/src/gdal/build/frmts/jpeg/libjpeg12/jidctint12.c
Line  | Count  | Source (jump to first uncovered line)  | 
1  |  | /*  | 
2  |  |  * jidctint.c  | 
3  |  |  *  | 
4  |  |  * Copyright (C) 1991-1998, Thomas G. Lane.  | 
5  |  |  * This file is part of the Independent JPEG Group's software.  | 
6  |  |  * For conditions of distribution and use, see the accompanying README file.  | 
7  |  |  *  | 
8  |  |  * This file contains a slow-but-accurate integer implementation of the  | 
9  |  |  * inverse DCT (Discrete Cosine Transform).  In the IJG code, this routine  | 
10  |  |  * must also perform dequantization of the input coefficients.  | 
11  |  |  *  | 
12  |  |  * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT  | 
13  |  |  * on each row (or vice versa, but it's more convenient to emit a row at  | 
14  |  |  * a time).  Direct algorithms are also available, but they are much more  | 
15  |  |  * complex and seem not to be any faster when reduced to code.  | 
16  |  |  *  | 
17  |  |  * This implementation is based on an algorithm described in  | 
18  |  |  *   C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT  | 
19  |  |  *   Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,  | 
20  |  |  *   Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.  | 
21  |  |  * The primary algorithm described there uses 11 multiplies and 29 adds.  | 
22  |  |  * We use their alternate method with 12 multiplies and 32 adds.  | 
23  |  |  * The advantage of this method is that no data path contains more than one  | 
24  |  |  * multiplication; this allows a very simple and accurate implementation in  | 
25  |  |  * scaled fixed-point arithmetic, with a minimal number of shifts.  | 
26  |  |  */  | 
27  |  |  | 
28  |  | #define JPEG_INTERNALS  | 
29  |  | #include "jinclude.h"  | 
30  |  | #include "jpeglib.h"  | 
31  |  | #include "jdct.h"   /* Private declarations for DCT subsystem */  | 
32  |  |  | 
33  |  | #ifdef DCT_ISLOW_SUPPORTED  | 
34  |  |  | 
35  |  |  | 
36  |  | /*  | 
37  |  |  * This module is specialized to the case DCTSIZE = 8.  | 
38  |  |  */  | 
39  |  |  | 
40  |  | #if DCTSIZE != 8  | 
41  |  |   Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */  | 
42  |  | #endif  | 
43  |  |  | 
44  |  |  | 
45  |  | /*  | 
46  |  |  * The poop on this scaling stuff is as follows:  | 
47  |  |  *  | 
48  |  |  * Each 1-D IDCT step produces outputs which are a factor of sqrt(N)  | 
49  |  |  * larger than the true IDCT outputs.  The final outputs are therefore  | 
50  |  |  * a factor of N larger than desired; since N=8 this can be cured by  | 
51  |  |  * a simple right shift at the end of the algorithm.  The advantage of  | 
52  |  |  * this arrangement is that we save two multiplications per 1-D IDCT,  | 
53  |  |  * because the y0 and y4 inputs need not be divided by sqrt(N).  | 
54  |  |  *  | 
55  |  |  * We have to do addition and subtraction of the integer inputs, which  | 
56  |  |  * is no problem, and multiplication by fractional constants, which is  | 
57  |  |  * a problem to do in integer arithmetic.  We multiply all the constants  | 
58  |  |  * by CONST_SCALE and convert them to integer constants (thus retaining  | 
59  |  |  * CONST_BITS bits of precision in the constants).  After doing a  | 
60  |  |  * multiplication we have to divide the product by CONST_SCALE, with proper  | 
61  |  |  * rounding, to produce the correct output.  This division can be done  | 
