Coverage Report

Created: 2025-06-13 06:29

/src/gdal/build/frmts/jpeg/libjpeg12/jfdctint12.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * jfdctint.c
3
 *
4
 * This file was part of the Independent JPEG Group's software.
5
 * Copyright (C) 1991-1996, Thomas G. Lane.
6
 * libjpeg-turbo Modifications:
7
 * Copyright (C) 2015, D. R. Commander
8
 * For conditions of distribution and use, see the accompanying README file.
9
 *
10
 * This file contains a slow-but-accurate integer implementation of the
11
 * forward DCT (Discrete Cosine Transform).
12
 *
13
 * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
14
 * on each column.  Direct algorithms are also available, but they are
15
 * much more complex and seem not to be any faster when reduced to code.
16
 *
17
 * This implementation is based on an algorithm described in
18
 *   C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
19
 *   Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
20
 *   Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
21
 * The primary algorithm described there uses 11 multiplies and 29 adds.
22
 * We use their alternate method with 12 multiplies and 32 adds.
23
 * The advantage of this method is that no data path contains more than one
24
 * multiplication; this allows a very simple and accurate implementation in
25
 * scaled fixed-point arithmetic, with a minimal number of shifts.
26
 */
27
28
#define JPEG_INTERNALS
29
#include "jinclude.h"
30
#include "jpeglib.h"
31
#include "jdct.h"   /* Private declarations for DCT subsystem */
32
33
#ifdef DCT_ISLOW_SUPPORTED
34
35
36
/*
37
 * This module is specialized to the case DCTSIZE = 8.
38
 */
39
40
#if DCTSIZE != 8
41
  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
42
#endif
43
44
45
/*
46
 * The poop on this scaling stuff is as follows:
47
 *
48
 * Each 1-D DCT step produces outputs which are a factor of sqrt(N)
49
 * larger than the true DCT outputs.  The final outputs are therefore
50
 * a factor of N larger than desired; since N=8 this can be cured by
51
 * a simple right shift at the end of the algorithm.  The advantage of
52
 * this arrangement is that we save two multiplications per 1-D DCT,
53
 * because the y0 and y4 outputs need not be divided by sqrt(N).
54
 * In the IJG code, this factor of 8 is removed by the quantization step
55
 * (in jcdctmgr.c), NOT in this module.
56
 *
57
 * We have to do addition and subtraction of the integer inputs, which
58
 * is no problem, and multiplication by fractional constants, which is
59
 * a problem to do in integer arithmetic.  We multiply all the constants
60
 * by CONST_SCALE and convert them to integer constants (thus retaining
61
 * CONST_BITS bits of precision in the constants).  After doing a
62
 * multiplication we have to divide the product by CONST_SCALE, with proper
63
 * rounding, to produce the correct output.  This division can be done
64
 * cheaply as a right shift of CONST_BITS bits.  We postpone shifting
65
 * as long as possible so that partial sums can be added together with
66
 * full fractional precision.
67
 *
68
 * The outputs of the first pass are scaled up by PASS1_BITS bits so that
69
 * they are represented to better-than-integral precision.  These outputs
70
 * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
71
 * with the recommended scaling.  (For 12-bit sample data, the intermediate
72
 * array is INT32 anyway.)
73
 *
74
 * To avoid overflow of the 32-bit intermediate results in pass 2, we must
75
 * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26.  Error analysis
