/src/gdal/ogr/ogr_geo_utils.cpp
Line  | Count  | Source (jump to first uncovered line)  | 
1  |  | /******************************************************************************  | 
2  |  |  *  | 
3  |  |  * Project:  OGR  | 
4  |  |  * Purpose:  Geo-computations  | 
5  |  |  * Author:   Even Rouault, even dot rouault at spatialys.com  | 
6  |  |  *  | 
7  |  |  ******************************************************************************  | 
8  |  |  * Copyright (c) 2008-2010, Even Rouault <even dot rouault at spatialys.com>  | 
9  |  |  *  | 
10  |  |  * SPDX-License-Identifier: MIT  | 
11  |  |  ****************************************************************************/  | 
12  |  |  | 
13  |  | #include "ogr_geo_utils.h"  | 
14  |  | #include "cpl_port.h"  | 
15  |  | #include "cpl_error.h"  | 
16  |  |  | 
17  |  | constexpr double DEG2RAD = M_PI / 180.0;  | 
18  |  | constexpr double RAD2DEG = 1.0 / DEG2RAD;  | 
19  |  |  | 
20  |  | static double OGR_Safe_acos(double x)  | 
21  | 0  | { | 
22  | 0  |     if (x > 1)  | 
23  | 0  |         x = 1;  | 
24  | 0  |     else if (x < -1)  | 
25  | 0  |         x = -1;  | 
26  | 0  |     return acos(x);  | 
27  | 0  | }  | 
28  |  |  | 
29  |  | /************************************************************************/  | 
30  |  | /*                      OGR_GreatCircle_Distance()                      */  | 
31  |  | /************************************************************************/  | 
32  |  |  | 
33  |  | double OGR_GreatCircle_Distance(double LatA_deg, double LonA_deg,  | 
34  |  |                                 double LatB_deg, double LonB_deg,  | 
35  |  |                                 double dfRadius)  | 
36  | 0  | { | 
37  | 0  |     const double cosP = cos((LonB_deg - LonA_deg) * DEG2RAD);  | 
38  | 0  |     const double LatA_rad = LatA_deg * DEG2RAD;  | 
39  | 0  |     const double LatB_rad = LatB_deg * DEG2RAD;  | 
40  | 0  |     const double cosa = cos(LatA_rad);  | 
41  | 0  |     const double sina = sin(LatA_rad);  | 
42  | 0  |     const double cosb = cos(LatB_rad);  | 
43  | 0  |     const double sinb = sin(LatB_rad);  | 
44  | 0  |     const double cos_angle = sina * sinb + cosa * cosb * cosP;  | 
45  | 0  |     return OGR_Safe_acos(cos_angle) * dfRadius;  | 
46  | 0  | }  | 
47  |  |  | 
48  |  | /************************************************************************/  | 
49  |  | /*                      OGR_GreatCircle_InitialHeading()                */  | 
50  |  | /************************************************************************/  | 
51  |  |  | 
52  |  | double OGR_GreatCircle_InitialHeading(double LatA_deg, double LonA_deg,  | 
53  |  |                                       double LatB_deg, double LonB_deg)  | 
54  | 0  | { | 
55  | 0  |     if (fabs(LatA_deg - 90) < 1e-10 || fabs(LatB_deg + 90) < 1e-10)  | 
56  | 0  |     { | 
57  | 0  |         return 180;  | 
58  | 0  |     }  | 
59  | 0  |     else if (fabs(LatA_deg + 90) < 1e-10 || fabs(LatB_deg - 90) < 1e-10)  | 
60  | 0  |     { | 
61  | 0  |         return 0;  | 
62  | 0  |     }  | 