62  |  |  * cheaply as a right shift of CONST_BITS bits.  We postpone shifting  | 
63  |  |  * as long as possible so that partial sums can be added together with  | 
64  |  |  * full fractional precision.  | 
65  |  |  *  | 
66  |  |  * The outputs of the first pass are scaled up by PASS1_BITS bits so that  | 
67  |  |  * they are represented to better-than-integral precision.  These outputs  | 
68  |  |  * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word  | 
69  |  |  * with the recommended scaling.  (To scale up 12-bit sample data further, an  | 
70  |  |  * intermediate INT32 array would be needed.)  | 
71  |  |  *  | 
72  |  |  * To avoid overflow of the 32-bit intermediate results in pass 2, we must  | 
73  |  |  * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26.  Error analysis  | 
74  |  |  * shows that the values given below are the most effective.  | 
75  |  |  */  | 
76  |  |  | 
77  |  | #if BITS_IN_JSAMPLE == 8  | 
78  |  | #define CONST_BITS  13  | 
79  |  | #define PASS1_BITS  2  | 
80  |  | #else  | 
81  |  | #define CONST_BITS  13  | 
82  |  | #define PASS1_BITS  1   /* lose a little precision to avoid overflow */  | 
83  |  | #endif  | 
84  |  |  | 
85  |  | /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus  | 
86  |  |  * causing a lot of useless floating-point operations at run time.  | 
87  |  |  * To get around this we use the following pre-calculated constants.  | 
88  |  |  * If you change CONST_BITS you may want to add appropriate values.  | 
89  |  |  * (With a reasonable C compiler, you can just rely on the FIX() macro...)  | 
90  |  |  */  | 
91  |  |  | 
92  |  | #if CONST_BITS == 13  | 
93  |  | #define FIX_0_298631336  ((INT32)  2446)  /* FIX(0.298631336) */  | 
94  |  | #define FIX_0_390180644  ((INT32)  3196)  /* FIX(0.390180644) */  | 
95  |  | #define FIX_0_541196100  ((INT32)  4433)  /* FIX(0.541196100) */  | 
96  |  | #define FIX_0_765366865  ((INT32)  6270)  /* FIX(0.765366865) */  | 
97  |  | #define FIX_0_899976223  ((INT32)  7373)  /* FIX(0.899976223) */  | 
98  |  | #define FIX_1_175875602  ((INT32)  9633)  /* FIX(1.175875602) */  | 
99  |  | #define FIX_1_501321110  ((INT32)  12299) /* FIX(1.501321110) */  | 
100  |  | #define FIX_1_847759065  ((INT32)  15137) /* FIX(1.847759065) */  | 
101  |  | #define FIX_1_961570560  ((INT32)  16069) /* FIX(1.961570560) */  | 
102  |  | #define FIX_2_053119869  ((INT32)  16819) /* FIX(2.053119869) */  | 
103  |  | #define FIX_2_562915447  ((INT32)  20995) /* FIX(2.562915447) */  | 
104  |  | #define FIX_3_072711026  ((INT32)  25172) /* FIX(3.072711026) */  | 
105  |  | #else  | 
106  |  | #define FIX_0_298631336  FIX(0.298631336)  | 
107  |  | #define FIX_0_390180644  FIX(0.390180644)  | 
108  |  | #define FIX_0_541196100  FIX(0.541196100)  | 
109  |  | #define FIX_0_765366865  FIX(0.765366865)  | 
110  |  | #define FIX_0_899976223  FIX(0.899976223)  | 
111  |  | #define FIX_1_175875602  FIX(1.175875602)  | 
112  |  | #define FIX_1_501321110  FIX(1.501321110)  | 
113  |  | #define FIX_1_847759065  FIX(1.847759065)  | 
114  |  | #define FIX_1_961570560  FIX(1.961570560)  | 
115  |  | #define FIX_2_053119869  FIX(2.053119869)  | 
116  |  | #define FIX_2_562915447  FIX(2.562915447)  | 
117  |  | #define FIX_3_072711026  FIX(3.072711026)  | 
118  |  | #endif  | 
119  |  |  | 
120  |  |  | 
121  |  | /* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.  | 