76
 * shows that the values given below are the most effective.
77
 */
78
79
#if BITS_IN_JSAMPLE == 8
80
#define CONST_BITS  13
81
#define PASS1_BITS  2
82
#else
83
#define CONST_BITS  13
84
#define PASS1_BITS  1   /* lose a little precision to avoid overflow */
85
#endif
86
87
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
88
 * causing a lot of useless floating-point operations at run time.
89
 * To get around this we use the following pre-calculated constants.
90
 * If you change CONST_BITS you may want to add appropriate values.
91
 * (With a reasonable C compiler, you can just rely on the FIX() macro...)
92
 */
93
94
#if CONST_BITS == 13
95
#define FIX_0_298631336  ((INT32)  2446)  /* FIX(0.298631336) */
96
#define FIX_0_390180644  ((INT32)  3196)  /* FIX(0.390180644) */
97
#define FIX_0_541196100  ((INT32)  4433)  /* FIX(0.541196100) */
98
#define FIX_0_765366865  ((INT32)  6270)  /* FIX(0.765366865) */
99
#define FIX_0_899976223  ((INT32)  7373)  /* FIX(0.899976223) */
100
#define FIX_1_175875602  ((INT32)  9633)  /* FIX(1.175875602) */
101
#define FIX_1_501321110  ((INT32)  12299) /* FIX(1.501321110) */
102
#define FIX_1_847759065  ((INT32)  15137) /* FIX(1.847759065) */
103
#define FIX_1_961570560  ((INT32)  16069) /* FIX(1.961570560) */
104
#define FIX_2_053119869  ((INT32)  16819) /* FIX(2.053119869) */
105
#define FIX_2_562915447  ((INT32)  20995) /* FIX(2.562915447) */
106
#define FIX_3_072711026  ((INT32)  25172) /* FIX(3.072711026) */
107
#else
108
#define FIX_0_298631336  FIX(0.298631336)
109
#define FIX_0_390180644  FIX(0.390180644)
110
#define FIX_0_541196100  FIX(0.541196100)
111
#define FIX_0_765366865  FIX(0.765366865)
112
#define FIX_0_899976223  FIX(0.899976223)
113
#define FIX_1_175875602  FIX(1.175875602)
114
#define FIX_1_501321110  FIX(1.501321110)
115
#define FIX_1_847759065  FIX(1.847759065)
116
#define FIX_1_961570560  FIX(1.961570560)
117
#define FIX_2_053119869  FIX(2.053119869)
118
#define FIX_2_562915447  FIX(2.562915447)
119
#define FIX_3_072711026  FIX(3.072711026)
120
#endif
121
122
123
/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
124
 * For 8-bit samples with the recommended scaling, all the variable
125
 * and constant values involved are no more than 16 bits wide, so a
126
 * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
127
 * For 12-bit samples, a full 32-bit multiplication will be needed.
128
 */
129
130
#if BITS_IN_JSAMPLE == 8
131
#define MULTIPLY(var,const)  MULTIPLY16C16(var,const)
132
#else
133
0
#define MULTIPLY(var,const)  ((var) * (const))
134
#endif
135
136
137
/*
138
 * Perform the forward DCT on one block of samples.
139
 */
140
141
GLOBAL(void)
142
jpeg_fdct_islow (DCTELEM * data)
143
0
{
144
0
  INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
145
0
  INT32 tmp10, tmp11, tmp12, tmp13;
146
0
  INT32 z1, z2, z3, z4, z5;
147
0
  DCTELEM *dataptr;
148
0
  int ctr;
149
0
  SHIFT_TEMPS
150
151
  /* Pass 1: process rows. */
152
  /* Note results are scaled up by sqrt(8) compared to a true DCT; */
153
  /* furthermore, we scale the results by 2**PASS1_BITS. */
154
155
0
  dataptr = data;
156
0
  for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
157
0
    tmp0 = dataptr[0] + dataptr[7];
158
0
    tmp7 = dataptr[0] - dataptr[7];
159
0
    tmp1 = dataptr[1] + dataptr[6];
160
0
    tmp6 = dataptr[1] - dataptr[6];
161
0
    tmp2 = dataptr[2] + dataptr[5];
162
0
    tmp5 = dataptr[2] - dataptr[5];
163
0
    tmp3 = dataptr[3] + dataptr[4];
164
0
    tmp4 = dataptr[3] - dataptr[4];
165
    