63  | 0  |     else if (fabs(fmod(LonA_deg - LonB_deg, 360.0)) < 1e-10 &&  | 
64  | 0  |              fabs(LatA_deg - LatB_deg) < 1e-10)  | 
65  | 0  |     { | 
66  | 0  |         return 0;  // Arbitrary number  | 
67  | 0  |     }  | 
68  | 0  |     else if (fabs(LatA_deg) < 1e-10 && fabs(LatB_deg) < 1e-10)  | 
69  | 0  |     { | 
70  | 0  |         return (LonB_deg > LonA_deg) ? 90.0 : 270.0;  | 
71  | 0  |     }  | 
72  | 0  |     else if (fabs(fmod(LonA_deg - LonB_deg, 360.0)) < 1e-10)  | 
73  | 0  |     { | 
74  | 0  |         return (LatA_deg > LatB_deg) ? 180.0 : 0.0;  | 
75  | 0  |     }  | 
76  | 0  |     else  | 
77  | 0  |     { | 
78  | 0  |         const double LatA_rad = LatA_deg * DEG2RAD;  | 
79  | 0  |         const double LatB_rad = LatB_deg * DEG2RAD;  | 
80  |  | 
  | 
81  | 0  |         const double cos_LatA = cos(LatA_rad);  | 
82  | 0  |         const double sin_LatA = sin(LatA_rad);  | 
83  |  | 
  | 
84  | 0  |         const double diffG = (LonA_deg - LonB_deg) * DEG2RAD;  | 
85  | 0  |         const double cos_diffG = cos(diffG);  | 
86  | 0  |         const double sin_diffG = sin(diffG);  | 
87  |  | 
  | 
88  | 0  |         const double denom = sin_LatA * cos_diffG - cos_LatA * tan(LatB_rad);  | 
89  | 0  |         if (denom == 0.0)  | 
90  | 0  |         { | 
91  |  |             // Can be the case if Lat_A = -Lat_B and abs(LonA - LonB) = 180  | 
92  | 0  |             return 0.0;  | 
93  | 0  |         }  | 
94  |  |  | 
95  | 0  |         double track = atan(sin_diffG / denom) * RAD2DEG;  | 
96  |  | 
  | 
97  | 0  |         if (denom > 0.0)  | 
98  | 0  |         { | 
99  | 0  |             track = 180 + track;  | 
100  | 0  |         }  | 
101  | 0  |         else if (track < 0)  | 
102  | 0  |         { | 
103  | 0  |             track = 360 + track;  | 
104  | 0  |         }  | 
105  |  | 
  | 
106  | 0  |         return track;  | 
107  | 0  |     }  | 
108  | 0  | }  | 
109  |  |  | 
110  |  | /************************************************************************/  | 
111  |  | /*                     OGR_GreatCircle_ExtendPosition()                 */  | 
112  |  | /************************************************************************/  | 
113  |  |  | 
114  |  | int OGR_GreatCircle_ExtendPosition(double dfLatA_deg, double dfLonA_deg,  | 
115  |  |                                    double dfDistance, double dfHeadingInA,  | 
116  |  |                                    double dfRadius, double *pdfLatB_deg,  | 
117  |  |                                    double *pdfLonB_deg)  | 
118  | 0  | { | 
119  | 0  |     const double dfHeadingRad = dfHeadingInA * DEG2RAD;  | 
120  | 0  |     const double cos_Heading = cos(dfHeadingRad);  | 
121  | 0  |     const double sin_Heading = sin(dfHeadingRad);  | 
122  |  | 
  | 
123  | 0  |     const double dfDistanceRad = dfDistance / dfRadius;  | 
124  | 0  |     const double cos_Distance = cos(dfDistanceRad);  | 
125  | 0  |     const double sin_Distance = sin(dfDistanceRad);  | 
126  |  | 
  | 
127  | 0  |     const double dfLatA_rad = dfLatA_deg * DEG2RAD;  | 
