/src/gdal/build/frmts/jpeg/libjpeg12/jidctred12.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * jidctred.c |
3 | | * |
4 | | * This file was part of the Independent JPEG Group's software. |
5 | | * Copyright (C) 1994-1998, Thomas G. Lane. |
6 | | * libjpeg-turbo Modifications: |
7 | | * Copyright (C) 2015, D. R. Commander |
8 | | * For conditions of distribution and use, see the accompanying README file. |
9 | | * |
10 | | * This file contains inverse-DCT routines that produce reduced-size output: |
11 | | * either 4x4, 2x2, or 1x1 pixels from an 8x8 DCT block. |
12 | | * |
13 | | * The implementation is based on the Loeffler, Ligtenberg and Moschytz (LL&M) |
14 | | * algorithm used in jidctint.c. We simply replace each 8-to-8 1-D IDCT step |
15 | | * with an 8-to-4 step that produces the four averages of two adjacent outputs |
16 | | * (or an 8-to-2 step producing two averages of four outputs, for 2x2 output). |
17 | | * These steps were derived by computing the corresponding values at the end |
18 | | * of the normal LL&M code, then simplifying as much as possible. |
19 | | * |
20 | | * 1x1 is trivial: just take the DC coefficient divided by 8. |
21 | | * |
22 | | * See jidctint.c for additional comments. |
23 | | */ |
24 | | |
25 | | #define JPEG_INTERNALS |
26 | | #include "jinclude.h" |
27 | | #include "jpeglib.h" |
28 | | #include "jdct.h" /* Private declarations for DCT subsystem */ |
29 | | |
30 | | #ifdef IDCT_SCALING_SUPPORTED |
31 | | |
32 | | |
33 | | /* |
34 | | * This module is specialized to the case DCTSIZE = 8. |
35 | | */ |
36 | | |
37 | | #if DCTSIZE != 8 |
38 | | Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ |
39 | | #endif |
40 | | |
41 | | |
42 | | /* Scaling is the same as in jidctint.c. */ |
43 | | |
44 | | #if BITS_IN_JSAMPLE == 8 |
45 | | #define CONST_BITS 13 |
46 | | #define PASS1_BITS 2 |
47 | | #else |
48 | | #define CONST_BITS 13 |
49 | | #define PASS1_BITS 1 /* lose a little precision to avoid overflow */ |
50 | | #endif |
51 | | |
52 | | /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus |
53 | | * causing a lot of useless floating-point operations at run time. |
54 | | * To get around this we use the following pre-calculated constants. |
55 | | * If you change CONST_BITS you may want to add appropriate values. |
56 | | * (With a reasonable C compiler, you can just rely on the FIX() macro...) |
57 | | */ |
58 | | |
59 | | #if CONST_BITS == 13 |
60 | | #define FIX_0_211164243 ((INT32) 1730) /* FIX(0.211164243) */ |
61 | | #define FIX_0_509795579 ((INT32) 4176) /* FIX(0.509795579) */ |
62 | | #define FIX_0_601344887 ((INT32) 4926) /* FIX(0.601344887) */ |
63 | | #define FIX_0_720959822 ((INT32) 5906) /* FIX(0.720959822) */ |
64 | | #define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */ |
65 | | #define FIX_0_850430095 ((INT32) 6967) /* FIX(0.850430095) */ |
66 | | #define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */ |
67 | | #define FIX_1_061594337 ((INT32) 8697) /* FIX(1.061594337) */ |
68 | | #define FIX_1_272758580 ((INT32) 10426) /* FIX(1.272758580) */ |
69 | | #define FIX_1_451774981 ((INT32) 11893) /* FIX(1.451774981) */ |
70 | | #define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */ |
71 | | #define FIX_2_172734803 ((INT32) 17799) /* FIX(2.172734803) */ |
72 | | #define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */ |
