Coverage Report

Created: 2025-06-13 06:29

/src/gdal/port/cpl_md5.cpp
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * This code implements the MD5 message-digest algorithm.
3
 * The algorithm is due to Ron Rivest.  This code was
4
 * written by Colin Plumb in 1993, no copyright is claimed.
5
 * This code is in the public domain; do with it what you wish.
6
 *
7
 * Equivalent code is available from RSA Data Security, Inc.
8
 * This code has been tested against that, and is equivalent,
9
 * except that you don't need to include two pages of legalese
10
 * with every copy.
11
 *
12
 * To compute the message digest of a chunk of bytes, declare an
13
 * MD5Context structure, pass it to MD5Init, call MD5Update as
14
 * needed on buffers full of bytes, and then call MD5Final, which
15
 * will fill a supplied 16-byte array with the digest.
16
 */
17
18
/* This code was modified in 1997 by Jim Kingdon of Cyclic Software to
19
not require an integer type which is exactly 32 bits.  This work
20
draws on the changes for the same purpose by Tatu Ylonen
21
<ylo@cs.hut.fi> as part of SSH, but since I didn't actually use
22
that code, there is no copyright issue.  I hereby disclaim
23
copyright in any changes I have made; this code remains in the
24
public domain.  */
25
26
/* Note regarding cvs_* namespace: this avoids potential conflicts
27
with libraries such as some versions of Kerberos.  No particular
28
need to worry about whether the system supplies an MD5 library, as
29
this file is only about 3k of object code.  */
30
31
/* Modified by E. Rouault, to fix :
32
   warning: argument to 'sizeof' in 'memset' call is the same expression as
33
   the destination; did you mean to dereference it? [-Wsizeof-pointer-memaccess]
34
        memset(ctx, 0, sizeof(ctx)); */   /* In case it is sensitive */
35
/* at the end of cvs_MD5Final */
36
37
#include "cpl_md5.h"
38
39
#include "cpl_string.h"
40
41
static GUInt32 getu32(const unsigned char *addr)
42
0
{
43
0
    return ((((static_cast<GUInt32>(addr[3]) << 8) | addr[2]) << 8) | addr[1])
44
0
               << 8 |
45
0
           addr[0];
46
0
}
47
48
static void putu32(GUInt32 data, unsigned char *addr)
49
0
{
50
0
    addr[0] = static_cast<unsigned char>(data & 0xff);
51
0
    addr[1] = static_cast<unsigned char>((data >> 8) & 0xff);
52
0
    addr[2] = static_cast<unsigned char>((data >> 16) & 0xff);
53
0
    addr[3] = static_cast<unsigned char>((data >> 24) & 0xff);
54
0
}
55
56
/*
57
 * Start MD5 accumulation.  Set bit count to 0 and buffer to mysterious
58
 * initialization constants.
59
 */
60
void CPLMD5Init(struct CPLMD5Context *context)
61
0
{
62
0
    context->buf[0] = 0x67452301;
63
0
    context->buf[1] = 0xefcdab89;
64
0
    context->buf[2] = 0x98badcfe;
65
0
    context->buf[3] = 0x10325476;
66
67
0
    context->bits[0] = 0;
68
0
    context->bits[1] = 0;
69
0
}
70
71
/*
72
 * Update context to reflect the concatenation of another buffer full
73
 * of bytes.
74
 */
75
void CPLMD5Update(struct CPLMD5Context *context, const void *buf, size_t len)
76
0
{
77
0
    const GByte *pabyBuf = static_cast<const GByte *>(buf);
78
0
    while (len > 0xffffffffU)
79
0
    {
80
0
        CPLMD5Update(context, pabyBuf, 0xffffffffU);
81
0
        pabyBuf += 0xffffffffU;
82
0
        len -= 0xffffffffU;
83
0
    }
84
85
    // Update bitcount
86
0
    GUInt32 t = context->bits[0];
87
    // Clear top 3 bits before left shifting to avoid Coverity Scan warning
88
    // about 0xffffffffU overflowing during the shift.
