/src/gdal/ogr/ogrsf_frmts/geojson/directedacyclicgraph.hpp
Line  | Count  | Source (jump to first uncovered line)  | 
1  |  | /******************************************************************************  | 
2  |  |  *  | 
3  |  |  * Project:  GDAL  | 
4  |  |  * Purpose:  Implementation of topologic sorting over a directed acyclic graph  | 
5  |  |  * Author:   Even Rouault  | 
6  |  |  *  | 
7  |  |  ******************************************************************************  | 
8  |  |  * Copyright (c) 2021, Even Rouault <even dot rouault at spatialys dot com>  | 
9  |  |  *  | 
10  |  |  * SPDX-License-Identifier: MIT  | 
11  |  |  ****************************************************************************/  | 
12  |  |  | 
13  |  | #ifndef DIRECTEDACYCLICGRAPH_INCLUDED_H  | 
14  |  | #define DIRECTEDACYCLICGRAPH_INCLUDED_H  | 
15  |  |  | 
16  |  | #include <algorithm>  | 
17  |  | #include <list>  | 
18  |  | #include <map>  | 
19  |  | #include <set>  | 
20  |  | #include <stack>  | 
21  |  | #include <string>  | 
22  |  | #include <vector>  | 
23  |  |  | 
24  |  | #include <cassert>  | 
25  |  |  | 
26  |  | namespace gdal  | 
27  |  | { | 
28  |  |  | 
29  |  | // See https://en.wikipedia.org/wiki/Directed_acyclic_graph  | 
30  |  | template <class T, class V = std::string> class DirectedAcyclicGraph  | 
31  |  | { | 
32  |  |     std::set<T> nodes{}; | 
33  |  |     std::map<T, std::set<T>>  | 
34  |  |         incomingNodes{};  // incomingNodes[j][i] means an edge from i to j | 
35  |  |     std::map<T, std::set<T>>  | 
36  |  |         outgoingNodes{};  // outgoingNodes[i][j] means an edge from i to j | 
37  |  |     std::map<T, V> names{}; | 
38  |  |  | 
39  |  |   public:  | 
40  | 0  |     DirectedAcyclicGraph() = default;  | 
41  |  |  | 
42  |  |     void clear()  | 
43  |  |     { | 
44  |  |         nodes.clear();  | 
45  |  |         incomingNodes.clear();  | 
46  |  |         outgoingNodes.clear();  | 
47  |  |         names.clear();  | 
48  |  |     }  | 
49  |  |  | 
50  |  |     void addNode(const T &i, const V &s)  | 
51  | 0  |     { | 
52  | 0  |         nodes.insert(i);  | 
53  | 0  |         names[i] = s;  | 
54  | 0  |     }  | 
55  |  |  | 
56  |  |     void removeNode(const T &i);  | 
57  |  |     const char *addEdge(const T &i, const T &j);  | 
58  |  |     const char *removeEdge(const T &i, const T &j);  | 
59  |  |     bool isTherePathFromTo(const T &i, const T &j) const;  | 
60  |  |     std::vector<T> findStartingNodes() const;  | 
61  |  |     std::vector<T> getTopologicalOrdering();  | 
62  |  | };  | 
63  |  |  | 
64  |  | template <class T, class V>  | 
65  |  | void DirectedAcyclicGraph<T, V>::removeNode(const T &i)  | 
66  | 0  | { | 
67  | 0  |     nodes.erase(i);  | 
68  | 0  |     names.erase(i);  | 
69  |  | 
  | 
70  | 0  |     { | 
71  | 0  |         auto incomingIter = incomingNodes.find(i);  | 
72  | 0  |         if (incomingIter != incomingNodes.end())  | 
73  | 0  |         { | 
74  | 0  |             for (const T &j : incomingIter->second)  | 
75  | 0  |             { | 
76  | 0  |                 auto outgoingIter = outgoingNodes.find(j);  | 
77  | 0  |                 assert(outgoingIter != outgoingNodes.end());  | 
78  | 0  |                 auto iterJI = outgoingIter->second.find(i);  | 
79  | 0  |                 assert(iterJI != outgoingIter->second.end());  | 
80  | 0  |                 outgoingIter->second.erase(iterJI);  | 
81  | 0  |                 if (outgoingIter->second.empty())  | 
82  | 0  |                     outgoingNodes.erase(outgoingIter);  | 
83  | 0  |             }  | 
84  | 0  |             incomingNodes.erase(incomingIter);  | 
