Coverage Report

Created: 2025-06-13 06:29

/src/gdal/build/frmts/jpeg/libjpeg12/jdhuff12.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * jdhuff.c
3
 *
4
 * Copyright (C) 1991-1997, Thomas G. Lane.
5
 * This file is part of the Independent JPEG Group's software.
6
 * For conditions of distribution and use, see the accompanying README file.
7
 *
8
 * This file contains Huffman entropy decoding routines.
9
 *
10
 * Much of the complexity here has to do with supporting input suspension.
11
 * If the data source module demands suspension, we want to be able to back
12
 * up to the start of the current MCU.  To do this, we copy state variables
13
 * into local working storage, and update them back to the permanent
14
 * storage only upon successful completion of an MCU.
15
 */
16
17
#define JPEG_INTERNALS
18
#include "jinclude.h"
19
#include "jpeglib.h"
20
#include "jdhuff.h"   /* Declarations shared with jdphuff.c */
21
22
#if BITS_IN_JSAMPLE == 8
23
#include "jstdhuff.c"
24
#endif
25
26
/*
27
 * Expanded entropy decoder object for Huffman decoding.
28
 *
29
 * The savable_state subrecord contains fields that change within an MCU,
30
 * but must not be updated permanently until we complete the MCU.
31
 */
32
33
typedef struct {
34
  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
35
} savable_state;
36
37
/* This macro is to work around compilers with missing or broken
38
 * structure assignment.  You'll need to fix this code if you have
39
 * such a compiler and you change MAX_COMPS_IN_SCAN.
40
 */
41
42
#ifndef NO_STRUCT_ASSIGN
43
0
#define ASSIGN_STATE(dest,src)  ((dest) = (src))
44
#else
45
#if MAX_COMPS_IN_SCAN == 4
46
#define ASSIGN_STATE(dest,src)  \
47
  ((dest).last_dc_val[0] = (src).last_dc_val[0], \
48
   (dest).last_dc_val[1] = (src).last_dc_val[1], \
49
   (dest).last_dc_val[2] = (src).last_dc_val[2], \
50
   (dest).last_dc_val[3] = (src).last_dc_val[3])
51
#endif
52
#endif
53
54
55
typedef struct {
56
  struct jpeg_entropy_decoder pub; /* public fields */
57
58
  /* These fields are loaded into local variables at start of each MCU.
59
   * In case of suspension, we exit WITHOUT updating them.
60
   */
61
  bitread_perm_state bitstate;  /* Bit buffer at start of MCU */
62
  savable_state saved;    /* Other state at start of MCU */
63
64
  /* These fields are NOT loaded into local working state. */
65
  unsigned int restarts_to_go;  /* MCUs left in this restart interval */
66
67
  /* Pointers to derived tables (these workspaces have image lifespan) */
68
  d_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
69
  d_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
70
71
  /* Precalculated info set up by start_pass for use in decode_mcu: */
72
73
  /* Pointers to derived tables to be used for each block within an MCU */
74
  d_derived_tbl * dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
75
  d_derived_tbl * ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
76
  /* Whether we care about the DC and AC coefficient values for each block */
77
  boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
78
  boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
79
} huff_entropy_decoder;
80
81
typedef huff_entropy_decoder * huff_entropy_ptr;
82
83
84
/*
85
 * Initialize for a Huffman-compressed scan.
86
 */
87
88
METHODDEF(void)
89
start_pass_huff_decoder (j_decompress_ptr cinfo)
90
0
{
91
0
  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
92
0
  int ci, blkn, dctbl, actbl;
93
0
  jpeg_component_info * compptr;
94
95
  /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
96
   * This ought to be an error condition, but we make it a warning because
97
   * there are some baseline files out there with all zeroes in these bytes.
