Coverage Report

Created: 2025-06-13 06:29

/src/gdal/build/frmts/jpeg/libjpeg12/jidctred12.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * jidctred.c
3
 *
4
 * This file was part of the Independent JPEG Group's software.
5
 * Copyright (C) 1994-1998, Thomas G. Lane.
6
 * libjpeg-turbo Modifications:
7
 * Copyright (C) 2015, D. R. Commander
8
 * For conditions of distribution and use, see the accompanying README file.
9
 *
10
 * This file contains inverse-DCT routines that produce reduced-size output:
11
 * either 4x4, 2x2, or 1x1 pixels from an 8x8 DCT block.
12
 *
13
 * The implementation is based on the Loeffler, Ligtenberg and Moschytz (LL&M)
14
 * algorithm used in jidctint.c.  We simply replace each 8-to-8 1-D IDCT step
15
 * with an 8-to-4 step that produces the four averages of two adjacent outputs
16
 * (or an 8-to-2 step producing two averages of four outputs, for 2x2 output).
17
 * These steps were derived by computing the corresponding values at the end
18
 * of the normal LL&M code, then simplifying as much as possible.
19
 *
20
 * 1x1 is trivial: just take the DC coefficient divided by 8.
21
 *
22
 * See jidctint.c for additional comments.
23
 */
24
25
#define JPEG_INTERNALS
26
#include "jinclude.h"
27
#include "jpeglib.h"
28
#include "jdct.h"   /* Private declarations for DCT subsystem */
29
30
#ifdef IDCT_SCALING_SUPPORTED
31
32
33
/*
34
 * This module is specialized to the case DCTSIZE = 8.
35
 */
36
37
#if DCTSIZE != 8
38
  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
39
#endif
40
41
42
/* Scaling is the same as in jidctint.c. */
43
44
#if BITS_IN_JSAMPLE == 8
45
#define CONST_BITS  13
46
#define PASS1_BITS  2
47
#else
48
#define CONST_BITS  13
49
#define PASS1_BITS  1   /* lose a little precision to avoid overflow */
50
#endif
51
52
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
53
 * causing a lot of useless floating-point operations at run time.
54
 * To get around this we use the following pre-calculated constants.
55
 * If you change CONST_BITS you may want to add appropriate values.
56
 * (With a reasonable C compiler, you can just rely on the FIX() macro...)
57
 */
58
59
#if CONST_BITS == 13
60
#define FIX_0_211164243  ((INT32)  1730)  /* FIX(0.211164243) */
61
#define FIX_0_509795579  ((INT32)  4176)  /* FIX(0.509795579) */
62
#define FIX_0_601344887  ((INT32)  4926)  /* FIX(0.601344887) */
63
#define FIX_0_720959822  ((INT32)  5906)  /* FIX(0.720959822) */
64
#define FIX_0_765366865  ((INT32)  6270)  /* FIX(0.765366865) */
65
#define FIX_0_850430095  ((INT32)  6967)  /* FIX(0.850430095) */
66
#define FIX_0_899976223  ((INT32)  7373)  /* FIX(0.899976223) */
67
#define FIX_1_061594337  ((INT32)  8697)  /* FIX(1.061594337) */
68
#define FIX_1_272758580  ((INT32)  10426) /* FIX(1.272758580) */
69
#define FIX_1_451774981  ((INT32)  11893) /* FIX(1.451774981) */
70
#define FIX_1_847759065  ((INT32)  15137) /* FIX(1.847759065) */
71
#define FIX_2_172734803  ((INT32)  17799) /* FIX(2.172734803) */
72
#define FIX_2_562915447  ((INT32)  20995) /* FIX(2.562915447) */
73
#define FIX_3_624509785  ((INT32)  29692) /* FIX(3.624509785) */
74
#else
75
#define FIX_0_211164243  FIX(0.211164243)
76
#define FIX_0_509795579  FIX(0.509795579)
77
#define FIX_0_601344887  FIX(0.601344887)
78
#define FIX_0_720959822  FIX(0.720959822)
79
#define FIX_0_765366865  FIX(0.765366865)
80
#define FIX_0_850430095  FIX(0.850430095)
81
#define FIX_0_899976223  FIX(0.899976223)
82
#define FIX_1_061594337  FIX(1.061594337)
83
#define FIX_1_272758580  FIX(1.272758580)
84
#define FIX_1_451774981  FIX(1.451774981)
85
#define FIX_1_847759065  FIX(1.847759065)
86
#define FIX_2_172734803  FIX(2.172734803)
87
#define FIX_2_562915447  FIX(2.562915447)
88
#define FIX_3_624509785  FIX(3.624509785)
89
#endif
90
91
92
/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
93
 * For 8-bit samples with the recommended scaling, all the variable
94
 * and constant values involved are no more than 16 bits wide, so a
95
 * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
96
 * For 12-bit samples, a full 32-bit multiplication will be needed.
97
 */
98
99
#if BITS_IN_JSAMPLE == 8
100
#define MULTIPLY(var,const)  MULTIPLY16C16(var,const)
101
#else
102
0
#define MULTIPLY(var,const)  ((var) * (const))
103
#endif
104
105
106
/* Dequantize a coefficient by multiplying it by the multiplier-table
107
 * entry; produce an int result.  In this module, both inputs and result
108
 * are 16 bits or less, so either int or short multiply will work.
109
 */
110
111
0
#define DEQUANTIZE(coef,quantval)  (((ISLOW_MULT_TYPE) (coef)) * (quantval))
112
113
114
/*
115
 * Perform dequantization and inverse DCT on one block of coefficients,
116
 * producing a reduced-size 4x4 output block.
117
 */
118
119
GLOBAL(void)
120
jpeg_idct_4x4 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
121
         JCOEFPTR coef_block,
122
         JSAMPARRAY output_buf, JDIMENSION output_col)
123
0
{
124
0
  INT32 tmp0, tmp2, tmp10, tmp12;
125
0
  INT32 z1, z2, z3, z4;
126
0
  JCOEFPTR inptr;
127
0
  ISLOW_MULT_TYPE * quantptr;
128
0
  int * wsptr;
129
0
  JSAMPROW outptr;
130
0
  JSAMPLE *range_limit = IDCT_range_limit(cinfo);
131
0
  int ctr;
132
0
  int workspace[DCTSIZE*4]; /* buffers data between passes */
133
  SHIFT_TEMPS
134
135
  /* Pass 1: process columns from input, store into work array. */
136
137
0
  inptr = coef_block;
138
0
  quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
139
0
  wsptr = workspace;
140
0
  for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) {
141
    /* Don't bother to process column 4, because second pass won't use it */
142
0
    if (ctr == DCTSIZE-4)
143
0
      continue;
144
0
    if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
145
0
  inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*5] == 0 &&
146
0
  inptr[DCTSIZE*6] == 0 && inptr[DCTSIZE*7] == 0) {
147
      /* AC terms all zero; we need not examine term 4 for 4x4 output */
148
0
      int dcval = (int)LEFT_SHIFT(DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]),
149
0
                             PASS1_BITS);
150
151
0
      wsptr[DCTSIZE*0] = dcval;
152
0
      wsptr[DCTSIZE*1] = dcval;
153
0
      wsptr[DCTSIZE*2] = dcval;
154
0
      wsptr[DCTSIZE*3] = dcval;
155
      