122  |  |  * For 8-bit samples with the recommended scaling, all the variable  | 
123  |  |  * and constant values involved are no more than 16 bits wide, so a  | 
124  |  |  * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.  | 
125  |  |  * For 12-bit samples, a full 32-bit multiplication will be needed.  | 
126  |  |  */  | 
127  |  |  | 
128  |  | #if BITS_IN_JSAMPLE == 8  | 
129  |  | #define MULTIPLY(var,const)  MULTIPLY16C16(var,const)  | 
130  |  | #else  | 
131  | 0  | #define MULTIPLY(var,const)  ((var) * (const))  | 
132  |  | #endif  | 
133  |  |  | 
134  |  |  | 
135  |  | /* Dequantize a coefficient by multiplying it by the multiplier-table  | 
136  |  |  * entry; produce an int result.  In this module, both inputs and result  | 
137  |  |  * are 16 bits or less, so either int or short multiply will work.  | 
138  |  |  */  | 
139  |  |  | 
140  | 0  | #define DEQUANTIZE(coef,quantval)  (((ISLOW_MULT_TYPE) (coef)) * (quantval))  | 
141  |  |  | 
142  |  |  | 
143  |  | /*  | 
144  |  |  * Perform dequantization and inverse DCT on one block of coefficients.  | 
145  |  |  */  | 
146  |  |  | 
147  |  | GLOBAL(void)  | 
148  |  | jpeg_idct_islow (j_decompress_ptr cinfo, jpeg_component_info * compptr,  | 
149  |  |      JCOEFPTR coef_block,  | 
150  |  |      JSAMPARRAY output_buf, JDIMENSION output_col)  | 
151  | 0  | { | 
152  | 0  |   INT32 tmp0, tmp1, tmp2, tmp3;  | 
153  | 0  |   INT32 tmp10, tmp11, tmp12, tmp13;  | 
154  | 0  |   INT32 z1, z2, z3, z4, z5;  | 
155  | 0  |   JCOEFPTR inptr;  | 
156  | 0  |   ISLOW_MULT_TYPE * quantptr;  | 
157  | 0  |   int * wsptr;  | 
158  | 0  |   JSAMPROW outptr;  | 
159  | 0  |   JSAMPLE *range_limit = IDCT_range_limit(cinfo);  | 
160  | 0  |   int ctr;  | 
161  | 0  |   int workspace[DCTSIZE2];  /* buffers data between passes */  | 
162  |  |   SHIFT_TEMPS  | 
163  |  |  | 
164  |  |   /* Pass 1: process columns from input, store into work array. */  | 
165  |  |   /* Note results are scaled up by sqrt(8) compared to a true IDCT; */  | 
166  |  |   /* furthermore, we scale the results by 2**PASS1_BITS. */  | 
167  |  | 
  | 
168  | 0  |   inptr = coef_block;  | 
169  | 0  |   quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;  | 
170  | 0  |   wsptr = workspace;  | 
171  | 0  |   for (ctr = DCTSIZE; ctr > 0; ctr--) { | 
172  |  |     /* Due to quantization, we will usually find that many of the input  | 
173  |  |      * coefficients are zero, especially the AC terms.  We can exploit this  | 
174  |  |      * by short-circuiting the IDCT calculation for any column in which all  | 
175  |  |      * the AC terms are zero.  In that case each output is equal to the  | 
176  |  |      * DC coefficient (with scale factor as needed).  | 
177  |  |      * With typical images and quantization tables, half or more of the  | 
178  |  |      * column DCT calculations can be simplified this way.  | 
179  |  |      */  | 
180  |  |       | 
181  | 0  |     if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&  | 
182  | 0  |   inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&  | 
183  | 0  |   inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&  | 
184  | 0  |   inptr[DCTSIZE*7] == 0) { | 
185  |  |       /* AC terms all zero */  | 
186  | 0  |       int dcval = (int)LEFT_SHIFT(DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]),  | 
