/src/gdal/build/frmts/jpeg/libjpeg12/jidctred12.c
Line  | Count  | Source (jump to first uncovered line)  | 
1  |  | /*  | 
2  |  |  * jidctred.c  | 
3  |  |  *  | 
4  |  |  * This file was part of the Independent JPEG Group's software.  | 
5  |  |  * Copyright (C) 1994-1998, Thomas G. Lane.  | 
6  |  |  * libjpeg-turbo Modifications:  | 
7  |  |  * Copyright (C) 2015, D. R. Commander  | 
8  |  |  * For conditions of distribution and use, see the accompanying README file.  | 
9  |  |  *  | 
10  |  |  * This file contains inverse-DCT routines that produce reduced-size output:  | 
11  |  |  * either 4x4, 2x2, or 1x1 pixels from an 8x8 DCT block.  | 
12  |  |  *  | 
13  |  |  * The implementation is based on the Loeffler, Ligtenberg and Moschytz (LL&M)  | 
14  |  |  * algorithm used in jidctint.c.  We simply replace each 8-to-8 1-D IDCT step  | 
15  |  |  * with an 8-to-4 step that produces the four averages of two adjacent outputs  | 
16  |  |  * (or an 8-to-2 step producing two averages of four outputs, for 2x2 output).  | 
17  |  |  * These steps were derived by computing the corresponding values at the end  | 
18  |  |  * of the normal LL&M code, then simplifying as much as possible.  | 
19  |  |  *  | 
20  |  |  * 1x1 is trivial: just take the DC coefficient divided by 8.  | 
21  |  |  *  | 
22  |  |  * See jidctint.c for additional comments.  | 
23  |  |  */  | 
24  |  |  | 
25  |  | #define JPEG_INTERNALS  | 
26  |  | #include "jinclude.h"  | 
27  |  | #include "jpeglib.h"  | 
28  |  | #include "jdct.h"   /* Private declarations for DCT subsystem */  | 
29  |  |  | 
30  |  | #ifdef IDCT_SCALING_SUPPORTED  | 
31  |  |  | 
32  |  |  | 
33  |  | /*  | 
34  |  |  * This module is specialized to the case DCTSIZE = 8.  | 
35  |  |  */  | 
36  |  |  | 
37  |  | #if DCTSIZE != 8  | 
38  |  |   Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */  | 
39  |  | #endif  | 
40  |  |  | 
41  |  |  | 
42  |  | /* Scaling is the same as in jidctint.c. */  | 
43  |  |  | 
44  |  | #if BITS_IN_JSAMPLE == 8  | 
45  |  | #define CONST_BITS  13  | 
46  |  | #define PASS1_BITS  2  | 
47  |  | #else  | 
48  |  | #define CONST_BITS  13  | 
49  |  | #define PASS1_BITS  1   /* lose a little precision to avoid overflow */  | 
50  |  | #endif  | 
51  |  |  | 
52  |  | /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus  | 
53  |  |  * causing a lot of useless floating-point operations at run time.  | 
54  |  |  * To get around this we use the following pre-calculated constants.  | 
55  |  |  * If you change CONST_BITS you may want to add appropriate values.  | 
56  |  |  * (With a reasonable C compiler, you can just rely on the FIX() macro...)  | 
57  |  |  */  | 
58  |  |  | 
59  |  | #if CONST_BITS == 13  | 
60  |  | #define FIX_0_211164243  ((INT32)  1730)  /* FIX(0.211164243) */  | 
61  |  | #define FIX_0_509795579  ((INT32)  4176)  /* FIX(0.509795579) */  | 
62  |  | #define FIX_0_601344887  ((INT32)  4926)  /* FIX(0.601344887) */  | 
63  |  | #define FIX_0_720959822  ((INT32)  5906)  /* FIX(0.720959822) */  | 
64  |  | #define FIX_0_765366865  ((INT32)  6270)  /* FIX(0.765366865) */  | 
65  |  | #define FIX_0_850430095  ((INT32)  6967)  /* FIX(0.850430095) */  | 
66  |  | #define FIX_0_899976223  ((INT32)  7373)  /* FIX(0.899976223) */  | 
