /* Advance past the RSTn marker */  | 
491  | 0  |   if (! (*cinfo->marker->read_restart_marker) (cinfo))  | 
492  | 0  |     return FALSE;  | 
493  |  |  | 
494  |  |   /* Re-initialize DC predictions to 0 */  | 
495  | 0  |   for (ci = 0; ci < cinfo->comps_in_scan; ci++)  | 
496  | 0  |     entropy->saved.last_dc_val[ci] = 0;  | 
497  |  |  | 
498  |  |   /* Reset restart counter */  | 
499  | 0  |   entropy->restarts_to_go = cinfo->restart_interval;  | 
500  |  |  | 
501  |  |   /* Reset out-of-data flag, unless read_restart_marker left us smack up  | 
502  |  |    * against a marker.  In that case we will end up treating the next data  | 
503  |  |    * segment as empty, and we can avoid producing bogus output pixels by  | 
504  |  |    * leaving the flag set.  | 
505  |  |    */  | 
506  | 0  |   if (cinfo->unread_marker == 0)  | 
507  | 0  |     entropy->pub.insufficient_data = FALSE;  | 
508  |  | 
  | 
509  | 0  |   return TRUE;  | 
510  | 0  | }  | 
511  |  |  | 
512  |  |  | 
513  |  | /*  | 
514  |  |  * Decode and return one MCU's worth of Huffman-compressed coefficients.  | 
515  |  |  * The coefficients are reordered from zigzag order into natural array order,  | 
516  |  |  * but are not dequantized.  | 
517  |  |  *  | 
518  |  |  * The i'th block of the MCU is stored into the block pointed to by  | 
519  |  |  * MCU_data[i].  WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.  | 
520  |  |  * (Wholesale zeroing is usually a little faster than retail...)  | 
521  |  |  *  | 
522  |  |  * Returns FALSE if data source requested suspension.  In that case no  | 
523  |  |  * changes have been made to permanent state.  (Exception: some output  | 
524  |  |  * coefficients may already have been assigned.  This is harmless for  | 
525  |  |  * this module, since we'll just re-assign them on the next call.)  | 
526  |  |  */  | 
527  |  |  | 
528  |  | METHODDEF(boolean)  | 
529  |  | decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)  | 
530  | 0  | { | 
531  | 0  |   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;  | 
532  | 0  |   int blkn;  | 
533  | 0  |   BITREAD_STATE_VARS;  | 
534  | 0  |   savable_state state;  | 
535  |  |  | 
536  |  |   /* Process restart marker if needed; may have to suspend */  | 
537  | 0  |   if (cinfo->restart_interval) { | 
538  | 0  |     if (entropy->restarts_to_go == 0)  | 
539  | 0  |       if (! process_restart(cinfo))  | 
540  | 0  |   return FALSE;  | 
541  | 0  |   }  | 
542  |  |  | 
543  |  |   /* If we've run out of data, just leave the MCU set to zeroes.  | 
544  |  |    * This way, we return uniform gray for the remainder of the segment.  | 
545  |  |    */  | 
546  | 0  |   if (! entropy->pub.insufficient_data) { | 
547  |  |  | 
548  |  |     /* Load up working state */  | 
549  | 0  |     BITREAD_LOAD_STATE(cinfo,entropy->bitstate);  | 
550  | 0  |     ASSIGN_STATE(state, entropy->saved);  | 
551  |  |  | 
552  |  |     /* Outer loop handles each block in the MCU */  | 
553  |  | 
  | 
554  | 0  |     for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { | 
555  | 0  |       JBLOCKROW block = MCU_data[blkn];  | 
556  | 0  |       d_derived_tbl * dctbl = entropy->dc_cur_tbls[blkn];  | 
557  | 0  |       d_derived_tbl * actbl = entropy->ac_cur_tbls[blkn];  | 
558  | 0  |       register int s, k, r;  | 
559  |  |  | 
560  |  |       /* Decode a single block's worth of coefficients */  | 
561  |  |  | 
562  |  |       /* Section F.2.2.1: decode the DC coefficient difference */  | 
563  | 0  |       HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);  | 
564  | 0  |       if (s) { | 
565  | 0  |   CHECK_BIT_BUFFER(br_state, s, return FALSE);  | 
566  | 0  |   r = GET_BITS(s);  | 
567  | 0  |   s = HUFF_EXTEND(r, s);  | 
568  | 0  |       }  | 
569  |  |  | 
570  | 0  |       if (entropy->dc_needed[blkn]) { | 
571  |  |   /* Convert DC difference to actual value, update last_dc_val */  | 
572  | 0  |   int ci = cinfo->MCU_membership[blkn];  | 
573  | 0  |   s += state.last_dc_val[ci];  | 
574  | 0  |   state.last_dc_val[ci] = s;  | 