128  | 0  |     const double cos_complement_LatA = sin(dfLatA_rad);  | 
129  | 0  |     const double sin_complement_LatA = cos(dfLatA_rad);  | 
130  |  | 
  | 
131  | 0  |     if (dfDistance == 0.0)  | 
132  | 0  |     { | 
133  | 0  |         *pdfLatB_deg = dfLatA_deg;  | 
134  | 0  |         *pdfLonB_deg = dfLonA_deg;  | 
135  | 0  |         return 1;  | 
136  | 0  |     }  | 
137  |  |  | 
138  | 0  |     if (fabs(dfLatA_deg) >= 90.0)  | 
139  | 0  |     { | 
140  | 0  |         *pdfLatB_deg = dfLatA_deg;  | 
141  | 0  |         *pdfLonB_deg = dfLonA_deg;  | 
142  | 0  |         return 0;  | 
143  | 0  |     }  | 
144  |  |  | 
145  | 0  |     if (fabs(sin_Heading) < 1e-8)  | 
146  | 0  |     { | 
147  | 0  |         *pdfLonB_deg = dfLonA_deg;  | 
148  | 0  |         if (fabs(fmod(dfHeadingInA + 360.0, 360.0)) < 1e-8)  | 
149  | 0  |         { | 
150  | 0  |             *pdfLatB_deg = dfLatA_deg + dfDistanceRad * RAD2DEG;  | 
151  | 0  |         }  | 
152  | 0  |         else  | 
153  | 0  |         { | 
154  | 0  |             *pdfLatB_deg = dfLatA_deg - dfDistanceRad * RAD2DEG;  | 
155  | 0  |         }  | 
156  | 0  |         return 1;  | 
157  | 0  |     }  | 
158  |  |  | 
159  | 0  |     if (fabs(cos_complement_LatA) < 1e-8 && fabs(cos_Heading) < 1e-8)  | 
160  | 0  |     { | 
161  | 0  |         *pdfLatB_deg = dfLatA_deg;  | 
162  | 0  |         if (fabs(dfHeadingInA - 90.0) < 1e-8)  | 
163  | 0  |         { | 
164  | 0  |             *pdfLonB_deg = dfLonA_deg + dfDistanceRad * RAD2DEG;  | 
165  | 0  |         }  | 
166  | 0  |         else  | 
167  | 0  |         { | 
168  | 0  |             *pdfLonB_deg = dfLonA_deg - dfDistanceRad * RAD2DEG;  | 
169  | 0  |         }  | 
170  | 0  |         return 1;  | 
171  | 0  |     }  | 
172  |  |  | 
173  | 0  |     const double cos_complement_latB =  | 
174  | 0  |         cos_Distance * cos_complement_LatA +  | 
175  | 0  |         sin_Distance * sin_complement_LatA * cos_Heading;  | 
176  |  | 
  | 
177  | 0  |     const double complement_latB = OGR_Safe_acos(cos_complement_latB);  | 
178  |  | 
  | 
179  | 0  |     const double dfDenomin = sin(complement_latB) * sin_complement_LatA;  | 
180  | 0  |     if (dfDenomin == 0.0)  | 
181  | 0  |         CPLDebug("OGR", "OGR_GreatCircle_Distance: dfDenomin == 0.0"); | 
182  | 0  |     const double Cos_dG =  | 
183  | 0  |         (cos_Distance - cos_complement_latB * cos_complement_LatA) / dfDenomin;  | 
184  | 0  |     *pdfLatB_deg = 90 - complement_latB * RAD2DEG;  | 
185  |  | 
  | 
186  | 0  |     const double dG_deg = OGR_Safe_acos(Cos_dG) * RAD2DEG;  | 
187  |  | 
  | 
188  | 0  |     if (sin_Heading < 0)  | 
189  | 0  |         *pdfLonB_deg = dfLonA_deg - dG_deg;  | 
190  | 0  |     else  | 
191  | 0  |         *pdfLonB_deg = dfLonA_deg + dG_deg;  | 
192  |  | 
  | 
193  | 0  |     if (*pdfLonB_deg > 180)  | 
194  | 0  |         *pdfLonB_deg -= 360;  | 
195  | 0  |     else if (*pdfLonB_deg <= -180)  | 
196  | 0  |         *pdfLonB_deg += 360;  | 
197  |  | 
  | 
198  | 0  |     return 1;  | 
199  | 0  | }  |