/src/gdal/build/frmts/jpeg/libjpeg12/jmemmgr12.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * jmemmgr.c |
3 | | * |
4 | | * Copyright (C) 1991-1997, Thomas G. Lane. |
5 | | * This file is part of the Independent JPEG Group's software. |
6 | | * For conditions of distribution and use, see the accompanying README file. |
7 | | * |
8 | | * This file contains the JPEG system-independent memory management |
9 | | * routines. This code is usable across a wide variety of machines; most |
10 | | * of the system dependencies have been isolated in a separate file. |
11 | | * The major functions provided here are: |
12 | | * * pool-based allocation and freeing of memory; |
13 | | * * policy decisions about how to divide available memory among the |
14 | | * virtual arrays; |
15 | | * * control logic for swapping virtual arrays between main memory and |
16 | | * backing storage. |
17 | | * The separate system-dependent file provides the actual backing-storage |
18 | | * access code, and it contains the policy decision about how much total |
19 | | * main memory to use. |
20 | | * This file is system-dependent in the sense that some of its functions |
21 | | * are unnecessary in some systems. For example, if there is enough virtual |
22 | | * memory so that backing storage will never be used, much of the virtual |
23 | | * array control logic could be removed. (Of course, if you have that much |
24 | | * memory then you shouldn't care about a little bit of unused code...) |
25 | | */ |
26 | | |
27 | | #define JPEG_INTERNALS |
28 | | #define AM_MEMORY_MANAGER /* we define jvirt_Xarray_control structs */ |
29 | | #include "jinclude.h" |
30 | | #include "jpeglib.h" |
31 | | #include "jmemsys.h" /* import the system-dependent declarations */ |
32 | | |
33 | | #ifndef NO_GETENV |
34 | | #ifndef HAVE_STDLIB_H /* <stdlib.h> should declare getenv() */ |
35 | | extern char * getenv JPP((const char * name)); |
36 | | #endif |
37 | | #endif |
38 | | |
39 | | |
40 | | /* |
41 | | * Some important notes: |
42 | | * The allocation routines provided here must never return NULL. |
43 | | * They should exit to error_exit if unsuccessful. |
44 | | * |
45 | | * It's not a good idea to try to merge the sarray and barray routines, |
46 | | * even though they are textually almost the same, because samples are |
47 | | * usually stored as bytes while coefficients are shorts or ints. Thus, |
48 | | * in machines where byte pointers have a different representation from |
49 | | * word pointers, the resulting machine code could not be the same. |
50 | | */ |
51 | | |
52 | | |
53 | | /* |
54 | | * Many machines require storage alignment: longs must start on 4-byte |
55 | | * boundaries, doubles on 8-byte boundaries, etc. On such machines, malloc() |
56 | | * always returns pointers that are multiples of the worst-case alignment |
57 | | * requirement, and we had better do so too. |
58 | | * There isn't any really portable way to determine the worst-case alignment |
59 | | * requirement. This module assumes that the alignment requirement is |
60 | | * multiples of sizeof(ALIGN_TYPE). |
61 | | * By default, we define ALIGN_TYPE as double. This is necessary on some |
62 | | * workstations (where doubles really do need 8-byte alignment) and will work |
63 | | * fine on nearly everything. If your machine has lesser alignment needs, |
64 | | * you can save a few bytes by making ALIGN_TYPE smaller. |
65 | | * The only place I know of where this will NOT work is certain Macintosh |
66 | | * 680x0 compilers that define double as a 10-byte IEEE extended float. |
67 | | * Doing 10-byte alignment is counterproductive because longwords won't be |
68 | | * aligned well. Put "#define ALIGN_TYPE long" in jconfig.h if you have |
69 | | * such a compiler. |
70 | | */ |
71 | | |
72 | | #ifndef ALIGN_TYPE /* so can override from jconfig.h */ |
73 | | #define ALIGN_TYPE double |
74 | | #endif |
75 | | |
76 | | |
77 | | /* |
78 | | * We allocate objects from "pools", where each pool is gotten with a single |
79 | | * request to jpeg_get_small() or jpeg_get_large(). There is no per-object |
80 | | * overhead within a pool, except for alignment padding. Each pool has a |
81 | | * header with a link to the next pool of the same class. |
82 | | * Small and large pool headers are identical except that the latter's |
83 | | * link pointer must be FAR on 80x86 machines. |
84 | | * Notice that the "real" header fields are union'ed with a dummy ALIGN_TYPE |
85 | | * field. This forces the compiler to make SIZEOF(small_pool_hdr) a multiple |
86 | | * of the alignment requirement of ALIGN_TYPE. |
87 | | */ |
88 | | |
89 | | typedef union small_pool_struct * small_pool_ptr; |
90 | | |
91 | | typedef union small_pool_struct { |
92 | | struct { |
93 | | small_pool_ptr next; /* next in list of pools */ |
94 | | size_t bytes_used; /* how many bytes already used within pool */ |
95 | | size_t bytes_left; /* bytes still available in this pool */ |
96 | | } hdr; |
97 | | ALIGN_TYPE dummy; /* included in union to ensure alignment */ |
98 | | } small_pool_hdr; |
99 | | |
100 | | typedef union large_pool_struct FAR * large_pool_ptr; |
101 | | |
102 | | typedef union large_pool_struct { |
103 | | struct { |
104 | | large_pool_ptr next; /* next in list of pools */ |
105 | | size_t bytes_used; /* how many bytes already used within pool */ |
106 | | size_t bytes_left; /* bytes still available in this pool */ |
107 | | } hdr; |
108 | | ALIGN_TYPE dummy; /* included in union to ensure alignment */ |
109 | | } large_pool_hdr; |
110 | | |
111 | | |
112 | | /* |
113 | | * Here is the full definition of a memory manager object. |
114 | | */ |
115 | | |
116 | | typedef struct { |
117 | | struct jpeg_memory_mgr pub; /* public fields */ |
118 | | |
119 | | /* Each pool identifier (lifetime class) names a linked list of pools. */ |
120 | | small_pool_ptr small_list[JPOOL_NUMPOOLS]; |
121 | | large_pool_ptr large_list[JPOOL_NUMPOOLS]; |
122 | | |
123 | | /* Since we only have one lifetime class of virtual arrays, only one |
124 | | * linked list is necessary (for each datatype). Note that the virtual |
125 | | * array control blocks being linked together are actually stored somewhere |
126 | | * in the small-pool list. |
127 | | */ |
128 | | jvirt_sarray_ptr virt_sarray_list; |
129 | | jvirt_barray_ptr virt_barray_list; |