187  | 0  |                              PASS1_BITS);  | 
188  |  | 
  | 
189  | 0  |       wsptr[DCTSIZE*0] = dcval;  | 
190  | 0  |       wsptr[DCTSIZE*1] = dcval;  | 
191  | 0  |       wsptr[DCTSIZE*2] = dcval;  | 
192  | 0  |       wsptr[DCTSIZE*3] = dcval;  | 
193  | 0  |       wsptr[DCTSIZE*4] = dcval;  | 
194  | 0  |       wsptr[DCTSIZE*5] = dcval;  | 
195  | 0  |       wsptr[DCTSIZE*6] = dcval;  | 
196  | 0  |       wsptr[DCTSIZE*7] = dcval;  | 
197  |  |         | 
198  | 0  |       inptr++;      /* advance pointers to next column */  | 
199  | 0  |       quantptr++;  | 
200  | 0  |       wsptr++;  | 
201  | 0  |       continue;  | 
202  | 0  |     }  | 
203  |  |       | 
204  |  |     /* Even part: reverse the even part of the forward DCT. */  | 
205  |  |     /* The rotator is sqrt(2)*c(-6). */  | 
206  |  |       | 
207  | 0  |     z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);  | 
208  | 0  |     z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);  | 
209  |  |       | 
210  | 0  |     z1 = MULTIPLY(z2 + z3, FIX_0_541196100);  | 
211  | 0  |     tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065);  | 
212  | 0  |     tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865);  | 
213  |  |       | 
214  | 0  |     z2 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);  | 
215  | 0  |     z3 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);  | 
216  |  | 
  | 
217  | 0  |     tmp0 = LEFT_SHIFT(z2 + z3, CONST_BITS);  | 
218  | 0  |     tmp1 = LEFT_SHIFT(z2 - z3, CONST_BITS);  | 
219  |  | 
  | 
220  | 0  |     tmp10 = tmp0 + tmp3;  | 
221  | 0  |     tmp13 = tmp0 - tmp3;  | 
222  | 0  |     tmp11 = tmp1 + tmp2;  | 
223  | 0  |     tmp12 = tmp1 - tmp2;  | 
224  |  |       | 
225  |  |     /* Odd part per figure 8; the matrix is unitary and hence its  | 
226  |  |      * transpose is its inverse.  i0..i3 are y7,y5,y3,y1 respectively.  | 
227  |  |      */  | 
228  |  |       | 
229  | 0  |     tmp0 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);  | 
230  | 0  |     tmp1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);  | 
231  | 0  |     tmp2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);  | 
232  | 0  |     tmp3 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);  | 
233  |  |       | 
234  | 0  |     z1 = tmp0 + tmp3;  | 
235  | 0  |     z2 = tmp1 + tmp2;  | 
236  | 0  |     z3 = tmp0 + tmp2;  | 
237  | 0  |     z4 = tmp1 + tmp3;  | 
238  | 0  |     z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */  | 
239  |  |       | 
240  | 0  |     tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */  | 
241  | 0  |     tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */  | 
242  | 0  |     tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */  | 
243  | 0  |     tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */  | 
244  | 0  |     z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */  | 
245  | 0  |     z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */  | 
246  | 0  |     z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */  | 
247  | 0  |     z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */  | 
248  |  |       | 
249  | 0  |     z3 += z5;  | 
250  | 0  |     z4 += z5;  | 
251  |  |       | 
252  | 0  |     tmp0 += z1 + z3;  | 
253  | 0  |     tmp1 += z2 + z4;  | 
254  | 0  |     tmp2 += z2 + z3;  | 
255  | 0  |     tmp3 += z1 + z4;  | 
256  |  |       | 