98
   */
99
0
  if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2-1 ||
100
0
      cinfo->Ah != 0 || cinfo->Al != 0)
101
0
    WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
102
103
0
  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
104
0
    compptr = cinfo->cur_comp_info[ci];
105
0
    dctbl = compptr->dc_tbl_no;
106
0
    actbl = compptr->ac_tbl_no;
107
    /* Compute derived values for Huffman tables */
108
    /* We may do this more than once for a table, but it's not expensive */
109
0
    if (dctbl < 0 || dctbl >= NUM_HUFF_TBLS)
110
0
      ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, dctbl);
111
0
    if (actbl < 0 || actbl >= NUM_HUFF_TBLS)
112
0
      ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, actbl);
113
0
    jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl,
114
0
          & entropy->dc_derived_tbls[dctbl]);
115
0
    jpeg_make_d_derived_tbl(cinfo, FALSE, actbl,
116
0
          & entropy->ac_derived_tbls[actbl]);
117
    /* Initialize DC predictions to 0 */
118
0
    entropy->saved.last_dc_val[ci] = 0;
119
0
  }
120
121
  /* Precalculate decoding info for each block in an MCU of this scan */
122
0
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
123
0
    ci = cinfo->MCU_membership[blkn];
124
0
    compptr = cinfo->cur_comp_info[ci];
125
    /* Precalculate which table to use for each block */
126
0
    entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
127
0
    entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
128
    /* Decide whether we really care about the coefficient values */
129
0
    if (compptr->component_needed) {
130
0
      entropy->dc_needed[blkn] = TRUE;
131
      /* we don't need the ACs if producing a 1/8th-size image */
132
0
      entropy->ac_needed[blkn] = (compptr->DCT_scaled_size > 1);
133
0
    } else {
134
0
      entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
135
0
    }
136
0
  }
137
138
  /* Initialize bitread state variables */
139
0
  entropy->bitstate.bits_left = 0;
140
0
  entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
141
0
  entropy->pub.insufficient_data = FALSE;
142
143
  /* Initialize restart counter */
144
0
  entropy->restarts_to_go = cinfo->restart_interval;
145
0
}
146
147
148
/*
149
 * Compute the derived values for a Huffman table.
150
 * This routine also performs some validation checks on the table.
151
 *
152
 * Note this is also used by jdphuff.c.
153
 */
154
155
GLOBAL(void)
156
jpeg_make_d_derived_tbl (j_decompress_ptr cinfo, boolean isDC, int tblno,
157
       d_derived_tbl ** pdtbl)
158
0
{
159
0
  JHUFF_TBL *htbl;
160
0
  d_derived_tbl *dtbl;
161
0
  int p, i, l, si, numsymbols;
162
0
  int lookbits, ctr;
163
0
  char huffsize[257];
164
0
  unsigned int huffcode[257];
165
0
  unsigned int code;
166
167
  /* Note that huffsize[] and huffcode[] are filled in code-length order,
168
   * paralleling the order of the symbols themselves in htbl->huffval[].
169
   */
170
171
  /* Find the input Huffman table */
172
0
  if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
173
0
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
174
0
  htbl =
175
0
    isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
176
0
  if (htbl == NULL)
177
0
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
178
179
  /* Allocate a workspace if we haven't already done so. */
180
0
  if (*pdtbl == NULL)
181
0
    *pdtbl = (d_derived_tbl *)
182
0
      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
183
0
          SIZEOF(d_derived_tbl));
184
0
  dtbl = *pdtbl;
185
0
  dtbl->pub = htbl;   /* fill in back link */
186
  
187
  /* Figure C.1: make table of Huffman code length for each symbol */
188
189
0
  p = 0;
190
0
  for (l = 1; l <= 16; l++) {
191
0
    i = (int) htbl->bits[l];
192
0
    if (i < 0 || p + i > 256) /* protect against table overrun */
193
0
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
194
0
    while (i--)
195
0
      huffsize[p++] = (char) l;
196
0
  }
197
0
  huffsize[p] = 0;
198
0
  numsymbols = p;
199
  
200
  /* Figure C.2: generate the codes themselves */
201
  /* We also validate that the counts represent a legal Huffman code tree. */
202
  
203
0
  code = 0;
204
0
  si = huffsize[0];
205
0
  p = 0;
206
0
  while (huffsize[p]) {
207
0
    while (((int) huffsize[p]) == si) {
208
0
      huffcode[p++] = code;
209
0
      code++;
210
0
    }
211
    /* code is now 1 more than the last code used for codelength si; but
212
     * it must still fit in si bits, since no code is allowed to be all ones.