130 | | |
131 | | /* This counts total space obtained from jpeg_get_small/large */ |
132 | | long total_space_allocated; |
133 | | |
134 | | /* alloc_sarray and alloc_barray set this value for use by virtual |
135 | | * array routines. |
136 | | */ |
137 | | JDIMENSION last_rowsperchunk; /* from most recent alloc_sarray/barray */ |
138 | | } my_memory_mgr; |
139 | | |
140 | | typedef my_memory_mgr * my_mem_ptr; |
141 | | |
142 | | |
143 | | /* |
144 | | * The control blocks for virtual arrays. |
145 | | * Note that these blocks are allocated in the "small" pool area. |
146 | | * System-dependent info for the associated backing store (if any) is hidden |
147 | | * inside the backing_store_info struct. |
148 | | */ |
149 | | |
150 | | struct jvirt_sarray_control { |
151 | | JSAMPARRAY mem_buffer; /* => the in-memory buffer */ |
152 | | JDIMENSION rows_in_array; /* total virtual array height */ |
153 | | JDIMENSION samplesperrow; /* width of array (and of memory buffer) */ |
154 | | JDIMENSION maxaccess; /* max rows accessed by access_virt_sarray */ |
155 | | JDIMENSION rows_in_mem; /* height of memory buffer */ |
156 | | JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */ |
157 | | JDIMENSION cur_start_row; /* first logical row # in the buffer */ |
158 | | JDIMENSION first_undef_row; /* row # of first uninitialized row */ |
159 | | boolean pre_zero; /* pre-zero mode requested? */ |
160 | | boolean dirty; /* do current buffer contents need written? */ |
161 | | boolean b_s_open; /* is backing-store data valid? */ |
162 | | jvirt_sarray_ptr next; /* link to next virtual sarray control block */ |
163 | | backing_store_info b_s_info; /* System-dependent control info */ |
164 | | }; |
165 | | |
166 | | struct jvirt_barray_control { |
167 | | JBLOCKARRAY mem_buffer; /* => the in-memory buffer */ |
168 | | JDIMENSION rows_in_array; /* total virtual array height */ |
169 | | JDIMENSION blocksperrow; /* width of array (and of memory buffer) */ |
170 | | JDIMENSION maxaccess; /* max rows accessed by access_virt_barray */ |
171 | | JDIMENSION rows_in_mem; /* height of memory buffer */ |
172 | | JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */ |
173 | | JDIMENSION cur_start_row; /* first logical row # in the buffer */ |
174 | | JDIMENSION first_undef_row; /* row # of first uninitialized row */ |
175 | | boolean pre_zero; /* pre-zero mode requested? */ |
176 | | boolean dirty; /* do current buffer contents need written? */ |
177 | | boolean b_s_open; /* is backing-store data valid? */ |
178 | | jvirt_barray_ptr next; /* link to next virtual barray control block */ |
179 | | backing_store_info b_s_info; /* System-dependent control info */ |
180 | | }; |
181 | | |
182 | | |
183 | | #ifdef MEM_STATS /* optional extra stuff for statistics */ |
184 | | |
185 | | LOCAL(void) |
186 | | print_mem_stats (j_common_ptr cinfo, int pool_id) |
187 | | { |
188 | | my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
189 | | small_pool_ptr shdr_ptr; |
190 | | large_pool_ptr lhdr_ptr; |
191 | | |
192 | | /* Since this is only a debugging stub, we can cheat a little by using |
193 | | * fprintf directly rather than going through the trace message code. |
194 | | * This is helpful because message parm array can't handle longs. |
195 | | */ |
196 | | fprintf(stderr, "Freeing pool %d, total space = %ld\n", |
197 | | pool_id, mem->total_space_allocated); |
198 | | |
199 | | for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL; |
200 | | lhdr_ptr = lhdr_ptr->hdr.next) { |
201 | | fprintf(stderr, " Large chunk used %ld\n", |
202 | | (long) lhdr_ptr->hdr.bytes_used); |
203 | | } |
204 | | |
205 | | for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL; |
206 | | shdr_ptr = shdr_ptr->hdr.next) { |
207 | | fprintf(stderr, " Small chunk used %ld free %ld\n", |
208 | | (long) shdr_ptr->hdr.bytes_used, |
209 | | (long) shdr_ptr->hdr.bytes_left); |
210 | | } |
211 | | } |
212 | | |
213 | | #endif /* MEM_STATS */ |
214 | | |
215 | | |
216 | | LOCAL(void) |
217 | | out_of_memory (j_common_ptr cinfo, int which) LIBJPEG_NO_RETURN; |
218 | | |
219 | | LOCAL(void) |
220 | | out_of_memory (j_common_ptr cinfo, int which) |
221 | | /* Report an out-of-memory error and stop execution */ |
222 | | /* If we compiled MEM_STATS support, report alloc requests before dying */ |
223 | 0 | { |
224 | | #ifdef MEM_STATS |
225 | | cinfo->err->trace_level = 2; /* force self_destruct to report stats */ |
226 | | #endif |
227 | 0 | ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which); |
228 | 0 | } |
229 | | |
230 | | |
231 | | /* |
232 | | * Allocation of "small" objects. |
233 | | * |
234 | | * For these, we use pooled storage. When a new pool must be created, |
235 | | * we try to get enough space for the current request plus a "slop" factor, |
236 | | * where the slop will be the amount of leftover space in the new pool. |
237 | | * The speed vs. space tradeoff is largely determined by the slop values. |
238 | | * A different slop value is provided for each pool class (lifetime), |
239 | | * and we also distinguish the first pool of a class from later ones. |
240 | | * NOTE: the values given work fairly well on both 16- and 32-bit-int |
241 | | * machines, but may be too small if longs are 64 bits or more. |
242 | | */ |
243 | | |
244 | | static const size_t first_pool_slop[JPOOL_NUMPOOLS] = |
245 | | { |
246 | | 1600, /* first PERMANENT pool */ |
247 | | 16000 /* first IMAGE pool */ |
248 | | }; |
249 | | |
250 | | static const size_t extra_pool_slop[JPOOL_NUMPOOLS] = |
251 | | { |
252 | | 0, /* additional PERMANENT pools */ |
253 | | 5000 /* additional IMAGE pools */ |
254 | | }; |
255 | | |
256 | 0 | #define MIN_SLOP 50 /* greater than 0 to avoid futile looping */ |
257 | | |
258 | | |
259 | | METHODDEF(void *) |
260 | | alloc_small (j_common_ptr cinfo, int pool_id, size_t sizeofobject) |
261 | | /* Allocate a "small" object */ |
262 | 0 | { |
263 | 0 | my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
264 | 0 | small_pool_ptr hdr_ptr, prev_hdr_ptr; |
265 | 0 | char * data_ptr; |
266 | 0 | size_t odd_bytes, min_request, slop; |
267 | | |
268 | | /* Check for unsatisfiable request (do now to ensure no overflow below) */ |
269 | 0 | if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(small_pool_hdr))) |
