/src/gdal/gcore/gdalrasterband.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | /****************************************************************************** |
2 | | * |
3 | | * Project: GDAL Core |
4 | | * Purpose: Base class for format specific band class implementation. This |
5 | | * base class provides default implementation for many methods. |
6 | | * Author: Frank Warmerdam, warmerdam@pobox.com |
7 | | * |
8 | | ****************************************************************************** |
9 | | * Copyright (c) 1998, Frank Warmerdam |
10 | | * Copyright (c) 2007-2016, Even Rouault <even dot rouault at spatialys dot com> |
11 | | * |
12 | | * SPDX-License-Identifier: MIT |
13 | | ****************************************************************************/ |
14 | | |
15 | | #include "cpl_port.h" |
16 | | #include "cpl_float.h" |
17 | | #include "gdal_priv.h" |
18 | | |
19 | | #include <climits> |
20 | | #include <cmath> |
21 | | #include <cstdarg> |
22 | | #include <cstddef> |
23 | | #include <cstdio> |
24 | | #include <cstdlib> |
25 | | #include <cstring> |
26 | | #include <algorithm> |
27 | | #include <limits> |
28 | | #include <memory> |
29 | | #include <new> |
30 | | #include <type_traits> |
31 | | |
32 | | #include "cpl_conv.h" |
33 | | #include "cpl_error.h" |
34 | | #include "cpl_float.h" |
35 | | #include "cpl_progress.h" |
36 | | #include "cpl_string.h" |
37 | | #include "cpl_virtualmem.h" |
38 | | #include "cpl_vsi.h" |
39 | | #include "gdal.h" |
40 | | #include "gdal_rat.h" |
41 | | #include "gdal_priv_templates.hpp" |
42 | | #include "gdal_interpolateatpoint.h" |
43 | | #include "gdal_minmax_element.hpp" |
44 | | |
45 | | /************************************************************************/ |
46 | | /* GDALRasterBand() */ |
47 | | /************************************************************************/ |
48 | | |
49 | | /*! Constructor. Applications should never create GDALRasterBands directly. */ |
50 | | |
51 | | GDALRasterBand::GDALRasterBand() |
52 | 0 | : GDALRasterBand( |
53 | 0 | CPLTestBool(CPLGetConfigOption("GDAL_FORCE_CACHING", "NO"))) |
54 | 0 | { |
55 | 0 | } |
56 | | |
57 | | /** Constructor. Applications should never create GDALRasterBands directly. |
58 | | * @param bForceCachedIOIn Whether cached IO should be forced. |
59 | | */ |
60 | | GDALRasterBand::GDALRasterBand(int bForceCachedIOIn) |
61 | 0 | : bForceCachedIO(bForceCachedIOIn) |
62 | | |
63 | 0 | { |
64 | 0 | } |
65 | | |
66 | | /************************************************************************/ |
67 | | /* ~GDALRasterBand() */ |
68 | | /************************************************************************/ |
69 | | |
70 | | /*! Destructor. Applications should never destroy GDALRasterBands directly, |
71 | | instead destroy the GDALDataset. */ |
72 | | |
73 | | GDALRasterBand::~GDALRasterBand() |
74 | | |
75 | 0 | { |
76 | 0 | if (poDS && poDS->IsMarkedSuppressOnClose()) |
77 | 0 | { |
78 | 0 | if (poBandBlockCache) |
79 | 0 | poBandBlockCache->DisableDirtyBlockWriting(); |
80 | 0 | } |
81 | 0 | GDALRasterBand::FlushCache(true); |
82 | |
|
83 | 0 | delete poBandBlockCache; |
84 | |
|
85 | 0 | if (static_cast<GIntBig>(nBlockReads) > |
86 | 0 | static_cast<GIntBig>(nBlocksPerRow) * nBlocksPerColumn && |
87 | 0 | nBand == 1 && poDS != nullptr) |
88 | 0 | { |
89 | 0 | CPLDebug( |
90 | 0 | "GDAL", "%d block reads on " CPL_FRMT_GIB " block band 1 of %s.", |
91 | 0 | nBlockReads, static_cast<GIntBig>(nBlocksPerRow) * nBlocksPerColumn, |
92 | 0 | poDS->GetDescription()); |
93 | 0 | } |
94 | |
|
95 | 0 | InvalidateMaskBand(); |
96 | 0 | nBand = -nBand; |
97 | |
|
98 | 0 | delete m_poPointsCache; |
99 | 0 | } |
100 | | |
101 | | /************************************************************************/ |
102 | | /* RasterIO() */ |
103 | | /************************************************************************/ |
104 | | |
105 | | /** |
106 | | * \fn GDALRasterBand::IRasterIO( GDALRWFlag eRWFlag, |
107 | | * int nXOff, int nYOff, int nXSize, int nYSize, |
108 | | * void * pData, int nBufXSize, int nBufYSize, |
109 | | * GDALDataType eBufType, |
110 | | * GSpacing nPixelSpace, |
111 | | * GSpacing nLineSpace, |
112 | | * GDALRasterIOExtraArg* psExtraArg ) |
113 | | * \brief Read/write a region of image data for this band. |
114 | | * |
115 | | * This method allows reading a region of a GDALRasterBand into a buffer, |
116 | | * or writing data from a buffer into a region of a GDALRasterBand. It |
117 | | * automatically takes care of data type translation if the data type |
118 | | * (eBufType) of the buffer is different than that of the GDALRasterBand. |
119 | | * The method also takes care of image decimation / replication if the |
120 | | * buffer size (nBufXSize x nBufYSize) is different than the size of the |
121 | | * region being accessed (nXSize x nYSize). |
122 | | * |
123 | | * The window of interest expressed by (nXOff, nYOff, nXSize, nYSize) should be |
124 | | * fully within the raster space, that is nXOff >= 0, nYOff >= 0, |
125 | | * nXOff + nXSize <= GetXSize() and nYOff + nYSize <= GetYSize(). |
126 | | * If reads larger than the raster space are wished, GDALTranslate() might be used. |
127 | | * Or use nLineSpace and a possibly shifted pData value. |
128 | | * |
129 | | * The nPixelSpace and nLineSpace parameters allow reading into or |
130 | | * writing from unusually organized buffers. This is primarily used |
131 | | * for buffers containing more than one bands raster data in interleaved |
132 | | * format. |
133 | | * |
134 | | * Some formats may efficiently implement decimation into a buffer by |
135 | | * reading from lower resolution overview images. The logic of the default |
136 | | * implementation in the base class GDALRasterBand is the following one. It |
137 | | * computes a target_downscaling_factor from the window of interest and buffer |
138 | | * size which is min(nXSize/nBufXSize, nYSize/nBufYSize). |
139 | | * It then walks through overviews and will select the first one whose |
140 | | * downscaling factor is greater than target_downscaling_factor / 1.2. |
141 | | * |
142 | | * Let's assume we have overviews at downscaling factors 2, 4 and 8. |
143 | | * The relationship between target_downscaling_factor and the select overview |
144 | | * level is the following one: |
145 | | * |
146 | | * target_downscaling_factor | selected_overview |
147 | | * ------------------------- | ----------------- |
148 | | * ]0, 2 / 1.2] | full resolution band |
149 | | * ]2 / 1.2, 4 / 1.2] | 2x downsampled band |
150 | | * ]4 / 1.2, 8 / 1.2] | 4x downsampled band |
151 | | * ]8 / 1.2, infinity[ | 8x downsampled band |
152 | | * |
153 | | * Note that starting with GDAL 3.9, this 1.2 oversampling factor can be |
154 | | * modified by setting the GDAL_OVERVIEW_OVERSAMPLING_THRESHOLD configuration |
155 | | * option. Also note that starting with GDAL 3.9, when the resampling algorithm |
156 | | * specified in psExtraArg->eResampleAlg is different from GRIORA_NearestNeighbour, |
157 | | * this oversampling threshold defaults to 1. Consequently if there are overviews |
158 | | * of downscaling factor 2, 4 and 8, and the desired downscaling factor is |
159 | | * 7.99, the overview of factor 4 will be selected for a non nearest resampling. |
160 | | * |
161 | | * For highest performance full resolution data access, read and write |
162 | | * on "block boundaries" as returned by GetBlockSize(), or use the |
163 | | * ReadBlock() and WriteBlock() methods. |
164 | | * |
165 | | * This method is the same as the C GDALRasterIO() or GDALRasterIOEx() |
166 | | * functions. |
167 | | * |
168 | | * @param eRWFlag Either GF_Read to read a region of data, or GF_Write to |
169 | | * write a region of data. |
170 | | * |
171 | | * @param nXOff The pixel offset to the top left corner of the region |
172 | | * of the band to be accessed. This would be zero to start from the left side. |
173 | | * |
174 | | * @param nYOff The line offset to the top left corner of the region |
175 | | * of the band to be accessed. This would be zero to start from the top. |
176 | | * |
177 | | * @param nXSize The width of the region of the band to be accessed in pixels. |
178 | | * |
179 | | * @param nYSize The height of the region of the band to be accessed in lines. |
180 | | * |
181 | | * @param pData The buffer into which the data should be read, or from which |
182 | | * it should be written. This buffer must contain at least nBufXSize * |
183 | | * nBufYSize words of type eBufType. It is organized in left to right, |
184 | | * top to bottom pixel order. Spacing is controlled by the nPixelSpace, |
185 | | * and nLineSpace parameters. |
186 | | * Note that even with eRWFlag==GF_Write, the content of the buffer might be |
187 | | * temporarily modified during the execution of this method (and eventually |
188 | | * restored back to its original content), so it is not safe to use a buffer |
189 | | * stored in a read-only section of the calling program. |
190 | | * |
191 | | * @param nBufXSize the width of the buffer image into which the desired region |
192 | | * is to be read, or from which it is to be written. |
193 | | * |
194 | | * @param nBufYSize the height of the buffer image into which the desired region |
195 | | * is to be read, or from which it is to be written. |
196 | | * |
197 | | * @param eBufType the type of the pixel values in the pData data buffer. The |
198 | | * pixel values will automatically be translated to/from the GDALRasterBand |
199 | | * data type as needed. Most driver implementations will use GDALCopyWords64() |
200 | | * to perform data type translation. |
201 | | * |
202 | | * @param nPixelSpace The byte offset from the start of one pixel value in |
203 | | * pData to the start of the next pixel value within a scanline. If defaulted |
204 | | * (0) the size of the datatype eBufType is used. |
205 | | * |
206 | | * @param nLineSpace The byte offset from the start of one scanline in |
207 | | * pData to the start of the next. If defaulted (0) the size of the datatype |
208 | | * eBufType * nBufXSize is used. |
209 | | * |
210 | | * @param psExtraArg (new in GDAL 2.0) pointer to a GDALRasterIOExtraArg |
211 | | * structure with additional arguments to specify resampling and progress |
212 | | * callback, or NULL for default behavior. The GDAL_RASTERIO_RESAMPLING |
213 | | * configuration option can also be defined to override the default resampling |
214 | | * to one of BILINEAR, CUBIC, CUBICSPLINE, LANCZOS, AVERAGE or MODE. |
215 | | * |
216 | | * @return CE_Failure if the access fails, otherwise CE_None. |
217 | | */ |
218 | | |
219 | | /** |
220 | | * \brief Read/write a region of image data for this band. |
221 | | * |
222 | | * This method allows reading a region of a GDALRasterBand into a buffer, |
223 | | * or writing data from a buffer into a region of a GDALRasterBand. It |
224 | | * automatically takes care of data type translation if the data type |
225 | | * (eBufType) of the buffer is different than that of the GDALRasterBand. |
226 | | * The method also takes care of image decimation / replication if the |
227 | | * buffer size (nBufXSize x nBufYSize) is different than the size of the |
228 | | * region being accessed (nXSize x nYSize). |
229 | | * |
230 | | * The window of interest expressed by (nXOff, nYOff, nXSize, nYSize) should be |
231 | | * fully within the raster space, that is nXOff >= 0, nYOff >= 0, |
232 | | * nXOff + nXSize <= GetXSize() and nYOff + nYSize <= GetYSize(). |
233 | | * If reads larger than the raster space are wished, GDALTranslate() might be used. |
234 | | * Or use nLineSpace and a possibly shifted pData value. |
235 | | * |
236 | | * The nPixelSpace and nLineSpace parameters allow reading into or |
237 | | * writing from unusually organized buffers. This is primarily used |
238 | | * for buffers containing more than one bands raster data in interleaved |
239 | | * format. |
240 | | * |
241 | | * Some formats may efficiently implement decimation into a buffer by |
242 | | * reading from lower resolution overview images. The logic of the default |
243 | | * implementation in the base class GDALRasterBand is the following one. It |
244 | | * computes a target_downscaling_factor from the window of interest and buffer |
245 | | * size which is min(nXSize/nBufXSize, nYSize/nBufYSize). |
246 | | * It then walks through overviews and will select the first one whose |
247 | | * downscaling factor is greater than target_downscaling_factor / 1.2. |
248 | | * |
249 | | * Let's assume we have overviews at downscaling factors 2, 4 and 8. |
250 | | * The relationship between target_downscaling_factor and the select overview |
251 | | * level is the following one: |
252 | | * |
253 | | * target_downscaling_factor | selected_overview |
254 | | * ------------------------- | ----------------- |
255 | | * ]0, 2 / 1.2] | full resolution band |
256 | | * ]2 / 1.2, 4 / 1.2] | 2x downsampled band |
257 | | * ]4 / 1.2, 8 / 1.2] | 4x downsampled band |
258 | | * ]8 / 1.2, infinity[ | 8x downsampled band |
259 | | * |
260 | | * For highest performance full resolution data access, read and write |
261 | | * on "block boundaries" as returned by GetBlockSize(), or use the |
262 | | * ReadBlock() and WriteBlock() methods. |
263 | | * |
264 | | * This method is the same as the C GDALRasterIO() or GDALRasterIOEx() |
265 | | * functions. |
266 | | * |
267 | | * Starting with GDAL 3.10, the GDALRasterBand::ReadRaster() methods may be |
268 | | * more convenient to use for most common use cases. |
269 | | * |
270 | | * As nearly all GDAL methods, this method is *NOT* thread-safe, that is it cannot |
271 | | * be called on the same GDALRasterBand instance (or another GDALRasterBand |
272 | | * instance of this dataset) concurrently from several threads. |
273 | | * |
274 | | * @param eRWFlag Either GF_Read to read a region of data, or GF_Write to |
275 | | * write a region of data. |
276 | | * |
277 | | * @param nXOff The pixel offset to the top left corner of the region |
278 | | * of the band to be accessed. This would be zero to start from the left side. |
279 | | * |
280 | | * @param nYOff The line offset to the top left corner of the region |
281 | | * of the band to be accessed. This would be zero to start from the top. |
282 | | * |
283 | | * @param nXSize The width of the region of the band to be accessed in pixels. |
284 | | * |
285 | | * @param nYSize The height of the region of the band to be accessed in lines. |
286 | | * |
287 | | * @param[in,out] pData The buffer into which the data should be read, or from |
288 | | * which it should be written. This buffer must contain at least nBufXSize * |
289 | | * nBufYSize words of type eBufType. It is organized in left to right, |
290 | | * top to bottom pixel order. Spacing is controlled by the nPixelSpace, |
291 | | * and nLineSpace parameters. |
292 | | * |
293 | | * @param nBufXSize the width of the buffer image into which the desired region |
294 | | * is to be read, or from which it is to be written. |
295 | | * |
296 | | * @param nBufYSize the height of the buffer image into which the desired region |
297 | | * is to be read, or from which it is to be written. |
298 | | * |
299 | | * @param eBufType the type of the pixel values in the pData data buffer. The |
300 | | * pixel values will automatically be translated to/from the GDALRasterBand |
301 | | * data type as needed. |
302 | | * |
303 | | * @param nPixelSpace The byte offset from the start of one pixel value in |
304 | | * pData to the start of the next pixel value within a scanline. If defaulted |
305 | | * (0) the size of the datatype eBufType is used. |
306 | | * |
307 | | * @param nLineSpace The byte offset from the start of one scanline in |
308 | | * pData to the start of the next. If defaulted (0) the size of the datatype |
309 | | * eBufType * nBufXSize is used. |
310 | | * |
311 | | * @param[in] psExtraArg (new in GDAL 2.0) pointer to a GDALRasterIOExtraArg |
312 | | * structure with additional arguments to specify resampling and progress |
313 | | * callback, or NULL for default behavior. The GDAL_RASTERIO_RESAMPLING |
314 | | * configuration option can also be defined to override the default resampling |
315 | | * to one of BILINEAR, CUBIC, CUBICSPLINE, LANCZOS, AVERAGE or MODE. |
316 | | * |
317 | | * @return CE_Failure if the access fails, otherwise CE_None. |
318 | | * |
319 | | * @see GDALRasterBand::ReadRaster() |
320 | | */ |
321 | | |
322 | | CPLErr GDALRasterBand::RasterIO(GDALRWFlag eRWFlag, int nXOff, int nYOff, |
323 | | int nXSize, int nYSize, void *pData, |
324 | | int nBufXSize, int nBufYSize, |
325 | | GDALDataType eBufType, GSpacing nPixelSpace, |
326 | | GSpacing nLineSpace, |
327 | | GDALRasterIOExtraArg *psExtraArg) |
328 | | |
329 | 0 | { |
330 | 0 | GDALRasterIOExtraArg sExtraArg; |
331 | 0 | if (psExtraArg == nullptr) |
332 | 0 | { |
333 | 0 | INIT_RASTERIO_EXTRA_ARG(sExtraArg); |
334 | 0 | psExtraArg = &sExtraArg; |
335 | 0 | } |
336 | 0 | else if (CPL_UNLIKELY(psExtraArg->nVersion > |
337 | 0 | RASTERIO_EXTRA_ARG_CURRENT_VERSION)) |
338 | 0 | { |
339 | 0 | ReportError(CE_Failure, CPLE_AppDefined, |
340 | 0 | "Unhandled version of GDALRasterIOExtraArg"); |
341 | 0 | return CE_Failure; |
342 | 0 | } |
343 | | |
344 | 0 | GDALRasterIOExtraArgSetResampleAlg(psExtraArg, nXSize, nYSize, nBufXSize, |
345 | 0 | nBufYSize); |
346 | |
|
347 | 0 | if (CPL_UNLIKELY(nullptr == pData)) |
348 | 0 | { |
349 | 0 | ReportError(CE_Failure, CPLE_AppDefined, |
350 | 0 | "The buffer into which the data should be read is null"); |
351 | 0 | return CE_Failure; |
352 | 0 | } |
353 | | |
354 | | /* -------------------------------------------------------------------- */ |
355 | | /* Some size values are "noop". Lets just return to avoid */ |
356 | | /* stressing lower level functions. */ |
357 | | /* -------------------------------------------------------------------- */ |
358 | 0 | if (CPL_UNLIKELY(nXSize < 1 || nYSize < 1 || nBufXSize < 1 || |
359 | 0 | nBufYSize < 1)) |
360 | 0 | { |
361 | 0 | CPLDebug("GDAL", |
362 | 0 | "RasterIO() skipped for odd window or buffer size.\n" |
363 | 0 | " Window = (%d,%d)x%dx%d\n" |
364 | 0 | " Buffer = %dx%d\n", |
365 | 0 | nXOff, nYOff, nXSize, nYSize, nBufXSize, nBufYSize); |
366 | |
|
367 | 0 | return CE_None; |
368 | 0 | } |
369 | | |
370 | 0 | if (eRWFlag == GF_Write) |
371 | 0 | { |
372 | 0 | if (CPL_UNLIKELY(eFlushBlockErr != CE_None)) |
373 | 0 | { |
374 | 0 | ReportError(eFlushBlockErr, CPLE_AppDefined, |
375 | 0 | "An error occurred while writing a dirty block " |
376 | 0 | "from GDALRasterBand::RasterIO"); |
377 | 0 | CPLErr eErr = eFlushBlockErr; |
378 | 0 | eFlushBlockErr = CE_None; |
379 | 0 | return eErr; |
380 | 0 | } |
381 | 0 | if (EmitErrorMessageIfWriteNotSupported("GDALRasterBand::RasterIO()")) |
382 | 0 | { |
383 | 0 | return CE_Failure; |
384 | 0 | } |
385 | 0 | } |
386 | | |
387 | | /* -------------------------------------------------------------------- */ |
388 | | /* If pixel and line spacing are defaulted assign reasonable */ |
389 | | /* value assuming a packed buffer. */ |
390 | | /* -------------------------------------------------------------------- */ |
391 | 0 | if (nPixelSpace == 0) |
392 | 0 | { |
393 | 0 | nPixelSpace = GDALGetDataTypeSizeBytes(eBufType); |
394 | 0 | } |
395 | |
|
396 | 0 | if (nLineSpace == 0) |
397 | 0 | { |
398 | 0 | nLineSpace = nPixelSpace * nBufXSize; |
399 | 0 | } |
400 | | |
401 | | /* -------------------------------------------------------------------- */ |
402 | | /* Do some validation of parameters. */ |
403 | | /* -------------------------------------------------------------------- */ |
404 | 0 | if (CPL_UNLIKELY(nXOff < 0 || nXOff > INT_MAX - nXSize || |
405 | 0 | nXOff + nXSize > nRasterXSize || nYOff < 0 || |
406 | 0 | nYOff > INT_MAX - nYSize || nYOff + nYSize > nRasterYSize)) |
407 | 0 | { |
408 | 0 | ReportError(CE_Failure, CPLE_IllegalArg, |
409 | 0 | "Access window out of range in RasterIO(). Requested\n" |
410 | 0 | "(%d,%d) of size %dx%d on raster of %dx%d.", |
411 | 0 | nXOff, nYOff, nXSize, nYSize, nRasterXSize, nRasterYSize); |
412 | 0 | return CE_Failure; |
413 | 0 | } |
414 | | |
415 | 0 | if (CPL_UNLIKELY(eRWFlag != GF_Read && eRWFlag != GF_Write)) |
416 | 0 | { |
417 | 0 | ReportError( |
418 | 0 | CE_Failure, CPLE_IllegalArg, |
419 | 0 | "eRWFlag = %d, only GF_Read (0) and GF_Write (1) are legal.", |
420 | 0 | eRWFlag); |
421 | 0 | return CE_Failure; |
422 | 0 | } |
423 | 0 | if (CPL_UNLIKELY(eBufType == GDT_Unknown || eBufType == GDT_TypeCount)) |
424 | 0 | { |
425 | 0 | ReportError(CE_Failure, CPLE_IllegalArg, |
426 | 0 | "Illegal GDT_Unknown/GDT_TypeCount argument"); |
427 | 0 | return CE_Failure; |
428 | 0 | } |
429 | | |
430 | 0 | return RasterIOInternal(eRWFlag, nXOff, nYOff, nXSize, nYSize, pData, |
431 | 0 | nBufXSize, nBufYSize, eBufType, nPixelSpace, |
432 | 0 | nLineSpace, psExtraArg); |
433 | 0 | } |
434 | | |
435 | | /************************************************************************/ |
436 | | /* RasterIOInternal() */ |
437 | | /************************************************************************/ |
438 | | |
439 | | CPLErr GDALRasterBand::RasterIOInternal( |
440 | | GDALRWFlag eRWFlag, int nXOff, int nYOff, int nXSize, int nYSize, |
441 | | void *pData, int nBufXSize, int nBufYSize, GDALDataType eBufType, |
442 | | GSpacing nPixelSpace, GSpacing nLineSpace, GDALRasterIOExtraArg *psExtraArg) |
443 | 0 | { |
444 | | /* -------------------------------------------------------------------- */ |
445 | | /* Call the format specific function. */ |
446 | | /* -------------------------------------------------------------------- */ |
447 | |
|
448 | 0 | const bool bCallLeaveReadWrite = CPL_TO_BOOL(EnterReadWrite(eRWFlag)); |
449 | |
|
450 | 0 | CPLErr eErr; |
451 | 0 | if (bForceCachedIO) |
452 | 0 | eErr = GDALRasterBand::IRasterIO(eRWFlag, nXOff, nYOff, nXSize, nYSize, |
453 | 0 | pData, nBufXSize, nBufYSize, eBufType, |
454 | 0 | nPixelSpace, nLineSpace, psExtraArg); |
455 | 0 | else |
456 | 0 | eErr = |
457 | 0 | IRasterIO(eRWFlag, nXOff, nYOff, nXSize, nYSize, pData, nBufXSize, |
458 | 0 | nBufYSize, eBufType, nPixelSpace, nLineSpace, psExtraArg); |
459 | |
|
460 | 0 | if (bCallLeaveReadWrite) |
461 | 0 | LeaveReadWrite(); |
462 | |
|
463 | 0 | return eErr; |
464 | 0 | } |
465 | | |
466 | | /************************************************************************/ |
467 | | /* GDALRasterIO() */ |
468 | | /************************************************************************/ |
469 | | |
470 | | /** |
471 | | * \brief Read/write a region of image data for this band. |
472 | | * |
473 | | * Use GDALRasterIOEx() if 64 bit spacings or extra arguments (resampling |
474 | | * resolution, progress callback, etc. are needed) |
475 | | * |
476 | | * @see GDALRasterBand::RasterIO() |
477 | | */ |
478 | | |
479 | | CPLErr CPL_STDCALL GDALRasterIO(GDALRasterBandH hBand, GDALRWFlag eRWFlag, |
480 | | int nXOff, int nYOff, int nXSize, int nYSize, |
481 | | void *pData, int nBufXSize, int nBufYSize, |
482 | | GDALDataType eBufType, int nPixelSpace, |
483 | | int nLineSpace) |
484 | | |
485 | 0 | { |
486 | 0 | VALIDATE_POINTER1(hBand, "GDALRasterIO", CE_Failure); |
487 | | |
488 | 0 | GDALRasterBand *poBand = GDALRasterBand::FromHandle(hBand); |
489 | |
|
490 | 0 | return (poBand->RasterIO(eRWFlag, nXOff, nYOff, nXSize, nYSize, pData, |
491 | 0 | nBufXSize, nBufYSize, eBufType, nPixelSpace, |
492 | 0 | nLineSpace, nullptr)); |
493 | 0 | } |
494 | | |
495 | | /************************************************************************/ |
496 | | /* GDALRasterIOEx() */ |
497 | | /************************************************************************/ |
498 | | |
499 | | /** |
500 | | * \brief Read/write a region of image data for this band. |
501 | | * |
502 | | * @see GDALRasterBand::RasterIO() |
503 | | * @since GDAL 2.0 |
504 | | */ |
505 | | |
506 | | CPLErr CPL_STDCALL GDALRasterIOEx(GDALRasterBandH hBand, GDALRWFlag eRWFlag, |
507 | | int nXOff, int nYOff, int nXSize, int nYSize, |
508 | | void *pData, int nBufXSize, int nBufYSize, |
509 | | GDALDataType eBufType, GSpacing nPixelSpace, |
510 | | GSpacing nLineSpace, |
511 | | GDALRasterIOExtraArg *psExtraArg) |
512 | | |
513 | 0 | { |
514 | 0 | VALIDATE_POINTER1(hBand, "GDALRasterIOEx", CE_Failure); |
515 | | |
516 | 0 | GDALRasterBand *poBand = GDALRasterBand::FromHandle(hBand); |
517 | |
|
518 | 0 | return (poBand->RasterIO(eRWFlag, nXOff, nYOff, nXSize, nYSize, pData, |
519 | 0 | nBufXSize, nBufYSize, eBufType, nPixelSpace, |
520 | 0 | nLineSpace, psExtraArg)); |
521 | 0 | } |
522 | | |
523 | | /************************************************************************/ |
524 | | /* GetGDTFromCppType() */ |
525 | | /************************************************************************/ |
526 | | |
527 | | namespace |
528 | | { |
529 | | template <class T> struct GetGDTFromCppType; |
530 | | |
531 | | #define DEFINE_GetGDTFromCppType(T, eDT) \ |
532 | | template <> struct GetGDTFromCppType<T> \ |
533 | | { \ |
534 | | static constexpr GDALDataType GDT = eDT; \ |
535 | | } |
536 | | |
537 | | DEFINE_GetGDTFromCppType(uint8_t, GDT_Byte); |
538 | | DEFINE_GetGDTFromCppType(int8_t, GDT_Int8); |
539 | | DEFINE_GetGDTFromCppType(uint16_t, GDT_UInt16); |
540 | | DEFINE_GetGDTFromCppType(int16_t, GDT_Int16); |
541 | | DEFINE_GetGDTFromCppType(uint32_t, GDT_UInt32); |
542 | | DEFINE_GetGDTFromCppType(int32_t, GDT_Int32); |
543 | | DEFINE_GetGDTFromCppType(uint64_t, GDT_UInt64); |
544 | | DEFINE_GetGDTFromCppType(int64_t, GDT_Int64); |
545 | | DEFINE_GetGDTFromCppType(GFloat16, GDT_Float16); |
546 | | DEFINE_GetGDTFromCppType(float, GDT_Float32); |
547 | | DEFINE_GetGDTFromCppType(double, GDT_Float64); |
548 | | // Not allowed by C++ standard |
549 | | //DEFINE_GetGDTFromCppType(std::complex<int16_t>, GDT_CInt16); |
550 | | //DEFINE_GetGDTFromCppType(std::complex<int32_t>, GDT_CInt32); |
551 | | DEFINE_GetGDTFromCppType(std::complex<float>, GDT_CFloat32); |
552 | | DEFINE_GetGDTFromCppType(std::complex<double>, GDT_CFloat64); |
553 | | } // namespace |
554 | | |
555 | | /************************************************************************/ |
556 | | /* ReadRaster() */ |
557 | | /************************************************************************/ |
558 | | |
559 | | // clang-format off |
560 | | /** Read a region of image data for this band. |
561 | | * |
562 | | * This is a slightly more convenient alternative to GDALRasterBand::RasterIO() |
563 | | * for common use cases, like reading a whole band. |
564 | | * It infers the GDAL data type of the buffer from the C/C++ type of the buffer. |
565 | | * This template is instantiated for the following types: [u?]int[8|16|32|64]_t, |
566 | | * float, double, std::complex<float|double>. |
567 | | * |
568 | | * When possible prefer the ReadRaster(std::vector<T>& vData, double dfXOff, double dfYOff, double dfXSize, double dfYSize, size_t nBufXSize, size_t nBufYSize, GDALRIOResampleAlg eResampleAlg, GDALProgressFunc pfnProgress, void *pProgressData) const variant that takes a std::vector<T>&, |
569 | | * and can allocate memory automatically. |
570 | | * |
571 | | * To read a whole band (assuming it fits into memory), as an array of double: |
572 | | * |
573 | | \code{.cpp} |
574 | | double* myArray = static_cast<double*>( |
575 | | VSI_MALLOC3_VERBOSE(sizeof(double), poBand->GetXSize(), poBand->GetYSize())); |
576 | | // TODO: check here that myArray != nullptr |
577 | | const size_t nArrayEltCount = |
578 | | static_cast<size_t>(poBand->GetXSize()) * poBand->GetYSize()); |
579 | | if (poBand->ReadRaster(myArray, nArrayEltCount) == CE_None) |
580 | | { |
581 | | // do something |
582 | | } |
583 | | VSIFree(myArray) |
584 | | \endcode |
585 | | * |
586 | | * To read 128x128 pixels starting at (col=12, line=24) as an array of double: |
587 | | * |
588 | | \code{.cpp} |
589 | | double* myArray = static_cast<double*>( |
590 | | VSI_MALLOC3_VERBOSE(sizeof(double), 128, 128)); |
591 | | // TODO: check here that myArray != nullptr |
592 | | const size_t nArrayEltCount = 128 * 128; |
593 | | if (poBand->ReadRaster(myArray, nArrayEltCount, 12, 24, 128, 128) == CE_None) |
594 | | { |
595 | | // do something |
596 | | } |
597 | | VSIFree(myArray) |
598 | | \endcode |
599 | | * |
600 | | * As nearly all GDAL methods, this method is *NOT* thread-safe, that is it cannot |
601 | | * be called on the same GDALRasterBand instance (or another GDALRasterBand |
602 | | * instance of this dataset) concurrently from several threads. |
603 | | * |
604 | | * The window of interest expressed by (dfXOff, dfYOff, dfXSize, dfYSize) should be |
605 | | * fully within the raster space, that is dfXOff >= 0, dfYOff >= 0, |
606 | | * dfXOff + dfXSize <= GetXSize() and dfYOff + dfYSize <= GetYSize(). |
607 | | * If reads larger than the raster space are wished, GDALTranslate() might be used. |
608 | | * Or use nLineSpace and a possibly shifted pData value. |
609 | | * |
610 | | * @param[out] pData The buffer into which the data should be written. |
611 | | * This buffer must contain at least nBufXSize * |
612 | | * nBufYSize words of type T. It is organized in left to right, |
613 | | * top to bottom pixel order, and fully packed. |
614 | | * The type of the buffer does not need to be the one of GetDataType(). The |
615 | | * method will perform data type translation (with potential rounding, clamping) |
616 | | * if needed. |
617 | | * |
618 | | * @param nArrayEltCount Number of values of pData. If non zero, the method will |
619 | | * check that it is at least greater or equal to nBufXSize * nBufYSize, and |
620 | | * return in error if it is not. If set to zero, then pData is trusted to be |
621 | | * large enough. |
622 | | * |
623 | | * @param dfXOff The pixel offset to the top left corner of the region |
624 | | * of the band to be accessed. This would be zero to start from the left side. |
625 | | * Defaults to 0. |
626 | | * |
627 | | * @param dfYOff The line offset to the top left corner of the region |
628 | | * of the band to be accessed. This would be zero to start from the top. |
629 | | * Defaults to 0. |
630 | | * |
631 | | * @param dfXSize The width of the region of the band to be accessed in pixels. |
632 | | * If all of dfXOff, dfYOff, dfXSize and dfYSize are left to their zero default value, |
633 | | * dfXSize is set to the band width. |
634 | | * |
635 | | * @param dfYSize The height of the region of the band to be accessed in lines. |
636 | | * If all of dfXOff, dfYOff, dfXSize and dfYSize are left to their zero default value, |
637 | | * dfYSize is set to the band height. |
638 | | * |
639 | | * @param nBufXSize the width of the buffer image into which the desired region |
640 | | * is to be read. If set to zero, and both dfXSize and dfYSize are integer values, |
641 | | * then nBufXSize is initialized with dfXSize. |
642 | | * |
643 | | * @param nBufYSize the height of the buffer image into which the desired region |
644 | | * is to be read. If set to zero, and both dfXSize and dfYSize are integer values, |
645 | | * then nBufYSize is initialized with dfYSize. |
646 | | * |
647 | | * @param eResampleAlg Resampling algorithm. Defaults to GRIORA_NearestNeighbour. |
648 | | * |
649 | | * @param pfnProgress Progress function. May be nullptr. |
650 | | * |
651 | | * @param pProgressData User data of pfnProgress. May be nullptr. |
652 | | * |
653 | | * @return CE_Failure if the access fails, otherwise CE_None. |
654 | | * |
655 | | * @see GDALRasterBand::RasterIO() |
656 | | * @since GDAL 3.10 |
657 | | */ |
658 | | // clang-format on |
659 | | |
660 | | template <class T> |
661 | | CPLErr GDALRasterBand::ReadRaster(T *pData, size_t nArrayEltCount, |
662 | | double dfXOff, double dfYOff, double dfXSize, |
663 | | double dfYSize, size_t nBufXSize, |
664 | | size_t nBufYSize, |
665 | | GDALRIOResampleAlg eResampleAlg, |
666 | | GDALProgressFunc pfnProgress, |
667 | | void *pProgressData) const |
668 | 0 | { |
669 | 0 | if (((nBufXSize | nBufYSize) >> 31) != 0) |
670 | 0 | { |
671 | 0 | return CE_Failure; |
672 | 0 | } |
673 | | |
674 | 0 | if (dfXOff == 0 && dfYOff == 0 && dfXSize == 0 && dfYSize == 0) |
675 | 0 | { |
676 | 0 | dfXSize = nRasterXSize; |
677 | 0 | dfYSize = nRasterYSize; |
678 | 0 | } |
679 | 0 | else if (!(dfXOff >= 0 && dfXOff <= INT_MAX) || |
680 | 0 | !(dfYOff >= 0 && dfYOff <= INT_MAX) || !(dfXSize >= 0) || |
681 | 0 | !(dfYSize >= 0) || dfXOff + dfXSize > INT_MAX || |
682 | 0 | dfYOff + dfYSize > INT_MAX) |
683 | 0 | { |
684 | 0 | return CE_Failure; |
685 | 0 | } |
686 | | |
687 | 0 | GDALRasterIOExtraArg sExtraArg; |
688 | 0 | sExtraArg.nVersion = 1; |
689 | 0 | sExtraArg.eResampleAlg = eResampleAlg; |
690 | 0 | sExtraArg.pfnProgress = pfnProgress; |
691 | 0 | sExtraArg.pProgressData = pProgressData; |
692 | 0 | sExtraArg.bFloatingPointWindowValidity = true; |
693 | 0 | sExtraArg.dfXOff = dfXOff; |
694 | 0 | sExtraArg.dfYOff = dfYOff; |
695 | 0 | sExtraArg.dfXSize = dfXSize; |
696 | 0 | sExtraArg.dfYSize = dfYSize; |
697 | 0 | const int nXOff = static_cast<int>(dfXOff); |
698 | 0 | const int nYOff = static_cast<int>(dfYOff); |
699 | 0 | const int nXSize = std::max(1, static_cast<int>(dfXSize + 0.5)); |
700 | 0 | const int nYSize = std::max(1, static_cast<int>(dfYSize + 0.5)); |
701 | 0 | if (nBufXSize == 0 && nBufYSize == 0) |
702 | 0 | { |
703 | 0 | if (static_cast<int>(dfXSize) == dfXSize && |
704 | 0 | static_cast<int>(dfYSize) == dfYSize) |
705 | 0 | { |
706 | 0 | nBufXSize = static_cast<int>(dfXSize); |
707 | 0 | nBufYSize = static_cast<int>(dfYSize); |
708 | 0 | } |
709 | 0 | else |
710 | 0 | { |
711 | 0 | CPLError(CE_Failure, CPLE_AppDefined, |
712 | 0 | "nBufXSize and nBufYSize must be provided if dfXSize or " |
713 | 0 | "dfYSize is not an integer value"); |
714 | 0 | return CE_Failure; |
715 | 0 | } |
716 | 0 | } |
717 | 0 | if (nBufXSize == 0 || nBufYSize == 0) |
718 | 0 | { |
719 | 0 | CPLDebug("GDAL", |
720 | 0 | "RasterIO() skipped for odd window or buffer size.\n" |
721 | 0 | " Window = (%d,%d)x%dx%d\n" |
722 | 0 | " Buffer = %dx%d\n", |
723 | 0 | nXOff, nYOff, nXSize, nYSize, static_cast<int>(nBufXSize), |
724 | 0 | static_cast<int>(nBufYSize)); |
725 | |
|
726 | 0 | return CE_None; |
727 | 0 | } |
728 | | |
729 | 0 | if (nArrayEltCount > 0 && nBufXSize > nArrayEltCount / nBufYSize) |
730 | 0 | { |
731 | 0 | CPLError(CE_Failure, CPLE_AppDefined, |
732 | 0 | "Provided array is not large enough"); |
733 | 0 | return CE_Failure; |
734 | 0 | } |
735 | | |
736 | 0 | constexpr GSpacing nPixelSpace = sizeof(T); |
737 | 0 | const GSpacing nLineSpace = nPixelSpace * nBufXSize; |
738 | 0 | constexpr GDALDataType eBufType = GetGDTFromCppType<T>::GDT; |
739 | |
|
740 | 0 | GDALRasterBand *pThis = const_cast<GDALRasterBand *>(this); |
741 | |
|
742 | 0 | return pThis->RasterIOInternal(GF_Read, nXOff, nYOff, nXSize, nYSize, pData, |
743 | 0 | static_cast<int>(nBufXSize), |
744 | 0 | static_cast<int>(nBufYSize), eBufType, |
745 | 0 | nPixelSpace, nLineSpace, &sExtraArg); |
746 | 0 | } Unexecuted instantiation: CPLErr GDALRasterBand::ReadRaster<unsigned char>(unsigned char*, unsigned long, double, double, double, double, unsigned long, unsigned long, GDALRIOResampleAlg, int (*)(double, char const*, void*), void*) const Unexecuted instantiation: CPLErr GDALRasterBand::ReadRaster<signed char>(signed char*, unsigned long, double, double, double, double, unsigned long, unsigned long, GDALRIOResampleAlg, int (*)(double, char const*, void*), void*) const Unexecuted instantiation: CPLErr GDALRasterBand::ReadRaster<unsigned short>(unsigned short*, unsigned long, double, double, double, double, unsigned long, unsigned long, GDALRIOResampleAlg, int (*)(double, char const*, void*), void*) const Unexecuted instantiation: CPLErr GDALRasterBand::ReadRaster<short>(short*, unsigned long, double, double, double, double, unsigned long, unsigned long, GDALRIOResampleAlg, int (*)(double, char const*, void*), void*) const Unexecuted instantiation: CPLErr GDALRasterBand::ReadRaster<unsigned int>(unsigned int*, unsigned long, double, double, double, double, unsigned long, unsigned long, GDALRIOResampleAlg, int (*)(double, char const*, void*), void*) const Unexecuted instantiation: CPLErr GDALRasterBand::ReadRaster<int>(int*, unsigned long, double, double, double, double, unsigned long, unsigned long, GDALRIOResampleAlg, int (*)(double, char const*, void*), void*) const Unexecuted instantiation: CPLErr GDALRasterBand::ReadRaster<unsigned long>(unsigned long*, unsigned long, double, double, double, double, unsigned long, unsigned long, GDALRIOResampleAlg, int (*)(double, char const*, void*), void*) const Unexecuted instantiation: CPLErr GDALRasterBand::ReadRaster<long>(long*, unsigned long, double, double, double, double, unsigned long, unsigned long, GDALRIOResampleAlg, int (*)(double, char const*, void*), void*) const Unexecuted instantiation: CPLErr GDALRasterBand::ReadRaster<cpl::Float16>(cpl::Float16*, unsigned long, double, double, double, double, unsigned long, unsigned long, GDALRIOResampleAlg, int (*)(double, char const*, void*), void*) const Unexecuted instantiation: CPLErr GDALRasterBand::ReadRaster<float>(float*, unsigned long, double, double, double, double, unsigned long, unsigned long, GDALRIOResampleAlg, int (*)(double, char const*, void*), void*) const Unexecuted instantiation: CPLErr GDALRasterBand::ReadRaster<double>(double*, unsigned long, double, double, double, double, unsigned long, unsigned long, GDALRIOResampleAlg, int (*)(double, char const*, void*), void*) const Unexecuted instantiation: CPLErr GDALRasterBand::ReadRaster<std::__1::complex<float> >(std::__1::complex<float>*, unsigned long, double, double, double, double, unsigned long, unsigned long, GDALRIOResampleAlg, int (*)(double, char const*, void*), void*) const Unexecuted instantiation: CPLErr GDALRasterBand::ReadRaster<std::__1::complex<double> >(std::__1::complex<double>*, unsigned long, double, double, double, double, unsigned long, unsigned long, GDALRIOResampleAlg, int (*)(double, char const*, void*), void*) const |
747 | | |
748 | | //! @cond Doxygen_Suppress |
749 | | |
750 | | #define INSTANTIATE_READ_RASTER(T) \ |
751 | | template CPLErr CPL_DLL GDALRasterBand::ReadRaster( \ |
752 | | T *vData, size_t nArrayEltCount, double dfXOff, double dfYOff, \ |
753 | | double dfXSize, double dfYSize, size_t nBufXSize, size_t nBufYSize, \ |
754 | | GDALRIOResampleAlg eResampleAlg, GDALProgressFunc pfnProgress, \ |
755 | | void *pProgressData) const; |
756 | | |
757 | | INSTANTIATE_READ_RASTER(uint8_t) |
758 | | INSTANTIATE_READ_RASTER(int8_t) |
759 | | INSTANTIATE_READ_RASTER(uint16_t) |
760 | | INSTANTIATE_READ_RASTER(int16_t) |
761 | | INSTANTIATE_READ_RASTER(uint32_t) |
762 | | INSTANTIATE_READ_RASTER(int32_t) |
763 | | INSTANTIATE_READ_RASTER(uint64_t) |
764 | | INSTANTIATE_READ_RASTER(int64_t) |
765 | | INSTANTIATE_READ_RASTER(GFloat16) |
766 | | INSTANTIATE_READ_RASTER(float) |
767 | | INSTANTIATE_READ_RASTER(double) |
768 | | // Not allowed by C++ standard |
769 | | // INSTANTIATE_READ_RASTER(std::complex<int16_t>) |
770 | | // INSTANTIATE_READ_RASTER(std::complex<int32_t>) |
771 | | INSTANTIATE_READ_RASTER(std::complex<float>) |
772 | | INSTANTIATE_READ_RASTER(std::complex<double>) |
773 | | |
774 | | //! @endcond |
775 | | |
776 | | /************************************************************************/ |
777 | | /* ReadRaster() */ |
778 | | /************************************************************************/ |
779 | | |
780 | | /** Read a region of image data for this band. |
781 | | * |
782 | | * This is a slightly more convenient alternative to GDALRasterBand::RasterIO() |
783 | | * for common use cases, like reading a whole band. |
784 | | * It infers the GDAL data type of the buffer from the C/C++ type of the buffer. |
785 | | * This template is instantiated for the following types: [u?]int[8|16|32|64]_t, |
786 | | * float, double, std::complex<float|double>. |
787 | | * |
788 | | * To read a whole band (assuming it fits into memory), as a vector of double: |
789 | | * |
790 | | \code |
791 | | std::vector<double> myArray; |
792 | | if (poBand->ReadRaster(myArray) == CE_None) |
793 | | { |
794 | | // do something |
795 | | } |
796 | | \endcode |
797 | | * |
798 | | * To read 128x128 pixels starting at (col=12, line=24) as a vector of double: |
799 | | * |
800 | | \code{.cpp} |
801 | | std::vector<double> myArray; |
802 | | if (poBand->ReadRaster(myArray, 12, 24, 128, 128) == CE_None) |
803 | | { |
804 | | // do something |
805 | | } |
806 | | \endcode |
807 | | * |
808 | | * As nearly all GDAL methods, this method is *NOT* thread-safe, that is it cannot |
809 | | * be called on the same GDALRasterBand instance (or another GDALRasterBand |
810 | | * instance of this dataset) concurrently from several threads. |
811 | | * |
812 | | * The window of interest expressed by (dfXOff, dfYOff, dfXSize, dfYSize) should be |
813 | | * fully within the raster space, that is dfXOff >= 0, dfYOff >= 0, |
814 | | * dfXOff + dfXSize <= GetXSize() and dfYOff + dfYSize <= GetYSize(). |
815 | | * If reads larger than the raster space are wished, GDALTranslate() might be used. |
816 | | * Or use nLineSpace and a possibly shifted pData value. |
817 | | * |
818 | | * @param[out] vData The vector into which the data should be written. |
819 | | * The vector will be resized, if needed, to contain at least nBufXSize * |
820 | | * nBufYSize values. The values in the vector are organized in left to right, |
821 | | * top to bottom pixel order, and fully packed. |
822 | | * The type of the vector does not need to be the one of GetDataType(). The |
823 | | * method will perform data type translation (with potential rounding, clamping) |
824 | | * if needed. |
825 | | * |
826 | | * @param dfXOff The pixel offset to the top left corner of the region |
827 | | * of the band to be accessed. This would be zero to start from the left side. |
828 | | * Defaults to 0. |
829 | | * |
830 | | * @param dfYOff The line offset to the top left corner of the region |
831 | | * of the band to be accessed. This would be zero to start from the top. |
832 | | * Defaults to 0. |
833 | | * |
834 | | * @param dfXSize The width of the region of the band to be accessed in pixels. |
835 | | * If all of dfXOff, dfYOff, dfXSize and dfYSize are left to their zero default value, |
836 | | * dfXSize is set to the band width. |
837 | | * |
838 | | * @param dfYSize The height of the region of the band to be accessed in lines. |
839 | | * If all of dfXOff, dfYOff, dfXSize and dfYSize are left to their zero default value, |
840 | | * dfYSize is set to the band height. |
841 | | * |
842 | | * @param nBufXSize the width of the buffer image into which the desired region |
843 | | * is to be read. If set to zero, and both dfXSize and dfYSize are integer values, |
844 | | * then nBufXSize is initialized with dfXSize. |
845 | | * |
846 | | * @param nBufYSize the height of the buffer image into which the desired region |
847 | | * is to be read. If set to zero, and both dfXSize and dfYSize are integer values, |
848 | | * then nBufYSize is initialized with dfYSize. |
849 | | * |
850 | | * @param eResampleAlg Resampling algorithm. Defaults to GRIORA_NearestNeighbour. |
851 | | * |
852 | | * @param pfnProgress Progress function. May be nullptr. |
853 | | * |
854 | | * @param pProgressData User data of pfnProgress. May be nullptr. |
855 | | * |
856 | | * @return CE_Failure if the access fails, otherwise CE_None. |
857 | | * |
858 | | * @see GDALRasterBand::RasterIO() |
859 | | * @since GDAL 3.10 |
860 | | */ |
861 | | template <class T> |
862 | | CPLErr GDALRasterBand::ReadRaster(std::vector<T> &vData, double dfXOff, |
863 | | double dfYOff, double dfXSize, double dfYSize, |
864 | | size_t nBufXSize, size_t nBufYSize, |
865 | | GDALRIOResampleAlg eResampleAlg, |
866 | | GDALProgressFunc pfnProgress, |
867 | | void *pProgressData) const |
868 | 0 | { |
869 | 0 | if (((nBufXSize | nBufYSize) >> 31) != 0) |
870 | 0 | { |
871 | 0 | return CE_Failure; |
872 | 0 | } |
873 | | |
874 | 0 | if (dfXOff == 0 && dfYOff == 0 && dfXSize == 0 && dfYSize == 0) |
875 | 0 | { |
876 | 0 | dfXSize = nRasterXSize; |
877 | 0 | dfYSize = nRasterYSize; |
878 | 0 | } |
879 | 0 | else if (!(dfXOff >= 0 && dfXOff <= INT_MAX) || |
880 | 0 | !(dfYOff >= 0 && dfYOff <= INT_MAX) || !(dfXSize >= 0) || |
881 | 0 | !(dfYSize >= 0) || dfXOff + dfXSize > INT_MAX || |
882 | 0 | dfYOff + dfYSize > INT_MAX) |
883 | 0 | { |
884 | 0 | return CE_Failure; |
885 | 0 | } |
886 | | |
887 | 0 | GDALRasterIOExtraArg sExtraArg; |
888 | 0 | sExtraArg.nVersion = 1; |
889 | 0 | sExtraArg.eResampleAlg = eResampleAlg; |
890 | 0 | sExtraArg.pfnProgress = pfnProgress; |
891 | 0 | sExtraArg.pProgressData = pProgressData; |
892 | 0 | sExtraArg.bFloatingPointWindowValidity = true; |
893 | 0 | sExtraArg.dfXOff = dfXOff; |
894 | 0 | sExtraArg.dfYOff = dfYOff; |
895 | 0 | sExtraArg.dfXSize = dfXSize; |
896 | 0 | sExtraArg.dfYSize = dfYSize; |
897 | 0 | const int nXOff = static_cast<int>(dfXOff); |
898 | 0 | const int nYOff = static_cast<int>(dfYOff); |
899 | 0 | const int nXSize = std::max(1, static_cast<int>(dfXSize + 0.5)); |
900 | 0 | const int nYSize = std::max(1, static_cast<int>(dfYSize + 0.5)); |
901 | 0 | if (nBufXSize == 0 && nBufYSize == 0) |
902 | 0 | { |
903 | 0 | if (static_cast<int>(dfXSize) == dfXSize && |
904 | 0 | static_cast<int>(dfYSize) == dfYSize) |
905 | 0 | { |
906 | 0 | nBufXSize = static_cast<int>(dfXSize); |
907 | 0 | nBufYSize = static_cast<int>(dfYSize); |
908 | 0 | } |
909 | 0 | else |
910 | 0 | { |
911 | 0 | CPLError(CE_Failure, CPLE_AppDefined, |
912 | 0 | "nBufXSize and nBufYSize must be provided if " |
913 | 0 | "dfXSize or dfYSize is not an integer value"); |
914 | 0 | return CE_Failure; |
915 | 0 | } |
916 | 0 | } |
917 | 0 | if (nBufXSize == 0 || nBufYSize == 0) |
918 | 0 | { |
919 | 0 | CPLDebug("GDAL", |
920 | 0 | "RasterIO() skipped for odd window or buffer size.\n" |
921 | 0 | " Window = (%d,%d)x%dx%d\n" |
922 | 0 | " Buffer = %dx%d\n", |
923 | 0 | nXOff, nYOff, nXSize, nYSize, static_cast<int>(nBufXSize), |
924 | 0 | static_cast<int>(nBufYSize)); |
925 | |
|
926 | 0 | return CE_None; |
927 | 0 | } |
928 | | |
929 | | if constexpr (SIZEOF_VOIDP < 8) |
930 | | { |
931 | | if (nBufXSize > std::numeric_limits<size_t>::max() / nBufYSize) |
932 | | { |
933 | | CPLError(CE_Failure, CPLE_OutOfMemory, "Too large buffer"); |
934 | | return CE_Failure; |
935 | | } |
936 | | } |
937 | |
|
938 | 0 | if (vData.size() < nBufXSize * nBufYSize) |
939 | 0 | { |
940 | 0 | try |
941 | 0 | { |
942 | 0 | vData.resize(nBufXSize * nBufYSize); |
943 | 0 | } |
944 | 0 | catch (const std::exception &) |
945 | 0 | { |
946 | 0 | CPLError(CE_Failure, CPLE_OutOfMemory, "Cannot resize array"); |
947 | 0 | return CE_Failure; |
948 | 0 | } |
949 | 0 | } |
950 | | |
951 | 0 | constexpr GSpacing nPixelSpace = sizeof(T); |
952 | 0 | const GSpacing nLineSpace = nPixelSpace * nBufXSize; |
953 | 0 | constexpr GDALDataType eBufType = GetGDTFromCppType<T>::GDT; |
954 | |
|
955 | 0 | GDALRasterBand *pThis = const_cast<GDALRasterBand *>(this); |
956 | |
|
957 | 0 | return pThis->RasterIOInternal(GF_Read, nXOff, nYOff, nXSize, nYSize, |
958 | 0 | vData.data(), static_cast<int>(nBufXSize), |
959 | 0 | static_cast<int>(nBufYSize), eBufType, |
960 | 0 | nPixelSpace, nLineSpace, &sExtraArg); |
961 | 0 | } Unexecuted instantiation: CPLErr GDALRasterBand::ReadRaster<unsigned char>(std::__1::vector<unsigned char, std::__1::allocator<unsigned char> >&, double, double, double, double, unsigned long, unsigned long, GDALRIOResampleAlg, int (*)(double, char const*, void*), void*) const Unexecuted instantiation: CPLErr GDALRasterBand::ReadRaster<signed char>(std::__1::vector<signed char, std::__1::allocator<signed char> >&, double, double, double, double, unsigned long, unsigned long, GDALRIOResampleAlg, int (*)(double, char const*, void*), void*) const Unexecuted instantiation: CPLErr GDALRasterBand::ReadRaster<unsigned short>(std::__1::vector<unsigned short, std::__1::allocator<unsigned short> >&, double, double, double, double, unsigned long, unsigned long, GDALRIOResampleAlg, int (*)(double, char const*, void*), void*) const Unexecuted instantiation: CPLErr GDALRasterBand::ReadRaster<short>(std::__1::vector<short, std::__1::allocator<short> >&, double, double, double, double, unsigned long, unsigned long, GDALRIOResampleAlg, int (*)(double, char const*, void*), void*) const Unexecuted instantiation: CPLErr GDALRasterBand::ReadRaster<unsigned int>(std::__1::vector<unsigned int, std::__1::allocator<unsigned int> >&, double, double, double, double, unsigned long, unsigned long, GDALRIOResampleAlg, int (*)(double, char const*, void*), void*) const Unexecuted instantiation: CPLErr GDALRasterBand::ReadRaster<int>(std::__1::vector<int, std::__1::allocator<int> >&, double, double, double, double, unsigned long, unsigned long, GDALRIOResampleAlg, int (*)(double, char const*, void*), void*) const Unexecuted instantiation: CPLErr GDALRasterBand::ReadRaster<unsigned long>(std::__1::vector<unsigned long, std::__1::allocator<unsigned long> >&, double, double, double, double, unsigned long, unsigned long, GDALRIOResampleAlg, int (*)(double, char const*, void*), void*) const Unexecuted instantiation: CPLErr GDALRasterBand::ReadRaster<long>(std::__1::vector<long, std::__1::allocator<long> >&, double, double, double, double, unsigned long, unsigned long, GDALRIOResampleAlg, int (*)(double, char const*, void*), void*) const Unexecuted instantiation: CPLErr GDALRasterBand::ReadRaster<cpl::Float16>(std::__1::vector<cpl::Float16, std::__1::allocator<cpl::Float16> >&, double, double, double, double, unsigned long, unsigned long, GDALRIOResampleAlg, int (*)(double, char const*, void*), void*) const Unexecuted instantiation: CPLErr GDALRasterBand::ReadRaster<float>(std::__1::vector<float, std::__1::allocator<float> >&, double, double, double, double, unsigned long, unsigned long, GDALRIOResampleAlg, int (*)(double, char const*, void*), void*) const Unexecuted instantiation: CPLErr GDALRasterBand::ReadRaster<double>(std::__1::vector<double, std::__1::allocator<double> >&, double, double, double, double, unsigned long, unsigned long, GDALRIOResampleAlg, int (*)(double, char const*, void*), void*) const Unexecuted instantiation: CPLErr GDALRasterBand::ReadRaster<std::__1::complex<float> >(std::__1::vector<std::__1::complex<float>, std::__1::allocator<std::__1::complex<float> > >&, double, double, double, double, unsigned long, unsigned long, GDALRIOResampleAlg, int (*)(double, char const*, void*), void*) const Unexecuted instantiation: CPLErr GDALRasterBand::ReadRaster<std::__1::complex<double> >(std::__1::vector<std::__1::complex<double>, std::__1::allocator<std::__1::complex<double> > >&, double, double, double, double, unsigned long, unsigned long, GDALRIOResampleAlg, int (*)(double, char const*, void*), void*) const |
962 | | |
963 | | //! @cond Doxygen_Suppress |
964 | | |
965 | | #define INSTANTIATE_READ_RASTER_VECTOR(T) \ |
966 | | template CPLErr CPL_DLL GDALRasterBand::ReadRaster( \ |
967 | | std::vector<T> &vData, double dfXOff, double dfYOff, double dfXSize, \ |
968 | | double dfYSize, size_t nBufXSize, size_t nBufYSize, \ |
969 | | GDALRIOResampleAlg eResampleAlg, GDALProgressFunc pfnProgress, \ |
970 | | void *pProgressData) const; |
971 | | |
972 | | INSTANTIATE_READ_RASTER_VECTOR(uint8_t) |
973 | | INSTANTIATE_READ_RASTER_VECTOR(int8_t) |
974 | | INSTANTIATE_READ_RASTER_VECTOR(uint16_t) |
975 | | INSTANTIATE_READ_RASTER_VECTOR(int16_t) |
976 | | INSTANTIATE_READ_RASTER_VECTOR(uint32_t) |
977 | | INSTANTIATE_READ_RASTER_VECTOR(int32_t) |
978 | | INSTANTIATE_READ_RASTER_VECTOR(uint64_t) |
979 | | INSTANTIATE_READ_RASTER_VECTOR(int64_t) |
980 | | INSTANTIATE_READ_RASTER_VECTOR(GFloat16) |
981 | | INSTANTIATE_READ_RASTER_VECTOR(float) |
982 | | INSTANTIATE_READ_RASTER_VECTOR(double) |
983 | | // Not allowed by C++ standard |
984 | | // INSTANTIATE_READ_RASTER_VECTOR(std::complex<int16_t>) |
985 | | // INSTANTIATE_READ_RASTER_VECTOR(std::complex<int32_t>) |
986 | | INSTANTIATE_READ_RASTER_VECTOR(std::complex<float>) |
987 | | INSTANTIATE_READ_RASTER_VECTOR(std::complex<double>) |
988 | | |
989 | | //! @endcond |
990 | | |
991 | | /************************************************************************/ |
992 | | /* ReadBlock() */ |
993 | | /************************************************************************/ |
994 | | |
995 | | /** |
996 | | * \brief Read a block of image data efficiently. |
997 | | * |
998 | | * This method accesses a "natural" block from the raster band without |
999 | | * resampling, or data type conversion. For a more generalized, but |
1000 | | * potentially less efficient access use RasterIO(). |
1001 | | * |
1002 | | * This method is the same as the C GDALReadBlock() function. |
1003 | | * |
1004 | | * See the GetLockedBlockRef() method for a way of accessing internally cached |
1005 | | * block oriented data without an extra copy into an application buffer. |
1006 | | * |
1007 | | * The following code would efficiently compute a histogram of eight bit |
1008 | | * raster data. Note that the final block may be partial ... data beyond |
1009 | | * the edge of the underlying raster band in these edge blocks is of an |
1010 | | * undetermined value. |
1011 | | * |
1012 | | \code{.cpp} |
1013 | | CPLErr GetHistogram( GDALRasterBand *poBand, GUIntBig *panHistogram ) |
1014 | | |
1015 | | { |
1016 | | memset( panHistogram, 0, sizeof(GUIntBig) * 256 ); |
1017 | | |
1018 | | CPLAssert( poBand->GetRasterDataType() == GDT_Byte ); |
1019 | | |
1020 | | int nXBlockSize, nYBlockSize; |
1021 | | |
1022 | | poBand->GetBlockSize( &nXBlockSize, &nYBlockSize ); |
1023 | | int nXBlocks = DIV_ROUND_UP(poBand->GetXSize(), nXBlockSize); |