67  |  | #define FIX_1_061594337  ((INT32)  8697)  /* FIX(1.061594337) */  | 
68  |  | #define FIX_1_272758580  ((INT32)  10426) /* FIX(1.272758580) */  | 
69  |  | #define FIX_1_451774981  ((INT32)  11893) /* FIX(1.451774981) */  | 
70  |  | #define FIX_1_847759065  ((INT32)  15137) /* FIX(1.847759065) */  | 
71  |  | #define FIX_2_172734803  ((INT32)  17799) /* FIX(2.172734803) */  | 
72  |  | #define FIX_2_562915447  ((INT32)  20995) /* FIX(2.562915447) */  | 
73  |  | #define FIX_3_624509785  ((INT32)  29692) /* FIX(3.624509785) */  | 
74  |  | #else  | 
75  |  | #define FIX_0_211164243  FIX(0.211164243)  | 
76  |  | #define FIX_0_509795579  FIX(0.509795579)  | 
77  |  | #define FIX_0_601344887  FIX(0.601344887)  | 
78  |  | #define FIX_0_720959822  FIX(0.720959822)  | 
79  |  | #define FIX_0_765366865  FIX(0.765366865)  | 
80  |  | #define FIX_0_850430095  FIX(0.850430095)  | 
81  |  | #define FIX_0_899976223  FIX(0.899976223)  | 
82  |  | #define FIX_1_061594337  FIX(1.061594337)  | 
83  |  | #define FIX_1_272758580  FIX(1.272758580)  | 
84  |  | #define FIX_1_451774981  FIX(1.451774981)  | 
85  |  | #define FIX_1_847759065  FIX(1.847759065)  | 
86  |  | #define FIX_2_172734803  FIX(2.172734803)  | 
87  |  | #define FIX_2_562915447  FIX(2.562915447)  | 
88  |  | #define FIX_3_624509785  FIX(3.624509785)  | 
89  |  | #endif  | 
90  |  |  | 
91  |  |  | 
92  |  | /* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.  | 
93  |  |  * For 8-bit samples with the recommended scaling, all the variable  | 
94  |  |  * and constant values involved are no more than 16 bits wide, so a  | 
95  |  |  * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.  | 
96  |  |  * For 12-bit samples, a full 32-bit multiplication will be needed.  | 
97  |  |  */  | 
98  |  |  | 
99  |  | #if BITS_IN_JSAMPLE == 8  | 
100  |  | #define MULTIPLY(var,const)  MULTIPLY16C16(var,const)  | 
101  |  | #else  | 
102  | 0  | #define MULTIPLY(var,const)  ((var) * (const))  | 
103  |  | #endif  | 
104  |  |  | 
105  |  |  | 
106  |  | /* Dequantize a coefficient by multiplying it by the multiplier-table  | 
107  |  |  * entry; produce an int result.  In this module, both inputs and result  | 
108  |  |  * are 16 bits or less, so either int or short multiply will work.  | 
109  |  |  */  | 
110  |  |  | 
111  | 0  | #define DEQUANTIZE(coef,quantval)  (((ISLOW_MULT_TYPE) (coef)) * (quantval))  | 
112  |  |  | 
113  |  |  | 
114  |  | /*  | 
115  |  |  * Perform dequantization and inverse DCT on one block of coefficients,  | 
116  |  |  * producing a reduced-size 4x4 output block.  | 
117  |  |  */  | 
118  |  |  | 
119  |  | GLOBAL(void)  | 
120  |  | jpeg_idct_4x4 (j_decompress_ptr cinfo, jpeg_component_info * compptr,  | 
121  |  |          JCOEFPTR coef_block,  | 
122  |  |          JSAMPARRAY output_buf, JDIMENSION output_col)  | 
123  | 0  | { | 
124  | 0  |   INT32 tmp0, tmp2, tmp10, tmp12;  | 
125  | 0  |   INT32 z1, z2, z3, z4;  | 
126  | 0  |   JCOEFPTR inptr;  | 
127  | 0  |   ISLOW_MULT_TYPE * quantptr;  | 
128  | 0  |   int * wsptr;  | 
129  | 0  |   JSAMPROW outptr;  | 
130  | 0  |   JSAMPLE *range_limit = IDCT_range_limit(cinfo);  | 
131  | 0  |   int ctr;  | 
132  | 0  |   int workspace[DCTSIZE*4]; /* buffers data between passes */  | 
133  |  |   SHIFT_TEMPS  | 