213
     */
214
0
    if (((INT32) code) >= (((INT32) 1) << si))
215
0
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
216
0
    code <<= 1;
217
0
    si++;
218
0
  }
219
220
  /* Figure F.15: generate decoding tables for bit-sequential decoding */
221
222
0
  p = 0;
223
0
  for (l = 1; l <= 16; l++) {
224
0
    if (htbl->bits[l]) {
225
      /* valoffset[l] = huffval[] index of 1st symbol of code length l,
226
       * minus the minimum code of length l
227
       */
228
0
      dtbl->valoffset[l] = (INT32) p - (INT32) huffcode[p];
229
0
      p += htbl->bits[l];
230
0
      dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */
231
0
    } else {
232
0
      dtbl->maxcode[l] = -1;  /* -1 if no codes of this length */
233
0
    }
234
0
  }
235
0
  dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
236
237
  /* Compute lookahead tables to speed up decoding.
238
   * First we set all the table entries to 0, indicating "too long";
239
   * then we iterate through the Huffman codes that are short enough and
240
   * fill in all the entries that correspond to bit sequences starting
241
   * with that code.
242
   */
243
244
0
  MEMZERO(dtbl->look_nbits, SIZEOF(dtbl->look_nbits));
245
246
0
  p = 0;
247
0
  for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
248
0
    for (i = 1; i <= (int) htbl->bits[l]; i++, p++) {
249
      /* l = current code's length, p = its index in huffcode[] & huffval[]. */
250
      /* Generate left-justified code followed by all possible bit sequences */
251
0
      lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l);
252
0
      for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--) {
253
0
  dtbl->look_nbits[lookbits] = l;
254
0
  dtbl->look_sym[lookbits] = htbl->huffval[p];
255
0
  lookbits++;
256
0
      }
257
0
    }
258
0
  }
259
260
  /* Validate symbols as being reasonable.
261
   * For AC tables, we make no check, but accept all byte values 0..255.
262
   * For DC tables, we require the symbols to be in range 0..15.
263
   * (Tighter bounds could be applied depending on the data depth and mode,
264
   * but this is sufficient to ensure safe decoding.)
265
   */
266
0
  if (isDC) {
267
0
    for (i = 0; i < numsymbols; i++) {
268
0
      int sym = htbl->huffval[i];
269
0
      if (sym < 0 || sym > 15)
270
0
  ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
271
0
    }
272
0
  }
273
0
}
274
275
276
/*
277
 * Out-of-line code for bit fetching (shared with jdphuff.c).
278
 * See jdhuff.h for info about usage.
279
 * Note: current values of get_buffer and bits_left are passed as parameters,
280
 * but are returned in the corresponding fields of the state struct.
281
 *
282
 * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
283
 * of get_buffer to be used.  (On machines with wider words, an even larger
284
 * buffer could be used.)  However, on some machines 32-bit shifts are
285
 * quite slow and take time proportional to the number of places shifted.
286
 * (This is true with most PC compilers, for instance.)  In this case it may
287
 * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the
288
 * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
289
 */
290
291
#ifdef SLOW_SHIFT_32
292
#define MIN_GET_BITS  15  /* minimum allowable value */
293
#else
294
0
#define MIN_GET_BITS  (BIT_BUF_SIZE-7)
295
#endif
296
297
298
GLOBAL(boolean)
299
jpeg_fill_bit_buffer (bitread_working_state * state,
300
          register bit_buf_type get_buffer, register int bits_left,
301
          int nbits)
302
/* Load up the bit buffer to a depth of at least nbits */
303
0
{
304
  /* Copy heavily used state fields into locals (hopefully registers) */
305
0
  register const JOCTET * next_input_byte = state->next_input_byte;
306
0
  register size_t bytes_in_buffer = state->bytes_in_buffer;
307
0
  j_decompress_ptr cinfo = state->cinfo;
308
309
  /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
310
  /* (It is assumed that no request will be for more than that many bits.) */
311
  /* We fail to do so only if we hit a marker or are forced to suspend. */
312
313
0
  if (cinfo->unread_marker == 0) { /* cannot advance past a marker */
314
0
    while (bits_left < MIN_GET_BITS) {
315
0
      register int c;
316
317
      /* Attempt to read a byte */
318
0
      if (bytes_in_buffer == 0) {
319
320
0
        cinfo->src->next_input_byte = next_input_byte;
321
0
        cinfo->src->bytes_in_buffer = bytes_in_buffer;
322
        
323
0
        if (! (*cinfo->src->fill_input_buffer) (cinfo))
324
0
    return FALSE;
325
0
  next_input_byte = cinfo->src->next_input_byte;
326
0
  bytes_in_buffer = cinfo->src->bytes_in_buffer;
327
0
      }
328
0
      bytes_in_buffer--;
329
0
      c = GETJOCTET(*next_input_byte++);
330
331
      /* If it's 0xFF, check and discard stuffed zero byte */
332
0
      if (c == 0xFF) {
333
  /* Loop here to discard any padding FF's on terminating marker,
334
   * so that we can save a valid unread_marker value.  NOTE: we will
335
   * accept multiple FF's followed by a 0 as meaning a single FF data
336
   * byte.  This data pattern is not valid according to the standard.