270 | 0 | out_of_memory(cinfo, 1); /* request exceeds malloc's ability */ |
271 | | |
272 | | /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */ |
273 | 0 | odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE); |
274 | 0 | if (odd_bytes > 0) |
275 | 0 | sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes; |
276 | | |
277 | | /* See if space is available in any existing pool */ |
278 | 0 | if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS) |
279 | 0 | ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ |
280 | 0 | prev_hdr_ptr = NULL; |
281 | 0 | hdr_ptr = mem->small_list[pool_id]; |
282 | 0 | while (hdr_ptr != NULL) { |
283 | 0 | if (hdr_ptr->hdr.bytes_left >= sizeofobject) |
284 | 0 | break; /* found pool with enough space */ |
285 | 0 | prev_hdr_ptr = hdr_ptr; |
286 | 0 | hdr_ptr = hdr_ptr->hdr.next; |
287 | 0 | } |
288 | | |
289 | | /* Time to make a new pool? */ |
290 | 0 | if (hdr_ptr == NULL) { |
291 | | /* min_request is what we need now, slop is what will be leftover */ |
292 | 0 | min_request = sizeofobject + SIZEOF(small_pool_hdr); |
293 | 0 | if (prev_hdr_ptr == NULL) /* first pool in class? */ |
294 | 0 | slop = first_pool_slop[pool_id]; |
295 | 0 | else |
296 | 0 | slop = extra_pool_slop[pool_id]; |
297 | | /* Don't ask for more than MAX_ALLOC_CHUNK */ |
298 | 0 | if (slop > (size_t) (MAX_ALLOC_CHUNK-min_request)) |
299 | 0 | slop = (size_t) (MAX_ALLOC_CHUNK-min_request); |
300 | | /* Try to get space, if fail reduce slop and try again */ |
301 | 0 | for (;;) { |
302 | 0 | hdr_ptr = (small_pool_ptr) jpeg_get_small(cinfo, min_request + slop); |
303 | 0 | if (hdr_ptr != NULL) |
304 | 0 | break; |
305 | 0 | slop /= 2; |
306 | 0 | if (slop < MIN_SLOP) /* give up when it gets real small */ |
307 | 0 | out_of_memory(cinfo, 2); /* jpeg_get_small failed */ |
308 | 0 | } |
309 | 0 | mem->total_space_allocated += (long)(min_request + slop); |
310 | | /* Success, initialize the new pool header and add to end of list */ |
311 | 0 | hdr_ptr->hdr.next = NULL; |
312 | 0 | hdr_ptr->hdr.bytes_used = 0; |
313 | 0 | hdr_ptr->hdr.bytes_left = sizeofobject + slop; |
314 | 0 | if (prev_hdr_ptr == NULL) /* first pool in class? */ |
315 | 0 | mem->small_list[pool_id] = hdr_ptr; |
316 | 0 | else |
317 | 0 | prev_hdr_ptr->hdr.next = hdr_ptr; |
318 | 0 | } |
319 | | |
320 | | /* OK, allocate the object from the current pool */ |
321 | 0 | data_ptr = (char *) (hdr_ptr + 1); /* point to first data byte in pool */ |
322 | 0 | data_ptr += hdr_ptr->hdr.bytes_used; /* point to place for object */ |
323 | 0 | hdr_ptr->hdr.bytes_used += sizeofobject; |
324 | 0 | hdr_ptr->hdr.bytes_left -= sizeofobject; |
325 | |
|
326 | 0 | return (void *) data_ptr; |
327 | 0 | } |
328 | | |
329 | | |
330 | | /* |
331 | | * Allocation of "large" objects. |
332 | | * |
333 | | * The external semantics of these are the same as "small" objects, |
334 | | * except that FAR pointers are used on 80x86. However the pool |
335 | | * management heuristics are quite different. We assume that each |
336 | | * request is large enough that it may as well be passed directly to |
337 | | * jpeg_get_large; the pool management just links everything together |
338 | | * so that we can free it all on demand. |
339 | | * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY |
340 | | * structures. The routines that create these structures (see below) |
341 | | * deliberately bunch rows together to ensure a large request size. |
342 | | */ |
343 | | |
344 | | METHODDEF(void FAR *) |
345 | | alloc_large (j_common_ptr cinfo, int pool_id, size_t sizeofobject) |
346 | | /* Allocate a "large" object */ |
347 | 0 | { |
348 | 0 | my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
349 | 0 | large_pool_ptr hdr_ptr; |
350 | 0 | size_t odd_bytes; |
351 | | |
352 | | /* Check for unsatisfiable request (do now to ensure no overflow below) */ |
353 | 0 | if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr))) |
354 | 0 | out_of_memory(cinfo, 3); /* request exceeds malloc's ability */ |
355 | | |
356 | | /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */ |
357 | 0 | odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE); |
358 | 0 | if (odd_bytes > 0) |
359 | 0 | sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes; |
360 | | |
361 | | /* Always make a new pool */ |
362 | 0 | if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS) |
363 | 0 | ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ |
364 | |
|
365 | 0 | hdr_ptr = (large_pool_ptr) jpeg_get_large(cinfo, sizeofobject + |
366 | 0 | SIZEOF(large_pool_hdr)); |
367 | 0 | if (hdr_ptr == NULL) |
368 | 0 | out_of_memory(cinfo, 4); /* jpeg_get_large failed */ |
369 | 0 | mem->total_space_allocated += (long)(sizeofobject + SIZEOF(large_pool_hdr)); |
370 | | |
371 | | /* Success, initialize the new pool header and add to list */ |
372 | 0 | hdr_ptr->hdr.next = mem->large_list[pool_id]; |
373 | | /* We maintain space counts in each pool header for statistical purposes, |
374 | | * even though they are not needed for allocation. |
375 | | */ |
376 | 0 | hdr_ptr->hdr.bytes_used = sizeofobject; |
377 | 0 | hdr_ptr->hdr.bytes_left = 0; |
378 | 0 | mem->large_list[pool_id] = hdr_ptr; |
379 | |
|
380 | 0 | return (void FAR *) (hdr_ptr + 1); /* point to first data byte in pool */ |
381 | 0 | } |
382 | | |
383 | | |
384 | | /* |
385 | | * Creation of 2-D sample arrays. |
386 | | * The pointers are in near heap, the samples themselves in FAR heap. |
387 | | * |
388 | | * To minimize allocation overhead and to allow I/O of large contiguous |
389 | | * blocks, we allocate the sample rows in groups of as many rows as possible |
390 | | * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request. |
391 | | * NB: the virtual array control routines, later in this file, know about |
392 | | * this chunking of rows. The rowsperchunk value is left in the mem manager |
393 | | * object so that it can be saved away if this sarray is the workspace for |
394 | | * a virtual array. |
395 | | */ |
396 | | |
397 | | METHODDEF(JSAMPARRAY) |
398 | | alloc_sarray (j_common_ptr cinfo, int pool_id, |
399 | | JDIMENSION samplesperrow, JDIMENSION numrows) |
400 | | /* Allocate a 2-D sample array */ |
401 | 0 | { |
402 | 0 | my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
403 | 0 | JSAMPARRAY result; |
404 | 0 | JSAMPROW workspace; |