85  | 0  |         }  | 
86  | 0  |     }  | 
87  |  |  | 
88  | 0  |     { | 
89  | 0  |         auto outgoingIter = outgoingNodes.find(i);  | 
90  | 0  |         if (outgoingIter != outgoingNodes.end())  | 
91  | 0  |         { | 
92  | 0  |             for (const T &j : outgoingIter->second)  | 
93  | 0  |             { | 
94  | 0  |                 auto incomingIter = incomingNodes.find(j);  | 
95  | 0  |                 assert(incomingIter != incomingNodes.end());  | 
96  | 0  |                 auto iterJI = incomingIter->second.find(i);  | 
97  | 0  |                 assert(iterJI != incomingIter->second.end());  | 
98  | 0  |                 incomingIter->second.erase(iterJI);  | 
99  | 0  |                 if (incomingIter->second.empty())  | 
100  | 0  |                     incomingNodes.erase(incomingIter);  | 
101  | 0  |             }  | 
102  | 0  |             outgoingNodes.erase(outgoingIter);  | 
103  | 0  |         }  | 
104  | 0  |     }  | 
105  | 0  | }  | 
106  |  |  | 
107  |  | template <class T, class V>  | 
108  |  | const char *DirectedAcyclicGraph<T, V>::addEdge(const T &i, const T &j)  | 
109  | 0  | { | 
110  | 0  |     if (i == j)  | 
111  | 0  |     { | 
112  | 0  |         return "self cycle";  | 
113  | 0  |     }  | 
114  | 0  |     const auto iterI = outgoingNodes.find(i);  | 
115  | 0  |     if (iterI != outgoingNodes.end() &&  | 
116  | 0  |         iterI->second.find(j) != iterI->second.end())  | 
117  | 0  |     { | 
118  | 0  |         return "already inserted edge";  | 
119  | 0  |     }  | 
120  |  |  | 
121  | 0  |     if (!cpl::contains(nodes, i))  | 
122  | 0  |     { | 
123  | 0  |         return "node i unknown";  | 
124  | 0  |     }  | 
125  | 0  |     if (!cpl::contains(nodes, j))  | 
126  | 0  |     { | 
127  | 0  |         return "node j unknown";  | 
128  | 0  |     }  | 
129  |  |  | 
130  | 0  |     if (isTherePathFromTo(j, i))  | 
131  | 0  |     { | 
132  | 0  |         return "can't add edge: this would cause a cycle";  | 
133  | 0  |     }  | 
134  |  |  | 
135  | 0  |     outgoingNodes[i].insert(j);  | 
136  | 0  |     incomingNodes[j].insert(i);  | 
137  | 0  |     return nullptr;  | 
138  | 0  | }  | 
139  |  |  | 
140  |  | template <class T, class V>  | 
141  |  | const char *DirectedAcyclicGraph<T, V>::removeEdge(const T &i, const T &j)  | 
142  | 0  | { | 
143  | 0  |     auto iterI = outgoingNodes.find(i);  | 
144  | 0  |     if (iterI == outgoingNodes.end())  | 
145  | 0  |         return "no outgoing nodes from i";  | 
146  | 0  |     auto iterIJ = iterI->second.find(j);  | 
147  | 0  |     if (iterIJ == iterI->second.end())  | 
148  | 0  |         return "no outgoing node from i to j";  | 
149  | 0  |     iterI->second.erase(iterIJ);  | 
150  | 0  |     if (iterI->second.empty())  | 
151  | 0  |         outgoingNodes.erase(iterI);  | 
152  |  | 
  | 
153  | 0  |     auto iterJ = incomingNodes.find(j);  | 
154  | 0  |     assert(iterJ != incomingNodes.end());  | 
155  | 0  |     auto iterJI = iterJ->second.find(i);  | 
156  | 0  |     assert(iterJI != iterJ->second.end());  | 
157  | 0  |     iterJ->second.erase(iterJI);  | 
158  | 0  |     if (iterJ->second.empty())  | 
159  | 0  |         incomingNodes.erase(iterJ);  | 
160  |  | 
  | 
161  | 0  |     return nullptr;  | 
162  | 0  | }  | 
163  |  |  | 
164  |  | template <class T, class V>  | 
165  |  | bool DirectedAcyclicGraph<T, V>::isTherePathFromTo(const T &i, const T &j) const  | 
166  | 0  | { | 
167  | 0  |     std::set<T> plannedForVisit;  | 
168  | 0  |     std::stack<T> toVisit;  | 
169  | 0  |     toVisit.push(i);  | 