134  |  |  | 
135  |  |   /* Pass 1: process columns from input, store into work array. */  | 
136  |  | 
  | 
137  | 0  |   inptr = coef_block;  | 
138  | 0  |   quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;  | 
139  | 0  |   wsptr = workspace;  | 
140  | 0  |   for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) { | 
141  |  |     /* Don't bother to process column 4, because second pass won't use it */  | 
142  | 0  |     if (ctr == DCTSIZE-4)  | 
143  | 0  |       continue;  | 
144  | 0  |     if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&  | 
145  | 0  |   inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*5] == 0 &&  | 
146  | 0  |   inptr[DCTSIZE*6] == 0 && inptr[DCTSIZE*7] == 0) { | 
147  |  |       /* AC terms all zero; we need not examine term 4 for 4x4 output */  | 
148  | 0  |       int dcval = (int)LEFT_SHIFT(DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]),  | 
149  | 0  |                              PASS1_BITS);  | 
150  |  | 
  | 
151  | 0  |       wsptr[DCTSIZE*0] = dcval;  | 
152  | 0  |       wsptr[DCTSIZE*1] = dcval;  | 
153  | 0  |       wsptr[DCTSIZE*2] = dcval;  | 
154  | 0  |       wsptr[DCTSIZE*3] = dcval;  | 
155  |  |         | 
156  | 0  |       continue;  | 
157  | 0  |     }  | 
158  |  |       | 
159  |  |     /* Even part */  | 
160  |  |       | 
161  | 0  |     tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);  | 
162  | 0  |     tmp0 = LEFT_SHIFT(tmp0, CONST_BITS+1);  | 
163  |  | 
  | 
164  | 0  |     z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);  | 
165  | 0  |     z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);  | 
166  |  | 
  | 
167  | 0  |     tmp2 = MULTIPLY(z2, FIX_1_847759065) + MULTIPLY(z3, - FIX_0_765366865);  | 
168  |  |       | 
169  | 0  |     tmp10 = tmp0 + tmp2;  | 
170  | 0  |     tmp12 = tmp0 - tmp2;  | 
171  |  |       | 
172  |  |     /* Odd part */  | 
173  |  |       | 
174  | 0  |     z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);  | 
175  | 0  |     z2 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);  | 
176  | 0  |     z3 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);  | 
177  | 0  |     z4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);  | 
178  |  |       | 
179  | 0  |     tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */  | 
180  | 0  |    + MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */  | 
181  | 0  |    + MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */  | 
182  | 0  |    + MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */  | 
183  |  |       | 
184  | 0  |     tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */  | 
185  | 0  |    + MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */  | 
186  | 0  |    + MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */  | 
187  | 0  |    + MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */  | 
188  |  |  | 
189  |  |     /* Final output stage */  | 
190  |  |       | 
191  | 0  |     wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp2, CONST_BITS-PASS1_BITS+1);  | 
192  | 0  |     wsptr[DCTSIZE*3] = (int) DESCALE(tmp10 - tmp2, CONST_BITS-PASS1_BITS+1);  | 
193  | 0  |     wsptr[DCTSIZE*1] = (int) DESCALE(tmp12 + tmp0, CONST_BITS-PASS1_BITS+1);  | 