1024 | | int nYBlocks = DIV_ROUND_UP(poBand->GetYSize(), nYBlockSize); |
1025 | | |
1026 | | GByte *pabyData = (GByte *) CPLMalloc(nXBlockSize * nYBlockSize); |
1027 | | |
1028 | | for( int iYBlock = 0; iYBlock < nYBlocks; iYBlock++ ) |
1029 | | { |
1030 | | for( int iXBlock = 0; iXBlock < nXBlocks; iXBlock++ ) |
1031 | | { |
1032 | | int nXValid, nYValid; |
1033 | | |
1034 | | poBand->ReadBlock( iXBlock, iYBlock, pabyData ); |
1035 | | |
1036 | | // Compute the portion of the block that is valid |
1037 | | // for partial edge blocks. |
1038 | | poBand->GetActualBlockSize(iXBlock, iYBlock, &nXValid, &nYValid) |
1039 | | |
1040 | | // Collect the histogram counts. |
1041 | | for( int iY = 0; iY < nYValid; iY++ ) |
1042 | | { |
1043 | | for( int iX = 0; iX < nXValid; iX++ ) |
1044 | | { |
1045 | | panHistogram[pabyData[iX + iY * nXBlockSize]] += 1; |
1046 | | } |
1047 | | } |
1048 | | } |
1049 | | } |
1050 | | } |
1051 | | \endcode |
1052 | | * |
1053 | | * @param nXBlockOff the horizontal block offset, with zero indicating |
1054 | | * the left most block, 1 the next block and so forth. |
1055 | | * |
1056 | | * @param nYBlockOff the vertical block offset, with zero indicating |
1057 | | * the top most block, 1 the next block and so forth. |
1058 | | * |
1059 | | * @param pImage the buffer into which the data will be read. The buffer |
1060 | | * must be large enough to hold GetBlockXSize()*GetBlockYSize() words |
1061 | | * of type GetRasterDataType(). |
1062 | | * |
1063 | | * @return CE_None on success or CE_Failure on an error. |
1064 | | */ |
1065 | | |
1066 | | CPLErr GDALRasterBand::ReadBlock(int nXBlockOff, int nYBlockOff, void *pImage) |
1067 | | |
1068 | 0 | { |
1069 | | /* -------------------------------------------------------------------- */ |
1070 | | /* Validate arguments. */ |
1071 | | /* -------------------------------------------------------------------- */ |
1072 | 0 | CPLAssert(pImage != nullptr); |
1073 | | |
1074 | 0 | if (!InitBlockInfo()) |
1075 | 0 | return CE_Failure; |
1076 | | |
1077 | 0 | if (nXBlockOff < 0 || nXBlockOff >= nBlocksPerRow) |
1078 | 0 | { |
1079 | 0 | ReportError(CE_Failure, CPLE_IllegalArg, |
1080 | 0 | "Illegal nXBlockOff value (%d) in " |
1081 | 0 | "GDALRasterBand::ReadBlock()\n", |
1082 | 0 | nXBlockOff); |
1083 | |
|
1084 | 0 | return (CE_Failure); |
1085 | 0 | } |
1086 | | |
1087 | 0 | if (nYBlockOff < 0 || nYBlockOff >= nBlocksPerColumn) |
1088 | 0 | { |
1089 | 0 | ReportError(CE_Failure, CPLE_IllegalArg, |
1090 | 0 | "Illegal nYBlockOff value (%d) in " |
1091 | 0 | "GDALRasterBand::ReadBlock()\n", |
1092 | 0 | nYBlockOff); |
1093 | |
|
1094 | 0 | return (CE_Failure); |
1095 | 0 | } |
1096 | | |
1097 | | /* -------------------------------------------------------------------- */ |
1098 | | /* Invoke underlying implementation method. */ |
1099 | | /* -------------------------------------------------------------------- */ |
1100 | | |
1101 | 0 | int bCallLeaveReadWrite = EnterReadWrite(GF_Read); |
1102 | 0 | CPLErr eErr = IReadBlock(nXBlockOff, nYBlockOff, pImage); |
1103 | 0 | if (bCallLeaveReadWrite) |
1104 | 0 | LeaveReadWrite(); |
1105 | 0 | return eErr; |
1106 | 0 | } |
1107 | | |
1108 | | /************************************************************************/ |
1109 | | /* GDALReadBlock() */ |
1110 | | /************************************************************************/ |
1111 | | |
1112 | | /** |
1113 | | * \brief Read a block of image data efficiently. |
1114 | | * |
1115 | | * @see GDALRasterBand::ReadBlock() |
1116 | | */ |
1117 | | |
1118 | | CPLErr CPL_STDCALL GDALReadBlock(GDALRasterBandH hBand, int nXOff, int nYOff, |
1119 | | void *pData) |
1120 | | |
1121 | 0 | { |
1122 | 0 | VALIDATE_POINTER1(hBand, "GDALReadBlock", CE_Failure); |
1123 | | |
1124 | 0 | GDALRasterBand *poBand = GDALRasterBand::FromHandle(hBand); |
1125 | 0 | return (poBand->ReadBlock(nXOff, nYOff, pData)); |
1126 | 0 | } |
1127 | | |
1128 | | /************************************************************************/ |
1129 | | /* IReadBlock() */ |
1130 | | /************************************************************************/ |
1131 | | |
1132 | | /** \fn GDALRasterBand::IReadBlock( int nBlockXOff, int nBlockYOff, void *pData |
1133 | | * ) \brief Read a block of data. |
1134 | | * |
1135 | | * Default internal implementation ... to be overridden by |
1136 | | * subclasses that support reading. |
1137 | | * @param nBlockXOff Block X Offset |
1138 | | * @param nBlockYOff Block Y Offset |
1139 | | * @param pData Pixel buffer into which to place read data. |
1140 | | * @return CE_None on success or CE_Failure on an error. |
1141 | | */ |
1142 | | |
1143 | | /************************************************************************/ |
1144 | | /* IWriteBlock() */ |
1145 | | /************************************************************************/ |
1146 | | |
1147 | | /** |
1148 | | * \fn GDALRasterBand::IWriteBlock(int, int, void*) |
1149 | | * Write a block of data. |
1150 | | * |
1151 | | * Default internal implementation ... to be overridden by |
1152 | | * subclasses that support writing. |
1153 | | * @param nBlockXOff Block X Offset |
1154 | | * @param nBlockYOff Block Y Offset |
1155 | | * @param pData Pixel buffer to write |
1156 | | * @return CE_None on success or CE_Failure on an error. |
1157 | | */ |
1158 | | |
1159 | | /**/ |
1160 | | /**/ |
1161 | | |
1162 | | CPLErr GDALRasterBand::IWriteBlock(int /*nBlockXOff*/, int /*nBlockYOff*/, |
1163 | | void * /*pData*/) |
1164 | | |
1165 | 0 | { |
1166 | 0 | if (!(GetMOFlags() & GMO_IGNORE_UNIMPLEMENTED)) |
1167 | 0 | ReportError(CE_Failure, CPLE_NotSupported, |
1168 | 0 | "WriteBlock() not supported for this dataset."); |
1169 | |
|
1170 | 0 | return (CE_Failure); |
1171 | 0 | } |
1172 | | |
1173 | | /************************************************************************/ |
1174 | | /* WriteBlock() */ |
1175 | | /************************************************************************/ |
1176 | | |
1177 | | /** |
1178 | | * \brief Write a block of image data efficiently. |
1179 | | * |
1180 | | * This method accesses a "natural" block from the raster band without |
1181 | | * resampling, or data type conversion. For a more generalized, but |
1182 | | * potentially less efficient access use RasterIO(). |
1183 | | * |
1184 | | * This method is the same as the C GDALWriteBlock() function. |
1185 | | * |
1186 | | * See ReadBlock() for an example of block oriented data access. |
1187 | | * |
1188 | | * @param nXBlockOff the horizontal block offset, with zero indicating |
1189 | | * the left most block, 1 the next block and so forth. |
1190 | | * |
1191 | | * @param nYBlockOff the vertical block offset, with zero indicating |
1192 | | * the left most block, 1 the next block and so forth. |
1193 | | * |
1194 | | * @param pImage the buffer from which the data will be written. The buffer |
1195 | | * must be large enough to hold GetBlockXSize()*GetBlockYSize() words |
1196 | | * of type GetRasterDataType(). Note that the content of the buffer might be |
1197 | | * temporarily modified during the execution of this method (and eventually |
1198 | | * restored back to its original content), so it is not safe to use a buffer |
1199 | | * stored in a read-only section of the calling program. |
1200 | | * |
1201 | | * @return CE_None on success or CE_Failure on an error. |
1202 | | */ |
1203 | | |
1204 | | CPLErr GDALRasterBand::WriteBlock(int nXBlockOff, int nYBlockOff, void *pImage) |
1205 | | |
1206 | 0 | { |
1207 | | /* -------------------------------------------------------------------- */ |
1208 | | /* Validate arguments. */ |
1209 | | /* -------------------------------------------------------------------- */ |
1210 | 0 | CPLAssert(pImage != nullptr); |
1211 | | |
1212 | 0 | if (!InitBlockInfo()) |
1213 | 0 | return CE_Failure; |
1214 | | |
1215 | 0 | if (nXBlockOff < 0 || nXBlockOff >= nBlocksPerRow) |
1216 | 0 | { |
1217 | 0 | ReportError(CE_Failure, CPLE_IllegalArg, |
1218 | 0 | "Illegal nXBlockOff value (%d) in " |
1219 | 0 | "GDALRasterBand::WriteBlock()\n", |
1220 | 0 | nXBlockOff); |
1221 | |
|
1222 | 0 | return (CE_Failure); |
1223 | 0 | } |
1224 | | |
1225 | 0 | if (nYBlockOff < 0 || nYBlockOff >= nBlocksPerColumn) |
1226 | 0 | { |
1227 | 0 | ReportError(CE_Failure, CPLE_IllegalArg, |
1228 | 0 | "Illegal nYBlockOff value (%d) in " |
1229 | 0 | "GDALRasterBand::WriteBlock()\n", |
1230 | 0 | nYBlockOff); |
1231 | |
|
1232 | 0 | return (CE_Failure); |
1233 | 0 | } |
1234 | | |
1235 | 0 | if (EmitErrorMessageIfWriteNotSupported("GDALRasterBand::WriteBlock()")) |
1236 | 0 | { |
1237 | 0 | return CE_Failure; |
1238 | 0 | } |
1239 | | |
1240 | 0 | if (eFlushBlockErr != CE_None) |
1241 | 0 | { |
1242 | 0 | ReportError(eFlushBlockErr, CPLE_AppDefined, |
1243 | 0 | "An error occurred while writing a dirty block " |
1244 | 0 | "from GDALRasterBand::WriteBlock"); |
1245 | 0 | CPLErr eErr = eFlushBlockErr; |
1246 | 0 | eFlushBlockErr = CE_None; |
1247 | 0 | return eErr; |
1248 | 0 | } |
1249 | | |
1250 | | /* -------------------------------------------------------------------- */ |
1251 | | /* Invoke underlying implementation method. */ |
1252 | | /* -------------------------------------------------------------------- */ |
1253 | | |
1254 | 0 | const bool bCallLeaveReadWrite = CPL_TO_BOOL(EnterReadWrite(GF_Write)); |
1255 | 0 | CPLErr eErr = IWriteBlock(nXBlockOff, nYBlockOff, pImage); |
1256 | 0 | if (bCallLeaveReadWrite) |
1257 | 0 | LeaveReadWrite(); |
1258 | |
|
1259 | 0 | return eErr; |
1260 | 0 | } |
1261 | | |
1262 | | /************************************************************************/ |
1263 | | /* GDALWriteBlock() */ |
1264 | | /************************************************************************/ |
1265 | | |
1266 | | /** |
1267 | | * \brief Write a block of image data efficiently. |
1268 | | * |
1269 | | * @see GDALRasterBand::WriteBlock() |
1270 | | */ |
1271 | | |
1272 | | CPLErr CPL_STDCALL GDALWriteBlock(GDALRasterBandH hBand, int nXOff, int nYOff, |
1273 | | void *pData) |
1274 | | |
1275 | 0 | { |
1276 | 0 | VALIDATE_POINTER1(hBand, "GDALWriteBlock", CE_Failure); |
1277 | | |
1278 | 0 | GDALRasterBand *poBand = GDALRasterBand::FromHandle(hBand); |
1279 | 0 | return (poBand->WriteBlock(nXOff, nYOff, pData)); |
1280 | 0 | } |
1281 | | |
1282 | | /************************************************************************/ |
1283 | | /* EmitErrorMessageIfWriteNotSupported() */ |
1284 | | /************************************************************************/ |
1285 | | |
1286 | | /** |
1287 | | * Emit an error message if a write operation to this band is not supported. |
1288 | | * |
1289 | | * The base implementation will emit an error message if the access mode is |
1290 | | * read-only. Derived classes may implement it to provide a custom message. |
1291 | | * |
1292 | | * @param pszCaller Calling function. |
1293 | | * @return true if an error message has been emitted. |
1294 | | */ |
1295 | | bool GDALRasterBand::EmitErrorMessageIfWriteNotSupported( |
1296 | | const char *pszCaller) const |
1297 | 0 | { |
1298 | 0 | if (eAccess == GA_ReadOnly) |
1299 | 0 | { |
1300 | 0 | ReportError(CE_Failure, CPLE_NoWriteAccess, |
1301 | 0 | "%s: attempt to write to dataset opened in read-only mode.", |
1302 | 0 | pszCaller); |
1303 | |
|
1304 | 0 | return true; |
1305 | 0 | } |
1306 | 0 | return false; |
1307 | 0 | } |
1308 | | |
1309 | | /************************************************************************/ |
1310 | | /* GetActualBlockSize() */ |
1311 | | /************************************************************************/ |
1312 | | /** |
1313 | | * \brief Fetch the actual block size for a given block offset. |
1314 | | * |
1315 | | * Handles partial blocks at the edges of the raster and returns the true |
1316 | | * number of pixels |
1317 | | * |
1318 | | * @param nXBlockOff the horizontal block offset for which to calculate the |
1319 | | * number of valid pixels, with zero indicating the left most block, 1 the next |
1320 | | * block and so forth. |
1321 | | * |
1322 | | * @param nYBlockOff the vertical block offset, with zero indicating |
1323 | | * the top most block, 1 the next block and so forth. |
1324 | | * |
1325 | | * @param pnXValid pointer to an integer in which the number of valid pixels in |
1326 | | * the x direction will be stored |
1327 | | * |
1328 | | * @param pnYValid pointer to an integer in which the number of valid pixels in |
1329 | | * the y direction will be stored |
1330 | | * |
1331 | | * @return CE_None if the input parameters are valid, CE_Failure otherwise |
1332 | | * |
1333 | | * @since GDAL 2.2 |
1334 | | */ |
1335 | | CPLErr GDALRasterBand::GetActualBlockSize(int nXBlockOff, int nYBlockOff, |
1336 | | int *pnXValid, int *pnYValid) const |
1337 | 0 | { |
1338 | 0 | if (nXBlockOff < 0 || nBlockXSize == 0 || |
1339 | 0 | nXBlockOff >= DIV_ROUND_UP(nRasterXSize, nBlockXSize) || |
1340 | 0 | nYBlockOff < 0 || nBlockYSize == 0 || |
1341 | 0 | nYBlockOff >= DIV_ROUND_UP(nRasterYSize, nBlockYSize)) |
1342 | 0 | { |
1343 | 0 | return CE_Failure; |
1344 | 0 | } |
1345 | | |
1346 | 0 | const int nXPixelOff = nXBlockOff * nBlockXSize; |
1347 | 0 | const int nYPixelOff = nYBlockOff * nBlockYSize; |
1348 | |
|
1349 | 0 | *pnXValid = nBlockXSize; |
1350 | 0 | *pnYValid = nBlockYSize; |
1351 | |
|
1352 | 0 | if (nXPixelOff >= nRasterXSize - nBlockXSize) |
1353 | 0 | { |
1354 | 0 | *pnXValid = nRasterXSize - nXPixelOff; |
1355 | 0 | } |
1356 | |
|
1357 | 0 | if (nYPixelOff >= nRasterYSize - nBlockYSize) |
1358 | 0 | { |
1359 | 0 | *pnYValid = nRasterYSize - nYPixelOff; |
1360 | 0 | } |
1361 | |
|
1362 | 0 | return CE_None; |
1363 | 0 | } |
1364 | | |
1365 | | /************************************************************************/ |
1366 | | /* GDALGetActualBlockSize() */ |
1367 | | /************************************************************************/ |
1368 | | |
1369 | | /** |
1370 | | * \brief Retrieve the actual block size for a given block offset. |
1371 | | * |
1372 | | * @see GDALRasterBand::GetActualBlockSize() |
1373 | | */ |
1374 | | |
1375 | | CPLErr CPL_STDCALL GDALGetActualBlockSize(GDALRasterBandH hBand, int nXBlockOff, |
1376 | | int nYBlockOff, int *pnXValid, |
1377 | | int *pnYValid) |
1378 | | |
1379 | 0 | { |
1380 | 0 | VALIDATE_POINTER1(hBand, "GDALGetActualBlockSize", CE_Failure); |
1381 | | |
1382 | 0 | GDALRasterBand *poBand = GDALRasterBand::FromHandle(hBand); |
1383 | 0 | return ( |
1384 | 0 | poBand->GetActualBlockSize(nXBlockOff, nYBlockOff, pnXValid, pnYValid)); |
1385 | 0 | } |
1386 | | |
1387 | | /************************************************************************/ |
1388 | | /* GetSuggestedBlockAccessPattern() */ |
1389 | | /************************************************************************/ |
1390 | | |
1391 | | /** |
1392 | | * \brief Return the suggested/most efficient access pattern to blocks |
1393 | | * (for read operations). |
1394 | | * |
1395 | | * While all GDAL drivers have to expose a block size, not all can guarantee |
1396 | | * efficient random access (GSBAP_RANDOM) to any block. |
1397 | | * Some drivers for example decompress sequentially a compressed stream from |
1398 | | * top raster to bottom (GSBAP_TOP_TO_BOTTOM), in which |
1399 | | * case best performance will be achieved while reading blocks in that order. |
1400 | | * (accessing blocks in random access in such rasters typically causes the |
1401 | | * decoding to be re-initialized from the start if accessing blocks in |
1402 | | * a non-sequential order) |
1403 | | * |
1404 | | * The base implementation returns GSBAP_UNKNOWN, which can also be explicitly |
1405 | | * returned by drivers that expose a somewhat artificial block size, because |
1406 | | * they can extract any part of a raster, but in a rather inefficient way. |
1407 | | * |
1408 | | * The GSBAP_LARGEST_CHUNK_POSSIBLE value can be combined as a logical bitmask |
1409 | | * with other enumeration values (GSBAP_UNKNOWN, GSBAP_RANDOM, |
1410 | | * GSBAP_TOP_TO_BOTTOM, GSBAP_BOTTOM_TO_TOP). When a driver sets this flag, the |
1411 | | * most efficient strategy is to read as many pixels as possible in the less |
1412 | | * RasterIO() operations. |
1413 | | * |
1414 | | * The return of this method is for example used to determine the swath size |
1415 | | * used by GDALDatasetCopyWholeRaster() and GDALRasterBandCopyWholeRaster(). |
1416 | | * |
1417 | | * @since GDAL 3.6 |
1418 | | */ |
1419 | | |
1420 | | GDALSuggestedBlockAccessPattern |
1421 | | GDALRasterBand::GetSuggestedBlockAccessPattern() const |
1422 | 0 | { |
1423 | 0 | return GSBAP_UNKNOWN; |
1424 | 0 | } |
1425 | | |
1426 | | /************************************************************************/ |
1427 | | /* GetRasterDataType() */ |
1428 | | /************************************************************************/ |
1429 | | |
1430 | | /** |
1431 | | * \brief Fetch the pixel data type for this band. |
1432 | | * |
1433 | | * This method is the same as the C function GDALGetRasterDataType(). |
1434 | | * |
1435 | | * @return the data type of pixels for this band. |
1436 | | */ |
1437 | | |
1438 | | GDALDataType GDALRasterBand::GetRasterDataType() const |
1439 | | |
1440 | 0 | { |
1441 | 0 | return eDataType; |
1442 | 0 | } |
1443 | | |
1444 | | /************************************************************************/ |
1445 | | /* GDALGetRasterDataType() */ |
1446 | | /************************************************************************/ |
1447 | | |
1448 | | /** |
1449 | | * \brief Fetch the pixel data type for this band. |
1450 | | * |
1451 | | * @see GDALRasterBand::GetRasterDataType() |
1452 | | */ |
1453 | | |
1454 | | GDALDataType CPL_STDCALL GDALGetRasterDataType(GDALRasterBandH hBand) |
1455 | | |
1456 | 0 | { |
1457 | 0 | VALIDATE_POINTER1(hBand, "GDALGetRasterDataType", GDT_Unknown); |
1458 | | |
1459 | 0 | GDALRasterBand *poBand = GDALRasterBand::FromHandle(hBand); |
1460 | 0 | return poBand->GetRasterDataType(); |
1461 | 0 | } |
1462 | | |
1463 | | /************************************************************************/ |
1464 | | /* GetBlockSize() */ |
1465 | | /************************************************************************/ |
1466 | | |
1467 | | /** |
1468 | | * \brief Fetch the "natural" block size of this band. |
1469 | | * |
1470 | | * GDAL contains a concept of the natural block size of rasters so that |
1471 | | * applications can organized data access efficiently for some file formats. |
1472 | | * The natural block size is the block size that is most efficient for |
1473 | | * accessing the format. For many formats this is simple a whole scanline |
1474 | | * in which case *pnXSize is set to GetXSize(), and *pnYSize is set to 1. |
1475 | | * |
1476 | | * However, for tiled images this will typically be the tile size. |
1477 | | * |
1478 | | * Note that the X and Y block sizes don't have to divide the image size |
1479 | | * evenly, meaning that right and bottom edge blocks may be incomplete. |
1480 | | * See ReadBlock() for an example of code dealing with these issues. |
1481 | | * |
1482 | | * This method is the same as the C function GDALGetBlockSize(). |
1483 | | * |
1484 | | * @param pnXSize integer to put the X block size into or NULL. |
1485 | | * |
1486 | | * @param pnYSize integer to put the Y block size into or NULL. |
1487 | | */ |
1488 | | |
1489 | | void GDALRasterBand::GetBlockSize(int *pnXSize, int *pnYSize) const |
1490 | | |
1491 | 0 | { |
1492 | 0 | if (nBlockXSize <= 0 || nBlockYSize <= 0) |
1493 | 0 | { |
1494 | 0 | ReportError(CE_Failure, CPLE_AppDefined, |
1495 | 0 | "Invalid block dimension : %d * %d", nBlockXSize, |
1496 | 0 | nBlockYSize); |
1497 | 0 | if (pnXSize != nullptr) |
1498 | 0 | *pnXSize = 0; |
1499 | 0 | if (pnYSize != nullptr) |
1500 | 0 | *pnYSize = 0; |
1501 | 0 | } |
1502 | 0 | else |
1503 | 0 | { |
1504 | 0 | if (pnXSize != nullptr) |
1505 | 0 | *pnXSize = nBlockXSize; |
1506 | 0 | if (pnYSize != nullptr) |
1507 | 0 | *pnYSize = nBlockYSize; |
1508 | 0 | } |
1509 | 0 | } |
1510 | | |
1511 | | /************************************************************************/ |
1512 | | /* GDALGetBlockSize() */ |
1513 | | /************************************************************************/ |
1514 | | |
1515 | | /** |
1516 | | * \brief Fetch the "natural" block size of this band. |
1517 | | * |
1518 | | * @see GDALRasterBand::GetBlockSize() |
1519 | | */ |
1520 | | |
1521 | | void CPL_STDCALL GDALGetBlockSize(GDALRasterBandH hBand, int *pnXSize, |
1522 | | int *pnYSize) |
1523 | | |
1524 | 0 | { |
1525 | 0 | VALIDATE_POINTER0(hBand, "GDALGetBlockSize"); |
1526 | | |
1527 | 0 | GDALRasterBand *poBand = GDALRasterBand::FromHandle(hBand); |
1528 | 0 | poBand->GetBlockSize(pnXSize, pnYSize); |
1529 | 0 | } |
1530 | | |
1531 | | /************************************************************************/ |
1532 | | /* InitBlockInfo() */ |
1533 | | /************************************************************************/ |
1534 | | |
1535 | | //! @cond Doxygen_Suppress |
1536 | | int GDALRasterBand::InitBlockInfo() |
1537 | | |
1538 | 0 | { |
1539 | 0 | if (poBandBlockCache != nullptr) |
1540 | 0 | return poBandBlockCache->IsInitOK(); |
1541 | | |
1542 | | /* Do some validation of raster and block dimensions in case the driver */ |
1543 | | /* would have neglected to do it itself */ |
1544 | 0 | if (nBlockXSize <= 0 || nBlockYSize <= 0) |
1545 | 0 | { |
1546 | 0 | ReportError(CE_Failure, CPLE_AppDefined, |
1547 | 0 | "Invalid block dimension : %d * %d", nBlockXSize, |
1548 | 0 | nBlockYSize); |
1549 | 0 | return FALSE; |
1550 | 0 | } |
1551 | | |
1552 | 0 | if (nRasterXSize <= 0 || nRasterYSize <= 0) |
1553 | 0 | { |
1554 | 0 | ReportError(CE_Failure, CPLE_AppDefined, |
1555 | 0 | "Invalid raster dimension : %d * %d", nRasterXSize, |
1556 | 0 | nRasterYSize); |
1557 | 0 | return FALSE; |
1558 | 0 | } |
1559 | | |
1560 | 0 | const int nDataTypeSize = GDALGetDataTypeSizeBytes(eDataType); |
1561 | 0 | if (nDataTypeSize == 0) |
1562 | 0 | { |
1563 | 0 | ReportError(CE_Failure, CPLE_AppDefined, "Invalid data type"); |
1564 | 0 | return FALSE; |
1565 | 0 | } |
1566 | | |
1567 | | #if SIZEOF_VOIDP == 4 |
1568 | | if (nBlockXSize >= 10000 || nBlockYSize >= 10000) |
1569 | | { |
1570 | | /* As 10000 * 10000 * 16 < INT_MAX, we don't need to do the |
1571 | | * multiplication in other cases */ |
1572 | | if (nBlockXSize > INT_MAX / nDataTypeSize || |
1573 | | nBlockYSize > INT_MAX / (nDataTypeSize * nBlockXSize)) |
1574 | | { |
1575 | | ReportError(CE_Failure, CPLE_NotSupported, |
1576 | | "Too big block : %d * %d for 32-bit build", nBlockXSize, |
1577 | | nBlockYSize); |
1578 | | return FALSE; |
1579 | | } |
1580 | | } |
1581 | | #endif |
1582 | | |
1583 | 0 | nBlocksPerRow = DIV_ROUND_UP(nRasterXSize, nBlockXSize); |
1584 | 0 | nBlocksPerColumn = DIV_ROUND_UP(nRasterYSize, nBlockYSize); |
1585 | |
|
1586 | 0 | const char *pszBlockStrategy = |
1587 | 0 | CPLGetConfigOption("GDAL_BAND_BLOCK_CACHE", nullptr); |
1588 | 0 | bool bUseArray = true; |
1589 | 0 | if (pszBlockStrategy == nullptr || EQUAL(pszBlockStrategy, "AUTO")) |
1590 | 0 | { |
1591 | 0 | if (poDS == nullptr || (poDS->nOpenFlags & GDAL_OF_BLOCK_ACCESS_MASK) == |
1592 | 0 | GDAL_OF_DEFAULT_BLOCK_ACCESS) |
1593 | 0 | { |
1594 | 0 | GUIntBig nBlockCount = |
1595 | 0 | static_cast<GIntBig>(nBlocksPerRow) * nBlocksPerColumn; |
1596 | 0 | if (poDS != nullptr) |
1597 | 0 | nBlockCount *= poDS->GetRasterCount(); |
1598 | 0 | bUseArray = (nBlockCount < 1024 * 1024); |
1599 | 0 | } |
1600 | 0 | else if ((poDS->nOpenFlags & GDAL_OF_BLOCK_ACCESS_MASK) == |
1601 | 0 | GDAL_OF_HASHSET_BLOCK_ACCESS) |
1602 | 0 | { |
1603 | 0 | bUseArray = false; |
1604 | 0 | } |
1605 | 0 | } |
1606 | 0 | else if (EQUAL(pszBlockStrategy, "HASHSET")) |
1607 | 0 | bUseArray = false; |
1608 | 0 | else if (!EQUAL(pszBlockStrategy, "ARRAY")) |
1609 | 0 | CPLError(CE_Warning, CPLE_AppDefined, "Unknown block cache method: %s", |
1610 | 0 | pszBlockStrategy); |
1611 | |
|
1612 | 0 | if (bUseArray) |
1613 | 0 | poBandBlockCache = GDALArrayBandBlockCacheCreate(this); |
1614 | 0 | else |
1615 | 0 | { |
1616 | 0 | if (nBand == 1) |
1617 | 0 | CPLDebug("GDAL", "Use hashset band block cache"); |
1618 | 0 | poBandBlockCache = GDALHashSetBandBlockCacheCreate(this); |
1619 | 0 | } |
1620 | 0 | if (poBandBlockCache == nullptr) |
1621 | 0 | return FALSE; |
1622 | 0 | return poBandBlockCache->Init(); |
1623 | 0 | } |
1624 | | |
1625 | | //! @endcond |
1626 | | |
1627 | | /************************************************************************/ |
1628 | | /* FlushCache() */ |
1629 | | /************************************************************************/ |
1630 | | |
1631 | | /** |
1632 | | * \brief Flush raster data cache. |
1633 | | * |
1634 | | * This call will recover memory used to cache data blocks for this raster |
1635 | | * band, and ensure that new requests are referred to the underlying driver. |
1636 | | * |
1637 | | * This method is the same as the C function GDALFlushRasterCache(). |
1638 | | * |
1639 | | * @param bAtClosing Whether this is called from a GDALDataset destructor |
1640 | | * @return CE_None on success. |
1641 | | */ |
1642 | | |
1643 | | CPLErr GDALRasterBand::FlushCache(bool bAtClosing) |
1644 | | |
1645 | 0 | { |
1646 | 0 | if (bAtClosing && poDS && poDS->IsMarkedSuppressOnClose() && |
1647 | 0 | poBandBlockCache) |
1648 | 0 | poBandBlockCache->DisableDirtyBlockWriting(); |
1649 | |
|
1650 | 0 | CPLErr eGlobalErr = eFlushBlockErr; |
1651 | |
|
1652 | 0 | if (eFlushBlockErr != CE_None) |
1653 | 0 | { |
1654 | 0 | ReportError( |
1655 | 0 | eFlushBlockErr, CPLE_AppDefined, |
1656 | 0 | "An error occurred while writing a dirty block from FlushCache"); |
1657 | 0 | eFlushBlockErr = CE_None; |
1658 | 0 | } |
1659 | |
|
1660 | 0 | if (poBandBlockCache == nullptr || !poBandBlockCache->IsInitOK()) |
1661 | 0 | return eGlobalErr; |
1662 | | |
1663 | 0 | return poBandBlockCache->FlushCache(); |
1664 | 0 | } |
1665 | | |
1666 | | /************************************************************************/ |
1667 | | /* GDALFlushRasterCache() */ |
1668 | | /************************************************************************/ |
1669 | | |
1670 | | /** |
1671 | | * \brief Flush raster data cache. |
1672 | | * |
1673 | | * @see GDALRasterBand::FlushCache() |
1674 | | */ |
1675 | | |
1676 | | CPLErr CPL_STDCALL GDALFlushRasterCache(GDALRasterBandH hBand) |
1677 | | |
1678 | 0 | { |
1679 | 0 | VALIDATE_POINTER1(hBand, "GDALFlushRasterCache", CE_Failure); |
1680 | | |
1681 | 0 | return GDALRasterBand::FromHandle(hBand)->FlushCache(false); |
1682 | 0 | } |
1683 | | |
1684 | | /************************************************************************/ |
1685 | | /* DropCache() */ |
1686 | | /************************************************************************/ |
1687 | | |
1688 | | /** |
1689 | | * \brief Drop raster data cache : data in cache will be lost. |
1690 | | * |
1691 | | * This call will recover memory used to cache data blocks for this raster |
1692 | | * band, and ensure that new requests are referred to the underlying driver. |
1693 | | * |
1694 | | * This method is the same as the C function GDALDropRasterCache(). |
1695 | | * |
1696 | | * @return CE_None on success. |
1697 | | * @since 3.9 |
1698 | | */ |
1699 | | |
1700 | | CPLErr GDALRasterBand::DropCache() |
1701 | | |
1702 | 0 | { |
1703 | 0 | CPLErr result = CE_None; |
1704 | |
|
1705 | 0 | if (poBandBlockCache) |
1706 | 0 | poBandBlockCache->DisableDirtyBlockWriting(); |
1707 | |
|
1708 | 0 | CPLErr eGlobalErr = eFlushBlockErr; |
1709 | |
|
1710 | 0 | if (eFlushBlockErr != CE_None) |
1711 | 0 | { |
1712 | 0 | ReportError( |
1713 | 0 | eFlushBlockErr, CPLE_AppDefined, |
1714 | 0 | "An error occurred while writing a dirty block from DropCache"); |
1715 | 0 | eFlushBlockErr = CE_None; |
1716 | 0 | } |
1717 | |
|
1718 | 0 | if (poBandBlockCache == nullptr || !poBandBlockCache->IsInitOK()) |
1719 | 0 | result = eGlobalErr; |
1720 | 0 | else |
1721 | 0 | result = poBandBlockCache->FlushCache(); |
1722 | |
|
1723 | 0 | if (poBandBlockCache) |
1724 | 0 | poBandBlockCache->EnableDirtyBlockWriting(); |
1725 | |
|
1726 | 0 | return result; |
1727 | 0 | } |
1728 | | |
1729 | | /************************************************************************/ |
1730 | | /* GDALDropRasterCache() */ |
1731 | | /************************************************************************/ |
1732 | | |
1733 | | /** |
1734 | | * \brief Drop raster data cache. |
1735 | | * |
1736 | | * @see GDALRasterBand::DropCache() |
1737 | | * @since 3.9 |
1738 | | */ |
1739 | | |
1740 | | CPLErr CPL_STDCALL GDALDropRasterCache(GDALRasterBandH hBand) |
1741 | | |
1742 | 0 | { |
1743 | 0 | VALIDATE_POINTER1(hBand, "GDALDropRasterCache", CE_Failure); |
1744 | | |
1745 | 0 | return GDALRasterBand::FromHandle(hBand)->DropCache(); |
1746 | 0 | } |
1747 | | |
1748 | | /************************************************************************/ |
1749 | | /* UnreferenceBlock() */ |
1750 | | /* */ |
1751 | | /* Unreference the block from our array of blocks */ |
1752 | | /* This method should only be called by */ |
1753 | | /* GDALRasterBlock::Internalize() and FlushCacheBlock() (and under */ |
1754 | | /* the block cache mutex) */ |
1755 | | /************************************************************************/ |
1756 | | |
1757 | | CPLErr GDALRasterBand::UnreferenceBlock(GDALRasterBlock *poBlock) |
1758 | 0 | { |
1759 | | #ifdef notdef |
1760 | | if (poBandBlockCache == nullptr || !poBandBlockCache->IsInitOK()) |
1761 | | { |
1762 | | if (poBandBlockCache == nullptr) |
1763 | | printf("poBandBlockCache == NULL\n"); /*ok*/ |
1764 | | else |
1765 | | printf("!poBandBlockCache->IsInitOK()\n"); /*ok*/ |
1766 | | printf("caller = %s\n", pszCaller); /*ok*/ |
1767 | | printf("GDALRasterBand: %p\n", this); /*ok*/ |
1768 | | printf("GDALRasterBand: nBand=%d\n", nBand); /*ok*/ |
1769 | | printf("nRasterXSize = %d\n", nRasterXSize); /*ok*/ |
1770 | | printf("nRasterYSize = %d\n", nRasterYSize); /*ok*/ |
1771 | | printf("nBlockXSize = %d\n", nBlockXSize); /*ok*/ |
1772 | | printf("nBlockYSize = %d\n", nBlockYSize); /*ok*/ |
1773 | | poBlock->DumpBlock(); |
1774 | | if (GetDataset() != nullptr) |
1775 | | printf("Dataset: %s\n", GetDataset()->GetDescription()); /*ok*/ |
1776 | | GDALRasterBlock::Verify(); |
1777 | | abort(); |
1778 | | } |
1779 | | #endif |
1780 | 0 | CPLAssert(poBandBlockCache && poBandBlockCache->IsInitOK()); |
1781 | 0 | return poBandBlockCache->UnreferenceBlock(poBlock); |
1782 | 0 | } |
1783 | | |
1784 | | /************************************************************************/ |
1785 | | /* AddBlockToFreeList() */ |
1786 | | /* */ |
1787 | | /* When GDALRasterBlock::Internalize() or FlushCacheBlock() are */ |
1788 | | /* finished with a block about to be free'd, they pass it to that */ |
1789 | | /* method. */ |
1790 | | /************************************************************************/ |
1791 | | |
1792 | | //! @cond Doxygen_Suppress |
1793 | | void GDALRasterBand::AddBlockToFreeList(GDALRasterBlock *poBlock) |
1794 | 0 | { |
1795 | 0 | CPLAssert(poBandBlockCache && poBandBlockCache->IsInitOK()); |
1796 | 0 | return poBandBlockCache->AddBlockToFreeList(poBlock); |
1797 | 0 | } |
1798 | | |
1799 | | //! @endcond |
1800 | | |
1801 | | /************************************************************************/ |
1802 | | /* FlushBlock() */ |
1803 | | /************************************************************************/ |
1804 | | |
1805 | | /** Flush a block out of the block cache. |
1806 | | * @param nXBlockOff block x offset |
1807 | | * @param nYBlockOff blocky offset |
1808 | | * @param bWriteDirtyBlock whether the block should be written to disk if dirty. |
1809 | | * @return CE_None in case of success, an error code otherwise. |
1810 | | */ |
1811 | | CPLErr GDALRasterBand::FlushBlock(int nXBlockOff, int nYBlockOff, |
1812 | | int bWriteDirtyBlock) |
1813 | | |
1814 | 0 | { |
1815 | 0 | if (poBandBlockCache == nullptr || !poBandBlockCache->IsInitOK()) |
1816 | 0 | return (CE_Failure); |
1817 | | |
1818 | | /* -------------------------------------------------------------------- */ |
1819 | | /* Validate the request */ |
1820 | | /* -------------------------------------------------------------------- */ |
1821 | 0 | if (nXBlockOff < 0 || nXBlockOff >= nBlocksPerRow) |
1822 | 0 | { |
1823 | 0 | ReportError(CE_Failure, CPLE_IllegalArg, |
1824 | 0 | "Illegal nBlockXOff value (%d) in " |
1825 | 0 | "GDALRasterBand::FlushBlock()\n", |
1826 | 0 | nXBlockOff); |
1827 | |
|
1828 | 0 | return (CE_Failure); |
1829 | 0 | } |
1830 | | |
1831 | 0 | if (nYBlockOff < 0 || nYBlockOff >= nBlocksPerColumn) |
1832 | 0 | { |
1833 | 0 | ReportError(CE_Failure, CPLE_IllegalArg, |
1834 | 0 | "Illegal nBlockYOff value (%d) in " |
1835 | 0 | "GDALRasterBand::FlushBlock()\n", |
1836 | 0 | nYBlockOff); |
1837 | |
|
1838 | 0 | return (CE_Failure); |
1839 | 0 | } |
1840 | | |
1841 | 0 | return poBandBlockCache->FlushBlock(nXBlockOff, nYBlockOff, |
1842 | 0 | bWriteDirtyBlock); |
1843 | 0 | } |
1844 | | |
1845 | | /************************************************************************/ |
1846 | | /* TryGetLockedBlockRef() */ |
1847 | | /************************************************************************/ |
1848 | | |
1849 | | /** |
1850 | | * \brief Try fetching block ref. |
1851 | | * |
1852 | | * This method will returned the requested block (locked) if it is already |
1853 | | * in the block cache for the layer. If not, nullptr is returned. |
1854 | | * |
1855 | | * If a non-NULL value is returned, then a lock for the block will have been |
1856 | | * acquired on behalf of the caller. It is absolutely imperative that the |
1857 | | * caller release this lock (with GDALRasterBlock::DropLock()) or else |
1858 | | * severe problems may result. |
1859 | | * |
1860 | | * @param nXBlockOff the horizontal block offset, with zero indicating |
1861 | | * the left most block, 1 the next block and so forth. |
1862 | | * |
1863 | | * @param nYBlockOff the vertical block offset, with zero indicating |
1864 | | * the top most block, 1 the next block and so forth. |
1865 | | * |
1866 | | * @return NULL if block not available, or locked block pointer. |
1867 | | */ |
1868 | | |
1869 | | GDALRasterBlock *GDALRasterBand::TryGetLockedBlockRef(int nXBlockOff, |
1870 | | int nYBlockOff) |
1871 | | |
1872 | 0 | { |
1873 | 0 | if (poBandBlockCache == nullptr || !poBandBlockCache->IsInitOK()) |
1874 | 0 | return nullptr; |
1875 | | |
1876 | | /* -------------------------------------------------------------------- */ |
1877 | | /* Validate the request */ |
1878 | | /* -------------------------------------------------------------------- */ |
1879 | 0 | if (nXBlockOff < 0 || nXBlockOff >= nBlocksPerRow) |
1880 | 0 | { |
1881 | 0 | ReportError(CE_Failure, CPLE_IllegalArg, |
1882 | 0 | "Illegal nBlockXOff value (%d) in " |
1883 | 0 | "GDALRasterBand::TryGetLockedBlockRef()\n", |
1884 | 0 | nXBlockOff); |
1885 | |
|
1886 | 0 | return (nullptr); |
1887 | 0 | } |
1888 | | |
1889 | 0 | if (nYBlockOff < 0 || nYBlockOff >= nBlocksPerColumn) |
1890 | 0 | { |
1891 | 0 | ReportError(CE_Failure, CPLE_IllegalArg, |
1892 | 0 | "Illegal nBlockYOff value (%d) in " |
1893 | 0 | "GDALRasterBand::TryGetLockedBlockRef()\n", |
1894 | 0 | nYBlockOff); |
1895 | |
|
1896 | 0 | return (nullptr); |
1897 | 0 | } |
1898 | | |
1899 | 0 | return poBandBlockCache->TryGetLockedBlockRef(nXBlockOff, nYBlockOff); |
1900 | 0 | } |
1901 | | |
1902 | | /************************************************************************/ |
1903 | | /* GetLockedBlockRef() */ |
1904 | | /************************************************************************/ |
1905 | | |
1906 | | /** |
1907 | | * \brief Fetch a pointer to an internally cached raster block. |
1908 | | * |
1909 | | * This method will returned the requested block (locked) if it is already |
1910 | | * in the block cache for the layer. If not, the block will be read from |
1911 | | * the driver, and placed in the layer block cached, then returned. If an |
1912 | | * error occurs reading the block from the driver, a NULL value will be |
1913 | | * returned. |
1914 | | * |
1915 | | * If a non-NULL value is returned, then a lock for the block will have been |
1916 | | * acquired on behalf of the caller. It is absolutely imperative that the |
1917 | | * caller release this lock (with GDALRasterBlock::DropLock()) or else |
1918 | | * severe problems may result. |
1919 | | * |
1920 | | * Note that calling GetLockedBlockRef() on a previously uncached band will |
1921 | | * enable caching. |
1922 | | * |
1923 | | * @param nXBlockOff the horizontal block offset, with zero indicating |
1924 | | * the left most block, 1 the next block and so forth. |
1925 | | * |
1926 | | * @param nYBlockOff the vertical block offset, with zero indicating |
1927 | | * the top most block, 1 the next block and so forth. |
1928 | | * |
1929 | | * @param bJustInitialize If TRUE the block will be allocated and initialized, |
1930 | | * but not actually read from the source. This is useful when it will just |
1931 | | * be completely set and written back. |
1932 | | * |
1933 | | * @return pointer to the block object, or NULL on failure. |
1934 | | */ |
1935 | | |
1936 | | GDALRasterBlock *GDALRasterBand::GetLockedBlockRef(int nXBlockOff, |
1937 | | int nYBlockOff, |
1938 | | int bJustInitialize) |
1939 | | |
1940 | 0 | { |
1941 | | /* -------------------------------------------------------------------- */ |
1942 | | /* Try and fetch from cache. */ |
1943 | | /* -------------------------------------------------------------------- */ |
1944 | 0 | GDALRasterBlock *poBlock = TryGetLockedBlockRef(nXBlockOff, nYBlockOff); |
1945 | | |
1946 | | /* -------------------------------------------------------------------- */ |
1947 | | /* If we didn't find it in our memory cache, instantiate a */ |
1948 | | /* block (potentially load from disk) and "adopt" it into the */ |
1949 | | /* cache. */ |
1950 | | /* -------------------------------------------------------------------- */ |
1951 | 0 | if (poBlock == nullptr) |
1952 | 0 | { |
1953 | 0 | if (!InitBlockInfo()) |
1954 | 0 | return (nullptr); |
1955 | | |
1956 | | /* -------------------------------------------------------------------- |
1957 | | */ |
1958 | | /* Validate the request */ |
1959 | | /* -------------------------------------------------------------------- |
1960 | | */ |
1961 | 0 | if (nXBlockOff < 0 || nXBlockOff >= nBlocksPerRow) |
1962 | 0 | { |
1963 | 0 | ReportError(CE_Failure, CPLE_IllegalArg, |
1964 | 0 | "Illegal nBlockXOff value (%d) in " |
1965 | 0 | "GDALRasterBand::GetLockedBlockRef()\n", |
1966 | 0 | nXBlockOff); |
1967 | |
|
1968 | 0 | return (nullptr); |
1969 | 0 | } |
1970 | | |
1971 | 0 | if (nYBlockOff < 0 || nYBlockOff >= nBlocksPerColumn) |
1972 | 0 | { |
1973 | 0 | ReportError(CE_Failure, CPLE_IllegalArg, |
1974 | 0 | "Illegal nBlockYOff value (%d) in " |
1975 | 0 | "GDALRasterBand::GetLockedBlockRef()\n", |
1976 | 0 | nYBlockOff); |
1977 | |
|
1978 | 0 | return (nullptr); |
1979 | 0 | } |
1980 | | |
1981 | 0 | poBlock = poBandBlockCache->CreateBlock(nXBlockOff, nYBlockOff); |
1982 | 0 | if (poBlock == nullptr) |
1983 | 0 | return nullptr; |
1984 | | |
1985 | 0 | poBlock->AddLock(); |
1986 | | |
1987 | | /* We need to temporarily drop the read-write lock in the following */ |
1988 | | /*scenario. Imagine 2 threads T1 and T2 that respectively write dataset |
1989 | | */ |
1990 | | /* D1 and D2. T1 will take the mutex on D1 and T2 on D2. Now when the */ |
1991 | | /* block cache fills, T1 might need to flush dirty blocks of D2 in the |
1992 | | */ |
1993 | | /* below Internalize(), which will cause GDALRasterBlock::Write() to be |
1994 | | */ |
1995 | | /* called and attempt at taking the lock on T2 (already taken). |
1996 | | * Similarly */ |
1997 | | /* for T2 with D1, hence a deadlock situation (#6163) */ |
1998 | | /* But this may open the door to other problems... */ |
1999 | 0 | if (poDS) |
2000 | 0 | poDS->TemporarilyDropReadWriteLock(); |
2001 | | /* allocate data space */ |
2002 | 0 | CPLErr eErr = poBlock->Internalize(); |
2003 | 0 | if (poDS) |
2004 | 0 | poDS->ReacquireReadWriteLock(); |
2005 | 0 | if (eErr != CE_None) |
2006 | 0 | { |
2007 | 0 | poBlock->DropLock(); |
2008 | 0 | delete poBlock; |
2009 | 0 | return nullptr; |
2010 | 0 | } |
2011 | | |
2012 | 0 | if (poBandBlockCache->AdoptBlock(poBlock) != CE_None) |
2013 | 0 | { |
2014 | 0 | poBlock->DropLock(); |
2015 | 0 | delete poBlock; |
2016 | 0 | return nullptr; |
2017 | 0 | } |
2018 | | |
2019 | 0 | if (!bJustInitialize) |
2020 | 0 | { |
2021 | 0 | const GUInt32 nErrorCounter = CPLGetErrorCounter(); |
2022 | 0 | int bCallLeaveReadWrite = EnterReadWrite(GF_Read); |
2023 | 0 | eErr = IReadBlock(nXBlockOff, nYBlockOff, poBlock->GetDataRef()); |
2024 | 0 | if (bCallLeaveReadWrite) |
2025 | 0 | LeaveReadWrite(); |
2026 | 0 | if (eErr != CE_None) |
2027 | 0 | { |
2028 | 0 | poBlock->DropLock(); |
2029 | 0 | FlushBlock(nXBlockOff, nYBlockOff); |
2030 | 0 | ReportError(CE_Failure, CPLE_AppDefined, |
2031 | 0 | "IReadBlock failed at X offset %d, Y offset %d%s", |
2032 | 0 | nXBlockOff, nYBlockOff, |
2033 | 0 | (nErrorCounter != CPLGetErrorCounter()) |
2034 | 0 | ? CPLSPrintf(": %s", CPLGetLastErrorMsg()) |
2035 | 0 | : ""); |
2036 | 0 | return nullptr; |
2037 | 0 | } |
2038 | | |
2039 | 0 | nBlockReads++; |
2040 | 0 | if (static_cast<GIntBig>(nBlockReads) == |
2041 | 0 | static_cast<GIntBig>(nBlocksPerRow) * nBlocksPerColumn + |
2042 | 0 | 1 && |
2043 | 0 | nBand == 1 && poDS != nullptr) |
2044 | 0 | { |
2045 | 0 | CPLDebug("GDAL", "Potential thrashing on band %d of %s.", nBand, |
2046 | 0 | poDS->GetDescription()); |
2047 | 0 | } |
2048 | 0 | } |
2049 | 0 | } |
2050 | | |
2051 | 0 | return poBlock; |
2052 | 0 | } |
2053 | | |
2054 | | /************************************************************************/ |
2055 | | /* Fill() */ |
2056 | | /************************************************************************/ |
2057 | | |
2058 | | /** |
2059 | | * \brief Fill this band with a constant value. |
2060 | | * |
2061 | | * GDAL makes no guarantees |
2062 | | * about what values pixels in newly created files are set to, so this |
2063 | | * method can be used to clear a band to a specified "default" value. |
2064 | | * The fill value is passed in as a double but this will be converted |
2065 | | * to the underlying type before writing to the file. An optional |
2066 | | * second argument allows the imaginary component of a complex |
2067 | | * constant value to be specified. |
2068 | | * |
2069 | | * This method is the same as the C function GDALFillRaster(). |
2070 | | * |
2071 | | * @param dfRealValue Real component of fill value |
2072 | | * @param dfImaginaryValue Imaginary component of fill value, defaults to zero |
2073 | | * |
2074 | | * @return CE_Failure if the write fails, otherwise CE_None |
2075 | | */ |
2076 | | CPLErr GDALRasterBand::Fill(double dfRealValue, double dfImaginaryValue) |
2077 | 0 | { |
2078 | | |
2079 | | // General approach is to construct a source block of the file's |
2080 | | // native type containing the appropriate value and then copy this |
2081 | | // to each block in the image via the RasterBlock cache. Using |
2082 | | // the cache means we avoid file I/O if it is not necessary, at the |
2083 | | // expense of some extra memcpy's (since we write to the |
2084 | | // RasterBlock cache, which is then at some point written to the |
2085 | | // underlying file, rather than simply directly to the underlying |
2086 | | // file.) |
2087 | | |
2088 | | // Check we can write to the file. |
2089 | 0 | if (EmitErrorMessageIfWriteNotSupported("GDALRasterBand::Fill()")) |
2090 | 0 | { |
2091 | 0 | return CE_Failure; |
2092 | 0 | } |
2093 | | |
2094 | | // Make sure block parameters are set. |
2095 | 0 | if (!InitBlockInfo()) |
2096 | 0 | return CE_Failure; |
2097 | | |
2098 | | // Allocate the source block. |
2099 | 0 | auto blockSize = static_cast<GPtrDiff_t>(nBlockXSize) * nBlockYSize; |
2100 | 0 | int elementSize = GDALGetDataTypeSizeBytes(eDataType); |
2101 | 0 | auto blockByteSize = blockSize * elementSize; |
2102 | 0 | unsigned char *srcBlock = |
2103 | 0 | static_cast<unsigned char *>(VSIMalloc(blockByteSize)); |
2104 | 0 | if (srcBlock == nullptr) |
2105 | 0 | { |
2106 | 0 | ReportError(CE_Failure, CPLE_OutOfMemory, |
2107 | 0 | "GDALRasterBand::Fill(): Out of memory " |
2108 | 0 | "allocating " CPL_FRMT_GUIB " bytes.\n", |
2109 | 0 | static_cast<GUIntBig>(blockByteSize)); |
2110 | 0 | return CE_Failure; |
2111 | 0 | } |
2112 | | |
2113 | | // Initialize the source block. |
2114 | 0 | double complexSrc[2] = {dfRealValue, dfImaginaryValue}; |
2115 | 0 | GDALCopyWords64(complexSrc, GDT_CFloat64, 0, srcBlock, eDataType, |
2116 | 0 | elementSize, blockSize); |
2117 | |
|
2118 | 0 | const bool bCallLeaveReadWrite = CPL_TO_BOOL(EnterReadWrite(GF_Write)); |
2119 | | |
2120 | | // Write block to block cache |
2121 | 0 | for (int j = 0; j < nBlocksPerColumn; ++j) |
2122 | 0 | { |
2123 | 0 | for (int i = 0; i < nBlocksPerRow; ++i) |
2124 | 0 | { |
2125 | 0 | GDALRasterBlock *destBlock = GetLockedBlockRef(i, j, TRUE); |
2126 | 0 | if (destBlock == nullptr) |
2127 | 0 | { |
2128 | 0 | ReportError(CE_Failure, CPLE_OutOfMemory, |
2129 | 0 | "GDALRasterBand::Fill(): Error " |
2130 | 0 | "while retrieving cache block."); |
2131 | 0 | VSIFree(srcBlock); |
2132 | 0 | return CE_Failure; |
2133 | 0 | } |
2134 | 0 | memcpy(destBlock->GetDataRef(), srcBlock, blockByteSize); |
2135 | 0 | destBlock->MarkDirty(); |
2136 | 0 | destBlock->DropLock(); |
2137 | 0 | } |
2138 | 0 | } |
2139 | | |
2140 | 0 | if (bCallLeaveReadWrite) |
2141 | 0 | LeaveReadWrite(); |
2142 | | |
2143 | | // Free up the source block |
2144 | 0 | VSIFree(srcBlock); |
2145 | |
|
2146 | 0 | return CE_None; |
2147 | 0 | } |
2148 | | |
2149 | | /************************************************************************/ |
2150 | | /* GDALFillRaster() */ |
2151 | | /************************************************************************/ |
2152 | | |
2153 | | /** |
2154 | | * \brief Fill this band with a constant value. |
2155 | | * |
2156 | | * @see GDALRasterBand::Fill() |
2157 | | */ |
2158 | | CPLErr CPL_STDCALL GDALFillRaster(GDALRasterBandH hBand, double dfRealValue, |
2159 | | double dfImaginaryValue) |
2160 | 0 | { |
2161 | 0 | VALIDATE_POINTER1(hBand, "GDALFillRaster", CE_Failure); |
2162 | | |
2163 | 0 | GDALRasterBand *poBand = GDALRasterBand::FromHandle(hBand); |
2164 | 0 | return poBand->Fill(dfRealValue, dfImaginaryValue); |
2165 | 0 | } |
2166 | | |
2167 | | /************************************************************************/ |
2168 | | /* GetAccess() */ |
2169 | | /************************************************************************/ |
2170 | | |
2171 | | /** |
2172 | | * \brief Find out if we have update permission for this band. |
2173 | | * |
2174 | | * This method is the same as the C function GDALGetRasterAccess(). |
2175 | | * |
2176 | | * @return Either GA_Update or GA_ReadOnly. |
2177 | | */ |
2178 | | |
2179 | | GDALAccess GDALRasterBand::GetAccess() |
2180 | | |
2181 | 0 | { |
2182 | 0 | return eAccess; |
2183 | 0 | } |
2184 | | |
2185 | | /************************************************************************/ |
2186 | | /* GDALGetRasterAccess() */ |
2187 | | /************************************************************************/ |
2188 | | |
2189 | | /** |
2190 | | * \brief Find out if we have update permission for this band. |
2191 | | * |
2192 | | * @see GDALRasterBand::GetAccess() |
2193 | | */ |
2194 | | |
2195 | | GDALAccess CPL_STDCALL GDALGetRasterAccess(GDALRasterBandH hBand) |
2196 | | |
2197 | 0 | { |
2198 | 0 | VALIDATE_POINTER1(hBand, "GDALGetRasterAccess", GA_ReadOnly); |
2199 | | |
2200 | 0 | GDALRasterBand *poBand = GDALRasterBand::FromHandle(hBand); |
2201 | 0 | return poBand->GetAccess(); |
2202 | 0 | } |
2203 | | |
2204 | | /************************************************************************/ |
2205 | | /* GetCategoryNames() */ |
2206 | | /************************************************************************/ |
2207 | | |
2208 | | /** |
2209 | | * \brief Fetch the list of category names for this raster. |
2210 | | * |
2211 | | * The return list is a "StringList" in the sense of the CPL functions. |
2212 | | * That is a NULL terminated array of strings. Raster values without |
2213 | | * associated names will have an empty string in the returned list. The |
2214 | | * first entry in the list is for raster values of zero, and so on. |
2215 | | * |
2216 | | * The returned stringlist should not be altered or freed by the application. |
2217 | | * It may change on the next GDAL call, so please copy it if it is needed |
2218 | | * for any period of time. |
2219 | | * |
2220 | | * This method is the same as the C function GDALGetRasterCategoryNames(). |
2221 | | * |
2222 | | * @return list of names, or NULL if none. |
2223 | | */ |
2224 | | |
2225 | | char **GDALRasterBand::GetCategoryNames() |
2226 | | |
2227 | 0 | { |
2228 | 0 | return nullptr; |
2229 | 0 | } |
2230 | | |
2231 | | /************************************************************************/ |
2232 | | /* GDALGetRasterCategoryNames() */ |
2233 | | /************************************************************************/ |
2234 | | |
2235 | | /** |
2236 | | * \brief Fetch the list of category names for this raster. |
2237 | | * |
2238 | | * @see GDALRasterBand::GetCategoryNames() |
2239 | | */ |
2240 | | |
2241 | | char **CPL_STDCALL GDALGetRasterCategoryNames(GDALRasterBandH hBand) |
2242 | | |
2243 | 0 | { |
2244 | 0 | VALIDATE_POINTER1(hBand, "GDALGetRasterCategoryNames", nullptr); |
2245 | | |
2246 | 0 | GDALRasterBand *poBand = GDALRasterBand::FromHandle(hBand); |
2247 | 0 | return poBand->GetCategoryNames(); |
2248 | 0 | } |
2249 | | |
2250 | | /************************************************************************/ |
2251 | | /* SetCategoryNames() */ |
2252 | | /************************************************************************/ |
2253 | | |
2254 | | /** |
2255 | | * \fn GDALRasterBand::SetCategoryNames(char**) |
2256 | | * \brief Set the category names for this band. |
2257 | | * |
2258 | | * See the GetCategoryNames() method for more on the interpretation of |
2259 | | * category names. |
2260 | | * |
2261 | | * This method is the same as the C function GDALSetRasterCategoryNames(). |
2262 | | * |
2263 | | * @param papszNames the NULL terminated StringList of category names. May |
2264 | | * be NULL to just clear the existing list. |
2265 | | * |
2266 | | * @return CE_None on success of CE_Failure on failure. If unsupported |
2267 | | * by the driver CE_Failure is returned, but no error message is reported. |
2268 | | */ |
2269 | | |
2270 | | /**/ |
2271 | | /**/ |
2272 | | |
2273 | | CPLErr GDALRasterBand::SetCategoryNames(char ** /*papszNames*/) |
2274 | 0 | { |
2275 | 0 | if (!(GetMOFlags() & GMO_IGNORE_UNIMPLEMENTED)) |
2276 | 0 | ReportError(CE_Failure, CPLE_NotSupported, |
2277 | 0 | "SetCategoryNames() not supported for this dataset."); |
2278 | |
|
2279 | 0 | return CE_Failure; |
2280 | 0 | } |
2281 | | |
2282 | | /************************************************************************/ |
2283 | | /* GDALSetCategoryNames() */ |
2284 | | /************************************************************************/ |
2285 | | |
2286 | | /** |
2287 | | * \brief Set the category names for this band. |
2288 | | * |
2289 | | * @see GDALRasterBand::SetCategoryNames() |
2290 | | */ |
2291 | | |
2292 | | CPLErr CPL_STDCALL GDALSetRasterCategoryNames(GDALRasterBandH hBand, |
2293 | | CSLConstList papszNames) |
2294 | | |
2295 | 0 | { |
2296 | 0 | VALIDATE_POINTER1(hBand, "GDALSetRasterCategoryNames", CE_Failure); |
2297 | | |
2298 | 0 | GDALRasterBand *poBand = GDALRasterBand::FromHandle(hBand); |
2299 | 0 | return poBand->SetCategoryNames(const_cast<char **>(papszNames)); |
2300 | 0 | } |
2301 | | |
2302 | | /************************************************************************/ |
2303 | | /* GetNoDataValue() */ |
2304 | | /************************************************************************/ |
2305 | | |
2306 | | /** |
2307 | | * \brief Fetch the no data value for this band. |
2308 | | * |
2309 | | * If there is no out of data value, an out of range value will generally |
2310 | | * be returned. The no data value for a band is generally a special marker |
2311 | | * value used to mark pixels that are not valid data. Such pixels should |
2312 | | * generally not be displayed, nor contribute to analysis operations. |
2313 | | * |
2314 | | * The no data value returned is 'raw', meaning that it has no offset and |
2315 | | * scale applied. |
2316 | | * |
2317 | | * For rasters of type GDT_Int64 or GDT_UInt64, using this method might be |
2318 | | * lossy if the nodata value cannot exactly been represented by a double. |
2319 | | * Use GetNoDataValueAsInt64() or GetNoDataValueAsUInt64() instead. |
2320 | | * |
2321 | | * This method is the same as the C function GDALGetRasterNoDataValue(). |
2322 | | * |
2323 | | * @param pbSuccess pointer to a boolean to use to indicate if a value |
2324 | | * is actually associated with this layer. May be NULL (default). |
2325 | | * |
2326 | | * @return the nodata value for this band. |
2327 | | */ |
2328 | | |
2329 | | double GDALRasterBand::GetNoDataValue(int *pbSuccess) |
2330 | | |
2331 | 0 | { |
2332 | 0 | if (pbSuccess != nullptr) |
2333 | 0 | *pbSuccess = FALSE; |
2334 | |
|
2335 | 0 | return -1e10; |
2336 | 0 | } |
2337 | | |
2338 | | /************************************************************************/ |
2339 | | /* GDALGetRasterNoDataValue() */ |