170  | 0  |     plannedForVisit.insert(i);  | 
171  | 0  |     while (!toVisit.empty())  | 
172  | 0  |     { | 
173  | 0  |         const T n = toVisit.top();  | 
174  | 0  |         toVisit.pop();  | 
175  | 0  |         if (n == j)  | 
176  | 0  |             return true;  | 
177  | 0  |         const auto iter = outgoingNodes.find(n);  | 
178  | 0  |         if (iter != outgoingNodes.end())  | 
179  | 0  |         { | 
180  | 0  |             for (const T &k : iter->second)  | 
181  | 0  |             { | 
182  | 0  |                 if (!cpl::contains(plannedForVisit, k))  | 
183  | 0  |                 { | 
184  | 0  |                     plannedForVisit.insert(k);  | 
185  | 0  |                     toVisit.push(k);  | 
186  | 0  |                 }  | 
187  | 0  |             }  | 
188  | 0  |         }  | 
189  | 0  |     }  | 
190  | 0  |     return false;  | 
191  | 0  | }  | 
192  |  |  | 
193  |  | template <class T, class V>  | 
194  |  | std::vector<T> DirectedAcyclicGraph<T, V>::findStartingNodes() const  | 
195  | 0  | { | 
196  | 0  |     std::vector<T> ret;  | 
197  | 0  |     for (const auto &i : nodes)  | 
198  | 0  |     { | 
199  | 0  |         if (!cpl::contains(incomingNodes, i))  | 
200  | 0  |             ret.emplace_back(i);  | 
201  | 0  |     }  | 
202  | 0  |     return ret;  | 
203  | 0  | }  | 
204  |  |  | 
205  |  | // Kahn's algorithm:  | 
206  |  | // https://en.wikipedia.org/wiki/Topological_sorting#Kahn's_algorithm  | 
207  |  | template <class T, class V>  | 
208  |  | std::vector<T> DirectedAcyclicGraph<T, V>::getTopologicalOrdering()  | 
209  | 0  | { | 
210  | 0  |     std::vector<T> ret;  | 
211  | 0  |     ret.reserve(nodes.size());  | 
212  |  | 
  | 
213  | 0  |     const auto cmp = [this](const T &a, const T &b)  | 
214  | 0  |     { return names.find(a)->second < names.find(b)->second; }; | 
215  | 0  |     std::set<T, decltype(cmp)> S(cmp);  | 
216  |  | 
  | 
217  | 0  |     const auto sn = findStartingNodes();  | 
218  | 0  |     for (const auto &i : sn)  | 
219  | 0  |         S.insert(i);  | 
220  |  | 
  | 
221  | 0  |     while (true)  | 
222  | 0  |     { | 
223  | 0  |         auto iterFirst = S.begin();  | 
224  | 0  |         if (iterFirst == S.end())  | 
225  | 0  |             break;  | 
226  | 0  |         const auto n = *iterFirst;  | 
227  | 0  |         S.erase(iterFirst);  | 
228  | 0  |         ret.emplace_back(n);  | 
229  |  | 
  | 
230  | 0  |         const auto iter = outgoingNodes.find(n);  | 
231  | 0  |         if (iter != outgoingNodes.end())  | 
232  | 0  |         { | 
233  |  |             // Need to take a copy as we remove edges during iteration  | 
234  | 0  |             const std::set<T> myOutgoingNodes = iter->second;  | 
235  | 0  |             for (const T &m : myOutgoingNodes)  | 
236  | 0  |             { | 
237  | 0  |                 const char *retRemoveEdge = removeEdge(n, m);  | 
238  | 0  |                 (void)retRemoveEdge;  | 
239  | 0  |                 assert(retRemoveEdge == nullptr);  | 
240  | 0  |                 if (!cpl::contains(incomingNodes, m))  | 
241  | 0  |                 { | 
242  | 0  |                     S.insert(m);  | 
243  | 0  |                 }  | 
244  | 0  |             }  | 
245  | 0  |         }  | 
246  | 0  |     }  | 
247  |  |  | 
248  |  |     // Should not happen for a direct acyclic graph  | 
249  | 0  |     assert(incomingNodes.empty());  | 
250  | 0  |     assert(outgoingNodes.empty());  | 
251  |  |  | 
252  | 0  |     return ret;  | 
253  | 0  | }  | 
254  |  |  | 
255  |  | }  // namespace gdal  | 
256  |  |  | 
257  |  | #endif  // DIRECTEDACYCLICGRAPH_INCLUDED_H  |