194  | 0  |     wsptr[DCTSIZE*2] = (int) DESCALE(tmp12 - tmp0, CONST_BITS-PASS1_BITS+1);  | 
195  | 0  |   }  | 
196  |  |     | 
197  |  |   /* Pass 2: process 4 rows from work array, store into output array. */  | 
198  |  | 
  | 
199  | 0  |   wsptr = workspace;  | 
200  | 0  |   for (ctr = 0; ctr < 4; ctr++) { | 
201  | 0  |     outptr = output_buf[ctr] + output_col;  | 
202  |  |     /* It's not clear whether a zero row test is worthwhile here ... */  | 
203  |  | 
  | 
204  | 0  | #ifndef NO_ZERO_ROW_TEST  | 
205  | 0  |     if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 &&  | 
206  | 0  |   wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) { | 
207  |  |       /* AC terms all zero */  | 
208  | 0  |       JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)  | 
209  | 0  |           & RANGE_MASK];  | 
210  |  |         | 
211  | 0  |       outptr[0] = dcval;  | 
212  | 0  |       outptr[1] = dcval;  | 
213  | 0  |       outptr[2] = dcval;  | 
214  | 0  |       outptr[3] = dcval;  | 
215  |  |         | 
216  | 0  |       wsptr += DCTSIZE;   /* advance pointer to next row */  | 
217  | 0  |       continue;  | 
218  | 0  |     }  | 
219  | 0  | #endif  | 
220  |  |       | 
221  |  |     /* Even part */  | 
222  |  |       | 
223  | 0  |     tmp0 = LEFT_SHIFT((INT32) wsptr[0], CONST_BITS+1);  | 
224  |  |       | 
225  | 0  |     tmp2 = MULTIPLY((INT32) wsptr[2], FIX_1_847759065)  | 
226  | 0  |    + MULTIPLY((INT32) wsptr[6], - FIX_0_765366865);  | 
227  |  |       | 
228  | 0  |     tmp10 = tmp0 + tmp2;  | 
229  | 0  |     tmp12 = tmp0 - tmp2;  | 
230  |  |       | 
231  |  |     /* Odd part */  | 
232  |  |       | 
233  | 0  |     z1 = (INT32) wsptr[7];  | 
234  | 0  |     z2 = (INT32) wsptr[5];  | 
235  | 0  |     z3 = (INT32) wsptr[3];  | 
236  | 0  |     z4 = (INT32) wsptr[1];  | 
237  |  |       | 
238  | 0  |     tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */  | 
239  | 0  |    + MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */  | 
240  | 0  |    + MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */  | 
241  | 0  |    + MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */  | 
242  |  |       | 
243  | 0  |     tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */  | 
244  | 0  |    + MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */  | 
245  | 0  |    + MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */  | 
246  | 0  |    + MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */  | 
247  |  |  | 
248  |  |     /* Final output stage */  | 
249  |  |       | 
250  | 0  |     outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp2,  | 
251  | 0  |             CONST_BITS+PASS1_BITS+3+1)  | 
252  | 0  |           & RANGE_MASK];  | 
253  | 0  |     outptr[3] = range_limit[(int) DESCALE(tmp10 - tmp2,  | 
254  | 0  |             CONST_BITS+PASS1_BITS+3+1)  | 
255  | 0  |           & RANGE_MASK];  | 
256  | 0  |     outptr[1] = range_limit[(int) DESCALE(tmp12 + tmp0,  | 
257  | 0  |             CONST_BITS+PASS1_BITS+3+1)  | 
258  | 0  |           & RANGE_MASK];  | 
259  | 0  |     outptr[2] = range_limit[(int) DESCALE(tmp12 - tmp0,  | 
260  | 0  |             CONST_BITS+PASS1_BITS+3+1)  | 
261  | 0  |           & RANGE_MASK];  | 
262  |  |       | 
263  | 0  |     wsptr += DCTSIZE;   /* advance pointer to next row */  | 