337
   */
338
0
  do {
339
0
    if (bytes_in_buffer == 0) {
340
0
            cinfo->src->next_input_byte = next_input_byte;
341
0
            cinfo->src->bytes_in_buffer = bytes_in_buffer;
342
0
      if (! (*cinfo->src->fill_input_buffer) (cinfo))
343
0
        return FALSE;
344
0
      next_input_byte = cinfo->src->next_input_byte;
345
0
      bytes_in_buffer = cinfo->src->bytes_in_buffer;
346
0
    }
347
0
    bytes_in_buffer--;
348
0
    c = GETJOCTET(*next_input_byte++);
349
0
  } while (c == 0xFF);
350
351
0
  if (c == 0) {
352
    /* Found FF/00, which represents an FF data byte */
353
0
    c = 0xFF;
354
0
  } else {
355
    /* Oops, it's actually a marker indicating end of compressed data.
356
     * Save the marker code for later use.
357
     * Fine point: it might appear that we should save the marker into
358
     * bitread working state, not straight into permanent state.  But
359
     * once we have hit a marker, we cannot need to suspend within the
360
     * current MCU, because we will read no more bytes from the data
361
     * source.  So it is OK to update permanent state right away.
362
     */
363
0
    cinfo->unread_marker = c;
364
    /* See if we need to insert some fake zero bits. */
365
0
    goto no_more_bytes;
366
0
  }
367
0
      }
368
369
      /* OK, load c into get_buffer */
370
0
      get_buffer = (get_buffer << 8) | c;
371
0
      bits_left += 8;
372
0
    } /* end while */
373
0
  } else {
374
0
  no_more_bytes:
375
    /* We get here if we've read the marker that terminates the compressed
376
     * data segment.  There should be enough bits in the buffer register
377
     * to satisfy the request; if so, no problem.
378
     */
379
0
    if (nbits > bits_left) {
380
      /* Uh-oh.  Report corrupted data to user and stuff zeroes into
381
       * the data stream, so that we can produce some kind of image.
382
       * We use a nonvolatile flag to ensure that only one warning message
383
       * appears per data segment.
384
       */
385
0
      if (! cinfo->entropy->insufficient_data) {
386
0
  WARNMS(cinfo, JWRN_HIT_MARKER);
387
0
  cinfo->entropy->insufficient_data = TRUE;
388
0
      }
389
      /* Fill the buffer with zero bits */
390
0
      get_buffer <<= MIN_GET_BITS - bits_left;
391
0
      bits_left = MIN_GET_BITS;
392
0
    }
393
0
  }
394
395
  /* Unload the local registers */
396
0
  state->next_input_byte = next_input_byte;
397
0
  state->bytes_in_buffer = bytes_in_buffer;
398
0
  state->get_buffer = get_buffer;
399
0
  state->bits_left = bits_left;
400
401
0
  return TRUE;
402
0
}
403
404
405
/*
406
 * Out-of-line code for Huffman code decoding.
407
 * See jdhuff.h for info about usage.
408
 */
409
410
GLOBAL(int)
411
jpeg_huff_decode (bitread_working_state * state,
412
      register bit_buf_type get_buffer, register int bits_left,
413
      d_derived_tbl * htbl, int min_bits)
414
0
{
415
0
  register int l = min_bits;
416
0
  register INT32 code;
417
418
  /* HUFF_DECODE has determined that the code is at least min_bits */
419
  /* bits long, so fetch that many bits in one swoop. */
420
421
0
  CHECK_BIT_BUFFER(*state, l, return -1);
422
0
  code = GET_BITS(l);
423
424
  /* Collect the rest of the Huffman code one bit at a time. */
425
  /* This is per Figure F.16 in the JPEG spec. */
426
427
0
  while (code > htbl->maxcode[l]) {
428
0
    code <<= 1;
429
0
    CHECK_BIT_BUFFER(*state, 1, return -1);
430
0
    code |= GET_BITS(1);
431
0
    l++;
432
0
  }
433
434
  /* Unload the local registers */
435
0
  state->get_buffer = get_buffer;
436
0
  state->bits_left = bits_left;
437
438
  /* With garbage input we may reach the sentinel value l = 17. */
439
440
0
  if (l > 16) {
441
0
    WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
442
0
    return 0;     /* fake a zero as the safest result */
443
0
  }
444
445
0
  return htbl->pub->huffval[ (int) (code + htbl->valoffset[l]) ];
446
0
}
447
448
449
/*
450
 * Figure F.12: extend sign bit.