405 | 0 | JDIMENSION rowsperchunk, currow, i; |
406 | 0 | long ltemp; |
407 | | |
408 | | /* Calculate max # of rows allowed in one allocation chunk */ |
409 | 0 | ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) / |
410 | 0 | ((long) samplesperrow * SIZEOF(JSAMPLE)); |
411 | 0 | if (ltemp <= 0) |
412 | 0 | ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); |
413 | 0 | if (ltemp < (long) numrows) |
414 | 0 | rowsperchunk = (JDIMENSION) ltemp; |
415 | 0 | else |
416 | 0 | rowsperchunk = numrows; |
417 | 0 | mem->last_rowsperchunk = rowsperchunk; |
418 | | |
419 | | /* Get space for row pointers (small object) */ |
420 | 0 | result = (JSAMPARRAY) alloc_small(cinfo, pool_id, |
421 | 0 | (size_t) (numrows * SIZEOF(JSAMPROW))); |
422 | | |
423 | | /* Get the rows themselves (large objects) */ |
424 | 0 | currow = 0; |
425 | 0 | while (currow < numrows) { |
426 | 0 | rowsperchunk = MIN(rowsperchunk, numrows - currow); |
427 | 0 | workspace = (JSAMPROW) alloc_large(cinfo, pool_id, |
428 | 0 | (size_t) ((size_t) rowsperchunk * (size_t) samplesperrow |
429 | 0 | * SIZEOF(JSAMPLE))); |
430 | 0 | for (i = rowsperchunk; i > 0; i--) { |
431 | 0 | result[currow++] = workspace; |
432 | 0 | workspace += samplesperrow; |
433 | 0 | } |
434 | 0 | } |
435 | |
|
436 | 0 | return result; |
437 | 0 | } |
438 | | |
439 | | |
440 | | /* |
441 | | * Creation of 2-D coefficient-block arrays. |
442 | | * This is essentially the same as the code for sample arrays, above. |
443 | | */ |
444 | | |
445 | | METHODDEF(JBLOCKARRAY) |
446 | | alloc_barray (j_common_ptr cinfo, int pool_id, |
447 | | JDIMENSION blocksperrow, JDIMENSION numrows) |
448 | | /* Allocate a 2-D coefficient-block array */ |
449 | 0 | { |
450 | 0 | my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
451 | 0 | JBLOCKARRAY result; |
452 | 0 | JBLOCKROW workspace; |
453 | 0 | JDIMENSION rowsperchunk, currow, i; |
454 | 0 | long ltemp; |
455 | | |
456 | | /* Calculate max # of rows allowed in one allocation chunk */ |
457 | 0 | ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) / |
458 | 0 | ((long) blocksperrow * SIZEOF(JBLOCK)); |
459 | 0 | if (ltemp <= 0) |
460 | 0 | ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); |
461 | 0 | if (ltemp < (long) numrows) |
462 | 0 | rowsperchunk = (JDIMENSION) ltemp; |
463 | 0 | else |
464 | 0 | rowsperchunk = numrows; |
465 | 0 | mem->last_rowsperchunk = rowsperchunk; |
466 | | |
467 | | /* Get space for row pointers (small object) */ |
468 | 0 | result = (JBLOCKARRAY) alloc_small(cinfo, pool_id, |
469 | 0 | (size_t) (numrows * SIZEOF(JBLOCKROW))); |
470 | | |
471 | | /* Get the rows themselves (large objects) */ |
472 | 0 | currow = 0; |
473 | 0 | while (currow < numrows) { |
474 | 0 | rowsperchunk = MIN(rowsperchunk, numrows - currow); |
475 | 0 | workspace = (JBLOCKROW) alloc_large(cinfo, pool_id, |
476 | 0 | (size_t) ((size_t) rowsperchunk * (size_t) blocksperrow |
477 | 0 | * SIZEOF(JBLOCK))); |
478 | 0 | for (i = rowsperchunk; i > 0; i--) { |
479 | 0 | result[currow++] = workspace; |
480 | 0 | workspace += blocksperrow; |
481 | 0 | } |
482 | 0 | } |
483 | |
|
484 | 0 | return result; |
485 | 0 | } |
486 | | |
487 | | |
488 | | /* |
489 | | * About virtual array management: |
490 | | * |
491 | | * The above "normal" array routines are only used to allocate strip buffers |
492 | | * (as wide as the image, but just a few rows high). Full-image-sized buffers |
493 | | * are handled as "virtual" arrays. The array is still accessed a strip at a |
494 | | * time, but the memory manager must save the whole array for repeated |
495 | | * accesses. The intended implementation is that there is a strip buffer in |
496 | | * memory (as high as is possible given the desired memory limit), plus a |
497 | | * backing file that holds the rest of the array. |
498 | | * |
499 | | * The request_virt_array routines are told the total size of the image and |
500 | | * the maximum number of rows that will be accessed at once. The in-memory |
501 | | * buffer must be at least as large as the maxaccess value. |
502 | | * |
503 | | * The request routines create control blocks but not the in-memory buffers. |
504 | | * That is postponed until realize_virt_arrays is called. At that time the |
505 | | * total amount of space needed is known (approximately, anyway), so free |
506 | | * memory can be divided up fairly. |
507 | | * |
508 | | * The access_virt_array routines are responsible for making a specific strip |
509 | | * area accessible (after reading or writing the backing file, if necessary). |
510 | | * Note that the access routines are told whether the caller intends to modify |
511 | | * the accessed strip; during a read-only pass this saves having to rewrite |
512 | | * data to disk. The access routines are also responsible for pre-zeroing |
513 | | * any newly accessed rows, if pre-zeroing was requested. |
514 | | * |
515 | | * In current usage, the access requests are usually for nonoverlapping |
516 | | * strips; that is, successive access start_row numbers differ by exactly |
517 | | * num_rows = maxaccess. This means we can get good performance with simple |
518 | | * buffer dump/reload logic, by making the in-memory buffer be a multiple |
519 | | * of the access height; then there will never be accesses across bufferload |
520 | | * boundaries. The code will still work with overlapping access requests, |
521 | | * but it doesn't handle bufferload overlaps very efficiently. |
522 | | */ |
523 | | |
524 | | |
525 | | METHODDEF(jvirt_sarray_ptr) |
526 | | request_virt_sarray (j_common_ptr cinfo, int pool_id, boolean pre_zero, |
527 | | JDIMENSION samplesperrow, JDIMENSION numrows, |
528 | | JDIMENSION maxaccess) |
529 | | /* Request a virtual 2-D sample array */ |
530 | 0 | { |
531 | 0 | my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
532 | 0 | jvirt_sarray_ptr result; |
533 | | |
534 | | /* Only IMAGE-lifetime virtual arrays are currently supported */ |
535 | 0 | if (pool_id != JPOOL_IMAGE) |
536 | 0 | ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ |
537 | | |
538 | | /* get control block */ |
539 | 0 | result = (jvirt_sarray_ptr) alloc_small(cinfo, pool_id, |
540 | 0 | SIZEOF(struct jvirt_sarray_control)); |
541 | |
|
542 | 0 | result->mem_buffer = NULL; /* marks array not yet realized */ |
543 | 0 | result->rows_in_array = numrows; |