156
0
      continue;
157
0
    }
158
    
159
    /* Even part */
160
    
161
0
    tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
162
0
    tmp0 = LEFT_SHIFT(tmp0, CONST_BITS+1);
163
164
0
    z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
165
0
    z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
166
167
0
    tmp2 = MULTIPLY(z2, FIX_1_847759065) + MULTIPLY(z3, - FIX_0_765366865);
168
    
169
0
    tmp10 = tmp0 + tmp2;
170
0
    tmp12 = tmp0 - tmp2;
171
    
172
    /* Odd part */
173
    
174
0
    z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
175
0
    z2 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
176
0
    z3 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
177
0
    z4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
178
    
179
0
    tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */
180
0
   + MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */
181
0
   + MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */
182
0
   + MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */
183
    
184
0
    tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */
185
0
   + MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */
186
0
   + MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */
187
0
   + MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */
188
189
    /* Final output stage */
190
    
191
0
    wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp2, CONST_BITS-PASS1_BITS+1);
192
0
    wsptr[DCTSIZE*3] = (int) DESCALE(tmp10 - tmp2, CONST_BITS-PASS1_BITS+1);
193
0
    wsptr[DCTSIZE*1] = (int) DESCALE(tmp12 + tmp0, CONST_BITS-PASS1_BITS+1);
194
0
    wsptr[DCTSIZE*2] = (int) DESCALE(tmp12 - tmp0, CONST_BITS-PASS1_BITS+1);
195
0
  }
196
  