2340 | | /************************************************************************/ |
2341 | | |
2342 | | /** |
2343 | | * \brief Fetch the no data value for this band. |
2344 | | * |
2345 | | * @see GDALRasterBand::GetNoDataValue() |
2346 | | */ |
2347 | | |
2348 | | double CPL_STDCALL GDALGetRasterNoDataValue(GDALRasterBandH hBand, |
2349 | | int *pbSuccess) |
2350 | | |
2351 | 0 | { |
2352 | 0 | VALIDATE_POINTER1(hBand, "GDALGetRasterNoDataValue", 0); |
2353 | | |
2354 | 0 | GDALRasterBand *poBand = GDALRasterBand::FromHandle(hBand); |
2355 | 0 | return poBand->GetNoDataValue(pbSuccess); |
2356 | 0 | } |
2357 | | |
2358 | | /************************************************************************/ |
2359 | | /* GetNoDataValueAsInt64() */ |
2360 | | /************************************************************************/ |
2361 | | |
2362 | | /** |
2363 | | * \brief Fetch the no data value for this band. |
2364 | | * |
2365 | | * This method should ONLY be called on rasters whose data type is GDT_Int64. |
2366 | | * |
2367 | | * If there is no out of data value, an out of range value will generally |
2368 | | * be returned. The no data value for a band is generally a special marker |
2369 | | * value used to mark pixels that are not valid data. Such pixels should |
2370 | | * generally not be displayed, nor contribute to analysis operations. |
2371 | | * |
2372 | | * The no data value returned is 'raw', meaning that it has no offset and |
2373 | | * scale applied. |
2374 | | * |
2375 | | * This method is the same as the C function GDALGetRasterNoDataValueAsInt64(). |
2376 | | * |
2377 | | * @param pbSuccess pointer to a boolean to use to indicate if a value |
2378 | | * is actually associated with this layer. May be NULL (default). |
2379 | | * |
2380 | | * @return the nodata value for this band. |
2381 | | * |
2382 | | * @since GDAL 3.5 |
2383 | | */ |
2384 | | |
2385 | | int64_t GDALRasterBand::GetNoDataValueAsInt64(int *pbSuccess) |
2386 | | |
2387 | 0 | { |
2388 | 0 | if (pbSuccess != nullptr) |
2389 | 0 | *pbSuccess = FALSE; |
2390 | |
|
2391 | 0 | return std::numeric_limits<int64_t>::min(); |
2392 | 0 | } |
2393 | | |
2394 | | /************************************************************************/ |
2395 | | /* GDALGetRasterNoDataValueAsInt64() */ |
2396 | | /************************************************************************/ |
2397 | | |
2398 | | /** |
2399 | | * \brief Fetch the no data value for this band. |
2400 | | * |
2401 | | * This function should ONLY be called on rasters whose data type is GDT_Int64. |
2402 | | * |
2403 | | * @see GDALRasterBand::GetNoDataValueAsInt64() |
2404 | | * |
2405 | | * @since GDAL 3.5 |
2406 | | */ |
2407 | | |
2408 | | int64_t CPL_STDCALL GDALGetRasterNoDataValueAsInt64(GDALRasterBandH hBand, |
2409 | | int *pbSuccess) |
2410 | | |
2411 | 0 | { |
2412 | 0 | VALIDATE_POINTER1(hBand, "GDALGetRasterNoDataValueAsInt64", |
2413 | 0 | std::numeric_limits<int64_t>::min()); |
2414 | | |
2415 | 0 | GDALRasterBand *poBand = GDALRasterBand::FromHandle(hBand); |
2416 | 0 | return poBand->GetNoDataValueAsInt64(pbSuccess); |
2417 | 0 | } |
2418 | | |
2419 | | /************************************************************************/ |
2420 | | /* GetNoDataValueAsUInt64() */ |
2421 | | /************************************************************************/ |
2422 | | |
2423 | | /** |
2424 | | * \brief Fetch the no data value for this band. |
2425 | | * |
2426 | | * This method should ONLY be called on rasters whose data type is GDT_UInt64. |
2427 | | * |
2428 | | * If there is no out of data value, an out of range value will generally |
2429 | | * be returned. The no data value for a band is generally a special marker |
2430 | | * value used to mark pixels that are not valid data. Such pixels should |
2431 | | * generally not be displayed, nor contribute to analysis operations. |
2432 | | * |
2433 | | * The no data value returned is 'raw', meaning that it has no offset and |
2434 | | * scale applied. |
2435 | | * |
2436 | | * This method is the same as the C function GDALGetRasterNoDataValueAsUInt64(). |
2437 | | * |
2438 | | * @param pbSuccess pointer to a boolean to use to indicate if a value |
2439 | | * is actually associated with this layer. May be NULL (default). |
2440 | | * |
2441 | | * @return the nodata value for this band. |
2442 | | * |
2443 | | * @since GDAL 3.5 |
2444 | | */ |
2445 | | |
2446 | | uint64_t GDALRasterBand::GetNoDataValueAsUInt64(int *pbSuccess) |
2447 | | |
2448 | 0 | { |
2449 | 0 | if (pbSuccess != nullptr) |
2450 | 0 | *pbSuccess = FALSE; |
2451 | |
|
2452 | 0 | return std::numeric_limits<uint64_t>::max(); |
2453 | 0 | } |
2454 | | |
2455 | | /************************************************************************/ |
2456 | | /* GDALGetRasterNoDataValueAsUInt64() */ |
2457 | | /************************************************************************/ |
2458 | | |
2459 | | /** |
2460 | | * \brief Fetch the no data value for this band. |
2461 | | * |
2462 | | * This function should ONLY be called on rasters whose data type is GDT_UInt64. |
2463 | | * |
2464 | | * @see GDALRasterBand::GetNoDataValueAsUInt64() |
2465 | | * |
2466 | | * @since GDAL 3.5 |
2467 | | */ |
2468 | | |
2469 | | uint64_t CPL_STDCALL GDALGetRasterNoDataValueAsUInt64(GDALRasterBandH hBand, |
2470 | | int *pbSuccess) |
2471 | | |
2472 | 0 | { |
2473 | 0 | VALIDATE_POINTER1(hBand, "GDALGetRasterNoDataValueAsUInt64", |
2474 | 0 | std::numeric_limits<uint64_t>::max()); |
2475 | | |
2476 | 0 | GDALRasterBand *poBand = GDALRasterBand::FromHandle(hBand); |
2477 | 0 | return poBand->GetNoDataValueAsUInt64(pbSuccess); |
2478 | 0 | } |
2479 | | |
2480 | | /************************************************************************/ |
2481 | | /* SetNoDataValueAsString() */ |
2482 | | /************************************************************************/ |
2483 | | |
2484 | | /** |
2485 | | * \brief Set the no data value for this band. |
2486 | | * |
2487 | | * Depending on drivers, changing the no data value may or may not have an |
2488 | | * effect on the pixel values of a raster that has just been created. It is |
2489 | | * thus advised to explicitly called Fill() if the intent is to initialize |
2490 | | * the raster to the nodata value. |
2491 | | * In any case, changing an existing no data value, when one already exists and |
2492 | | * the dataset exists or has been initialized, has no effect on the pixel whose |
2493 | | * value matched the previous nodata value. |
2494 | | * |
2495 | | * To clear the nodata value, use DeleteNoDataValue(). |
2496 | | * |
2497 | | * @param pszNoData the value to set. |
2498 | | * @param[out] pbCannotBeExactlyRepresented Pointer to a boolean, or nullptr. |
2499 | | * If the value cannot be exactly represented on the output data |
2500 | | * type, *pbCannotBeExactlyRepresented will be set to true. |
2501 | | * |
2502 | | * @return CE_None on success, or CE_Failure on failure. If unsupported |
2503 | | * by the driver, CE_Failure is returned but no error message will have |
2504 | | * been emitted. |
2505 | | * |
2506 | | * @since 3.11 |
2507 | | */ |
2508 | | |
2509 | | CPLErr |
2510 | | GDALRasterBand::SetNoDataValueAsString(const char *pszNoData, |
2511 | | bool *pbCannotBeExactlyRepresented) |
2512 | 0 | { |
2513 | 0 | if (pbCannotBeExactlyRepresented) |
2514 | 0 | *pbCannotBeExactlyRepresented = false; |
2515 | 0 | if (eDataType == GDT_Int64) |
2516 | 0 | { |
2517 | 0 | if (strchr(pszNoData, '.') || |
2518 | 0 | CPLGetValueType(pszNoData) == CPL_VALUE_STRING) |
2519 | 0 | { |
2520 | 0 | char *endptr = nullptr; |
2521 | 0 | const double dfVal = CPLStrtod(pszNoData, &endptr); |
2522 | 0 | if (endptr == pszNoData + strlen(pszNoData) && |
2523 | 0 | GDALIsValueExactAs<int64_t>(dfVal)) |
2524 | 0 | { |
2525 | 0 | return SetNoDataValueAsInt64(static_cast<int64_t>(dfVal)); |
2526 | 0 | } |
2527 | 0 | } |
2528 | 0 | else |
2529 | 0 | { |
2530 | 0 | try |
2531 | 0 | { |
2532 | 0 | const auto val = std::stoll(pszNoData); |
2533 | 0 | return SetNoDataValueAsInt64(static_cast<int64_t>(val)); |
2534 | 0 | } |
2535 | 0 | catch (const std::exception &) |
2536 | 0 | { |
2537 | 0 | } |
2538 | 0 | } |
2539 | 0 | } |
2540 | 0 | else if (eDataType == GDT_UInt64) |
2541 | 0 | { |
2542 | 0 | if (strchr(pszNoData, '.') || |
2543 | 0 | CPLGetValueType(pszNoData) == CPL_VALUE_STRING) |
2544 | 0 | { |
2545 | 0 | char *endptr = nullptr; |
2546 | 0 | const double dfVal = CPLStrtod(pszNoData, &endptr); |
2547 | 0 | if (endptr == pszNoData + strlen(pszNoData) && |
2548 | 0 | GDALIsValueExactAs<uint64_t>(dfVal)) |
2549 | 0 | { |
2550 | 0 | return SetNoDataValueAsUInt64(static_cast<uint64_t>(dfVal)); |
2551 | 0 | } |
2552 | 0 | } |
2553 | 0 | else |
2554 | 0 | { |
2555 | 0 | try |
2556 | 0 | { |
2557 | 0 | const auto val = std::stoull(pszNoData); |
2558 | 0 | return SetNoDataValueAsUInt64(static_cast<uint64_t>(val)); |
2559 | 0 | } |
2560 | 0 | catch (const std::exception &) |
2561 | 0 | { |
2562 | 0 | } |
2563 | 0 | } |
2564 | 0 | } |
2565 | 0 | else if (eDataType == GDT_Float32) |
2566 | 0 | { |
2567 | 0 | char *endptr = nullptr; |
2568 | 0 | const float fVal = CPLStrtof(pszNoData, &endptr); |
2569 | 0 | if (endptr == pszNoData + strlen(pszNoData)) |
2570 | 0 | { |
2571 | 0 | return SetNoDataValue(fVal); |
2572 | 0 | } |
2573 | 0 | } |
2574 | 0 | else |
2575 | 0 | { |
2576 | 0 | char *endptr = nullptr; |
2577 | 0 | const double dfVal = CPLStrtod(pszNoData, &endptr); |
2578 | 0 | if (endptr == pszNoData + strlen(pszNoData) && |
2579 | 0 | GDALIsValueExactAs(dfVal, eDataType)) |
2580 | 0 | { |
2581 | 0 | return SetNoDataValue(dfVal); |
2582 | 0 | } |
2583 | 0 | } |
2584 | 0 | if (pbCannotBeExactlyRepresented) |
2585 | 0 | *pbCannotBeExactlyRepresented = true; |
2586 | 0 | return CE_Failure; |
2587 | 0 | } |
2588 | | |
2589 | | /************************************************************************/ |
2590 | | /* SetNoDataValue() */ |
2591 | | /************************************************************************/ |
2592 | | |
2593 | | /** |
2594 | | * \fn GDALRasterBand::SetNoDataValue(double) |
2595 | | * \brief Set the no data value for this band. |
2596 | | * |
2597 | | * Depending on drivers, changing the no data value may or may not have an |
2598 | | * effect on the pixel values of a raster that has just been created. It is |
2599 | | * thus advised to explicitly called Fill() if the intent is to initialize |
2600 | | * the raster to the nodata value. |
2601 | | * In any case, changing an existing no data value, when one already exists and |
2602 | | * the dataset exists or has been initialized, has no effect on the pixel whose |
2603 | | * value matched the previous nodata value. |
2604 | | * |
2605 | | * For rasters of type GDT_Int64 or GDT_UInt64, whose nodata value cannot always |
2606 | | * be represented by a double, use SetNoDataValueAsInt64() or |
2607 | | * SetNoDataValueAsUInt64() instead. |
2608 | | * |
2609 | | * To clear the nodata value, use DeleteNoDataValue(). |
2610 | | * |
2611 | | * This method is the same as the C function GDALSetRasterNoDataValue(). |
2612 | | * |
2613 | | * @param dfNoData the value to set. |
2614 | | * |
2615 | | * @return CE_None on success, or CE_Failure on failure. If unsupported |
2616 | | * by the driver, CE_Failure is returned but no error message will have |
2617 | | * been emitted. |
2618 | | */ |
2619 | | |
2620 | | /**/ |
2621 | | /**/ |
2622 | | |
2623 | | CPLErr GDALRasterBand::SetNoDataValue(double /*dfNoData*/) |
2624 | | |
2625 | 0 | { |
2626 | 0 | if (!(GetMOFlags() & GMO_IGNORE_UNIMPLEMENTED)) |
2627 | 0 | ReportError(CE_Failure, CPLE_NotSupported, |
2628 | 0 | "SetNoDataValue() not supported for this dataset."); |
2629 | |
|
2630 | 0 | return CE_Failure; |
2631 | 0 | } |
2632 | | |
2633 | | /************************************************************************/ |
2634 | | /* GDALSetRasterNoDataValue() */ |
2635 | | /************************************************************************/ |
2636 | | |
2637 | | /** |
2638 | | * \brief Set the no data value for this band. |
2639 | | * |
2640 | | * Depending on drivers, changing the no data value may or may not have an |
2641 | | * effect on the pixel values of a raster that has just been created. It is |
2642 | | * thus advised to explicitly called Fill() if the intent is to initialize |
2643 | | * the raster to the nodata value. |
2644 | | * In any case, changing an existing no data value, when one already exists and |
2645 | | * the dataset exists or has been initialized, has no effect on the pixel whose |
2646 | | * value matched the previous nodata value. |
2647 | | * |
2648 | | * For rasters of type GDT_Int64 or GDT_UInt64, whose nodata value cannot always |
2649 | | * be represented by a double, use GDALSetRasterNoDataValueAsInt64() or |
2650 | | * GDALSetRasterNoDataValueAsUInt64() instead. |
2651 | | * |
2652 | | * @see GDALRasterBand::SetNoDataValue() |
2653 | | */ |
2654 | | |
2655 | | CPLErr CPL_STDCALL GDALSetRasterNoDataValue(GDALRasterBandH hBand, |
2656 | | double dfValue) |
2657 | | |
2658 | 0 | { |
2659 | 0 | VALIDATE_POINTER1(hBand, "GDALSetRasterNoDataValue", CE_Failure); |
2660 | | |
2661 | 0 | GDALRasterBand *poBand = GDALRasterBand::FromHandle(hBand); |
2662 | 0 | return poBand->SetNoDataValue(dfValue); |
2663 | 0 | } |
2664 | | |
2665 | | /************************************************************************/ |
2666 | | /* SetNoDataValueAsInt64() */ |
2667 | | /************************************************************************/ |
2668 | | |
2669 | | /** |
2670 | | * \brief Set the no data value for this band. |
2671 | | * |
2672 | | * This method should ONLY be called on rasters whose data type is GDT_Int64. |
2673 | | * |
2674 | | * Depending on drivers, changing the no data value may or may not have an |
2675 | | * effect on the pixel values of a raster that has just been created. It is |
2676 | | * thus advised to explicitly called Fill() if the intent is to initialize |
2677 | | * the raster to the nodata value. |
2678 | | * In ay case, changing an existing no data value, when one already exists and |
2679 | | * the dataset exists or has been initialized, has no effect on the pixel whose |
2680 | | * value matched the previous nodata value. |
2681 | | * |
2682 | | * To clear the nodata value, use DeleteNoDataValue(). |
2683 | | * |
2684 | | * This method is the same as the C function GDALSetRasterNoDataValueAsInt64(). |
2685 | | * |
2686 | | * @param nNoDataValue the value to set. |
2687 | | * |
2688 | | * @return CE_None on success, or CE_Failure on failure. If unsupported |
2689 | | * by the driver, CE_Failure is returned but no error message will have |
2690 | | * been emitted. |
2691 | | * |
2692 | | * @since GDAL 3.5 |
2693 | | */ |
2694 | | |
2695 | | CPLErr GDALRasterBand::SetNoDataValueAsInt64(CPL_UNUSED int64_t nNoDataValue) |
2696 | | |
2697 | 0 | { |
2698 | 0 | if (!(GetMOFlags() & GMO_IGNORE_UNIMPLEMENTED)) |
2699 | 0 | ReportError(CE_Failure, CPLE_NotSupported, |
2700 | 0 | "SetNoDataValueAsInt64() not supported for this dataset."); |
2701 | |
|
2702 | 0 | return CE_Failure; |
2703 | 0 | } |
2704 | | |
2705 | | /************************************************************************/ |
2706 | | /* GDALSetRasterNoDataValueAsInt64() */ |
2707 | | /************************************************************************/ |
2708 | | |
2709 | | /** |
2710 | | * \brief Set the no data value for this band. |
2711 | | * |
2712 | | * This function should ONLY be called on rasters whose data type is GDT_Int64. |
2713 | | * |
2714 | | * Depending on drivers, changing the no data value may or may not have an |
2715 | | * effect on the pixel values of a raster that has just been created. It is |
2716 | | * thus advised to explicitly called Fill() if the intent is to initialize |
2717 | | * the raster to the nodata value. |
2718 | | * In ay case, changing an existing no data value, when one already exists and |
2719 | | * the dataset exists or has been initialized, has no effect on the pixel whose |
2720 | | * value matched the previous nodata value. |
2721 | | * |
2722 | | * @see GDALRasterBand::SetNoDataValueAsInt64() |
2723 | | * |
2724 | | * @since GDAL 3.5 |
2725 | | */ |
2726 | | |
2727 | | CPLErr CPL_STDCALL GDALSetRasterNoDataValueAsInt64(GDALRasterBandH hBand, |
2728 | | int64_t nValue) |
2729 | | |
2730 | 0 | { |
2731 | 0 | VALIDATE_POINTER1(hBand, "GDALSetRasterNoDataValueAsInt64", CE_Failure); |
2732 | | |
2733 | 0 | GDALRasterBand *poBand = GDALRasterBand::FromHandle(hBand); |
2734 | 0 | return poBand->SetNoDataValueAsInt64(nValue); |
2735 | 0 | } |
2736 | | |
2737 | | /************************************************************************/ |
2738 | | /* SetNoDataValueAsUInt64() */ |
2739 | | /************************************************************************/ |
2740 | | |
2741 | | /** |
2742 | | * \brief Set the no data value for this band. |
2743 | | * |
2744 | | * This method should ONLY be called on rasters whose data type is GDT_UInt64. |
2745 | | * |
2746 | | * Depending on drivers, changing the no data value may or may not have an |
2747 | | * effect on the pixel values of a raster that has just been created. It is |
2748 | | * thus advised to explicitly called Fill() if the intent is to initialize |
2749 | | * the raster to the nodata value. |
2750 | | * In ay case, changing an existing no data value, when one already exists and |
2751 | | * the dataset exists or has been initialized, has no effect on the pixel whose |
2752 | | * value matched the previous nodata value. |
2753 | | * |
2754 | | * To clear the nodata value, use DeleteNoDataValue(). |
2755 | | * |
2756 | | * This method is the same as the C function GDALSetRasterNoDataValueAsUInt64(). |
2757 | | * |
2758 | | * @param nNoDataValue the value to set. |
2759 | | * |
2760 | | * @return CE_None on success, or CE_Failure on failure. If unsupported |
2761 | | * by the driver, CE_Failure is returned but no error message will have |
2762 | | * been emitted. |
2763 | | * |
2764 | | * @since GDAL 3.5 |
2765 | | */ |
2766 | | |
2767 | | CPLErr GDALRasterBand::SetNoDataValueAsUInt64(CPL_UNUSED uint64_t nNoDataValue) |
2768 | | |
2769 | 0 | { |
2770 | 0 | if (!(GetMOFlags() & GMO_IGNORE_UNIMPLEMENTED)) |
2771 | 0 | ReportError(CE_Failure, CPLE_NotSupported, |
2772 | 0 | "SetNoDataValueAsUInt64() not supported for this dataset."); |
2773 | |
|
2774 | 0 | return CE_Failure; |
2775 | 0 | } |
2776 | | |
2777 | | /************************************************************************/ |
2778 | | /* GDALSetRasterNoDataValueAsUInt64() */ |
2779 | | /************************************************************************/ |
2780 | | |
2781 | | /** |
2782 | | * \brief Set the no data value for this band. |
2783 | | * |
2784 | | * This function should ONLY be called on rasters whose data type is GDT_UInt64. |
2785 | | * |
2786 | | * Depending on drivers, changing the no data value may or may not have an |
2787 | | * effect on the pixel values of a raster that has just been created. It is |
2788 | | * thus advised to explicitly called Fill() if the intent is to initialize |
2789 | | * the raster to the nodata value. |
2790 | | * In ay case, changing an existing no data value, when one already exists and |
2791 | | * the dataset exists or has been initialized, has no effect on the pixel whose |
2792 | | * value matched the previous nodata value. |
2793 | | * |
2794 | | * @see GDALRasterBand::SetNoDataValueAsUInt64() |
2795 | | * |
2796 | | * @since GDAL 3.5 |
2797 | | */ |
2798 | | |
2799 | | CPLErr CPL_STDCALL GDALSetRasterNoDataValueAsUInt64(GDALRasterBandH hBand, |
2800 | | uint64_t nValue) |
2801 | | |
2802 | 0 | { |
2803 | 0 | VALIDATE_POINTER1(hBand, "GDALSetRasterNoDataValueAsUInt64", CE_Failure); |
2804 | | |
2805 | 0 | GDALRasterBand *poBand = GDALRasterBand::FromHandle(hBand); |
2806 | 0 | return poBand->SetNoDataValueAsUInt64(nValue); |
2807 | 0 | } |
2808 | | |
2809 | | /************************************************************************/ |
2810 | | /* DeleteNoDataValue() */ |
2811 | | /************************************************************************/ |
2812 | | |
2813 | | /** |
2814 | | * \brief Remove the no data value for this band. |
2815 | | * |
2816 | | * This method is the same as the C function GDALDeleteRasterNoDataValue(). |
2817 | | * |
2818 | | * @return CE_None on success, or CE_Failure on failure. If unsupported |
2819 | | * by the driver, CE_Failure is returned but no error message will have |
2820 | | * been emitted. |
2821 | | * |
2822 | | * @since GDAL 2.1 |
2823 | | */ |
2824 | | |
2825 | | CPLErr GDALRasterBand::DeleteNoDataValue() |
2826 | | |
2827 | 0 | { |
2828 | 0 | if (!(GetMOFlags() & GMO_IGNORE_UNIMPLEMENTED)) |
2829 | 0 | ReportError(CE_Failure, CPLE_NotSupported, |
2830 | 0 | "DeleteNoDataValue() not supported for this dataset."); |
2831 | |
|
2832 | 0 | return CE_Failure; |
2833 | 0 | } |
2834 | | |
2835 | | /************************************************************************/ |
2836 | | /* GDALDeleteRasterNoDataValue() */ |
2837 | | /************************************************************************/ |
2838 | | |
2839 | | /** |
2840 | | * \brief Remove the no data value for this band. |
2841 | | * |
2842 | | * @see GDALRasterBand::DeleteNoDataValue() |
2843 | | * |
2844 | | * @since GDAL 2.1 |
2845 | | */ |
2846 | | |
2847 | | CPLErr CPL_STDCALL GDALDeleteRasterNoDataValue(GDALRasterBandH hBand) |
2848 | | |
2849 | 0 | { |
2850 | 0 | VALIDATE_POINTER1(hBand, "GDALDeleteRasterNoDataValue", CE_Failure); |
2851 | | |
2852 | 0 | GDALRasterBand *poBand = GDALRasterBand::FromHandle(hBand); |
2853 | 0 | return poBand->DeleteNoDataValue(); |
2854 | 0 | } |
2855 | | |
2856 | | /************************************************************************/ |
2857 | | /* GetMaximum() */ |
2858 | | /************************************************************************/ |
2859 | | |
2860 | | /** |
2861 | | * \brief Fetch the maximum value for this band. |
2862 | | * |
2863 | | * For file formats that don't know this intrinsically, the maximum supported |
2864 | | * value for the data type will generally be returned. |
2865 | | * |
2866 | | * This method is the same as the C function GDALGetRasterMaximum(). |
2867 | | * |
2868 | | * @param pbSuccess pointer to a boolean to use to indicate if the |
2869 | | * returned value is a tight maximum or not. May be NULL (default). |
2870 | | * |
2871 | | * @return the maximum raster value (excluding no data pixels) |
2872 | | */ |
2873 | | |
2874 | | double GDALRasterBand::GetMaximum(int *pbSuccess) |
2875 | | |
2876 | 0 | { |
2877 | 0 | const char *pszValue = nullptr; |
2878 | |
|
2879 | 0 | if ((pszValue = GetMetadataItem("STATISTICS_MAXIMUM")) != nullptr) |
2880 | 0 | { |
2881 | 0 | if (pbSuccess != nullptr) |
2882 | 0 | *pbSuccess = TRUE; |
2883 | |
|
2884 | 0 | return CPLAtofM(pszValue); |
2885 | 0 | } |
2886 | | |
2887 | 0 | if (pbSuccess != nullptr) |
2888 | 0 | *pbSuccess = FALSE; |
2889 | |
|
2890 | 0 | switch (eDataType) |
2891 | 0 | { |
2892 | 0 | case GDT_Byte: |
2893 | 0 | { |
2894 | 0 | EnablePixelTypeSignedByteWarning(false); |
2895 | 0 | const char *pszPixelType = |
2896 | 0 | GetMetadataItem("PIXELTYPE", "IMAGE_STRUCTURE"); |
2897 | 0 | EnablePixelTypeSignedByteWarning(true); |
2898 | 0 | if (pszPixelType != nullptr && EQUAL(pszPixelType, "SIGNEDBYTE")) |
2899 | 0 | return 127; |
2900 | | |
2901 | 0 | return 255; |
2902 | 0 | } |
2903 | | |
2904 | 0 | case GDT_Int8: |
2905 | 0 | return 127; |
2906 | | |
2907 | 0 | case GDT_UInt16: |
2908 | 0 | return 65535; |
2909 | | |
2910 | 0 | case GDT_Int16: |
2911 | 0 | case GDT_CInt16: |
2912 | 0 | return 32767; |
2913 | | |
2914 | 0 | case GDT_Int32: |
2915 | 0 | case GDT_CInt32: |
2916 | 0 | return 2147483647.0; |
2917 | | |
2918 | 0 | case GDT_UInt32: |
2919 | 0 | return 4294967295.0; |
2920 | | |
2921 | 0 | case GDT_Int64: |
2922 | 0 | return static_cast<double>(std::numeric_limits<GInt64>::max()); |
2923 | | |
2924 | 0 | case GDT_UInt64: |
2925 | 0 | return static_cast<double>(std::numeric_limits<GUInt64>::max()); |
2926 | | |
2927 | 0 | case GDT_Float16: |
2928 | 0 | case GDT_CFloat16: |
2929 | 0 | return 65504.0; |
2930 | | |
2931 | 0 | case GDT_Float32: |
2932 | 0 | case GDT_CFloat32: |
2933 | 0 | return 4294967295.0; // Not actually accurate. |
2934 | | |
2935 | 0 | case GDT_Float64: |
2936 | 0 | case GDT_CFloat64: |
2937 | 0 | return 4294967295.0; // Not actually accurate. |
2938 | | |
2939 | 0 | case GDT_Unknown: |
2940 | 0 | case GDT_TypeCount: |
2941 | 0 | break; |
2942 | 0 | } |
2943 | 0 | return 4294967295.0; // Not actually accurate. |
2944 | 0 | } |
2945 | | |
2946 | | /************************************************************************/ |
2947 | | /* GDALGetRasterMaximum() */ |
2948 | | /************************************************************************/ |
2949 | | |
2950 | | /** |
2951 | | * \brief Fetch the maximum value for this band. |
2952 | | * |
2953 | | * @see GDALRasterBand::GetMaximum() |
2954 | | */ |
2955 | | |
2956 | | double CPL_STDCALL GDALGetRasterMaximum(GDALRasterBandH hBand, int *pbSuccess) |
2957 | | |
2958 | 0 | { |
2959 | 0 | VALIDATE_POINTER1(hBand, "GDALGetRasterMaximum", 0); |
2960 | | |
2961 | 0 | GDALRasterBand *poBand = GDALRasterBand::FromHandle(hBand); |
2962 | 0 | return poBand->GetMaximum(pbSuccess); |
2963 | 0 | } |
2964 | | |
2965 | | /************************************************************************/ |
2966 | | /* GetMinimum() */ |
2967 | | /************************************************************************/ |
2968 | | |
2969 | | /** |
2970 | | * \brief Fetch the minimum value for this band. |
2971 | | * |
2972 | | * For file formats that don't know this intrinsically, the minimum supported |
2973 | | * value for the data type will generally be returned. |
2974 | | * |
2975 | | * This method is the same as the C function GDALGetRasterMinimum(). |
2976 | | * |
2977 | | * @param pbSuccess pointer to a boolean to use to indicate if the |
2978 | | * returned value is a tight minimum or not. May be NULL (default). |
2979 | | * |
2980 | | * @return the minimum raster value (excluding no data pixels) |
2981 | | */ |
2982 | | |
2983 | | double GDALRasterBand::GetMinimum(int *pbSuccess) |
2984 | | |
2985 | 0 | { |
2986 | 0 | const char *pszValue = nullptr; |
2987 | |
|
2988 | 0 | if ((pszValue = GetMetadataItem("STATISTICS_MINIMUM")) != nullptr) |
2989 | 0 | { |
2990 | 0 | if (pbSuccess != nullptr) |
2991 | 0 | *pbSuccess = TRUE; |
2992 | |
|
2993 | 0 | return CPLAtofM(pszValue); |
2994 | 0 | } |
2995 | | |
2996 | 0 | if (pbSuccess != nullptr) |
2997 | 0 | *pbSuccess = FALSE; |
2998 | |
|
2999 | 0 | switch (eDataType) |
3000 | 0 | { |
3001 | 0 | case GDT_Byte: |
3002 | 0 | { |
3003 | 0 | EnablePixelTypeSignedByteWarning(false); |
3004 | 0 | const char *pszPixelType = |
3005 | 0 | GetMetadataItem("PIXELTYPE", "IMAGE_STRUCTURE"); |
3006 | 0 | EnablePixelTypeSignedByteWarning(true); |
3007 | 0 | if (pszPixelType != nullptr && EQUAL(pszPixelType, "SIGNEDBYTE")) |
3008 | 0 | return -128; |
3009 | | |
3010 | 0 | return 0; |
3011 | 0 | } |
3012 | | |
3013 | 0 | case GDT_Int8: |
3014 | 0 | return -128; |
3015 | 0 | break; |
3016 | | |
3017 | 0 | case GDT_UInt16: |
3018 | 0 | return 0; |
3019 | | |
3020 | 0 | case GDT_Int16: |
3021 | 0 | case GDT_CInt16: |
3022 | 0 | return -32768; |
3023 | | |
3024 | 0 | case GDT_Int32: |
3025 | 0 | case GDT_CInt32: |
3026 | 0 | return -2147483648.0; |
3027 | | |
3028 | 0 | case GDT_UInt32: |
3029 | 0 | return 0; |
3030 | | |
3031 | 0 | case GDT_Int64: |
3032 | 0 | return static_cast<double>(std::numeric_limits<GInt64>::lowest()); |
3033 | | |
3034 | 0 | case GDT_UInt64: |
3035 | 0 | return 0; |
3036 | | |
3037 | 0 | case GDT_Float16: |
3038 | 0 | case GDT_CFloat16: |
3039 | 0 | return -65504.0; |
3040 | | |
3041 | 0 | case GDT_Float32: |
3042 | 0 | case GDT_CFloat32: |
3043 | 0 | return -4294967295.0; // Not actually accurate. |
3044 | | |
3045 | 0 | case GDT_Float64: |
3046 | 0 | case GDT_CFloat64: |
3047 | 0 | return -4294967295.0; // Not actually accurate. |
3048 | | |
3049 | 0 | case GDT_Unknown: |
3050 | 0 | case GDT_TypeCount: |
3051 | 0 | break; |
3052 | 0 | } |
3053 | 0 | return -4294967295.0; // Not actually accurate. |
3054 | 0 | } |
3055 | | |
3056 | | /************************************************************************/ |
3057 | | /* GDALGetRasterMinimum() */ |
3058 | | /************************************************************************/ |
3059 | | |
3060 | | /** |
3061 | | * \brief Fetch the minimum value for this band. |
3062 | | * |
3063 | | * @see GDALRasterBand::GetMinimum() |
3064 | | */ |
3065 | | |
3066 | | double CPL_STDCALL GDALGetRasterMinimum(GDALRasterBandH hBand, int *pbSuccess) |
3067 | | |
3068 | 0 | { |
3069 | 0 | VALIDATE_POINTER1(hBand, "GDALGetRasterMinimum", 0); |
3070 | | |
3071 | 0 | GDALRasterBand *poBand = GDALRasterBand::FromHandle(hBand); |
3072 | 0 | return poBand->GetMinimum(pbSuccess); |
3073 | 0 | } |
3074 | | |
3075 | | /************************************************************************/ |
3076 | | /* GetColorInterpretation() */ |
3077 | | /************************************************************************/ |
3078 | | |
3079 | | /** |
3080 | | * \brief How should this band be interpreted as color? |
3081 | | * |
3082 | | * GCI_Undefined is returned when the format doesn't know anything |
3083 | | * about the color interpretation. |
3084 | | * |
3085 | | * This method is the same as the C function |
3086 | | * GDALGetRasterColorInterpretation(). |
3087 | | * |
3088 | | * @return color interpretation value for band. |
3089 | | */ |
3090 | | |
3091 | | GDALColorInterp GDALRasterBand::GetColorInterpretation() |
3092 | | |
3093 | 0 | { |
3094 | 0 | return GCI_Undefined; |
3095 | 0 | } |
3096 | | |
3097 | | /************************************************************************/ |
3098 | | /* GDALGetRasterColorInterpretation() */ |
3099 | | /************************************************************************/ |
3100 | | |
3101 | | /** |
3102 | | * \brief How should this band be interpreted as color? |
3103 | | * |
3104 | | * @see GDALRasterBand::GetColorInterpretation() |
3105 | | */ |
3106 | | |
3107 | | GDALColorInterp CPL_STDCALL |
3108 | | GDALGetRasterColorInterpretation(GDALRasterBandH hBand) |
3109 | | |
3110 | 0 | { |
3111 | 0 | VALIDATE_POINTER1(hBand, "GDALGetRasterColorInterpretation", GCI_Undefined); |
3112 | | |
3113 | 0 | GDALRasterBand *poBand = GDALRasterBand::FromHandle(hBand); |
3114 | 0 | return poBand->GetColorInterpretation(); |
3115 | 0 | } |
3116 | | |
3117 | | /************************************************************************/ |
3118 | | /* SetColorInterpretation() */ |
3119 | | /************************************************************************/ |
3120 | | |
3121 | | /** |
3122 | | * \fn GDALRasterBand::SetColorInterpretation(GDALColorInterp) |
3123 | | * \brief Set color interpretation of a band. |
3124 | | * |
3125 | | * This method is the same as the C function GDALSetRasterColorInterpretation(). |
3126 | | * |
3127 | | * @param eColorInterp the new color interpretation to apply to this band. |
3128 | | * |
3129 | | * @return CE_None on success or CE_Failure if method is unsupported by format. |
3130 | | */ |
3131 | | |
3132 | | /**/ |
3133 | | /**/ |
3134 | | |
3135 | | CPLErr GDALRasterBand::SetColorInterpretation(GDALColorInterp /*eColorInterp*/) |
3136 | | |
3137 | 0 | { |
3138 | 0 | if (!(GetMOFlags() & GMO_IGNORE_UNIMPLEMENTED)) |
3139 | 0 | ReportError(CE_Failure, CPLE_NotSupported, |
3140 | 0 | "SetColorInterpretation() not supported for this dataset."); |
3141 | 0 | return CE_Failure; |
3142 | 0 | } |
3143 | | |
3144 | | /************************************************************************/ |
3145 | | /* GDALSetRasterColorInterpretation() */ |
3146 | | /************************************************************************/ |
3147 | | |
3148 | | /** |
3149 | | * \brief Set color interpretation of a band. |
3150 | | * |
3151 | | * @see GDALRasterBand::SetColorInterpretation() |
3152 | | */ |
3153 | | |
3154 | | CPLErr CPL_STDCALL GDALSetRasterColorInterpretation( |
3155 | | GDALRasterBandH hBand, GDALColorInterp eColorInterp) |
3156 | | |
3157 | 0 | { |
3158 | 0 | VALIDATE_POINTER1(hBand, "GDALSetRasterColorInterpretation", CE_Failure); |
3159 | | |
3160 | 0 | GDALRasterBand *poBand = GDALRasterBand::FromHandle(hBand); |
3161 | 0 | return poBand->SetColorInterpretation(eColorInterp); |
3162 | 0 | } |
3163 | | |
3164 | | /************************************************************************/ |
3165 | | /* GetColorTable() */ |
3166 | | /************************************************************************/ |
3167 | | |
3168 | | /** |
3169 | | * \brief Fetch the color table associated with band. |
3170 | | * |
3171 | | * If there is no associated color table, the return result is NULL. The |
3172 | | * returned color table remains owned by the GDALRasterBand, and can't |
3173 | | * be depended on for long, nor should it ever be modified by the caller. |
3174 | | * |
3175 | | * This method is the same as the C function GDALGetRasterColorTable(). |
3176 | | * |
3177 | | * @return internal color table, or NULL. |
3178 | | */ |
3179 | | |
3180 | | GDALColorTable *GDALRasterBand::GetColorTable() |
3181 | | |
3182 | 0 | { |
3183 | 0 | return nullptr; |
3184 | 0 | } |
3185 | | |
3186 | | /************************************************************************/ |
3187 | | /* GDALGetRasterColorTable() */ |
3188 | | /************************************************************************/ |
3189 | | |
3190 | | /** |
3191 | | * \brief Fetch the color table associated with band. |
3192 | | * |
3193 | | * @see GDALRasterBand::GetColorTable() |
3194 | | */ |
3195 | | |
3196 | | GDALColorTableH CPL_STDCALL GDALGetRasterColorTable(GDALRasterBandH hBand) |
3197 | | |
3198 | 0 | { |
3199 | 0 | VALIDATE_POINTER1(hBand, "GDALGetRasterColorTable", nullptr); |
3200 | | |
3201 | 0 | GDALRasterBand *poBand = GDALRasterBand::FromHandle(hBand); |
3202 | 0 | return GDALColorTable::ToHandle(poBand->GetColorTable()); |
3203 | 0 | } |
3204 | | |
3205 | | /************************************************************************/ |
3206 | | /* SetColorTable() */ |
3207 | | /************************************************************************/ |
3208 | | |
3209 | | /** |
3210 | | * \fn GDALRasterBand::SetColorTable(GDALColorTable*) |
3211 | | * \brief Set the raster color table. |
3212 | | * |
3213 | | * The driver will make a copy of all desired data in the colortable. It |
3214 | | * remains owned by the caller after the call. |
3215 | | * |
3216 | | * This method is the same as the C function GDALSetRasterColorTable(). |
3217 | | * |
3218 | | * @param poCT the color table to apply. This may be NULL to clear the color |
3219 | | * table (where supported). |
3220 | | * |
3221 | | * @return CE_None on success, or CE_Failure on failure. If the action is |
3222 | | * unsupported by the driver, a value of CE_Failure is returned, but no |
3223 | | * error is issued. |
3224 | | */ |
3225 | | |
3226 | | /**/ |
3227 | | /**/ |
3228 | | |
3229 | | CPLErr GDALRasterBand::SetColorTable(GDALColorTable * /*poCT*/) |
3230 | | |
3231 | 0 | { |
3232 | 0 | if (!(GetMOFlags() & GMO_IGNORE_UNIMPLEMENTED)) |
3233 | 0 | ReportError(CE_Failure, CPLE_NotSupported, |
3234 | 0 | "SetColorTable() not supported for this dataset."); |
3235 | 0 | return CE_Failure; |
3236 | 0 | } |
3237 | | |
3238 | | /************************************************************************/ |
3239 | | /* GDALSetRasterColorTable() */ |
3240 | | /************************************************************************/ |
3241 | | |
3242 | | /** |
3243 | | * \brief Set the raster color table. |
3244 | | * |
3245 | | * @see GDALRasterBand::SetColorTable() |
3246 | | */ |
3247 | | |
3248 | | CPLErr CPL_STDCALL GDALSetRasterColorTable(GDALRasterBandH hBand, |
3249 | | GDALColorTableH hCT) |
3250 | | |
3251 | 0 | { |
3252 | 0 | VALIDATE_POINTER1(hBand, "GDALSetRasterColorTable", CE_Failure); |
3253 | | |
3254 | 0 | GDALRasterBand *poBand = GDALRasterBand::FromHandle(hBand); |
3255 | 0 | return poBand->SetColorTable(GDALColorTable::FromHandle(hCT)); |
3256 | 0 | } |
3257 | | |
3258 | | /************************************************************************/ |
3259 | | /* HasArbitraryOverviews() */ |
3260 | | /************************************************************************/ |
3261 | | |
3262 | | /** |
3263 | | * \brief Check for arbitrary overviews. |
3264 | | * |
3265 | | * This returns TRUE if the underlying datastore can compute arbitrary |
3266 | | * overviews efficiently, such as is the case with OGDI over a network. |
3267 | | * Datastores with arbitrary overviews don't generally have any fixed |
3268 | | * overviews, but the RasterIO() method can be used in downsampling mode |
3269 | | * to get overview data efficiently. |
3270 | | * |
3271 | | * This method is the same as the C function GDALHasArbitraryOverviews(), |
3272 | | * |
3273 | | * @return TRUE if arbitrary overviews available (efficiently), otherwise |
3274 | | * FALSE. |
3275 | | */ |
3276 | | |
3277 | | int GDALRasterBand::HasArbitraryOverviews() |
3278 | | |
3279 | 0 | { |
3280 | 0 | return FALSE; |
3281 | 0 | } |
3282 | | |
3283 | | /************************************************************************/ |
3284 | | /* GDALHasArbitraryOverviews() */ |
3285 | | /************************************************************************/ |
3286 | | |
3287 | | /** |
3288 | | * \brief Check for arbitrary overviews. |
3289 | | * |
3290 | | * @see GDALRasterBand::HasArbitraryOverviews() |
3291 | | */ |
3292 | | |
3293 | | int CPL_STDCALL GDALHasArbitraryOverviews(GDALRasterBandH hBand) |
3294 | | |
3295 | 0 | { |
3296 | 0 | VALIDATE_POINTER1(hBand, "GDALHasArbitraryOverviews", 0); |
3297 | | |
3298 | 0 | GDALRasterBand *poBand = GDALRasterBand::FromHandle(hBand); |
3299 | 0 | return poBand->HasArbitraryOverviews(); |
3300 | 0 | } |
3301 | | |
3302 | | /************************************************************************/ |
3303 | | /* GetOverviewCount() */ |
3304 | | /************************************************************************/ |
3305 | | |
3306 | | /** |
3307 | | * \brief Return the number of overview layers available. |
3308 | | * |
3309 | | * This method is the same as the C function GDALGetOverviewCount(). |
3310 | | * |
3311 | | * @return overview count, zero if none. |
3312 | | */ |
3313 | | |
3314 | | int GDALRasterBand::GetOverviewCount() |
3315 | | |
3316 | 0 | { |
3317 | 0 | if (poDS != nullptr && poDS->oOvManager.IsInitialized() && |
3318 | 0 | poDS->AreOverviewsEnabled()) |
3319 | 0 | return poDS->oOvManager.GetOverviewCount(nBand); |
3320 | | |
3321 | 0 | return 0; |
3322 | 0 | } |
3323 | | |
3324 | | /************************************************************************/ |
3325 | | /* GDALGetOverviewCount() */ |
3326 | | /************************************************************************/ |
3327 | | |
3328 | | /** |
3329 | | * \brief Return the number of overview layers available. |
3330 | | * |
3331 | | * @see GDALRasterBand::GetOverviewCount() |
3332 | | */ |
3333 | | |
3334 | | int CPL_STDCALL GDALGetOverviewCount(GDALRasterBandH hBand) |
3335 | | |
3336 | 0 | { |
3337 | 0 | VALIDATE_POINTER1(hBand, "GDALGetOverviewCount", 0); |
3338 | | |
3339 | 0 | GDALRasterBand *poBand = GDALRasterBand::FromHandle(hBand); |
3340 | 0 | return poBand->GetOverviewCount(); |
3341 | 0 | } |
3342 | | |
3343 | | /************************************************************************/ |
3344 | | /* GetOverview() */ |
3345 | | /************************************************************************/ |
3346 | | |
3347 | | /** |
3348 | | * \brief Fetch overview raster band object. |
3349 | | * |
3350 | | * This method is the same as the C function GDALGetOverview(). |
3351 | | * |
3352 | | * @param i overview index between 0 and GetOverviewCount()-1. |
3353 | | * |
3354 | | * @return overview GDALRasterBand. |
3355 | | */ |
3356 | | |
3357 | | GDALRasterBand *GDALRasterBand::GetOverview(int i) |
3358 | | |
3359 | 0 | { |
3360 | 0 | if (poDS != nullptr && poDS->oOvManager.IsInitialized() && |
3361 | 0 | poDS->AreOverviewsEnabled()) |
3362 | 0 | return poDS->oOvManager.GetOverview(nBand, i); |
3363 | | |
3364 | 0 | return nullptr; |
3365 | 0 | } |
3366 | | |
3367 | | /************************************************************************/ |
3368 | | /* GDALGetOverview() */ |
3369 | | /************************************************************************/ |
3370 | | |
3371 | | /** |
3372 | | * \brief Fetch overview raster band object. |
3373 | | * |
3374 | | * @see GDALRasterBand::GetOverview() |
3375 | | */ |
3376 | | |
3377 | | GDALRasterBandH CPL_STDCALL GDALGetOverview(GDALRasterBandH hBand, int i) |
3378 | | |
3379 | 0 | { |
3380 | 0 | VALIDATE_POINTER1(hBand, "GDALGetOverview", nullptr); |
3381 | | |
3382 | 0 | GDALRasterBand *poBand = GDALRasterBand::FromHandle(hBand); |
3383 | 0 | return GDALRasterBand::ToHandle(poBand->GetOverview(i)); |
3384 | 0 | } |
3385 | | |
3386 | | /************************************************************************/ |
3387 | | /* GetRasterSampleOverview() */ |
3388 | | /************************************************************************/ |
3389 | | |
3390 | | /** |
3391 | | * \brief Fetch best sampling overview. |
3392 | | * |
3393 | | * Returns the most reduced overview of the given band that still satisfies |
3394 | | * the desired number of samples. This function can be used with zero |
3395 | | * as the number of desired samples to fetch the most reduced overview. |
3396 | | * The same band as was passed in will be returned if it has not overviews, |
3397 | | * or if none of the overviews have enough samples. |
3398 | | * |
3399 | | * This method is the same as the C functions GDALGetRasterSampleOverview() |
3400 | | * and GDALGetRasterSampleOverviewEx(). |
3401 | | * |
3402 | | * @param nDesiredSamples the returned band will have at least this many |
3403 | | * pixels. |
3404 | | * |
3405 | | * @return optimal overview or the band itself. |
3406 | | */ |
3407 | | |
3408 | | GDALRasterBand * |
3409 | | GDALRasterBand::GetRasterSampleOverview(GUIntBig nDesiredSamples) |
3410 | | |
3411 | 0 | { |
3412 | 0 | GDALRasterBand *poBestBand = this; |
3413 | |
|
3414 | 0 | double dfBestSamples = GetXSize() * static_cast<double>(GetYSize()); |
3415 | |
|
3416 | 0 | for (int iOverview = 0; iOverview < GetOverviewCount(); iOverview++) |
3417 | 0 | { |
3418 | 0 | GDALRasterBand *poOBand = GetOverview(iOverview); |
3419 | |
|
3420 | 0 | if (poOBand == nullptr) |
3421 | 0 | continue; |
3422 | | |
3423 | 0 | const double dfOSamples = |
3424 | 0 | poOBand->GetXSize() * static_cast<double>(poOBand->GetYSize()); |
3425 | |
|
3426 | 0 | if (dfOSamples < dfBestSamples && dfOSamples > nDesiredSamples) |
3427 | 0 | { |
3428 | 0 | dfBestSamples = dfOSamples; |
3429 | 0 | poBestBand = poOBand; |
3430 | 0 | } |
3431 | 0 | } |
3432 | |
|
3433 | 0 | return poBestBand; |
3434 | 0 | } |
3435 | | |
3436 | | /************************************************************************/ |
3437 | | /* GDALGetRasterSampleOverview() */ |
3438 | | /************************************************************************/ |
3439 | | |
3440 | | /** |
3441 | | * \brief Fetch best sampling overview. |
3442 | | * |
3443 | | * Use GDALGetRasterSampleOverviewEx() to be able to specify more than 2 |
3444 | | * billion samples. |
3445 | | * |
3446 | | * @see GDALRasterBand::GetRasterSampleOverview() |
3447 | | * @see GDALGetRasterSampleOverviewEx() |
3448 | | */ |
3449 | | |
3450 | | GDALRasterBandH CPL_STDCALL GDALGetRasterSampleOverview(GDALRasterBandH hBand, |
3451 | | int nDesiredSamples) |
3452 | | |
3453 | 0 | { |
3454 | 0 | VALIDATE_POINTER1(hBand, "GDALGetRasterSampleOverview", nullptr); |
3455 | | |
3456 | 0 | GDALRasterBand *poBand = GDALRasterBand::FromHandle(hBand); |
3457 | 0 | return GDALRasterBand::ToHandle(poBand->GetRasterSampleOverview( |
3458 | 0 | nDesiredSamples < 0 ? 0 : static_cast<GUIntBig>(nDesiredSamples))); |
3459 | 0 | } |
3460 | | |
3461 | | /************************************************************************/ |
3462 | | /* GDALGetRasterSampleOverviewEx() */ |
3463 | | /************************************************************************/ |
3464 | | |
3465 | | /** |
3466 | | * \brief Fetch best sampling overview. |
3467 | | * |
3468 | | * @see GDALRasterBand::GetRasterSampleOverview() |
3469 | | * @since GDAL 2.0 |
3470 | | */ |
3471 | | |
3472 | | GDALRasterBandH CPL_STDCALL |
3473 | | GDALGetRasterSampleOverviewEx(GDALRasterBandH hBand, GUIntBig nDesiredSamples) |
3474 | | |
3475 | 0 | { |
3476 | 0 | VALIDATE_POINTER1(hBand, "GDALGetRasterSampleOverviewEx", nullptr); |
3477 | | |
3478 | 0 | GDALRasterBand *poBand = GDALRasterBand::FromHandle(hBand); |
3479 | 0 | return GDALRasterBand::ToHandle( |
3480 | 0 | poBand->GetRasterSampleOverview(nDesiredSamples)); |
3481 | 0 | } |
3482 | | |
3483 | | /************************************************************************/ |
3484 | | /* BuildOverviews() */ |
3485 | | /************************************************************************/ |
3486 | | |
3487 | | /** |
3488 | | * \fn GDALRasterBand::BuildOverviews(const char*, int, const int*, |
3489 | | * GDALProgressFunc, void*) \brief Build raster overview(s) |
3490 | | * |
3491 | | * If the operation is unsupported for the indicated dataset, then |
3492 | | * CE_Failure is returned, and CPLGetLastErrorNo() will return |
3493 | | * CPLE_NotSupported. |
3494 | | * |
3495 | | * WARNING: Most formats don't support per-band overview computation, but |
3496 | | * require that overviews are computed for all bands of a dataset, using |
3497 | | * GDALDataset::BuildOverviews(). The only exception for official GDAL drivers |
3498 | | * is the HFA driver which supports this method. |
3499 | | * |
3500 | | * @param pszResampling one of "NEAREST", "GAUSS", "CUBIC", "AVERAGE", "MODE", |
3501 | | * "AVERAGE_MAGPHASE" "RMS" or "NONE" controlling the downsampling method |
3502 | | * applied. |
3503 | | * @param nOverviews number of overviews to build. |
3504 | | * @param panOverviewList the list of overview decimation factors to build. |
3505 | | * @param pfnProgress a function to call to report progress, or NULL. |
3506 | | * @param pProgressData application data to pass to the progress function. |
3507 | | * @param papszOptions (GDAL >= 3.6) NULL terminated list of options as |
3508 | | * key=value pairs, or NULL |
3509 | | * |
3510 | | * @return CE_None on success or CE_Failure if the operation doesn't work. |
3511 | | */ |
3512 | | |
3513 | | /**/ |
3514 | | /**/ |
3515 | | |
3516 | | CPLErr GDALRasterBand::BuildOverviews(const char * /*pszResampling*/, |
3517 | | int /*nOverviews*/, |
3518 | | const int * /*panOverviewList*/, |
3519 | | GDALProgressFunc /*pfnProgress*/, |
3520 | | void * /*pProgressData*/, |
3521 | | CSLConstList /* papszOptions */) |
3522 | | |
3523 | 0 | { |
3524 | 0 | ReportError(CE_Failure, CPLE_NotSupported, |
3525 | 0 | "BuildOverviews() not supported for this dataset."); |
3526 | |
|
3527 | 0 | return (CE_Failure); |
3528 | 0 | } |
3529 | | |
3530 | | /************************************************************************/ |
3531 | | /* GetOffset() */ |
3532 | | /************************************************************************/ |
3533 | | |
3534 | | /** |
3535 | | * \brief Fetch the raster value offset. |
3536 | | * |
3537 | | * This value (in combination with the GetScale() value) can be used to |
3538 | | * transform raw pixel values into the units returned by GetUnitType(). |
3539 | | * For example this might be used to store elevations in GUInt16 bands |
3540 | | * with a precision of 0.1, and starting from -100. |
3541 | | * |
3542 | | * Units value = (raw value * scale) + offset |
3543 | | * |
3544 | | * Note that applying scale and offset is of the responsibility of the user, |
3545 | | * and is not done by methods such as RasterIO() or ReadBlock(). |
3546 | | * |
3547 | | * For file formats that don't know this intrinsically a value of zero |
3548 | | * is returned. |
3549 | | * |
3550 | | * This method is the same as the C function GDALGetRasterOffset(). |
3551 | | * |
3552 | | * @param pbSuccess pointer to a boolean to use to indicate if the |
3553 | | * returned value is meaningful or not. May be NULL (default). |
3554 | | * |
3555 | | * @return the raster offset. |
3556 | | */ |
3557 | | |
3558 | | double GDALRasterBand::GetOffset(int *pbSuccess) |
3559 | | |
3560 | 0 | { |
3561 | 0 | if (pbSuccess != nullptr) |
3562 | 0 | *pbSuccess = FALSE; |
3563 | |
|
3564 | 0 | return 0.0; |
3565 | 0 | } |
3566 | | |
3567 | | /************************************************************************/ |
3568 | | /* GDALGetRasterOffset() */ |
3569 | | /************************************************************************/ |
3570 | | |
3571 | | /** |
3572 | | * \brief Fetch the raster value offset. |
3573 | | * |
3574 | | * @see GDALRasterBand::GetOffset() |
3575 | | */ |
3576 | | |
3577 | | double CPL_STDCALL GDALGetRasterOffset(GDALRasterBandH hBand, int *pbSuccess) |
3578 | | |
3579 | 0 | { |
3580 | 0 | VALIDATE_POINTER1(hBand, "GDALGetRasterOffset", 0); |
3581 | | |
3582 | 0 | GDALRasterBand *poBand = GDALRasterBand::FromHandle(hBand); |
3583 | 0 | return poBand->GetOffset(pbSuccess); |
3584 | 0 | } |
3585 | | |
3586 | | /************************************************************************/ |
3587 | | /* SetOffset() */ |
3588 | | /************************************************************************/ |
3589 | | |
3590 | | /** |
3591 | | * \fn GDALRasterBand::SetOffset(double) |
3592 | | * \brief Set scaling offset. |
3593 | | * |
3594 | | * Very few formats implement this method. When not implemented it will |
3595 | | * issue a CPLE_NotSupported error and return CE_Failure. |
3596 | | * |
3597 | | * This method is the same as the C function GDALSetRasterOffset(). |
3598 | | * |
3599 | | * @param dfNewOffset the new offset. |
3600 | | * |
3601 | | * @return CE_None or success or CE_Failure on failure. |
3602 | | */ |
3603 | | |
3604 | | /**/ |
3605 | | /**/ |
3606 | | |
3607 | | CPLErr GDALRasterBand::SetOffset(double /*dfNewOffset*/) |
3608 | 0 | { |
3609 | 0 | if (!(GetMOFlags() & GMO_IGNORE_UNIMPLEMENTED)) |
3610 | 0 | ReportError(CE_Failure, CPLE_NotSupported, |
3611 | 0 | "SetOffset() not supported on this raster band."); |
3612 | |
|
3613 | 0 | return CE_Failure; |
3614 | 0 | } |
3615 | | |
3616 | | /************************************************************************/ |
3617 | | /* GDALSetRasterOffset() */ |
3618 | | /************************************************************************/ |
3619 | | |
3620 | | /** |
3621 | | * \brief Set scaling offset. |
3622 | | * |
3623 | | * @see GDALRasterBand::SetOffset() |
3624 | | */ |
3625 | | |
3626 | | CPLErr CPL_STDCALL GDALSetRasterOffset(GDALRasterBandH hBand, |
3627 | | double dfNewOffset) |
3628 | | |
3629 | 0 | { |
3630 | 0 | VALIDATE_POINTER1(hBand, "GDALSetRasterOffset", CE_Failure); |
3631 | | |
3632 | 0 | GDALRasterBand *poBand = GDALRasterBand::FromHandle(hBand); |
3633 | 0 | return poBand->SetOffset(dfNewOffset); |
3634 | 0 | } |
3635 | | |
3636 | | /************************************************************************/ |
3637 | | /* GetScale() */ |
3638 | | /************************************************************************/ |
3639 | | |
3640 | | /** |
3641 | | * \brief Fetch the raster value scale. |
3642 | | * |
3643 | | * This value (in combination with the GetOffset() value) can be used to |
3644 | | * transform raw pixel values into the units returned by GetUnitType(). |
3645 | | * For example this might be used to store elevations in GUInt16 bands |
3646 | | * with a precision of 0.1, and starting from -100. |
3647 | | * |
3648 | | * Units value = (raw value * scale) + offset |
3649 | | * |
3650 | | * Note that applying scale and offset is of the responsibility of the user, |
3651 | | * and is not done by methods such as RasterIO() or ReadBlock(). |
3652 | | * |
3653 | | * For file formats that don't know this intrinsically a value of one |
3654 | | * is returned. |
3655 | | * |
3656 | | * This method is the same as the C function GDALGetRasterScale(). |
3657 | | * |
3658 | | * @param pbSuccess pointer to a boolean to use to indicate if the |
3659 | | * returned value is meaningful or not. May be NULL (default). |
3660 | | * |
3661 | | * @return the raster scale. |
3662 | | */ |
3663 | | |
3664 | | double GDALRasterBand::GetScale(int *pbSuccess) |
3665 | | |
3666 | 0 | { |
3667 | 0 | if (pbSuccess != nullptr) |
3668 | 0 | *pbSuccess = FALSE; |
3669 | |
|
3670 | 0 | return 1.0; |
3671 | 0 | } |
3672 | | |
3673 | | /************************************************************************/ |
3674 | | /* GDALGetRasterScale() */ |
3675 | | /************************************************************************/ |
3676 | | |
3677 | | /** |
3678 | | * \brief Fetch the raster value scale. |
3679 | | * |
3680 | | * @see GDALRasterBand::GetScale() |
3681 | | */ |
3682 | | |
3683 | | double CPL_STDCALL GDALGetRasterScale(GDALRasterBandH hBand, int *pbSuccess) |
3684 | | |
3685 | 0 | { |
3686 | 0 | VALIDATE_POINTER1(hBand, "GDALGetRasterScale", 0); |
3687 | | |
3688 | 0 | GDALRasterBand *poBand = GDALRasterBand::FromHandle(hBand); |
3689 | 0 | return poBand->GetScale(pbSuccess); |
3690 | 0 | } |
3691 | | |
3692 | | /************************************************************************/ |
3693 | | /* SetScale() */ |
3694 | | /************************************************************************/ |
3695 | | |
3696 | | /** |
3697 | | * \fn GDALRasterBand::SetScale(double) |