544 | 0 | result->samplesperrow = samplesperrow; |
545 | 0 | result->maxaccess = maxaccess; |
546 | 0 | result->pre_zero = pre_zero; |
547 | 0 | result->b_s_open = FALSE; /* no associated backing-store object */ |
548 | 0 | result->next = mem->virt_sarray_list; /* add to list of virtual arrays */ |
549 | 0 | mem->virt_sarray_list = result; |
550 | |
|
551 | 0 | return result; |
552 | 0 | } |
553 | | |
554 | | |
555 | | METHODDEF(jvirt_barray_ptr) |
556 | | request_virt_barray (j_common_ptr cinfo, int pool_id, boolean pre_zero, |
557 | | JDIMENSION blocksperrow, JDIMENSION numrows, |
558 | | JDIMENSION maxaccess) |
559 | | /* Request a virtual 2-D coefficient-block array */ |
560 | 0 | { |
561 | 0 | my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
562 | 0 | jvirt_barray_ptr result; |
563 | | |
564 | | /* Only IMAGE-lifetime virtual arrays are currently supported */ |
565 | 0 | if (pool_id != JPOOL_IMAGE) |
566 | 0 | ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ |
567 | | |
568 | | /* get control block */ |
569 | 0 | result = (jvirt_barray_ptr) alloc_small(cinfo, pool_id, |
570 | 0 | SIZEOF(struct jvirt_barray_control)); |
571 | |
|
572 | 0 | result->mem_buffer = NULL; /* marks array not yet realized */ |
573 | 0 | result->rows_in_array = numrows; |
574 | 0 | result->blocksperrow = blocksperrow; |
575 | 0 | result->maxaccess = maxaccess; |
576 | 0 | result->pre_zero = pre_zero; |
577 | 0 | result->b_s_open = FALSE; /* no associated backing-store object */ |
578 | 0 | result->next = mem->virt_barray_list; /* add to list of virtual arrays */ |
579 | 0 | mem->virt_barray_list = result; |
580 | |
|
581 | 0 | return result; |
582 | 0 | } |
583 | | |
584 | | |
585 | | METHODDEF(void) |
586 | | realize_virt_arrays (j_common_ptr cinfo) |
587 | | /* Allocate the in-memory buffers for any unrealized virtual arrays */ |
588 | 0 | { |
589 | 0 | my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
590 | 0 | long space_per_minheight, maximum_space, avail_mem; |
591 | 0 | long minheights, max_minheights; |
592 | 0 | jvirt_sarray_ptr sptr; |
593 | 0 | jvirt_barray_ptr bptr; |
594 | | |
595 | | /* Compute the minimum space needed (maxaccess rows in each buffer) |
596 | | * and the maximum space needed (full image height in each buffer). |
597 | | * These may be of use to the system-dependent jpeg_mem_available routine. |
598 | | */ |
599 | 0 | space_per_minheight = 0; |
600 | 0 | maximum_space = 0; |
601 | 0 | for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { |
602 | 0 | if (sptr->mem_buffer == NULL) { /* if not realized yet */ |
603 | 0 | space_per_minheight += (long) sptr->maxaccess * |
604 | 0 | (long) sptr->samplesperrow * SIZEOF(JSAMPLE); |
605 | 0 | maximum_space += (long) sptr->rows_in_array * |
606 | 0 | (long) sptr->samplesperrow * SIZEOF(JSAMPLE); |
607 | 0 | } |
608 | 0 | } |
609 | 0 | for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { |
610 | 0 | if (bptr->mem_buffer == NULL) { /* if not realized yet */ |
611 | 0 | space_per_minheight += (long) bptr->maxaccess * |
612 | 0 | (long) bptr->blocksperrow * SIZEOF(JBLOCK); |
613 | 0 | maximum_space += (long) bptr->rows_in_array * |
614 | 0 | (long) bptr->blocksperrow * SIZEOF(JBLOCK); |
615 | 0 | } |
616 | 0 | } |
617 | |
|
618 | 0 | if (space_per_minheight <= 0) |
619 | 0 | return; /* no unrealized arrays, no work */ |
620 | | |
621 | | /* Determine amount of memory to actually use; this is system-dependent. */ |
622 | 0 | avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space, |
623 | 0 | mem->total_space_allocated); |
624 | | |
625 | | /* If the maximum space needed is available, make all the buffers full |
626 | | * height; otherwise parcel it out with the same number of minheights |
627 | | * in each buffer. |
628 | | */ |
629 | 0 | if (avail_mem >= maximum_space) |
630 | 0 | max_minheights = 1000000000L; |
631 | 0 | else { |
632 | 0 | max_minheights = avail_mem / space_per_minheight; |
633 | | /* If there doesn't seem to be enough space, try to get the minimum |
634 | | * anyway. This allows a "stub" implementation of jpeg_mem_available(). |
635 | | */ |
636 | 0 | if (max_minheights <= 0) |
637 | 0 | max_minheights = 1; |
638 | 0 | } |
639 | | |
640 | | /* Allocate the in-memory buffers and initialize backing store as needed. */ |
641 | |
|
642 | 0 | for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { |
643 | 0 | if (sptr->mem_buffer == NULL) { /* if not realized yet */ |
644 | 0 | minheights = ((long) sptr->rows_in_array - 1L) / sptr->maxaccess + 1L; |
645 | 0 | if (minheights <= max_minheights) { |
646 | | /* This buffer fits in memory */ |
647 | 0 | sptr->rows_in_mem = sptr->rows_in_array; |
648 | 0 | } else { |
649 | | /* It doesn't fit in memory, create backing store. */ |
650 | 0 | sptr->rows_in_mem = (JDIMENSION) (max_minheights * sptr->maxaccess); |
651 | 0 | jpeg_open_backing_store(cinfo, & sptr->b_s_info, |
652 | 0 | (long) sptr->rows_in_array * |
653 | 0 | (long) sptr->samplesperrow * |
654 | 0 | (long) SIZEOF(JSAMPLE)); |
655 | 0 | sptr->b_s_open = TRUE; |
656 | 0 | } |
657 | 0 | sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE, |
658 | 0 | sptr->samplesperrow, sptr->rows_in_mem); |
659 | 0 | sptr->rowsperchunk = mem->last_rowsperchunk; |
660 | 0 | sptr->cur_start_row = 0; |
661 | 0 | sptr->first_undef_row = 0; |
662 | 0 | sptr->dirty = FALSE; |
663 | 0 | } |
664 | 0 | } |
665 | |
|
666 | 0 | for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { |
667 | 0 | if (bptr->mem_buffer == NULL) { /* if not realized yet */ |
668 | 0 | minheights = ((long) bptr->rows_in_array - 1L) / bptr->maxaccess + 1L; |
669 | 0 | if (minheights <= max_minheights) { |
670 | | /* This buffer fits in memory */ |
671 | 0 | bptr->rows_in_mem = bptr->rows_in_array; |
672 | 0 | } else { |
673 | | /* It doesn't fit in memory, create backing store. */ |
674 | 0 | bptr->rows_in_mem = (JDIMENSION) (max_minheights * bptr->maxaccess); |
675 | 0 | jpeg_open_backing_store(cinfo, & bptr->b_s_info, |
676 | 0 | (long) bptr->rows_in_array * |
677 | 0 | (long) bptr->blocksperrow * |
678 | 0 | (long) SIZEOF(JBLOCK)); |
679 | 0 | bptr->b_s_open = TRUE; |
680 | 0 | } |
681 | 0 | bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE, |
682 | 0 | bptr->blocksperrow, bptr->rows_in_mem); |
683 | 0 | bptr->rowsperchunk = mem->last_rowsperchunk; |