257  |  |     /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */  | 
258  |  |       | 
259  | 0  |     wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp3, CONST_BITS-PASS1_BITS);  | 
260  | 0  |     wsptr[DCTSIZE*7] = (int) DESCALE(tmp10 - tmp3, CONST_BITS-PASS1_BITS);  | 
261  | 0  |     wsptr[DCTSIZE*1] = (int) DESCALE(tmp11 + tmp2, CONST_BITS-PASS1_BITS);  | 
262  | 0  |     wsptr[DCTSIZE*6] = (int) DESCALE(tmp11 - tmp2, CONST_BITS-PASS1_BITS);  | 
263  | 0  |     wsptr[DCTSIZE*2] = (int) DESCALE(tmp12 + tmp1, CONST_BITS-PASS1_BITS);  | 
264  | 0  |     wsptr[DCTSIZE*5] = (int) DESCALE(tmp12 - tmp1, CONST_BITS-PASS1_BITS);  | 
265  | 0  |     wsptr[DCTSIZE*3] = (int) DESCALE(tmp13 + tmp0, CONST_BITS-PASS1_BITS);  | 
266  | 0  |     wsptr[DCTSIZE*4] = (int) DESCALE(tmp13 - tmp0, CONST_BITS-PASS1_BITS);  | 
267  |  |       | 
268  | 0  |     inptr++;      /* advance pointers to next column */  | 
269  | 0  |     quantptr++;  | 
270  | 0  |     wsptr++;  | 
271  | 0  |   }  | 
272  |  |     | 
273  |  |   /* Pass 2: process rows from work array, store into output array. */  | 
274  |  |   /* Note that we must descale the results by a factor of 8 == 2**3, */  | 
275  |  |   /* and also undo the PASS1_BITS scaling. */  | 
276  |  | 
  | 
277  | 0  |   wsptr = workspace;  | 
278  | 0  |   for (ctr = 0; ctr < DCTSIZE; ctr++) { | 
279  | 0  |     outptr = output_buf[ctr] + output_col;  | 
280  |  |     /* Rows of zeroes can be exploited in the same way as we did with columns.  | 
281  |  |      * However, the column calculation has created many nonzero AC terms, so  | 
282  |  |      * the simplification applies less often (typically 5% to 10% of the time).  | 
283  |  |      * On machines with very fast multiplication, it's possible that the  | 
284  |  |      * test takes more time than it's worth.  In that case this section  | 
285  |  |      * may be commented out.  | 
286  |  |      */  | 
287  |  |       | 
288  | 0  | #ifndef NO_ZERO_ROW_TEST  | 
289  | 0  |     if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 &&  | 
290  | 0  |   wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) { | 
291  |  |       /* AC terms all zero */  | 
292  | 0  |       JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)  | 
293  | 0  |           & RANGE_MASK];  | 
294  |  |         | 
295  | 0  |       outptr[0] = dcval;  | 
296  | 0  |       outptr[1] = dcval;  | 
297  | 0  |       outptr[2] = dcval;  | 
298  | 0  |       outptr[3] = dcval;  | 
299  | 0  |       outptr[4] = dcval;  | 
300  | 0  |       outptr[5] = dcval;  | 
301  | 0  |       outptr[6] = dcval;  | 
302  | 0  |       outptr[7] = dcval;  | 
303  |  | 
  | 
304  | 0  |       wsptr += DCTSIZE;   /* advance pointer to next row */  | 
305  | 0  |       continue;  | 
306  | 0  |     }  | 
307  | 0  | #endif  | 
308  |  |       | 
309  |  |     /* Even part: reverse the even part of the forward DCT. */  | 
310  |  |     /* The rotator is sqrt(2)*c(-6). */  | 
311  |  |       | 
312  | 0  |     z2 = (INT32) wsptr[2];  | 
313  | 0  |     z3 = (INT32) wsptr[6];  | 
314  |  |       | 
315  | 0  |     z1 = MULTIPLY(z2 + z3, FIX_0_541196100);  | 
316  | 0  |     tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065);  | 
317  | 0  |     tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865);  | 
318  |  | 
  | 
319  | 0  |     tmp0 = LEFT_SHIFT((INT32) wsptr[0] + (INT32) wsptr[4], CONST_BITS);  | 