3698 | | * \brief Set scaling ratio. |
3699 | | * |
3700 | | * Very few formats implement this method. When not implemented it will |
3701 | | * issue a CPLE_NotSupported error and return CE_Failure. |
3702 | | * |
3703 | | * This method is the same as the C function GDALSetRasterScale(). |
3704 | | * |
3705 | | * @param dfNewScale the new scale. |
3706 | | * |
3707 | | * @return CE_None or success or CE_Failure on failure. |
3708 | | */ |
3709 | | |
3710 | | /**/ |
3711 | | /**/ |
3712 | | |
3713 | | CPLErr GDALRasterBand::SetScale(double /*dfNewScale*/) |
3714 | | |
3715 | 0 | { |
3716 | 0 | if (!(GetMOFlags() & GMO_IGNORE_UNIMPLEMENTED)) |
3717 | 0 | ReportError(CE_Failure, CPLE_NotSupported, |
3718 | 0 | "SetScale() not supported on this raster band."); |
3719 | |
|
3720 | 0 | return CE_Failure; |
3721 | 0 | } |
3722 | | |
3723 | | /************************************************************************/ |
3724 | | /* GDALSetRasterScale() */ |
3725 | | /************************************************************************/ |
3726 | | |
3727 | | /** |
3728 | | * \brief Set scaling ratio. |
3729 | | * |
3730 | | * @see GDALRasterBand::SetScale() |
3731 | | */ |
3732 | | |
3733 | | CPLErr CPL_STDCALL GDALSetRasterScale(GDALRasterBandH hBand, double dfNewOffset) |
3734 | | |
3735 | 0 | { |
3736 | 0 | VALIDATE_POINTER1(hBand, "GDALSetRasterScale", CE_Failure); |
3737 | | |
3738 | 0 | GDALRasterBand *poBand = GDALRasterBand::FromHandle(hBand); |
3739 | 0 | return poBand->SetScale(dfNewOffset); |
3740 | 0 | } |
3741 | | |
3742 | | /************************************************************************/ |
3743 | | /* GetUnitType() */ |
3744 | | /************************************************************************/ |
3745 | | |
3746 | | /** |
3747 | | * \brief Return raster unit type. |
3748 | | * |
3749 | | * Return a name for the units of this raster's values. For instance, it |
3750 | | * might be "m" for an elevation model in meters, or "ft" for feet. If no |
3751 | | * units are available, a value of "" will be returned. The returned string |
3752 | | * should not be modified, nor freed by the calling application. |
3753 | | * |
3754 | | * This method is the same as the C function GDALGetRasterUnitType(). |
3755 | | * |
3756 | | * @return unit name string. |
3757 | | */ |
3758 | | |
3759 | | const char *GDALRasterBand::GetUnitType() |
3760 | | |
3761 | 0 | { |
3762 | 0 | return ""; |
3763 | 0 | } |
3764 | | |
3765 | | /************************************************************************/ |
3766 | | /* GDALGetRasterUnitType() */ |
3767 | | /************************************************************************/ |
3768 | | |
3769 | | /** |
3770 | | * \brief Return raster unit type. |
3771 | | * |
3772 | | * @see GDALRasterBand::GetUnitType() |
3773 | | */ |
3774 | | |
3775 | | const char *CPL_STDCALL GDALGetRasterUnitType(GDALRasterBandH hBand) |
3776 | | |
3777 | 0 | { |
3778 | 0 | VALIDATE_POINTER1(hBand, "GDALGetRasterUnitType", nullptr); |
3779 | | |
3780 | 0 | GDALRasterBand *poBand = GDALRasterBand::FromHandle(hBand); |
3781 | 0 | return poBand->GetUnitType(); |
3782 | 0 | } |
3783 | | |
3784 | | /************************************************************************/ |
3785 | | /* SetUnitType() */ |
3786 | | /************************************************************************/ |
3787 | | |
3788 | | /** |
3789 | | * \fn GDALRasterBand::SetUnitType(const char*) |
3790 | | * \brief Set unit type. |
3791 | | * |
3792 | | * Set the unit type for a raster band. Values should be one of |
3793 | | * "" (the default indicating it is unknown), "m" indicating meters, |
3794 | | * or "ft" indicating feet, though other nonstandard values are allowed. |
3795 | | * |
3796 | | * This method is the same as the C function GDALSetRasterUnitType(). |
3797 | | * |
3798 | | * @param pszNewValue the new unit type value. |
3799 | | * |
3800 | | * @return CE_None on success or CE_Failure if not successful, or |
3801 | | * unsupported. |
3802 | | */ |
3803 | | |
3804 | | /**/ |
3805 | | /**/ |
3806 | | |
3807 | | CPLErr GDALRasterBand::SetUnitType(const char * /*pszNewValue*/) |
3808 | | |
3809 | 0 | { |
3810 | 0 | if (!(GetMOFlags() & GMO_IGNORE_UNIMPLEMENTED)) |
3811 | 0 | ReportError(CE_Failure, CPLE_NotSupported, |
3812 | 0 | "SetUnitType() not supported on this raster band."); |
3813 | 0 | return CE_Failure; |
3814 | 0 | } |
3815 | | |
3816 | | /************************************************************************/ |
3817 | | /* GDALSetRasterUnitType() */ |
3818 | | /************************************************************************/ |
3819 | | |
3820 | | /** |
3821 | | * \brief Set unit type. |
3822 | | * |
3823 | | * @see GDALRasterBand::SetUnitType() |
3824 | | * |
3825 | | * @since GDAL 1.8.0 |
3826 | | */ |
3827 | | |
3828 | | CPLErr CPL_STDCALL GDALSetRasterUnitType(GDALRasterBandH hBand, |
3829 | | const char *pszNewValue) |
3830 | | |
3831 | 0 | { |
3832 | 0 | VALIDATE_POINTER1(hBand, "GDALSetRasterUnitType", CE_Failure); |
3833 | | |
3834 | 0 | GDALRasterBand *poBand = GDALRasterBand::FromHandle(hBand); |
3835 | 0 | return poBand->SetUnitType(pszNewValue); |
3836 | 0 | } |
3837 | | |
3838 | | /************************************************************************/ |
3839 | | /* GetXSize() */ |
3840 | | /************************************************************************/ |
3841 | | |
3842 | | /** |
3843 | | * \brief Fetch XSize of raster. |
3844 | | * |
3845 | | * This method is the same as the C function GDALGetRasterBandXSize(). |
3846 | | * |
3847 | | * @return the width in pixels of this band. |
3848 | | */ |
3849 | | |
3850 | | int GDALRasterBand::GetXSize() const |
3851 | | |
3852 | 0 | { |
3853 | 0 | return nRasterXSize; |
3854 | 0 | } |
3855 | | |
3856 | | /************************************************************************/ |
3857 | | /* GDALGetRasterBandXSize() */ |
3858 | | /************************************************************************/ |
3859 | | |
3860 | | /** |
3861 | | * \brief Fetch XSize of raster. |
3862 | | * |
3863 | | * @see GDALRasterBand::GetXSize() |
3864 | | */ |
3865 | | |
3866 | | int CPL_STDCALL GDALGetRasterBandXSize(GDALRasterBandH hBand) |
3867 | | |
3868 | 0 | { |
3869 | 0 | VALIDATE_POINTER1(hBand, "GDALGetRasterBandXSize", 0); |
3870 | | |
3871 | 0 | GDALRasterBand *poBand = GDALRasterBand::FromHandle(hBand); |
3872 | 0 | return poBand->GetXSize(); |
3873 | 0 | } |
3874 | | |
3875 | | /************************************************************************/ |
3876 | | /* GetYSize() */ |
3877 | | /************************************************************************/ |
3878 | | |
3879 | | /** |
3880 | | * \brief Fetch YSize of raster. |
3881 | | * |
3882 | | * This method is the same as the C function GDALGetRasterBandYSize(). |
3883 | | * |
3884 | | * @return the height in pixels of this band. |
3885 | | */ |
3886 | | |
3887 | | int GDALRasterBand::GetYSize() const |
3888 | | |
3889 | 0 | { |
3890 | 0 | return nRasterYSize; |
3891 | 0 | } |
3892 | | |
3893 | | /************************************************************************/ |
3894 | | /* GDALGetRasterBandYSize() */ |
3895 | | /************************************************************************/ |
3896 | | |
3897 | | /** |
3898 | | * \brief Fetch YSize of raster. |
3899 | | * |
3900 | | * @see GDALRasterBand::GetYSize() |
3901 | | */ |
3902 | | |
3903 | | int CPL_STDCALL GDALGetRasterBandYSize(GDALRasterBandH hBand) |
3904 | | |
3905 | 0 | { |
3906 | 0 | VALIDATE_POINTER1(hBand, "GDALGetRasterBandYSize", 0); |
3907 | | |
3908 | 0 | GDALRasterBand *poBand = GDALRasterBand::FromHandle(hBand); |
3909 | 0 | return poBand->GetYSize(); |
3910 | 0 | } |
3911 | | |
3912 | | /************************************************************************/ |
3913 | | /* GetBand() */ |
3914 | | /************************************************************************/ |
3915 | | |
3916 | | /** |
3917 | | * \brief Fetch the band number. |
3918 | | * |
3919 | | * This method returns the band that this GDALRasterBand objects represents |
3920 | | * within its dataset. This method may return a value of 0 to indicate |
3921 | | * GDALRasterBand objects without an apparently relationship to a dataset, |
3922 | | * such as GDALRasterBands serving as overviews. |
3923 | | * |
3924 | | * This method is the same as the C function GDALGetBandNumber(). |
3925 | | * |
3926 | | * @return band number (1+) or 0 if the band number isn't known. |
3927 | | */ |
3928 | | |
3929 | | int GDALRasterBand::GetBand() const |
3930 | | |
3931 | 0 | { |
3932 | 0 | return nBand; |
3933 | 0 | } |
3934 | | |
3935 | | /************************************************************************/ |
3936 | | /* GDALGetBandNumber() */ |
3937 | | /************************************************************************/ |
3938 | | |
3939 | | /** |
3940 | | * \brief Fetch the band number. |
3941 | | * |
3942 | | * @see GDALRasterBand::GetBand() |
3943 | | */ |
3944 | | |
3945 | | int CPL_STDCALL GDALGetBandNumber(GDALRasterBandH hBand) |
3946 | | |
3947 | 0 | { |
3948 | 0 | VALIDATE_POINTER1(hBand, "GDALGetBandNumber", 0); |
3949 | | |
3950 | 0 | GDALRasterBand *poBand = GDALRasterBand::FromHandle(hBand); |
3951 | 0 | return poBand->GetBand(); |
3952 | 0 | } |
3953 | | |
3954 | | /************************************************************************/ |
3955 | | /* GetDataset() */ |
3956 | | /************************************************************************/ |
3957 | | |
3958 | | /** |
3959 | | * \brief Fetch the owning dataset handle. |
3960 | | * |
3961 | | * Note that some GDALRasterBands are not considered to be a part of a dataset, |
3962 | | * such as overviews or other "freestanding" bands. |
3963 | | * |
3964 | | * This method is the same as the C function GDALGetBandDataset(). |
3965 | | * |
3966 | | * @return the pointer to the GDALDataset to which this band belongs, or |
3967 | | * NULL if this cannot be determined. |
3968 | | */ |
3969 | | |
3970 | | GDALDataset *GDALRasterBand::GetDataset() const |
3971 | | |
3972 | 0 | { |
3973 | 0 | return poDS; |
3974 | 0 | } |
3975 | | |
3976 | | /************************************************************************/ |
3977 | | /* GDALGetBandDataset() */ |
3978 | | /************************************************************************/ |
3979 | | |
3980 | | /** |
3981 | | * \brief Fetch the owning dataset handle. |
3982 | | * |
3983 | | * @see GDALRasterBand::GetDataset() |
3984 | | */ |
3985 | | |
3986 | | GDALDatasetH CPL_STDCALL GDALGetBandDataset(GDALRasterBandH hBand) |
3987 | | |
3988 | 0 | { |
3989 | 0 | VALIDATE_POINTER1(hBand, "GDALGetBandDataset", nullptr); |
3990 | | |
3991 | 0 | GDALRasterBand *poBand = GDALRasterBand::FromHandle(hBand); |
3992 | 0 | return GDALDataset::ToHandle(poBand->GetDataset()); |
3993 | 0 | } |
3994 | | |
3995 | | /************************************************************************/ |
3996 | | /* ComputeFloat16NoDataValue() */ |
3997 | | /************************************************************************/ |
3998 | | |
3999 | | static inline void ComputeFloat16NoDataValue(GDALDataType eDataType, |
4000 | | double dfNoDataValue, |
4001 | | int &bGotNoDataValue, |
4002 | | GFloat16 &fNoDataValue, |
4003 | | bool &bGotFloat16NoDataValue) |
4004 | 0 | { |
4005 | 0 | if (eDataType == GDT_Float16 && bGotNoDataValue) |
4006 | 0 | { |
4007 | 0 | dfNoDataValue = GDALAdjustNoDataCloseToFloatMax(dfNoDataValue); |
4008 | 0 | if (GDALIsValueInRange<GFloat16>(dfNoDataValue)) |
4009 | 0 | { |
4010 | 0 | fNoDataValue = static_cast<GFloat16>(dfNoDataValue); |
4011 | 0 | bGotFloat16NoDataValue = true; |
4012 | 0 | bGotNoDataValue = false; |
4013 | 0 | } |
4014 | 0 | } |
4015 | 0 | } |
4016 | | |
4017 | | /************************************************************************/ |
4018 | | /* ComputeFloatNoDataValue() */ |
4019 | | /************************************************************************/ |
4020 | | |
4021 | | static inline void ComputeFloatNoDataValue(GDALDataType eDataType, |
4022 | | double dfNoDataValue, |
4023 | | int &bGotNoDataValue, |
4024 | | float &fNoDataValue, |
4025 | | bool &bGotFloatNoDataValue) |
4026 | 0 | { |
4027 | 0 | if (eDataType == GDT_Float32 && bGotNoDataValue) |
4028 | 0 | { |
4029 | 0 | dfNoDataValue = GDALAdjustNoDataCloseToFloatMax(dfNoDataValue); |
4030 | 0 | if (GDALIsValueInRange<float>(dfNoDataValue)) |
4031 | 0 | { |
4032 | 0 | fNoDataValue = static_cast<float>(dfNoDataValue); |
4033 | 0 | bGotFloatNoDataValue = true; |
4034 | 0 | bGotNoDataValue = false; |
4035 | 0 | } |
4036 | 0 | } |
4037 | 0 | } |
4038 | | |
4039 | | /************************************************************************/ |
4040 | | /* struct GDALNoDataValues */ |
4041 | | /************************************************************************/ |
4042 | | |
4043 | | /** |
4044 | | * \brief No-data-values for all types |
4045 | | * |
4046 | | * The functions below pass various no-data-values around. To avoid |
4047 | | * long argument lists, this struct collects the no-data-values for |
4048 | | * all types into a single, convenient place. |
4049 | | **/ |
4050 | | |
4051 | | struct GDALNoDataValues |
4052 | | { |
4053 | | int bGotNoDataValue; |
4054 | | double dfNoDataValue; |
4055 | | |
4056 | | bool bGotFloatNoDataValue; |
4057 | | float fNoDataValue; |
4058 | | |
4059 | | bool bGotFloat16NoDataValue; |
4060 | | GFloat16 hfNoDataValue; |
4061 | | |
4062 | | GDALNoDataValues(GDALRasterBand *poRasterBand, GDALDataType eDataType) |
4063 | 0 | : bGotNoDataValue(FALSE), dfNoDataValue(0.0), |
4064 | 0 | bGotFloatNoDataValue(false), fNoDataValue(0.0f), |
4065 | 0 | bGotFloat16NoDataValue(false), hfNoDataValue(GFloat16(0.0f)) |
4066 | 0 | { |
4067 | 0 | dfNoDataValue = poRasterBand->GetNoDataValue(&bGotNoDataValue); |
4068 | 0 | bGotNoDataValue = bGotNoDataValue && !std::isnan(dfNoDataValue); |
4069 | |
|
4070 | 0 | ComputeFloatNoDataValue(eDataType, dfNoDataValue, bGotNoDataValue, |
4071 | 0 | fNoDataValue, bGotFloatNoDataValue); |
4072 | |
|
4073 | 0 | ComputeFloat16NoDataValue(eDataType, dfNoDataValue, bGotNoDataValue, |
4074 | 0 | hfNoDataValue, bGotFloat16NoDataValue); |
4075 | 0 | } |
4076 | | }; |
4077 | | |
4078 | | /************************************************************************/ |
4079 | | /* ARE_REAL_EQUAL() */ |
4080 | | /************************************************************************/ |
4081 | | |
4082 | | inline bool ARE_REAL_EQUAL(GFloat16 dfVal1, GFloat16 dfVal2, int ulp = 2) |
4083 | 0 | { |
4084 | 0 | using std::abs; |
4085 | 0 | return dfVal1 == dfVal2 || /* Should cover infinity */ |
4086 | 0 | abs(dfVal1 - dfVal2) < cpl::NumericLimits<GFloat16>::epsilon() * |
4087 | 0 | abs(dfVal1 + dfVal2) * ulp; |
4088 | 0 | } |
4089 | | |
4090 | | /************************************************************************/ |
4091 | | /* GetHistogram() */ |
4092 | | /************************************************************************/ |
4093 | | |
4094 | | /** |
4095 | | * \brief Compute raster histogram. |
4096 | | * |
4097 | | * Note that the bucket size is (dfMax-dfMin) / nBuckets. |
4098 | | * |
4099 | | * For example to compute a simple 256 entry histogram of eight bit data, |
4100 | | * the following would be suitable. The unusual bounds are to ensure that |
4101 | | * bucket boundaries don't fall right on integer values causing possible errors |
4102 | | * due to rounding after scaling. |
4103 | | \code{.cpp} |
4104 | | GUIntBig anHistogram[256]; |
4105 | | |
4106 | | poBand->GetHistogram( -0.5, 255.5, 256, anHistogram, FALSE, FALSE, |
4107 | | GDALDummyProgress, nullptr ); |
4108 | | \endcode |
4109 | | * |
4110 | | * Note that setting bApproxOK will generally result in a subsampling of the |
4111 | | * file, and will utilize overviews if available. It should generally |
4112 | | * produce a representative histogram for the data that is suitable for use |
4113 | | * in generating histogram based luts for instance. Generally bApproxOK is |
4114 | | * much faster than an exactly computed histogram. |
4115 | | * |
4116 | | * This method is the same as the C functions GDALGetRasterHistogram() and |
4117 | | * GDALGetRasterHistogramEx(). |
4118 | | * |
4119 | | * @param dfMin the lower bound of the histogram. |
4120 | | * @param dfMax the upper bound of the histogram. |
4121 | | * @param nBuckets the number of buckets in panHistogram. |
4122 | | * @param panHistogram array into which the histogram totals are placed. |
4123 | | * @param bIncludeOutOfRange if TRUE values below the histogram range will |
4124 | | * mapped into panHistogram[0], and values above will be mapped into |
4125 | | * panHistogram[nBuckets-1] otherwise out of range values are discarded. |
4126 | | * @param bApproxOK TRUE if an approximate, or incomplete histogram OK. |
4127 | | * @param pfnProgress function to report progress to completion. |
4128 | | * @param pProgressData application data to pass to pfnProgress. |
4129 | | * |
4130 | | * @return CE_None on success, or CE_Failure if something goes wrong. |
4131 | | */ |
4132 | | |
4133 | | CPLErr GDALRasterBand::GetHistogram(double dfMin, double dfMax, int nBuckets, |
4134 | | GUIntBig *panHistogram, |
4135 | | int bIncludeOutOfRange, int bApproxOK, |
4136 | | GDALProgressFunc pfnProgress, |
4137 | | void *pProgressData) |
4138 | | |
4139 | 0 | { |
4140 | 0 | CPLAssert(nullptr != panHistogram); |
4141 | | |
4142 | 0 | if (pfnProgress == nullptr) |
4143 | 0 | pfnProgress = GDALDummyProgress; |
4144 | | |
4145 | | /* -------------------------------------------------------------------- */ |
4146 | | /* If we have overviews, use them for the histogram. */ |
4147 | | /* -------------------------------------------------------------------- */ |
4148 | 0 | if (bApproxOK && GetOverviewCount() > 0 && !HasArbitraryOverviews()) |
4149 | 0 | { |
4150 | | // FIXME: should we use the most reduced overview here or use some |
4151 | | // minimum number of samples like GDALRasterBand::ComputeStatistics() |
4152 | | // does? |
4153 | 0 | GDALRasterBand *poBestOverview = GetRasterSampleOverview(0); |
4154 | |
|
4155 | 0 | if (poBestOverview != this) |
4156 | 0 | { |
4157 | 0 | return poBestOverview->GetHistogram( |
4158 | 0 | dfMin, dfMax, nBuckets, panHistogram, bIncludeOutOfRange, |
4159 | 0 | bApproxOK, pfnProgress, pProgressData); |
4160 | 0 | } |
4161 | 0 | } |
4162 | | |
4163 | | /* -------------------------------------------------------------------- */ |
4164 | | /* Read actual data and build histogram. */ |
4165 | | /* -------------------------------------------------------------------- */ |
4166 | 0 | if (!pfnProgress(0.0, "Compute Histogram", pProgressData)) |
4167 | 0 | { |
4168 | 0 | ReportError(CE_Failure, CPLE_UserInterrupt, "User terminated"); |
4169 | 0 | return CE_Failure; |
4170 | 0 | } |
4171 | | |
4172 | | // Written this way to deal with NaN |
4173 | 0 | if (!(dfMax > dfMin)) |
4174 | 0 | { |
4175 | 0 | ReportError(CE_Failure, CPLE_IllegalArg, |
4176 | 0 | "dfMax should be strictly greater than dfMin"); |
4177 | 0 | return CE_Failure; |
4178 | 0 | } |
4179 | | |
4180 | 0 | GDALRasterIOExtraArg sExtraArg; |
4181 | 0 | INIT_RASTERIO_EXTRA_ARG(sExtraArg); |
4182 | |
|
4183 | 0 | const double dfScale = nBuckets / (dfMax - dfMin); |
4184 | 0 | if (dfScale == 0 || !std::isfinite(dfScale)) |
4185 | 0 | { |
4186 | 0 | ReportError(CE_Failure, CPLE_IllegalArg, |
4187 | 0 | "dfMin and dfMax should be finite values such that " |
4188 | 0 | "nBuckets / (dfMax - dfMin) is non-zero"); |
4189 | 0 | return CE_Failure; |
4190 | 0 | } |
4191 | 0 | memset(panHistogram, 0, sizeof(GUIntBig) * nBuckets); |
4192 | |
|
4193 | 0 | GDALNoDataValues sNoDataValues(this, eDataType); |
4194 | 0 | GDALRasterBand *poMaskBand = nullptr; |
4195 | 0 | if (!sNoDataValues.bGotNoDataValue) |
4196 | 0 | { |
4197 | 0 | const int l_nMaskFlags = GetMaskFlags(); |
4198 | 0 | if (l_nMaskFlags != GMF_ALL_VALID && l_nMaskFlags != GMF_NODATA && |
4199 | 0 | GetColorInterpretation() != GCI_AlphaBand) |
4200 | 0 | { |
4201 | 0 | poMaskBand = GetMaskBand(); |
4202 | 0 | } |
4203 | 0 | } |
4204 | |
|
4205 | 0 | bool bSignedByte = false; |
4206 | 0 | if (eDataType == GDT_Byte) |
4207 | 0 | { |
4208 | 0 | EnablePixelTypeSignedByteWarning(false); |
4209 | 0 | const char *pszPixelType = |
4210 | 0 | GetMetadataItem("PIXELTYPE", "IMAGE_STRUCTURE"); |
4211 | 0 | EnablePixelTypeSignedByteWarning(true); |
4212 | 0 | bSignedByte = |
4213 | 0 | pszPixelType != nullptr && EQUAL(pszPixelType, "SIGNEDBYTE"); |
4214 | 0 | } |
4215 | |
|
4216 | 0 | if (bApproxOK && HasArbitraryOverviews()) |
4217 | 0 | { |
4218 | | /* -------------------------------------------------------------------- |
4219 | | */ |
4220 | | /* Figure out how much the image should be reduced to get an */ |
4221 | | /* approximate value. */ |
4222 | | /* -------------------------------------------------------------------- |
4223 | | */ |
4224 | 0 | const double dfReduction = |
4225 | 0 | sqrt(static_cast<double>(nRasterXSize) * nRasterYSize / |
4226 | 0 | GDALSTAT_APPROX_NUMSAMPLES); |
4227 | |
|
4228 | 0 | int nXReduced = nRasterXSize; |
4229 | 0 | int nYReduced = nRasterYSize; |
4230 | 0 | if (dfReduction > 1.0) |
4231 | 0 | { |
4232 | 0 | nXReduced = static_cast<int>(nRasterXSize / dfReduction); |
4233 | 0 | nYReduced = static_cast<int>(nRasterYSize / dfReduction); |
4234 | | |
4235 | | // Catch the case of huge resizing ratios here |
4236 | 0 | if (nXReduced == 0) |
4237 | 0 | nXReduced = 1; |
4238 | 0 | if (nYReduced == 0) |
4239 | 0 | nYReduced = 1; |
4240 | 0 | } |
4241 | |
|
4242 | 0 | void *pData = VSI_MALLOC3_VERBOSE(GDALGetDataTypeSizeBytes(eDataType), |
4243 | 0 | nXReduced, nYReduced); |
4244 | 0 | if (!pData) |
4245 | 0 | return CE_Failure; |
4246 | | |
4247 | 0 | const CPLErr eErr = |
4248 | 0 | IRasterIO(GF_Read, 0, 0, nRasterXSize, nRasterYSize, pData, |
4249 | 0 | nXReduced, nYReduced, eDataType, 0, 0, &sExtraArg); |
4250 | 0 | if (eErr != CE_None) |
4251 | 0 | { |
4252 | 0 | CPLFree(pData); |
4253 | 0 | return eErr; |
4254 | 0 | } |
4255 | | |
4256 | 0 | GByte *pabyMaskData = nullptr; |
4257 | 0 | if (poMaskBand) |
4258 | 0 | { |
4259 | 0 | pabyMaskData = |
4260 | 0 | static_cast<GByte *>(VSI_MALLOC2_VERBOSE(nXReduced, nYReduced)); |
4261 | 0 | if (!pabyMaskData) |
4262 | 0 | { |
4263 | 0 | CPLFree(pData); |
4264 | 0 | return CE_Failure; |
4265 | 0 | } |
4266 | | |
4267 | 0 | if (poMaskBand->RasterIO(GF_Read, 0, 0, nRasterXSize, nRasterYSize, |
4268 | 0 | pabyMaskData, nXReduced, nYReduced, |
4269 | 0 | GDT_Byte, 0, 0, nullptr) != CE_None) |
4270 | 0 | { |
4271 | 0 | CPLFree(pData); |
4272 | 0 | CPLFree(pabyMaskData); |
4273 | 0 | return CE_Failure; |
4274 | 0 | } |
4275 | 0 | } |
4276 | | |
4277 | | // This isn't the fastest way to do this, but is easier for now. |
4278 | 0 | for (int iY = 0; iY < nYReduced; iY++) |
4279 | 0 | { |
4280 | 0 | for (int iX = 0; iX < nXReduced; iX++) |
4281 | 0 | { |
4282 | 0 | const int iOffset = iX + iY * nXReduced; |
4283 | 0 | double dfValue = 0.0; |
4284 | |
|
4285 | 0 | if (pabyMaskData && pabyMaskData[iOffset] == 0) |
4286 | 0 | continue; |
4287 | | |
4288 | 0 | switch (eDataType) |
4289 | 0 | { |
4290 | 0 | case GDT_Byte: |
4291 | 0 | { |
4292 | 0 | if (bSignedByte) |
4293 | 0 | dfValue = |
4294 | 0 | static_cast<signed char *>(pData)[iOffset]; |
4295 | 0 | else |
4296 | 0 | dfValue = static_cast<GByte *>(pData)[iOffset]; |
4297 | 0 | break; |
4298 | 0 | } |
4299 | 0 | case GDT_Int8: |
4300 | 0 | dfValue = static_cast<GInt8 *>(pData)[iOffset]; |
4301 | 0 | break; |
4302 | 0 | case GDT_UInt16: |
4303 | 0 | dfValue = static_cast<GUInt16 *>(pData)[iOffset]; |
4304 | 0 | break; |
4305 | 0 | case GDT_Int16: |
4306 | 0 | dfValue = static_cast<GInt16 *>(pData)[iOffset]; |
4307 | 0 | break; |
4308 | 0 | case GDT_UInt32: |
4309 | 0 | dfValue = static_cast<GUInt32 *>(pData)[iOffset]; |
4310 | 0 | break; |
4311 | 0 | case GDT_Int32: |
4312 | 0 | dfValue = static_cast<GInt32 *>(pData)[iOffset]; |
4313 | 0 | break; |
4314 | 0 | case GDT_UInt64: |
4315 | 0 | dfValue = static_cast<double>( |
4316 | 0 | static_cast<GUInt64 *>(pData)[iOffset]); |
4317 | 0 | break; |
4318 | 0 | case GDT_Int64: |
4319 | 0 | dfValue = static_cast<double>( |
4320 | 0 | static_cast<GInt64 *>(pData)[iOffset]); |
4321 | 0 | break; |
4322 | 0 | case GDT_Float16: |
4323 | 0 | { |
4324 | 0 | using namespace std; |
4325 | 0 | const GFloat16 hfValue = |
4326 | 0 | static_cast<GFloat16 *>(pData)[iOffset]; |
4327 | 0 | if (isnan(hfValue) || |
4328 | 0 | (sNoDataValues.bGotFloat16NoDataValue && |
4329 | 0 | ARE_REAL_EQUAL(hfValue, |
4330 | 0 | sNoDataValues.hfNoDataValue))) |
4331 | 0 | continue; |
4332 | 0 | dfValue = hfValue; |
4333 | 0 | break; |
4334 | 0 | } |
4335 | 0 | case GDT_Float32: |
4336 | 0 | { |
4337 | 0 | const float fValue = |
4338 | 0 | static_cast<float *>(pData)[iOffset]; |
4339 | 0 | if (std::isnan(fValue) || |
4340 | 0 | (sNoDataValues.bGotFloatNoDataValue && |
4341 | 0 | ARE_REAL_EQUAL(fValue, |
4342 | 0 | sNoDataValues.fNoDataValue))) |
4343 | 0 | continue; |
4344 | 0 | dfValue = fValue; |
4345 | 0 | break; |
4346 | 0 | } |
4347 | 0 | case GDT_Float64: |
4348 | 0 | dfValue = static_cast<double *>(pData)[iOffset]; |
4349 | 0 | if (std::isnan(dfValue)) |
4350 | 0 | continue; |
4351 | 0 | break; |
4352 | 0 | case GDT_CInt16: |
4353 | 0 | { |
4354 | 0 | const double dfReal = |
4355 | 0 | static_cast<GInt16 *>(pData)[iOffset * 2]; |
4356 | 0 | const double dfImag = |
4357 | 0 | static_cast<GInt16 *>(pData)[iOffset * 2 + 1]; |
4358 | 0 | if (std::isnan(dfReal) || std::isnan(dfImag)) |
4359 | 0 | continue; |
4360 | 0 | dfValue = sqrt(dfReal * dfReal + dfImag * dfImag); |
4361 | 0 | } |
4362 | 0 | break; |
4363 | 0 | case GDT_CInt32: |
4364 | 0 | { |
4365 | 0 | const double dfReal = |
4366 | 0 | static_cast<GInt32 *>(pData)[iOffset * 2]; |
4367 | 0 | const double dfImag = |
4368 | 0 | static_cast<GInt32 *>(pData)[iOffset * 2 + 1]; |
4369 | 0 | if (std::isnan(dfReal) || std::isnan(dfImag)) |
4370 | 0 | continue; |
4371 | 0 | dfValue = sqrt(dfReal * dfReal + dfImag * dfImag); |
4372 | 0 | } |
4373 | 0 | break; |
4374 | 0 | case GDT_CFloat16: |
4375 | 0 | { |
4376 | 0 | const double dfReal = |
4377 | 0 | static_cast<GFloat16 *>(pData)[iOffset * 2]; |
4378 | 0 | const double dfImag = |
4379 | 0 | static_cast<GFloat16 *>(pData)[iOffset * 2 + 1]; |
4380 | 0 | if (std::isnan(dfReal) || std::isnan(dfImag)) |
4381 | 0 | continue; |
4382 | 0 | dfValue = sqrt(dfReal * dfReal + dfImag * dfImag); |
4383 | 0 | break; |
4384 | 0 | } |
4385 | 0 | case GDT_CFloat32: |
4386 | 0 | { |
4387 | 0 | const double dfReal = |
4388 | 0 | static_cast<float *>(pData)[iOffset * 2]; |
4389 | 0 | const double dfImag = |
4390 | 0 | static_cast<float *>(pData)[iOffset * 2 + 1]; |
4391 | 0 | if (std::isnan(dfReal) || std::isnan(dfImag)) |
4392 | 0 | continue; |
4393 | 0 | dfValue = sqrt(dfReal * dfReal + dfImag * dfImag); |
4394 | 0 | break; |
4395 | 0 | } |
4396 | 0 | case GDT_CFloat64: |
4397 | 0 | { |
4398 | 0 | const double dfReal = |
4399 | 0 | static_cast<double *>(pData)[iOffset * 2]; |
4400 | 0 | const double dfImag = |
4401 | 0 | static_cast<double *>(pData)[iOffset * 2 + 1]; |
4402 | 0 | if (std::isnan(dfReal) || std::isnan(dfImag)) |
4403 | 0 | continue; |
4404 | 0 | dfValue = sqrt(dfReal * dfReal + dfImag * dfImag); |
4405 | 0 | break; |
4406 | 0 | } |
4407 | 0 | case GDT_Unknown: |
4408 | 0 | case GDT_TypeCount: |
4409 | 0 | CPLAssert(false); |
4410 | 0 | } |
4411 | | |
4412 | 0 | if (eDataType != GDT_Float16 && eDataType != GDT_Float32 && |
4413 | 0 | sNoDataValues.bGotNoDataValue && |
4414 | 0 | ARE_REAL_EQUAL(dfValue, sNoDataValues.dfNoDataValue)) |
4415 | 0 | continue; |
4416 | | |
4417 | | // Given that dfValue and dfMin are not NaN, and dfScale > 0 and |
4418 | | // finite, the result of the multiplication cannot be NaN |
4419 | 0 | const double dfIndex = floor((dfValue - dfMin) * dfScale); |
4420 | |
|
4421 | 0 | if (dfIndex < 0) |
4422 | 0 | { |
4423 | 0 | if (bIncludeOutOfRange) |
4424 | 0 | panHistogram[0]++; |
4425 | 0 | } |
4426 | 0 | else if (dfIndex >= nBuckets) |
4427 | 0 | { |
4428 | 0 | if (bIncludeOutOfRange) |
4429 | 0 | ++panHistogram[nBuckets - 1]; |
4430 | 0 | } |
4431 | 0 | else |
4432 | 0 | { |
4433 | 0 | ++panHistogram[static_cast<int>(dfIndex)]; |
4434 | 0 | } |
4435 | 0 | } |
4436 | 0 | } |
4437 | | |
4438 | 0 | CPLFree(pData); |
4439 | 0 | CPLFree(pabyMaskData); |
4440 | 0 | } |
4441 | 0 | else // No arbitrary overviews. |
4442 | 0 | { |
4443 | 0 | if (!InitBlockInfo()) |
4444 | 0 | return CE_Failure; |
4445 | | |
4446 | | /* -------------------------------------------------------------------- |
4447 | | */ |
4448 | | /* Figure out the ratio of blocks we will read to get an */ |
4449 | | /* approximate value. */ |
4450 | | /* -------------------------------------------------------------------- |
4451 | | */ |
4452 | | |
4453 | 0 | int nSampleRate = 1; |
4454 | 0 | if (bApproxOK) |
4455 | 0 | { |
4456 | 0 | nSampleRate = static_cast<int>(std::max( |
4457 | 0 | 1.0, |
4458 | 0 | sqrt(static_cast<double>(nBlocksPerRow) * nBlocksPerColumn))); |
4459 | | // We want to avoid probing only the first column of blocks for |
4460 | | // a square shaped raster, because it is not unlikely that it may |
4461 | | // be padding only (#6378). |
4462 | 0 | if (nSampleRate == nBlocksPerRow && nBlocksPerRow > 1) |
4463 | 0 | nSampleRate += 1; |
4464 | 0 | } |
4465 | |
|
4466 | 0 | GByte *pabyMaskData = nullptr; |
4467 | 0 | if (poMaskBand) |
4468 | 0 | { |
4469 | 0 | pabyMaskData = static_cast<GByte *>( |
4470 | 0 | VSI_MALLOC2_VERBOSE(nBlockXSize, nBlockYSize)); |
4471 | 0 | if (!pabyMaskData) |
4472 | 0 | { |
4473 | 0 | return CE_Failure; |
4474 | 0 | } |
4475 | 0 | } |
4476 | | |
4477 | | /* -------------------------------------------------------------------- |
4478 | | */ |
4479 | | /* Read the blocks, and add to histogram. */ |
4480 | | /* -------------------------------------------------------------------- |
4481 | | */ |
4482 | 0 | for (GIntBig iSampleBlock = 0; |
4483 | 0 | iSampleBlock < |
4484 | 0 | static_cast<GIntBig>(nBlocksPerRow) * nBlocksPerColumn; |
4485 | 0 | iSampleBlock += nSampleRate) |
4486 | 0 | { |
4487 | 0 | if (!pfnProgress( |
4488 | 0 | static_cast<double>(iSampleBlock) / |
4489 | 0 | (static_cast<double>(nBlocksPerRow) * nBlocksPerColumn), |
4490 | 0 | "Compute Histogram", pProgressData)) |
4491 | 0 | { |
4492 | 0 | CPLFree(pabyMaskData); |
4493 | 0 | return CE_Failure; |
4494 | 0 | } |
4495 | | |
4496 | 0 | const int iYBlock = static_cast<int>(iSampleBlock / nBlocksPerRow); |
4497 | 0 | const int iXBlock = static_cast<int>(iSampleBlock % nBlocksPerRow); |
4498 | |
|
4499 | 0 | GDALRasterBlock *poBlock = GetLockedBlockRef(iXBlock, iYBlock); |
4500 | 0 | if (poBlock == nullptr) |
4501 | 0 | { |
4502 | 0 | CPLFree(pabyMaskData); |
4503 | 0 | return CE_Failure; |
4504 | 0 | } |
4505 | | |
4506 | 0 | void *pData = poBlock->GetDataRef(); |
4507 | |
|
4508 | 0 | int nXCheck = 0, nYCheck = 0; |
4509 | 0 | GetActualBlockSize(iXBlock, iYBlock, &nXCheck, &nYCheck); |
4510 | |
|
4511 | 0 | if (poMaskBand && |
4512 | 0 | poMaskBand->RasterIO(GF_Read, iXBlock * nBlockXSize, |
4513 | 0 | iYBlock * nBlockYSize, nXCheck, nYCheck, |
4514 | 0 | pabyMaskData, nXCheck, nYCheck, GDT_Byte, |
4515 | 0 | 0, nBlockXSize, nullptr) != CE_None) |
4516 | 0 | { |
4517 | 0 | CPLFree(pabyMaskData); |
4518 | 0 | poBlock->DropLock(); |
4519 | 0 | return CE_Failure; |
4520 | 0 | } |
4521 | | |
4522 | | // this is a special case for a common situation. |
4523 | 0 | if (eDataType == GDT_Byte && !bSignedByte && dfScale == 1.0 && |
4524 | 0 | (dfMin >= -0.5 && dfMin <= 0.5) && nYCheck == nBlockYSize && |
4525 | 0 | nXCheck == nBlockXSize && nBuckets == 256) |
4526 | 0 | { |
4527 | 0 | const GPtrDiff_t nPixels = |
4528 | 0 | static_cast<GPtrDiff_t>(nXCheck) * nYCheck; |
4529 | 0 | GByte *pabyData = static_cast<GByte *>(pData); |
4530 | |
|
4531 | 0 | for (GPtrDiff_t i = 0; i < nPixels; i++) |
4532 | 0 | { |
4533 | 0 | if (pabyMaskData && pabyMaskData[i] == 0) |
4534 | 0 | continue; |
4535 | 0 | if (!(sNoDataValues.bGotNoDataValue && |
4536 | 0 | (pabyData[i] == |
4537 | 0 | static_cast<GByte>(sNoDataValues.dfNoDataValue)))) |
4538 | 0 | { |
4539 | 0 | panHistogram[pabyData[i]]++; |
4540 | 0 | } |
4541 | 0 | } |
4542 | |
|
4543 | 0 | poBlock->DropLock(); |
4544 | 0 | continue; // To next sample block. |
4545 | 0 | } |
4546 | | |
4547 | | // This isn't the fastest way to do this, but is easier for now. |
4548 | 0 | for (int iY = 0; iY < nYCheck; iY++) |
4549 | 0 | { |
4550 | 0 | for (int iX = 0; iX < nXCheck; iX++) |
4551 | 0 | { |
4552 | 0 | const GPtrDiff_t iOffset = |
4553 | 0 | iX + static_cast<GPtrDiff_t>(iY) * nBlockXSize; |
4554 | |
|
4555 | 0 | if (pabyMaskData && pabyMaskData[iOffset] == 0) |
4556 | 0 | continue; |
4557 | | |
4558 | 0 | double dfValue = 0.0; |
4559 | |
|
4560 | 0 | switch (eDataType) |
4561 | 0 | { |
4562 | 0 | case GDT_Byte: |
4563 | 0 | { |
4564 | 0 | if (bSignedByte) |
4565 | 0 | dfValue = |
4566 | 0 | static_cast<signed char *>(pData)[iOffset]; |
4567 | 0 | else |
4568 | 0 | dfValue = static_cast<GByte *>(pData)[iOffset]; |
4569 | 0 | break; |
4570 | 0 | } |
4571 | 0 | case GDT_Int8: |
4572 | 0 | dfValue = static_cast<GInt8 *>(pData)[iOffset]; |
4573 | 0 | break; |
4574 | 0 | case GDT_UInt16: |
4575 | 0 | dfValue = static_cast<GUInt16 *>(pData)[iOffset]; |
4576 | 0 | break; |
4577 | 0 | case GDT_Int16: |
4578 | 0 | dfValue = static_cast<GInt16 *>(pData)[iOffset]; |
4579 | 0 | break; |
4580 | 0 | case GDT_UInt32: |
4581 | 0 | dfValue = static_cast<GUInt32 *>(pData)[iOffset]; |
4582 | 0 | break; |
4583 | 0 | case GDT_Int32: |
4584 | 0 | dfValue = static_cast<GInt32 *>(pData)[iOffset]; |
4585 | 0 | break; |
4586 | 0 | case GDT_UInt64: |
4587 | 0 | dfValue = static_cast<double>( |
4588 | 0 | static_cast<GUInt64 *>(pData)[iOffset]); |
4589 | 0 | break; |
4590 | 0 | case GDT_Int64: |
4591 | 0 | dfValue = static_cast<double>( |
4592 | 0 | static_cast<GInt64 *>(pData)[iOffset]); |
4593 | 0 | break; |
4594 | 0 | case GDT_Float16: |
4595 | 0 | { |
4596 | 0 | using namespace std; |
4597 | 0 | const GFloat16 hfValue = |
4598 | 0 | static_cast<GFloat16 *>(pData)[iOffset]; |
4599 | 0 | if (isnan(hfValue) || |
4600 | 0 | (sNoDataValues.bGotFloat16NoDataValue && |
4601 | 0 | ARE_REAL_EQUAL(hfValue, |
4602 | 0 | sNoDataValues.hfNoDataValue))) |
4603 | 0 | continue; |
4604 | 0 | dfValue = hfValue; |
4605 | 0 | break; |
4606 | 0 | } |
4607 | 0 | case GDT_Float32: |
4608 | 0 | { |
4609 | 0 | const float fValue = |
4610 | 0 | static_cast<float *>(pData)[iOffset]; |
4611 | 0 | if (std::isnan(fValue) || |
4612 | 0 | (sNoDataValues.bGotFloatNoDataValue && |
4613 | 0 | ARE_REAL_EQUAL(fValue, |
4614 | 0 | sNoDataValues.fNoDataValue))) |
4615 | 0 | continue; |
4616 | 0 | dfValue = fValue; |
4617 | 0 | break; |
4618 | 0 | } |
4619 | 0 | case GDT_Float64: |
4620 | 0 | dfValue = static_cast<double *>(pData)[iOffset]; |
4621 | 0 | if (std::isnan(dfValue)) |
4622 | 0 | continue; |
4623 | 0 | break; |
4624 | 0 | case GDT_CInt16: |
4625 | 0 | { |
4626 | 0 | double dfReal = |
4627 | 0 | static_cast<GInt16 *>(pData)[iOffset * 2]; |
4628 | 0 | double dfImag = |
4629 | 0 | static_cast<GInt16 *>(pData)[iOffset * 2 + 1]; |
4630 | 0 | dfValue = sqrt(dfReal * dfReal + dfImag * dfImag); |
4631 | 0 | break; |
4632 | 0 | } |
4633 | 0 | case GDT_CInt32: |
4634 | 0 | { |
4635 | 0 | double dfReal = |
4636 | 0 | static_cast<GInt32 *>(pData)[iOffset * 2]; |
4637 | 0 | double dfImag = |
4638 | 0 | static_cast<GInt32 *>(pData)[iOffset * 2 + 1]; |
4639 | 0 | dfValue = sqrt(dfReal * dfReal + dfImag * dfImag); |
4640 | 0 | break; |
4641 | 0 | } |
4642 | 0 | case GDT_CFloat16: |
4643 | 0 | { |
4644 | 0 | double dfReal = |
4645 | 0 | static_cast<GFloat16 *>(pData)[iOffset * 2]; |
4646 | 0 | double dfImag = |
4647 | 0 | static_cast<GFloat16 *>(pData)[iOffset * 2 + 1]; |
4648 | 0 | if (std::isnan(dfReal) || std::isnan(dfImag)) |
4649 | 0 | continue; |
4650 | 0 | dfValue = sqrt(dfReal * dfReal + dfImag * dfImag); |
4651 | 0 | break; |
4652 | 0 | } |
4653 | 0 | case GDT_CFloat32: |
4654 | 0 | { |
4655 | 0 | double dfReal = |
4656 | 0 | static_cast<float *>(pData)[iOffset * 2]; |
4657 | 0 | double dfImag = |
4658 | 0 | static_cast<float *>(pData)[iOffset * 2 + 1]; |
4659 | 0 | if (std::isnan(dfReal) || std::isnan(dfImag)) |
4660 | 0 | continue; |
4661 | 0 | dfValue = sqrt(dfReal * dfReal + dfImag * dfImag); |
4662 | 0 | break; |
4663 | 0 | } |
4664 | 0 | case GDT_CFloat64: |
4665 | 0 | { |
4666 | 0 | double dfReal = |
4667 | 0 | static_cast<double *>(pData)[iOffset * 2]; |
4668 | 0 | double dfImag = |
4669 | 0 | static_cast<double *>(pData)[iOffset * 2 + 1]; |
4670 | 0 | if (std::isnan(dfReal) || std::isnan(dfImag)) |
4671 | 0 | continue; |
4672 | 0 | dfValue = sqrt(dfReal * dfReal + dfImag * dfImag); |
4673 | 0 | break; |
4674 | 0 | } |
4675 | 0 | case GDT_Unknown: |
4676 | 0 | case GDT_TypeCount: |
4677 | 0 | CPLAssert(false); |
4678 | 0 | CPLFree(pabyMaskData); |
4679 | 0 | return CE_Failure; |
4680 | 0 | } |
4681 | | |
4682 | 0 | if (eDataType != GDT_Float16 && eDataType != GDT_Float32 && |
4683 | 0 | sNoDataValues.bGotNoDataValue && |
4684 | 0 | ARE_REAL_EQUAL(dfValue, sNoDataValues.dfNoDataValue)) |
4685 | 0 | continue; |
4686 | | |
4687 | | // Given that dfValue and dfMin are not NaN, and dfScale > 0 |
4688 | | // and finite, the result of the multiplication cannot be |
4689 | | // NaN |
4690 | 0 | const double dfIndex = floor((dfValue - dfMin) * dfScale); |
4691 | |
|
4692 | 0 | if (dfIndex < 0) |
4693 | 0 | { |
4694 | 0 | if (bIncludeOutOfRange) |
4695 | 0 | panHistogram[0]++; |
4696 | 0 | } |
4697 | 0 | else if (dfIndex >= nBuckets) |
4698 | 0 | { |
4699 | 0 | if (bIncludeOutOfRange) |
4700 | 0 | ++panHistogram[nBuckets - 1]; |
4701 | 0 | } |
4702 | 0 | else |
4703 | 0 | { |
4704 | 0 | ++panHistogram[static_cast<int>(dfIndex)]; |
4705 | 0 | } |
4706 | 0 | } |
4707 | 0 | } |
4708 | | |
4709 | 0 | poBlock->DropLock(); |
4710 | 0 | } |
4711 | | |
4712 | 0 | CPLFree(pabyMaskData); |
4713 | 0 | } |
4714 | | |
4715 | 0 | pfnProgress(1.0, "Compute Histogram", pProgressData); |
4716 | |
|
4717 | 0 | return CE_None; |
4718 | 0 | } |
4719 | | |
4720 | | /************************************************************************/ |
4721 | | /* GDALGetRasterHistogram() */ |
4722 | | /************************************************************************/ |
4723 | | |
4724 | | /** |
4725 | | * \brief Compute raster histogram. |
4726 | | * |
4727 | | * Use GDALGetRasterHistogramEx() instead to get correct counts for values |
4728 | | * exceeding 2 billion. |
4729 | | * |
4730 | | * @see GDALRasterBand::GetHistogram() |
4731 | | * @see GDALGetRasterHistogramEx() |
4732 | | */ |
4733 | | |
4734 | | CPLErr CPL_STDCALL GDALGetRasterHistogram(GDALRasterBandH hBand, double dfMin, |
4735 | | double dfMax, int nBuckets, |
4736 | | int *panHistogram, |
4737 | | int bIncludeOutOfRange, int bApproxOK, |
4738 | | GDALProgressFunc pfnProgress, |
4739 | | void *pProgressData) |
4740 | | |
4741 | 0 | { |
4742 | 0 | VALIDATE_POINTER1(hBand, "GDALGetRasterHistogram", CE_Failure); |
4743 | 0 | VALIDATE_POINTER1(panHistogram, "GDALGetRasterHistogram", CE_Failure); |
4744 | | |
4745 | 0 | GDALRasterBand *poBand = GDALRasterBand::FromHandle(hBand); |
4746 | |
|
4747 | 0 | GUIntBig *panHistogramTemp = |
4748 | 0 | static_cast<GUIntBig *>(VSIMalloc2(sizeof(GUIntBig), nBuckets)); |
4749 | 0 | if (panHistogramTemp == nullptr) |
4750 | 0 | { |
4751 | 0 | poBand->ReportError(CE_Failure, CPLE_OutOfMemory, |
4752 | 0 | "Out of memory in GDALGetRasterHistogram()."); |
4753 | 0 | return CE_Failure; |
4754 | 0 | } |
4755 | | |
4756 | 0 | CPLErr eErr = poBand->GetHistogram(dfMin, dfMax, nBuckets, panHistogramTemp, |
4757 | 0 | bIncludeOutOfRange, bApproxOK, |
4758 | 0 | pfnProgress, pProgressData); |
4759 | |
|
4760 | 0 | if (eErr == CE_None) |
4761 | 0 | { |
4762 | 0 | for (int i = 0; i < nBuckets; i++) |
4763 | 0 | { |
4764 | 0 | if (panHistogramTemp[i] > INT_MAX) |
4765 | 0 | { |
4766 | 0 | CPLError(CE_Warning, CPLE_AppDefined, |
4767 | 0 | "Count for bucket %d, which is " CPL_FRMT_GUIB |
4768 | 0 | " exceeds maximum 32 bit value", |
4769 | 0 | i, panHistogramTemp[i]); |
4770 | 0 | panHistogram[i] = INT_MAX; |
4771 | 0 | } |
4772 | 0 | else |
4773 | 0 | { |
4774 | 0 | panHistogram[i] = static_cast<int>(panHistogramTemp[i]); |
4775 | 0 | } |
4776 | 0 | } |
4777 | 0 | } |
4778 | |
|
4779 | 0 | CPLFree(panHistogramTemp); |
4780 | |
|
4781 | 0 | return eErr; |
4782 | 0 | } |
4783 | | |
4784 | | /************************************************************************/ |
4785 | | /* GDALGetRasterHistogramEx() */ |
4786 | | /************************************************************************/ |
4787 | | |
4788 | | /** |
4789 | | * \brief Compute raster histogram. |
4790 | | * |
4791 | | * @see GDALRasterBand::GetHistogram() |
4792 | | * |
4793 | | * @since GDAL 2.0 |
4794 | | */ |
4795 | | |
4796 | | CPLErr CPL_STDCALL GDALGetRasterHistogramEx( |
4797 | | GDALRasterBandH hBand, double dfMin, double dfMax, int nBuckets, |
4798 | | GUIntBig *panHistogram, int bIncludeOutOfRange, int bApproxOK, |
4799 | | GDALProgressFunc pfnProgress, void *pProgressData) |
4800 | | |
4801 | 0 | { |
4802 | 0 | VALIDATE_POINTER1(hBand, "GDALGetRasterHistogramEx", CE_Failure); |
4803 | 0 | VALIDATE_POINTER1(panHistogram, "GDALGetRasterHistogramEx", CE_Failure); |
4804 | | |
4805 | 0 | GDALRasterBand *poBand = GDALRasterBand::FromHandle(hBand); |
4806 | |
|
4807 | 0 | return poBand->GetHistogram(dfMin, dfMax, nBuckets, panHistogram, |
4808 | 0 | bIncludeOutOfRange, bApproxOK, pfnProgress, |
4809 | 0 | pProgressData); |
4810 | 0 | } |
4811 | | |
4812 | | /************************************************************************/ |
4813 | | /* GetDefaultHistogram() */ |
4814 | | /************************************************************************/ |
4815 | | |
4816 | | /** |
4817 | | * \brief Fetch default raster histogram. |
4818 | | * |
4819 | | * The default method in GDALRasterBand will compute a default histogram. This |
4820 | | * method is overridden by derived classes (such as GDALPamRasterBand, |
4821 | | * VRTDataset, HFADataset...) that may be able to fetch efficiently an already |
4822 | | * stored histogram. |
4823 | | * |
4824 | | * This method is the same as the C functions GDALGetDefaultHistogram() and |
4825 | | * GDALGetDefaultHistogramEx(). |
4826 | | * |
4827 | | * @param pdfMin pointer to double value that will contain the lower bound of |
4828 | | * the histogram. |
4829 | | * @param pdfMax pointer to double value that will contain the upper bound of |
4830 | | * the histogram. |
4831 | | * @param pnBuckets pointer to int value that will contain the number of buckets |
4832 | | * in *ppanHistogram. |
4833 | | * @param ppanHistogram pointer to array into which the histogram totals are |
4834 | | * placed. To be freed with VSIFree |
4835 | | * @param bForce TRUE to force the computation. If FALSE and no default |
4836 | | * histogram is available, the method will return CE_Warning |
4837 | | * @param pfnProgress function to report progress to completion. |
4838 | | * @param pProgressData application data to pass to pfnProgress. |
4839 | | * |
4840 | | * @return CE_None on success, CE_Failure if something goes wrong, or |
4841 | | * CE_Warning if no default histogram is available. |
4842 | | */ |
4843 | | |
4844 | | CPLErr GDALRasterBand::GetDefaultHistogram(double *pdfMin, double *pdfMax, |
4845 | | int *pnBuckets, |
4846 | | GUIntBig **ppanHistogram, int bForce, |
4847 | | GDALProgressFunc pfnProgress, |
4848 | | void *pProgressData) |
4849 | | |
4850 | 0 | { |
4851 | 0 | CPLAssert(nullptr != pnBuckets); |
4852 | 0 | CPLAssert(nullptr != ppanHistogram); |
4853 | 0 | CPLAssert(nullptr != pdfMin); |
4854 | 0 | CPLAssert(nullptr != pdfMax); |
4855 | | |
4856 | 0 | *pnBuckets = 0; |
4857 | 0 | *ppanHistogram = nullptr; |
4858 | |
|
4859 | 0 | if (!bForce) |
4860 | 0 | return CE_Warning; |
4861 | | |
4862 | 0 | const int nBuckets = 256; |
4863 | |
|
4864 | 0 | bool bSignedByte = false; |
4865 | 0 | if (eDataType == GDT_Byte) |
4866 | 0 | { |
4867 | 0 | EnablePixelTypeSignedByteWarning(false); |
4868 | 0 | const char *pszPixelType = |
4869 | 0 | GetMetadataItem("PIXELTYPE", "IMAGE_STRUCTURE"); |
4870 | 0 | EnablePixelTypeSignedByteWarning(true); |
4871 | 0 | bSignedByte = |
4872 | 0 | pszPixelType != nullptr && EQUAL(pszPixelType, "SIGNEDBYTE"); |
4873 | 0 | } |
4874 | |
|
4875 | 0 | if (GetRasterDataType() == GDT_Byte && !bSignedByte) |
4876 | 0 | { |
4877 | 0 | *pdfMin = -0.5; |
4878 | 0 | *pdfMax = 255.5; |
4879 | 0 | } |
4880 | 0 | else |
4881 | 0 | { |
4882 | |
|
4883 | 0 | const CPLErr eErr = |
4884 | 0 | GetStatistics(TRUE, TRUE, pdfMin, pdfMax, nullptr, nullptr); |
4885 | 0 | const double dfHalfBucket = (*pdfMax - *pdfMin) / (2 * (nBuckets - 1)); |
4886 | 0 | *pdfMin -= dfHalfBucket; |
4887 | 0 | *pdfMax += dfHalfBucket; |
4888 | |
|
4889 | 0 | if (eErr != CE_None) |
4890 | 0 | return eErr; |
4891 | 0 | } |
4892 | | |
4893 | 0 | *ppanHistogram = |
4894 | 0 | static_cast<GUIntBig *>(VSICalloc(sizeof(GUIntBig), nBuckets)); |
4895 | 0 | if (*ppanHistogram == nullptr) |
4896 | 0 | { |
4897 | 0 | ReportError(CE_Failure, CPLE_OutOfMemory, |
4898 | 0 | "Out of memory in InitBlockInfo()."); |
4899 | 0 | return CE_Failure; |
4900 | 0 | } |
4901 | | |
4902 | 0 | *pnBuckets = nBuckets; |
4903 | 0 | CPLErr eErr = GetHistogram(*pdfMin, *pdfMax, *pnBuckets, *ppanHistogram, |
4904 | 0 | TRUE, FALSE, pfnProgress, pProgressData); |
4905 | 0 | if (eErr != CE_None) |
4906 | 0 | { |
4907 | 0 | *pnBuckets = 0; |
4908 | 0 | } |
4909 | 0 | return eErr; |
4910 | 0 | } |
4911 | | |
4912 | | /************************************************************************/ |
4913 | | /* GDALGetDefaultHistogram() */ |
4914 | | /************************************************************************/ |
4915 | | |
4916 | | /** |
4917 | | * \brief Fetch default raster histogram. |
4918 | | * |
4919 | | * Use GDALGetRasterHistogramEx() instead to get correct counts for values |
4920 | | * exceeding 2 billion. |
4921 | | * |
4922 | | * @see GDALRasterBand::GDALGetDefaultHistogram() |
4923 | | * @see GDALGetRasterHistogramEx() |
4924 | | */ |
4925 | | |
4926 | | CPLErr CPL_STDCALL GDALGetDefaultHistogram(GDALRasterBandH hBand, |
4927 | | double *pdfMin, double *pdfMax, |
4928 | | int *pnBuckets, int **ppanHistogram, |
4929 | | int bForce, |
4930 | | GDALProgressFunc pfnProgress, |
4931 | | void *pProgressData) |
4932 | | |
4933 | 0 | { |
4934 | 0 | VALIDATE_POINTER1(hBand, "GDALGetDefaultHistogram", CE_Failure); |
4935 | 0 | VALIDATE_POINTER1(pdfMin, "GDALGetDefaultHistogram", CE_Failure); |
4936 | 0 | VALIDATE_POINTER1(pdfMax, "GDALGetDefaultHistogram", CE_Failure); |
4937 | 0 | VALIDATE_POINTER1(pnBuckets, "GDALGetDefaultHistogram", CE_Failure); |
4938 | 0 | VALIDATE_POINTER1(ppanHistogram, "GDALGetDefaultHistogram", CE_Failure); |
4939 | | |
4940 | 0 | GDALRasterBand *const poBand = GDALRasterBand::FromHandle(hBand); |
4941 | 0 | GUIntBig *panHistogramTemp = nullptr; |
4942 | 0 | CPLErr eErr = poBand->GetDefaultHistogram(pdfMin, pdfMax, pnBuckets, |
4943 | 0 | &panHistogramTemp, bForce, |
4944 | 0 | pfnProgress, pProgressData); |
4945 | 0 | if (eErr == CE_None) |
4946 | 0 | { |
4947 | 0 | const int nBuckets = *pnBuckets; |
4948 | 0 | *ppanHistogram = static_cast<int *>(VSIMalloc2(sizeof(int), nBuckets)); |
4949 | 0 | if (*ppanHistogram == nullptr) |
4950 | 0 | { |
4951 | 0 | poBand->ReportError(CE_Failure, CPLE_OutOfMemory, |
4952 | 0 | "Out of memory in GDALGetDefaultHistogram()."); |
4953 | 0 | VSIFree(panHistogramTemp); |
4954 | 0 | return CE_Failure; |
4955 | 0 | } |
4956 | | |
4957 | 0 | for (int i = 0; i < nBuckets; ++i) |
4958 | 0 | { |
4959 | 0 | if (panHistogramTemp[i] > INT_MAX) |
4960 | 0 | { |
4961 | 0 | CPLError(CE_Warning, CPLE_AppDefined, |
4962 | 0 | "Count for bucket %d, which is " CPL_FRMT_GUIB |
4963 | 0 | " exceeds maximum 32 bit value", |
4964 | 0 | i, panHistogramTemp[i]); |
4965 | 0 | (*ppanHistogram)[i] = INT_MAX; |
4966 | 0 | } |
4967 | 0 | else |
4968 | 0 | { |
4969 | 0 | (*ppanHistogram)[i] = static_cast<int>(panHistogramTemp[i]); |
4970 | 0 | } |
4971 | 0 | } |
4972 | |
|
4973 | 0 | CPLFree(panHistogramTemp); |
4974 | 0 | } |
4975 | 0 | else |
4976 | 0 | { |
4977 | 0 | *ppanHistogram = nullptr; |
4978 | 0 | } |
4979 | | |
4980 | 0 | return eErr; |
4981 | 0 | } |
4982 | | |
4983 | | /************************************************************************/ |
4984 | | /* GDALGetDefaultHistogramEx() */ |
4985 | | /************************************************************************/ |
4986 | | |
4987 | | /** |
4988 | | * \brief Fetch default raster histogram. |
4989 | | * |
4990 | | * @see GDALRasterBand::GetDefaultHistogram() |
4991 | | * |
4992 | | * @since GDAL 2.0 |
4993 | | */ |
4994 | | |
4995 | | CPLErr CPL_STDCALL |
4996 | | GDALGetDefaultHistogramEx(GDALRasterBandH hBand, double *pdfMin, double *pdfMax, |
4997 | | int *pnBuckets, GUIntBig **ppanHistogram, int bForce, |
4998 | | GDALProgressFunc pfnProgress, void *pProgressData) |
4999 | | |
5000 | 0 | { |
5001 | 0 | VALIDATE_POINTER1(hBand, "GDALGetDefaultHistogram", CE_Failure); |
5002 | 0 | VALIDATE_POINTER1(pdfMin, "GDALGetDefaultHistogram", CE_Failure); |
5003 | 0 | VALIDATE_POINTER1(pdfMax, "GDALGetDefaultHistogram", CE_Failure); |
5004 | 0 | VALIDATE_POINTER1(pnBuckets, "GDALGetDefaultHistogram", CE_Failure); |
5005 | 0 | VALIDATE_POINTER1(ppanHistogram, "GDALGetDefaultHistogram", CE_Failure); |
5006 | | |
5007 | 0 | GDALRasterBand *poBand = GDALRasterBand::FromHandle(hBand); |
5008 | 0 | return poBand->GetDefaultHistogram(pdfMin, pdfMax, pnBuckets, ppanHistogram, |
5009 | 0 | bForce, pfnProgress, pProgressData); |
5010 | 0 | } |
5011 | | |
5012 | | /************************************************************************/ |
5013 | | /* AdviseRead() */ |
5014 | | /************************************************************************/ |
5015 | | |
5016 | | /** |
5017 | | * \fn GDALRasterBand::AdviseRead(int,int,int,int,int,int,GDALDataType,char**) |
5018 | | * \brief Advise driver of upcoming read requests. |
5019 | | * |
5020 | | * Some GDAL drivers operate more efficiently if they know in advance what |
5021 | | * set of upcoming read requests will be made. The AdviseRead() method allows |
5022 | | * an application to notify the driver of the region of interest, |
5023 | | * and at what resolution the region will be read. |
5024 | | * |
5025 | | * Many drivers just ignore the AdviseRead() call, but it can dramatically |
5026 | | * accelerate access via some drivers. |
5027 | | * |
5028 | | * Depending on call paths, drivers might receive several calls to |
5029 | | * AdviseRead() with the same parameters. |
5030 | | * |
5031 | | * @param nXOff The pixel offset to the top left corner of the region |
5032 | | * of the band to be accessed. This would be zero to start from the left side. |
5033 | | * |
5034 | | * @param nYOff The line offset to the top left corner of the region |
5035 | | * of the band to be accessed. This would be zero to start from the top. |
5036 | | * |
5037 | | * @param nXSize The width of the region of the band to be accessed in pixels. |
5038 | | * |
5039 | | * @param nYSize The height of the region of the band to be accessed in lines. |
5040 | | * |
5041 | | * @param nBufXSize the width of the buffer image into which the desired region |
5042 | | * is to be read, or from which it is to be written. |
5043 | | * |
5044 | | * @param nBufYSize the height of the buffer image into which the desired |
5045 | | * region is to be read, or from which it is to be written. |
5046 | | * |
5047 | | * @param eBufType the type of the pixel values in the pData data buffer. The |
5048 | | * pixel values will automatically be translated to/from the GDALRasterBand |
5049 | | * data type as needed. |
5050 | | * |
5051 | | * @param papszOptions a list of name=value strings with special control |
5052 | | * options. Normally this is NULL. |
5053 | | * |
5054 | | * @return CE_Failure if the request is invalid and CE_None if it works or |
5055 | | * is ignored. |
5056 | | */ |
5057 | | |
5058 | | /**/ |
5059 | | /**/ |
5060 | | |
5061 | | CPLErr GDALRasterBand::AdviseRead(int /*nXOff*/, int /*nYOff*/, int /*nXSize*/, |
5062 | | int /*nYSize*/, int /*nBufXSize*/, |
5063 | | int /*nBufYSize*/, GDALDataType /*eBufType*/, |
5064 | | char ** /*papszOptions*/) |
5065 | 0 | { |
5066 | 0 | return CE_None; |
5067 | 0 | } |
5068 | | |
5069 | | /************************************************************************/ |
5070 | | /* GDALRasterAdviseRead() */ |
5071 | | /************************************************************************/ |
5072 | | |
5073 | | /** |
5074 | | * \brief Advise driver of upcoming read requests. |
5075 | | * |
5076 | | * @see GDALRasterBand::AdviseRead() |
5077 | | */ |
5078 | | |
5079 | | CPLErr CPL_STDCALL GDALRasterAdviseRead(GDALRasterBandH hBand, int nXOff, |
5080 | | int nYOff, int nXSize, int nYSize, |
5081 | | int nBufXSize, int nBufYSize, |
5082 | | GDALDataType eDT, |
5083 | | CSLConstList papszOptions) |
5084 | | |
5085 | 0 | { |
5086 | 0 | VALIDATE_POINTER1(hBand, "GDALRasterAdviseRead", CE_Failure); |
5087 | | |
5088 | 0 | GDALRasterBand *poBand = GDALRasterBand::FromHandle(hBand); |
5089 | 0 | return poBand->AdviseRead(nXOff, nYOff, nXSize, nYSize, nBufXSize, |
5090 | 0 | nBufYSize, eDT, |
5091 | 0 | const_cast<char **>(papszOptions)); |
5092 | 0 | } |
5093 | | |
5094 | | /************************************************************************/ |
5095 | | /* GetStatistics() */ |
5096 | | /************************************************************************/ |
5097 | | |
5098 | | /** |
5099 | | * \brief Fetch image statistics. |