73 | | #define FIX_3_624509785 ((INT32) 29692) /* FIX(3.624509785) */ |
74 | | #else |
75 | | #define FIX_0_211164243 FIX(0.211164243) |
76 | | #define FIX_0_509795579 FIX(0.509795579) |
77 | | #define FIX_0_601344887 FIX(0.601344887) |
78 | | #define FIX_0_720959822 FIX(0.720959822) |
79 | | #define FIX_0_765366865 FIX(0.765366865) |
80 | | #define FIX_0_850430095 FIX(0.850430095) |
81 | | #define FIX_0_899976223 FIX(0.899976223) |
82 | | #define FIX_1_061594337 FIX(1.061594337) |
83 | | #define FIX_1_272758580 FIX(1.272758580) |
84 | | #define FIX_1_451774981 FIX(1.451774981) |
85 | | #define FIX_1_847759065 FIX(1.847759065) |
86 | | #define FIX_2_172734803 FIX(2.172734803) |
87 | | #define FIX_2_562915447 FIX(2.562915447) |
88 | | #define FIX_3_624509785 FIX(3.624509785) |
89 | | #endif |
90 | | |
91 | | |
92 | | /* Multiply an INT32 variable by an INT32 constant to yield an INT32 result. |
93 | | * For 8-bit samples with the recommended scaling, all the variable |
94 | | * and constant values involved are no more than 16 bits wide, so a |
95 | | * 16x16->32 bit multiply can be used instead of a full 32x32 multiply. |
96 | | * For 12-bit samples, a full 32-bit multiplication will be needed. |
97 | | */ |
98 | | |
99 | | #if BITS_IN_JSAMPLE == 8 |
100 | | #define MULTIPLY(var,const) MULTIPLY16C16(var,const) |
101 | | #else |
102 | 0 | #define MULTIPLY(var,const) ((var) * (const)) |
103 | | #endif |
104 | | |
105 | | |
106 | | /* Dequantize a coefficient by multiplying it by the multiplier-table |
107 | | * entry; produce an int result. In this module, both inputs and result |
108 | | * are 16 bits or less, so either int or short multiply will work. |
109 | | */ |
110 | | |
111 | 0 | #define DEQUANTIZE(coef,quantval) (((ISLOW_MULT_TYPE) (coef)) * (quantval)) |
112 | | |
113 | | |
114 | | /* |
115 | | * Perform dequantization and inverse DCT on one block of coefficients, |
116 | | * producing a reduced-size 4x4 output block. |
117 | | */ |
118 | | |
119 | | GLOBAL(void) |
120 | | jpeg_idct_4x4 (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
121 | | JCOEFPTR coef_block, |
122 | | JSAMPARRAY output_buf, JDIMENSION output_col) |
123 | 0 | { |
124 | 0 | INT32 tmp0, tmp2, tmp10, tmp12; |
125 | 0 | INT32 z1, z2, z3, z4; |
126 | 0 | JCOEFPTR inptr; |
127 | 0 | ISLOW_MULT_TYPE * quantptr; |
128 | 0 | int * wsptr; |
129 | 0 | JSAMPROW outptr; |
130 | 0 | JSAMPLE *range_limit = IDCT_range_limit(cinfo); |
131 | 0 | int ctr; |
132 | 0 | int workspace[DCTSIZE*4]; /* buffers data between passes */ |
133 | | SHIFT_TEMPS |
134 | | |
135 | | /* Pass 1: process columns from input, store into work array. */ |
136 | |
|
137 | 0 | inptr = coef_block; |
138 | 0 | quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; |
139 | 0 | wsptr = workspace; |
140 | 0 | for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) { |
141 | | /* Don't bother to process column 4, because second pass won't use it */ |
142 | 0 | if (ctr == DCTSIZE-4) |
143 | 0 | continue; |
144 | 0 | if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 && |
145 | 0 | inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*5] == 0 && |
146 | 0 | inptr[DCTSIZE*6] == 0 && inptr[DCTSIZE*7] == 0) { |
147 | | /* AC terms all zero; we need not examine term 4 for 4x4 output */ |
148 | 0 | int dcval = (int)LEFT_SHIFT(DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]), |
149 | 0 | PASS1_BITS); |
150 | |
|