575  |  |   /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */  | 
576  | 0  |   (*block)[0] = (JCOEF) s;  | 
577  | 0  |       }  | 
578  |  | 
  | 
579  | 0  |       if (entropy->ac_needed[blkn]) { | 
580  |  |  | 
581  |  |   /* Section F.2.2.2: decode the AC coefficients */  | 
582  |  |   /* Since zeroes are skipped, output area must be cleared beforehand */  | 
583  | 0  |   for (k = 1; k < DCTSIZE2; k++) { | 
584  | 0  |     HUFF_DECODE(s, br_state, actbl, return FALSE, label2);  | 
585  |  |         | 
586  | 0  |     r = s >> 4;  | 
587  | 0  |     s &= 15;  | 
588  |  |         | 
589  | 0  |     if (s) { | 
590  | 0  |       k += r;  | 
591  | 0  |       CHECK_BIT_BUFFER(br_state, s, return FALSE);  | 
592  | 0  |       r = GET_BITS(s);  | 
593  | 0  |       s = HUFF_EXTEND(r, s);  | 
594  |  |       /* Output coefficient in natural (dezigzagged) order.  | 
595  |  |        * Note: the extra entries in jpeg_natural_order[] will save us  | 
596  |  |        * if k >= DCTSIZE2, which could happen if the data is corrupted.  | 
597  |  |        */  | 
598  | 0  |       (*block)[jpeg_natural_order[k]] = (JCOEF) s;  | 
599  | 0  |     } else { | 
600  | 0  |       if (r != 15)  | 
601  | 0  |         break;  | 
602  | 0  |       k += 15;  | 
603  | 0  |     }  | 
604  | 0  |   }  | 
605  |  | 
  | 
606  | 0  |       } else { | 
607  |  |  | 
608  |  |   /* Section F.2.2.2: decode the AC coefficients */  | 
609  |  |   /* In this path we just discard the values */  | 
610  | 0  |   for (k = 1; k < DCTSIZE2; k++) { | 
611  | 0  |     HUFF_DECODE(s, br_state, actbl, return FALSE, label3);  | 
612  |  |         | 
613  | 0  |     r = s >> 4;  | 
614  | 0  |     s &= 15;  | 
615  |  |         | 
616  | 0  |     if (s) { | 
617  | 0  |       k += r;  | 
618  | 0  |       CHECK_BIT_BUFFER(br_state, s, return FALSE);  | 
619  | 0  |       DROP_BITS(s);  | 
620  | 0  |     } else { | 
621  | 0  |       if (r != 15)  | 
622  | 0  |         break;  | 
623  | 0  |       k += 15;  | 
624  | 0  |     }  | 
625  | 0  |   }  | 
626  |  | 
  | 
627  | 0  |       }  | 
628  | 0  |     }  | 
629  |  |  | 
630  |  |     /* Completed MCU, so update state */  | 
631  | 0  |     BITREAD_SAVE_STATE(cinfo,entropy->bitstate);  | 
632  | 0  |     ASSIGN_STATE(entropy->saved, state);  | 
633  | 0  |   }  | 
634  |  |  | 
635  |  |   /* Account for restart interval (no-op if not using restarts) */  | 
636  | 0  |   if( entropy->restarts_to_go == 0 )  | 
637  | 0  |       entropy->restarts_to_go = ~0U;  | 
638  | 0  |   else  | 
639  | 0  |       entropy->restarts_to_go--;  | 
640  |  | 
  | 
641  | 0  |   return TRUE;  | 
642  | 0  | }  | 
643  |  |  | 
644  |  |  | 
645  |  | /*  | 
646  |  |  * Module initialization routine for Huffman entropy decoding.  | 
647  |  |  */  | 
648  |  |  | 
649  |  | GLOBAL(void)  | 
650  |  | jinit_huff_decoder (j_decompress_ptr cinfo)  | 
651  | 0  | { | 
652  | 0  |   huff_entropy_ptr entropy;  | 
653  | 0  |   int i;  | 
654  |  | 
  | 
655  |  | #if BITS_IN_JSAMPLE == 8  | 
656  |  |   /* Motion JPEG frames typically do not include the Huffman tables if they  | 
657  |  |      are the default tables.  Thus, if the tables are not set by the time  | 
658  |  |      the Huffman decoder is initialized (usually within the body of  | 
659  |  |      jpeg_start_decompress()), we set them to default values. */  | 
660  |  |   std_huff_tables((j_common_ptr) cinfo);  | 
661  |  | #endif  | 
662  |  | 
  | 
663  | 0  |   entropy = (huff_entropy_ptr)  | 
664  | 0  |     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,  | 
665  | 0  |         SIZEOF(huff_entropy_decoder));  | 
666  | 0  |   cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;  | 
667  | 0  |   entropy->pub.start_pass = start_pass_huff_decoder;  | 
668  | 0  |   entropy->pub.decode_mcu = decode_mcu;  | 
669  |  |  | 
670  |  |   /* Mark tables unallocated */  | 
671  | 0  |   for (i = 0; i < NUM_HUFF_TBLS; i++) { | 
672  | 0  |     entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;  | 
673  | 0  |   }  | 
674  | 0  | }  |