197
  /* Pass 2: process 4 rows from work array, store into output array. */
198
199
0
  wsptr = workspace;
200
0
  for (ctr = 0; ctr < 4; ctr++) {
201
0
    outptr = output_buf[ctr] + output_col;
202
    /* It's not clear whether a zero row test is worthwhile here ... */
203
204
0
#ifndef NO_ZERO_ROW_TEST
205
0
    if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 &&
206
0
  wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
207
      /* AC terms all zero */
208
0
      JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)
209
0
          & RANGE_MASK];
210
      
211
0
      outptr[0] = dcval;
212
0
      outptr[1] = dcval;
213
0
      outptr[2] = dcval;
214
0
      outptr[3] = dcval;
215
      
216
0
      wsptr += DCTSIZE;   /* advance pointer to next row */
217
0
      continue;
218
0
    }
219
0
#endif
220
    
221
    /* Even part */
222
    
223
0
    tmp0 = LEFT_SHIFT((INT32) wsptr[0], CONST_BITS+1);
224
    
225
0
    tmp2 = MULTIPLY((INT32) wsptr[2], FIX_1_847759065)
226
0
   + MULTIPLY((INT32) wsptr[6], - FIX_0_765366865);
227
    
228
0
    tmp10 = tmp0 + tmp2;
229
0
    tmp12 = tmp0 - tmp2;
230
    
231
    /* Odd part */
232
    
233
0
    z1 = (INT32) wsptr[7];
234
0
    z2 = (INT32) wsptr[5];
235
0
    z3 = (INT32) wsptr[3];
236
0
    z4 = (INT32) wsptr[1];
237
    
238
0
    tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */
239
0
   + MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */
240
0
   + MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */
241
0
   + MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */
242
    
243
0
    tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */
244
0
   + MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */
245
0
   + MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */
246
0
   + MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */
247
248
    /* Final output stage */
249
    
250
0
    outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp2,
251
0
            CONST_BITS+PASS1_BITS+3+1)
252
0
          & RANGE_MASK];
253
0
    outptr[3] = range_limit[(int) DESCALE(tmp10 - tmp2,
254
0
            CONST_BITS+PASS1_BITS+3+1)
255
0
          & RANGE_MASK];
256
0
    outptr[1] = range_limit[(int) DESCALE(tmp12 + tmp0,
257
0
            CONST_BITS+PASS1_BITS+3+1)
258
0
          & RANGE_MASK];
259
0
    outptr[2] = range_limit[(int) DESCALE(tmp12 - tmp0,
260
0
            CONST_BITS+PASS1_BITS+3+1)
261
0
          & RANGE_MASK];
262
    
263
0
    wsptr += DCTSIZE;   /* advance pointer to next row */
264
0
  }
265
0
}
266
267
268
/*
269
 * Perform dequantization and inverse DCT on one block of coefficients,
270
 * producing a reduced-size 2x2 output block.
271
 */
272
273
GLOBAL(void)
274
jpeg_idct_2x2 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
275
         JCOEFPTR coef_block,
276
         JSAMPARRAY output_buf, JDIMENSION output_col)
277
0
{
278
0
  INT32 tmp0, tmp10, z1;
279
0
  JCOEFPTR inptr;
280
0
  ISLOW_MULT_TYPE * quantptr;
281
0
  int * wsptr;
282
0
  JSAMPROW outptr;
283
0
  JSAMPLE *range_limit = IDCT_range_limit(cinfo);
284
0
  int ctr;
285
0
  int workspace[DCTSIZE*2]; /* buffers data between passes */
286
  SHIFT_TEMPS
287
288
  /* Pass 1: process columns from input, store into work array. */
289
290
0
  inptr = coef_block;
291
0
  quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
292
0
  wsptr = workspace;
293
0
  for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) {
294
    /* Don't bother to process columns 2,4,6 */
295
0
    if (ctr == DCTSIZE-2 || ctr == DCTSIZE-4 || ctr == DCTSIZE-6)
296
0
      continue;
297
0
    if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*3] == 0 &&
298
0
  inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*7] == 0) {
299
      /* AC terms all zero; we need not examine terms 2,4,6 for 2x2 output */
300
0
      int dcval = (int)LEFT_SHIFT(DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]),
301
0
                             PASS1_BITS);
302
303
0
      wsptr[DCTSIZE*0] = dcval;
304
0
      wsptr[DCTSIZE*1] = dcval;
305
      