151 | 0 | wsptr[DCTSIZE*0] = dcval; |
152 | 0 | wsptr[DCTSIZE*1] = dcval; |
153 | 0 | wsptr[DCTSIZE*2] = dcval; |
154 | 0 | wsptr[DCTSIZE*3] = dcval; |
155 | | |
156 | 0 | continue; |
157 | 0 | } |
158 | | |
159 | | /* Even part */ |
160 | | |
161 | 0 | tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); |
162 | 0 | tmp0 = LEFT_SHIFT(tmp0, CONST_BITS+1); |
163 | |
|
164 | 0 | z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); |
165 | 0 | z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); |
166 | |
|
167 | 0 | tmp2 = MULTIPLY(z2, FIX_1_847759065) + MULTIPLY(z3, - FIX_0_765366865); |
168 | | |
169 | 0 | tmp10 = tmp0 + tmp2; |
170 | 0 | tmp12 = tmp0 - tmp2; |
171 | | |
172 | | /* Odd part */ |
173 | | |
174 | 0 | z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); |
175 | 0 | z2 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); |
176 | 0 | z3 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); |
177 | 0 | z4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); |
178 | | |
179 | 0 | tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */ |
180 | 0 | + MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */ |
181 | 0 | + MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */ |
182 | 0 | + MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */ |
183 | | |
184 | 0 | tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */ |
185 | 0 | + MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */ |
186 | 0 | + MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */ |
187 | 0 | + MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */ |
188 | | |
189 | | /* Final output stage */ |
190 | | |
191 | 0 | wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp2, CONST_BITS-PASS1_BITS+1); |
192 | 0 | wsptr[DCTSIZE*3] = (int) DESCALE(tmp10 - tmp2, CONST_BITS-PASS1_BITS+1); |
193 | 0 | wsptr[DCTSIZE*1] = (int) DESCALE(tmp12 + tmp0, CONST_BITS-PASS1_BITS+1); |
194 | 0 | wsptr[DCTSIZE*2] = (int) DESCALE(tmp12 - tmp0, CONST_BITS-PASS1_BITS+1); |
195 | 0 | } |
196 | | |
197 | | /* Pass 2: process 4 rows from work array, store into output array. */ |
198 | |
|
199 | 0 | wsptr = workspace; |
200 | 0 | for (ctr = 0; ctr < 4; ctr++) { |
201 | 0 | outptr = output_buf[ctr] + output_col; |
202 | | /* It's not clear whether a zero row test is worthwhile here ... */ |
203 | |
|
204 | 0 | #ifndef NO_ZERO_ROW_TEST |
205 | 0 | if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && |
206 | 0 | wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) { |
207 | | /* AC terms all zero */ |
208 | 0 | JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3) |
209 | 0 | & RANGE_MASK]; |
210 | | |
211 | 0 | outptr[0] = dcval; |
212 | 0 | outptr[1] = dcval; |
213 | 0 | outptr[2] = dcval; |
214 | 0 | outptr[3] = dcval; |
215 | | |
216 | 0 | wsptr += DCTSIZE; /* advance pointer to next row */ |
217 | 0 | continue; |
218 | 0 | } |
219 | 0 | #endif |
220 | | |
221 | | /* Even part */ |
222 | | |
223 | 0 | tmp0 = LEFT_SHIFT((INT32) wsptr[0], CONST_BITS+1); |
224 | | |
225 | 0 | tmp2 = MULTIPLY((INT32) wsptr[2], FIX_1_847759065) |
226 | 0 | + MULTIPLY((INT32) wsptr[6], - FIX_0_765366865); |
227 | | |
228 | 0 | tmp10 = tmp0 + tmp2; |
229 | 0 | tmp12 = tmp0 - tmp2; |
230 | | |
231 | | /* Odd part */ |
232 | | |
233 | 0 | z1 = (INT32) wsptr[7]; |
234 | 0 | z2 = (INT32) wsptr[5]; |
235 | 0 | z3 = (INT32) wsptr[3]; |
236 | 0 | z4 = (INT32) wsptr[1]; |