684 | 0 | bptr->cur_start_row = 0; |
685 | 0 | bptr->first_undef_row = 0; |
686 | 0 | bptr->dirty = FALSE; |
687 | 0 | } |
688 | 0 | } |
689 | 0 | } |
690 | | |
691 | | |
692 | | LOCAL(void) |
693 | | do_sarray_io (j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing) |
694 | | /* Do backing store read or write of a virtual sample array */ |
695 | 0 | { |
696 | 0 | long bytesperrow, file_offset, byte_count, rows, thisrow, i; |
697 | |
|
698 | 0 | bytesperrow = (long) ptr->samplesperrow * SIZEOF(JSAMPLE); |
699 | 0 | file_offset = ptr->cur_start_row * bytesperrow; |
700 | | /* Loop to read or write each allocation chunk in mem_buffer */ |
701 | 0 | for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) { |
702 | | /* One chunk, but check for short chunk at end of buffer */ |
703 | 0 | rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i); |
704 | | /* Transfer no more than is currently defined */ |
705 | 0 | thisrow = (long) ptr->cur_start_row + i; |
706 | 0 | rows = MIN(rows, (long) ptr->first_undef_row - thisrow); |
707 | | /* Transfer no more than fits in file */ |
708 | 0 | rows = MIN(rows, (long) ptr->rows_in_array - thisrow); |
709 | 0 | if (rows <= 0) /* this chunk might be past end of file! */ |
710 | 0 | break; |
711 | 0 | byte_count = rows * bytesperrow; |
712 | 0 | if (writing) |
713 | 0 | (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info, |
714 | 0 | (void FAR *) ptr->mem_buffer[i], |
715 | 0 | file_offset, byte_count); |
716 | 0 | else |
717 | 0 | (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info, |
718 | 0 | (void FAR *) ptr->mem_buffer[i], |
719 | 0 | file_offset, byte_count); |
720 | 0 | file_offset += byte_count; |
721 | 0 | } |
722 | 0 | } |
723 | | |
724 | | |
725 | | LOCAL(void) |
726 | | do_barray_io (j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing) |
727 | | /* Do backing store read or write of a virtual coefficient-block array */ |
728 | 0 | { |
729 | 0 | long bytesperrow, file_offset, byte_count, rows, thisrow, i; |
730 | |
|
731 | 0 | bytesperrow = (long) ptr->blocksperrow * SIZEOF(JBLOCK); |
732 | 0 | file_offset = ptr->cur_start_row * bytesperrow; |
733 | | /* Loop to read or write each allocation chunk in mem_buffer */ |
734 | 0 | for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) { |
735 | | /* One chunk, but check for short chunk at end of buffer */ |
736 | 0 | rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i); |
737 | | /* Transfer no more than is currently defined */ |
738 | 0 | thisrow = (long) ptr->cur_start_row + i; |
739 | 0 | rows = MIN(rows, (long) ptr->first_undef_row - thisrow); |
740 | | /* Transfer no more than fits in file */ |
741 | 0 | rows = MIN(rows, (long) ptr->rows_in_array - thisrow); |
742 | 0 | if (rows <= 0) /* this chunk might be past end of file! */ |
743 | 0 | break; |
744 | 0 | byte_count = rows * bytesperrow; |
745 | 0 | if (writing) |
746 | 0 | (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info, |
747 | 0 | (void FAR *) ptr->mem_buffer[i], |
748 | 0 | file_offset, byte_count); |
749 | 0 | else |
750 | 0 | (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info, |
751 | 0 | (void FAR *) ptr->mem_buffer[i], |
752 | 0 | file_offset, byte_count); |
753 | 0 | file_offset += byte_count; |
754 | 0 | } |
755 | 0 | } |
756 | | |
757 | | |
758 | | METHODDEF(JSAMPARRAY) |
759 | | access_virt_sarray (j_common_ptr cinfo, jvirt_sarray_ptr ptr, |
760 | | JDIMENSION start_row, JDIMENSION num_rows, |
761 | | boolean writable) |
762 | | /* Access the part of a virtual sample array starting at start_row */ |
763 | | /* and extending for num_rows rows. writable is true if */ |
764 | | /* caller intends to modify the accessed area. */ |
765 | 0 | { |
766 | 0 | JDIMENSION end_row = start_row + num_rows; |
767 | 0 | JDIMENSION undef_row; |
768 | | |
769 | | /* debugging check */ |
770 | 0 | if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess || |
771 | 0 | ptr->mem_buffer == NULL) |
772 | 0 | ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); |
773 | | |
774 | | /* Make the desired part of the virtual array accessible */ |
775 | 0 | if (start_row < ptr->cur_start_row || |
776 | 0 | end_row > ptr->cur_start_row+ptr->rows_in_mem) { |
777 | 0 | if (! ptr->b_s_open) |
778 | 0 | ERREXIT(cinfo, JERR_VIRTUAL_BUG); |
779 | | /* Flush old buffer contents if necessary */ |
780 | 0 | if (ptr->dirty) { |
781 | 0 | do_sarray_io(cinfo, ptr, TRUE); |
782 | 0 | ptr->dirty = FALSE; |
783 | 0 | } |
784 | | /* Decide what part of virtual array to access. |
785 | | * Algorithm: if target address > current window, assume forward scan, |
786 | | * load starting at target address. If target address < current window, |
787 | | * assume backward scan, load so that target area is top of window. |
788 | | * Note that when switching from forward write to forward read, will have |
789 | | * start_row = 0, so the limiting case applies and we load from 0 anyway. |
790 | | */ |
791 | 0 | if (start_row > ptr->cur_start_row) { |
792 | 0 | ptr->cur_start_row = start_row; |
793 | 0 | } else { |
794 | | /* use long arithmetic here to avoid overflow & unsigned problems */ |
795 | 0 | long ltemp; |
796 | |
|
797 | 0 | ltemp = (long) end_row - (long) ptr->rows_in_mem; |
798 | 0 | if (ltemp < 0) |
799 | 0 | ltemp = 0; /* don't fall off front end of file */ |
800 | 0 | ptr->cur_start_row = (JDIMENSION) ltemp; |
801 | 0 | } |
802 | | /* Read in the selected part of the array. |
803 | | * During the initial write pass, we will do no actual read |
804 | | * because the selected part is all undefined. |
805 | | */ |
806 | 0 | do_sarray_io(cinfo, ptr, FALSE); |
807 | 0 | } |
808 | | /* Ensure the accessed part of the array is defined; prezero if needed. |
809 | | * To improve locality of access, we only prezero the part of the array |
810 | | * that the caller is about to access, not the entire in-memory array. |
811 | | */ |
812 | 0 | if (ptr->first_undef_row < end_row) { |
813 | 0 | if (ptr->first_undef_row < start_row) { |
814 | 0 | if (writable) /* writer skipped over a section of array */ |
815 | 0 | ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); |
816 | 0 | undef_row = start_row; /* but reader is allowed to read ahead */ |
817 | 0 | } else { |
818 | 0 | undef_row = ptr->first_undef_row; |
819 | 0 | } |
820 | 0 | if (writable) |
821 | 0 | ptr->first_undef_row = end_row; |