451
 * On some machines, a shift and add will be faster than a table lookup.
452
 */
453
454
0
#define NEG_1 ((unsigned int)-1)
455
#define AVOID_TABLES
456
#ifdef AVOID_TABLES
457
458
0
#define HUFF_EXTEND(x,s)  ((x) + ((((x) - (1<<((s)-1))) >> 31) & (((NEG_1)<<(s)) + 1)))
459
460
#else
461
462
#define HUFF_EXTEND(x,s)  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
463
464
static const int extend_test[16] =   /* entry n is 2**(n-1) */
465
  { 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
466
    0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 };
467
468
static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */
469
  { 0, -1, -3, -7, -15, -31, -63, -127, -255, -511, -1023, -2047, -4095, -8191, -16383, -32767 };
470
471
#endif /* AVOID_TABLES */
472
473
474
/*
475
 * Check for a restart marker & resynchronize decoder.
476
 * Returns FALSE if must suspend.
477
 */
478
479
LOCAL(boolean)
480
process_restart (j_decompress_ptr cinfo)
481
0
{
482
0
  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
483
0
  int ci;
484
485
  /* Throw away any unused bits remaining in bit buffer; */
486
  /* include any full bytes in next_marker's count of discarded bytes */
487
0
  cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
488
0
  entropy->bitstate.bits_left = 0;
489
490
  /* Advance past the RSTn marker */
491
0
  if (! (*cinfo->marker->read_restart_marker) (cinfo))
492
0
    return FALSE;
493
494
  /* Re-initialize DC predictions to 0 */
495
0
  for (ci = 0; ci < cinfo->comps_in_scan; ci++)
496
0
    entropy->saved.last_dc_val[ci] = 0;
497
498
  /* Reset restart counter */
499
0
  entropy->restarts_to_go = cinfo->restart_interval;
500
501
  /* Reset out-of-data flag, unless read_restart_marker left us smack up
502
   * against a marker.  In that case we will end up treating the next data
503
   * segment as empty, and we can avoid producing bogus output pixels by
504
   * leaving the flag set.
505
   */
506
0
  if (cinfo->unread_marker == 0)
507
0
    entropy->pub.insufficient_data = FALSE;
508
509
0
  return TRUE;
510
0
}
511
512
513
/*
514
 * Decode and return one MCU's worth of Huffman-compressed coefficients.
515
 * The coefficients are reordered from zigzag order into natural array order,
516
 * but are not dequantized.
517
 *
518
 * The i'th block of the MCU is stored into the block pointed to by
519
 * MCU_data[i].  WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
520
 * (Wholesale zeroing is usually a little faster than retail...)
521
 *
522
 * Returns FALSE if data source requested suspension.  In that case no
523
 * changes have been made to permanent state.  (Exception: some output
524
 * coefficients may already have been assigned.  This is harmless for
525
 * this module, since we'll just re-assign them on the next call.)
526
 */
527
528
METHODDEF(boolean)
529
decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
530
0
{
531
0
  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
532
0
  int blkn;
533
0
  BITREAD_STATE_VARS;
534
0
  savable_state state;
535
536
  /* Process restart marker if needed; may have to suspend */
537
0
  if (cinfo->restart_interval) {
538
0
    if (entropy->restarts_to_go == 0)
539
0
      if (! process_restart(cinfo))
540
0
  return FALSE;
541
0
  }
542
543
  /* If we've run out of data, just leave the MCU set to zeroes.
544
   * This way, we return uniform gray for the remainder of the segment.