5100 | | * |
5101 | | * Returns the minimum, maximum, mean and standard deviation of all |
5102 | | * pixel values in this band. If approximate statistics are sufficient, |
5103 | | * the bApproxOK flag can be set to true in which case overviews, or a |
5104 | | * subset of image tiles may be used in computing the statistics. |
5105 | | * |
5106 | | * If bForce is FALSE results will only be returned if it can be done |
5107 | | * quickly (i.e. without scanning the image, typically by using pre-existing |
5108 | | * STATISTICS_xxx metadata items). If bForce is FALSE and results cannot be |
5109 | | * returned efficiently, the method will return CE_Warning but no warning will |
5110 | | * be issued. This is a non-standard use of the CE_Warning return value |
5111 | | * to indicate "nothing done". |
5112 | | * |
5113 | | * If bForce is TRUE, and results are quickly available without scanning the |
5114 | | * image, they will be used. If bForce is TRUE and results are not quickly |
5115 | | * available, GetStatistics() forwards the computation to ComputeStatistics(), |
5116 | | * which will scan the image. |
5117 | | * |
5118 | | * To always force recomputation of statistics, use ComputeStatistics() instead |
5119 | | * of this method. |
5120 | | * |
5121 | | * Note that file formats using PAM (Persistent Auxiliary Metadata) services |
5122 | | * will generally cache statistics in the .pam file allowing fast fetch |
5123 | | * after the first request. |
5124 | | * |
5125 | | * This method is the same as the C function GDALGetRasterStatistics(). |
5126 | | * |
5127 | | * @param bApproxOK If TRUE statistics may be computed based on overviews |
5128 | | * or a subset of all tiles. |
5129 | | * |
5130 | | * @param bForce If FALSE statistics will only be returned if it can |
5131 | | * be done without rescanning the image. If TRUE, statistics computation will |
5132 | | * be forced if pre-existing values are not quickly available. |
5133 | | * |
5134 | | * @param pdfMin Location into which to load image minimum (may be NULL). |
5135 | | * |
5136 | | * @param pdfMax Location into which to load image maximum (may be NULL).- |
5137 | | * |
5138 | | * @param pdfMean Location into which to load image mean (may be NULL). |
5139 | | * |
5140 | | * @param pdfStdDev Location into which to load image standard deviation |
5141 | | * (may be NULL). |
5142 | | * |
5143 | | * @return CE_None on success, CE_Warning if no values returned, |
5144 | | * CE_Failure if an error occurs. |
5145 | | */ |
5146 | | |
5147 | | CPLErr GDALRasterBand::GetStatistics(int bApproxOK, int bForce, double *pdfMin, |
5148 | | double *pdfMax, double *pdfMean, |
5149 | | double *pdfStdDev) |
5150 | | |
5151 | 0 | { |
5152 | | /* -------------------------------------------------------------------- */ |
5153 | | /* Do we already have metadata items for the requested values? */ |
5154 | | /* -------------------------------------------------------------------- */ |
5155 | 0 | if ((pdfMin == nullptr || |
5156 | 0 | GetMetadataItem("STATISTICS_MINIMUM") != nullptr) && |
5157 | 0 | (pdfMax == nullptr || |
5158 | 0 | GetMetadataItem("STATISTICS_MAXIMUM") != nullptr) && |
5159 | 0 | (pdfMean == nullptr || GetMetadataItem("STATISTICS_MEAN") != nullptr) && |
5160 | 0 | (pdfStdDev == nullptr || |
5161 | 0 | GetMetadataItem("STATISTICS_STDDEV") != nullptr)) |
5162 | 0 | { |
5163 | 0 | if (!(GetMetadataItem("STATISTICS_APPROXIMATE") && !bApproxOK)) |
5164 | 0 | { |
5165 | 0 | if (pdfMin != nullptr) |
5166 | 0 | *pdfMin = CPLAtofM(GetMetadataItem("STATISTICS_MINIMUM")); |
5167 | 0 | if (pdfMax != nullptr) |
5168 | 0 | *pdfMax = CPLAtofM(GetMetadataItem("STATISTICS_MAXIMUM")); |
5169 | 0 | if (pdfMean != nullptr) |
5170 | 0 | *pdfMean = CPLAtofM(GetMetadataItem("STATISTICS_MEAN")); |
5171 | 0 | if (pdfStdDev != nullptr) |
5172 | 0 | *pdfStdDev = CPLAtofM(GetMetadataItem("STATISTICS_STDDEV")); |
5173 | |
|
5174 | 0 | return CE_None; |
5175 | 0 | } |
5176 | 0 | } |
5177 | | |
5178 | | /* -------------------------------------------------------------------- */ |
5179 | | /* Does the driver already know the min/max? */ |
5180 | | /* -------------------------------------------------------------------- */ |
5181 | 0 | if (bApproxOK && pdfMean == nullptr && pdfStdDev == nullptr) |
5182 | 0 | { |
5183 | 0 | int bSuccessMin = FALSE; |
5184 | 0 | int bSuccessMax = FALSE; |
5185 | |
|
5186 | 0 | const double dfMin = GetMinimum(&bSuccessMin); |
5187 | 0 | const double dfMax = GetMaximum(&bSuccessMax); |
5188 | |
|
5189 | 0 | if (bSuccessMin && bSuccessMax) |
5190 | 0 | { |
5191 | 0 | if (pdfMin != nullptr) |
5192 | 0 | *pdfMin = dfMin; |
5193 | 0 | if (pdfMax != nullptr) |
5194 | 0 | *pdfMax = dfMax; |
5195 | 0 | return CE_None; |
5196 | 0 | } |
5197 | 0 | } |
5198 | | |
5199 | | /* -------------------------------------------------------------------- */ |
5200 | | /* Either return without results, or force computation. */ |
5201 | | /* -------------------------------------------------------------------- */ |
5202 | 0 | if (!bForce) |
5203 | 0 | return CE_Warning; |
5204 | 0 | else |
5205 | 0 | return ComputeStatistics(bApproxOK, pdfMin, pdfMax, pdfMean, pdfStdDev, |
5206 | 0 | GDALDummyProgress, nullptr); |
5207 | 0 | } |
5208 | | |
5209 | | /************************************************************************/ |
5210 | | /* GDALGetRasterStatistics() */ |
5211 | | /************************************************************************/ |
5212 | | |
5213 | | /** |
5214 | | * \brief Fetch image statistics. |
5215 | | * |
5216 | | * @see GDALRasterBand::GetStatistics() |
5217 | | */ |
5218 | | |
5219 | | CPLErr CPL_STDCALL GDALGetRasterStatistics(GDALRasterBandH hBand, int bApproxOK, |
5220 | | int bForce, double *pdfMin, |
5221 | | double *pdfMax, double *pdfMean, |
5222 | | double *pdfStdDev) |
5223 | | |
5224 | 0 | { |
5225 | 0 | VALIDATE_POINTER1(hBand, "GDALGetRasterStatistics", CE_Failure); |
5226 | | |
5227 | 0 | GDALRasterBand *poBand = GDALRasterBand::FromHandle(hBand); |
5228 | 0 | return poBand->GetStatistics(bApproxOK, bForce, pdfMin, pdfMax, pdfMean, |
5229 | 0 | pdfStdDev); |
5230 | 0 | } |
5231 | | |
5232 | | /************************************************************************/ |
5233 | | /* GDALUInt128 */ |
5234 | | /************************************************************************/ |
5235 | | |
5236 | | #ifdef HAVE_UINT128_T |
5237 | | class GDALUInt128 |
5238 | | { |
5239 | | __uint128_t val; |
5240 | | |
5241 | 0 | explicit GDALUInt128(__uint128_t valIn) : val(valIn) |
5242 | 0 | { |
5243 | 0 | } |
5244 | | |
5245 | | public: |
5246 | | static GDALUInt128 Mul(GUIntBig first, GUIntBig second) |
5247 | 0 | { |
5248 | | // Evaluates to just a single mul on x86_64 |
5249 | 0 | return GDALUInt128(static_cast<__uint128_t>(first) * second); |
5250 | 0 | } |
5251 | | |
5252 | | GDALUInt128 operator-(const GDALUInt128 &other) const |
5253 | 0 | { |
5254 | 0 | return GDALUInt128(val - other.val); |
5255 | 0 | } |
5256 | | |
5257 | | operator double() const |
5258 | 0 | { |
5259 | 0 | return static_cast<double>(val); |
5260 | 0 | } |
5261 | | }; |
5262 | | #else |
5263 | | |
5264 | | #if defined(_MSC_VER) && defined(_M_X64) |
5265 | | #include <intrin.h> |
5266 | | #endif |
5267 | | |
5268 | | class GDALUInt128 |
5269 | | { |
5270 | | GUIntBig low, high; |
5271 | | |
5272 | | GDALUInt128(GUIntBig lowIn, GUIntBig highIn) : low(lowIn), high(highIn) |
5273 | | { |
5274 | | } |
5275 | | |
5276 | | public: |
5277 | | static GDALUInt128 Mul(GUIntBig first, GUIntBig second) |
5278 | | { |
5279 | | #if defined(_MSC_VER) && defined(_M_X64) |
5280 | | GUIntBig highRes; |
5281 | | GUIntBig lowRes = _umul128(first, second, &highRes); |
5282 | | return GDALUInt128(lowRes, highRes); |
5283 | | #else |
5284 | | const GUInt32 firstLow = static_cast<GUInt32>(first); |
5285 | | const GUInt32 firstHigh = static_cast<GUInt32>(first >> 32); |
5286 | | const GUInt32 secondLow = static_cast<GUInt32>(second); |
5287 | | const GUInt32 secondHigh = static_cast<GUInt32>(second >> 32); |
5288 | | GUIntBig highRes = 0; |
5289 | | const GUIntBig firstLowSecondHigh = |
5290 | | static_cast<GUIntBig>(firstLow) * secondHigh; |
5291 | | const GUIntBig firstHighSecondLow = |
5292 | | static_cast<GUIntBig>(firstHigh) * secondLow; |
5293 | | const GUIntBig middleTerm = firstLowSecondHigh + firstHighSecondLow; |
5294 | | if (middleTerm < firstLowSecondHigh) // check for overflow |
5295 | | highRes += static_cast<GUIntBig>(1) << 32; |
5296 | | const GUIntBig firstLowSecondLow = |
5297 | | static_cast<GUIntBig>(firstLow) * secondLow; |
5298 | | GUIntBig lowRes = firstLowSecondLow + (middleTerm << 32); |
5299 | | if (lowRes < firstLowSecondLow) // check for overflow |
5300 | | highRes++; |
5301 | | highRes += |
5302 | | (middleTerm >> 32) + static_cast<GUIntBig>(firstHigh) * secondHigh; |
5303 | | return GDALUInt128(lowRes, highRes); |
5304 | | #endif |
5305 | | } |
5306 | | |
5307 | | GDALUInt128 operator-(const GDALUInt128 &other) const |
5308 | | { |
5309 | | GUIntBig highRes = high - other.high; |
5310 | | GUIntBig lowRes = low - other.low; |
5311 | | if (lowRes > low) // check for underflow |
5312 | | --highRes; |
5313 | | return GDALUInt128(lowRes, highRes); |
5314 | | } |
5315 | | |
5316 | | operator double() const |
5317 | | { |
5318 | | const double twoPow64 = 18446744073709551616.0; |
5319 | | return high * twoPow64 + low; |
5320 | | } |
5321 | | }; |
5322 | | #endif |
5323 | | |
5324 | | /************************************************************************/ |
5325 | | /* ComputeStatisticsInternal() */ |
5326 | | /************************************************************************/ |
5327 | | |
5328 | | // Just to make coverity scan happy w.r.t overflow_before_widen, but otherwise |
5329 | | // not needed. |
5330 | 0 | #define static_cast_for_coverity_scan static_cast |
5331 | | |
5332 | | // The rationale for below optimizations is detailed in statistics.txt |
5333 | | |
5334 | | // Use with T = GByte or GUInt16 only ! |
5335 | | template <class T, bool COMPUTE_OTHER_STATS> |
5336 | | struct ComputeStatisticsInternalGeneric |
5337 | | { |
5338 | | static void f(int nXCheck, int nBlockXSize, int nYCheck, const T *pData, |
5339 | | bool bHasNoData, GUInt32 nNoDataValue, GUInt32 &nMin, |
5340 | | GUInt32 &nMax, GUIntBig &nSum, GUIntBig &nSumSquare, |
5341 | | GUIntBig &nSampleCount, GUIntBig &nValidCount) |
5342 | 0 | { |
5343 | 0 | static_assert(std::is_same<T, GByte>::value || |
5344 | 0 | std::is_same<T, GUInt16>::value, |
5345 | 0 | "bad type for T"); |
5346 | 0 | if (bHasNoData) |
5347 | 0 | { |
5348 | | // General case |
5349 | 0 | for (int iY = 0; iY < nYCheck; iY++) |
5350 | 0 | { |
5351 | 0 | for (int iX = 0; iX < nXCheck; iX++) |
5352 | 0 | { |
5353 | 0 | const GPtrDiff_t iOffset = |
5354 | 0 | iX + static_cast<GPtrDiff_t>(iY) * nBlockXSize; |
5355 | 0 | const GUInt32 nValue = pData[iOffset]; |
5356 | 0 | if (nValue == nNoDataValue) |
5357 | 0 | continue; |
5358 | 0 | if (nValue < nMin) |
5359 | 0 | nMin = nValue; |
5360 | 0 | if (nValue > nMax) |
5361 | 0 | nMax = nValue; |
5362 | | if constexpr (COMPUTE_OTHER_STATS) |
5363 | 0 | { |
5364 | 0 | nValidCount++; |
5365 | 0 | nSum += nValue; |
5366 | 0 | nSumSquare += |
5367 | 0 | static_cast_for_coverity_scan<GUIntBig>(nValue) * |
5368 | 0 | nValue; |
5369 | 0 | } |
5370 | 0 | } |
5371 | 0 | } |
5372 | | if constexpr (COMPUTE_OTHER_STATS) |
5373 | 0 | { |
5374 | 0 | nSampleCount += static_cast<GUIntBig>(nXCheck) * nYCheck; |
5375 | 0 | } |
5376 | 0 | } |
5377 | 0 | else if (nMin == std::numeric_limits<T>::lowest() && |
5378 | 0 | nMax == std::numeric_limits<T>::max()) |
5379 | 0 | { |
5380 | | if constexpr (COMPUTE_OTHER_STATS) |
5381 | 0 | { |
5382 | | // Optimization when there is no nodata and we know we have already |
5383 | | // reached the min and max |
5384 | 0 | for (int iY = 0; iY < nYCheck; iY++) |
5385 | 0 | { |
5386 | 0 | int iX; |
5387 | 0 | for (iX = 0; iX + 3 < nXCheck; iX += 4) |
5388 | 0 | { |
5389 | 0 | const GPtrDiff_t iOffset = |
5390 | 0 | iX + static_cast<GPtrDiff_t>(iY) * nBlockXSize; |
5391 | 0 | const GUIntBig nValue = pData[iOffset]; |
5392 | 0 | const GUIntBig nValue2 = pData[iOffset + 1]; |
5393 | 0 | const GUIntBig nValue3 = pData[iOffset + 2]; |
5394 | 0 | const GUIntBig nValue4 = pData[iOffset + 3]; |
5395 | 0 | nSum += nValue; |
5396 | 0 | nSumSquare += nValue * nValue; |
5397 | 0 | nSum += nValue2; |
5398 | 0 | nSumSquare += nValue2 * nValue2; |
5399 | 0 | nSum += nValue3; |
5400 | 0 | nSumSquare += nValue3 * nValue3; |
5401 | 0 | nSum += nValue4; |
5402 | 0 | nSumSquare += nValue4 * nValue4; |
5403 | 0 | } |
5404 | 0 | for (; iX < nXCheck; ++iX) |
5405 | 0 | { |
5406 | 0 | const GPtrDiff_t iOffset = |
5407 | 0 | iX + static_cast<GPtrDiff_t>(iY) * nBlockXSize; |
5408 | 0 | const GUIntBig nValue = pData[iOffset]; |
5409 | 0 | nSum += nValue; |
5410 | 0 | nSumSquare += nValue * nValue; |
5411 | 0 | } |
5412 | 0 | } |
5413 | 0 | nSampleCount += static_cast<GUIntBig>(nXCheck) * nYCheck; |
5414 | 0 | nValidCount += static_cast<GUIntBig>(nXCheck) * nYCheck; |
5415 | 0 | } |
5416 | 0 | } |
5417 | 0 | else |
5418 | 0 | { |
5419 | 0 | for (int iY = 0; iY < nYCheck; iY++) |
5420 | 0 | { |
5421 | 0 | int iX; |
5422 | 0 | for (iX = 0; iX + 1 < nXCheck; iX += 2) |
5423 | 0 | { |
5424 | 0 | const GPtrDiff_t iOffset = |
5425 | 0 | iX + static_cast<GPtrDiff_t>(iY) * nBlockXSize; |
5426 | 0 | const GUInt32 nValue = pData[iOffset]; |
5427 | 0 | const GUInt32 nValue2 = pData[iOffset + 1]; |
5428 | 0 | if (nValue < nValue2) |
5429 | 0 | { |
5430 | 0 | if (nValue < nMin) |
5431 | 0 | nMin = nValue; |
5432 | 0 | if (nValue2 > nMax) |
5433 | 0 | nMax = nValue2; |
5434 | 0 | } |
5435 | 0 | else |
5436 | 0 | { |
5437 | 0 | if (nValue2 < nMin) |
5438 | 0 | nMin = nValue2; |
5439 | 0 | if (nValue > nMax) |
5440 | 0 | nMax = nValue; |
5441 | 0 | } |
5442 | | if constexpr (COMPUTE_OTHER_STATS) |
5443 | 0 | { |
5444 | 0 | nSum += nValue; |
5445 | 0 | nSumSquare += |
5446 | 0 | static_cast_for_coverity_scan<GUIntBig>(nValue) * |
5447 | 0 | nValue; |
5448 | 0 | nSum += nValue2; |
5449 | 0 | nSumSquare += |
5450 | 0 | static_cast_for_coverity_scan<GUIntBig>(nValue2) * |
5451 | 0 | nValue2; |
5452 | 0 | } |
5453 | 0 | } |
5454 | 0 | if (iX < nXCheck) |
5455 | 0 | { |
5456 | 0 | const GPtrDiff_t iOffset = |
5457 | 0 | iX + static_cast<GPtrDiff_t>(iY) * nBlockXSize; |
5458 | 0 | const GUInt32 nValue = pData[iOffset]; |
5459 | 0 | if (nValue < nMin) |
5460 | 0 | nMin = nValue; |
5461 | 0 | if (nValue > nMax) |
5462 | 0 | nMax = nValue; |
5463 | 0 | if (COMPUTE_OTHER_STATS) |
5464 | 0 | { |
5465 | 0 | nSum += nValue; |
5466 | 0 | nSumSquare += |
5467 | 0 | static_cast_for_coverity_scan<GUIntBig>(nValue) * |
5468 | 0 | nValue; |
5469 | 0 | } |
5470 | 0 | } |
5471 | 0 | } |
5472 | | if constexpr (COMPUTE_OTHER_STATS) |
5473 | 0 | { |
5474 | 0 | nSampleCount += static_cast<GUIntBig>(nXCheck) * nYCheck; |
5475 | 0 | nValidCount += static_cast<GUIntBig>(nXCheck) * nYCheck; |
5476 | 0 | } |
5477 | 0 | } |
5478 | 0 | } Unexecuted instantiation: ComputeStatisticsInternalGeneric<unsigned short, false>::f(int, int, int, unsigned short const*, bool, unsigned int, unsigned int&, unsigned int&, unsigned long long&, unsigned long long&, unsigned long long&, unsigned long long&) Unexecuted instantiation: ComputeStatisticsInternalGeneric<unsigned short, true>::f(int, int, int, unsigned short const*, bool, unsigned int, unsigned int&, unsigned int&, unsigned long long&, unsigned long long&, unsigned long long&, unsigned long long&) |
5479 | | }; |
5480 | | |
5481 | | // Specialization for Byte that is mostly 32 bit friendly as it avoids |
5482 | | // using 64bit accumulators in internal loops. This also slightly helps in |
5483 | | // 64bit mode. |
5484 | | template <bool COMPUTE_OTHER_STATS> |
5485 | | struct ComputeStatisticsInternalGeneric<GByte, COMPUTE_OTHER_STATS> |
5486 | | { |
5487 | | static void f(int nXCheck, int nBlockXSize, int nYCheck, const GByte *pData, |
5488 | | bool bHasNoData, GUInt32 nNoDataValue, GUInt32 &nMin, |
5489 | | GUInt32 &nMax, GUIntBig &nSum, GUIntBig &nSumSquare, |
5490 | | GUIntBig &nSampleCount, GUIntBig &nValidCount) |
5491 | 0 | { |
5492 | 0 | int nOuterLoops = nXCheck / 65536; |
5493 | 0 | if (nXCheck % 65536) |
5494 | 0 | nOuterLoops++; |
5495 | |
|
5496 | 0 | if (bHasNoData) |
5497 | 0 | { |
5498 | | // General case |
5499 | 0 | for (int iY = 0; iY < nYCheck; iY++) |
5500 | 0 | { |
5501 | 0 | int iX = 0; |
5502 | 0 | for (int k = 0; k < nOuterLoops; k++) |
5503 | 0 | { |
5504 | 0 | int iMax = iX + 65536; |
5505 | 0 | if (iMax > nXCheck) |
5506 | 0 | iMax = nXCheck; |
5507 | 0 | GUInt32 nSum32bit = 0; |
5508 | 0 | GUInt32 nSumSquare32bit = 0; |
5509 | 0 | GUInt32 nValidCount32bit = 0; |
5510 | 0 | GUInt32 nSampleCount32bit = 0; |
5511 | 0 | for (; iX < iMax; iX++) |
5512 | 0 | { |
5513 | 0 | const GPtrDiff_t iOffset = |
5514 | 0 | iX + static_cast<GPtrDiff_t>(iY) * nBlockXSize; |
5515 | 0 | const GUInt32 nValue = pData[iOffset]; |
5516 | |
|
5517 | 0 | nSampleCount32bit++; |
5518 | 0 | if (nValue == nNoDataValue) |
5519 | 0 | continue; |
5520 | 0 | if (nValue < nMin) |
5521 | 0 | nMin = nValue; |
5522 | 0 | if (nValue > nMax) |
5523 | 0 | nMax = nValue; |
5524 | | if constexpr (COMPUTE_OTHER_STATS) |
5525 | 0 | { |
5526 | 0 | nValidCount32bit++; |
5527 | 0 | nSum32bit += nValue; |
5528 | 0 | nSumSquare32bit += nValue * nValue; |
5529 | 0 | } |
5530 | 0 | } |
5531 | | if constexpr (COMPUTE_OTHER_STATS) |
5532 | 0 | { |
5533 | 0 | nSampleCount += nSampleCount32bit; |
5534 | 0 | nValidCount += nValidCount32bit; |
5535 | 0 | nSum += nSum32bit; |
5536 | 0 | nSumSquare += nSumSquare32bit; |
5537 | 0 | } |
5538 | 0 | } |
5539 | 0 | } |
5540 | 0 | } |
5541 | 0 | else if (nMin == 0 && nMax == 255) |
5542 | 0 | { |
5543 | | if constexpr (COMPUTE_OTHER_STATS) |
5544 | 0 | { |
5545 | | // Optimization when there is no nodata and we know we have already |
5546 | | // reached the min and max |
5547 | 0 | for (int iY = 0; iY < nYCheck; iY++) |
5548 | 0 | { |
5549 | 0 | int iX = 0; |
5550 | 0 | for (int k = 0; k < nOuterLoops; k++) |
5551 | 0 | { |
5552 | 0 | int iMax = iX + 65536; |
5553 | 0 | if (iMax > nXCheck) |
5554 | 0 | iMax = nXCheck; |
5555 | 0 | GUInt32 nSum32bit = 0; |
5556 | 0 | GUInt32 nSumSquare32bit = 0; |
5557 | 0 | for (; iX + 3 < iMax; iX += 4) |
5558 | 0 | { |
5559 | 0 | const GPtrDiff_t iOffset = |
5560 | 0 | iX + static_cast<GPtrDiff_t>(iY) * nBlockXSize; |
5561 | 0 | const GUInt32 nValue = pData[iOffset]; |
5562 | 0 | const GUInt32 nValue2 = pData[iOffset + 1]; |
5563 | 0 | const GUInt32 nValue3 = pData[iOffset + 2]; |
5564 | 0 | const GUInt32 nValue4 = pData[iOffset + 3]; |
5565 | 0 | nSum32bit += nValue; |
5566 | 0 | nSumSquare32bit += nValue * nValue; |
5567 | 0 | nSum32bit += nValue2; |
5568 | 0 | nSumSquare32bit += nValue2 * nValue2; |
5569 | 0 | nSum32bit += nValue3; |
5570 | 0 | nSumSquare32bit += nValue3 * nValue3; |
5571 | 0 | nSum32bit += nValue4; |
5572 | 0 | nSumSquare32bit += nValue4 * nValue4; |
5573 | 0 | } |
5574 | 0 | nSum += nSum32bit; |
5575 | 0 | nSumSquare += nSumSquare32bit; |
5576 | 0 | } |
5577 | 0 | for (; iX < nXCheck; ++iX) |
5578 | 0 | { |
5579 | 0 | const GPtrDiff_t iOffset = |
5580 | 0 | iX + static_cast<GPtrDiff_t>(iY) * nBlockXSize; |
5581 | 0 | const GUIntBig nValue = pData[iOffset]; |
5582 | 0 | nSum += nValue; |
5583 | 0 | nSumSquare += nValue * nValue; |
5584 | 0 | } |
5585 | 0 | } |
5586 | 0 | nSampleCount += static_cast<GUIntBig>(nXCheck) * nYCheck; |
5587 | 0 | nValidCount += static_cast<GUIntBig>(nXCheck) * nYCheck; |
5588 | 0 | } |
5589 | 0 | } |
5590 | 0 | else |
5591 | 0 | { |
5592 | 0 | for (int iY = 0; iY < nYCheck; iY++) |
5593 | 0 | { |
5594 | 0 | int iX = 0; |
5595 | 0 | for (int k = 0; k < nOuterLoops; k++) |
5596 | 0 | { |
5597 | 0 | int iMax = iX + 65536; |
5598 | 0 | if (iMax > nXCheck) |
5599 | 0 | iMax = nXCheck; |
5600 | 0 | GUInt32 nSum32bit = 0; |
5601 | 0 | GUInt32 nSumSquare32bit = 0; |
5602 | 0 | for (; iX + 1 < iMax; iX += 2) |
5603 | 0 | { |
5604 | 0 | const GPtrDiff_t iOffset = |
5605 | 0 | iX + static_cast<GPtrDiff_t>(iY) * nBlockXSize; |
5606 | 0 | const GUInt32 nValue = pData[iOffset]; |
5607 | 0 | const GUInt32 nValue2 = pData[iOffset + 1]; |
5608 | 0 | if (nValue < nValue2) |
5609 | 0 | { |
5610 | 0 | if (nValue < nMin) |
5611 | 0 | nMin = nValue; |
5612 | 0 | if (nValue2 > nMax) |
5613 | 0 | nMax = nValue2; |
5614 | 0 | } |
5615 | 0 | else |
5616 | 0 | { |
5617 | 0 | if (nValue2 < nMin) |
5618 | 0 | nMin = nValue2; |
5619 | 0 | if (nValue > nMax) |
5620 | 0 | nMax = nValue; |
5621 | 0 | } |
5622 | | if constexpr (COMPUTE_OTHER_STATS) |
5623 | 0 | { |
5624 | 0 | nSum32bit += nValue; |
5625 | 0 | nSumSquare32bit += nValue * nValue; |
5626 | 0 | nSum32bit += nValue2; |
5627 | 0 | nSumSquare32bit += nValue2 * nValue2; |
5628 | 0 | } |
5629 | 0 | } |
5630 | | if constexpr (COMPUTE_OTHER_STATS) |
5631 | 0 | { |
5632 | 0 | nSum += nSum32bit; |
5633 | 0 | nSumSquare += nSumSquare32bit; |
5634 | 0 | } |
5635 | 0 | } |
5636 | 0 | if (iX < nXCheck) |
5637 | 0 | { |
5638 | 0 | const GPtrDiff_t iOffset = |
5639 | 0 | iX + static_cast<GPtrDiff_t>(iY) * nBlockXSize; |
5640 | 0 | const GUInt32 nValue = pData[iOffset]; |
5641 | 0 | if (nValue < nMin) |
5642 | 0 | nMin = nValue; |
5643 | 0 | if (nValue > nMax) |
5644 | 0 | nMax = nValue; |
5645 | | if constexpr (COMPUTE_OTHER_STATS) |
5646 | 0 | { |
5647 | 0 | nSum += nValue; |
5648 | 0 | nSumSquare += |
5649 | 0 | static_cast_for_coverity_scan<GUIntBig>(nValue) * |
5650 | 0 | nValue; |
5651 | 0 | } |
5652 | 0 | } |
5653 | 0 | } |
5654 | | if constexpr (COMPUTE_OTHER_STATS) |
5655 | 0 | { |
5656 | 0 | nSampleCount += static_cast<GUIntBig>(nXCheck) * nYCheck; |
5657 | 0 | nValidCount += static_cast<GUIntBig>(nXCheck) * nYCheck; |
5658 | 0 | } |
5659 | 0 | } |
5660 | 0 | } Unexecuted instantiation: ComputeStatisticsInternalGeneric<unsigned char, false>::f(int, int, int, unsigned char const*, bool, unsigned int, unsigned int&, unsigned int&, unsigned long long&, unsigned long long&, unsigned long long&, unsigned long long&) Unexecuted instantiation: ComputeStatisticsInternalGeneric<unsigned char, true>::f(int, int, int, unsigned char const*, bool, unsigned int, unsigned int&, unsigned int&, unsigned long long&, unsigned long long&, unsigned long long&, unsigned long long&) |
5661 | | }; |
5662 | | |
5663 | | template <class T, bool COMPUTE_OTHER_STATS> struct ComputeStatisticsInternal |
5664 | | { |
5665 | | static void f(int nXCheck, int nBlockXSize, int nYCheck, const T *pData, |
5666 | | bool bHasNoData, GUInt32 nNoDataValue, GUInt32 &nMin, |
5667 | | GUInt32 &nMax, GUIntBig &nSum, GUIntBig &nSumSquare, |
5668 | | GUIntBig &nSampleCount, GUIntBig &nValidCount) |
5669 | | { |
5670 | | ComputeStatisticsInternalGeneric<T, COMPUTE_OTHER_STATS>::f( |
5671 | | nXCheck, nBlockXSize, nYCheck, pData, bHasNoData, nNoDataValue, |
5672 | | nMin, nMax, nSum, nSumSquare, nSampleCount, nValidCount); |
5673 | | } |
5674 | | }; |
5675 | | |
5676 | | #if (defined(__x86_64__) || defined(_M_X64)) && \ |
5677 | | (defined(__GNUC__) || defined(_MSC_VER)) |
5678 | | |
5679 | | #include "gdal_avx2_emulation.hpp" |
5680 | | |
5681 | 0 | #define ZERO256 GDALmm256_setzero_si256() |
5682 | | |
5683 | | template <bool COMPUTE_MIN, bool COMPUTE_MAX, bool COMPUTE_OTHER_STATS> |
5684 | | static void |
5685 | | ComputeStatisticsByteNoNodata(GPtrDiff_t nBlockPixels, |
5686 | | // assumed to be aligned on 256 bits |
5687 | | const GByte *pData, GUInt32 &nMin, GUInt32 &nMax, |
5688 | | GUIntBig &nSum, GUIntBig &nSumSquare, |
5689 | | GUIntBig &nSampleCount, GUIntBig &nValidCount) |
5690 | 0 | { |
5691 | | // 32-byte alignment may not be enforced by linker, so do it at hand |
5692 | 0 | GByte |
5693 | 0 | aby32ByteUnaligned[32 + 32 + 32 + (COMPUTE_OTHER_STATS ? 32 + 32 : 0)]; |
5694 | 0 | GByte *paby32ByteAligned = |
5695 | 0 | aby32ByteUnaligned + |
5696 | 0 | (32 - (reinterpret_cast<GUIntptr_t>(aby32ByteUnaligned) % 32)); |
5697 | 0 | GByte *pabyMin = paby32ByteAligned; |
5698 | 0 | GByte *pabyMax = paby32ByteAligned + 32; |
5699 | 0 | GUInt32 *panSum = |
5700 | 0 | COMPUTE_OTHER_STATS |
5701 | 0 | ? reinterpret_cast<GUInt32 *>(paby32ByteAligned + 32 * 2) |
5702 | 0 | : nullptr; |
5703 | 0 | GUInt32 *panSumSquare = |
5704 | 0 | COMPUTE_OTHER_STATS |
5705 | 0 | ? reinterpret_cast<GUInt32 *>(paby32ByteAligned + 32 * 3) |
5706 | 0 | : nullptr; |
5707 | |
|
5708 | 0 | CPLAssert((reinterpret_cast<uintptr_t>(pData) % 32) == 0); |
5709 | | |
5710 | 0 | GPtrDiff_t i = 0; |
5711 | | // Make sure that sumSquare can fit on uint32 |
5712 | | // * 8 since we can hold 8 sums per vector register |
5713 | 0 | const int nMaxIterationsPerInnerLoop = |
5714 | 0 | 8 * ((std::numeric_limits<GUInt32>::max() / (255 * 255)) & ~31); |
5715 | 0 | GPtrDiff_t nOuterLoops = nBlockPixels / nMaxIterationsPerInnerLoop; |
5716 | 0 | if ((nBlockPixels % nMaxIterationsPerInnerLoop) != 0) |
5717 | 0 | nOuterLoops++; |
5718 | |
|
5719 | 0 | GDALm256i ymm_min = |
5720 | 0 | GDALmm256_load_si256(reinterpret_cast<const GDALm256i *>(pData + i)); |
5721 | 0 | GDALm256i ymm_max = ymm_min; |
5722 | 0 | [[maybe_unused]] const auto ymm_mask_8bits = GDALmm256_set1_epi16(0xFF); |
5723 | |
|
5724 | 0 | for (GPtrDiff_t k = 0; k < nOuterLoops; k++) |
5725 | 0 | { |
5726 | 0 | const auto iMax = |
5727 | 0 | std::min(nBlockPixels, i + nMaxIterationsPerInnerLoop); |
5728 | | |
5729 | | // holds 4 uint32 sums in [0], [2], [4] and [6] |
5730 | 0 | [[maybe_unused]] GDALm256i ymm_sum = ZERO256; |
5731 | 0 | [[maybe_unused]] GDALm256i ymm_sumsquare = |
5732 | 0 | ZERO256; // holds 8 uint32 sums |
5733 | 0 | for (; i + 31 < iMax; i += 32) |
5734 | 0 | { |
5735 | 0 | const GDALm256i ymm = GDALmm256_load_si256( |
5736 | 0 | reinterpret_cast<const GDALm256i *>(pData + i)); |
5737 | 0 | if (COMPUTE_MIN) |
5738 | 0 | { |
5739 | 0 | ymm_min = GDALmm256_min_epu8(ymm_min, ymm); |
5740 | 0 | } |
5741 | 0 | if (COMPUTE_MAX) |
5742 | 0 | { |
5743 | 0 | ymm_max = GDALmm256_max_epu8(ymm_max, ymm); |
5744 | 0 | } |
5745 | |
|
5746 | | if constexpr (COMPUTE_OTHER_STATS) |
5747 | 0 | { |
5748 | | // Extract even-8bit values |
5749 | 0 | const GDALm256i ymm_even = |
5750 | 0 | GDALmm256_and_si256(ymm, ymm_mask_8bits); |
5751 | | // Compute square of those 16 values as 32 bit result |
5752 | | // and add adjacent pairs |
5753 | 0 | const GDALm256i ymm_even_square = |
5754 | 0 | GDALmm256_madd_epi16(ymm_even, ymm_even); |
5755 | | // Add to the sumsquare accumulator |
5756 | 0 | ymm_sumsquare = |
5757 | 0 | GDALmm256_add_epi32(ymm_sumsquare, ymm_even_square); |
5758 | | |
5759 | | // Extract odd-8bit values |
5760 | 0 | const GDALm256i ymm_odd = GDALmm256_srli_epi16(ymm, 8); |
5761 | 0 | const GDALm256i ymm_odd_square = |
5762 | 0 | GDALmm256_madd_epi16(ymm_odd, ymm_odd); |
5763 | 0 | ymm_sumsquare = |
5764 | 0 | GDALmm256_add_epi32(ymm_sumsquare, ymm_odd_square); |
5765 | | |
5766 | | // Now compute the sums |
5767 | 0 | ymm_sum = GDALmm256_add_epi32(ymm_sum, |
5768 | 0 | GDALmm256_sad_epu8(ymm, ZERO256)); |
5769 | 0 | } |
5770 | 0 | } |
5771 | |
|
5772 | | if constexpr (COMPUTE_OTHER_STATS) |
5773 | 0 | { |
5774 | 0 | GDALmm256_store_si256(reinterpret_cast<GDALm256i *>(panSum), |
5775 | 0 | ymm_sum); |
5776 | 0 | GDALmm256_store_si256(reinterpret_cast<GDALm256i *>(panSumSquare), |
5777 | 0 | ymm_sumsquare); |
5778 | |
|
5779 | 0 | nSum += panSum[0] + panSum[2] + panSum[4] + panSum[6]; |
5780 | 0 | nSumSquare += static_cast<GUIntBig>(panSumSquare[0]) + |
5781 | 0 | panSumSquare[1] + panSumSquare[2] + panSumSquare[3] + |
5782 | 0 | panSumSquare[4] + panSumSquare[5] + panSumSquare[6] + |
5783 | 0 | panSumSquare[7]; |
5784 | 0 | } |
5785 | 0 | } |
5786 | |
|
5787 | | if constexpr (COMPUTE_MIN) |
5788 | 0 | { |
5789 | 0 | GDALmm256_store_si256(reinterpret_cast<GDALm256i *>(pabyMin), ymm_min); |
5790 | 0 | } |
5791 | | if constexpr (COMPUTE_MAX) |
5792 | 0 | { |
5793 | 0 | GDALmm256_store_si256(reinterpret_cast<GDALm256i *>(pabyMax), ymm_max); |
5794 | 0 | } |
5795 | | if constexpr (COMPUTE_MIN || COMPUTE_MAX) |
5796 | 0 | { |
5797 | 0 | for (int j = 0; j < 32; j++) |
5798 | 0 | { |
5799 | | if constexpr (COMPUTE_MIN) |
5800 | 0 | { |
5801 | 0 | if (pabyMin[j] < nMin) |
5802 | 0 | nMin = pabyMin[j]; |
5803 | 0 | } |
5804 | | if constexpr (COMPUTE_MAX) |
5805 | 0 | { |
5806 | 0 | if (pabyMax[j] > nMax) |
5807 | 0 | nMax = pabyMax[j]; |
5808 | 0 | } |
5809 | 0 | } |
5810 | 0 | } |
5811 | |
|
5812 | 0 | for (; i < nBlockPixels; i++) |
5813 | 0 | { |
5814 | 0 | const GUInt32 nValue = pData[i]; |
5815 | | if constexpr (COMPUTE_MIN) |
5816 | 0 | { |
5817 | 0 | if (nValue < nMin) |
5818 | 0 | nMin = nValue; |
5819 | 0 | } |
5820 | | if constexpr (COMPUTE_MAX) |
5821 | 0 | { |
5822 | 0 | if (nValue > nMax) |
5823 | 0 | nMax = nValue; |
5824 | 0 | } |
5825 | | if constexpr (COMPUTE_OTHER_STATS) |
5826 | 0 | { |
5827 | 0 | nSum += nValue; |
5828 | 0 | nSumSquare += |
5829 | 0 | static_cast_for_coverity_scan<GUIntBig>(nValue) * nValue; |
5830 | 0 | } |
5831 | 0 | } |
5832 | |
|
5833 | | if constexpr (COMPUTE_OTHER_STATS) |
5834 | 0 | { |
5835 | 0 | nSampleCount += static_cast<GUIntBig>(nBlockPixels); |
5836 | 0 | nValidCount += static_cast<GUIntBig>(nBlockPixels); |
5837 | 0 | } |
5838 | 0 | } Unexecuted instantiation: gdalrasterband.cpp:void ComputeStatisticsByteNoNodata<true, true, false>(long long, unsigned char const*, unsigned int&, unsigned int&, unsigned long long&, unsigned long long&, unsigned long long&, unsigned long long&) Unexecuted instantiation: gdalrasterband.cpp:void ComputeStatisticsByteNoNodata<true, false, false>(long long, unsigned char const*, unsigned int&, unsigned int&, unsigned long long&, unsigned long long&, unsigned long long&, unsigned long long&) Unexecuted instantiation: gdalrasterband.cpp:void ComputeStatisticsByteNoNodata<false, true, false>(long long, unsigned char const*, unsigned int&, unsigned int&, unsigned long long&, unsigned long long&, unsigned long long&, unsigned long long&) Unexecuted instantiation: gdalrasterband.cpp:void ComputeStatisticsByteNoNodata<false, false, false>(long long, unsigned char const*, unsigned int&, unsigned int&, unsigned long long&, unsigned long long&, unsigned long long&, unsigned long long&) Unexecuted instantiation: gdalrasterband.cpp:void ComputeStatisticsByteNoNodata<true, true, true>(long long, unsigned char const*, unsigned int&, unsigned int&, unsigned long long&, unsigned long long&, unsigned long long&, unsigned long long&) Unexecuted instantiation: gdalrasterband.cpp:void ComputeStatisticsByteNoNodata<true, false, true>(long long, unsigned char const*, unsigned int&, unsigned int&, unsigned long long&, unsigned long long&, unsigned long long&, unsigned long long&) Unexecuted instantiation: gdalrasterband.cpp:void ComputeStatisticsByteNoNodata<false, true, true>(long long, unsigned char const*, unsigned int&, unsigned int&, unsigned long long&, unsigned long long&, unsigned long long&, unsigned long long&) Unexecuted instantiation: gdalrasterband.cpp:void ComputeStatisticsByteNoNodata<false, false, true>(long long, unsigned char const*, unsigned int&, unsigned int&, unsigned long long&, unsigned long long&, unsigned long long&, unsigned long long&) |
5839 | | |
5840 | | // SSE2/AVX2 optimization for GByte case |
5841 | | // In pure SSE2, this relies on gdal_avx2_emulation.hpp. There is no |
5842 | | // penaly in using the emulation, because, given the mm256 intrinsics used here, |
5843 | | // there are strictly equivalent to 2 parallel SSE2 streams. |
5844 | | template <bool COMPUTE_OTHER_STATS> |
5845 | | struct ComputeStatisticsInternal<GByte, COMPUTE_OTHER_STATS> |
5846 | | { |
5847 | | static void f(int nXCheck, int nBlockXSize, int nYCheck, |
5848 | | // assumed to be aligned on 256 bits |
5849 | | const GByte *pData, bool bHasNoData, GUInt32 nNoDataValue, |
5850 | | GUInt32 &nMin, GUInt32 &nMax, GUIntBig &nSum, |
5851 | | GUIntBig &nSumSquare, GUIntBig &nSampleCount, |
5852 | | GUIntBig &nValidCount) |
5853 | 0 | { |
5854 | 0 | const auto nBlockPixels = static_cast<GPtrDiff_t>(nXCheck) * nYCheck; |
5855 | 0 | if (bHasNoData && nXCheck == nBlockXSize && nBlockPixels >= 32 && |
5856 | 0 | nMin <= nMax) |
5857 | 0 | { |
5858 | | // 32-byte alignment may not be enforced by linker, so do it at hand |
5859 | 0 | GByte aby32ByteUnaligned[32 + 32 + 32 + 32 + 32]; |
5860 | 0 | GByte *paby32ByteAligned = |
5861 | 0 | aby32ByteUnaligned + |
5862 | 0 | (32 - (reinterpret_cast<GUIntptr_t>(aby32ByteUnaligned) % 32)); |
5863 | 0 | GByte *pabyMin = paby32ByteAligned; |
5864 | 0 | GByte *pabyMax = paby32ByteAligned + 32; |
5865 | 0 | GUInt32 *panSum = |
5866 | 0 | reinterpret_cast<GUInt32 *>(paby32ByteAligned + 32 * 2); |
5867 | 0 | GUInt32 *panSumSquare = |
5868 | 0 | reinterpret_cast<GUInt32 *>(paby32ByteAligned + 32 * 3); |
5869 | |
|
5870 | 0 | CPLAssert((reinterpret_cast<uintptr_t>(pData) % 32) == 0); |
5871 | | |
5872 | 0 | GPtrDiff_t i = 0; |
5873 | | // Make sure that sumSquare can fit on uint32 |
5874 | | // * 8 since we can hold 8 sums per vector register |
5875 | 0 | const int nMaxIterationsPerInnerLoop = |
5876 | 0 | 8 * ((std::numeric_limits<GUInt32>::max() / (255 * 255)) & ~31); |
5877 | 0 | auto nOuterLoops = nBlockPixels / nMaxIterationsPerInnerLoop; |
5878 | 0 | if ((nBlockPixels % nMaxIterationsPerInnerLoop) != 0) |
5879 | 0 | nOuterLoops++; |
5880 | |
|
5881 | 0 | const GDALm256i ymm_nodata = |
5882 | 0 | GDALmm256_set1_epi8(static_cast<GByte>(nNoDataValue)); |
5883 | | // any non noData value in [min,max] would do. |
5884 | 0 | const GDALm256i ymm_neutral = |
5885 | 0 | GDALmm256_set1_epi8(static_cast<GByte>(nMin)); |
5886 | 0 | GDALm256i ymm_min = ymm_neutral; |
5887 | 0 | GDALm256i ymm_max = ymm_neutral; |
5888 | 0 | [[maybe_unused]] const auto ymm_mask_8bits = |
5889 | 0 | GDALmm256_set1_epi16(0xFF); |
5890 | |
|
5891 | 0 | const GUInt32 nMinThreshold = (nNoDataValue == 0) ? 1 : 0; |
5892 | 0 | const GUInt32 nMaxThreshold = (nNoDataValue == 255) ? 254 : 255; |
5893 | 0 | const bool bComputeMinMax = |
5894 | 0 | nMin > nMinThreshold || nMax < nMaxThreshold; |
5895 | |
|
5896 | 0 | for (GPtrDiff_t k = 0; k < nOuterLoops; k++) |
5897 | 0 | { |
5898 | 0 | const auto iMax = |
5899 | 0 | std::min(nBlockPixels, i + nMaxIterationsPerInnerLoop); |
5900 | | |
5901 | | // holds 4 uint32 sums in [0], [2], [4] and [6] |
5902 | 0 | [[maybe_unused]] GDALm256i ymm_sum = ZERO256; |
5903 | | // holds 8 uint32 sums |
5904 | 0 | [[maybe_unused]] GDALm256i ymm_sumsquare = ZERO256; |
5905 | | // holds 4 uint32 sums in [0], [2], [4] and [6] |
5906 | 0 | [[maybe_unused]] GDALm256i ymm_count_nodata_mul_255 = ZERO256; |
5907 | 0 | const auto iInit = i; |
5908 | 0 | for (; i + 31 < iMax; i += 32) |
5909 | 0 | { |
5910 | 0 | const GDALm256i ymm = GDALmm256_load_si256( |
5911 | 0 | reinterpret_cast<const GDALm256i *>(pData + i)); |
5912 | | |
5913 | | // Check which values are nodata |
5914 | 0 | const GDALm256i ymm_eq_nodata = |
5915 | 0 | GDALmm256_cmpeq_epi8(ymm, ymm_nodata); |
5916 | | if constexpr (COMPUTE_OTHER_STATS) |
5917 | 0 | { |
5918 | | // Count how many values are nodata (due to cmpeq |
5919 | | // putting 255 when condition is met, this will actually |
5920 | | // be 255 times the number of nodata value, spread in 4 |
5921 | | // 64 bits words). We can use add_epi32 as the counter |
5922 | | // will not overflow uint32 |
5923 | 0 | ymm_count_nodata_mul_255 = GDALmm256_add_epi32( |
5924 | 0 | ymm_count_nodata_mul_255, |
5925 | 0 | GDALmm256_sad_epu8(ymm_eq_nodata, ZERO256)); |
5926 | 0 | } |
5927 | | // Replace all nodata values by zero for the purpose of sum |
5928 | | // and sumquare. |
5929 | 0 | const GDALm256i ymm_nodata_by_zero = |
5930 | 0 | GDALmm256_andnot_si256(ymm_eq_nodata, ymm); |
5931 | 0 | if (bComputeMinMax) |
5932 | 0 | { |
5933 | | // Replace all nodata values by a neutral value for the |
5934 | | // purpose of min and max. |
5935 | 0 | const GDALm256i ymm_nodata_by_neutral = |
5936 | 0 | GDALmm256_or_si256( |
5937 | 0 | GDALmm256_and_si256(ymm_eq_nodata, ymm_neutral), |
5938 | 0 | ymm_nodata_by_zero); |
5939 | |
|
5940 | 0 | ymm_min = |
5941 | 0 | GDALmm256_min_epu8(ymm_min, ymm_nodata_by_neutral); |
5942 | 0 | ymm_max = |
5943 | 0 | GDALmm256_max_epu8(ymm_max, ymm_nodata_by_neutral); |
5944 | 0 | } |
5945 | |
|
5946 | | if constexpr (COMPUTE_OTHER_STATS) |
5947 | 0 | { |
5948 | | // Extract even-8bit values |
5949 | 0 | const GDALm256i ymm_even = GDALmm256_and_si256( |
5950 | 0 | ymm_nodata_by_zero, ymm_mask_8bits); |
5951 | | // Compute square of those 16 values as 32 bit result |
5952 | | // and add adjacent pairs |
5953 | 0 | const GDALm256i ymm_even_square = |
5954 | 0 | GDALmm256_madd_epi16(ymm_even, ymm_even); |
5955 | | // Add to the sumsquare accumulator |
5956 | 0 | ymm_sumsquare = |
5957 | 0 | GDALmm256_add_epi32(ymm_sumsquare, ymm_even_square); |
5958 | | |
5959 | | // Extract odd-8bit values |
5960 | 0 | const GDALm256i ymm_odd = |
5961 | 0 | GDALmm256_srli_epi16(ymm_nodata_by_zero, 8); |
5962 | 0 | const GDALm256i ymm_odd_square = |
5963 | 0 | GDALmm256_madd_epi16(ymm_odd, ymm_odd); |
5964 | 0 | ymm_sumsquare = |
5965 | 0 | GDALmm256_add_epi32(ymm_sumsquare, ymm_odd_square); |
5966 | | |
5967 | | // Now compute the sums |
5968 | 0 | ymm_sum = GDALmm256_add_epi32( |
5969 | 0 | ymm_sum, |
5970 | 0 | GDALmm256_sad_epu8(ymm_nodata_by_zero, ZERO256)); |
5971 | 0 | } |
5972 | 0 | } |
5973 | |
|
5974 | | if constexpr (COMPUTE_OTHER_STATS) |
5975 | 0 | { |
5976 | 0 | GUInt32 *panCoutNoDataMul255 = panSum; |
5977 | 0 | GDALmm256_store_si256( |
5978 | 0 | reinterpret_cast<GDALm256i *>(panCoutNoDataMul255), |
5979 | 0 | ymm_count_nodata_mul_255); |
5980 | |
|
5981 | 0 | nSampleCount += (i - iInit); |
5982 | |
|
5983 | 0 | nValidCount += |
5984 | 0 | (i - iInit) - |
5985 | 0 | (panCoutNoDataMul255[0] + panCoutNoDataMul255[2] + |
5986 | 0 | panCoutNoDataMul255[4] + panCoutNoDataMul255[6]) / |
5987 | 0 | 255; |
5988 | |
|
5989 | 0 | GDALmm256_store_si256(reinterpret_cast<GDALm256i *>(panSum), |
5990 | 0 | ymm_sum); |
5991 | 0 | GDALmm256_store_si256( |
5992 | 0 | reinterpret_cast<GDALm256i *>(panSumSquare), |
5993 | 0 | ymm_sumsquare); |
5994 | 0 | nSum += panSum[0] + panSum[2] + panSum[4] + panSum[6]; |
5995 | 0 | nSumSquare += static_cast<GUIntBig>(panSumSquare[0]) + |
5996 | 0 | panSumSquare[1] + panSumSquare[2] + |
5997 | 0 | panSumSquare[3] + panSumSquare[4] + |
5998 | 0 | panSumSquare[5] + panSumSquare[6] + |
5999 | 0 | panSumSquare[7]; |
6000 | 0 | } |
6001 | 0 | } |
6002 | |
|
6003 | 0 | if (bComputeMinMax) |
6004 | 0 | { |
6005 | 0 | GDALmm256_store_si256(reinterpret_cast<GDALm256i *>(pabyMin), |
6006 | 0 | ymm_min); |
6007 | 0 | GDALmm256_store_si256(reinterpret_cast<GDALm256i *>(pabyMax), |
6008 | 0 | ymm_max); |
6009 | 0 | for (int j = 0; j < 32; j++) |
6010 | 0 | { |
6011 | 0 | if (pabyMin[j] < nMin) |
6012 | 0 | nMin = pabyMin[j]; |
6013 | 0 | if (pabyMax[j] > nMax) |
6014 | 0 | nMax = pabyMax[j]; |
6015 | 0 | } |
6016 | 0 | } |
6017 | |
|
6018 | | if constexpr (COMPUTE_OTHER_STATS) |
6019 | 0 | { |
6020 | 0 | nSampleCount += nBlockPixels - i; |
6021 | 0 | } |
6022 | 0 | for (; i < nBlockPixels; i++) |
6023 | 0 | { |
6024 | 0 | const GUInt32 nValue = pData[i]; |
6025 | 0 | if (nValue == nNoDataValue) |
6026 | 0 | continue; |
6027 | 0 | if (nValue < nMin) |
6028 | 0 | nMin = nValue; |
6029 | 0 | if (nValue > nMax) |
6030 | 0 | nMax = nValue; |
6031 | | if constexpr (COMPUTE_OTHER_STATS) |
6032 | 0 | { |
6033 | 0 | nValidCount++; |
6034 | 0 | nSum += nValue; |
6035 | 0 | nSumSquare += |
6036 | 0 | static_cast_for_coverity_scan<GUIntBig>(nValue) * |
6037 | 0 | nValue; |
6038 | 0 | } |
6039 | 0 | } |
6040 | 0 | } |
6041 | 0 | else if (!bHasNoData && nXCheck == nBlockXSize && nBlockPixels >= 32) |
6042 | 0 | { |
6043 | 0 | if (nMin > 0) |
6044 | 0 | { |
6045 | 0 | if (nMax < 255) |
6046 | 0 | { |
6047 | 0 | ComputeStatisticsByteNoNodata<true, true, |
6048 | 0 | COMPUTE_OTHER_STATS>( |
6049 | 0 | nBlockPixels, pData, nMin, nMax, nSum, nSumSquare, |
6050 | 0 | nSampleCount, nValidCount); |
6051 | 0 | } |
6052 | 0 | else |
6053 | 0 | { |
6054 | 0 | ComputeStatisticsByteNoNodata<true, false, |
6055 | 0 | COMPUTE_OTHER_STATS>( |
6056 | 0 | nBlockPixels, pData, nMin, nMax, nSum, nSumSquare, |
6057 | 0 | nSampleCount, nValidCount); |
6058 | 0 | } |
6059 | 0 | } |
6060 | 0 | else |
6061 | 0 | { |
6062 | 0 | if (nMax < 255) |
6063 | 0 | { |
6064 | 0 | ComputeStatisticsByteNoNodata<false, true, |
6065 | 0 | COMPUTE_OTHER_STATS>( |
6066 | 0 | nBlockPixels, pData, nMin, nMax, nSum, nSumSquare, |
6067 | 0 | nSampleCount, nValidCount); |
6068 | 0 | } |
6069 | 0 | else |
6070 | 0 | { |
6071 | 0 | ComputeStatisticsByteNoNodata<false, false, |
6072 | 0 | COMPUTE_OTHER_STATS>( |
6073 | 0 | nBlockPixels, pData, nMin, nMax, nSum, nSumSquare, |
6074 | 0 | nSampleCount, nValidCount); |
6075 | 0 | } |
6076 | 0 | } |
6077 | 0 | } |
6078 | 0 | else if (!COMPUTE_OTHER_STATS && !bHasNoData && nXCheck >= 32 && |
6079 | 0 | (nBlockXSize % 32) == 0) |
6080 | 0 | { |
6081 | 0 | for (int iY = 0; iY < nYCheck; iY++) |
6082 | 0 | { |
6083 | 0 | ComputeStatisticsByteNoNodata<true, true, COMPUTE_OTHER_STATS>( |
6084 | 0 | nXCheck, pData + static_cast<size_t>(iY) * nBlockXSize, |
6085 | 0 | nMin, nMax, nSum, nSumSquare, nSampleCount, nValidCount); |
6086 | 0 | } |
6087 | 0 | } |
6088 | 0 | else |
6089 | 0 | { |
6090 | 0 | ComputeStatisticsInternalGeneric<GByte, COMPUTE_OTHER_STATS>::f( |
6091 | 0 | nXCheck, nBlockXSize, nYCheck, pData, bHasNoData, nNoDataValue, |
6092 | 0 | nMin, nMax, nSum, nSumSquare, nSampleCount, nValidCount); |
6093 | 0 | } |
6094 | 0 | } Unexecuted instantiation: ComputeStatisticsInternal<unsigned char, false>::f(int, int, int, unsigned char const*, bool, unsigned int, unsigned int&, unsigned int&, unsigned long long&, unsigned long long&, unsigned long long&, unsigned long long&) Unexecuted instantiation: ComputeStatisticsInternal<unsigned char, true>::f(int, int, int, unsigned char const*, bool, unsigned int, unsigned int&, unsigned int&, unsigned long long&, unsigned long long&, unsigned long long&, unsigned long long&) |
6095 | | }; |
6096 | | |
6097 | | CPL_NOSANITIZE_UNSIGNED_INT_OVERFLOW |
6098 | | static void UnshiftSumSquare(GUIntBig &nSumSquare, GUIntBig nSumThis, |
6099 | | GUIntBig i) |
6100 | 0 | { |
6101 | 0 | nSumSquare += 32768 * (2 * nSumThis - i * 32768); |
6102 | 0 | } |
6103 | | |
6104 | | // AVX2/SSE2 optimization for GUInt16 case |
6105 | | template <bool COMPUTE_OTHER_STATS> |
6106 | | struct ComputeStatisticsInternal<GUInt16, COMPUTE_OTHER_STATS> |
6107 | | { |
6108 | | static void f(int nXCheck, int nBlockXSize, int nYCheck, |
6109 | | // assumed to be aligned on 128 bits |
6110 | | const GUInt16 *pData, bool bHasNoData, GUInt32 nNoDataValue, |
6111 | | GUInt32 &nMin, GUInt32 &nMax, GUIntBig &nSum, |
6112 | | GUIntBig &nSumSquare, GUIntBig &nSampleCount, |
6113 | | GUIntBig &nValidCount) |
6114 | 0 | { |
6115 | 0 | const auto nBlockPixels = static_cast<GPtrDiff_t>(nXCheck) * nYCheck; |
6116 | 0 | if (!bHasNoData && nXCheck == nBlockXSize && nBlockPixels >= 16) |
6117 | 0 | { |
6118 | 0 | CPLAssert((reinterpret_cast<uintptr_t>(pData) % 16) == 0); |
6119 | | |
6120 | 0 | GPtrDiff_t i = 0; |
6121 | | // In SSE2, min_epu16 and max_epu16 do not exist, so shift from |
6122 | | // UInt16 to SInt16 to be able to use min_epi16 and max_epi16. |
6123 | | // Furthermore the shift is also needed to use madd_epi16 |
6124 | 0 | const GDALm256i ymm_m32768 = GDALmm256_set1_epi16(-32768); |
6125 | 0 | GDALm256i ymm_min = GDALmm256_load_si256( |
6126 | 0 | reinterpret_cast<const GDALm256i *>(pData + i)); |
6127 | 0 | ymm_min = GDALmm256_add_epi16(ymm_min, ymm_m32768); |
6128 | 0 | GDALm256i ymm_max = ymm_min; |
6129 | 0 | [[maybe_unused]] GDALm256i ymm_sumsquare = |
6130 | 0 | ZERO256; // holds 4 uint64 sums |
6131 | | |
6132 | | // Make sure that sum can fit on uint32 |
6133 | | // * 8 since we can hold 8 sums per vector register |
6134 | 0 | const int nMaxIterationsPerInnerLoop = |
6135 | 0 | 8 * ((std::numeric_limits<GUInt32>::max() / 65535) & ~15); |
6136 | 0 | GPtrDiff_t nOuterLoops = nBlockPixels / nMaxIterationsPerInnerLoop; |
6137 | 0 | if ((nBlockPixels % nMaxIterationsPerInnerLoop) != 0) |
6138 | 0 | nOuterLoops++; |
6139 | |
|
6140 | 0 | const bool bComputeMinMax = nMin > 0 || nMax < 65535; |
6141 | 0 | [[maybe_unused]] const auto ymm_mask_16bits = |
6142 | 0 | GDALmm256_set1_epi32(0xFFFF); |
6143 | 0 | [[maybe_unused]] const auto ymm_mask_32bits = |
6144 | 0 | GDALmm256_set1_epi64x(0xFFFFFFFF); |
6145 | |
|
6146 | 0 | GUIntBig nSumThis = 0; |
6147 | 0 | for (int k = 0; k < nOuterLoops; k++) |
6148 | 0 | { |
6149 | 0 | const auto iMax = |
6150 | 0 | std::min(nBlockPixels, i + nMaxIterationsPerInnerLoop); |
6151 | |
|
6152 | 0 | [[maybe_unused]] GDALm256i ymm_sum = |
6153 | 0 | ZERO256; // holds 8 uint32 sums |
6154 | 0 | for (; i + 15 < iMax; i += 16) |
6155 | 0 | { |
6156 | 0 | const GDALm256i ymm = GDALmm256_load_si256( |
6157 | 0 | reinterpret_cast<const GDALm256i *>(pData + i)); |
6158 | 0 | const GDALm256i ymm_shifted = |
6159 | 0 | GDALmm256_add_epi16(ymm, ymm_m32768); |
6160 | 0 | if (bComputeMinMax) |
6161 | 0 | { |
6162 | 0 | ymm_min = GDALmm256_min_epi16(ymm_min, ymm_shifted); |
6163 | 0 | ymm_max = GDALmm256_max_epi16(ymm_max, ymm_shifted); |
6164 | 0 | } |
6165 | |
|
6166 | | if constexpr (COMPUTE_OTHER_STATS) |
6167 | 0 | { |
6168 | | // Note: the int32 range can overflow for (0-32768)^2 + |
6169 | | // (0-32768)^2 = 0x80000000, but as we know the result |
6170 | | // is positive, this is OK as we interpret is a uint32. |
6171 | 0 | const GDALm256i ymm_square = |
6172 | 0 | GDALmm256_madd_epi16(ymm_shifted, ymm_shifted); |
6173 | 0 | ymm_sumsquare = GDALmm256_add_epi64( |
6174 | 0 | ymm_sumsquare, |
6175 | 0 | GDALmm256_and_si256(ymm_square, ymm_mask_32bits)); |
6176 | 0 | ymm_sumsquare = GDALmm256_add_epi64( |
6177 | 0 | ymm_sumsquare, |
6178 | 0 | GDALmm256_srli_epi64(ymm_square, 32)); |
6179 | | |
6180 | | // Now compute the sums |
6181 | 0 | ymm_sum = GDALmm256_add_epi32( |
6182 | 0 | ymm_sum, GDALmm256_and_si256(ymm, ymm_mask_16bits)); |
6183 | 0 | ymm_sum = GDALmm256_add_epi32( |
6184 | 0 | ymm_sum, GDALmm256_srli_epi32(ymm, 16)); |
6185 | 0 | } |
6186 | 0 | } |
6187 | |
|
6188 | | if constexpr (COMPUTE_OTHER_STATS) |
6189 | 0 | { |
6190 | 0 | GUInt32 anSum[8]; |
6191 | 0 | GDALmm256_storeu_si256(reinterpret_cast<GDALm256i *>(anSum), |
6192 | 0 | ymm_sum); |
6193 | 0 | nSumThis += static_cast<GUIntBig>(anSum[0]) + anSum[1] + |
6194 | 0 | anSum[2] + anSum[3] + anSum[4] + anSum[5] + |
6195 | 0 | anSum[6] + anSum[7]; |
6196 | 0 | } |
6197 | 0 | } |
6198 | |
|
6199 | 0 | if (bComputeMinMax) |
6200 | 0 | { |
6201 | 0 | GUInt16 anMin[16]; |
6202 | 0 | GUInt16 anMax[16]; |
6203 | | |
6204 | | // Unshift the result |
6205 | 0 | ymm_min = GDALmm256_sub_epi16(ymm_min, ymm_m32768); |
6206 | 0 | ymm_max = GDALmm256_sub_epi16(ymm_max, ymm_m32768); |
6207 | 0 | GDALmm256_storeu_si256(reinterpret_cast<GDALm256i *>(anMin), |
6208 | 0 | ymm_min); |
6209 | 0 | GDALmm256_storeu_si256(reinterpret_cast<GDALm256i *>(anMax), |
6210 | 0 | ymm_max); |
6211 | 0 | for (int j = 0; j < 16; j++) |
6212 | 0 | { |
6213 | 0 | if (anMin[j] < nMin) |
6214 | 0 | nMin = anMin[j]; |
6215 | 0 | if (anMax[j] > nMax) |
6216 | 0 | nMax = anMax[j]; |
6217 | 0 | } |
6218 | 0 | } |
6219 | |
|
6220 | | if constexpr (COMPUTE_OTHER_STATS) |
6221 | 0 | { |
6222 | 0 | GUIntBig anSumSquare[4]; |
6223 | 0 | GDALmm256_storeu_si256( |
6224 | 0 | reinterpret_cast<GDALm256i *>(anSumSquare), ymm_sumsquare); |
6225 | 0 | nSumSquare += anSumSquare[0] + anSumSquare[1] + anSumSquare[2] + |
6226 | 0 | anSumSquare[3]; |
6227 | | |
6228 | | // Unshift the sum of squares |
6229 | 0 | UnshiftSumSquare(nSumSquare, nSumThis, |
6230 | 0 | static_cast<GUIntBig>(i)); |
6231 | |
|
6232 | 0 | nSum += nSumThis; |
6233 | |
|
6234 | 0 | for (; i < nBlockPixels; i++) |
6235 | 0 | { |
6236 | 0 | const GUInt32 nValue = pData[i]; |
6237 | 0 | if (nValue < nMin) |
6238 | 0 | nMin = nValue; |
6239 | 0 | if (nValue > nMax) |
6240 | 0 | nMax = nValue; |
6241 | 0 | nSum += nValue; |
6242 | 0 | nSumSquare += |
6243 | 0 | static_cast_for_coverity_scan<GUIntBig>(nValue) * |
6244 | 0 | nValue; |
6245 | 0 | } |
6246 | |
|
6247 | 0 | nSampleCount += static_cast<GUIntBig>(nXCheck) * nYCheck; |
6248 | 0 | nValidCount += static_cast<GUIntBig>(nXCheck) * nYCheck; |
6249 | 0 | } |
6250 | 0 | } |
6251 | 0 | else |
6252 | 0 | { |
6253 | 0 | ComputeStatisticsInternalGeneric<GUInt16, COMPUTE_OTHER_STATS>::f( |
6254 | 0 | nXCheck, nBlockXSize, nYCheck, pData, bHasNoData, nNoDataValue, |
6255 | 0 | nMin, nMax, nSum, nSumSquare, nSampleCount, nValidCount); |
6256 | 0 | } |
6257 | 0 | } Unexecuted instantiation: ComputeStatisticsInternal<unsigned short, false>::f(int, int, int, unsigned short const*, bool, unsigned int, unsigned int&, unsigned int&, unsigned long long&, unsigned long long&, unsigned long long&, unsigned long long&) Unexecuted instantiation: ComputeStatisticsInternal<unsigned short, true>::f(int, int, int, unsigned short const*, bool, unsigned int, unsigned int&, unsigned int&, unsigned long long&, unsigned long long&, unsigned long long&, unsigned long long&) |
6258 | | }; |
6259 | | |
6260 | | #endif |
6261 | | // (defined(__x86_64__) || defined(_M_X64)) && (defined(__GNUC__) || |
6262 | | // defined(_MSC_VER)) |
6263 | | |
6264 | | /************************************************************************/ |
6265 | | /* GetPixelValue() */ |
6266 | | /************************************************************************/ |
6267 | | |
6268 | | static inline double GetPixelValue(GDALDataType eDataType, bool bSignedByte, |
6269 | | const void *pData, GPtrDiff_t iOffset, |
6270 | | const GDALNoDataValues &sNoDataValues, |
6271 | | bool &bValid) |
6272 | 0 | { |
6273 | 0 | bValid = true; |
6274 | 0 | double dfValue = 0; |
6275 | 0 | switch (eDataType) |
6276 | 0 | { |
6277 | 0 | case GDT_Byte: |
6278 | 0 | { |
6279 | 0 | if (bSignedByte) |
6280 | 0 | dfValue = static_cast<const signed char *>(pData)[iOffset]; |
6281 | 0 | else |
6282 | 0 | dfValue = static_cast<const GByte *>(pData)[iOffset]; |
6283 | 0 | break; |
6284 | 0 | } |
6285 | 0 | case GDT_Int8: |
6286 | 0 | dfValue = static_cast<const GInt8 *>(pData)[iOffset]; |
6287 | 0 | break; |
6288 | 0 | case GDT_UInt16: |
6289 | 0 | dfValue = static_cast<const GUInt16 *>(pData)[iOffset]; |
6290 | 0 | break; |
6291 | 0 | case GDT_Int16: |
6292 | 0 | dfValue = static_cast<const GInt16 *>(pData)[iOffset]; |
6293 | 0 | break; |
6294 | 0 | case GDT_UInt32: |
6295 | 0 | dfValue = static_cast<const GUInt32 *>(pData)[iOffset]; |
6296 | 0 | break; |
6297 | 0 | case GDT_Int32: |
6298 | 0 | dfValue = static_cast<const GInt32 *>(pData)[iOffset]; |
6299 | 0 | break; |
6300 | 0 | case GDT_UInt64: |
6301 | 0 | dfValue = static_cast<double>( |
6302 | 0 | static_cast<const std::uint64_t *>(pData)[iOffset]); |
6303 | 0 | break; |
6304 | 0 | case GDT_Int64: |
6305 | 0 | dfValue = static_cast<double>( |
6306 | 0 | static_cast<const std::int64_t *>(pData)[iOffset]); |
6307 | 0 | break; |
6308 | 0 | case GDT_Float16: |
6309 | 0 | { |
6310 | 0 | using namespace std; |
6311 | 0 | const GFloat16 hfValue = |
6312 | 0 | static_cast<const GFloat16 *>(pData)[iOffset]; |
6313 | 0 | if (isnan(hfValue) || |
6314 | 0 | (sNoDataValues.bGotFloat16NoDataValue && |
6315 | 0 | ARE_REAL_EQUAL(hfValue, sNoDataValues.hfNoDataValue))) |
6316 | 0 | { |
6317 | 0 | bValid = false; |
6318 | 0 | return 0.0; |
6319 | 0 | } |
6320 | 0 | dfValue = hfValue; |
6321 | 0 | return dfValue; |
6322 | 0 | } |
6323 | 0 | case GDT_Float32: |
6324 | 0 | { |
6325 | 0 | const float fValue = static_cast<const float *>(pData)[iOffset]; |
6326 | 0 | if (std::isnan(fValue) || |
6327 | 0 | (sNoDataValues.bGotFloatNoDataValue && |
6328 | 0 | ARE_REAL_EQUAL(fValue, sNoDataValues.fNoDataValue))) |
6329 | 0 | { |
6330 | 0 | bValid = false; |
6331 | 0 | return 0.0; |
6332 | 0 | } |
6333 | 0 | dfValue = fValue; |
6334 | 0 | return dfValue; |
6335 | 0 | } |
6336 | 0 | case GDT_Float64: |
6337 | 0 | dfValue = static_cast<const double *>(pData)[iOffset]; |
6338 | 0 | if (std::isnan(dfValue)) |
6339 | 0 | { |
6340 | 0 | bValid = false; |
6341 | 0 | return 0.0; |
6342 | 0 | } |
6343 | 0 | break; |
6344 | 0 | case GDT_CInt16: |
6345 | 0 | dfValue = static_cast<const GInt16 *>(pData)[iOffset * 2]; |
6346 | 0 | break; |
6347 | 0 | case GDT_CInt32: |
6348 | 0 | dfValue = static_cast<const GInt32 *>(pData)[iOffset * 2]; |
6349 | 0 | break; |
6350 | 0 | case GDT_CFloat16: |
6351 | 0 | dfValue = static_cast<const GFloat16 *>(pData)[iOffset * 2]; |
6352 | 0 | if (std::isnan(dfValue)) |
6353 | 0 | { |
6354 | 0 | bValid = false; |
6355 | 0 | return 0.0; |
6356 | 0 | } |
6357 | 0 | break; |
6358 | 0 | case GDT_CFloat32: |
6359 | 0 | dfValue = static_cast<const float *>(pData)[iOffset * 2]; |
6360 | 0 | if (std::isnan(dfValue)) |
6361 | 0 | { |
6362 | 0 | bValid = false; |
6363 | 0 | return 0.0; |
6364 | 0 | } |
6365 | 0 | break; |
6366 | 0 | case GDT_CFloat64: |
6367 | 0 | dfValue = static_cast<const double *>(pData)[iOffset * 2]; |
6368 | 0 | if (std::isnan(dfValue)) |
6369 | 0 | { |
6370 | 0 | bValid = false; |
6371 | 0 | return 0.0; |
6372 | 0 | } |
6373 | 0 | break; |
6374 | 0 | case GDT_Unknown: |
6375 | 0 | case GDT_TypeCount: |
6376 | 0 | CPLAssert(false); |
6377 | 0 | break; |
6378 | 0 | } |
6379 | | |
6380 | 0 | if (sNoDataValues.bGotNoDataValue && |
6381 | 0 | ARE_REAL_EQUAL(dfValue, sNoDataValues.dfNoDataValue)) |
6382 | 0 | { |
6383 | 0 | bValid = false; |
6384 | 0 | return 0.0; |
6385 | 0 | } |
6386 | 0 | return dfValue; |
6387 | 0 | } |
6388 | | |
6389 | | /************************************************************************/ |
6390 | | /* SetValidPercent() */ |
6391 | | /************************************************************************/ |