166
    /* Even part per LL&M figure 1 --- note that published figure is faulty;
167
     * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
168
     */
169
    
170
0
    tmp10 = tmp0 + tmp3;
171
0
    tmp13 = tmp0 - tmp3;
172
0
    tmp11 = tmp1 + tmp2;
173
0
    tmp12 = tmp1 - tmp2;
174
    
175
0
    dataptr[0] = (DCTELEM) LEFT_SHIFT(tmp10 + tmp11, PASS1_BITS);
176
0
    dataptr[4] = (DCTELEM) LEFT_SHIFT(tmp10 - tmp11, PASS1_BITS);
177
    
178
0
    z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
179
0
    dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
180
0
           CONST_BITS-PASS1_BITS);
181
0
    dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
182
0
           CONST_BITS-PASS1_BITS);
183
    
184
    /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
185
     * cK represents cos(K*pi/16).
186
     * i0..i3 in the paper are tmp4..tmp7 here.
187
     */
188
    
189
0
    z1 = tmp4 + tmp7;
190
0
    z2 = tmp5 + tmp6;
191
0
    z3 = tmp4 + tmp6;
192
0
    z4 = tmp5 + tmp7;
193
0
    z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
194
    
195
0
    tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
196
0
    tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
197
0
    tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
198
0
    tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
199
0
    z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
200
0
    z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
201
0
    z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
202
0
    z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
203
    
204
0
    z3 += z5;
205
0
    z4 += z5;
206
    
207
0
    dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS);
208
0
    dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS);
209
0
    dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS);
210
0
    dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS);
211
    
212
0
    dataptr += DCTSIZE;   /* advance pointer to next row */
213
0
  }
214
215
  /* Pass 2: process columns.
216
   * We remove the PASS1_BITS scaling, but leave the results scaled up
217
   * by an overall factor of 8.
218
   */
219
220
0
  dataptr = data;
221
0
  for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
222
0
    tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
223
0
    tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
224
0
    tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
225
0
    tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
226
0
    tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
227
0
    tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
228
0
    tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
229
0
    tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
230
    
231
    /* Even part per LL&M figure 1 --- note that published figure is faulty;
232
     * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
233
     */
234
    
235
0
    tmp10 = tmp0 + tmp3;
236
0
    tmp13 = tmp0 - tmp3;
237
0
    tmp11 = tmp1 + tmp2;
238
0
    tmp12 = tmp1 - tmp2;
239
    
240
0
    dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS);
241
0
    dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp10 - tmp11, PASS1_BITS);
242
    
243
0
    z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
244
0
    dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
245
0
             CONST_BITS+PASS1_BITS);
246
0
    dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
247
0
             CONST_BITS+PASS1_BITS);
248
    
249
    /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
250
     * cK represents cos(K*pi/16).
251
     * i0..i3 in the paper are tmp4..tmp7 here.
252
     */
253
    
254
0
    z1 = tmp4 + tmp7;
255
0
    z2 = tmp5 + tmp6;
256
0
    z3 = tmp4 + tmp6;
257
0
    z4 = tmp5 + tmp7;
258
0
    z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
259
    
260
0
    tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
261
0
    tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
262
0
    tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
263
0
    tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
264
0
    z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
265
0
    z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
266
0
    z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
267
0
    z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
268
    
269
0
    z3 += z5;
270
0
    z4 += z5;
271
    
272
0
    dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp4 + z1 + z3,
273
0
             CONST_BITS+PASS1_BITS);
274
0
    dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp5 + z2 + z4,
275
0
             CONST_BITS+PASS1_BITS);
276
0
    dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp6 + z2 + z3,
277
0
             CONST_BITS+PASS1_BITS);
278
0
    dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp7 + z1 + z4,
279
0
             CONST_BITS+PASS1_BITS);
280
    
281
0
    dataptr++;      /* advance pointer to next column */
282
0
  }
283
0
}
284
285
#endif /* DCT_ISLOW_SUPPORTED */