237 | | |
238 | 0 | tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */ |
239 | 0 | + MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */ |
240 | 0 | + MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */ |
241 | 0 | + MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */ |
242 | | |
243 | 0 | tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */ |
244 | 0 | + MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */ |
245 | 0 | + MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */ |
246 | 0 | + MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */ |
247 | | |
248 | | /* Final output stage */ |
249 | | |
250 | 0 | outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp2, |
251 | 0 | CONST_BITS+PASS1_BITS+3+1) |
252 | 0 | & RANGE_MASK]; |
253 | 0 | outptr[3] = range_limit[(int) DESCALE(tmp10 - tmp2, |
254 | 0 | CONST_BITS+PASS1_BITS+3+1) |
255 | 0 | & RANGE_MASK]; |
256 | 0 | outptr[1] = range_limit[(int) DESCALE(tmp12 + tmp0, |
257 | 0 | CONST_BITS+PASS1_BITS+3+1) |
258 | 0 | & RANGE_MASK]; |
259 | 0 | outptr[2] = range_limit[(int) DESCALE(tmp12 - tmp0, |
260 | 0 | CONST_BITS+PASS1_BITS+3+1) |
261 | 0 | & RANGE_MASK]; |
262 | | |
263 | 0 | wsptr += DCTSIZE; /* advance pointer to next row */ |
264 | 0 | } |
265 | 0 | } |
266 | | |
267 | | |
268 | | /* |
269 | | * Perform dequantization and inverse DCT on one block of coefficients, |
270 | | * producing a reduced-size 2x2 output block. |
271 | | */ |
272 | | |
273 | | GLOBAL(void) |
274 | | jpeg_idct_2x2 (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
275 | | JCOEFPTR coef_block, |
276 | | JSAMPARRAY output_buf, JDIMENSION output_col) |
277 | 0 | { |
278 | 0 | INT32 tmp0, tmp10, z1; |
279 | 0 | JCOEFPTR inptr; |
280 | 0 | ISLOW_MULT_TYPE * quantptr; |
281 | 0 | int * wsptr; |
282 | 0 | JSAMPROW outptr; |
283 | 0 | JSAMPLE *range_limit = IDCT_range_limit(cinfo); |
284 | 0 | int ctr; |
285 | 0 | int workspace[DCTSIZE*2]; /* buffers data between passes */ |
286 | | SHIFT_TEMPS |
287 | | |
288 | | /* Pass 1: process columns from input, store into work array. */ |
289 | |
|
290 | 0 | inptr = coef_block; |
291 | 0 | quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; |
292 | 0 | wsptr = workspace; |
293 | 0 | for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) { |
294 | | /* Don't bother to process columns 2,4,6 */ |
295 | 0 | if (ctr == DCTSIZE-2 || ctr == DCTSIZE-4 || ctr == DCTSIZE-6) |
296 | 0 | continue; |
297 | 0 | if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*3] == 0 && |
298 | 0 | inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*7] == 0) { |
299 | | /* AC terms all zero; we need not examine terms 2,4,6 for 2x2 output */ |
300 | 0 | int dcval = (int)LEFT_SHIFT(DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]), |
301 | 0 | PASS1_BITS); |
302 | |
|
303 | 0 | wsptr[DCTSIZE*0] = dcval; |
304 | 0 | wsptr[DCTSIZE*1] = dcval; |
305 | | |
306 | 0 | continue; |
307 | 0 | } |
308 | | |
309 | | /* Even part */ |
310 | | |
311 | 0 | z1 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); |
312 | 0 | tmp10 = LEFT_SHIFT(z1, CONST_BITS+2); |
313 | | |
314 | | /* Odd part */ |
315 | |
|
316 | 0 | z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); |
317 | 0 | tmp0 = MULTIPLY(z1, - FIX_0_720959822); /* sqrt(2) * (c7-c5+c3-c1) */ |
318 | 0 | z1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); |