822 | 0 | if (ptr->pre_zero) { |
823 | 0 | size_t bytesperrow = (size_t) ptr->samplesperrow * SIZEOF(JSAMPLE); |
824 | 0 | undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */ |
825 | 0 | end_row -= ptr->cur_start_row; |
826 | 0 | while (undef_row < end_row) { |
827 | 0 | jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow); |
828 | 0 | undef_row++; |
829 | 0 | } |
830 | 0 | } else { |
831 | 0 | if (! writable) /* reader looking at undefined data */ |
832 | 0 | ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); |
833 | 0 | } |
834 | 0 | } |
835 | | /* Flag the buffer dirty if caller will write in it */ |
836 | 0 | if (writable) |
837 | 0 | ptr->dirty = TRUE; |
838 | | /* Return address of proper part of the buffer */ |
839 | 0 | return ptr->mem_buffer + (start_row - ptr->cur_start_row); |
840 | 0 | } |
841 | | |
842 | | |
843 | | METHODDEF(JBLOCKARRAY) |
844 | | access_virt_barray (j_common_ptr cinfo, jvirt_barray_ptr ptr, |
845 | | JDIMENSION start_row, JDIMENSION num_rows, |
846 | | boolean writable) |
847 | | /* Access the part of a virtual block array starting at start_row */ |
848 | | /* and extending for num_rows rows. writable is true if */ |
849 | | /* caller intends to modify the accessed area. */ |
850 | 0 | { |
851 | 0 | JDIMENSION end_row = start_row + num_rows; |
852 | 0 | JDIMENSION undef_row; |
853 | | |
854 | | /* debugging check */ |
855 | 0 | if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess || |
856 | 0 | ptr->mem_buffer == NULL) |
857 | 0 | ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); |
858 | | |
859 | | /* Make the desired part of the virtual array accessible */ |
860 | 0 | if (start_row < ptr->cur_start_row || |
861 | 0 | end_row > ptr->cur_start_row+ptr->rows_in_mem) { |
862 | 0 | if (! ptr->b_s_open) |
863 | 0 | ERREXIT(cinfo, JERR_VIRTUAL_BUG); |
864 | | /* Flush old buffer contents if necessary */ |
865 | 0 | if (ptr->dirty) { |
866 | 0 | do_barray_io(cinfo, ptr, TRUE); |
867 | 0 | ptr->dirty = FALSE; |
868 | 0 | } |
869 | | /* Decide what part of virtual array to access. |
870 | | * Algorithm: if target address > current window, assume forward scan, |
871 | | * load starting at target address. If target address < current window, |
872 | | * assume backward scan, load so that target area is top of window. |
873 | | * Note that when switching from forward write to forward read, will have |
874 | | * start_row = 0, so the limiting case applies and we load from 0 anyway. |
875 | | */ |
876 | 0 | if (start_row > ptr->cur_start_row) { |
877 | 0 | ptr->cur_start_row = start_row; |
878 | 0 | } else { |
879 | | /* use long arithmetic here to avoid overflow & unsigned problems */ |
880 | 0 | long ltemp; |
881 | |
|
882 | 0 | ltemp = (long) end_row - (long) ptr->rows_in_mem; |
883 | 0 | if (ltemp < 0) |
884 | 0 | ltemp = 0; /* don't fall off front end of file */ |
885 | 0 | ptr->cur_start_row = (JDIMENSION) ltemp; |
886 | 0 | } |
887 | | /* Read in the selected part of the array. |
888 | | * During the initial write pass, we will do no actual read |
889 | | * because the selected part is all undefined. |
890 | | */ |
891 | 0 | do_barray_io(cinfo, ptr, FALSE); |
892 | 0 | } |
893 | | /* Ensure the accessed part of the array is defined; prezero if needed. |
894 | | * To improve locality of access, we only prezero the part of the array |
895 | | * that the caller is about to access, not the entire in-memory array. |
896 | | */ |
897 | 0 | if (ptr->first_undef_row < end_row) { |
898 | 0 | if (ptr->first_undef_row < start_row) { |
899 | 0 | if (writable) /* writer skipped over a section of array */ |
900 | 0 | ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); |
901 | 0 | undef_row = start_row; /* but reader is allowed to read ahead */ |
902 | 0 | } else { |
903 | 0 | undef_row = ptr->first_undef_row; |
904 | 0 | } |
905 | 0 | if (writable) |
906 | 0 | ptr->first_undef_row = end_row; |
907 | 0 | if (ptr->pre_zero) { |
908 | 0 | size_t bytesperrow = (size_t) ptr->blocksperrow * SIZEOF(JBLOCK); |
909 | 0 | undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */ |
910 | 0 | end_row -= ptr->cur_start_row; |
911 | 0 | while (undef_row < end_row) { |
912 | 0 | jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow); |
913 | 0 | undef_row++; |
914 | 0 | } |
915 | 0 | } else { |
916 | 0 | if (! writable) /* reader looking at undefined data */ |
917 | 0 | ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); |
918 | 0 | } |
919 | 0 | } |
920 | | /* Flag the buffer dirty if caller will write in it */ |
921 | 0 | if (writable) |
922 | 0 | ptr->dirty = TRUE; |
923 | | /* Return address of proper part of the buffer */ |
924 | 0 | return ptr->mem_buffer + (start_row - ptr->cur_start_row); |
925 | 0 | } |
926 | | |
927 | | |
928 | | /* |
929 | | * Release all objects belonging to a specified pool. |
930 | | */ |
931 | | |
932 | | METHODDEF(void) |
933 | | free_pool (j_common_ptr cinfo, int pool_id) |
934 | 0 | { |
935 | 0 | my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
936 | 0 | small_pool_ptr shdr_ptr; |
937 | 0 | large_pool_ptr lhdr_ptr; |
938 | 0 | size_t space_freed; |
939 | |
|
940 | 0 | if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS) |
941 | 0 | ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ |
942 | |
|
943 | | #ifdef MEM_STATS |
944 | | if (cinfo->err->trace_level > 1) |
945 | | print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */ |
946 | | #endif |
947 | | |
948 | | /* If freeing IMAGE pool, close any virtual arrays first */ |
949 | 0 | if (pool_id == JPOOL_IMAGE) { |
950 | 0 | jvirt_sarray_ptr sptr; |
951 | 0 | jvirt_barray_ptr bptr; |
952 | |
|
953 | 0 | for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { |
954 | 0 | if (sptr->b_s_open) { /* there may be no backing store */ |
955 | 0 | sptr->b_s_open = FALSE; /* prevent recursive close if error */ |
956 | 0 | (*sptr->b_s_info.close_backing_store) (cinfo, & sptr->b_s_info); |
957 | 0 | } |
958 | 0 | } |
959 | 0 | mem->virt_sarray_list = NULL; |
960 | 0 | for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { |
961 | 0 | if (bptr->b_s_open) { /* there may be no backing store */ |
962 | 0 | bptr->b_s_open = FALSE; /* prevent recursive close if error */ |
963 | 0 | (*bptr->b_s_info.close_backing_store) (cinfo, & bptr->b_s_info); |
964 | 0 | } |
965 | 0 | } |