6392 | | |
6393 | | //! @cond Doxygen_Suppress |
6394 | | /** |
6395 | | * \brief Set percentage of valid (not nodata) pixels. |
6396 | | * |
6397 | | * Stores the percentage of valid pixels in the metadata item |
6398 | | * STATISTICS_VALID_PERCENT |
6399 | | * |
6400 | | * @param nSampleCount Number of sampled pixels. |
6401 | | * |
6402 | | * @param nValidCount Number of valid pixels. |
6403 | | */ |
6404 | | |
6405 | | void GDALRasterBand::SetValidPercent(GUIntBig nSampleCount, |
6406 | | GUIntBig nValidCount) |
6407 | 0 | { |
6408 | 0 | if (nValidCount == 0) |
6409 | 0 | { |
6410 | 0 | SetMetadataItem("STATISTICS_VALID_PERCENT", "0"); |
6411 | 0 | } |
6412 | 0 | else if (nValidCount == nSampleCount) |
6413 | 0 | { |
6414 | 0 | SetMetadataItem("STATISTICS_VALID_PERCENT", "100"); |
6415 | 0 | } |
6416 | 0 | else /* nValidCount < nSampleCount */ |
6417 | 0 | { |
6418 | 0 | char szValue[128] = {0}; |
6419 | | |
6420 | | /* percentage is only an indicator: limit precision */ |
6421 | 0 | CPLsnprintf(szValue, sizeof(szValue), "%.4g", |
6422 | 0 | 100. * static_cast<double>(nValidCount) / nSampleCount); |
6423 | |
|
6424 | 0 | if (EQUAL(szValue, "100")) |
6425 | 0 | { |
6426 | | /* don't set 100 percent valid |
6427 | | * because some of the sampled pixels were nodata */ |
6428 | 0 | SetMetadataItem("STATISTICS_VALID_PERCENT", "99.999"); |
6429 | 0 | } |
6430 | 0 | else |
6431 | 0 | { |
6432 | 0 | SetMetadataItem("STATISTICS_VALID_PERCENT", szValue); |
6433 | 0 | } |
6434 | 0 | } |
6435 | 0 | } |
6436 | | |
6437 | | //! @endcond |
6438 | | |
6439 | | /************************************************************************/ |
6440 | | /* ComputeStatistics() */ |
6441 | | /************************************************************************/ |
6442 | | |
6443 | | /** |
6444 | | * \brief Compute image statistics. |
6445 | | * |
6446 | | * Returns the minimum, maximum, mean and standard deviation of all |
6447 | | * pixel values in this band. If approximate statistics are sufficient, |
6448 | | * the bApproxOK flag can be set to true in which case overviews, or a |
6449 | | * subset of image tiles may be used in computing the statistics. |
6450 | | * |
6451 | | * Once computed, the statistics will generally be "set" back on the |
6452 | | * raster band using SetStatistics(). |
6453 | | * |
6454 | | * Cached statistics can be cleared with GDALDataset::ClearStatistics(). |
6455 | | * |
6456 | | * This method is the same as the C function GDALComputeRasterStatistics(). |
6457 | | * |
6458 | | * @param bApproxOK If TRUE statistics may be computed based on overviews |
6459 | | * or a subset of all tiles. |
6460 | | * |
6461 | | * @param pdfMin Location into which to load image minimum (may be NULL). |
6462 | | * |
6463 | | * @param pdfMax Location into which to load image maximum (may be NULL).- |
6464 | | * |
6465 | | * @param pdfMean Location into which to load image mean (may be NULL). |
6466 | | * |
6467 | | * @param pdfStdDev Location into which to load image standard deviation |
6468 | | * (may be NULL). |
6469 | | * |
6470 | | * @param pfnProgress a function to call to report progress, or NULL. |
6471 | | * |
6472 | | * @param pProgressData application data to pass to the progress function. |
6473 | | * |
6474 | | * @return CE_None on success, or CE_Failure if an error occurs or processing |
6475 | | * is terminated by the user. |
6476 | | */ |
6477 | | |
6478 | | CPLErr GDALRasterBand::ComputeStatistics(int bApproxOK, double *pdfMin, |
6479 | | double *pdfMax, double *pdfMean, |
6480 | | double *pdfStdDev, |
6481 | | GDALProgressFunc pfnProgress, |
6482 | | void *pProgressData) |
6483 | | |
6484 | 0 | { |
6485 | 0 | if (pfnProgress == nullptr) |
6486 | 0 | pfnProgress = GDALDummyProgress; |
6487 | | |
6488 | | /* -------------------------------------------------------------------- */ |
6489 | | /* If we have overview bands, use them for statistics. */ |
6490 | | /* -------------------------------------------------------------------- */ |
6491 | 0 | if (bApproxOK && GetOverviewCount() > 0 && !HasArbitraryOverviews()) |
6492 | 0 | { |
6493 | 0 | GDALRasterBand *poBand = |
6494 | 0 | GetRasterSampleOverview(GDALSTAT_APPROX_NUMSAMPLES); |
6495 | |
|
6496 | 0 | if (poBand != this) |
6497 | 0 | { |
6498 | 0 | CPLErr eErr = poBand->ComputeStatistics(FALSE, pdfMin, pdfMax, |
6499 | 0 | pdfMean, pdfStdDev, |
6500 | 0 | pfnProgress, pProgressData); |
6501 | 0 | if (eErr == CE_None) |
6502 | 0 | { |
6503 | 0 | if (pdfMin && pdfMax && pdfMean && pdfStdDev) |
6504 | 0 | { |
6505 | 0 | SetMetadataItem("STATISTICS_APPROXIMATE", "YES"); |
6506 | 0 | SetStatistics(*pdfMin, *pdfMax, *pdfMean, *pdfStdDev); |
6507 | 0 | } |
6508 | | |
6509 | | /* transfer metadata from overview band to this */ |
6510 | 0 | const char *pszPercentValid = |
6511 | 0 | poBand->GetMetadataItem("STATISTICS_VALID_PERCENT"); |
6512 | |
|
6513 | 0 | if (pszPercentValid != nullptr) |
6514 | 0 | { |
6515 | 0 | SetMetadataItem("STATISTICS_VALID_PERCENT", |
6516 | 0 | pszPercentValid); |
6517 | 0 | } |
6518 | 0 | } |
6519 | 0 | return eErr; |
6520 | 0 | } |
6521 | 0 | } |
6522 | | |
6523 | 0 | if (!pfnProgress(0.0, "Compute Statistics", pProgressData)) |
6524 | 0 | { |
6525 | 0 | ReportError(CE_Failure, CPLE_UserInterrupt, "User terminated"); |
6526 | 0 | return CE_Failure; |
6527 | 0 | } |
6528 | | |
6529 | | /* -------------------------------------------------------------------- */ |
6530 | | /* Read actual data and compute statistics. */ |
6531 | | /* -------------------------------------------------------------------- */ |
6532 | | // Using Welford algorithm: |
6533 | | // http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance |
6534 | | // to compute standard deviation in a more numerically robust way than |
6535 | | // the difference of the sum of square values with the square of the sum. |
6536 | | // dfMean and dfM2 are updated at each sample. |
6537 | | // dfM2 is the sum of square of differences to the current mean. |
6538 | 0 | double dfMin = std::numeric_limits<double>::infinity(); |
6539 | 0 | double dfMax = -std::numeric_limits<double>::infinity(); |
6540 | 0 | double dfMean = 0.0; |
6541 | 0 | double dfM2 = 0.0; |
6542 | |
|
6543 | 0 | GDALRasterIOExtraArg sExtraArg; |
6544 | 0 | INIT_RASTERIO_EXTRA_ARG(sExtraArg); |
6545 | |
|
6546 | 0 | GDALNoDataValues sNoDataValues(this, eDataType); |
6547 | 0 | GDALRasterBand *poMaskBand = nullptr; |
6548 | 0 | if (!sNoDataValues.bGotNoDataValue) |
6549 | 0 | { |
6550 | 0 | const int l_nMaskFlags = GetMaskFlags(); |
6551 | 0 | if (l_nMaskFlags != GMF_ALL_VALID && l_nMaskFlags != GMF_NODATA && |
6552 | 0 | GetColorInterpretation() != GCI_AlphaBand) |
6553 | 0 | { |
6554 | 0 | poMaskBand = GetMaskBand(); |
6555 | 0 | } |
6556 | 0 | } |
6557 | |
|
6558 | 0 | bool bSignedByte = false; |
6559 | 0 | if (eDataType == GDT_Byte) |
6560 | 0 | { |
6561 | 0 | EnablePixelTypeSignedByteWarning(false); |
6562 | 0 | const char *pszPixelType = |
6563 | 0 | GetMetadataItem("PIXELTYPE", "IMAGE_STRUCTURE"); |
6564 | 0 | EnablePixelTypeSignedByteWarning(true); |
6565 | 0 | bSignedByte = |
6566 | 0 | pszPixelType != nullptr && EQUAL(pszPixelType, "SIGNEDBYTE"); |
6567 | 0 | } |
6568 | |
|
6569 | 0 | GUIntBig nSampleCount = 0; |
6570 | 0 | GUIntBig nValidCount = 0; |
6571 | |
|
6572 | 0 | if (bApproxOK && HasArbitraryOverviews()) |
6573 | 0 | { |
6574 | | /* -------------------------------------------------------------------- |
6575 | | */ |
6576 | | /* Figure out how much the image should be reduced to get an */ |
6577 | | /* approximate value. */ |
6578 | | /* -------------------------------------------------------------------- |
6579 | | */ |
6580 | 0 | double dfReduction = sqrt(static_cast<double>(nRasterXSize) * |
6581 | 0 | nRasterYSize / GDALSTAT_APPROX_NUMSAMPLES); |
6582 | |
|
6583 | 0 | int nXReduced = nRasterXSize; |
6584 | 0 | int nYReduced = nRasterYSize; |
6585 | 0 | if (dfReduction > 1.0) |
6586 | 0 | { |
6587 | 0 | nXReduced = static_cast<int>(nRasterXSize / dfReduction); |
6588 | 0 | nYReduced = static_cast<int>(nRasterYSize / dfReduction); |
6589 | | |
6590 | | // Catch the case of huge resizing ratios here |
6591 | 0 | if (nXReduced == 0) |
6592 | 0 | nXReduced = 1; |
6593 | 0 | if (nYReduced == 0) |
6594 | 0 | nYReduced = 1; |
6595 | 0 | } |
6596 | |
|
6597 | 0 | void *pData = CPLMalloc(cpl::fits_on<int>( |
6598 | 0 | GDALGetDataTypeSizeBytes(eDataType) * nXReduced * nYReduced)); |
6599 | |
|
6600 | 0 | const CPLErr eErr = |
6601 | 0 | IRasterIO(GF_Read, 0, 0, nRasterXSize, nRasterYSize, pData, |
6602 | 0 | nXReduced, nYReduced, eDataType, 0, 0, &sExtraArg); |
6603 | 0 | if (eErr != CE_None) |
6604 | 0 | { |
6605 | 0 | CPLFree(pData); |
6606 | 0 | return eErr; |
6607 | 0 | } |
6608 | | |
6609 | 0 | GByte *pabyMaskData = nullptr; |
6610 | 0 | if (poMaskBand) |
6611 | 0 | { |
6612 | 0 | pabyMaskData = |
6613 | 0 | static_cast<GByte *>(VSI_MALLOC2_VERBOSE(nXReduced, nYReduced)); |
6614 | 0 | if (!pabyMaskData) |
6615 | 0 | { |
6616 | 0 | CPLFree(pData); |
6617 | 0 | return CE_Failure; |
6618 | 0 | } |
6619 | | |
6620 | 0 | if (poMaskBand->RasterIO(GF_Read, 0, 0, nRasterXSize, nRasterYSize, |
6621 | 0 | pabyMaskData, nXReduced, nYReduced, |
6622 | 0 | GDT_Byte, 0, 0, nullptr) != CE_None) |
6623 | 0 | { |
6624 | 0 | CPLFree(pData); |
6625 | 0 | CPLFree(pabyMaskData); |
6626 | 0 | return CE_Failure; |
6627 | 0 | } |
6628 | 0 | } |
6629 | | |
6630 | | /* this isn't the fastest way to do this, but is easier for now */ |
6631 | 0 | for (int iY = 0; iY < nYReduced; iY++) |
6632 | 0 | { |
6633 | 0 | for (int iX = 0; iX < nXReduced; iX++) |
6634 | 0 | { |
6635 | 0 | const int iOffset = iX + iY * nXReduced; |
6636 | 0 | if (pabyMaskData && pabyMaskData[iOffset] == 0) |
6637 | 0 | continue; |
6638 | | |
6639 | 0 | bool bValid = true; |
6640 | 0 | double dfValue = GetPixelValue(eDataType, bSignedByte, pData, |
6641 | 0 | iOffset, sNoDataValues, bValid); |
6642 | 0 | if (!bValid) |
6643 | 0 | continue; |
6644 | | |
6645 | 0 | dfMin = std::min(dfMin, dfValue); |
6646 | 0 | dfMax = std::max(dfMax, dfValue); |
6647 | |
|
6648 | 0 | nValidCount++; |
6649 | 0 | if (dfMin == dfMax) |
6650 | 0 | { |
6651 | 0 | if (nValidCount == 1) |
6652 | 0 | dfMean = dfMin; |
6653 | 0 | } |
6654 | 0 | else |
6655 | 0 | { |
6656 | 0 | const double dfDelta = dfValue - dfMean; |
6657 | 0 | dfMean += dfDelta / nValidCount; |
6658 | 0 | dfM2 += dfDelta * (dfValue - dfMean); |
6659 | 0 | } |
6660 | 0 | } |
6661 | 0 | } |
6662 | |
|
6663 | 0 | nSampleCount = static_cast<GUIntBig>(nXReduced) * nYReduced; |
6664 | |
|
6665 | 0 | CPLFree(pData); |
6666 | 0 | CPLFree(pabyMaskData); |
6667 | 0 | } |
6668 | | |
6669 | 0 | else // No arbitrary overviews. |
6670 | 0 | { |
6671 | 0 | if (!InitBlockInfo()) |
6672 | 0 | return CE_Failure; |
6673 | | |
6674 | | /* -------------------------------------------------------------------- |
6675 | | */ |
6676 | | /* Figure out the ratio of blocks we will read to get an */ |
6677 | | /* approximate value. */ |
6678 | | /* -------------------------------------------------------------------- |
6679 | | */ |
6680 | 0 | int nSampleRate = 1; |
6681 | 0 | if (bApproxOK) |
6682 | 0 | { |
6683 | 0 | nSampleRate = static_cast<int>(std::max( |
6684 | 0 | 1.0, |
6685 | 0 | sqrt(static_cast<double>(nBlocksPerRow) * nBlocksPerColumn))); |
6686 | | // We want to avoid probing only the first column of blocks for |
6687 | | // a square shaped raster, because it is not unlikely that it may |
6688 | | // be padding only (#6378) |
6689 | 0 | if (nSampleRate == nBlocksPerRow && nBlocksPerRow > 1) |
6690 | 0 | nSampleRate += 1; |
6691 | 0 | } |
6692 | 0 | if (nSampleRate == 1) |
6693 | 0 | bApproxOK = false; |
6694 | | |
6695 | | // Particular case for GDT_Byte that only use integral types for all |
6696 | | // intermediate computations. Only possible if the number of pixels |
6697 | | // explored is lower than GUINTBIG_MAX / (255*255), so that nSumSquare |
6698 | | // can fit on a uint64. Should be 99.99999% of cases. |
6699 | | // For GUInt16, this limits to raster of 4 giga pixels |
6700 | 0 | if ((!poMaskBand && eDataType == GDT_Byte && !bSignedByte && |
6701 | 0 | static_cast<GUIntBig>(nBlocksPerRow) * nBlocksPerColumn / |
6702 | 0 | nSampleRate < |
6703 | 0 | GUINTBIG_MAX / (255U * 255U) / |
6704 | 0 | (static_cast<GUInt64>(nBlockXSize) * |
6705 | 0 | static_cast<GUInt64>(nBlockYSize))) || |
6706 | 0 | (eDataType == GDT_UInt16 && |
6707 | 0 | static_cast<GUIntBig>(nBlocksPerRow) * nBlocksPerColumn / |
6708 | 0 | nSampleRate < |
6709 | 0 | GUINTBIG_MAX / (65535U * 65535U) / |
6710 | 0 | (static_cast<GUInt64>(nBlockXSize) * |
6711 | 0 | static_cast<GUInt64>(nBlockYSize)))) |
6712 | 0 | { |
6713 | 0 | const GUInt32 nMaxValueType = (eDataType == GDT_Byte) ? 255 : 65535; |
6714 | 0 | GUInt32 nMin = nMaxValueType; |
6715 | 0 | GUInt32 nMax = 0; |
6716 | 0 | GUIntBig nSum = 0; |
6717 | 0 | GUIntBig nSumSquare = 0; |
6718 | | // If no valid nodata, map to invalid value (256 for Byte) |
6719 | 0 | const GUInt32 nNoDataValue = |
6720 | 0 | (sNoDataValues.bGotNoDataValue && |
6721 | 0 | sNoDataValues.dfNoDataValue >= 0 && |
6722 | 0 | sNoDataValues.dfNoDataValue <= nMaxValueType && |
6723 | 0 | fabs(sNoDataValues.dfNoDataValue - |
6724 | 0 | static_cast<GUInt32>(sNoDataValues.dfNoDataValue + |
6725 | 0 | 1e-10)) < 1e-10) |
6726 | 0 | ? static_cast<GUInt32>(sNoDataValues.dfNoDataValue + 1e-10) |
6727 | 0 | : nMaxValueType + 1; |
6728 | |
|
6729 | 0 | for (GIntBig iSampleBlock = 0; |
6730 | 0 | iSampleBlock < |
6731 | 0 | static_cast<GIntBig>(nBlocksPerRow) * nBlocksPerColumn; |
6732 | 0 | iSampleBlock += nSampleRate) |
6733 | 0 | { |
6734 | 0 | const int iYBlock = |
6735 | 0 | static_cast<int>(iSampleBlock / nBlocksPerRow); |
6736 | 0 | const int iXBlock = |
6737 | 0 | static_cast<int>(iSampleBlock % nBlocksPerRow); |
6738 | |
|
6739 | 0 | GDALRasterBlock *const poBlock = |
6740 | 0 | GetLockedBlockRef(iXBlock, iYBlock); |
6741 | 0 | if (poBlock == nullptr) |
6742 | 0 | return CE_Failure; |
6743 | | |
6744 | 0 | void *const pData = poBlock->GetDataRef(); |
6745 | |
|
6746 | 0 | int nXCheck = 0, nYCheck = 0; |
6747 | 0 | GetActualBlockSize(iXBlock, iYBlock, &nXCheck, &nYCheck); |
6748 | |
|
6749 | 0 | if (eDataType == GDT_Byte) |
6750 | 0 | { |
6751 | 0 | ComputeStatisticsInternal< |
6752 | 0 | GByte, /* COMPUTE_OTHER_STATS = */ true>:: |
6753 | 0 | f(nXCheck, nBlockXSize, nYCheck, |
6754 | 0 | static_cast<const GByte *>(pData), |
6755 | 0 | nNoDataValue <= nMaxValueType, nNoDataValue, nMin, |
6756 | 0 | nMax, nSum, nSumSquare, nSampleCount, nValidCount); |
6757 | 0 | } |
6758 | 0 | else |
6759 | 0 | { |
6760 | 0 | ComputeStatisticsInternal< |
6761 | 0 | GUInt16, /* COMPUTE_OTHER_STATS = */ true>:: |
6762 | 0 | f(nXCheck, nBlockXSize, nYCheck, |
6763 | 0 | static_cast<const GUInt16 *>(pData), |
6764 | 0 | nNoDataValue <= nMaxValueType, nNoDataValue, nMin, |
6765 | 0 | nMax, nSum, nSumSquare, nSampleCount, nValidCount); |
6766 | 0 | } |
6767 | |
|
6768 | 0 | poBlock->DropLock(); |
6769 | |
|
6770 | 0 | if (!pfnProgress(static_cast<double>(iSampleBlock) / |
6771 | 0 | (static_cast<double>(nBlocksPerRow) * |
6772 | 0 | nBlocksPerColumn), |
6773 | 0 | "Compute Statistics", pProgressData)) |
6774 | 0 | { |
6775 | 0 | ReportError(CE_Failure, CPLE_UserInterrupt, |
6776 | 0 | "User terminated"); |
6777 | 0 | return CE_Failure; |
6778 | 0 | } |
6779 | 0 | } |
6780 | | |
6781 | 0 | if (!pfnProgress(1.0, "Compute Statistics", pProgressData)) |
6782 | 0 | { |
6783 | 0 | ReportError(CE_Failure, CPLE_UserInterrupt, "User terminated"); |
6784 | 0 | return CE_Failure; |
6785 | 0 | } |
6786 | | |
6787 | | /* -------------------------------------------------------------------- |
6788 | | */ |
6789 | | /* Save computed information. */ |
6790 | | /* -------------------------------------------------------------------- |
6791 | | */ |
6792 | 0 | if (nValidCount) |
6793 | 0 | dfMean = static_cast<double>(nSum) / nValidCount; |
6794 | | |
6795 | | // To avoid potential precision issues when doing the difference, |
6796 | | // we need to do that computation on 128 bit rather than casting |
6797 | | // to double |
6798 | 0 | const GDALUInt128 nTmpForStdDev( |
6799 | 0 | GDALUInt128::Mul(nSumSquare, nValidCount) - |
6800 | 0 | GDALUInt128::Mul(nSum, nSum)); |
6801 | 0 | const double dfStdDev = |
6802 | 0 | nValidCount > 0 |
6803 | 0 | ? sqrt(static_cast<double>(nTmpForStdDev)) / nValidCount |
6804 | 0 | : 0.0; |
6805 | |
|
6806 | 0 | if (nValidCount > 0) |
6807 | 0 | { |
6808 | 0 | if (bApproxOK) |
6809 | 0 | { |
6810 | 0 | SetMetadataItem("STATISTICS_APPROXIMATE", "YES"); |
6811 | 0 | } |
6812 | 0 | else if (GetMetadataItem("STATISTICS_APPROXIMATE")) |
6813 | 0 | { |
6814 | 0 | SetMetadataItem("STATISTICS_APPROXIMATE", nullptr); |
6815 | 0 | } |
6816 | 0 | SetStatistics(nMin, nMax, dfMean, dfStdDev); |
6817 | 0 | } |
6818 | |
|
6819 | 0 | SetValidPercent(nSampleCount, nValidCount); |
6820 | | |
6821 | | /* -------------------------------------------------------------------- |
6822 | | */ |
6823 | | /* Record results. */ |
6824 | | /* -------------------------------------------------------------------- |
6825 | | */ |
6826 | 0 | if (pdfMin != nullptr) |
6827 | 0 | *pdfMin = nValidCount ? nMin : 0; |
6828 | 0 | if (pdfMax != nullptr) |
6829 | 0 | *pdfMax = nValidCount ? nMax : 0; |
6830 | |
|
6831 | 0 | if (pdfMean != nullptr) |
6832 | 0 | *pdfMean = dfMean; |
6833 | |
|
6834 | 0 | if (pdfStdDev != nullptr) |
6835 | 0 | *pdfStdDev = dfStdDev; |
6836 | |
|
6837 | 0 | if (nValidCount > 0) |
6838 | 0 | return CE_None; |
6839 | | |
6840 | 0 | ReportError(CE_Failure, CPLE_AppDefined, |
6841 | 0 | "Failed to compute statistics, no valid pixels found " |
6842 | 0 | "in sampling."); |
6843 | 0 | return CE_Failure; |
6844 | 0 | } |
6845 | | |
6846 | 0 | GByte *pabyMaskData = nullptr; |
6847 | 0 | if (poMaskBand) |
6848 | 0 | { |
6849 | 0 | pabyMaskData = static_cast<GByte *>( |
6850 | 0 | VSI_MALLOC2_VERBOSE(nBlockXSize, nBlockYSize)); |
6851 | 0 | if (!pabyMaskData) |
6852 | 0 | { |
6853 | 0 | return CE_Failure; |
6854 | 0 | } |
6855 | 0 | } |
6856 | | |
6857 | 0 | for (GIntBig iSampleBlock = 0; |
6858 | 0 | iSampleBlock < |
6859 | 0 | static_cast<GIntBig>(nBlocksPerRow) * nBlocksPerColumn; |
6860 | 0 | iSampleBlock += nSampleRate) |
6861 | 0 | { |
6862 | 0 | const int iYBlock = static_cast<int>(iSampleBlock / nBlocksPerRow); |
6863 | 0 | const int iXBlock = static_cast<int>(iSampleBlock % nBlocksPerRow); |
6864 | |
|
6865 | 0 | GDALRasterBlock *const poBlock = |
6866 | 0 | GetLockedBlockRef(iXBlock, iYBlock); |
6867 | 0 | if (poBlock == nullptr) |
6868 | 0 | { |
6869 | 0 | CPLFree(pabyMaskData); |
6870 | 0 | return CE_Failure; |
6871 | 0 | } |
6872 | | |
6873 | 0 | void *const pData = poBlock->GetDataRef(); |
6874 | |
|
6875 | 0 | int nXCheck = 0, nYCheck = 0; |
6876 | 0 | GetActualBlockSize(iXBlock, iYBlock, &nXCheck, &nYCheck); |
6877 | |
|
6878 | 0 | if (poMaskBand && |
6879 | 0 | poMaskBand->RasterIO(GF_Read, iXBlock * nBlockXSize, |
6880 | 0 | iYBlock * nBlockYSize, nXCheck, nYCheck, |
6881 | 0 | pabyMaskData, nXCheck, nYCheck, GDT_Byte, |
6882 | 0 | 0, nBlockXSize, nullptr) != CE_None) |
6883 | 0 | { |
6884 | 0 | CPLFree(pabyMaskData); |
6885 | 0 | poBlock->DropLock(); |
6886 | 0 | return CE_Failure; |
6887 | 0 | } |
6888 | | |
6889 | | // This isn't the fastest way to do this, but is easier for now. |
6890 | 0 | for (int iY = 0; iY < nYCheck; iY++) |
6891 | 0 | { |
6892 | 0 | for (int iX = 0; iX < nXCheck; iX++) |
6893 | 0 | { |
6894 | 0 | const GPtrDiff_t iOffset = |
6895 | 0 | iX + static_cast<GPtrDiff_t>(iY) * nBlockXSize; |
6896 | 0 | if (pabyMaskData && pabyMaskData[iOffset] == 0) |
6897 | 0 | continue; |
6898 | | |
6899 | 0 | bool bValid = true; |
6900 | 0 | double dfValue = |
6901 | 0 | GetPixelValue(eDataType, bSignedByte, pData, iOffset, |
6902 | 0 | sNoDataValues, bValid); |
6903 | |
|
6904 | 0 | if (!bValid) |
6905 | 0 | continue; |
6906 | | |
6907 | 0 | dfMin = std::min(dfMin, dfValue); |
6908 | 0 | dfMax = std::max(dfMax, dfValue); |
6909 | |
|
6910 | 0 | nValidCount++; |
6911 | 0 | if (dfMin == dfMax) |
6912 | 0 | { |
6913 | 0 | if (nValidCount == 1) |
6914 | 0 | dfMean = dfMin; |
6915 | 0 | } |
6916 | 0 | else |
6917 | 0 | { |
6918 | 0 | const double dfDelta = dfValue - dfMean; |
6919 | 0 | dfMean += dfDelta / nValidCount; |
6920 | 0 | dfM2 += dfDelta * (dfValue - dfMean); |
6921 | 0 | } |
6922 | 0 | } |
6923 | 0 | } |
6924 | |
|
6925 | 0 | nSampleCount += static_cast<GUIntBig>(nXCheck) * nYCheck; |
6926 | |
|
6927 | 0 | poBlock->DropLock(); |
6928 | |
|
6929 | 0 | if (!pfnProgress( |
6930 | 0 | static_cast<double>(iSampleBlock) / |
6931 | 0 | (static_cast<double>(nBlocksPerRow) * nBlocksPerColumn), |
6932 | 0 | "Compute Statistics", pProgressData)) |
6933 | 0 | { |
6934 | 0 | ReportError(CE_Failure, CPLE_UserInterrupt, "User terminated"); |
6935 | 0 | CPLFree(pabyMaskData); |
6936 | 0 | return CE_Failure; |
6937 | 0 | } |
6938 | 0 | } |
6939 | | |
6940 | 0 | CPLFree(pabyMaskData); |
6941 | 0 | } |
6942 | | |
6943 | 0 | if (!pfnProgress(1.0, "Compute Statistics", pProgressData)) |
6944 | 0 | { |
6945 | 0 | ReportError(CE_Failure, CPLE_UserInterrupt, "User terminated"); |
6946 | 0 | return CE_Failure; |
6947 | 0 | } |
6948 | | |
6949 | | /* -------------------------------------------------------------------- */ |
6950 | | /* Save computed information. */ |
6951 | | /* -------------------------------------------------------------------- */ |
6952 | 0 | const double dfStdDev = nValidCount > 0 ? sqrt(dfM2 / nValidCount) : 0.0; |
6953 | |
|
6954 | 0 | if (nValidCount > 0) |
6955 | 0 | { |
6956 | 0 | if (bApproxOK) |
6957 | 0 | { |
6958 | 0 | SetMetadataItem("STATISTICS_APPROXIMATE", "YES"); |
6959 | 0 | } |
6960 | 0 | else if (GetMetadataItem("STATISTICS_APPROXIMATE")) |
6961 | 0 | { |
6962 | 0 | SetMetadataItem("STATISTICS_APPROXIMATE", nullptr); |
6963 | 0 | } |
6964 | 0 | SetStatistics(dfMin, dfMax, dfMean, dfStdDev); |
6965 | 0 | } |
6966 | 0 | else |
6967 | 0 | { |
6968 | 0 | dfMin = 0.0; |
6969 | 0 | dfMax = 0.0; |
6970 | 0 | } |
6971 | |
|
6972 | 0 | SetValidPercent(nSampleCount, nValidCount); |
6973 | | |
6974 | | /* -------------------------------------------------------------------- */ |
6975 | | /* Record results. */ |
6976 | | /* -------------------------------------------------------------------- */ |
6977 | 0 | if (pdfMin != nullptr) |
6978 | 0 | *pdfMin = dfMin; |
6979 | 0 | if (pdfMax != nullptr) |
6980 | 0 | *pdfMax = dfMax; |
6981 | |
|
6982 | 0 | if (pdfMean != nullptr) |
6983 | 0 | *pdfMean = dfMean; |
6984 | |
|
6985 | 0 | if (pdfStdDev != nullptr) |
6986 | 0 | *pdfStdDev = dfStdDev; |
6987 | |
|
6988 | 0 | if (nValidCount > 0) |
6989 | 0 | return CE_None; |
6990 | | |
6991 | 0 | ReportError( |
6992 | 0 | CE_Failure, CPLE_AppDefined, |
6993 | 0 | "Failed to compute statistics, no valid pixels found in sampling."); |
6994 | 0 | return CE_Failure; |
6995 | 0 | } |
6996 | | |
6997 | | /************************************************************************/ |
6998 | | /* GDALComputeRasterStatistics() */ |
6999 | | /************************************************************************/ |
7000 | | |
7001 | | /** |
7002 | | * \brief Compute image statistics. |
7003 | | * |
7004 | | * @see GDALRasterBand::ComputeStatistics() |
7005 | | */ |
7006 | | |
7007 | | CPLErr CPL_STDCALL GDALComputeRasterStatistics(GDALRasterBandH hBand, |
7008 | | int bApproxOK, double *pdfMin, |
7009 | | double *pdfMax, double *pdfMean, |
7010 | | double *pdfStdDev, |
7011 | | GDALProgressFunc pfnProgress, |
7012 | | void *pProgressData) |
7013 | | |
7014 | 0 | { |
7015 | 0 | VALIDATE_POINTER1(hBand, "GDALComputeRasterStatistics", CE_Failure); |
7016 | | |
7017 | 0 | GDALRasterBand *poBand = GDALRasterBand::FromHandle(hBand); |
7018 | |
|
7019 | 0 | return poBand->ComputeStatistics(bApproxOK, pdfMin, pdfMax, pdfMean, |
7020 | 0 | pdfStdDev, pfnProgress, pProgressData); |
7021 | 0 | } |
7022 | | |
7023 | | /************************************************************************/ |
7024 | | /* SetStatistics() */ |
7025 | | /************************************************************************/ |
7026 | | |
7027 | | /** |
7028 | | * \brief Set statistics on band. |
7029 | | * |
7030 | | * This method can be used to store min/max/mean/standard deviation |
7031 | | * statistics on a raster band. |
7032 | | * |
7033 | | * The default implementation stores them as metadata, and will only work |
7034 | | * on formats that can save arbitrary metadata. This method cannot detect |
7035 | | * whether metadata will be properly saved and so may return CE_None even |
7036 | | * if the statistics will never be saved. |
7037 | | * |
7038 | | * This method is the same as the C function GDALSetRasterStatistics(). |
7039 | | * |
7040 | | * @param dfMin minimum pixel value. |
7041 | | * |
7042 | | * @param dfMax maximum pixel value. |
7043 | | * |
7044 | | * @param dfMean mean (average) of all pixel values. |
7045 | | * |
7046 | | * @param dfStdDev Standard deviation of all pixel values. |
7047 | | * |
7048 | | * @return CE_None on success or CE_Failure on failure. |
7049 | | */ |
7050 | | |
7051 | | CPLErr GDALRasterBand::SetStatistics(double dfMin, double dfMax, double dfMean, |
7052 | | double dfStdDev) |
7053 | | |
7054 | 0 | { |
7055 | 0 | char szValue[128] = {0}; |
7056 | |
|
7057 | 0 | CPLsnprintf(szValue, sizeof(szValue), "%.14g", dfMin); |
7058 | 0 | SetMetadataItem("STATISTICS_MINIMUM", szValue); |
7059 | |
|
7060 | 0 | CPLsnprintf(szValue, sizeof(szValue), "%.14g", dfMax); |
7061 | 0 | SetMetadataItem("STATISTICS_MAXIMUM", szValue); |
7062 | |
|
7063 | 0 | CPLsnprintf(szValue, sizeof(szValue), "%.14g", dfMean); |
7064 | 0 | SetMetadataItem("STATISTICS_MEAN", szValue); |
7065 | |
|
7066 | 0 | CPLsnprintf(szValue, sizeof(szValue), "%.14g", dfStdDev); |
7067 | 0 | SetMetadataItem("STATISTICS_STDDEV", szValue); |
7068 | |
|
7069 | 0 | return CE_None; |
7070 | 0 | } |
7071 | | |
7072 | | /************************************************************************/ |
7073 | | /* GDALSetRasterStatistics() */ |
7074 | | /************************************************************************/ |
7075 | | |
7076 | | /** |
7077 | | * \brief Set statistics on band. |
7078 | | * |
7079 | | * @see GDALRasterBand::SetStatistics() |
7080 | | */ |
7081 | | |
7082 | | CPLErr CPL_STDCALL GDALSetRasterStatistics(GDALRasterBandH hBand, double dfMin, |
7083 | | double dfMax, double dfMean, |
7084 | | double dfStdDev) |
7085 | | |
7086 | 0 | { |
7087 | 0 | VALIDATE_POINTER1(hBand, "GDALSetRasterStatistics", CE_Failure); |
7088 | | |
7089 | 0 | GDALRasterBand *poBand = GDALRasterBand::FromHandle(hBand); |
7090 | 0 | return poBand->SetStatistics(dfMin, dfMax, dfMean, dfStdDev); |
7091 | 0 | } |
7092 | | |
7093 | | /************************************************************************/ |
7094 | | /* ComputeRasterMinMax() */ |
7095 | | /************************************************************************/ |
7096 | | |
7097 | | template <class T, bool HAS_NODATA> |
7098 | | static void ComputeMinMax(const T *buffer, size_t nElts, T nodataValue, T *pMin, |
7099 | | T *pMax) |
7100 | 0 | { |
7101 | 0 | T min0 = *pMin; |
7102 | 0 | T max0 = *pMax; |
7103 | 0 | T min1 = *pMin; |
7104 | 0 | T max1 = *pMax; |
7105 | 0 | size_t i; |
7106 | 0 | for (i = 0; i + 1 < nElts; i += 2) |
7107 | 0 | { |
7108 | 0 | if (!HAS_NODATA || buffer[i] != nodataValue) |
7109 | 0 | { |
7110 | 0 | min0 = std::min(min0, buffer[i]); |
7111 | 0 | max0 = std::max(max0, buffer[i]); |
7112 | 0 | } |
7113 | 0 | if (!HAS_NODATA || buffer[i + 1] != nodataValue) |
7114 | 0 | { |
7115 | 0 | min1 = std::min(min1, buffer[i + 1]); |
7116 | 0 | max1 = std::max(max1, buffer[i + 1]); |
7117 | 0 | } |
7118 | 0 | } |
7119 | 0 | T min = std::min(min0, min1); |
7120 | 0 | T max = std::max(max0, max1); |
7121 | 0 | if (i < nElts) |
7122 | 0 | { |
7123 | 0 | if (!HAS_NODATA || buffer[i] != nodataValue) |
7124 | 0 | { |
7125 | 0 | min = std::min(min, buffer[i]); |
7126 | 0 | max = std::max(max, buffer[i]); |
7127 | 0 | } |
7128 | 0 | } |
7129 | 0 | *pMin = min; |
7130 | 0 | *pMax = max; |
7131 | 0 | } Unexecuted instantiation: gdalrasterband.cpp:void ComputeMinMax<short, true>(short const*, unsigned long, short, short*, short*) Unexecuted instantiation: gdalrasterband.cpp:void ComputeMinMax<short, false>(short const*, unsigned long, short, short*, short*) |
7132 | | |
7133 | | template <GDALDataType eDataType, bool bSignedByte> |
7134 | | static void |
7135 | | ComputeMinMaxGeneric(const void *pData, int nXCheck, int nYCheck, |
7136 | | int nBlockXSize, const GDALNoDataValues &sNoDataValues, |
7137 | | const GByte *pabyMaskData, double &dfMin, double &dfMax) |
7138 | 0 | { |
7139 | 0 | double dfLocalMin = dfMin; |
7140 | 0 | double dfLocalMax = dfMax; |
7141 | |
|
7142 | 0 | for (int iY = 0; iY < nYCheck; iY++) |
7143 | 0 | { |
7144 | 0 | for (int iX = 0; iX < nXCheck; iX++) |
7145 | 0 | { |
7146 | 0 | const GPtrDiff_t iOffset = |
7147 | 0 | iX + static_cast<GPtrDiff_t>(iY) * nBlockXSize; |
7148 | 0 | if (pabyMaskData && pabyMaskData[iOffset] == 0) |
7149 | 0 | continue; |
7150 | 0 | bool bValid = true; |
7151 | 0 | double dfValue = GetPixelValue(eDataType, bSignedByte, pData, |
7152 | 0 | iOffset, sNoDataValues, bValid); |
7153 | 0 | if (!bValid) |
7154 | 0 | continue; |
7155 | | |
7156 | 0 | dfLocalMin = std::min(dfLocalMin, dfValue); |
7157 | 0 | dfLocalMax = std::max(dfLocalMax, dfValue); |
7158 | 0 | } |
7159 | 0 | } |
7160 | |
|
7161 | 0 | dfMin = dfLocalMin; |
7162 | 0 | dfMax = dfLocalMax; |
7163 | 0 | } Unexecuted instantiation: gdalrasterband.cpp:void ComputeMinMaxGeneric<(GDALDataType)1, true>(void const*, int, int, int, GDALNoDataValues const&, unsigned char const*, double&, double&) Unexecuted instantiation: gdalrasterband.cpp:void ComputeMinMaxGeneric<(GDALDataType)1, false>(void const*, int, int, int, GDALNoDataValues const&, unsigned char const*, double&, double&) Unexecuted instantiation: gdalrasterband.cpp:void ComputeMinMaxGeneric<(GDALDataType)14, false>(void const*, int, int, int, GDALNoDataValues const&, unsigned char const*, double&, double&) Unexecuted instantiation: gdalrasterband.cpp:void ComputeMinMaxGeneric<(GDALDataType)2, false>(void const*, int, int, int, GDALNoDataValues const&, unsigned char const*, double&, double&) Unexecuted instantiation: gdalrasterband.cpp:void ComputeMinMaxGeneric<(GDALDataType)3, false>(void const*, int, int, int, GDALNoDataValues const&, unsigned char const*, double&, double&) Unexecuted instantiation: gdalrasterband.cpp:void ComputeMinMaxGeneric<(GDALDataType)4, false>(void const*, int, int, int, GDALNoDataValues const&, unsigned char const*, double&, double&) Unexecuted instantiation: gdalrasterband.cpp:void ComputeMinMaxGeneric<(GDALDataType)5, false>(void const*, int, int, int, GDALNoDataValues const&, unsigned char const*, double&, double&) Unexecuted instantiation: gdalrasterband.cpp:void ComputeMinMaxGeneric<(GDALDataType)12, false>(void const*, int, int, int, GDALNoDataValues const&, unsigned char const*, double&, double&) Unexecuted instantiation: gdalrasterband.cpp:void ComputeMinMaxGeneric<(GDALDataType)13, false>(void const*, int, int, int, GDALNoDataValues const&, unsigned char const*, double&, double&) Unexecuted instantiation: gdalrasterband.cpp:void ComputeMinMaxGeneric<(GDALDataType)15, false>(void const*, int, int, int, GDALNoDataValues const&, unsigned char const*, double&, double&) Unexecuted instantiation: gdalrasterband.cpp:void ComputeMinMaxGeneric<(GDALDataType)6, false>(void const*, int, int, int, GDALNoDataValues const&, unsigned char const*, double&, double&) Unexecuted instantiation: gdalrasterband.cpp:void ComputeMinMaxGeneric<(GDALDataType)7, false>(void const*, int, int, int, GDALNoDataValues const&, unsigned char const*, double&, double&) Unexecuted instantiation: gdalrasterband.cpp:void ComputeMinMaxGeneric<(GDALDataType)8, false>(void const*, int, int, int, GDALNoDataValues const&, unsigned char const*, double&, double&) Unexecuted instantiation: gdalrasterband.cpp:void ComputeMinMaxGeneric<(GDALDataType)9, false>(void const*, int, int, int, GDALNoDataValues const&, unsigned char const*, double&, double&) Unexecuted instantiation: gdalrasterband.cpp:void ComputeMinMaxGeneric<(GDALDataType)16, false>(void const*, int, int, int, GDALNoDataValues const&, unsigned char const*, double&, double&) Unexecuted instantiation: gdalrasterband.cpp:void ComputeMinMaxGeneric<(GDALDataType)10, false>(void const*, int, int, int, GDALNoDataValues const&, unsigned char const*, double&, double&) Unexecuted instantiation: gdalrasterband.cpp:void ComputeMinMaxGeneric<(GDALDataType)11, false>(void const*, int, int, int, GDALNoDataValues const&, unsigned char const*, double&, double&) |
7164 | | |
7165 | | static void ComputeMinMaxGeneric(const void *pData, GDALDataType eDataType, |
7166 | | bool bSignedByte, int nXCheck, int nYCheck, |
7167 | | int nBlockXSize, |
7168 | | const GDALNoDataValues &sNoDataValues, |
7169 | | const GByte *pabyMaskData, double &dfMin, |
7170 | | double &dfMax) |
7171 | 0 | { |
7172 | 0 | switch (eDataType) |
7173 | 0 | { |
7174 | 0 | case GDT_Unknown: |
7175 | 0 | CPLAssert(false); |
7176 | 0 | break; |
7177 | 0 | case GDT_Byte: |
7178 | 0 | if (bSignedByte) |
7179 | 0 | { |
7180 | 0 | ComputeMinMaxGeneric<GDT_Byte, true>( |
7181 | 0 | pData, nXCheck, nYCheck, nBlockXSize, sNoDataValues, |
7182 | 0 | pabyMaskData, dfMin, dfMax); |
7183 | 0 | } |
7184 | 0 | else |
7185 | 0 | { |
7186 | 0 | ComputeMinMaxGeneric<GDT_Byte, false>( |
7187 | 0 | pData, nXCheck, nYCheck, nBlockXSize, sNoDataValues, |
7188 | 0 | pabyMaskData, dfMin, dfMax); |
7189 | 0 | } |
7190 | 0 | break; |
7191 | 0 | case GDT_Int8: |
7192 | 0 | ComputeMinMaxGeneric<GDT_Int8, false>(pData, nXCheck, nYCheck, |
7193 | 0 | nBlockXSize, sNoDataValues, |
7194 | 0 | pabyMaskData, dfMin, dfMax); |
7195 | 0 | break; |
7196 | 0 | case GDT_UInt16: |
7197 | 0 | ComputeMinMaxGeneric<GDT_UInt16, false>(pData, nXCheck, nYCheck, |
7198 | 0 | nBlockXSize, sNoDataValues, |
7199 | 0 | pabyMaskData, dfMin, dfMax); |
7200 | 0 | break; |
7201 | 0 | case GDT_Int16: |
7202 | 0 | ComputeMinMaxGeneric<GDT_Int16, false>(pData, nXCheck, nYCheck, |
7203 | 0 | nBlockXSize, sNoDataValues, |
7204 | 0 | pabyMaskData, dfMin, dfMax); |
7205 | 0 | break; |
7206 | 0 | case GDT_UInt32: |
7207 | 0 | ComputeMinMaxGeneric<GDT_UInt32, false>(pData, nXCheck, nYCheck, |
7208 | 0 | nBlockXSize, sNoDataValues, |
7209 | 0 | pabyMaskData, dfMin, dfMax); |
7210 | 0 | break; |
7211 | 0 | case GDT_Int32: |
7212 | 0 | ComputeMinMaxGeneric<GDT_Int32, false>(pData, nXCheck, nYCheck, |
7213 | 0 | nBlockXSize, sNoDataValues, |
7214 | 0 | pabyMaskData, dfMin, dfMax); |
7215 | 0 | break; |
7216 | 0 | case GDT_UInt64: |
7217 | 0 | ComputeMinMaxGeneric<GDT_UInt64, false>(pData, nXCheck, nYCheck, |
7218 | 0 | nBlockXSize, sNoDataValues, |
7219 | 0 | pabyMaskData, dfMin, dfMax); |
7220 | 0 | break; |
7221 | 0 | case GDT_Int64: |
7222 | 0 | ComputeMinMaxGeneric<GDT_Int64, false>(pData, nXCheck, nYCheck, |
7223 | 0 | nBlockXSize, sNoDataValues, |
7224 | 0 | pabyMaskData, dfMin, dfMax); |
7225 | 0 | break; |
7226 | 0 | case GDT_Float16: |
7227 | 0 | ComputeMinMaxGeneric<GDT_Float16, false>( |
7228 | 0 | pData, nXCheck, nYCheck, nBlockXSize, sNoDataValues, |
7229 | 0 | pabyMaskData, dfMin, dfMax); |
7230 | 0 | break; |
7231 | 0 | case GDT_Float32: |
7232 | 0 | ComputeMinMaxGeneric<GDT_Float32, false>( |
7233 | 0 | pData, nXCheck, nYCheck, nBlockXSize, sNoDataValues, |
7234 | 0 | pabyMaskData, dfMin, dfMax); |
7235 | 0 | break; |
7236 | 0 | case GDT_Float64: |
7237 | 0 | ComputeMinMaxGeneric<GDT_Float64, false>( |
7238 | 0 | pData, nXCheck, nYCheck, nBlockXSize, sNoDataValues, |
7239 | 0 | pabyMaskData, dfMin, dfMax); |
7240 | 0 | break; |
7241 | 0 | case GDT_CInt16: |
7242 | 0 | ComputeMinMaxGeneric<GDT_CInt16, false>(pData, nXCheck, nYCheck, |
7243 | 0 | nBlockXSize, sNoDataValues, |
7244 | 0 | pabyMaskData, dfMin, dfMax); |
7245 | 0 | break; |
7246 | 0 | case GDT_CInt32: |
7247 | 0 | ComputeMinMaxGeneric<GDT_CInt32, false>(pData, nXCheck, nYCheck, |
7248 | 0 | nBlockXSize, sNoDataValues, |
7249 | 0 | pabyMaskData, dfMin, dfMax); |
7250 | 0 | break; |
7251 | 0 | case GDT_CFloat16: |
7252 | 0 | ComputeMinMaxGeneric<GDT_CFloat16, false>( |
7253 | 0 | pData, nXCheck, nYCheck, nBlockXSize, sNoDataValues, |
7254 | 0 | pabyMaskData, dfMin, dfMax); |
7255 | 0 | break; |
7256 | 0 | case GDT_CFloat32: |
7257 | 0 | ComputeMinMaxGeneric<GDT_CFloat32, false>( |
7258 | 0 | pData, nXCheck, nYCheck, nBlockXSize, sNoDataValues, |
7259 | 0 | pabyMaskData, dfMin, dfMax); |
7260 | 0 | break; |
7261 | 0 | case GDT_CFloat64: |
7262 | 0 | ComputeMinMaxGeneric<GDT_CFloat64, false>( |
7263 | 0 | pData, nXCheck, nYCheck, nBlockXSize, sNoDataValues, |
7264 | 0 | pabyMaskData, dfMin, dfMax); |
7265 | 0 | break; |
7266 | 0 | case GDT_TypeCount: |
7267 | 0 | CPLAssert(false); |
7268 | 0 | break; |
7269 | 0 | } |
7270 | 0 | } |
7271 | | |
7272 | | static bool ComputeMinMaxGenericIterBlocks( |
7273 | | GDALRasterBand *poBand, GDALDataType eDataType, bool bSignedByte, |
7274 | | GIntBig nTotalBlocks, int nSampleRate, int nBlocksPerRow, |
7275 | | const GDALNoDataValues &sNoDataValues, GDALRasterBand *poMaskBand, |
7276 | | double &dfMin, double &dfMax) |
7277 | | |
7278 | 0 | { |
7279 | 0 | GByte *pabyMaskData = nullptr; |
7280 | 0 | int nBlockXSize, nBlockYSize; |
7281 | 0 | poBand->GetBlockSize(&nBlockXSize, &nBlockYSize); |
7282 | |
|
7283 | 0 | if (poMaskBand) |
7284 | 0 | { |
7285 | 0 | pabyMaskData = |
7286 | 0 | static_cast<GByte *>(VSI_MALLOC2_VERBOSE(nBlockXSize, nBlockYSize)); |
7287 | 0 | if (!pabyMaskData) |
7288 | 0 | { |
7289 | 0 | return false; |
7290 | 0 | } |
7291 | 0 | } |
7292 | | |
7293 | 0 | for (GIntBig iSampleBlock = 0; iSampleBlock < nTotalBlocks; |
7294 | 0 | iSampleBlock += nSampleRate) |
7295 | 0 | { |
7296 | 0 | const int iYBlock = static_cast<int>(iSampleBlock / nBlocksPerRow); |
7297 | 0 | const int iXBlock = static_cast<int>(iSampleBlock % nBlocksPerRow); |
7298 | |
|
7299 | 0 | GDALRasterBlock *poBlock = poBand->GetLockedBlockRef(iXBlock, iYBlock); |
7300 | 0 | if (poBlock == nullptr) |
7301 | 0 | { |
7302 | 0 | CPLFree(pabyMaskData); |
7303 | 0 | return false; |
7304 | 0 | } |
7305 | | |
7306 | 0 | void *const pData = poBlock->GetDataRef(); |
7307 | |
|
7308 | 0 | int nXCheck = 0, nYCheck = 0; |
7309 | 0 | poBand->GetActualBlockSize(iXBlock, iYBlock, &nXCheck, &nYCheck); |
7310 | |
|
7311 | 0 | if (poMaskBand && |
7312 | 0 | poMaskBand->RasterIO(GF_Read, iXBlock * nBlockXSize, |
7313 | 0 | iYBlock * nBlockYSize, nXCheck, nYCheck, |
7314 | 0 | pabyMaskData, nXCheck, nYCheck, GDT_Byte, 0, |
7315 | 0 | nBlockXSize, nullptr) != CE_None) |
7316 | 0 | { |
7317 | 0 | poBlock->DropLock(); |
7318 | 0 | CPLFree(pabyMaskData); |
7319 | 0 | return false; |
7320 | 0 | } |
7321 | | |
7322 | 0 | ComputeMinMaxGeneric(pData, eDataType, bSignedByte, nXCheck, nYCheck, |
7323 | 0 | nBlockXSize, sNoDataValues, pabyMaskData, dfMin, |
7324 | 0 | dfMax); |
7325 | |
|
7326 | 0 | poBlock->DropLock(); |
7327 | 0 | } |
7328 | | |
7329 | 0 | CPLFree(pabyMaskData); |
7330 | 0 | return true; |
7331 | 0 | } |
7332 | | |
7333 | | /** |
7334 | | * \brief Compute the min/max values for a band. |
7335 | | * |
7336 | | * If approximate is OK, then the band's GetMinimum()/GetMaximum() will |
7337 | | * be trusted. If it doesn't work, a subsample of blocks will be read to |
7338 | | * get an approximate min/max. If the band has a nodata value it will |
7339 | | * be excluded from the minimum and maximum. |
7340 | | * |
7341 | | * If bApprox is FALSE, then all pixels will be read and used to compute |
7342 | | * an exact range. |
7343 | | * |
7344 | | * This method is the same as the C function GDALComputeRasterMinMax(). |
7345 | | * |
7346 | | * @param bApproxOK TRUE if an approximate (faster) answer is OK, otherwise |
7347 | | * FALSE. |
7348 | | * @param adfMinMax the array in which the minimum (adfMinMax[0]) and the |
7349 | | * maximum (adfMinMax[1]) are returned. |
7350 | | * |
7351 | | * @return CE_None on success or CE_Failure on failure. |
7352 | | */ |
7353 | | |
7354 | | CPLErr GDALRasterBand::ComputeRasterMinMax(int bApproxOK, double *adfMinMax) |
7355 | 0 | { |
7356 | | /* -------------------------------------------------------------------- */ |
7357 | | /* Does the driver already know the min/max? */ |
7358 | | /* -------------------------------------------------------------------- */ |
7359 | 0 | if (bApproxOK) |
7360 | 0 | { |
7361 | 0 | int bSuccessMin = FALSE; |
7362 | 0 | int bSuccessMax = FALSE; |
7363 | |
|
7364 | 0 | double dfMin = GetMinimum(&bSuccessMin); |
7365 | 0 | double dfMax = GetMaximum(&bSuccessMax); |
7366 | |
|
7367 | 0 | if (bSuccessMin && bSuccessMax) |
7368 | 0 | { |
7369 | 0 | adfMinMax[0] = dfMin; |
7370 | 0 | adfMinMax[1] = dfMax; |
7371 | 0 | return CE_None; |
7372 | 0 | } |
7373 | 0 | } |
7374 | | |
7375 | | /* -------------------------------------------------------------------- */ |
7376 | | /* If we have overview bands, use them for min/max. */ |
7377 | | /* -------------------------------------------------------------------- */ |
7378 | | // cppcheck-suppress knownConditionTrueFalse |
7379 | 0 | if (bApproxOK && GetOverviewCount() > 0 && !HasArbitraryOverviews()) |
7380 | 0 | { |
7381 | 0 | GDALRasterBand *poBand = |
7382 | 0 | GetRasterSampleOverview(GDALSTAT_APPROX_NUMSAMPLES); |
7383 | |
|
7384 | 0 | if (poBand != this) |
7385 | 0 | return poBand->ComputeRasterMinMax(FALSE, adfMinMax); |
7386 | 0 | } |
7387 | | |
7388 | | /* -------------------------------------------------------------------- */ |
7389 | | /* Read actual data and compute minimum and maximum. */ |
7390 | | /* -------------------------------------------------------------------- */ |
7391 | 0 | GDALNoDataValues sNoDataValues(this, eDataType); |
7392 | 0 | GDALRasterBand *poMaskBand = nullptr; |
7393 | 0 | if (!sNoDataValues.bGotNoDataValue) |
7394 | 0 | { |
7395 | 0 | const int l_nMaskFlags = GetMaskFlags(); |
7396 | 0 | if (l_nMaskFlags != GMF_ALL_VALID && l_nMaskFlags != GMF_NODATA && |
7397 | 0 | GetColorInterpretation() != GCI_AlphaBand) |
7398 | 0 | { |
7399 | 0 | poMaskBand = GetMaskBand(); |
7400 | 0 | } |
7401 | 0 | } |
7402 | |
|
7403 | 0 | bool bSignedByte = false; |
7404 | 0 | if (eDataType == GDT_Byte) |
7405 | 0 | { |
7406 | 0 | EnablePixelTypeSignedByteWarning(false); |
7407 | 0 | const char *pszPixelType = |
7408 | 0 | GetMetadataItem("PIXELTYPE", "IMAGE_STRUCTURE"); |
7409 | 0 | EnablePixelTypeSignedByteWarning(true); |
7410 | 0 | bSignedByte = |
7411 | 0 | pszPixelType != nullptr && EQUAL(pszPixelType, "SIGNEDBYTE"); |
7412 | 0 | } |
7413 | |
|
7414 | 0 | GDALRasterIOExtraArg sExtraArg; |
7415 | 0 | INIT_RASTERIO_EXTRA_ARG(sExtraArg); |
7416 | |
|
7417 | 0 | GUInt32 nMin = (eDataType == GDT_Byte) |
7418 | 0 | ? 255 |
7419 | 0 | : 65535; // used for GByte & GUInt16 cases |
7420 | 0 | GUInt32 nMax = 0; // used for GByte & GUInt16 cases |
7421 | 0 | GInt16 nMinInt16 = |
7422 | 0 | std::numeric_limits<GInt16>::max(); // used for GInt16 case |
7423 | 0 | GInt16 nMaxInt16 = |
7424 | 0 | std::numeric_limits<GInt16>::lowest(); // used for GInt16 case |
7425 | 0 | double dfMin = |
7426 | 0 | std::numeric_limits<double>::infinity(); // used for generic code path |
7427 | 0 | double dfMax = |
7428 | 0 | -std::numeric_limits<double>::infinity(); // used for generic code path |
7429 | 0 | const bool bUseOptimizedPath = |
7430 | 0 | !poMaskBand && ((eDataType == GDT_Byte && !bSignedByte) || |
7431 | 0 | eDataType == GDT_Int16 || eDataType == GDT_UInt16); |
7432 | |
|
7433 | 0 | const auto ComputeMinMaxForBlock = |
7434 | 0 | [this, bSignedByte, &sNoDataValues, &nMin, &nMax, &nMinInt16, |
7435 | 0 | &nMaxInt16](const void *pData, int nXCheck, int nBufferWidth, |
7436 | 0 | int nYCheck) |
7437 | 0 | { |
7438 | 0 | if (eDataType == GDT_Byte && !bSignedByte) |
7439 | 0 | { |
7440 | 0 | const bool bHasNoData = |
7441 | 0 | sNoDataValues.bGotNoDataValue && |
7442 | 0 | GDALIsValueInRange<GByte>(sNoDataValues.dfNoDataValue) && |
7443 | 0 | static_cast<GByte>(sNoDataValues.dfNoDataValue) == |
7444 | 0 | sNoDataValues.dfNoDataValue; |
7445 | 0 | const GUInt32 nNoDataValue = |
7446 | 0 | bHasNoData ? static_cast<GByte>(sNoDataValues.dfNoDataValue) |
7447 | 0 | : 0; |
7448 | 0 | GUIntBig nSum, nSumSquare, nSampleCount, nValidCount; // unused |
7449 | 0 | ComputeStatisticsInternal<GByte, |
7450 | 0 | /* COMPUTE_OTHER_STATS = */ false>:: |
7451 | 0 | f(nXCheck, nBufferWidth, nYCheck, |
7452 | 0 | static_cast<const GByte *>(pData), bHasNoData, nNoDataValue, |
7453 | 0 | nMin, nMax, nSum, nSumSquare, nSampleCount, nValidCount); |
7454 | 0 | } |
7455 | 0 | else if (eDataType == GDT_UInt16) |
7456 | 0 | { |
7457 | 0 | const bool bHasNoData = |
7458 | 0 | sNoDataValues.bGotNoDataValue && |
7459 | 0 | GDALIsValueInRange<GUInt16>(sNoDataValues.dfNoDataValue) && |
7460 | 0 | static_cast<GUInt16>(sNoDataValues.dfNoDataValue) == |
7461 | 0 | sNoDataValues.dfNoDataValue; |
7462 | 0 | const GUInt32 nNoDataValue = |
7463 | 0 | bHasNoData ? static_cast<GUInt16>(sNoDataValues.dfNoDataValue) |
7464 | 0 | : 0; |
7465 | 0 | GUIntBig nSum, nSumSquare, nSampleCount, nValidCount; // unused |
7466 | 0 | ComputeStatisticsInternal<GUInt16, |
7467 | 0 | /* COMPUTE_OTHER_STATS = */ false>:: |
7468 | 0 | f(nXCheck, nBufferWidth, nYCheck, |
7469 | 0 | static_cast<const GUInt16 *>(pData), bHasNoData, nNoDataValue, |
7470 | 0 | nMin, nMax, nSum, nSumSquare, nSampleCount, nValidCount); |
7471 | 0 | } |
7472 | 0 | else if (eDataType == GDT_Int16) |
7473 | 0 | { |
7474 | 0 | const bool bHasNoData = |
7475 | 0 | sNoDataValues.bGotNoDataValue && |
7476 | 0 | GDALIsValueInRange<int16_t>(sNoDataValues.dfNoDataValue) && |
7477 | 0 | static_cast<int16_t>(sNoDataValues.dfNoDataValue) == |
7478 | 0 | sNoDataValues.dfNoDataValue; |
7479 | 0 | if (bHasNoData) |
7480 | 0 | { |
7481 | 0 | const int16_t nNoDataValue = |
7482 | 0 | static_cast<int16_t>(sNoDataValues.dfNoDataValue); |
7483 | 0 | for (int iY = 0; iY < nYCheck; iY++) |
7484 | 0 | { |
7485 | 0 | ComputeMinMax<int16_t, true>( |
7486 | 0 | static_cast<const int16_t *>(pData) + |
7487 | 0 | static_cast<size_t>(iY) * nBufferWidth, |
7488 | 0 | nXCheck, nNoDataValue, &nMinInt16, &nMaxInt16); |
7489 | 0 | } |
7490 | 0 | } |
7491 | 0 | else |
7492 | 0 | { |
7493 | 0 | for (int iY = 0; iY < nYCheck; iY++) |
7494 | 0 | { |
7495 | 0 | ComputeMinMax<int16_t, false>( |
7496 | 0 | static_cast<const int16_t *>(pData) + |
7497 | 0 | static_cast<size_t>(iY) * nBufferWidth, |
7498 | 0 | nXCheck, 0, &nMinInt16, &nMaxInt16); |
7499 | 0 | } |
7500 | 0 | } |
7501 | 0 | } |
7502 | 0 | }; |
7503 | |
|
7504 | 0 | if (bApproxOK && HasArbitraryOverviews()) |
7505 | 0 | { |
7506 | | /* -------------------------------------------------------------------- |
7507 | | */ |
7508 | | /* Figure out how much the image should be reduced to get an */ |
7509 | | /* approximate value. */ |
7510 | | /* -------------------------------------------------------------------- |
7511 | | */ |
7512 | 0 | double dfReduction = sqrt(static_cast<double>(nRasterXSize) * |
7513 | 0 | nRasterYSize / GDALSTAT_APPROX_NUMSAMPLES); |
7514 | |
|
7515 | 0 | int nXReduced = nRasterXSize; |
7516 | 0 | int nYReduced = nRasterYSize; |
7517 | 0 | if (dfReduction > 1.0) |
7518 | 0 | { |
7519 | 0 | nXReduced = static_cast<int>(nRasterXSize / dfReduction); |
7520 | 0 | nYReduced = static_cast<int>(nRasterYSize / dfReduction); |
7521 | | |
7522 | | // Catch the case of huge resizing ratios here |
7523 | 0 | if (nXReduced == 0) |
7524 | 0 | nXReduced = 1; |
7525 | 0 | if (nYReduced == 0) |
7526 | 0 | nYReduced = 1; |
7527 | 0 | } |
7528 | |
|
7529 | 0 | void *const pData = CPLMalloc(cpl::fits_on<int>( |
7530 | 0 | GDALGetDataTypeSizeBytes(eDataType) * nXReduced * nYReduced)); |
7531 | |
|
7532 | 0 | const CPLErr eErr = |
7533 | 0 | IRasterIO(GF_Read, 0, 0, nRasterXSize, nRasterYSize, pData, |
7534 | 0 | nXReduced, nYReduced, eDataType, 0, 0, &sExtraArg); |
7535 | 0 | if (eErr != CE_None) |
7536 | 0 | { |
7537 | 0 | CPLFree(pData); |
7538 | 0 | return eErr; |
7539 | 0 | } |
7540 | | |
7541 | 0 | GByte *pabyMaskData = nullptr; |
7542 | 0 | if (poMaskBand) |
7543 | 0 | { |
7544 | 0 | pabyMaskData = |
7545 | 0 | static_cast<GByte *>(VSI_MALLOC2_VERBOSE(nXReduced, nYReduced)); |
7546 | 0 | if (!pabyMaskData) |
7547 | 0 | { |
7548 | 0 | CPLFree(pData); |
7549 | 0 | return CE_Failure; |
7550 | 0 | } |
7551 | | |
7552 | 0 | if (poMaskBand->RasterIO(GF_Read, 0, 0, nRasterXSize, nRasterYSize, |
7553 | 0 | pabyMaskData, nXReduced, nYReduced, |
7554 | 0 | GDT_Byte, 0, 0, nullptr) != CE_None) |
7555 | 0 | { |
7556 | 0 | CPLFree(pData); |
7557 | 0 | CPLFree(pabyMaskData); |
7558 | 0 | return CE_Failure; |
7559 | 0 | } |
7560 | 0 | } |
7561 | | |
7562 | 0 | if (bUseOptimizedPath) |
7563 | 0 | { |
7564 | 0 | ComputeMinMaxForBlock(pData, nXReduced, nXReduced, nYReduced); |
7565 | 0 | } |
7566 | 0 | else |
7567 | 0 | { |
7568 | 0 | ComputeMinMaxGeneric(pData, eDataType, bSignedByte, nXReduced, |
7569 | 0 | nYReduced, nXReduced, sNoDataValues, |
7570 | 0 | pabyMaskData, dfMin, dfMax); |
7571 | 0 | } |
7572 | |
|
7573 | 0 | CPLFree(pData); |
7574 | 0 | CPLFree(pabyMaskData); |
7575 | 0 | } |
7576 | | |
7577 | 0 | else // No arbitrary overviews |
7578 | 0 | { |
7579 | 0 | if (!InitBlockInfo()) |
7580 | 0 | return CE_Failure; |
7581 | | |
7582 | | /* -------------------------------------------------------------------- |
7583 | | */ |
7584 | | /* Figure out the ratio of blocks we will read to get an */ |
7585 | | /* approximate value. */ |
7586 | | /* -------------------------------------------------------------------- |
7587 | | */ |
7588 | 0 | int nSampleRate = 1; |
7589 | |
|
7590 | 0 | if (bApproxOK) |
7591 | 0 | { |
7592 | 0 | nSampleRate = static_cast<int>(std::max( |
7593 | 0 | 1.0, |
7594 | 0 | sqrt(static_cast<double>(nBlocksPerRow) * nBlocksPerColumn))); |
7595 | | // We want to avoid probing only the first column of blocks for |
7596 | | // a square shaped raster, because it is not unlikely that it may |
7597 | | // be padding only (#6378). |
7598 | 0 | if (nSampleRate == nBlocksPerRow && nBlocksPerRow > 1) |
7599 | 0 | nSampleRate += 1; |
7600 | 0 | } |
7601 | |
|
7602 | 0 | if (bUseOptimizedPath) |
7603 | 0 | { |
7604 | 0 | for (GIntBig iSampleBlock = 0; |
7605 | 0 | iSampleBlock < |
7606 | 0 | static_cast<GIntBig>(nBlocksPerRow) * nBlocksPerColumn; |
7607 | 0 | iSampleBlock += nSampleRate) |
7608 | 0 | { |
7609 | 0 | const int iYBlock = |
7610 | 0 | static_cast<int>(iSampleBlock / nBlocksPerRow); |
7611 | 0 | const int iXBlock = |
7612 | 0 | static_cast<int>(iSampleBlock % nBlocksPerRow); |
7613 | |
|
7614 | 0 | GDALRasterBlock *poBlock = GetLockedBlockRef(iXBlock, iYBlock); |
7615 | 0 | if (poBlock == nullptr) |
7616 | 0 | return CE_Failure; |
7617 | | |
7618 | 0 | void *const pData = poBlock->GetDataRef(); |
7619 | |
|
7620 | 0 | int nXCheck = 0, nYCheck = 0; |
7621 | 0 | GetActualBlockSize(iXBlock, iYBlock, &nXCheck, &nYCheck); |
7622 | |
|
7623 | 0 | ComputeMinMaxForBlock(pData, nXCheck, nBlockXSize, nYCheck); |
7624 | |
|
7625 | 0 | poBlock->DropLock(); |
7626 | |
|
7627 | 0 | if (eDataType == GDT_Byte && !bSignedByte && nMin == 0 && |
7628 | 0 | nMax == 255) |
7629 | 0 | break; |
7630 | 0 | } |
7631 | 0 | } |
7632 | 0 | else |
7633 | 0 | { |
7634 | 0 | const GIntBig nTotalBlocks = |
7635 | 0 | static_cast<GIntBig>(nBlocksPerRow) * nBlocksPerColumn; |
7636 | 0 | if (!ComputeMinMaxGenericIterBlocks( |
7637 | 0 | this, eDataType, bSignedByte, nTotalBlocks, nSampleRate, |
7638 | 0 | nBlocksPerRow, sNoDataValues, poMaskBand, dfMin, dfMax)) |
7639 | 0 | { |
7640 | 0 | return CE_Failure; |
7641 | 0 | } |
7642 | 0 | } |
7643 | 0 | } |
7644 | | |
7645 | 0 | if (bUseOptimizedPath) |
7646 | 0 | { |
7647 | 0 | if ((eDataType == GDT_Byte && !bSignedByte) || eDataType == GDT_UInt16) |
7648 | 0 | { |
7649 | 0 | dfMin = nMin; |
7650 | 0 | dfMax = nMax; |
7651 | 0 | } |
7652 | 0 | else if (eDataType == GDT_Int16) |
7653 | 0 | { |
7654 | 0 | dfMin = nMinInt16; |
7655 | 0 | dfMax = nMaxInt16; |
7656 | 0 | } |
7657 | 0 | } |
7658 | |
|
7659 | 0 | if (dfMin > dfMax) |
7660 | 0 | { |
7661 | 0 | adfMinMax[0] = 0; |
7662 | 0 | adfMinMax[1] = 0; |
7663 | 0 | ReportError( |
7664 | 0 | CE_Failure, CPLE_AppDefined, |
7665 | 0 | "Failed to compute min/max, no valid pixels found in sampling."); |
7666 | 0 | return CE_Failure; |
7667 | 0 | } |
7668 | | |
7669 | 0 | adfMinMax[0] = dfMin; |
7670 | 0 | adfMinMax[1] = dfMax; |
7671 | |
|
7672 | 0 | return CE_None; |
7673 | 0 | } |
7674 | | |
7675 | | /************************************************************************/ |
7676 | | /* GDALComputeRasterMinMax() */ |
7677 | | /************************************************************************/ |
7678 | | |
7679 | | /** |
7680 | | * \brief Compute the min/max values for a band. |
7681 | | * |
7682 | | * @see GDALRasterBand::ComputeRasterMinMax() |
7683 | | * |
7684 | | * @note Prior to GDAL 3.6, this function returned void |
7685 | | */ |
7686 | | |
7687 | | CPLErr CPL_STDCALL GDALComputeRasterMinMax(GDALRasterBandH hBand, int bApproxOK, |
7688 | | double adfMinMax[2]) |
7689 | | |
7690 | 0 | { |
7691 | 0 | VALIDATE_POINTER1(hBand, "GDALComputeRasterMinMax", CE_Failure); |
7692 | | |
7693 | 0 | GDALRasterBand *poBand = GDALRasterBand::FromHandle(hBand); |
7694 | 0 | return poBand->ComputeRasterMinMax(bApproxOK, adfMinMax); |
7695 | 0 | } |
7696 | | |
7697 | | /************************************************************************/ |
7698 | | /* ComputeRasterMinMaxLocation() */ |
7699 | | /************************************************************************/ |
7700 | | |
7701 | | /** |
7702 | | * \brief Compute the min/max values for a band, and their location. |
7703 | | * |