264  | 0  |   }  | 
265  | 0  | }  | 
266  |  |  | 
267  |  |  | 
268  |  | /*  | 
269  |  |  * Perform dequantization and inverse DCT on one block of coefficients,  | 
270  |  |  * producing a reduced-size 2x2 output block.  | 
271  |  |  */  | 
272  |  |  | 
273  |  | GLOBAL(void)  | 
274  |  | jpeg_idct_2x2 (j_decompress_ptr cinfo, jpeg_component_info * compptr,  | 
275  |  |          JCOEFPTR coef_block,  | 
276  |  |          JSAMPARRAY output_buf, JDIMENSION output_col)  | 
277  | 0  | { | 
278  | 0  |   INT32 tmp0, tmp10, z1;  | 
279  | 0  |   JCOEFPTR inptr;  | 
280  | 0  |   ISLOW_MULT_TYPE * quantptr;  | 
281  | 0  |   int * wsptr;  | 
282  | 0  |   JSAMPROW outptr;  | 
283  | 0  |   JSAMPLE *range_limit = IDCT_range_limit(cinfo);  | 
284  | 0  |   int ctr;  | 
285  | 0  |   int workspace[DCTSIZE*2]; /* buffers data between passes */  | 
286  |  |   SHIFT_TEMPS  | 
287  |  |  | 
288  |  |   /* Pass 1: process columns from input, store into work array. */  | 
289  |  | 
  | 
290  | 0  |   inptr = coef_block;  | 
291  | 0  |   quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;  | 
292  | 0  |   wsptr = workspace;  | 
293  | 0  |   for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) { | 
294  |  |     /* Don't bother to process columns 2,4,6 */  | 
295  | 0  |     if (ctr == DCTSIZE-2 || ctr == DCTSIZE-4 || ctr == DCTSIZE-6)  | 
296  | 0  |       continue;  | 
297  | 0  |     if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*3] == 0 &&  | 
298  | 0  |   inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*7] == 0) { | 
299  |  |       /* AC terms all zero; we need not examine terms 2,4,6 for 2x2 output */  | 
300  | 0  |       int dcval = (int)LEFT_SHIFT(DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]),  | 
301  | 0  |                              PASS1_BITS);  | 
302  |  | 
  | 
303  | 0  |       wsptr[DCTSIZE*0] = dcval;  | 
304  | 0  |       wsptr[DCTSIZE*1] = dcval;  | 
305  |  |         | 
306  | 0  |       continue;  | 
307  | 0  |     }  | 
308  |  |       | 
309  |  |     /* Even part */  | 
310  |  |       | 
311  | 0  |     z1 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);  | 
312  | 0  |     tmp10 = LEFT_SHIFT(z1, CONST_BITS+2);  | 
313  |  |  | 
314  |  |     /* Odd part */  | 
315  |  | 
  | 
316  | 0  |     z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);  | 
317  | 0  |     tmp0 = MULTIPLY(z1, - FIX_0_720959822); /* sqrt(2) * (c7-c5+c3-c1) */  | 
318  | 0  |     z1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);  | 
319  | 0  |     tmp0 += MULTIPLY(z1, FIX_0_850430095); /* sqrt(2) * (-c1+c3+c5+c7) */  | 
320  | 0  |     z1 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);  | 
321  | 0  |     tmp0 += MULTIPLY(z1, - FIX_1_272758580); /* sqrt(2) * (-c1+c3-c5-c7) */  | 
322  | 0  |     z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);  | 
323  | 0  |     tmp0 += MULTIPLY(z1, FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */  | 
324  |  |  | 
325  |  |     /* Final output stage */  | 
326  |  |       | 
327  | 0  |     wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp0, CONST_BITS-PASS1_BITS+2);  | 
328  | 0  |     wsptr[DCTSIZE*1] = (int) DESCALE(tmp10 - tmp0, CONST_BITS-PASS1_BITS+2);  | 
329  | 0  |   }  | 
330  |  |     | 
