Coverage Report

Created: 2025-06-13 06:29

/src/gdal/build/frmts/jpeg/libjpeg12/jfdctflt12.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * jfdctflt.c
3
 *
4
 * Copyright (C) 1994-1996, Thomas G. Lane.
5
 * This file is part of the Independent JPEG Group's software.
6
 * For conditions of distribution and use, see the accompanying README file.
7
 *
8
 * This file contains a floating-point implementation of the
9
 * forward DCT (Discrete Cosine Transform).
10
 *
11
 * This implementation should be more accurate than either of the integer
12
 * DCT implementations.  However, it may not give the same results on all
13
 * machines because of differences in roundoff behavior.  Speed will depend
14
 * on the hardware's floating point capacity.
15
 *
16
 * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
17
 * on each column.  Direct algorithms are also available, but they are
18
 * much more complex and seem not to be any faster when reduced to code.
19
 *
20
 * This implementation is based on Arai, Agui, and Nakajima's algorithm for
21
 * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in
22
 * Japanese, but the algorithm is described in the Pennebaker & Mitchell
23
 * JPEG textbook (see REFERENCES section in file README).  The following code
24
 * is based directly on figure 4-8 in P&M.
25
 * While an 8-point DCT cannot be done in less than 11 multiplies, it is
26
 * possible to arrange the computation so that many of the multiplies are
27
 * simple scalings of the final outputs.  These multiplies can then be
28
 * folded into the multiplications or divisions by the JPEG quantization
29
 * table entries.  The AA&N method leaves only 5 multiplies and 29 adds
30
 * to be done in the DCT itself.
31
 * The primary disadvantage of this method is that with a fixed-point
32
 * implementation, accuracy is lost due to imprecise representation of the
33
 * scaled quantization values.  However, that problem does not arise if
34
 * we use floating point arithmetic.
35
 */
36
37
#define JPEG_INTERNALS
38
#include "jinclude.h"
39
#include "jpeglib.h"
40
#include "jdct.h"   /* Private declarations for DCT subsystem */
41
42
#ifdef DCT_FLOAT_SUPPORTED
43
44
45
/*
46
 * This module is specialized to the case DCTSIZE = 8.
47
 */
48
49
#if DCTSIZE != 8
50
  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
51
#endif
52
53
54
/*
55
 * Perform the forward DCT on one block of samples.
56
 */
57
58
GLOBAL(void)
59
jpeg_fdct_float (FAST_FLOAT * data)
60
0
{
61
0
  FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
62
0
  FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
63
0
  FAST_FLOAT z1, z2, z3, z4, z5, z11, z13;
64
0
  FAST_FLOAT *dataptr;
65
0
  int ctr;
66
67
  /* Pass 1: process rows. */
68
69
0
  dataptr = data;
70
0
  for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
71
0
    tmp0 = dataptr[0] + dataptr[7];
72
0
    tmp7 = dataptr[0] - dataptr[7];
73
0
    tmp1 = dataptr[1] + dataptr[6];
74
0
    tmp6 = dataptr[1] - dataptr[6];
75
0
    tmp2 = dataptr[2] + dataptr[5];
76
0
    tmp5 = dataptr[2] - dataptr[5];
77
0
    tmp3 = dataptr[3] + dataptr[4];
78
0
    tmp4 = dataptr[3] - dataptr[4];
79
    
80
    /* Even part */
81
    
82
0
    tmp10 = tmp0 + tmp3;  /* phase 2 */
83
0
    tmp13 = tmp0 - tmp3;
84
0
    tmp11 = tmp1 + tmp2;
85
0
    tmp12 = tmp1 - tmp2;
86
    
87
0
    dataptr[0] = tmp10 + tmp11; /* phase 3 */
88
0
    dataptr[4] = tmp10 - tmp11;
89
    
90
0
    z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */
91
0
    dataptr[2] = tmp13 + z1;  /* phase 5 */
92
0
    dataptr[6] = tmp13 - z1;
93
    
94
    /* Odd part */
95
96
0
    tmp10 = tmp4 + tmp5;  /* phase 2 */
97
0
    tmp11 = tmp5 + tmp6;
98
0
    tmp12 = tmp6 + tmp7;
99
100
    /* The rotator is modified from fig 4-8 to avoid extra negations. */
101
0
    z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */
102
0
    z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */
103
0
    z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */
104
0
    z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */
105
106
0
    z11 = tmp7 + z3;    /* phase 5 */
107
0
    z13 = tmp7 - z3;
108
109
0
    dataptr[5] = z13 + z2;  /* phase 6 */
110
0
    dataptr[3] = z13 - z2;
111
0
    dataptr[1] = z11 + z4;
112
0
    dataptr[7] = z11 - z4;
113
114
0
    dataptr += DCTSIZE;   /* advance pointer to next row */
115
0
  }
116
117
  /* Pass 2: process columns. */
118
119
0
  dataptr = data;
120
0
  for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
121
0
    tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
122
0
    tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
123
0
    tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
124
0
    tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
125
0
    tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
126
0
    tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
127
0
    tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
128
0
    tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
129
    
130
    /* Even part */
131
    
132
0
    tmp10 = tmp0 + tmp3;  /* phase 2 */
133
0
    tmp13 = tmp0 - tmp3;
134
0
    tmp11 = tmp1 + tmp2;
135
0
    tmp12 = tmp1 - tmp2;
136
    
137
0
    dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */
138
0
    dataptr[DCTSIZE*4] = tmp10 - tmp11;
139
    
140
0
    z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */
141
0
    dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */
142
0
    dataptr[DCTSIZE*6] = tmp13 - z1;
143
    
144
    /* Odd part */
145
146
0
    tmp10 = tmp4 + tmp5;  /* phase 2 */
147
0
    tmp11 = tmp5 + tmp6;
148
0
    tmp12 = tmp6 + tmp7;
149
150
    /* The rotator is modified from fig 4-8 to avoid extra negations. */
151
0
    z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */
152
0
    z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */
153
0
    z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */
154
0
    z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */
155
156
0
    z11 = tmp7 + z3;    /* phase 5 */
157
0
    z13 = tmp7 - z3;
158
159
0
    dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */
160
0
    dataptr[DCTSIZE*3] = z13 - z2;
161
0
    dataptr[DCTSIZE*1] = z11 + z4;
162
0
    dataptr[DCTSIZE*7] = z11 - z4;
163
164
0
    dataptr++;      /* advance pointer to next column */
165
0
  }
166
0
}
167
168
#endif /* DCT_FLOAT_SUPPORTED */