7704 | | * Pixels whose value matches the nodata value or are masked by the mask |
7705 | | * band are ignored. |
7706 | | * |
7707 | | * If the minimum or maximum value is hit in several locations, it is not |
7708 | | * specified which one will be returned. |
7709 | | * |
7710 | | * @param[out] pdfMin Pointer to the minimum value. |
7711 | | * @param[out] pdfMax Pointer to the maximum value. |
7712 | | * @param[out] pnMinX Pointer to the column where the minimum value is hit. |
7713 | | * @param[out] pnMinY Pointer to the line where the minimum value is hit. |
7714 | | * @param[out] pnMaxX Pointer to the column where the maximum value is hit. |
7715 | | * @param[out] pnMaxY Pointer to the line where the maximum value is hit. |
7716 | | * |
7717 | | * @return CE_None in case of success, CE_Warning if there are no valid values, |
7718 | | * CE_Failure in case of error. |
7719 | | * |
7720 | | * @since GDAL 3.11 |
7721 | | */ |
7722 | | |
7723 | | CPLErr GDALRasterBand::ComputeRasterMinMaxLocation(double *pdfMin, |
7724 | | double *pdfMax, int *pnMinX, |
7725 | | int *pnMinY, int *pnMaxX, |
7726 | | int *pnMaxY) |
7727 | 0 | { |
7728 | 0 | int nMinX = -1; |
7729 | 0 | int nMinY = -1; |
7730 | 0 | int nMaxX = -1; |
7731 | 0 | int nMaxY = -1; |
7732 | 0 | double dfMin = std::numeric_limits<double>::infinity(); |
7733 | 0 | double dfMax = -std::numeric_limits<double>::infinity(); |
7734 | 0 | if (pdfMin) |
7735 | 0 | *pdfMin = dfMin; |
7736 | 0 | if (pdfMax) |
7737 | 0 | *pdfMax = dfMax; |
7738 | 0 | if (pnMinX) |
7739 | 0 | *pnMinX = nMinX; |
7740 | 0 | if (pnMinY) |
7741 | 0 | *pnMinY = nMinY; |
7742 | 0 | if (pnMaxX) |
7743 | 0 | *pnMaxX = nMaxX; |
7744 | 0 | if (pnMaxY) |
7745 | 0 | *pnMaxY = nMaxY; |
7746 | |
|
7747 | 0 | if (GDALDataTypeIsComplex(eDataType)) |
7748 | 0 | { |
7749 | 0 | CPLError(CE_Failure, CPLE_NotSupported, |
7750 | 0 | "Complex data type not supported"); |
7751 | 0 | return CE_Failure; |
7752 | 0 | } |
7753 | | |
7754 | 0 | if (!InitBlockInfo()) |
7755 | 0 | return CE_Failure; |
7756 | | |
7757 | 0 | GDALNoDataValues sNoDataValues(this, eDataType); |
7758 | 0 | GDALRasterBand *poMaskBand = nullptr; |
7759 | 0 | if (!sNoDataValues.bGotNoDataValue) |
7760 | 0 | { |
7761 | 0 | const int l_nMaskFlags = GetMaskFlags(); |
7762 | 0 | if (l_nMaskFlags != GMF_ALL_VALID && l_nMaskFlags != GMF_NODATA && |
7763 | 0 | GetColorInterpretation() != GCI_AlphaBand) |
7764 | 0 | { |
7765 | 0 | poMaskBand = GetMaskBand(); |
7766 | 0 | } |
7767 | 0 | } |
7768 | |
|
7769 | 0 | bool bSignedByte = false; |
7770 | 0 | if (eDataType == GDT_Byte) |
7771 | 0 | { |
7772 | 0 | EnablePixelTypeSignedByteWarning(false); |
7773 | 0 | const char *pszPixelType = |
7774 | 0 | GetMetadataItem("PIXELTYPE", "IMAGE_STRUCTURE"); |
7775 | 0 | EnablePixelTypeSignedByteWarning(true); |
7776 | 0 | bSignedByte = |
7777 | 0 | pszPixelType != nullptr && EQUAL(pszPixelType, "SIGNEDBYTE"); |
7778 | 0 | } |
7779 | |
|
7780 | 0 | GByte *pabyMaskData = nullptr; |
7781 | 0 | if (poMaskBand) |
7782 | 0 | { |
7783 | 0 | pabyMaskData = |
7784 | 0 | static_cast<GByte *>(VSI_MALLOC2_VERBOSE(nBlockXSize, nBlockYSize)); |
7785 | 0 | if (!pabyMaskData) |
7786 | 0 | { |
7787 | 0 | return CE_Failure; |
7788 | 0 | } |
7789 | 0 | } |
7790 | | |
7791 | 0 | const GIntBig nTotalBlocks = |
7792 | 0 | static_cast<GIntBig>(nBlocksPerRow) * nBlocksPerColumn; |
7793 | 0 | bool bNeedsMin = pdfMin || pnMinX || pnMinY; |
7794 | 0 | bool bNeedsMax = pdfMax || pnMaxX || pnMaxY; |
7795 | 0 | for (GIntBig iBlock = 0; iBlock < nTotalBlocks; ++iBlock) |
7796 | 0 | { |
7797 | 0 | const int iYBlock = static_cast<int>(iBlock / nBlocksPerRow); |
7798 | 0 | const int iXBlock = static_cast<int>(iBlock % nBlocksPerRow); |
7799 | |
|
7800 | 0 | GDALRasterBlock *poBlock = GetLockedBlockRef(iXBlock, iYBlock); |
7801 | 0 | if (poBlock == nullptr) |
7802 | 0 | { |
7803 | 0 | CPLFree(pabyMaskData); |
7804 | 0 | return CE_Failure; |
7805 | 0 | } |
7806 | | |
7807 | 0 | void *const pData = poBlock->GetDataRef(); |
7808 | |
|
7809 | 0 | int nXCheck = 0, nYCheck = 0; |
7810 | 0 | GetActualBlockSize(iXBlock, iYBlock, &nXCheck, &nYCheck); |
7811 | |
|
7812 | 0 | if (poMaskBand && |
7813 | 0 | poMaskBand->RasterIO(GF_Read, iXBlock * nBlockXSize, |
7814 | 0 | iYBlock * nBlockYSize, nXCheck, nYCheck, |
7815 | 0 | pabyMaskData, nXCheck, nYCheck, GDT_Byte, 0, |
7816 | 0 | nBlockXSize, nullptr) != CE_None) |
7817 | 0 | { |
7818 | 0 | poBlock->DropLock(); |
7819 | 0 | CPLFree(pabyMaskData); |
7820 | 0 | return CE_Failure; |
7821 | 0 | } |
7822 | | |
7823 | 0 | if (poMaskBand || nYCheck < nBlockYSize || nXCheck < nBlockXSize) |
7824 | 0 | { |
7825 | 0 | for (int iY = 0; iY < nYCheck; ++iY) |
7826 | 0 | { |
7827 | 0 | for (int iX = 0; iX < nXCheck; ++iX) |
7828 | 0 | { |
7829 | 0 | const GPtrDiff_t iOffset = |
7830 | 0 | iX + static_cast<GPtrDiff_t>(iY) * nBlockXSize; |
7831 | 0 | if (pabyMaskData && pabyMaskData[iOffset] == 0) |
7832 | 0 | continue; |
7833 | 0 | bool bValid = true; |
7834 | 0 | double dfValue = |
7835 | 0 | GetPixelValue(eDataType, bSignedByte, pData, iOffset, |
7836 | 0 | sNoDataValues, bValid); |
7837 | 0 | if (!bValid) |
7838 | 0 | continue; |
7839 | 0 | if (dfValue < dfMin) |
7840 | 0 | { |
7841 | 0 | dfMin = dfValue; |
7842 | 0 | nMinX = iXBlock * nBlockXSize + iX; |
7843 | 0 | nMinY = iYBlock * nBlockYSize + iY; |
7844 | 0 | } |
7845 | 0 | if (dfValue > dfMax) |
7846 | 0 | { |
7847 | 0 | dfMax = dfValue; |
7848 | 0 | nMaxX = iXBlock * nBlockXSize + iX; |
7849 | 0 | nMaxY = iYBlock * nBlockYSize + iY; |
7850 | 0 | } |
7851 | 0 | } |
7852 | 0 | } |
7853 | 0 | } |
7854 | 0 | else |
7855 | 0 | { |
7856 | 0 | size_t pos_min = 0; |
7857 | 0 | size_t pos_max = 0; |
7858 | 0 | const auto eEffectiveDT = bSignedByte ? GDT_Int8 : eDataType; |
7859 | 0 | if (bNeedsMin && bNeedsMax) |
7860 | 0 | { |
7861 | 0 | std::tie(pos_min, pos_max) = gdal::minmax_element( |
7862 | 0 | pData, static_cast<size_t>(nBlockXSize) * nBlockYSize, |
7863 | 0 | eEffectiveDT, sNoDataValues.bGotNoDataValue, |
7864 | 0 | sNoDataValues.dfNoDataValue); |
7865 | 0 | } |
7866 | 0 | else if (bNeedsMin) |
7867 | 0 | { |
7868 | 0 | pos_min = gdal::min_element( |
7869 | 0 | pData, static_cast<size_t>(nBlockXSize) * nBlockYSize, |
7870 | 0 | eEffectiveDT, sNoDataValues.bGotNoDataValue, |
7871 | 0 | sNoDataValues.dfNoDataValue); |
7872 | 0 | } |
7873 | 0 | else if (bNeedsMax) |
7874 | 0 | { |
7875 | 0 | pos_max = gdal::max_element( |
7876 | 0 | pData, static_cast<size_t>(nBlockXSize) * nBlockYSize, |
7877 | 0 | eEffectiveDT, sNoDataValues.bGotNoDataValue, |
7878 | 0 | sNoDataValues.dfNoDataValue); |
7879 | 0 | } |
7880 | |
|
7881 | 0 | if (bNeedsMin) |
7882 | 0 | { |
7883 | 0 | const int nMinXBlock = static_cast<int>(pos_min % nBlockXSize); |
7884 | 0 | const int nMinYBlock = static_cast<int>(pos_min / nBlockXSize); |
7885 | 0 | bool bValid = true; |
7886 | 0 | const double dfMinValueBlock = |
7887 | 0 | GetPixelValue(eDataType, bSignedByte, pData, pos_min, |
7888 | 0 | sNoDataValues, bValid); |
7889 | 0 | if (bValid && dfMinValueBlock < dfMin) |
7890 | 0 | { |
7891 | 0 | dfMin = dfMinValueBlock; |
7892 | 0 | nMinX = iXBlock * nBlockXSize + nMinXBlock; |
7893 | 0 | nMinY = iYBlock * nBlockYSize + nMinYBlock; |
7894 | 0 | } |
7895 | 0 | } |
7896 | |
|
7897 | 0 | if (bNeedsMax) |
7898 | 0 | { |
7899 | 0 | const int nMaxXBlock = static_cast<int>(pos_max % nBlockXSize); |
7900 | 0 | const int nMaxYBlock = static_cast<int>(pos_max / nBlockXSize); |
7901 | 0 | bool bValid = true; |
7902 | 0 | const double dfMaxValueBlock = |
7903 | 0 | GetPixelValue(eDataType, bSignedByte, pData, pos_max, |
7904 | 0 | sNoDataValues, bValid); |
7905 | 0 | if (bValid && dfMaxValueBlock > dfMax) |
7906 | 0 | { |
7907 | 0 | dfMax = dfMaxValueBlock; |
7908 | 0 | nMaxX = iXBlock * nBlockXSize + nMaxXBlock; |
7909 | 0 | nMaxY = iYBlock * nBlockYSize + nMaxYBlock; |
7910 | 0 | } |
7911 | 0 | } |
7912 | 0 | } |
7913 | |
|
7914 | 0 | poBlock->DropLock(); |
7915 | |
|
7916 | 0 | if (eDataType == GDT_Byte) |
7917 | 0 | { |
7918 | 0 | if (bNeedsMin && dfMin == 0) |
7919 | 0 | { |
7920 | 0 | bNeedsMin = false; |
7921 | 0 | } |
7922 | 0 | if (bNeedsMax && dfMax == 255) |
7923 | 0 | { |
7924 | 0 | bNeedsMax = false; |
7925 | 0 | } |
7926 | 0 | if (!bNeedsMin && !bNeedsMax) |
7927 | 0 | { |
7928 | 0 | break; |
7929 | 0 | } |
7930 | 0 | } |
7931 | 0 | } |
7932 | | |
7933 | 0 | CPLFree(pabyMaskData); |
7934 | |
|
7935 | 0 | if (pdfMin) |
7936 | 0 | *pdfMin = dfMin; |
7937 | 0 | if (pdfMax) |
7938 | 0 | *pdfMax = dfMax; |
7939 | 0 | if (pnMinX) |
7940 | 0 | *pnMinX = nMinX; |
7941 | 0 | if (pnMinY) |
7942 | 0 | *pnMinY = nMinY; |
7943 | 0 | if (pnMaxX) |
7944 | 0 | *pnMaxX = nMaxX; |
7945 | 0 | if (pnMaxY) |
7946 | 0 | *pnMaxY = nMaxY; |
7947 | 0 | return ((bNeedsMin && nMinX < 0) || (bNeedsMax && nMaxX < 0)) ? CE_Warning |
7948 | 0 | : CE_None; |
7949 | 0 | } |
7950 | | |
7951 | | /************************************************************************/ |
7952 | | /* GDALComputeRasterMinMaxLocation() */ |
7953 | | /************************************************************************/ |
7954 | | |
7955 | | /** |
7956 | | * \brief Compute the min/max values for a band, and their location. |
7957 | | * |
7958 | | * @see GDALRasterBand::ComputeRasterMinMax() |
7959 | | * @since GDAL 3.11 |
7960 | | */ |
7961 | | |
7962 | | CPLErr GDALComputeRasterMinMaxLocation(GDALRasterBandH hBand, double *pdfMin, |
7963 | | double *pdfMax, int *pnMinX, int *pnMinY, |
7964 | | int *pnMaxX, int *pnMaxY) |
7965 | | |
7966 | 0 | { |
7967 | 0 | VALIDATE_POINTER1(hBand, "GDALComputeRasterMinMaxLocation", CE_Failure); |
7968 | | |
7969 | 0 | GDALRasterBand *poBand = GDALRasterBand::FromHandle(hBand); |
7970 | 0 | return poBand->ComputeRasterMinMaxLocation(pdfMin, pdfMax, pnMinX, pnMinY, |
7971 | 0 | pnMaxX, pnMaxY); |
7972 | 0 | } |
7973 | | |
7974 | | /************************************************************************/ |
7975 | | /* SetDefaultHistogram() */ |
7976 | | /************************************************************************/ |
7977 | | |
7978 | | /* FIXME : add proper documentation */ |
7979 | | /** |
7980 | | * \brief Set default histogram. |
7981 | | * |
7982 | | * This method is the same as the C function GDALSetDefaultHistogram() and |
7983 | | * GDALSetDefaultHistogramEx() |
7984 | | */ |
7985 | | CPLErr GDALRasterBand::SetDefaultHistogram(double /* dfMin */, |
7986 | | double /* dfMax */, |
7987 | | int /* nBuckets */, |
7988 | | GUIntBig * /* panHistogram */) |
7989 | | |
7990 | 0 | { |
7991 | 0 | if (!(GetMOFlags() & GMO_IGNORE_UNIMPLEMENTED)) |
7992 | 0 | ReportError(CE_Failure, CPLE_NotSupported, |
7993 | 0 | "SetDefaultHistogram() not implemented for this format."); |
7994 | |
|
7995 | 0 | return CE_Failure; |
7996 | 0 | } |
7997 | | |
7998 | | /************************************************************************/ |
7999 | | /* GDALSetDefaultHistogram() */ |
8000 | | /************************************************************************/ |
8001 | | |
8002 | | /** |
8003 | | * \brief Set default histogram. |
8004 | | * |
8005 | | * Use GDALSetRasterHistogramEx() instead to be able to set counts exceeding |
8006 | | * 2 billion. |
8007 | | * |
8008 | | * @see GDALRasterBand::SetDefaultHistogram() |
8009 | | * @see GDALSetRasterHistogramEx() |
8010 | | */ |
8011 | | |
8012 | | CPLErr CPL_STDCALL GDALSetDefaultHistogram(GDALRasterBandH hBand, double dfMin, |
8013 | | double dfMax, int nBuckets, |
8014 | | int *panHistogram) |
8015 | | |
8016 | 0 | { |
8017 | 0 | VALIDATE_POINTER1(hBand, "GDALSetDefaultHistogram", CE_Failure); |
8018 | | |
8019 | 0 | GDALRasterBand *poBand = GDALRasterBand::FromHandle(hBand); |
8020 | |
|
8021 | 0 | GUIntBig *panHistogramTemp = |
8022 | 0 | static_cast<GUIntBig *>(VSIMalloc2(sizeof(GUIntBig), nBuckets)); |
8023 | 0 | if (panHistogramTemp == nullptr) |
8024 | 0 | { |
8025 | 0 | poBand->ReportError(CE_Failure, CPLE_OutOfMemory, |
8026 | 0 | "Out of memory in GDALSetDefaultHistogram()."); |
8027 | 0 | return CE_Failure; |
8028 | 0 | } |
8029 | | |
8030 | 0 | for (int i = 0; i < nBuckets; ++i) |
8031 | 0 | { |
8032 | 0 | panHistogramTemp[i] = static_cast<GUIntBig>(panHistogram[i]); |
8033 | 0 | } |
8034 | |
|
8035 | 0 | const CPLErr eErr = |
8036 | 0 | poBand->SetDefaultHistogram(dfMin, dfMax, nBuckets, panHistogramTemp); |
8037 | |
|
8038 | 0 | CPLFree(panHistogramTemp); |
8039 | |
|
8040 | 0 | return eErr; |
8041 | 0 | } |
8042 | | |
8043 | | /************************************************************************/ |
8044 | | /* GDALSetDefaultHistogramEx() */ |
8045 | | /************************************************************************/ |
8046 | | |
8047 | | /** |
8048 | | * \brief Set default histogram. |
8049 | | * |
8050 | | * @see GDALRasterBand::SetDefaultHistogram() |
8051 | | * |
8052 | | * @since GDAL 2.0 |
8053 | | */ |
8054 | | |
8055 | | CPLErr CPL_STDCALL GDALSetDefaultHistogramEx(GDALRasterBandH hBand, |
8056 | | double dfMin, double dfMax, |
8057 | | int nBuckets, |
8058 | | GUIntBig *panHistogram) |
8059 | | |
8060 | 0 | { |
8061 | 0 | VALIDATE_POINTER1(hBand, "GDALSetDefaultHistogramEx", CE_Failure); |
8062 | | |
8063 | 0 | GDALRasterBand *poBand = GDALRasterBand::FromHandle(hBand); |
8064 | 0 | return poBand->SetDefaultHistogram(dfMin, dfMax, nBuckets, panHistogram); |
8065 | 0 | } |
8066 | | |
8067 | | /************************************************************************/ |
8068 | | /* GetDefaultRAT() */ |
8069 | | /************************************************************************/ |
8070 | | |
8071 | | /** |
8072 | | * \brief Fetch default Raster Attribute Table. |
8073 | | * |
8074 | | * A RAT will be returned if there is a default one associated with the |
8075 | | * band, otherwise NULL is returned. The returned RAT is owned by the |
8076 | | * band and should not be deleted by the application. |
8077 | | * |
8078 | | * This method is the same as the C function GDALGetDefaultRAT(). |
8079 | | * |
8080 | | * @return NULL, or a pointer to an internal RAT owned by the band. |
8081 | | */ |
8082 | | |
8083 | | GDALRasterAttributeTable *GDALRasterBand::GetDefaultRAT() |
8084 | | |
8085 | 0 | { |
8086 | 0 | return nullptr; |
8087 | 0 | } |
8088 | | |
8089 | | /************************************************************************/ |
8090 | | /* GDALGetDefaultRAT() */ |
8091 | | /************************************************************************/ |
8092 | | |
8093 | | /** |
8094 | | * \brief Fetch default Raster Attribute Table. |
8095 | | * |
8096 | | * @see GDALRasterBand::GetDefaultRAT() |
8097 | | */ |
8098 | | |
8099 | | GDALRasterAttributeTableH CPL_STDCALL GDALGetDefaultRAT(GDALRasterBandH hBand) |
8100 | | |
8101 | 0 | { |
8102 | 0 | VALIDATE_POINTER1(hBand, "GDALGetDefaultRAT", nullptr); |
8103 | | |
8104 | 0 | GDALRasterBand *poBand = GDALRasterBand::FromHandle(hBand); |
8105 | 0 | return GDALRasterAttributeTable::ToHandle(poBand->GetDefaultRAT()); |
8106 | 0 | } |
8107 | | |
8108 | | /************************************************************************/ |
8109 | | /* SetDefaultRAT() */ |
8110 | | /************************************************************************/ |
8111 | | |
8112 | | /** |
8113 | | * \fn GDALRasterBand::SetDefaultRAT(const GDALRasterAttributeTable*) |
8114 | | * \brief Set default Raster Attribute Table. |
8115 | | * |
8116 | | * Associates a default RAT with the band. If not implemented for the |
8117 | | * format a CPLE_NotSupported error will be issued. If successful a copy |
8118 | | * of the RAT is made, the original remains owned by the caller. |
8119 | | * |
8120 | | * This method is the same as the C function GDALSetDefaultRAT(). |
8121 | | * |
8122 | | * @param poRAT the RAT to assign to the band. |
8123 | | * |
8124 | | * @return CE_None on success or CE_Failure if unsupported or otherwise |
8125 | | * failing. |
8126 | | */ |
8127 | | |
8128 | | /**/ |
8129 | | /**/ |
8130 | | |
8131 | | CPLErr |
8132 | | GDALRasterBand::SetDefaultRAT(const GDALRasterAttributeTable * /* poRAT */) |
8133 | 0 | { |
8134 | 0 | if (!(GetMOFlags() & GMO_IGNORE_UNIMPLEMENTED)) |
8135 | 0 | { |
8136 | 0 | CPLPushErrorHandler(CPLQuietErrorHandler); |
8137 | 0 | ReportError(CE_Failure, CPLE_NotSupported, |
8138 | 0 | "SetDefaultRAT() not implemented for this format."); |
8139 | 0 | CPLPopErrorHandler(); |
8140 | 0 | } |
8141 | 0 | return CE_Failure; |
8142 | 0 | } |
8143 | | |
8144 | | /************************************************************************/ |
8145 | | /* GDALSetDefaultRAT() */ |
8146 | | /************************************************************************/ |
8147 | | |
8148 | | /** |
8149 | | * \brief Set default Raster Attribute Table. |
8150 | | * |
8151 | | * @see GDALRasterBand::GDALSetDefaultRAT() |
8152 | | */ |
8153 | | |
8154 | | CPLErr CPL_STDCALL GDALSetDefaultRAT(GDALRasterBandH hBand, |
8155 | | GDALRasterAttributeTableH hRAT) |
8156 | | |
8157 | 0 | { |
8158 | 0 | VALIDATE_POINTER1(hBand, "GDALSetDefaultRAT", CE_Failure); |
8159 | | |
8160 | 0 | GDALRasterBand *poBand = GDALRasterBand::FromHandle(hBand); |
8161 | |
|
8162 | 0 | return poBand->SetDefaultRAT(GDALRasterAttributeTable::FromHandle(hRAT)); |
8163 | 0 | } |
8164 | | |
8165 | | /************************************************************************/ |
8166 | | /* GetMaskBand() */ |
8167 | | /************************************************************************/ |
8168 | | |
8169 | | /** |
8170 | | * \brief Return the mask band associated with the band. |
8171 | | * |
8172 | | * The GDALRasterBand class includes a default implementation of GetMaskBand() |
8173 | | * that returns one of four default implementations : |
8174 | | * <ul> |
8175 | | * <li>If a corresponding .msk file exists it will be used for the mask band. |
8176 | | * </li> |
8177 | | * <li>If the dataset has a NODATA_VALUES metadata item, an instance of the new |
8178 | | * GDALNoDataValuesMaskBand class will be returned. GetMaskFlags() will return |
8179 | | * GMF_NODATA | GMF_PER_DATASET. |
8180 | | * </li> |
8181 | | * <li>If the band has a nodata value set, an instance of the new |
8182 | | * GDALNodataMaskRasterBand class will be returned. GetMaskFlags() will return |
8183 | | * GMF_NODATA. |
8184 | | * </li> |
8185 | | * <li>If there is no nodata value, but the dataset has an alpha band that seems |
8186 | | * to apply to this band (specific rules yet to be determined) and that is of |
8187 | | * type GDT_Byte then that alpha band will be returned, and the flags |
8188 | | * GMF_PER_DATASET and GMF_ALPHA will be returned in the flags. |
8189 | | * </li> |
8190 | | * <li>If neither of the above apply, an instance of the new |
8191 | | * GDALAllValidRasterBand class will be returned that has 255 values for all |
8192 | | * pixels. The null flags will return GMF_ALL_VALID. |
8193 | | * </li> |
8194 | | * </ul> |
8195 | | * |
8196 | | * Note that the GetMaskBand() should always return a GDALRasterBand mask, even |
8197 | | * if it is only an all 255 mask with the flags indicating GMF_ALL_VALID. |
8198 | | * |
8199 | | * For an external .msk file to be recognized by GDAL, it must be a valid GDAL |
8200 | | * dataset, with the same name as the main dataset and suffixed with .msk, |
8201 | | * with either one band (in the GMF_PER_DATASET case), or as many bands as the |
8202 | | * main dataset. |
8203 | | * It must have INTERNAL_MASK_FLAGS_xx metadata items set at the dataset |
8204 | | * level, where xx matches the band number of a band of the main dataset. The |
8205 | | * value of those items is a combination of the flags GMF_ALL_VALID, |
8206 | | * GMF_PER_DATASET, GMF_ALPHA and GMF_NODATA. If a metadata item is missing for |
8207 | | * a band, then the other rules explained above will be used to generate a |
8208 | | * on-the-fly mask band. |
8209 | | * \see CreateMaskBand() for the characteristics of .msk files created by GDAL. |
8210 | | * |
8211 | | * This method is the same as the C function GDALGetMaskBand(). |
8212 | | * |
8213 | | * @return a valid mask band. |
8214 | | * |
8215 | | * @since GDAL 1.5.0 |
8216 | | * |
8217 | | * @see https://gdal.org/development/rfc/rfc15_nodatabitmask.html |
8218 | | * |
8219 | | */ |
8220 | | GDALRasterBand *GDALRasterBand::GetMaskBand() |
8221 | | |
8222 | 0 | { |
8223 | 0 | const auto HasNoData = [this]() |
8224 | 0 | { |
8225 | 0 | int bHaveNoDataRaw = FALSE; |
8226 | 0 | bool bHaveNoData = false; |
8227 | 0 | if (eDataType == GDT_Int64) |
8228 | 0 | { |
8229 | 0 | CPL_IGNORE_RET_VAL(GetNoDataValueAsInt64(&bHaveNoDataRaw)); |
8230 | 0 | bHaveNoData = CPL_TO_BOOL(bHaveNoDataRaw); |
8231 | 0 | } |
8232 | 0 | else if (eDataType == GDT_UInt64) |
8233 | 0 | { |
8234 | 0 | CPL_IGNORE_RET_VAL(GetNoDataValueAsUInt64(&bHaveNoDataRaw)); |
8235 | 0 | bHaveNoData = CPL_TO_BOOL(bHaveNoDataRaw); |
8236 | 0 | } |
8237 | 0 | else |
8238 | 0 | { |
8239 | 0 | const double dfNoDataValue = GetNoDataValue(&bHaveNoDataRaw); |
8240 | 0 | if (bHaveNoDataRaw && |
8241 | 0 | GDALNoDataMaskBand::IsNoDataInRange(dfNoDataValue, eDataType)) |
8242 | 0 | { |
8243 | 0 | bHaveNoData = true; |
8244 | 0 | } |
8245 | 0 | } |
8246 | 0 | return bHaveNoData; |
8247 | 0 | }; |
8248 | |
|
8249 | 0 | if (poMask != nullptr) |
8250 | 0 | { |
8251 | 0 | if (poMask.IsOwned()) |
8252 | 0 | { |
8253 | 0 | if (dynamic_cast<GDALAllValidMaskBand *>(poMask.get()) != nullptr) |
8254 | 0 | { |
8255 | 0 | if (HasNoData()) |
8256 | 0 | { |
8257 | 0 | InvalidateMaskBand(); |
8258 | 0 | } |
8259 | 0 | } |
8260 | 0 | else if (auto poNoDataMaskBand = |
8261 | 0 | dynamic_cast<GDALNoDataMaskBand *>(poMask.get())) |
8262 | 0 | { |
8263 | 0 | int bHaveNoDataRaw = FALSE; |
8264 | 0 | bool bIsSame = false; |
8265 | 0 | if (eDataType == GDT_Int64) |
8266 | 0 | bIsSame = poNoDataMaskBand->m_nNoDataValueInt64 == |
8267 | 0 | GetNoDataValueAsInt64(&bHaveNoDataRaw) && |
8268 | 0 | bHaveNoDataRaw; |
8269 | 0 | else if (eDataType == GDT_UInt64) |
8270 | 0 | bIsSame = poNoDataMaskBand->m_nNoDataValueUInt64 == |
8271 | 0 | GetNoDataValueAsUInt64(&bHaveNoDataRaw) && |
8272 | 0 | bHaveNoDataRaw; |
8273 | 0 | else |
8274 | 0 | { |
8275 | 0 | const double dfNoDataValue = |
8276 | 0 | GetNoDataValue(&bHaveNoDataRaw); |
8277 | 0 | if (bHaveNoDataRaw) |
8278 | 0 | { |
8279 | 0 | bIsSame = |
8280 | 0 | std::isnan(dfNoDataValue) |
8281 | 0 | ? std::isnan(poNoDataMaskBand->m_dfNoDataValue) |
8282 | 0 | : poNoDataMaskBand->m_dfNoDataValue == |
8283 | 0 | dfNoDataValue; |
8284 | 0 | } |
8285 | 0 | } |
8286 | 0 | if (!bIsSame) |
8287 | 0 | InvalidateMaskBand(); |
8288 | 0 | } |
8289 | 0 | } |
8290 | |
|
8291 | 0 | if (poMask) |
8292 | 0 | return poMask.get(); |
8293 | 0 | } |
8294 | | |
8295 | | /* -------------------------------------------------------------------- */ |
8296 | | /* Check for a mask in a .msk file. */ |
8297 | | /* -------------------------------------------------------------------- */ |
8298 | 0 | if (poDS != nullptr && poDS->oOvManager.HaveMaskFile()) |
8299 | 0 | { |
8300 | 0 | poMask.reset(poDS->oOvManager.GetMaskBand(nBand), false); |
8301 | 0 | if (poMask != nullptr) |
8302 | 0 | { |
8303 | 0 | nMaskFlags = poDS->oOvManager.GetMaskFlags(nBand); |
8304 | 0 | return poMask.get(); |
8305 | 0 | } |
8306 | 0 | } |
8307 | | |
8308 | | /* -------------------------------------------------------------------- */ |
8309 | | /* Check for NODATA_VALUES metadata. */ |
8310 | | /* -------------------------------------------------------------------- */ |
8311 | 0 | if (poDS != nullptr) |
8312 | 0 | { |
8313 | 0 | const char *pszGDALNoDataValues = |
8314 | 0 | poDS->GetMetadataItem("NODATA_VALUES"); |
8315 | 0 | if (pszGDALNoDataValues != nullptr) |
8316 | 0 | { |
8317 | 0 | char **papszGDALNoDataValues = CSLTokenizeStringComplex( |
8318 | 0 | pszGDALNoDataValues, " ", FALSE, FALSE); |
8319 | | |
8320 | | // Make sure we have as many values as bands. |
8321 | 0 | if (CSLCount(papszGDALNoDataValues) == poDS->GetRasterCount() && |
8322 | 0 | poDS->GetRasterCount() != 0) |
8323 | 0 | { |
8324 | | // Make sure that all bands have the same data type |
8325 | | // This is clearly not a fundamental condition, just a |
8326 | | // condition to make implementation easier. |
8327 | 0 | GDALDataType eDT = GDT_Unknown; |
8328 | 0 | int i = 0; // Used after for. |
8329 | 0 | for (; i < poDS->GetRasterCount(); ++i) |
8330 | 0 | { |
8331 | 0 | if (i == 0) |
8332 | 0 | eDT = poDS->GetRasterBand(1)->GetRasterDataType(); |
8333 | 0 | else if (eDT != |
8334 | 0 | poDS->GetRasterBand(i + 1)->GetRasterDataType()) |
8335 | 0 | { |
8336 | 0 | break; |
8337 | 0 | } |
8338 | 0 | } |
8339 | 0 | if (i == poDS->GetRasterCount()) |
8340 | 0 | { |
8341 | 0 | nMaskFlags = GMF_NODATA | GMF_PER_DATASET; |
8342 | 0 | try |
8343 | 0 | { |
8344 | 0 | poMask.reset(new GDALNoDataValuesMaskBand(poDS), true); |
8345 | 0 | } |
8346 | 0 | catch (const std::bad_alloc &) |
8347 | 0 | { |
8348 | 0 | CPLError(CE_Failure, CPLE_OutOfMemory, "Out of memory"); |
8349 | 0 | poMask.reset(); |
8350 | 0 | } |
8351 | 0 | CSLDestroy(papszGDALNoDataValues); |
8352 | 0 | return poMask.get(); |
8353 | 0 | } |
8354 | 0 | else |
8355 | 0 | { |
8356 | 0 | ReportError(CE_Warning, CPLE_AppDefined, |
8357 | 0 | "All bands should have the same type in " |
8358 | 0 | "order the NODATA_VALUES metadata item " |
8359 | 0 | "to be used as a mask."); |
8360 | 0 | } |
8361 | 0 | } |
8362 | 0 | else |
8363 | 0 | { |
8364 | 0 | ReportError( |
8365 | 0 | CE_Warning, CPLE_AppDefined, |
8366 | 0 | "NODATA_VALUES metadata item doesn't have the same number " |
8367 | 0 | "of values as the number of bands. " |
8368 | 0 | "Ignoring it for mask."); |
8369 | 0 | } |
8370 | | |
8371 | 0 | CSLDestroy(papszGDALNoDataValues); |
8372 | 0 | } |
8373 | 0 | } |
8374 | | |
8375 | | /* -------------------------------------------------------------------- */ |
8376 | | /* Check for nodata case. */ |
8377 | | /* -------------------------------------------------------------------- */ |
8378 | 0 | if (HasNoData()) |
8379 | 0 | { |
8380 | 0 | nMaskFlags = GMF_NODATA; |
8381 | 0 | try |
8382 | 0 | { |
8383 | 0 | poMask.reset(new GDALNoDataMaskBand(this), true); |
8384 | 0 | } |
8385 | 0 | catch (const std::bad_alloc &) |
8386 | 0 | { |
8387 | 0 | CPLError(CE_Failure, CPLE_OutOfMemory, "Out of memory"); |
8388 | 0 | poMask.reset(); |
8389 | 0 | } |
8390 | 0 | return poMask.get(); |
8391 | 0 | } |
8392 | | |
8393 | | /* -------------------------------------------------------------------- */ |
8394 | | /* Check for alpha case. */ |
8395 | | /* -------------------------------------------------------------------- */ |
8396 | 0 | if (poDS != nullptr && poDS->GetRasterCount() == 2 && |
8397 | 0 | this == poDS->GetRasterBand(1) && |
8398 | 0 | poDS->GetRasterBand(2)->GetColorInterpretation() == GCI_AlphaBand) |
8399 | 0 | { |
8400 | 0 | if (poDS->GetRasterBand(2)->GetRasterDataType() == GDT_Byte) |
8401 | 0 | { |
8402 | 0 | nMaskFlags = GMF_ALPHA | GMF_PER_DATASET; |
8403 | 0 | poMask.reset(poDS->GetRasterBand(2), false); |
8404 | 0 | return poMask.get(); |
8405 | 0 | } |
8406 | 0 | else if (poDS->GetRasterBand(2)->GetRasterDataType() == GDT_UInt16) |
8407 | 0 | { |
8408 | 0 | nMaskFlags = GMF_ALPHA | GMF_PER_DATASET; |
8409 | 0 | try |
8410 | 0 | { |
8411 | 0 | poMask.reset(new GDALRescaledAlphaBand(poDS->GetRasterBand(2)), |
8412 | 0 | true); |
8413 | 0 | } |
8414 | 0 | catch (const std::bad_alloc &) |
8415 | 0 | { |
8416 | 0 | CPLError(CE_Failure, CPLE_OutOfMemory, "Out of memory"); |
8417 | 0 | poMask.reset(); |
8418 | 0 | } |
8419 | 0 | return poMask.get(); |
8420 | 0 | } |
8421 | 0 | } |
8422 | | |
8423 | 0 | if (poDS != nullptr && poDS->GetRasterCount() == 4 && |
8424 | 0 | (this == poDS->GetRasterBand(1) || this == poDS->GetRasterBand(2) || |
8425 | 0 | this == poDS->GetRasterBand(3)) && |
8426 | 0 | poDS->GetRasterBand(4)->GetColorInterpretation() == GCI_AlphaBand) |
8427 | 0 | { |
8428 | 0 | if (poDS->GetRasterBand(4)->GetRasterDataType() == GDT_Byte) |
8429 | 0 | { |
8430 | 0 | nMaskFlags = GMF_ALPHA | GMF_PER_DATASET; |
8431 | 0 | poMask.reset(poDS->GetRasterBand(4), false); |
8432 | 0 | return poMask.get(); |
8433 | 0 | } |
8434 | 0 | else if (poDS->GetRasterBand(4)->GetRasterDataType() == GDT_UInt16) |
8435 | 0 | { |
8436 | 0 | nMaskFlags = GMF_ALPHA | GMF_PER_DATASET; |
8437 | 0 | try |
8438 | 0 | { |
8439 | 0 | poMask.reset(new GDALRescaledAlphaBand(poDS->GetRasterBand(4)), |
8440 | 0 | true); |
8441 | 0 | } |
8442 | 0 | catch (const std::bad_alloc &) |
8443 | 0 | { |
8444 | 0 | CPLError(CE_Failure, CPLE_OutOfMemory, "Out of memory"); |
8445 | 0 | poMask.reset(); |
8446 | 0 | } |
8447 | 0 | return poMask.get(); |
8448 | 0 | } |
8449 | 0 | } |
8450 | | |
8451 | | /* -------------------------------------------------------------------- */ |
8452 | | /* Fallback to all valid case. */ |
8453 | | /* -------------------------------------------------------------------- */ |
8454 | 0 | nMaskFlags = GMF_ALL_VALID; |
8455 | 0 | try |
8456 | 0 | { |
8457 | 0 | poMask.reset(new GDALAllValidMaskBand(this), true); |
8458 | 0 | } |
8459 | 0 | catch (const std::bad_alloc &) |
8460 | 0 | { |
8461 | 0 | CPLError(CE_Failure, CPLE_OutOfMemory, "Out of memory"); |
8462 | 0 | poMask.reset(); |
8463 | 0 | } |
8464 | |
|
8465 | 0 | return poMask.get(); |
8466 | 0 | } |
8467 | | |
8468 | | /************************************************************************/ |
8469 | | /* GDALGetMaskBand() */ |
8470 | | /************************************************************************/ |
8471 | | |
8472 | | /** |
8473 | | * \brief Return the mask band associated with the band. |
8474 | | * |
8475 | | * @see GDALRasterBand::GetMaskBand() |
8476 | | */ |
8477 | | |
8478 | | GDALRasterBandH CPL_STDCALL GDALGetMaskBand(GDALRasterBandH hBand) |
8479 | | |
8480 | 0 | { |
8481 | 0 | VALIDATE_POINTER1(hBand, "GDALGetMaskBand", nullptr); |
8482 | | |
8483 | 0 | GDALRasterBand *poBand = GDALRasterBand::FromHandle(hBand); |
8484 | 0 | return poBand->GetMaskBand(); |
8485 | 0 | } |
8486 | | |
8487 | | /************************************************************************/ |
8488 | | /* GetMaskFlags() */ |
8489 | | /************************************************************************/ |
8490 | | |
8491 | | /** |
8492 | | * \brief Return the status flags of the mask band associated with the band. |
8493 | | * |
8494 | | * The GetMaskFlags() method returns an bitwise OR-ed set of status flags with |
8495 | | * the following available definitions that may be extended in the future: |
8496 | | * <ul> |
8497 | | * <li>GMF_ALL_VALID(0x01): There are no invalid pixels, all mask values will be |
8498 | | * 255. When used this will normally be the only flag set. |
8499 | | * </li> |
8500 | | * <li>GMF_PER_DATASET(0x02): The mask band is shared between all bands on the |
8501 | | * dataset. |
8502 | | * </li> |
8503 | | * <li>GMF_ALPHA(0x04): The mask band is actually an alpha band |
8504 | | * and may have values other than 0 and 255. |
8505 | | * </li> |
8506 | | * <li>GMF_NODATA(0x08): Indicates the mask is actually being generated from |
8507 | | * nodata values. (mutually exclusive of GMF_ALPHA) |
8508 | | * </li> |
8509 | | * </ul> |
8510 | | * |
8511 | | * The GDALRasterBand class includes a default implementation of GetMaskBand() |
8512 | | * that returns one of four default implementations: |
8513 | | * <ul> |
8514 | | * <li>If a corresponding .msk file exists it will be used for the mask band. |
8515 | | * </li> |
8516 | | * <li>If the dataset has a NODATA_VALUES metadata item, an instance of the new |
8517 | | * GDALNoDataValuesMaskBand class will be returned. GetMaskFlags() will return |
8518 | | * GMF_NODATA | GMF_PER_DATASET. |
8519 | | * </li> |
8520 | | * <li>If the band has a nodata value set, an instance of the new |
8521 | | * GDALNodataMaskRasterBand class will be returned. GetMaskFlags() will return |
8522 | | * GMF_NODATA. |
8523 | | * </li> |
8524 | | * <li>If there is no nodata value, but the dataset has an alpha band that |
8525 | | * seems to apply to this band (specific rules yet to be determined) and that is |
8526 | | * of type GDT_Byte then that alpha band will be returned, and the flags |
8527 | | * GMF_PER_DATASET and GMF_ALPHA will be returned in the flags. |
8528 | | * </li> |
8529 | | * <li>If neither of the above apply, an instance of the new |
8530 | | * GDALAllValidRasterBand class will be returned that has 255 values for all |
8531 | | * pixels. The null flags will return GMF_ALL_VALID. |
8532 | | * </li> |
8533 | | * </ul> |
8534 | | * |
8535 | | * For an external .msk file to be recognized by GDAL, it must be a valid GDAL |
8536 | | * dataset, with the same name as the main dataset and suffixed with .msk, |
8537 | | * with either one band (in the GMF_PER_DATASET case), or as many bands as the |
8538 | | * main dataset. |
8539 | | * It must have INTERNAL_MASK_FLAGS_xx metadata items set at the dataset |
8540 | | * level, where xx matches the band number of a band of the main dataset. The |
8541 | | * value of those items is a combination of the flags GMF_ALL_VALID, |
8542 | | * GMF_PER_DATASET, GMF_ALPHA and GMF_NODATA. If a metadata item is missing for |
8543 | | * a band, then the other rules explained above will be used to generate a |
8544 | | * on-the-fly mask band. |
8545 | | * \see CreateMaskBand() for the characteristics of .msk files created by GDAL. |
8546 | | * |
8547 | | * This method is the same as the C function GDALGetMaskFlags(). |
8548 | | * |
8549 | | * @since GDAL 1.5.0 |
8550 | | * |
8551 | | * @return a valid mask band. |
8552 | | * |
8553 | | * @see https://gdal.org/development/rfc/rfc15_nodatabitmask.html |
8554 | | * |
8555 | | */ |
8556 | | int GDALRasterBand::GetMaskFlags() |
8557 | | |
8558 | 0 | { |
8559 | | // If we don't have a band yet, force this now so that the masks value |
8560 | | // will be initialized. |
8561 | |
|
8562 | 0 | if (poMask == nullptr) |
8563 | 0 | GetMaskBand(); |
8564 | |
|
8565 | 0 | return nMaskFlags; |
8566 | 0 | } |
8567 | | |
8568 | | /************************************************************************/ |
8569 | | /* GDALGetMaskFlags() */ |
8570 | | /************************************************************************/ |
8571 | | |
8572 | | /** |
8573 | | * \brief Return the status flags of the mask band associated with the band. |
8574 | | * |
8575 | | * @see GDALRasterBand::GetMaskFlags() |
8576 | | */ |
8577 | | |
8578 | | int CPL_STDCALL GDALGetMaskFlags(GDALRasterBandH hBand) |
8579 | | |
8580 | 0 | { |
8581 | 0 | VALIDATE_POINTER1(hBand, "GDALGetMaskFlags", GMF_ALL_VALID); |
8582 | | |
8583 | 0 | GDALRasterBand *poBand = GDALRasterBand::FromHandle(hBand); |
8584 | 0 | return poBand->GetMaskFlags(); |
8585 | 0 | } |
8586 | | |
8587 | | /************************************************************************/ |
8588 | | /* InvalidateMaskBand() */ |
8589 | | /************************************************************************/ |
8590 | | |
8591 | | //! @cond Doxygen_Suppress |
8592 | | void GDALRasterBand::InvalidateMaskBand() |
8593 | 0 | { |
8594 | 0 | poMask.reset(); |
8595 | 0 | nMaskFlags = 0; |
8596 | 0 | } |
8597 | | |
8598 | | //! @endcond |
8599 | | |
8600 | | /************************************************************************/ |
8601 | | /* CreateMaskBand() */ |
8602 | | /************************************************************************/ |
8603 | | |
8604 | | /** |
8605 | | * \brief Adds a mask band to the current band |
8606 | | * |
8607 | | * The default implementation of the CreateMaskBand() method is implemented |
8608 | | * based on similar rules to the .ovr handling implemented using the |
8609 | | * GDALDefaultOverviews object. A TIFF file with the extension .msk will |
8610 | | * be created with the same basename as the original file, and it will have |
8611 | | * as many bands as the original image (or just one for GMF_PER_DATASET). |
8612 | | * The mask images will be deflate compressed tiled images with the same |
8613 | | * block size as the original image if possible. |
8614 | | * It will have INTERNAL_MASK_FLAGS_xx metadata items set at the dataset |
8615 | | * level, where xx matches the band number of a band of the main dataset. The |
8616 | | * value of those items will be the one of the nFlagsIn parameter. |
8617 | | * |
8618 | | * Note that if you got a mask band with a previous call to GetMaskBand(), |
8619 | | * it might be invalidated by CreateMaskBand(). So you have to call |
8620 | | * GetMaskBand() again. |
8621 | | * |
8622 | | * This method is the same as the C function GDALCreateMaskBand(). |
8623 | | * |
8624 | | * @since GDAL 1.5.0 |
8625 | | * |
8626 | | * @param nFlagsIn 0 or combination of GMF_PER_DATASET / GMF_ALPHA. |
8627 | | * |
8628 | | * @return CE_None on success or CE_Failure on an error. |
8629 | | * |
8630 | | * @see https://gdal.org/development/rfc/rfc15_nodatabitmask.html |
8631 | | * @see GDALDataset::CreateMaskBand() |
8632 | | * |
8633 | | */ |
8634 | | |
8635 | | CPLErr GDALRasterBand::CreateMaskBand(int nFlagsIn) |
8636 | | |
8637 | 0 | { |
8638 | 0 | if (poDS != nullptr && poDS->oOvManager.IsInitialized()) |
8639 | 0 | { |
8640 | 0 | const CPLErr eErr = poDS->oOvManager.CreateMaskBand(nFlagsIn, nBand); |
8641 | 0 | if (eErr != CE_None) |
8642 | 0 | return eErr; |
8643 | | |
8644 | 0 | InvalidateMaskBand(); |
8645 | |
|
8646 | 0 | return CE_None; |
8647 | 0 | } |
8648 | | |
8649 | 0 | ReportError(CE_Failure, CPLE_NotSupported, |
8650 | 0 | "CreateMaskBand() not supported for this band."); |
8651 | |
|
8652 | 0 | return CE_Failure; |
8653 | 0 | } |
8654 | | |
8655 | | /************************************************************************/ |
8656 | | /* GDALCreateMaskBand() */ |
8657 | | /************************************************************************/ |
8658 | | |
8659 | | /** |
8660 | | * \brief Adds a mask band to the current band |
8661 | | * |
8662 | | * @see GDALRasterBand::CreateMaskBand() |
8663 | | */ |
8664 | | |
8665 | | CPLErr CPL_STDCALL GDALCreateMaskBand(GDALRasterBandH hBand, int nFlags) |
8666 | | |
8667 | 0 | { |
8668 | 0 | VALIDATE_POINTER1(hBand, "GDALCreateMaskBand", CE_Failure); |
8669 | | |
8670 | 0 | GDALRasterBand *poBand = GDALRasterBand::FromHandle(hBand); |
8671 | 0 | return poBand->CreateMaskBand(nFlags); |
8672 | 0 | } |
8673 | | |
8674 | | /************************************************************************/ |
8675 | | /* IsMaskBand() */ |
8676 | | /************************************************************************/ |
8677 | | |
8678 | | /** |
8679 | | * \brief Returns whether a band is a mask band. |
8680 | | * |
8681 | | * Mask band must be understood in the broad term: it can be a per-dataset |
8682 | | * mask band, an alpha band, or an implicit mask band. |
8683 | | * Typically the return of GetMaskBand()->IsMaskBand() should be true. |
8684 | | * |
8685 | | * This method is the same as the C function GDALIsMaskBand(). |
8686 | | * |
8687 | | * @return true if the band is a mask band. |
8688 | | * |
8689 | | * @see GDALDataset::CreateMaskBand() |
8690 | | * |
8691 | | * @since GDAL 3.5.0 |
8692 | | * |
8693 | | */ |
8694 | | |
8695 | | bool GDALRasterBand::IsMaskBand() const |
8696 | 0 | { |
8697 | | // The GeoTIFF driver, among others, override this method to |
8698 | | // also handle external .msk bands. |
8699 | 0 | return const_cast<GDALRasterBand *>(this)->GetColorInterpretation() == |
8700 | 0 | GCI_AlphaBand; |
8701 | 0 | } |
8702 | | |
8703 | | /************************************************************************/ |
8704 | | /* GDALIsMaskBand() */ |
8705 | | /************************************************************************/ |
8706 | | |
8707 | | /** |
8708 | | * \brief Returns whether a band is a mask band. |
8709 | | * |
8710 | | * Mask band must be understood in the broad term: it can be a per-dataset |
8711 | | * mask band, an alpha band, or an implicit mask band. |
8712 | | * Typically the return of GetMaskBand()->IsMaskBand() should be true. |
8713 | | * |
8714 | | * This function is the same as the C++ method GDALRasterBand::IsMaskBand() |
8715 | | * |
8716 | | * @return true if the band is a mask band. |
8717 | | * |
8718 | | * @see GDALRasterBand::IsMaskBand() |
8719 | | * |
8720 | | * @since GDAL 3.5.0 |
8721 | | * |
8722 | | */ |
8723 | | |
8724 | | bool GDALIsMaskBand(GDALRasterBandH hBand) |
8725 | | |
8726 | 0 | { |
8727 | 0 | VALIDATE_POINTER1(hBand, "GDALIsMaskBand", false); |
8728 | | |
8729 | 0 | const GDALRasterBand *poBand = GDALRasterBand::FromHandle(hBand); |
8730 | 0 | return poBand->IsMaskBand(); |
8731 | 0 | } |
8732 | | |
8733 | | /************************************************************************/ |
8734 | | /* GetMaskValueRange() */ |
8735 | | /************************************************************************/ |
8736 | | |
8737 | | /** |
8738 | | * \brief Returns the range of values that a mask band can take. |
8739 | | * |
8740 | | * @return the range of values that a mask band can take. |
8741 | | * |
8742 | | * @since GDAL 3.5.0 |
8743 | | * |
8744 | | */ |
8745 | | |
8746 | | GDALMaskValueRange GDALRasterBand::GetMaskValueRange() const |
8747 | 0 | { |
8748 | 0 | return GMVR_UNKNOWN; |
8749 | 0 | } |
8750 | | |
8751 | | /************************************************************************/ |
8752 | | /* GetIndexColorTranslationTo() */ |
8753 | | /************************************************************************/ |
8754 | | |
8755 | | /** |
8756 | | * \brief Compute translation table for color tables. |
8757 | | * |
8758 | | * When the raster band has a palette index, it may be useful to compute |
8759 | | * the "translation" of this palette to the palette of another band. |
8760 | | * The translation tries to do exact matching first, and then approximate |
8761 | | * matching if no exact matching is possible. |
8762 | | * This method returns a table such that table[i] = j where i is an index |
8763 | | * of the 'this' rasterband and j the corresponding index for the reference |
8764 | | * rasterband. |
8765 | | * |
8766 | | * This method is thought as internal to GDAL and is used for drivers |
8767 | | * like RPFTOC. |
8768 | | * |
8769 | | * The implementation only supports 1-byte palette rasterbands. |
8770 | | * |
8771 | | * @param poReferenceBand the raster band |
8772 | | * @param pTranslationTable an already allocated translation table (at least 256 |
8773 | | * bytes), or NULL to let the method allocate it |
8774 | | * @param pApproximateMatching a pointer to a flag that is set if the matching |
8775 | | * is approximate. May be NULL. |
8776 | | * |
8777 | | * @return a translation table if the two bands are palette index and that they |
8778 | | * do not match or NULL in other cases. The table must be freed with CPLFree if |
8779 | | * NULL was passed for pTranslationTable. |
8780 | | */ |
8781 | | |
8782 | | unsigned char * |
8783 | | GDALRasterBand::GetIndexColorTranslationTo(GDALRasterBand *poReferenceBand, |
8784 | | unsigned char *pTranslationTable, |
8785 | | int *pApproximateMatching) |
8786 | 0 | { |
8787 | 0 | if (poReferenceBand == nullptr) |
8788 | 0 | return nullptr; |
8789 | | |
8790 | | // cppcheck-suppress knownConditionTrueFalse |
8791 | 0 | if (poReferenceBand->GetColorInterpretation() == GCI_PaletteIndex && |
8792 | | // cppcheck-suppress knownConditionTrueFalse |
8793 | 0 | GetColorInterpretation() == GCI_PaletteIndex && |
8794 | 0 | poReferenceBand->GetRasterDataType() == GDT_Byte && |
8795 | 0 | GetRasterDataType() == GDT_Byte) |
8796 | 0 | { |
8797 | 0 | const GDALColorTable *srcColorTable = GetColorTable(); |
8798 | 0 | GDALColorTable *destColorTable = poReferenceBand->GetColorTable(); |
8799 | 0 | if (srcColorTable != nullptr && destColorTable != nullptr) |
8800 | 0 | { |
8801 | 0 | const int nEntries = srcColorTable->GetColorEntryCount(); |
8802 | 0 | const int nRefEntries = destColorTable->GetColorEntryCount(); |
8803 | |
|
8804 | 0 | int bHasNoDataValueSrc = FALSE; |
8805 | 0 | double dfNoDataValueSrc = GetNoDataValue(&bHasNoDataValueSrc); |
8806 | 0 | if (!(bHasNoDataValueSrc && dfNoDataValueSrc >= 0 && |
8807 | 0 | dfNoDataValueSrc <= 255 && |
8808 | 0 | dfNoDataValueSrc == static_cast<int>(dfNoDataValueSrc))) |
8809 | 0 | bHasNoDataValueSrc = FALSE; |
8810 | 0 | const int noDataValueSrc = |
8811 | 0 | bHasNoDataValueSrc ? static_cast<int>(dfNoDataValueSrc) : 0; |
8812 | |
|
8813 | 0 | int bHasNoDataValueRef = FALSE; |
8814 | 0 | const double dfNoDataValueRef = |
8815 | 0 | poReferenceBand->GetNoDataValue(&bHasNoDataValueRef); |
8816 | 0 | if (!(bHasNoDataValueRef && dfNoDataValueRef >= 0 && |
8817 | 0 | dfNoDataValueRef <= 255 && |
8818 | 0 | dfNoDataValueRef == static_cast<int>(dfNoDataValueRef))) |
8819 | 0 | bHasNoDataValueRef = FALSE; |
8820 | 0 | const int noDataValueRef = |
8821 | 0 | bHasNoDataValueRef ? static_cast<int>(dfNoDataValueRef) : 0; |
8822 | |
|
8823 | 0 | bool samePalette = false; |
8824 | |
|
8825 | 0 | if (pApproximateMatching) |
8826 | 0 | *pApproximateMatching = FALSE; |
8827 | |
|
8828 | 0 | if (nEntries == nRefEntries && |
8829 | 0 | bHasNoDataValueSrc == bHasNoDataValueRef && |
8830 | 0 | (bHasNoDataValueSrc == FALSE || |
8831 | 0 | noDataValueSrc == noDataValueRef)) |
8832 | 0 | { |
8833 | 0 | samePalette = true; |
8834 | 0 | for (int i = 0; i < nEntries; ++i) |
8835 | 0 | { |
8836 | 0 | if (noDataValueSrc == i) |
8837 | 0 | continue; |
8838 | 0 | const GDALColorEntry *entry = |
8839 | 0 | srcColorTable->GetColorEntry(i); |
8840 | 0 | const GDALColorEntry *entryRef = |
8841 | 0 | destColorTable->GetColorEntry(i); |
8842 | 0 | if (entry->c1 != entryRef->c1 || |
8843 | 0 | entry->c2 != entryRef->c2 || entry->c3 != entryRef->c3) |
8844 | 0 | { |
8845 | 0 | samePalette = false; |
8846 | 0 | } |
8847 | 0 | } |
8848 | 0 | } |
8849 | |
|
8850 | 0 | if (!samePalette) |
8851 | 0 | { |
8852 | 0 | if (pTranslationTable == nullptr) |
8853 | 0 | { |
8854 | 0 | pTranslationTable = static_cast<unsigned char *>( |
8855 | 0 | VSI_CALLOC_VERBOSE(1, std::max(256, nEntries))); |
8856 | 0 | if (pTranslationTable == nullptr) |
8857 | 0 | return nullptr; |
8858 | 0 | } |
8859 | | |
8860 | | // Trying to remap the product palette on the subdataset |
8861 | | // palette. |
8862 | 0 | for (int i = 0; i < nEntries; ++i) |
8863 | 0 | { |
8864 | 0 | if (bHasNoDataValueSrc && bHasNoDataValueRef && |
8865 | 0 | noDataValueSrc == i) |
8866 | 0 | continue; |
8867 | 0 | const GDALColorEntry *entry = |
8868 | 0 | srcColorTable->GetColorEntry(i); |
8869 | 0 | bool bMatchFound = false; |
8870 | 0 | for (int j = 0; j < nRefEntries; ++j) |
8871 | 0 | { |
8872 | 0 | if (bHasNoDataValueRef && noDataValueRef == j) |
8873 | 0 | continue; |
8874 | 0 | const GDALColorEntry *entryRef = |
8875 | 0 | destColorTable->GetColorEntry(j); |
8876 | 0 | if (entry->c1 == entryRef->c1 && |
8877 | 0 | entry->c2 == entryRef->c2 && |
8878 | 0 | entry->c3 == entryRef->c3) |
8879 | 0 | { |
8880 | 0 | pTranslationTable[i] = |
8881 | 0 | static_cast<unsigned char>(j); |
8882 | 0 | bMatchFound = true; |
8883 | 0 | break; |
8884 | 0 | } |
8885 | 0 | } |
8886 | 0 | if (!bMatchFound) |
8887 | 0 | { |
8888 | | // No exact match. Looking for closest color now. |
8889 | 0 | int best_j = 0; |
8890 | 0 | int best_distance = 0; |
8891 | 0 | if (pApproximateMatching) |
8892 | 0 | *pApproximateMatching = TRUE; |
8893 | 0 | for (int j = 0; j < nRefEntries; ++j) |
8894 | 0 | { |
8895 | 0 | const GDALColorEntry *entryRef = |
8896 | 0 | destColorTable->GetColorEntry(j); |
8897 | 0 | int distance = (entry->c1 - entryRef->c1) * |
8898 | 0 | (entry->c1 - entryRef->c1) + |
8899 | 0 | (entry->c2 - entryRef->c2) * |
8900 | 0 | (entry->c2 - entryRef->c2) + |
8901 | 0 | (entry->c3 - entryRef->c3) * |
8902 | 0 | (entry->c3 - entryRef->c3); |
8903 | 0 | if (j == 0 || distance < best_distance) |
8904 | 0 | { |
8905 | 0 | best_j = j; |
8906 | 0 | best_distance = distance; |
8907 | 0 | } |
8908 | 0 | } |
8909 | 0 | pTranslationTable[i] = |
8910 | 0 | static_cast<unsigned char>(best_j); |
8911 | 0 | } |
8912 | 0 | } |
8913 | 0 | if (bHasNoDataValueRef && bHasNoDataValueSrc) |
8914 | 0 | pTranslationTable[noDataValueSrc] = |
8915 | 0 | static_cast<unsigned char>(noDataValueRef); |
8916 | |
|
8917 | 0 | return pTranslationTable; |
8918 | 0 | } |
8919 | 0 | } |
8920 | 0 | } |
8921 | 0 | return nullptr; |
8922 | 0 | } |
8923 | | |
8924 | | /************************************************************************/ |
8925 | | /* SetFlushBlockErr() */ |
8926 | | /************************************************************************/ |
8927 | | |
8928 | | /** |
8929 | | * \brief Store that an error occurred while writing a dirty block. |
8930 | | * |
8931 | | * This function stores the fact that an error occurred while writing a dirty |
8932 | | * block from GDALRasterBlock::FlushCacheBlock(). Indeed when dirty blocks are |
8933 | | * flushed when the block cache get full, it is not convenient/possible to |
8934 | | * report that a dirty block could not be written correctly. This function |
8935 | | * remembers the error and re-issue it from GDALRasterBand::FlushCache(), |
8936 | | * GDALRasterBand::WriteBlock() and GDALRasterBand::RasterIO(), which are |
8937 | | * places where the user can easily match the error with the relevant dataset. |
8938 | | */ |
8939 | | |
8940 | | void GDALRasterBand::SetFlushBlockErr(CPLErr eErr) |
8941 | 0 | { |
8942 | 0 | eFlushBlockErr = eErr; |
8943 | 0 | } |
8944 | | |
8945 | | /************************************************************************/ |
8946 | | /* IncDirtyBlocks() */ |
8947 | | /************************************************************************/ |
8948 | | |
8949 | | /** |
8950 | | * \brief Increment/decrement the number of dirty blocks |
8951 | | */ |
8952 | | |
8953 | | void GDALRasterBand::IncDirtyBlocks(int nInc) |
8954 | 0 | { |
8955 | 0 | if (poBandBlockCache) |
8956 | 0 | poBandBlockCache->IncDirtyBlocks(nInc); |
8957 | 0 | } |
8958 | | |
8959 | | /************************************************************************/ |
8960 | | /* ReportError() */ |
8961 | | /************************************************************************/ |
8962 | | |
8963 | | #ifndef DOXYGEN_XML |
8964 | | /** |
8965 | | * \brief Emits an error related to a raster band. |
8966 | | * |
8967 | | * This function is a wrapper for regular CPLError(). The only difference |
8968 | | * with CPLError() is that it prepends the error message with the dataset |
8969 | | * name and the band number. |
8970 | | * |
8971 | | * @param eErrClass one of CE_Warning, CE_Failure or CE_Fatal. |
8972 | | * @param err_no the error number (CPLE_*) from cpl_error.h. |
8973 | | * @param fmt a printf() style format string. Any additional arguments |
8974 | | * will be treated as arguments to fill in this format in a manner |
8975 | | * similar to printf(). |
8976 | | * |
8977 | | * @since GDAL 1.9.0 |
8978 | | */ |
8979 | | |
8980 | | void GDALRasterBand::ReportError(CPLErr eErrClass, CPLErrorNum err_no, |
8981 | | const char *fmt, ...) const |
8982 | 0 | { |
8983 | 0 | va_list args; |
8984 | |
|
8985 | 0 | va_start(args, fmt); |
8986 | |
|
8987 | 0 | const char *pszDSName = poDS ? poDS->GetDescription() : ""; |
8988 | 0 | pszDSName = CPLGetFilename(pszDSName); |
8989 | 0 | if (pszDSName[0] != '\0') |
8990 | 0 | { |
8991 | 0 | CPLError(eErrClass, err_no, "%s", |
8992 | 0 | CPLString() |
8993 | 0 | .Printf("%s, band %d: ", pszDSName, GetBand()) |
8994 | 0 | .append(CPLString().vPrintf(fmt, args)) |
8995 | 0 | .c_str()); |
8996 | 0 | } |
8997 | 0 | else |
8998 | 0 | { |
8999 | 0 | CPLErrorV(eErrClass, err_no, fmt, args); |
9000 | 0 | } |
9001 | |
|
9002 | 0 | va_end(args); |
9003 | 0 | } |
9004 | | #endif |
9005 | | |
9006 | | /************************************************************************/ |
9007 | | /* GetVirtualMemAuto() */ |
9008 | | /************************************************************************/ |
9009 | | |
9010 | | /** \brief Create a CPLVirtualMem object from a GDAL raster band object. |
9011 | | * |
9012 | | * Only supported on Linux and Unix systems with mmap() for now. |
9013 | | * |
9014 | | * This method allows creating a virtual memory object for a GDALRasterBand, |
9015 | | * that exposes the whole image data as a virtual array. |
9016 | | * |
9017 | | * The default implementation relies on GDALRasterBandGetVirtualMem(), but |
9018 | | * specialized implementation, such as for raw files, may also directly use |
9019 | | * mechanisms of the operating system to create a view of the underlying file |
9020 | | * into virtual memory ( CPLVirtualMemFileMapNew() ) |
9021 | | * |
9022 | | * At the time of writing, the GeoTIFF driver and "raw" drivers (EHdr, ...) |
9023 | | * offer a specialized implementation with direct file mapping, provided that |
9024 | | * some requirements are met : |
9025 | | * - for all drivers, the dataset must be backed by a "real" file in the file |
9026 | | * system, and the byte ordering of multi-byte datatypes (Int16, etc.) |
9027 | | * must match the native ordering of the CPU. |
9028 | | * - in addition, for the GeoTIFF driver, the GeoTIFF file must be |
9029 | | * uncompressed, scanline oriented (i.e. not tiled). Strips must be organized in |
9030 | | * the file in sequential order, and be equally spaced (which is generally the |
9031 | | * case). Only power-of-two bit depths are supported (8 for GDT_Bye, 16 for |
9032 | | * GDT_Int16/GDT_UInt16/GDT_Float16, 32 for GDT_Float32 and 64 for GDT_Float64) |
9033 | | * |
9034 | | * The pointer returned remains valid until CPLVirtualMemFree() is called. |
9035 | | * CPLVirtualMemFree() must be called before the raster band object is |
9036 | | * destroyed. |
9037 | | * |
9038 | | * If p is such a pointer and base_type the type matching |
9039 | | * GDALGetRasterDataType(), the element of image coordinates (x, y) can be |
9040 | | * accessed with |