319 | 0 | tmp0 += MULTIPLY(z1, FIX_0_850430095); /* sqrt(2) * (-c1+c3+c5+c7) */ |
320 | 0 | z1 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); |
321 | 0 | tmp0 += MULTIPLY(z1, - FIX_1_272758580); /* sqrt(2) * (-c1+c3-c5-c7) */ |
322 | 0 | z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); |
323 | 0 | tmp0 += MULTIPLY(z1, FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */ |
324 | | |
325 | | /* Final output stage */ |
326 | | |
327 | 0 | wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp0, CONST_BITS-PASS1_BITS+2); |
328 | 0 | wsptr[DCTSIZE*1] = (int) DESCALE(tmp10 - tmp0, CONST_BITS-PASS1_BITS+2); |
329 | 0 | } |
330 | | |
331 | | /* Pass 2: process 2 rows from work array, store into output array. */ |
332 | |
|
333 | 0 | wsptr = workspace; |
334 | 0 | for (ctr = 0; ctr < 2; ctr++) { |
335 | 0 | outptr = output_buf[ctr] + output_col; |
336 | | /* It's not clear whether a zero row test is worthwhile here ... */ |
337 | |
|
338 | 0 | #ifndef NO_ZERO_ROW_TEST |
339 | 0 | if (wsptr[1] == 0 && wsptr[3] == 0 && wsptr[5] == 0 && wsptr[7] == 0) { |
340 | | /* AC terms all zero */ |
341 | 0 | JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3) |
342 | 0 | & RANGE_MASK]; |
343 | | |
344 | 0 | outptr[0] = dcval; |
345 | 0 | outptr[1] = dcval; |
346 | | |
347 | 0 | wsptr += DCTSIZE; /* advance pointer to next row */ |
348 | 0 | continue; |
349 | 0 | } |
350 | 0 | #endif |
351 | | |
352 | | /* Even part */ |
353 | | |
354 | 0 | tmp10 = LEFT_SHIFT((INT32) wsptr[0], CONST_BITS+2); |
355 | | |
356 | | /* Odd part */ |
357 | |
|
358 | 0 | tmp0 = MULTIPLY((INT32) wsptr[7], - FIX_0_720959822) /* sqrt(2) * (c7-c5+c3-c1) */ |
359 | 0 | + MULTIPLY((INT32) wsptr[5], FIX_0_850430095) /* sqrt(2) * (-c1+c3+c5+c7) */ |
360 | 0 | + MULTIPLY((INT32) wsptr[3], - FIX_1_272758580) /* sqrt(2) * (-c1+c3-c5-c7) */ |
361 | 0 | + MULTIPLY((INT32) wsptr[1], FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */ |
362 | | |
363 | | /* Final output stage */ |
364 | | |
365 | 0 | outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp0, |
366 | 0 | CONST_BITS+PASS1_BITS+3+2) |
367 | 0 | & RANGE_MASK]; |
368 | 0 | outptr[1] = range_limit[(int) DESCALE(tmp10 - tmp0, |
369 | 0 | CONST_BITS+PASS1_BITS+3+2) |
370 | 0 | & RANGE_MASK]; |
371 | | |
372 | 0 | wsptr += DCTSIZE; /* advance pointer to next row */ |
373 | 0 | } |
374 | 0 | } |
375 | | |
376 | | |
377 | | /* |
378 | | * Perform dequantization and inverse DCT on one block of coefficients, |
379 | | * producing a reduced-size 1x1 output block. |
380 | | */ |
381 | | |
382 | | GLOBAL(void) |
383 | | jpeg_idct_1x1 (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
384 | | JCOEFPTR coef_block, |
385 | | JSAMPARRAY output_buf, JDIMENSION output_col) |
386 | 0 | { |
387 | 0 | int dcval; |
388 | 0 | ISLOW_MULT_TYPE * quantptr; |
389 | 0 | JSAMPLE *range_limit = IDCT_range_limit(cinfo); |
390 | 0 | SHIFT_TEMPS |
391 | | |
392 | | /* We hardly need an inverse DCT routine for this: just take the |
393 | | * average pixel value, which is one-eighth of the DC coefficient. |
394 | | */ |
395 | 0 | quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; |
396 | 0 | dcval = DEQUANTIZE(coef_block[0], quantptr[0]); |
397 | 0 | dcval = (int) DESCALE((INT32) dcval, 3); |
398 | |
|
399 | 0 | output_buf[0][output_col] = range_limit[dcval & RANGE_MASK]; |
400 | 0 | } |
401 | | |
402 | | #endif /* IDCT_SCALING_SUPPORTED */ |