331  |  |   /* Pass 2: process 2 rows from work array, store into output array. */  | 
332  |  | 
  | 
333  | 0  |   wsptr = workspace;  | 
334  | 0  |   for (ctr = 0; ctr < 2; ctr++) { | 
335  | 0  |     outptr = output_buf[ctr] + output_col;  | 
336  |  |     /* It's not clear whether a zero row test is worthwhile here ... */  | 
337  |  | 
  | 
338  | 0  | #ifndef NO_ZERO_ROW_TEST  | 
339  | 0  |     if (wsptr[1] == 0 && wsptr[3] == 0 && wsptr[5] == 0 && wsptr[7] == 0) { | 
340  |  |       /* AC terms all zero */  | 
341  | 0  |       JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)  | 
342  | 0  |           & RANGE_MASK];  | 
343  |  |         | 
344  | 0  |       outptr[0] = dcval;  | 
345  | 0  |       outptr[1] = dcval;  | 
346  |  |         | 
347  | 0  |       wsptr += DCTSIZE;   /* advance pointer to next row */  | 
348  | 0  |       continue;  | 
349  | 0  |     }  | 
350  | 0  | #endif  | 
351  |  |       | 
352  |  |     /* Even part */  | 
353  |  |       | 
354  | 0  |     tmp10 = LEFT_SHIFT((INT32) wsptr[0], CONST_BITS+2);  | 
355  |  |       | 
356  |  |     /* Odd part */  | 
357  |  | 
  | 
358  | 0  |     tmp0 = MULTIPLY((INT32) wsptr[7], - FIX_0_720959822) /* sqrt(2) * (c7-c5+c3-c1) */  | 
359  | 0  |    + MULTIPLY((INT32) wsptr[5], FIX_0_850430095) /* sqrt(2) * (-c1+c3+c5+c7) */  | 
360  | 0  |    + MULTIPLY((INT32) wsptr[3], - FIX_1_272758580) /* sqrt(2) * (-c1+c3-c5-c7) */  | 
361  | 0  |    + MULTIPLY((INT32) wsptr[1], FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */  | 
362  |  |  | 
363  |  |     /* Final output stage */  | 
364  |  |       | 
365  | 0  |     outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp0,  | 
366  | 0  |             CONST_BITS+PASS1_BITS+3+2)  | 
367  | 0  |           & RANGE_MASK];  | 
368  | 0  |     outptr[1] = range_limit[(int) DESCALE(tmp10 - tmp0,  | 
369  | 0  |             CONST_BITS+PASS1_BITS+3+2)  | 
370  | 0  |           & RANGE_MASK];  | 
371  |  |       | 
372  | 0  |     wsptr += DCTSIZE;   /* advance pointer to next row */  | 
373  | 0  |   }  | 
374  | 0  | }  | 
375  |  |  | 
376  |  |  | 
377  |  | /*  | 
378  |  |  * Perform dequantization and inverse DCT on one block of coefficients,  | 
379  |  |  * producing a reduced-size 1x1 output block.  | 
380  |  |  */  | 
381  |  |  | 
382  |  | GLOBAL(void)  | 
383  |  | jpeg_idct_1x1 (j_decompress_ptr cinfo, jpeg_component_info * compptr,  | 
384  |  |          JCOEFPTR coef_block,  | 
385  |  |          JSAMPARRAY output_buf, JDIMENSION output_col)  | 
386  | 0  | { | 
387  | 0  |   int dcval;  | 
388  | 0  |   ISLOW_MULT_TYPE * quantptr;  | 
389  | 0  |   JSAMPLE *range_limit = IDCT_range_limit(cinfo);  | 
390  | 0  |   SHIFT_TEMPS  | 
391  |  |  | 
392  |  |   /* We hardly need an inverse DCT routine for this: just take the  | 
393  |  |    * average pixel value, which is one-eighth of the DC coefficient.  | 
394  |  |    */  | 
395  | 0  |   quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;  | 
396  | 0  |   dcval = DEQUANTIZE(coef_block[0], quantptr[0]);  | 
397  | 0  |   dcval = (int) DESCALE((INT32) dcval, 3);  | 
398  |  | 
  | 
399  | 0  |   output_buf[0][output_col] = range_limit[dcval & RANGE_MASK];  | 
400  | 0  | }  | 
401  |  |  | 
402  |  | #endif /* IDCT_SCALING_SUPPORTED */  |