320  | 0  |     tmp1 = LEFT_SHIFT((INT32) wsptr[0] - (INT32) wsptr[4], CONST_BITS);  | 
321  |  | 
  | 
322  | 0  |     tmp10 = tmp0 + tmp3;  | 
323  | 0  |     tmp13 = tmp0 - tmp3;  | 
324  | 0  |     tmp11 = tmp1 + tmp2;  | 
325  | 0  |     tmp12 = tmp1 - tmp2;  | 
326  |  |       | 
327  |  |     /* Odd part per figure 8; the matrix is unitary and hence its  | 
328  |  |      * transpose is its inverse.  i0..i3 are y7,y5,y3,y1 respectively.  | 
329  |  |      */  | 
330  |  |       | 
331  | 0  |     tmp0 = (INT32) wsptr[7];  | 
332  | 0  |     tmp1 = (INT32) wsptr[5];  | 
333  | 0  |     tmp2 = (INT32) wsptr[3];  | 
334  | 0  |     tmp3 = (INT32) wsptr[1];  | 
335  |  |       | 
336  | 0  |     z1 = tmp0 + tmp3;  | 
337  | 0  |     z2 = tmp1 + tmp2;  | 
338  | 0  |     z3 = tmp0 + tmp2;  | 
339  | 0  |     z4 = tmp1 + tmp3;  | 
340  | 0  |     z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */  | 
341  |  |       | 
342  | 0  |     tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */  | 
343  | 0  |     tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */  | 
344  | 0  |     tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */  | 
345  | 0  |     tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */  | 
346  | 0  |     z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */  | 
347  | 0  |     z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */  | 
348  | 0  |     z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */  | 
349  | 0  |     z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */  | 
350  |  |       | 
351  | 0  |     z3 += z5;  | 
352  | 0  |     z4 += z5;  | 
353  |  |       | 
354  | 0  |     tmp0 += z1 + z3;  | 
355  | 0  |     tmp1 += z2 + z4;  | 
356  | 0  |     tmp2 += z2 + z3;  | 
357  | 0  |     tmp3 += z1 + z4;  | 
358  |  |       | 
359  |  |     /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */  | 
360  |  |       | 
361  | 0  |     outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp3,  | 
362  | 0  |             CONST_BITS+PASS1_BITS+3)  | 
363  | 0  |           & RANGE_MASK];  | 
364  | 0  |     outptr[7] = range_limit[(int) DESCALE(tmp10 - tmp3,  | 
365  | 0  |             CONST_BITS+PASS1_BITS+3)  | 
366  | 0  |           & RANGE_MASK];  | 
367  | 0  |     outptr[1] = range_limit[(int) DESCALE(tmp11 + tmp2,  | 
368  | 0  |             CONST_BITS+PASS1_BITS+3)  | 
369  | 0  |           & RANGE_MASK];  | 
370  | 0  |     outptr[6] = range_limit[(int) DESCALE(tmp11 - tmp2,  | 
371  | 0  |             CONST_BITS+PASS1_BITS+3)  | 
372  | 0  |           & RANGE_MASK];  | 
373  | 0  |     outptr[2] = range_limit[(int) DESCALE(tmp12 + tmp1,  | 
374  | 0  |             CONST_BITS+PASS1_BITS+3)  | 
375  | 0  |           & RANGE_MASK];  | 
376  | 0  |     outptr[5] = range_limit[(int) DESCALE(tmp12 - tmp1,  | 
377  | 0  |             CONST_BITS+PASS1_BITS+3)  | 
378  | 0  |           & RANGE_MASK];  | 
379  | 0  |     outptr[3] = range_limit[(int) DESCALE(tmp13 + tmp0,  | 
380  | 0  |             CONST_BITS+PASS1_BITS+3)  | 
381  | 0  |           & RANGE_MASK];  | 
382  | 0  |     outptr[4] = range_limit[(int) DESCALE(tmp13 - tmp0,  | 
383  | 0  |             CONST_BITS+PASS1_BITS+3)  | 
384  | 0  |           & RANGE_MASK];  | 
385  |  |       | 
386  | 0  |     wsptr += DCTSIZE;   /* advance pointer to next row */  | 
387  | 0  |   }  | 
388  | 0  | }  | 
389  |  |  | 
390  |  | #endif /* DCT_ISLOW_SUPPORTED */  |