9041 | | * *(base_type*) ((GByte*)p + x * *pnPixelSpace + y * *pnLineSpace) |
9042 | | * |
9043 | | * This method is the same as the C GDALGetVirtualMemAuto() function. |
9044 | | * |
9045 | | * @param eRWFlag Either GF_Read to read the band, or GF_Write to |
9046 | | * read/write the band. |
9047 | | * |
9048 | | * @param pnPixelSpace Output parameter giving the byte offset from the start of |
9049 | | * one pixel value in the buffer to the start of the next pixel value within a |
9050 | | * scanline. |
9051 | | * |
9052 | | * @param pnLineSpace Output parameter giving the byte offset from the start of |
9053 | | * one scanline in the buffer to the start of the next. |
9054 | | * |
9055 | | * @param papszOptions NULL terminated list of options. |
9056 | | * If a specialized implementation exists, defining |
9057 | | * USE_DEFAULT_IMPLEMENTATION=YES will cause the default implementation to be |
9058 | | * used. On the contrary, starting with GDAL 2.2, defining |
9059 | | * USE_DEFAULT_IMPLEMENTATION=NO will prevent the default implementation from |
9060 | | * being used (thus only allowing efficient implementations to be used). When |
9061 | | * requiring or falling back to the default implementation, the following |
9062 | | * options are available : CACHE_SIZE (in bytes, defaults to |
9063 | | * 40 MB), PAGE_SIZE_HINT (in bytes), SINGLE_THREAD ("FALSE" / "TRUE", defaults |
9064 | | * to FALSE) |
9065 | | * |
9066 | | * @return a virtual memory object that must be unreferenced by |
9067 | | * CPLVirtualMemFree(), or NULL in case of failure. |
9068 | | * |
9069 | | * @since GDAL 1.11 |
9070 | | */ |
9071 | | |
9072 | | CPLVirtualMem *GDALRasterBand::GetVirtualMemAuto(GDALRWFlag eRWFlag, |
9073 | | int *pnPixelSpace, |
9074 | | GIntBig *pnLineSpace, |
9075 | | char **papszOptions) |
9076 | 0 | { |
9077 | 0 | const char *pszImpl = CSLFetchNameValueDef( |
9078 | 0 | papszOptions, "USE_DEFAULT_IMPLEMENTATION", "AUTO"); |
9079 | 0 | if (EQUAL(pszImpl, "NO") || EQUAL(pszImpl, "OFF") || EQUAL(pszImpl, "0") || |
9080 | 0 | EQUAL(pszImpl, "FALSE")) |
9081 | 0 | { |
9082 | 0 | return nullptr; |
9083 | 0 | } |
9084 | | |
9085 | 0 | const int nPixelSpace = GDALGetDataTypeSizeBytes(eDataType); |
9086 | 0 | const GIntBig nLineSpace = static_cast<GIntBig>(nRasterXSize) * nPixelSpace; |
9087 | 0 | if (pnPixelSpace) |
9088 | 0 | *pnPixelSpace = nPixelSpace; |
9089 | 0 | if (pnLineSpace) |
9090 | 0 | *pnLineSpace = nLineSpace; |
9091 | 0 | const size_t nCacheSize = |
9092 | 0 | atoi(CSLFetchNameValueDef(papszOptions, "CACHE_SIZE", "40000000")); |
9093 | 0 | const size_t nPageSizeHint = |
9094 | 0 | atoi(CSLFetchNameValueDef(papszOptions, "PAGE_SIZE_HINT", "0")); |
9095 | 0 | const bool bSingleThreadUsage = CPLTestBool( |
9096 | 0 | CSLFetchNameValueDef(papszOptions, "SINGLE_THREAD", "FALSE")); |
9097 | 0 | return GDALRasterBandGetVirtualMem( |
9098 | 0 | GDALRasterBand::ToHandle(this), eRWFlag, 0, 0, nRasterXSize, |
9099 | 0 | nRasterYSize, nRasterXSize, nRasterYSize, eDataType, nPixelSpace, |
9100 | 0 | nLineSpace, nCacheSize, nPageSizeHint, bSingleThreadUsage, |
9101 | 0 | papszOptions); |
9102 | 0 | } |
9103 | | |
9104 | | /************************************************************************/ |
9105 | | /* GDALGetVirtualMemAuto() */ |
9106 | | /************************************************************************/ |
9107 | | |
9108 | | /** |
9109 | | * \brief Create a CPLVirtualMem object from a GDAL raster band object. |
9110 | | * |
9111 | | * @see GDALRasterBand::GetVirtualMemAuto() |
9112 | | */ |
9113 | | |
9114 | | CPLVirtualMem *GDALGetVirtualMemAuto(GDALRasterBandH hBand, GDALRWFlag eRWFlag, |
9115 | | int *pnPixelSpace, GIntBig *pnLineSpace, |
9116 | | CSLConstList papszOptions) |
9117 | 0 | { |
9118 | 0 | VALIDATE_POINTER1(hBand, "GDALGetVirtualMemAuto", nullptr); |
9119 | | |
9120 | 0 | GDALRasterBand *poBand = GDALRasterBand::FromHandle(hBand); |
9121 | |
|
9122 | 0 | return poBand->GetVirtualMemAuto(eRWFlag, pnPixelSpace, pnLineSpace, |
9123 | 0 | const_cast<char **>(papszOptions)); |
9124 | 0 | } |
9125 | | |
9126 | | /************************************************************************/ |
9127 | | /* GDALGetDataCoverageStatus() */ |
9128 | | /************************************************************************/ |
9129 | | |
9130 | | /** |
9131 | | * \brief Get the coverage status of a sub-window of the raster. |
9132 | | * |
9133 | | * Returns whether a sub-window of the raster contains only data, only empty |
9134 | | * blocks or a mix of both. This function can be used to determine quickly |
9135 | | * if it is worth issuing RasterIO / ReadBlock requests in datasets that may |
9136 | | * be sparse. |
9137 | | * |
9138 | | * Empty blocks are blocks that are generally not physically present in the |
9139 | | * file, and when read through GDAL, contain only pixels whose value is the |
9140 | | * nodata value when it is set, or whose value is 0 when the nodata value is |
9141 | | * not set. |
9142 | | * |
9143 | | * The query is done in an efficient way without reading the actual pixel |
9144 | | * values. If not possible, or not implemented at all by the driver, |
9145 | | * GDAL_DATA_COVERAGE_STATUS_UNIMPLEMENTED | GDAL_DATA_COVERAGE_STATUS_DATA will |
9146 | | * be returned. |
9147 | | * |
9148 | | * The values that can be returned by the function are the following, |
9149 | | * potentially combined with the binary or operator : |
9150 | | * <ul> |
9151 | | * <li>GDAL_DATA_COVERAGE_STATUS_UNIMPLEMENTED : the driver does not implement |
9152 | | * GetDataCoverageStatus(). This flag should be returned together with |
9153 | | * GDAL_DATA_COVERAGE_STATUS_DATA.</li> |
9154 | | * <li>GDAL_DATA_COVERAGE_STATUS_DATA: There is (potentially) data in the |
9155 | | * queried window.</li> <li>GDAL_DATA_COVERAGE_STATUS_EMPTY: There is nodata in |
9156 | | * the queried window. This is typically identified by the concept of missing |
9157 | | * block in formats that supports it. |
9158 | | * </li> |
9159 | | * </ul> |
9160 | | * |
9161 | | * Note that GDAL_DATA_COVERAGE_STATUS_DATA might have false positives and |
9162 | | * should be interpreted more as hint of potential presence of data. For example |
9163 | | * if a GeoTIFF file is created with blocks filled with zeroes (or set to the |
9164 | | * nodata value), instead of using the missing block mechanism, |
9165 | | * GDAL_DATA_COVERAGE_STATUS_DATA will be returned. On the contrary, |
9166 | | * GDAL_DATA_COVERAGE_STATUS_EMPTY should have no false positives. |
9167 | | * |
9168 | | * The nMaskFlagStop should be generally set to 0. It can be set to a |
9169 | | * binary-or'ed mask of the above mentioned values to enable a quick exiting of |
9170 | | * the function as soon as the computed mask matches the nMaskFlagStop. For |
9171 | | * example, you can issue a request on the whole raster with nMaskFlagStop = |
9172 | | * GDAL_DATA_COVERAGE_STATUS_EMPTY. As soon as one missing block is encountered, |
9173 | | * the function will exit, so that you can potentially refine the requested area |
9174 | | * to find which particular region(s) have missing blocks. |
9175 | | * |
9176 | | * @see GDALRasterBand::GetDataCoverageStatus() |
9177 | | * |
9178 | | * @param hBand raster band |
9179 | | * |
9180 | | * @param nXOff The pixel offset to the top left corner of the region |
9181 | | * of the band to be queried. This would be zero to start from the left side. |
9182 | | * |
9183 | | * @param nYOff The line offset to the top left corner of the region |
9184 | | * of the band to be queried. This would be zero to start from the top. |
9185 | | * |
9186 | | * @param nXSize The width of the region of the band to be queried in pixels. |
9187 | | * |
9188 | | * @param nYSize The height of the region of the band to be queried in lines. |
9189 | | * |
9190 | | * @param nMaskFlagStop 0, or a binary-or'ed mask of possible values |
9191 | | * GDAL_DATA_COVERAGE_STATUS_UNIMPLEMENTED, |
9192 | | * GDAL_DATA_COVERAGE_STATUS_DATA and GDAL_DATA_COVERAGE_STATUS_EMPTY. As soon |
9193 | | * as the computation of the coverage matches the mask, the computation will be |
9194 | | * stopped. *pdfDataPct will not be valid in that case. |
9195 | | * |
9196 | | * @param pdfDataPct Optional output parameter whose pointed value will be set |
9197 | | * to the (approximate) percentage in [0,100] of pixels in the queried |
9198 | | * sub-window that have valid values. The implementation might not always be |
9199 | | * able to compute it, in which case it will be set to a negative value. |
9200 | | * |
9201 | | * @return a binary-or'ed combination of possible values |
9202 | | * GDAL_DATA_COVERAGE_STATUS_UNIMPLEMENTED, |
9203 | | * GDAL_DATA_COVERAGE_STATUS_DATA and GDAL_DATA_COVERAGE_STATUS_EMPTY |
9204 | | * |
9205 | | * @note Added in GDAL 2.2 |
9206 | | */ |
9207 | | |
9208 | | int CPL_STDCALL GDALGetDataCoverageStatus(GDALRasterBandH hBand, int nXOff, |
9209 | | int nYOff, int nXSize, int nYSize, |
9210 | | int nMaskFlagStop, double *pdfDataPct) |
9211 | 0 | { |
9212 | 0 | VALIDATE_POINTER1(hBand, "GDALGetDataCoverageStatus", |
9213 | 0 | GDAL_DATA_COVERAGE_STATUS_UNIMPLEMENTED); |
9214 | | |
9215 | 0 | GDALRasterBand *poBand = GDALRasterBand::FromHandle(hBand); |
9216 | |
|
9217 | 0 | return poBand->GetDataCoverageStatus(nXOff, nYOff, nXSize, nYSize, |
9218 | 0 | nMaskFlagStop, pdfDataPct); |
9219 | 0 | } |
9220 | | |
9221 | | /************************************************************************/ |
9222 | | /* GetDataCoverageStatus() */ |
9223 | | /************************************************************************/ |
9224 | | |
9225 | | /** |
9226 | | * \fn GDALRasterBand::IGetDataCoverageStatus( int nXOff, |
9227 | | * int nYOff, |
9228 | | * int nXSize, |
9229 | | * int nYSize, |
9230 | | * int nMaskFlagStop, |
9231 | | * double* pdfDataPct) |
9232 | | * \brief Get the coverage status of a sub-window of the raster. |
9233 | | * |
9234 | | * Returns whether a sub-window of the raster contains only data, only empty |
9235 | | * blocks or a mix of both. This function can be used to determine quickly |
9236 | | * if it is worth issuing RasterIO / ReadBlock requests in datasets that may |
9237 | | * be sparse. |
9238 | | * |
9239 | | * Empty blocks are blocks that contain only pixels whose value is the nodata |
9240 | | * value when it is set, or whose value is 0 when the nodata value is not set. |
9241 | | * |
9242 | | * The query is done in an efficient way without reading the actual pixel |
9243 | | * values. If not possible, or not implemented at all by the driver, |
9244 | | * GDAL_DATA_COVERAGE_STATUS_UNIMPLEMENTED | GDAL_DATA_COVERAGE_STATUS_DATA will |
9245 | | * be returned. |
9246 | | * |
9247 | | * The values that can be returned by the function are the following, |
9248 | | * potentially combined with the binary or operator : |
9249 | | * <ul> |
9250 | | * <li>GDAL_DATA_COVERAGE_STATUS_UNIMPLEMENTED : the driver does not implement |
9251 | | * GetDataCoverageStatus(). This flag should be returned together with |
9252 | | * GDAL_DATA_COVERAGE_STATUS_DATA.</li> |
9253 | | * <li>GDAL_DATA_COVERAGE_STATUS_DATA: There is (potentially) data in the |
9254 | | * queried window.</li> <li>GDAL_DATA_COVERAGE_STATUS_EMPTY: There is nodata in |
9255 | | * the queried window. This is typically identified by the concept of missing |
9256 | | * block in formats that supports it. |
9257 | | * </li> |
9258 | | * </ul> |
9259 | | * |
9260 | | * Note that GDAL_DATA_COVERAGE_STATUS_DATA might have false positives and |
9261 | | * should be interpreted more as hint of potential presence of data. For example |
9262 | | * if a GeoTIFF file is created with blocks filled with zeroes (or set to the |
9263 | | * nodata value), instead of using the missing block mechanism, |
9264 | | * GDAL_DATA_COVERAGE_STATUS_DATA will be returned. On the contrary, |
9265 | | * GDAL_DATA_COVERAGE_STATUS_EMPTY should have no false positives. |
9266 | | * |
9267 | | * The nMaskFlagStop should be generally set to 0. It can be set to a |
9268 | | * binary-or'ed mask of the above mentioned values to enable a quick exiting of |
9269 | | * the function as soon as the computed mask matches the nMaskFlagStop. For |
9270 | | * example, you can issue a request on the whole raster with nMaskFlagStop = |
9271 | | * GDAL_DATA_COVERAGE_STATUS_EMPTY. As soon as one missing block is encountered, |
9272 | | * the function will exit, so that you can potentially refine the requested area |
9273 | | * to find which particular region(s) have missing blocks. |
9274 | | * |
9275 | | * @see GDALGetDataCoverageStatus() |
9276 | | * |
9277 | | * @param nXOff The pixel offset to the top left corner of the region |
9278 | | * of the band to be queried. This would be zero to start from the left side. |
9279 | | * |
9280 | | * @param nYOff The line offset to the top left corner of the region |
9281 | | * of the band to be queried. This would be zero to start from the top. |
9282 | | * |
9283 | | * @param nXSize The width of the region of the band to be queried in pixels. |
9284 | | * |
9285 | | * @param nYSize The height of the region of the band to be queried in lines. |
9286 | | * |
9287 | | * @param nMaskFlagStop 0, or a binary-or'ed mask of possible values |
9288 | | * GDAL_DATA_COVERAGE_STATUS_UNIMPLEMENTED, |
9289 | | * GDAL_DATA_COVERAGE_STATUS_DATA and GDAL_DATA_COVERAGE_STATUS_EMPTY. As soon |
9290 | | * as the computation of the coverage matches the mask, the computation will be |
9291 | | * stopped. *pdfDataPct will not be valid in that case. |
9292 | | * |
9293 | | * @param pdfDataPct Optional output parameter whose pointed value will be set |
9294 | | * to the (approximate) percentage in [0,100] of pixels in the queried |
9295 | | * sub-window that have valid values. The implementation might not always be |
9296 | | * able to compute it, in which case it will be set to a negative value. |
9297 | | * |
9298 | | * @return a binary-or'ed combination of possible values |
9299 | | * GDAL_DATA_COVERAGE_STATUS_UNIMPLEMENTED, |
9300 | | * GDAL_DATA_COVERAGE_STATUS_DATA and GDAL_DATA_COVERAGE_STATUS_EMPTY |
9301 | | * |
9302 | | * @note Added in GDAL 2.2 |
9303 | | */ |
9304 | | |
9305 | | /** |
9306 | | * \brief Get the coverage status of a sub-window of the raster. |
9307 | | * |
9308 | | * Returns whether a sub-window of the raster contains only data, only empty |
9309 | | * blocks or a mix of both. This function can be used to determine quickly |
9310 | | * if it is worth issuing RasterIO / ReadBlock requests in datasets that may |
9311 | | * be sparse. |
9312 | | * |
9313 | | * Empty blocks are blocks that contain only pixels whose value is the nodata |
9314 | | * value when it is set, or whose value is 0 when the nodata value is not set. |
9315 | | * |
9316 | | * The query is done in an efficient way without reading the actual pixel |
9317 | | * values. If not possible, or not implemented at all by the driver, |
9318 | | * GDAL_DATA_COVERAGE_STATUS_UNIMPLEMENTED | GDAL_DATA_COVERAGE_STATUS_DATA will |
9319 | | * be returned. |
9320 | | * |
9321 | | * The values that can be returned by the function are the following, |
9322 | | * potentially combined with the binary or operator : |
9323 | | * <ul> |
9324 | | * <li>GDAL_DATA_COVERAGE_STATUS_UNIMPLEMENTED : the driver does not implement |
9325 | | * GetDataCoverageStatus(). This flag should be returned together with |
9326 | | * GDAL_DATA_COVERAGE_STATUS_DATA.</li> |
9327 | | * <li>GDAL_DATA_COVERAGE_STATUS_DATA: There is (potentially) data in the |
9328 | | * queried window.</li> <li>GDAL_DATA_COVERAGE_STATUS_EMPTY: There is nodata in |
9329 | | * the queried window. This is typically identified by the concept of missing |
9330 | | * block in formats that supports it. |
9331 | | * </li> |
9332 | | * </ul> |
9333 | | * |
9334 | | * Note that GDAL_DATA_COVERAGE_STATUS_DATA might have false positives and |
9335 | | * should be interpreted more as hint of potential presence of data. For example |
9336 | | * if a GeoTIFF file is created with blocks filled with zeroes (or set to the |
9337 | | * nodata value), instead of using the missing block mechanism, |
9338 | | * GDAL_DATA_COVERAGE_STATUS_DATA will be returned. On the contrary, |
9339 | | * GDAL_DATA_COVERAGE_STATUS_EMPTY should have no false positives. |
9340 | | * |
9341 | | * The nMaskFlagStop should be generally set to 0. It can be set to a |
9342 | | * binary-or'ed mask of the above mentioned values to enable a quick exiting of |
9343 | | * the function as soon as the computed mask matches the nMaskFlagStop. For |
9344 | | * example, you can issue a request on the whole raster with nMaskFlagStop = |
9345 | | * GDAL_DATA_COVERAGE_STATUS_EMPTY. As soon as one missing block is encountered, |
9346 | | * the function will exit, so that you can potentially refine the requested area |
9347 | | * to find which particular region(s) have missing blocks. |
9348 | | * |
9349 | | * @see GDALGetDataCoverageStatus() |
9350 | | * |
9351 | | * @param nXOff The pixel offset to the top left corner of the region |
9352 | | * of the band to be queried. This would be zero to start from the left side. |
9353 | | * |
9354 | | * @param nYOff The line offset to the top left corner of the region |
9355 | | * of the band to be queried. This would be zero to start from the top. |
9356 | | * |
9357 | | * @param nXSize The width of the region of the band to be queried in pixels. |
9358 | | * |
9359 | | * @param nYSize The height of the region of the band to be queried in lines. |
9360 | | * |
9361 | | * @param nMaskFlagStop 0, or a binary-or'ed mask of possible values |
9362 | | * GDAL_DATA_COVERAGE_STATUS_UNIMPLEMENTED, |
9363 | | * GDAL_DATA_COVERAGE_STATUS_DATA and GDAL_DATA_COVERAGE_STATUS_EMPTY. As soon |
9364 | | * as the computation of the coverage matches the mask, the computation will be |
9365 | | * stopped. *pdfDataPct will not be valid in that case. |
9366 | | * |
9367 | | * @param pdfDataPct Optional output parameter whose pointed value will be set |
9368 | | * to the (approximate) percentage in [0,100] of pixels in the queried |
9369 | | * sub-window that have valid values. The implementation might not always be |
9370 | | * able to compute it, in which case it will be set to a negative value. |
9371 | | * |
9372 | | * @return a binary-or'ed combination of possible values |
9373 | | * GDAL_DATA_COVERAGE_STATUS_UNIMPLEMENTED, |
9374 | | * GDAL_DATA_COVERAGE_STATUS_DATA and GDAL_DATA_COVERAGE_STATUS_EMPTY |
9375 | | * |
9376 | | * @note Added in GDAL 2.2 |
9377 | | */ |
9378 | | |
9379 | | int GDALRasterBand::GetDataCoverageStatus(int nXOff, int nYOff, int nXSize, |
9380 | | int nYSize, int nMaskFlagStop, |
9381 | | double *pdfDataPct) |
9382 | 0 | { |
9383 | 0 | if (nXOff < 0 || nYOff < 0 || nXSize > INT_MAX - nXOff || |
9384 | 0 | nYSize > INT_MAX - nYOff || nXOff + nXSize > nRasterXSize || |
9385 | 0 | nYOff + nYSize > nRasterYSize) |
9386 | 0 | { |
9387 | 0 | CPLError(CE_Failure, CPLE_AppDefined, "Bad window"); |
9388 | 0 | if (pdfDataPct) |
9389 | 0 | *pdfDataPct = 0.0; |
9390 | 0 | return GDAL_DATA_COVERAGE_STATUS_UNIMPLEMENTED | |
9391 | 0 | GDAL_DATA_COVERAGE_STATUS_EMPTY; |
9392 | 0 | } |
9393 | 0 | return IGetDataCoverageStatus(nXOff, nYOff, nXSize, nYSize, nMaskFlagStop, |
9394 | 0 | pdfDataPct); |
9395 | 0 | } |
9396 | | |
9397 | | /************************************************************************/ |
9398 | | /* IGetDataCoverageStatus() */ |
9399 | | /************************************************************************/ |
9400 | | |
9401 | | int GDALRasterBand::IGetDataCoverageStatus(int /*nXOff*/, int /*nYOff*/, |
9402 | | int /*nXSize*/, int /*nYSize*/, |
9403 | | int /*nMaskFlagStop*/, |
9404 | | double *pdfDataPct) |
9405 | 0 | { |
9406 | 0 | if (pdfDataPct != nullptr) |
9407 | 0 | *pdfDataPct = 100.0; |
9408 | 0 | return GDAL_DATA_COVERAGE_STATUS_UNIMPLEMENTED | |
9409 | 0 | GDAL_DATA_COVERAGE_STATUS_DATA; |
9410 | 0 | } |
9411 | | |
9412 | | //! @cond Doxygen_Suppress |
9413 | | /************************************************************************/ |
9414 | | /* EnterReadWrite() */ |
9415 | | /************************************************************************/ |
9416 | | |
9417 | | int GDALRasterBand::EnterReadWrite(GDALRWFlag eRWFlag) |
9418 | 0 | { |
9419 | 0 | if (poDS != nullptr) |
9420 | 0 | return poDS->EnterReadWrite(eRWFlag); |
9421 | 0 | return FALSE; |
9422 | 0 | } |
9423 | | |
9424 | | /************************************************************************/ |
9425 | | /* LeaveReadWrite() */ |
9426 | | /************************************************************************/ |
9427 | | |
9428 | | void GDALRasterBand::LeaveReadWrite() |
9429 | 0 | { |
9430 | 0 | if (poDS != nullptr) |
9431 | 0 | poDS->LeaveReadWrite(); |
9432 | 0 | } |
9433 | | |
9434 | | /************************************************************************/ |
9435 | | /* InitRWLock() */ |
9436 | | /************************************************************************/ |
9437 | | |
9438 | | void GDALRasterBand::InitRWLock() |
9439 | 0 | { |
9440 | 0 | if (poDS != nullptr) |
9441 | 0 | poDS->InitRWLock(); |
9442 | 0 | } |
9443 | | |
9444 | | //! @endcond |
9445 | | |
9446 | | // clang-format off |
9447 | | |
9448 | | /** |
9449 | | * \fn GDALRasterBand::SetMetadata( char ** papszMetadata, const char * pszDomain) |
9450 | | * \brief Set metadata. |
9451 | | * |
9452 | | * CAUTION: depending on the format, older values of the updated information |
9453 | | * might still be found in the file in a "ghost" state, even if no longer |
9454 | | * accessible through the GDAL API. This is for example the case of the GTiff |
9455 | | * format (this is not a exhaustive list) |
9456 | | * |
9457 | | * The C function GDALSetMetadata() does the same thing as this method. |
9458 | | * |
9459 | | * @param papszMetadata the metadata in name=value string list format to |
9460 | | * apply. |
9461 | | * @param pszDomain the domain of interest. Use "" or NULL for the default |
9462 | | * domain. |
9463 | | * @return CE_None on success, CE_Failure on failure and CE_Warning if the |
9464 | | * metadata has been accepted, but is likely not maintained persistently |
9465 | | * by the underlying object between sessions. |
9466 | | */ |
9467 | | |
9468 | | /** |
9469 | | * \fn GDALRasterBand::SetMetadataItem( const char * pszName, const char * pszValue, const char * pszDomain) |
9470 | | * \brief Set single metadata item. |
9471 | | * |
9472 | | * CAUTION: depending on the format, older values of the updated information |
9473 | | * might still be found in the file in a "ghost" state, even if no longer |
9474 | | * accessible through the GDAL API. This is for example the case of the GTiff |
9475 | | * format (this is not a exhaustive list) |
9476 | | * |
9477 | | * The C function GDALSetMetadataItem() does the same thing as this method. |
9478 | | * |
9479 | | * @param pszName the key for the metadata item to fetch. |
9480 | | * @param pszValue the value to assign to the key. |
9481 | | * @param pszDomain the domain to set within, use NULL for the default domain. |
9482 | | * |
9483 | | * @return CE_None on success, or an error code on failure. |
9484 | | */ |
9485 | | |
9486 | | // clang-format on |
9487 | | |
9488 | | //! @cond Doxygen_Suppress |
9489 | | /************************************************************************/ |
9490 | | /* EnablePixelTypeSignedByteWarning() */ |
9491 | | /************************************************************************/ |
9492 | | |
9493 | | void GDALRasterBand::EnablePixelTypeSignedByteWarning(bool b) |
9494 | 0 | { |
9495 | 0 | m_bEnablePixelTypeSignedByteWarning = b; |
9496 | 0 | } |
9497 | | |
9498 | | void GDALEnablePixelTypeSignedByteWarning(GDALRasterBandH hBand, bool b) |
9499 | 0 | { |
9500 | 0 | GDALRasterBand::FromHandle(hBand)->EnablePixelTypeSignedByteWarning(b); |
9501 | 0 | } |
9502 | | |
9503 | | //! @endcond |
9504 | | |
9505 | | /************************************************************************/ |
9506 | | /* GetMetadataItem() */ |
9507 | | /************************************************************************/ |
9508 | | |
9509 | | const char *GDALRasterBand::GetMetadataItem(const char *pszName, |
9510 | | const char *pszDomain) |
9511 | 0 | { |
9512 | | // TODO (GDAL 4.0?): remove this when GDAL 3.7 has been widely adopted. |
9513 | 0 | if (m_bEnablePixelTypeSignedByteWarning && eDataType == GDT_Byte && |
9514 | 0 | pszDomain != nullptr && EQUAL(pszDomain, "IMAGE_STRUCTURE") && |
9515 | 0 | EQUAL(pszName, "PIXELTYPE")) |
9516 | 0 | { |
9517 | 0 | CPLError(CE_Warning, CPLE_AppDefined, |
9518 | 0 | "Starting with GDAL 3.7, PIXELTYPE=SIGNEDBYTE is no longer " |
9519 | 0 | "used to signal signed 8-bit raster. Change your code to " |
9520 | 0 | "test for the new GDT_Int8 data type instead."); |
9521 | 0 | } |
9522 | 0 | return GDALMajorObject::GetMetadataItem(pszName, pszDomain); |
9523 | 0 | } |
9524 | | |
9525 | | /************************************************************************/ |
9526 | | /* GDALMDArrayFromRasterBand */ |
9527 | | /************************************************************************/ |
9528 | | |
9529 | | class GDALMDArrayFromRasterBand final : public GDALMDArray |
9530 | | { |
9531 | | CPL_DISALLOW_COPY_ASSIGN(GDALMDArrayFromRasterBand) |
9532 | | |
9533 | | GDALDataset *m_poDS; |
9534 | | GDALRasterBand *m_poBand; |
9535 | | GDALExtendedDataType m_dt; |
9536 | | std::vector<std::shared_ptr<GDALDimension>> m_dims{}; |
9537 | | std::string m_osUnit; |
9538 | | std::vector<GByte> m_pabyNoData{}; |
9539 | | std::shared_ptr<GDALMDArray> m_varX{}; |
9540 | | std::shared_ptr<GDALMDArray> m_varY{}; |
9541 | | std::string m_osFilename{}; |
9542 | | |
9543 | | bool ReadWrite(GDALRWFlag eRWFlag, const GUInt64 *arrayStartIdx, |
9544 | | const size_t *count, const GInt64 *arrayStep, |
9545 | | const GPtrDiff_t *bufferStride, |
9546 | | const GDALExtendedDataType &bufferDataType, |
9547 | | void *pBuffer) const; |
9548 | | |
9549 | | protected: |
9550 | | GDALMDArrayFromRasterBand(GDALDataset *poDS, GDALRasterBand *poBand) |
9551 | 0 | : GDALAbstractMDArray(std::string(), |
9552 | 0 | std::string(poDS->GetDescription()) + |
9553 | 0 | CPLSPrintf(" band %d", poBand->GetBand())), |
9554 | 0 | GDALMDArray(std::string(), |
9555 | 0 | std::string(poDS->GetDescription()) + |
9556 | 0 | CPLSPrintf(" band %d", poBand->GetBand())), |
9557 | 0 | m_poDS(poDS), m_poBand(poBand), |
9558 | 0 | m_dt(GDALExtendedDataType::Create(poBand->GetRasterDataType())), |
9559 | 0 | m_osUnit(poBand->GetUnitType()), m_osFilename(poDS->GetDescription()) |
9560 | 0 | { |
9561 | 0 | m_poDS->Reference(); |
9562 | |
|
9563 | 0 | int bHasNoData = false; |
9564 | 0 | if (m_poBand->GetRasterDataType() == GDT_Int64) |
9565 | 0 | { |
9566 | 0 | const auto nNoData = m_poBand->GetNoDataValueAsInt64(&bHasNoData); |
9567 | 0 | if (bHasNoData) |
9568 | 0 | { |
9569 | 0 | m_pabyNoData.resize(m_dt.GetSize()); |
9570 | 0 | GDALCopyWords64(&nNoData, GDT_Int64, 0, &m_pabyNoData[0], |
9571 | 0 | m_dt.GetNumericDataType(), 0, 1); |
9572 | 0 | } |
9573 | 0 | } |
9574 | 0 | else if (m_poBand->GetRasterDataType() == GDT_UInt64) |
9575 | 0 | { |
9576 | 0 | const auto nNoData = m_poBand->GetNoDataValueAsUInt64(&bHasNoData); |
9577 | 0 | if (bHasNoData) |
9578 | 0 | { |
9579 | 0 | m_pabyNoData.resize(m_dt.GetSize()); |
9580 | 0 | GDALCopyWords64(&nNoData, GDT_UInt64, 0, &m_pabyNoData[0], |
9581 | 0 | m_dt.GetNumericDataType(), 0, 1); |
9582 | 0 | } |
9583 | 0 | } |
9584 | 0 | else |
9585 | 0 | { |
9586 | 0 | const auto dfNoData = m_poBand->GetNoDataValue(&bHasNoData); |
9587 | 0 | if (bHasNoData) |
9588 | 0 | { |
9589 | 0 | m_pabyNoData.resize(m_dt.GetSize()); |
9590 | 0 | GDALCopyWords64(&dfNoData, GDT_Float64, 0, &m_pabyNoData[0], |
9591 | 0 | m_dt.GetNumericDataType(), 0, 1); |
9592 | 0 | } |
9593 | 0 | } |
9594 | |
|
9595 | 0 | const int nXSize = poBand->GetXSize(); |
9596 | 0 | const int nYSize = poBand->GetYSize(); |
9597 | |
|
9598 | 0 | auto poSRS = m_poDS->GetSpatialRef(); |
9599 | 0 | std::string osTypeY; |
9600 | 0 | std::string osTypeX; |
9601 | 0 | std::string osDirectionY; |
9602 | 0 | std::string osDirectionX; |
9603 | 0 | if (poSRS && poSRS->GetAxesCount() == 2) |
9604 | 0 | { |
9605 | 0 | const auto &mapping = poSRS->GetDataAxisToSRSAxisMapping(); |
9606 | 0 | OGRAxisOrientation eOrientation1 = OAO_Other; |
9607 | 0 | poSRS->GetAxis(nullptr, 0, &eOrientation1); |
9608 | 0 | OGRAxisOrientation eOrientation2 = OAO_Other; |
9609 | 0 | poSRS->GetAxis(nullptr, 1, &eOrientation2); |
9610 | 0 | if (eOrientation1 == OAO_East && eOrientation2 == OAO_North) |
9611 | 0 | { |
9612 | 0 | if (mapping == std::vector<int>{1, 2}) |
9613 | 0 | { |
9614 | 0 | osTypeY = GDAL_DIM_TYPE_HORIZONTAL_Y; |
9615 | 0 | osDirectionY = "NORTH"; |
9616 | 0 | osTypeX = GDAL_DIM_TYPE_HORIZONTAL_X; |
9617 | 0 | osDirectionX = "EAST"; |
9618 | 0 | } |
9619 | 0 | } |
9620 | 0 | else if (eOrientation1 == OAO_North && eOrientation2 == OAO_East) |
9621 | 0 | { |
9622 | 0 | if (mapping == std::vector<int>{2, 1}) |
9623 | 0 | { |
9624 | 0 | osTypeY = GDAL_DIM_TYPE_HORIZONTAL_Y; |
9625 | 0 | osDirectionY = "NORTH"; |
9626 | 0 | osTypeX = GDAL_DIM_TYPE_HORIZONTAL_X; |
9627 | 0 | osDirectionX = "EAST"; |
9628 | 0 | } |
9629 | 0 | } |
9630 | 0 | } |
9631 | |
|
9632 | 0 | m_dims = {std::make_shared<GDALDimensionWeakIndexingVar>( |
9633 | 0 | "/", "Y", osTypeY, osDirectionY, nYSize), |
9634 | 0 | std::make_shared<GDALDimensionWeakIndexingVar>( |
9635 | 0 | "/", "X", osTypeX, osDirectionX, nXSize)}; |
9636 | |
|
9637 | 0 | double adfGeoTransform[6]; |
9638 | 0 | if (m_poDS->GetGeoTransform(adfGeoTransform) == CE_None && |
9639 | 0 | adfGeoTransform[2] == 0 && adfGeoTransform[4] == 0) |
9640 | 0 | { |
9641 | 0 | m_varX = GDALMDArrayRegularlySpaced::Create( |
9642 | 0 | "/", "X", m_dims[1], adfGeoTransform[0], adfGeoTransform[1], |
9643 | 0 | 0.5); |
9644 | 0 | m_dims[1]->SetIndexingVariable(m_varX); |
9645 | |
|
9646 | 0 | m_varY = GDALMDArrayRegularlySpaced::Create( |
9647 | 0 | "/", "Y", m_dims[0], adfGeoTransform[3], adfGeoTransform[5], |
9648 | 0 | 0.5); |
9649 | 0 | m_dims[0]->SetIndexingVariable(m_varY); |
9650 | 0 | } |
9651 | 0 | } |
9652 | | |
9653 | | bool IRead(const GUInt64 *arrayStartIdx, const size_t *count, |
9654 | | const GInt64 *arrayStep, const GPtrDiff_t *bufferStride, |
9655 | | const GDALExtendedDataType &bufferDataType, |
9656 | | void *pDstBuffer) const override; |
9657 | | |
9658 | | bool IWrite(const GUInt64 *arrayStartIdx, const size_t *count, |
9659 | | const GInt64 *arrayStep, const GPtrDiff_t *bufferStride, |
9660 | | const GDALExtendedDataType &bufferDataType, |
9661 | | const void *pSrcBuffer) override |
9662 | 0 | { |
9663 | 0 | return ReadWrite(GF_Write, arrayStartIdx, count, arrayStep, |
9664 | 0 | bufferStride, bufferDataType, |
9665 | 0 | const_cast<void *>(pSrcBuffer)); |
9666 | 0 | } |
9667 | | |
9668 | | public: |
9669 | | ~GDALMDArrayFromRasterBand() |
9670 | 0 | { |
9671 | 0 | m_poDS->ReleaseRef(); |
9672 | 0 | } |
9673 | | |
9674 | | static std::shared_ptr<GDALMDArray> Create(GDALDataset *poDS, |
9675 | | GDALRasterBand *poBand) |
9676 | 0 | { |
9677 | 0 | auto array(std::shared_ptr<GDALMDArrayFromRasterBand>( |
9678 | 0 | new GDALMDArrayFromRasterBand(poDS, poBand))); |
9679 | 0 | array->SetSelf(array); |
9680 | 0 | return array; |
9681 | 0 | } |
9682 | | |
9683 | | bool IsWritable() const override |
9684 | 0 | { |
9685 | 0 | return m_poDS->GetAccess() == GA_Update; |
9686 | 0 | } |
9687 | | |
9688 | | const std::string &GetFilename() const override |
9689 | 0 | { |
9690 | 0 | return m_osFilename; |
9691 | 0 | } |
9692 | | |
9693 | | const std::vector<std::shared_ptr<GDALDimension>> & |
9694 | | GetDimensions() const override |
9695 | 0 | { |
9696 | 0 | return m_dims; |
9697 | 0 | } |
9698 | | |
9699 | | const GDALExtendedDataType &GetDataType() const override |
9700 | 0 | { |
9701 | 0 | return m_dt; |
9702 | 0 | } |
9703 | | |
9704 | | const std::string &GetUnit() const override |
9705 | 0 | { |
9706 | 0 | return m_osUnit; |
9707 | 0 | } |
9708 | | |
9709 | | const void *GetRawNoDataValue() const override |
9710 | 0 | { |
9711 | 0 | return m_pabyNoData.empty() ? nullptr : m_pabyNoData.data(); |
9712 | 0 | } |
9713 | | |
9714 | | double GetOffset(bool *pbHasOffset, |
9715 | | GDALDataType *peStorageType) const override |
9716 | 0 | { |
9717 | 0 | int bHasOffset = false; |
9718 | 0 | double dfRes = m_poBand->GetOffset(&bHasOffset); |
9719 | 0 | if (pbHasOffset) |
9720 | 0 | *pbHasOffset = CPL_TO_BOOL(bHasOffset); |
9721 | 0 | if (peStorageType) |
9722 | 0 | *peStorageType = GDT_Unknown; |
9723 | 0 | return dfRes; |
9724 | 0 | } |
9725 | | |
9726 | | double GetScale(bool *pbHasScale, |
9727 | | GDALDataType *peStorageType) const override |
9728 | 0 | { |
9729 | 0 | int bHasScale = false; |
9730 | 0 | double dfRes = m_poBand->GetScale(&bHasScale); |
9731 | 0 | if (pbHasScale) |
9732 | 0 | *pbHasScale = CPL_TO_BOOL(bHasScale); |
9733 | 0 | if (peStorageType) |
9734 | 0 | *peStorageType = GDT_Unknown; |
9735 | 0 | return dfRes; |
9736 | 0 | } |
9737 | | |
9738 | | std::shared_ptr<OGRSpatialReference> GetSpatialRef() const override |
9739 | 0 | { |
9740 | 0 | auto poSrcSRS = m_poDS->GetSpatialRef(); |
9741 | 0 | if (!poSrcSRS) |
9742 | 0 | return nullptr; |
9743 | 0 | auto poSRS = std::shared_ptr<OGRSpatialReference>(poSrcSRS->Clone()); |
9744 | |
|
9745 | 0 | auto axisMapping = poSRS->GetDataAxisToSRSAxisMapping(); |
9746 | 0 | constexpr int iYDim = 0; |
9747 | 0 | constexpr int iXDim = 1; |
9748 | 0 | for (auto &m : axisMapping) |
9749 | 0 | { |
9750 | 0 | if (m == 1) |
9751 | 0 | m = iXDim + 1; |
9752 | 0 | else if (m == 2) |
9753 | 0 | m = iYDim + 1; |
9754 | 0 | else |
9755 | 0 | m = 0; |
9756 | 0 | } |
9757 | 0 | poSRS->SetDataAxisToSRSAxisMapping(axisMapping); |
9758 | 0 | return poSRS; |
9759 | 0 | } |
9760 | | |
9761 | | std::vector<GUInt64> GetBlockSize() const override |
9762 | 0 | { |
9763 | 0 | int nBlockXSize = 0; |
9764 | 0 | int nBlockYSize = 0; |
9765 | 0 | m_poBand->GetBlockSize(&nBlockXSize, &nBlockYSize); |
9766 | 0 | return std::vector<GUInt64>{static_cast<GUInt64>(nBlockYSize), |
9767 | 0 | static_cast<GUInt64>(nBlockXSize)}; |
9768 | 0 | } |
9769 | | |
9770 | | class MDIAsAttribute : public GDALAttribute |
9771 | | { |
9772 | | std::vector<std::shared_ptr<GDALDimension>> m_dims{}; |
9773 | | const GDALExtendedDataType m_dt = GDALExtendedDataType::CreateString(); |
9774 | | std::string m_osValue; |
9775 | | |
9776 | | public: |
9777 | | MDIAsAttribute(const std::string &name, const std::string &value) |
9778 | 0 | : GDALAbstractMDArray(std::string(), name), |
9779 | 0 | GDALAttribute(std::string(), name), m_osValue(value) |
9780 | 0 | { |
9781 | 0 | } |
9782 | | |
9783 | | const std::vector<std::shared_ptr<GDALDimension>> & |
9784 | | GetDimensions() const override; |
9785 | | |
9786 | | const GDALExtendedDataType &GetDataType() const override |
9787 | 0 | { |
9788 | 0 | return m_dt; |
9789 | 0 | } |
9790 | | |
9791 | | bool IRead(const GUInt64 *, const size_t *, const GInt64 *, |
9792 | | const GPtrDiff_t *, |
9793 | | const GDALExtendedDataType &bufferDataType, |
9794 | | void *pDstBuffer) const override |
9795 | 0 | { |
9796 | 0 | const char *pszStr = m_osValue.c_str(); |
9797 | 0 | GDALExtendedDataType::CopyValue(&pszStr, m_dt, pDstBuffer, |
9798 | 0 | bufferDataType); |
9799 | 0 | return true; |
9800 | 0 | } |
9801 | | }; |
9802 | | |
9803 | | std::vector<std::shared_ptr<GDALAttribute>> |
9804 | | GetAttributes(CSLConstList) const override |
9805 | 0 | { |
9806 | 0 | std::vector<std::shared_ptr<GDALAttribute>> res; |
9807 | 0 | auto papszMD = m_poBand->GetMetadata(); |
9808 | 0 | for (auto iter = papszMD; iter && iter[0]; ++iter) |
9809 | 0 | { |
9810 | 0 | char *pszKey = nullptr; |
9811 | 0 | const char *pszValue = CPLParseNameValue(*iter, &pszKey); |
9812 | 0 | if (pszKey && pszValue) |
9813 | 0 | { |
9814 | 0 | res.emplace_back( |
9815 | 0 | std::make_shared<MDIAsAttribute>(pszKey, pszValue)); |
9816 | 0 | } |
9817 | 0 | CPLFree(pszKey); |
9818 | 0 | } |
9819 | 0 | return res; |
9820 | 0 | } |
9821 | | }; |
9822 | | |
9823 | | bool GDALMDArrayFromRasterBand::IRead( |
9824 | | const GUInt64 *arrayStartIdx, const size_t *count, const GInt64 *arrayStep, |
9825 | | const GPtrDiff_t *bufferStride, const GDALExtendedDataType &bufferDataType, |
9826 | | void *pDstBuffer) const |
9827 | 0 | { |
9828 | 0 | return ReadWrite(GF_Read, arrayStartIdx, count, arrayStep, bufferStride, |
9829 | 0 | bufferDataType, pDstBuffer); |
9830 | 0 | } |
9831 | | |
9832 | | const std::vector<std::shared_ptr<GDALDimension>> & |
9833 | | GDALMDArrayFromRasterBand::MDIAsAttribute::GetDimensions() const |
9834 | 0 | { |
9835 | 0 | return m_dims; |
9836 | 0 | } |
9837 | | |
9838 | | /************************************************************************/ |
9839 | | /* ReadWrite() */ |
9840 | | /************************************************************************/ |
9841 | | |
9842 | | bool GDALMDArrayFromRasterBand::ReadWrite( |
9843 | | GDALRWFlag eRWFlag, const GUInt64 *arrayStartIdx, const size_t *count, |
9844 | | const GInt64 *arrayStep, const GPtrDiff_t *bufferStride, |
9845 | | const GDALExtendedDataType &bufferDataType, void *pBuffer) const |
9846 | 0 | { |
9847 | 0 | constexpr size_t iDimX = 1; |
9848 | 0 | constexpr size_t iDimY = 0; |
9849 | 0 | return GDALMDRasterIOFromBand(m_poBand, eRWFlag, iDimX, iDimY, |
9850 | 0 | arrayStartIdx, count, arrayStep, bufferStride, |
9851 | 0 | bufferDataType, pBuffer); |
9852 | 0 | } |
9853 | | |
9854 | | /************************************************************************/ |
9855 | | /* GDALMDRasterIOFromBand() */ |
9856 | | /************************************************************************/ |
9857 | | |
9858 | | bool GDALMDRasterIOFromBand(GDALRasterBand *poBand, GDALRWFlag eRWFlag, |
9859 | | size_t iDimX, size_t iDimY, |
9860 | | const GUInt64 *arrayStartIdx, const size_t *count, |
9861 | | const GInt64 *arrayStep, |
9862 | | const GPtrDiff_t *bufferStride, |
9863 | | const GDALExtendedDataType &bufferDataType, |
9864 | | void *pBuffer) |
9865 | 0 | { |
9866 | 0 | const auto eDT(bufferDataType.GetNumericDataType()); |
9867 | 0 | const auto nDTSize(GDALGetDataTypeSizeBytes(eDT)); |
9868 | 0 | const int nX = |
9869 | 0 | arrayStep[iDimX] > 0 |
9870 | 0 | ? static_cast<int>(arrayStartIdx[iDimX]) |
9871 | 0 | : static_cast<int>(arrayStartIdx[iDimX] - |
9872 | 0 | (count[iDimX] - 1) * -arrayStep[iDimX]); |
9873 | 0 | const int nY = |
9874 | 0 | arrayStep[iDimY] > 0 |
9875 | 0 | ? static_cast<int>(arrayStartIdx[iDimY]) |
9876 | 0 | : static_cast<int>(arrayStartIdx[iDimY] - |
9877 | 0 | (count[iDimY] - 1) * -arrayStep[iDimY]); |
9878 | 0 | const int nSizeX = static_cast<int>(count[iDimX] * ABS(arrayStep[iDimX])); |
9879 | 0 | const int nSizeY = static_cast<int>(count[iDimY] * ABS(arrayStep[iDimY])); |
9880 | 0 | GByte *pabyBuffer = static_cast<GByte *>(pBuffer); |
9881 | 0 | int nStrideXSign = 1; |
9882 | 0 | if (arrayStep[iDimX] < 0) |
9883 | 0 | { |
9884 | 0 | pabyBuffer += (count[iDimX] - 1) * bufferStride[iDimX] * nDTSize; |
9885 | 0 | nStrideXSign = -1; |
9886 | 0 | } |
9887 | 0 | int nStrideYSign = 1; |
9888 | 0 | if (arrayStep[iDimY] < 0) |
9889 | 0 | { |
9890 | 0 | pabyBuffer += (count[iDimY] - 1) * bufferStride[iDimY] * nDTSize; |
9891 | 0 | nStrideYSign = -1; |
9892 | 0 | } |
9893 | |
|
9894 | 0 | return poBand->RasterIO(eRWFlag, nX, nY, nSizeX, nSizeY, pabyBuffer, |
9895 | 0 | static_cast<int>(count[iDimX]), |
9896 | 0 | static_cast<int>(count[iDimY]), eDT, |
9897 | 0 | static_cast<GSpacing>( |
9898 | 0 | nStrideXSign * bufferStride[iDimX] * nDTSize), |
9899 | 0 | static_cast<GSpacing>( |
9900 | 0 | nStrideYSign * bufferStride[iDimY] * nDTSize), |
9901 | 0 | nullptr) == CE_None; |
9902 | 0 | } |
9903 | | |
9904 | | /************************************************************************/ |
9905 | | /* AsMDArray() */ |
9906 | | /************************************************************************/ |
9907 | | |
9908 | | /** Return a view of this raster band as a 2D multidimensional GDALMDArray. |
9909 | | * |
9910 | | * The band must be linked to a GDALDataset. If this dataset is not already |
9911 | | * marked as shared, it will be, so that the returned array holds a reference |
9912 | | * to it. |
9913 | | * |
9914 | | * If the dataset has a geotransform attached, the X and Y dimensions of the |
9915 | | * returned array will have an associated indexing variable. |
9916 | | * |
9917 | | * This is the same as the C function GDALRasterBandAsMDArray(). |
9918 | | * |
9919 | | * The "reverse" method is GDALMDArray::AsClassicDataset(). |
9920 | | * |
9921 | | * @return a new array, or nullptr. |
9922 | | * |
9923 | | * @since GDAL 3.1 |
9924 | | */ |
9925 | | std::shared_ptr<GDALMDArray> GDALRasterBand::AsMDArray() const |
9926 | 0 | { |
9927 | 0 | if (!poDS) |
9928 | 0 | { |
9929 | 0 | CPLError(CE_Failure, CPLE_AppDefined, "Band not attached to a dataset"); |
9930 | 0 | return nullptr; |
9931 | 0 | } |
9932 | 0 | if (!poDS->GetShared()) |
9933 | 0 | { |
9934 | 0 | poDS->MarkAsShared(); |
9935 | 0 | } |
9936 | 0 | return GDALMDArrayFromRasterBand::Create( |
9937 | 0 | poDS, const_cast<GDALRasterBand *>(this)); |
9938 | 0 | } |
9939 | | |
9940 | | /************************************************************************/ |
9941 | | /* InterpolateAtPoint() */ |
9942 | | /************************************************************************/ |
9943 | | |
9944 | | /** |
9945 | | * \brief Interpolates the value between pixels using a resampling algorithm, |
9946 | | * taking pixel/line coordinates as input. |
9947 | | * |
9948 | | * @param dfPixel pixel coordinate as a double, where interpolation should be done. |
9949 | | * @param dfLine line coordinate as a double, where interpolation should be done. |
9950 | | * @param eInterpolation interpolation type. Only near, bilinear, cubic and cubicspline are allowed. |
9951 | | * @param pdfRealValue pointer to real part of interpolated value |
9952 | | * @param pdfImagValue pointer to imaginary part of interpolated value (may be null if not needed) |
9953 | | * |
9954 | | * @return CE_None on success, or an error code on failure. |
9955 | | * @since GDAL 3.10 |
9956 | | */ |
9957 | | |
9958 | | CPLErr GDALRasterBand::InterpolateAtPoint(double dfPixel, double dfLine, |
9959 | | GDALRIOResampleAlg eInterpolation, |
9960 | | double *pdfRealValue, |
9961 | | double *pdfImagValue) const |
9962 | 0 | { |
9963 | 0 | if (eInterpolation != GRIORA_NearestNeighbour && |
9964 | 0 | eInterpolation != GRIORA_Bilinear && eInterpolation != GRIORA_Cubic && |
9965 | 0 | eInterpolation != GRIORA_CubicSpline) |
9966 | 0 | { |
9967 | 0 | CPLError(CE_Failure, CPLE_AppDefined, |
9968 | 0 | "Only nearest, bilinear, cubic and cubicspline interpolation " |
9969 | 0 | "methods " |
9970 | 0 | "allowed"); |
9971 | |
|
9972 | 0 | return CE_Failure; |
9973 | 0 | } |
9974 | | |
9975 | 0 | GDALRasterBand *pBand = const_cast<GDALRasterBand *>(this); |
9976 | 0 | if (!m_poPointsCache) |
9977 | 0 | m_poPointsCache = new GDALDoublePointsCache(); |
9978 | |
|
9979 | 0 | const bool res = |
9980 | 0 | GDALInterpolateAtPoint(pBand, eInterpolation, m_poPointsCache->cache, |
9981 | 0 | dfPixel, dfLine, pdfRealValue, pdfImagValue); |
9982 | |
|
9983 | 0 | return res ? CE_None : CE_Failure; |
9984 | 0 | } |
9985 | | |
9986 | | /************************************************************************/ |
9987 | | /* GDALRasterInterpolateAtPoint() */ |
9988 | | /************************************************************************/ |
9989 | | |
9990 | | /** |
9991 | | * \brief Interpolates the value between pixels using |
9992 | | * a resampling algorithm |
9993 | | * |
9994 | | * @see GDALRasterBand::InterpolateAtPoint() |
9995 | | * @since GDAL 3.10 |
9996 | | */ |
9997 | | |
9998 | | CPLErr GDALRasterInterpolateAtPoint(GDALRasterBandH hBand, double dfPixel, |
9999 | | double dfLine, |
10000 | | GDALRIOResampleAlg eInterpolation, |
10001 | | double *pdfRealValue, double *pdfImagValue) |
10002 | 0 | { |
10003 | 0 | VALIDATE_POINTER1(hBand, "GDALRasterInterpolateAtPoint", CE_Failure); |
10004 | | |
10005 | 0 | GDALRasterBand *poBand = GDALRasterBand::FromHandle(hBand); |
10006 | 0 | return poBand->InterpolateAtPoint(dfPixel, dfLine, eInterpolation, |
10007 | 0 | pdfRealValue, pdfImagValue); |
10008 | 0 | } |
10009 | | |
10010 | | /************************************************************************/ |
10011 | | /* InterpolateAtGeolocation() */ |
10012 | | /************************************************************************/ |
10013 | | |
10014 | | /** |
10015 | | * \brief Interpolates the value between pixels using a resampling algorithm, |
10016 | | * taking georeferenced coordinates as input. |
10017 | | * |
10018 | | * When poSRS is null, those georeferenced coordinates (dfGeolocX, dfGeolocY) |
10019 | | * must be in the "natural" SRS of the dataset, that is the one returned by |
10020 | | * GetSpatialRef() if there is a geotransform, GetGCPSpatialRef() if there are |
10021 | | * GCPs, WGS 84 if there are RPC coefficients, or the SRS of the geolocation |
10022 | | * array (generally WGS 84) if there is a geolocation array. |
10023 | | * If that natural SRS is a geographic one, dfGeolocX must be a longitude, and |
10024 | | * dfGeolocY a latitude. If that natural SRS is a projected one, dfGeolocX must |
10025 | | * be a easting, and dfGeolocY a northing. |
10026 | | * |
10027 | | * When poSRS is set to a non-null value, (dfGeolocX, dfGeolocY) must be |
10028 | | * expressed in that CRS, and that tuple must be conformant with the |
10029 | | * data-axis-to-crs-axis setting of poSRS, that is the one returned by |
10030 | | * the OGRSpatialReference::GetDataAxisToSRSAxisMapping(). If you want to be sure |
10031 | | * of the axis order, then make sure to call poSRS->SetAxisMappingStrategy(OAMS_TRADITIONAL_GIS_ORDER) |
10032 | | * before calling this method, and in that case, dfGeolocX must be a longitude |
10033 | | * or an easting value, and dfGeolocX a latitude or a northing value. |
10034 | | * |
10035 | | * The GDALDataset::GeolocationToPixelLine() will be used to transform from |
10036 | | * (dfGeolocX,dfGeolocY) georeferenced coordinates to (pixel, line). Refer to |
10037 | | * it for details on how that transformation is done. |
10038 | | * |
10039 | | * @param dfGeolocX X coordinate of the position (longitude or easting if poSRS |
10040 | | * is null, otherwise consistent with poSRS data-axis-to-crs-axis mapping), |
10041 | | * where interpolation should be done. |
10042 | | * @param dfGeolocY Y coordinate of the position (latitude or northing if poSRS |
10043 | | * is null, otherwise consistent with poSRS data-axis-to-crs-axis mapping), |
10044 | | * where interpolation should be done. |
10045 | | * @param poSRS If set, override the natural CRS in which dfGeolocX, dfGeolocY are expressed |
10046 | | * @param eInterpolation interpolation type. Only near, bilinear, cubic and cubicspline are allowed. |
10047 | | * @param pdfRealValue pointer to real part of interpolated value |
10048 | | * @param pdfImagValue pointer to imaginary part of interpolated value (may be null if not needed) |
10049 | | * @param papszTransformerOptions Options accepted by GDALDataset::GeolocationToPixelLine() (GDALCreateGenImgProjTransformer2()), or nullptr. |
10050 | | * |
10051 | | * @return CE_None on success, or an error code on failure. |
10052 | | * @since GDAL 3.11 |
10053 | | */ |
10054 | | |
10055 | | CPLErr GDALRasterBand::InterpolateAtGeolocation( |
10056 | | double dfGeolocX, double dfGeolocY, const OGRSpatialReference *poSRS, |
10057 | | GDALRIOResampleAlg eInterpolation, double *pdfRealValue, |
10058 | | double *pdfImagValue, CSLConstList papszTransformerOptions) const |
10059 | 0 | { |
10060 | 0 | double dfPixel; |
10061 | 0 | double dfLine; |
10062 | 0 | if (poDS->GeolocationToPixelLine(dfGeolocX, dfGeolocY, poSRS, &dfPixel, |
10063 | 0 | &dfLine, |
10064 | 0 | papszTransformerOptions) != CE_None) |
10065 | 0 | { |
10066 | 0 | return CE_Failure; |
10067 | 0 | } |
10068 | 0 | return InterpolateAtPoint(dfPixel, dfLine, eInterpolation, pdfRealValue, |
10069 | 0 | pdfImagValue); |
10070 | 0 | } |
10071 | | |
10072 | | /************************************************************************/ |
10073 | | /* GDALRasterInterpolateAtGeolocation() */ |
10074 | | /************************************************************************/ |
10075 | | |
10076 | | /** |
10077 | | * \brief Interpolates the value between pixels using a resampling algorithm, |
10078 | | * taking georeferenced coordinates as input. |
10079 | | * |
10080 | | * @see GDALRasterBand::InterpolateAtGeolocation() |
10081 | | * @since GDAL 3.11 |
10082 | | */ |
10083 | | |
10084 | | CPLErr GDALRasterInterpolateAtGeolocation(GDALRasterBandH hBand, |
10085 | | double dfGeolocX, double dfGeolocY, |
10086 | | OGRSpatialReferenceH hSRS, |
10087 | | GDALRIOResampleAlg eInterpolation, |
10088 | | double *pdfRealValue, |
10089 | | double *pdfImagValue, |
10090 | | CSLConstList papszTransformerOptions) |
10091 | 0 | { |
10092 | 0 | VALIDATE_POINTER1(hBand, "GDALRasterInterpolateAtGeolocation", CE_Failure); |
10093 | | |
10094 | 0 | GDALRasterBand *poBand = GDALRasterBand::FromHandle(hBand); |
10095 | 0 | return poBand->InterpolateAtGeolocation( |
10096 | 0 | dfGeolocX, dfGeolocY, OGRSpatialReference::FromHandle(hSRS), |
10097 | 0 | eInterpolation, pdfRealValue, pdfImagValue, papszTransformerOptions); |
10098 | 0 | } |
10099 | | |
10100 | | /************************************************************************/ |
10101 | | /* GDALRasterBand::SplitRasterIO() */ |
10102 | | /************************************************************************/ |
10103 | | |
10104 | | //! @cond Doxygen_Suppress |
10105 | | |
10106 | | /** Implements IRasterIO() by dividing the request in 2. |
10107 | | * |
10108 | | * Should only be called when nBufXSize == nXSize && nBufYSize == nYSize |
10109 | | * |
10110 | | * Return CE_Warning if the split could not be done, CE_None in case of |
10111 | | * success and CE_Failure in case of error. |
10112 | | * |
10113 | | * @since 3.12 |
10114 | | */ |
10115 | | CPLErr GDALRasterBand::SplitRasterIO(GDALRWFlag eRWFlag, int nXOff, int nYOff, |
10116 | | [[maybe_unused]] int nXSize, |
10117 | | [[maybe_unused]] int nYSize, void *pData, |
10118 | | int nBufXSize, int nBufYSize, |
10119 | | GDALDataType eBufType, |
10120 | | GSpacing nPixelSpace, GSpacing nLineSpace, |
10121 | | GDALRasterIOExtraArg *psExtraArg) |
10122 | 0 | { |
10123 | 0 | CPLAssert(nBufXSize == nXSize && nBufYSize == nYSize); |
10124 | | |
10125 | 0 | GByte *pabyData = static_cast<GByte *>(pData); |
10126 | 0 | if ((nBufXSize == nRasterXSize || nBufYSize >= nBufXSize) && nBufYSize >= 2) |
10127 | 0 | { |
10128 | 0 | GDALRasterIOExtraArg sArg; |
10129 | 0 | INIT_RASTERIO_EXTRA_ARG(sArg); |
10130 | 0 | const int nHalfHeight = nBufYSize / 2; |
10131 | |
|
10132 | 0 | sArg.pfnProgress = GDALScaledProgress; |
10133 | 0 | sArg.pProgressData = GDALCreateScaledProgress( |
10134 | 0 | 0, 0.5, psExtraArg->pfnProgress, psExtraArg->pProgressData); |
10135 | 0 | if (sArg.pProgressData == nullptr) |
10136 | 0 | sArg.pfnProgress = nullptr; |
10137 | 0 | CPLErr eErr = IRasterIO(eRWFlag, nXOff, nYOff, nBufXSize, nHalfHeight, |
10138 | 0 | pabyData, nBufXSize, nHalfHeight, eBufType, |
10139 | 0 | nPixelSpace, nLineSpace, &sArg); |
10140 | 0 | GDALDestroyScaledProgress(sArg.pProgressData); |
10141 | |
|
10142 | 0 | if (eErr == CE_None) |
10143 | 0 | { |
10144 | 0 | sArg.pfnProgress = GDALScaledProgress; |
10145 | 0 | sArg.pProgressData = GDALCreateScaledProgress( |
10146 | 0 | 0.5, 1, psExtraArg->pfnProgress, psExtraArg->pProgressData); |
10147 | 0 | if (sArg.pProgressData == nullptr) |
10148 | 0 | sArg.pfnProgress = nullptr; |
10149 | 0 | eErr = IRasterIO(eRWFlag, nXOff, nYOff + nHalfHeight, nBufXSize, |
10150 | 0 | nBufYSize - nHalfHeight, |
10151 | 0 | pabyData + nHalfHeight * nLineSpace, nBufXSize, |
10152 | 0 | nBufYSize - nHalfHeight, eBufType, nPixelSpace, |
10153 | 0 | nLineSpace, &sArg); |
10154 | 0 | GDALDestroyScaledProgress(sArg.pProgressData); |
10155 | 0 | } |
10156 | 0 | return eErr; |
10157 | 0 | } |
10158 | 0 | else if (nBufXSize >= 2) |
10159 | 0 | { |
10160 | 0 | GDALRasterIOExtraArg sArg; |
10161 | 0 | INIT_RASTERIO_EXTRA_ARG(sArg); |
10162 | 0 | const int nHalfWidth = nBufXSize / 2; |
10163 | |
|
10164 | 0 | sArg.pfnProgress = GDALScaledProgress; |
10165 | 0 | sArg.pProgressData = GDALCreateScaledProgress( |
10166 | 0 | 0, 0.5, psExtraArg->pfnProgress, psExtraArg->pProgressData); |
10167 | 0 | if (sArg.pProgressData == nullptr) |
10168 | 0 | sArg.pfnProgress = nullptr; |
10169 | 0 | CPLErr eErr = IRasterIO(eRWFlag, nXOff, nYOff, nHalfWidth, nBufYSize, |
10170 | 0 | pabyData, nHalfWidth, nBufYSize, eBufType, |
10171 | 0 | nPixelSpace, nLineSpace, &sArg); |
10172 | 0 | GDALDestroyScaledProgress(sArg.pProgressData); |
10173 | |
|
10174 | 0 | if (eErr == CE_None) |
10175 | 0 | { |
10176 | 0 | sArg.pfnProgress = GDALScaledProgress; |
10177 | 0 | sArg.pProgressData = GDALCreateScaledProgress( |
10178 | 0 | 0.5, 1, psExtraArg->pfnProgress, psExtraArg->pProgressData); |
10179 | 0 | if (sArg.pProgressData == nullptr) |
10180 | 0 | sArg.pfnProgress = nullptr; |
10181 | 0 | eErr = IRasterIO(eRWFlag, nXOff + nHalfWidth, nYOff, |
10182 | 0 | nBufXSize - nHalfWidth, nBufYSize, |
10183 | 0 | pabyData + nHalfWidth * nPixelSpace, |
10184 | 0 | nBufXSize - nHalfWidth, nBufYSize, eBufType, |
10185 | 0 | nPixelSpace, nLineSpace, &sArg); |
10186 | 0 | GDALDestroyScaledProgress(sArg.pProgressData); |
10187 | 0 | } |
10188 | 0 | return eErr; |
10189 | 0 | } |
10190 | | |
10191 | 0 | return CE_Warning; |
10192 | 0 | } |
10193 | | |
10194 | | //! @endcond |