545
   */
546
0
  if (! entropy->pub.insufficient_data) {
547
548
    /* Load up working state */
549
0
    BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
550
0
    ASSIGN_STATE(state, entropy->saved);
551
552
    /* Outer loop handles each block in the MCU */
553
554
0
    for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
555
0
      JBLOCKROW block = MCU_data[blkn];
556
0
      d_derived_tbl * dctbl = entropy->dc_cur_tbls[blkn];
557
0
      d_derived_tbl * actbl = entropy->ac_cur_tbls[blkn];
558
0
      register int s, k, r;
559
560
      /* Decode a single block's worth of coefficients */
561
562
      /* Section F.2.2.1: decode the DC coefficient difference */
563
0
      HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
564
0
      if (s) {
565
0
  CHECK_BIT_BUFFER(br_state, s, return FALSE);
566
0
  r = GET_BITS(s);
567
0
  s = HUFF_EXTEND(r, s);
568
0
      }
569
570
0
      if (entropy->dc_needed[blkn]) {
571
  /* Convert DC difference to actual value, update last_dc_val */
572
0
  int ci = cinfo->MCU_membership[blkn];
573
0
  s += state.last_dc_val[ci];
574
0
  state.last_dc_val[ci] = s;
575
  /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
576
0
  (*block)[0] = (JCOEF) s;
577
0
      }
578
579
0
      if (entropy->ac_needed[blkn]) {
580
581
  /* Section F.2.2.2: decode the AC coefficients */
582
  /* Since zeroes are skipped, output area must be cleared beforehand */
583
0
  for (k = 1; k < DCTSIZE2; k++) {
584
0
    HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
585
      
586
0
    r = s >> 4;
587
0
    s &= 15;
588
      
589
0
    if (s) {
590
0
      k += r;
591
0
      CHECK_BIT_BUFFER(br_state, s, return FALSE);
592
0
      r = GET_BITS(s);
593
0
      s = HUFF_EXTEND(r, s);
594
      /* Output coefficient in natural (dezigzagged) order.
595
       * Note: the extra entries in jpeg_natural_order[] will save us
596
       * if k >= DCTSIZE2, which could happen if the data is corrupted.
597
       */
598
0
      (*block)[jpeg_natural_order[k]] = (JCOEF) s;
599
0
    } else {
600
0
      if (r != 15)
601
0
        break;
602
0
      k += 15;
603
0
    }
604
0
  }
605
606
0
      } else {
607
608
  /* Section F.2.2.2: decode the AC coefficients */
609
  /* In this path we just discard the values */
610
0
  for (k = 1; k < DCTSIZE2; k++) {
611
0
    HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
612
      
613
0
    r = s >> 4;
614
0
    s &= 15;
615
      
616
0
    if (s) {
617
0
      k += r;
618
0
      CHECK_BIT_BUFFER(br_state, s, return FALSE);
619
0
      DROP_BITS(s);
620
0
    } else {
621
0
      if (r != 15)
622
0
        break;
623
0
      k += 15;
624
0
    }
625
0
  }
626
627
0
      }
628
0
    }
629
630
    /* Completed MCU, so update state */
631
0
    BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
632
0
    ASSIGN_STATE(entropy->saved, state);
633
0
  }
634
635
  /* Account for restart interval (no-op if not using restarts) */
636
0
  if( entropy->restarts_to_go == 0 )
637
0
      entropy->restarts_to_go = ~0U;
638
0
  else
639
0
      entropy->restarts_to_go--;
640
641
0
  return TRUE;
642
0
}
643
644
645
/*
646
 * Module initialization routine for Huffman entropy decoding.
647
 */
648
649
GLOBAL(void)
650
jinit_huff_decoder (j_decompress_ptr cinfo)
651
0
{
652
0
  huff_entropy_ptr entropy;
653
0
  int i;
654
655
#if BITS_IN_JSAMPLE == 8
656
  /* Motion JPEG frames typically do not include the Huffman tables if they
657
     are the default tables.  Thus, if the tables are not set by the time
658
     the Huffman decoder is initialized (usually within the body of
659
     jpeg_start_decompress()), we set them to default values. */
660
  std_huff_tables((j_common_ptr) cinfo);
661
#endif
662
663
0
  entropy = (huff_entropy_ptr)
664
0
    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
665
0
        SIZEOF(huff_entropy_decoder));
666
0
  cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
667
0
  entropy->pub.start_pass = start_pass_huff_decoder;
668
0
  entropy->pub.decode_mcu = decode_mcu;
669
670
  /* Mark tables unallocated */
671
0
  for (i = 0; i < NUM_HUFF_TBLS; i++) {
672
0
    entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
673
0
  }
674
0
}