966 | 0 | mem->virt_barray_list = NULL; |
967 | 0 | } |
968 | | |
969 | | /* Release large objects */ |
970 | 0 | lhdr_ptr = mem->large_list[pool_id]; |
971 | 0 | mem->large_list[pool_id] = NULL; |
972 | |
|
973 | 0 | while (lhdr_ptr != NULL) { |
974 | 0 | large_pool_ptr next_lhdr_ptr = lhdr_ptr->hdr.next; |
975 | 0 | space_freed = lhdr_ptr->hdr.bytes_used + |
976 | 0 | lhdr_ptr->hdr.bytes_left + |
977 | 0 | SIZEOF(large_pool_hdr); |
978 | 0 | jpeg_free_large(cinfo, (void FAR *) lhdr_ptr, space_freed); |
979 | 0 | mem->total_space_allocated -= (long)space_freed; |
980 | 0 | lhdr_ptr = next_lhdr_ptr; |
981 | 0 | } |
982 | | |
983 | | /* Release small objects */ |
984 | 0 | shdr_ptr = mem->small_list[pool_id]; |
985 | 0 | mem->small_list[pool_id] = NULL; |
986 | |
|
987 | 0 | while (shdr_ptr != NULL) { |
988 | 0 | small_pool_ptr next_shdr_ptr = shdr_ptr->hdr.next; |
989 | 0 | space_freed = shdr_ptr->hdr.bytes_used + |
990 | 0 | shdr_ptr->hdr.bytes_left + |
991 | 0 | SIZEOF(small_pool_hdr); |
992 | 0 | jpeg_free_small(cinfo, (void *) shdr_ptr, space_freed); |
993 | 0 | mem->total_space_allocated -= (long)space_freed; |
994 | 0 | shdr_ptr = next_shdr_ptr; |
995 | 0 | } |
996 | 0 | } |
997 | | |
998 | | |
999 | | /* |
1000 | | * Close up shop entirely. |
1001 | | * Note that this cannot be called unless cinfo->mem is non-NULL. |
1002 | | */ |
1003 | | |
1004 | | METHODDEF(void) |
1005 | | self_destruct (j_common_ptr cinfo) |
1006 | 0 | { |
1007 | 0 | int pool; |
1008 | | |
1009 | | /* Close all backing store, release all memory. |
1010 | | * Releasing pools in reverse order might help avoid fragmentation |
1011 | | * with some (brain-damaged) malloc libraries. |
1012 | | */ |
1013 | 0 | for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) { |
1014 | 0 | free_pool(cinfo, pool); |
1015 | 0 | } |
1016 | | |
1017 | | /* Release the memory manager control block too. */ |
1018 | 0 | jpeg_free_small(cinfo, (void *) cinfo->mem, SIZEOF(my_memory_mgr)); |
1019 | 0 | cinfo->mem = NULL; /* ensures I will be called only once */ |
1020 | |
|
1021 | 0 | jpeg_mem_term(cinfo); /* system-dependent cleanup */ |
1022 | 0 | } |
1023 | | |
1024 | | |
1025 | | /* |
1026 | | * Memory manager initialization. |
1027 | | * When this is called, only the error manager pointer is valid in cinfo! |
1028 | | */ |
1029 | | |
1030 | | GLOBAL(void) |
1031 | | jinit_memory_mgr (j_common_ptr cinfo) |
1032 | 0 | { |
1033 | 0 | my_mem_ptr mem; |
1034 | 0 | long max_to_use; |
1035 | 0 | int pool; |
1036 | 0 | size_t test_mac; |
1037 | |
|
1038 | 0 | cinfo->mem = NULL; /* for safety if init fails */ |
1039 | | |
1040 | | /* Check for configuration errors. |
1041 | | * SIZEOF(ALIGN_TYPE) should be a power of 2; otherwise, it probably |
1042 | | * doesn't reflect any real hardware alignment requirement. |
1043 | | * The test is a little tricky: for X>0, X and X-1 have no one-bits |
1044 | | * in common if and only if X is a power of 2, ie has only one one-bit. |
1045 | | * Some compilers may give an "unreachable code" warning here; ignore it. |
1046 | | */ |
1047 | 0 | if ((SIZEOF(ALIGN_TYPE) & (SIZEOF(ALIGN_TYPE)-1)) != 0) |
1048 | 0 | ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE); |
1049 | | /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be |
1050 | | * a multiple of SIZEOF(ALIGN_TYPE). |
1051 | | * Again, an "unreachable code" warning may be ignored here. |
1052 | | * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK. |
1053 | | */ |
1054 | 0 | test_mac = (size_t) MAX_ALLOC_CHUNK; |
1055 | 0 | if ((long) test_mac != MAX_ALLOC_CHUNK || |
1056 | 0 | (MAX_ALLOC_CHUNK % SIZEOF(ALIGN_TYPE)) != 0) |
1057 | 0 | ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK); |
1058 | |
|
1059 | 0 | max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */ |
1060 | | |
1061 | | /* Attempt to allocate memory manager's control block */ |
1062 | 0 | mem = (my_mem_ptr) jpeg_get_small(cinfo, SIZEOF(my_memory_mgr)); |
1063 | |
|
1064 | 0 | if (mem == NULL) { |
1065 | 0 | jpeg_mem_term(cinfo); /* system-dependent cleanup */ |
1066 | 0 | ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0); |
1067 | 0 | return; |
1068 | 0 | } |
1069 | | |
1070 | | /* OK, fill in the method pointers */ |
1071 | 0 | mem->pub.alloc_small = alloc_small; |
1072 | 0 | mem->pub.alloc_large = alloc_large; |
1073 | 0 | mem->pub.alloc_sarray = alloc_sarray; |
1074 | 0 | mem->pub.alloc_barray = alloc_barray; |
1075 | 0 | mem->pub.request_virt_sarray = request_virt_sarray; |
1076 | 0 | mem->pub.request_virt_barray = request_virt_barray; |
1077 | 0 | mem->pub.realize_virt_arrays = realize_virt_arrays; |
1078 | 0 | mem->pub.access_virt_sarray = access_virt_sarray; |
1079 | 0 | mem->pub.access_virt_barray = access_virt_barray; |
1080 | 0 | mem->pub.free_pool = free_pool; |
1081 | 0 | mem->pub.self_destruct = self_destruct; |
1082 | | |
1083 | | /* Make MAX_ALLOC_CHUNK accessible to other modules */ |
1084 | 0 | mem->pub.max_alloc_chunk = MAX_ALLOC_CHUNK; |
1085 | | |
1086 | | /* Initialize working state */ |
1087 | 0 | mem->pub.max_memory_to_use = max_to_use; |
1088 | |
|
1089 | 0 | for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) { |
1090 | 0 | mem->small_list[pool] = NULL; |
1091 | 0 | mem->large_list[pool] = NULL; |
1092 | 0 | } |
1093 | 0 | mem->virt_sarray_list = NULL; |
1094 | 0 | mem->virt_barray_list = NULL; |
1095 | |
|
1096 | 0 | mem->total_space_allocated = SIZEOF(my_memory_mgr); |
1097 | | |
1098 | | /* Declare ourselves open for business */ |
1099 | 0 | cinfo->mem = & mem->pub; |
1100 | | |
1101 | | /* Check for an environment variable JPEGMEM; if found, override the |
1102 | | * default max_memory setting from jpeg_mem_init. Note that the |
1103 | | * surrounding application may again override this value. |
1104 | | * If your system doesn't support getenv(), define NO_GETENV to disable |
1105 | | * this feature. |
1106 | | */ |
1107 | 0 | #ifndef NO_GETENV |
1108 | 0 | { char * memenv; |
1109 | |
|
1110 | 0 | if ((memenv = getenv("JPEGMEM")) != NULL) { |
1111 | 0 | char ch = 'x'; |
1112 | |
|
1113 | 0 | if (sscanf(memenv, "%ld%c", &max_to_use, &ch) > 0) { |
1114 | 0 | if (ch == 'm' || ch == 'M') |
1115 | 0 | max_to_use *= 1000L; |
1116 | 0 | mem->pub.max_memory_to_use = max_to_use * 1000L; |
1117 | 0 | } |
1118 | 0 | } |
1119 | 0 | } |
1120 | 0 | #endif |
1121 | |
|
1122 | 0 | } |