306
0
      continue;
307
0
    }
308
    
309
    /* Even part */
310
    
311
0
    z1 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
312
0
    tmp10 = LEFT_SHIFT(z1, CONST_BITS+2);
313
314
    /* Odd part */
315
316
0
    z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
317
0
    tmp0 = MULTIPLY(z1, - FIX_0_720959822); /* sqrt(2) * (c7-c5+c3-c1) */
318
0
    z1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
319
0
    tmp0 += MULTIPLY(z1, FIX_0_850430095); /* sqrt(2) * (-c1+c3+c5+c7) */
320
0
    z1 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
321
0
    tmp0 += MULTIPLY(z1, - FIX_1_272758580); /* sqrt(2) * (-c1+c3-c5-c7) */
322
0
    z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
323
0
    tmp0 += MULTIPLY(z1, FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */
324
325
    /* Final output stage */
326
    
327
0
    wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp0, CONST_BITS-PASS1_BITS+2);
328
0
    wsptr[DCTSIZE*1] = (int) DESCALE(tmp10 - tmp0, CONST_BITS-PASS1_BITS+2);
329
0
  }
330
  
331
  /* Pass 2: process 2 rows from work array, store into output array. */
332
333
0
  wsptr = workspace;
334
0
  for (ctr = 0; ctr < 2; ctr++) {
335
0
    outptr = output_buf[ctr] + output_col;
336
    /* It's not clear whether a zero row test is worthwhile here ... */
337
338
0
#ifndef NO_ZERO_ROW_TEST
339
0
    if (wsptr[1] == 0 && wsptr[3] == 0 && wsptr[5] == 0 && wsptr[7] == 0) {
340
      /* AC terms all zero */
341
0
      JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)
342
0
          & RANGE_MASK];
343
      
344
0
      outptr[0] = dcval;
345
0
      outptr[1] = dcval;
346
      
347
0
      wsptr += DCTSIZE;   /* advance pointer to next row */
348
0
      continue;
349
0
    }
350
0
#endif
351
    
352
    /* Even part */
353
    
354
0
    tmp10 = LEFT_SHIFT((INT32) wsptr[0], CONST_BITS+2);
355
    
356
    /* Odd part */
357
358
0
    tmp0 = MULTIPLY((INT32) wsptr[7], - FIX_0_720959822) /* sqrt(2) * (c7-c5+c3-c1) */
359
0
   + MULTIPLY((INT32) wsptr[5], FIX_0_850430095) /* sqrt(2) * (-c1+c3+c5+c7) */
360
0
   + MULTIPLY((INT32) wsptr[3], - FIX_1_272758580) /* sqrt(2) * (-c1+c3-c5-c7) */
361
0
   + MULTIPLY((INT32) wsptr[1], FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */
362
363
    /* Final output stage */
364
    
365
0
    outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp0,
366
0
            CONST_BITS+PASS1_BITS+3+2)
367
0
          & RANGE_MASK];
368
0
    outptr[1] = range_limit[(int) DESCALE(tmp10 - tmp0,
369
0
            CONST_BITS+PASS1_BITS+3+2)
370
0
          & RANGE_MASK];
371
    
372
0
    wsptr += DCTSIZE;   /* advance pointer to next row */
373
0
  }
374
0
}
375
376
377
/*
378
 * Perform dequantization and inverse DCT on one block of coefficients,
379
 * producing a reduced-size 1x1 output block.
380
 */
381
382
GLOBAL(void)
383
jpeg_idct_1x1 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
384
         JCOEFPTR coef_block,
385
         JSAMPARRAY output_buf, JDIMENSION output_col)
386
0
{
387
0
  int dcval;
388
0
  ISLOW_MULT_TYPE * quantptr;
389
0
  JSAMPLE *range_limit = IDCT_range_limit(cinfo);
390
0
  SHIFT_TEMPS
391
392
  /* We hardly need an inverse DCT routine for this: just take the
393
   * average pixel value, which is one-eighth of the DC coefficient.
394
   */
395
0
  quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
396
0
  dcval = DEQUANTIZE(coef_block[0], quantptr[0]);
397
0
  dcval = (int) DESCALE((INT32) dcval, 3);
398
399
0
  output_buf[0][output_col] = range_limit[dcval & RANGE_MASK];
400
0
}
401
402
#endif /* IDCT_SCALING_SUPPORTED */