89
0
    const GUInt32 lenShifted = static_cast<GUInt32>(len & 0x1fffffffU) << 3U;
90
0
    context->bits[0] = (t + lenShifted) & 0xffffffff;
91
0
    if (context->bits[0] < t)
92
0
        context->bits[1]++; /* Carry from low to high */
93
0
    context->bits[1] += static_cast<GUInt32>(len >> 29);
94
95
0
    t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */
96
97
    /* Handle any leading odd-sized chunks */
98
99
0
    if (t)
100
0
    {
101
0
        unsigned char *p = context->in + t;
102
103
0
        t = 64 - t;
104
0
        if (len < t)
105
0
        {
106
0
            memcpy(p, pabyBuf, len);
107
0
            return;
108
0
        }
109
0
        memcpy(p, pabyBuf, t);
110
0
        CPLMD5Transform(context->buf, context->in);
111
0
        pabyBuf += t;
112
0
        len -= t;
113
0
    }
114
115
    /* Process data in 64-byte chunks */
116
117
0
    while (len >= 64)
118
0
    {
119
0
        memcpy(context->in, pabyBuf, 64);
120
0
        CPLMD5Transform(context->buf, context->in);
121
0
        pabyBuf += 64;
122
0
        len -= 64;
123
0
    }
124
125
    /* Handle any remaining bytes of data. */
126
127
0
    memcpy(context->in, pabyBuf, len);
128
0
}
129
130
/*
131
 * Final wrapup - pad to 64-byte boundary with the bit pattern
132
 * 1 0* (64-bit count of bits processed, MSB-first)
133
 */
134
void CPLMD5Final(unsigned char digest[16], struct CPLMD5Context *context)
135
0
{
136
    /* Compute number of bytes mod 64 */
137
0
    unsigned count = static_cast<unsigned>((context->bits[0] >> 3) & 0x3F);
138
139
    /* Set the first char of padding to 0x80.  This is safe since there is
140
    always at least one byte free */
141
0
    unsigned char *p = context->in + count;
142
0
    *p++ = 0x80;
143
144
    /* Bytes of padding needed to make 64 bytes */
145
0
    count = 64 - 1 - count;
146
147
    /* Pad out to 56 mod 64 */
148
0
    if (count < 8)
149
0
    {
150
        /* Two lots of padding:  Pad the first block to 64 bytes */
151
0
        memset(p, 0, count);
152
0
        CPLMD5Transform(context->buf, context->in);
153
154
        /* Now fill the next block with 56 bytes */
155
0
        memset(context->in, 0, 56);
156
0
    }
157
0
    else
158
0
    {
159
        /* Pad block to 56 bytes */
160
0
        memset(p, 0, count - 8);
161
0
    }
162
163
    /* Append length in bits and transform */
164
0
    putu32(context->bits[0], context->in + 56);
165
0
    putu32(context->bits[1], context->in + 60);
166
167
0
    CPLMD5Transform(context->buf, context->in);
168
0
    putu32(context->buf[0], digest);
169
0
    putu32(context->buf[1], digest + 4);
170
0
    putu32(context->buf[2], digest + 8);
171
0
    putu32(context->buf[3], digest + 12);
172
0
    memset(context, 0, sizeof(*context)); /* In case it is sensitive */
173
0
}
174
175
#ifndef ASM_MD5
176
177
/* The four core functions - F1 is optimized somewhat */
178
179
/* #define F1(x, y, z) (x & y | ~x & z) */
180
0
#define F1(x, y, z) (z ^ (x & (y ^ z)))
181
0
#define F2(x, y, z) F1(z, x, y)
182
0
#define F3(x, y, z) (x ^ y ^ z)
183
0
#define F4(x, y, z) (y ^ (x | ~z))
184
185
/* This is the central step in the MD5 algorithm. */
186
#define MD5STEP(f, w, x, y, z, data, s)                                        \
187
0
    (w += f(x, y, z) + data, w &= 0xffffffff, w = w << s | w >> (32 - s),      \
188
0
     w += x)
189
190
/*
191
 * The core of the MD5 algorithm, this alters an existing MD5 hash to
192
 * reflect the addition of 16 longwords of new data.  MD5Update blocks
193
 * the data and converts bytes into longwords for this routine.
194
 */
195
CPL_NOSANITIZE_UNSIGNED_INT_OVERFLOW
196
void CPLMD5Transform(GUInt32 buf[4], const unsigned char inraw[64])
197
0
{
198
0
    GUInt32 in[16];
199
0
    for (int i = 0; i < 16; ++i)
200
0
        in[i] = getu32(inraw + 4 * i);
201
202
0
    GUInt32 a = buf[0];
203
0
    GUInt32 b = buf[1];
204
0
    GUInt32 c = buf[2];
205
0
    GUInt32 d = buf[3];
206
207
0
    MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
208
0
    MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
209
0
    MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
210
0
    MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
211
0
    MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
212
0
    MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
213
0
    MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
214
0
    MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
215
0
    MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
216
0
    MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
217
0
    MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
218
0
    MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
219
0
    MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
220
0
    MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
221
0
    MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
222
0
    MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
223
224
0
    MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
225
0
    MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
226
0
    MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
227
0
    MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
228
0
    MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
229
0
    MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
230
0
    MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
231
0
    MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
232
0
    MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
233
0
    MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
234
0
    MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
235
0
    MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
236
0
    MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
237
0
    MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
238
0
    MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
239
0
    MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
240
241
0
    MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
242
0
    MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
243
0
    MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
244
0
    MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
245
0
    MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
246
0
    MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
247
0
    MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
248
0
    MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
249
0
    MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
250
0
    MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
251
0
    MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
252
0
    MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
253
0
    MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
254
0
    MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
255
0
    MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
256
0
    MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);
257
258
0
    MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
259
0
    MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
260
0
    MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
261
0
    MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
262
0
    MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
263
0
    MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
264
0
    MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
265
0
    MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
266
0
    MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
267
0
    MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
268
0
    MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
269
0
    MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
270
0
    MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
271
0
    MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
272
0
    MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
273
0
    MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);
274
275
0
    buf[0] += a;
276
0
    buf[1] += b;
277
0
    buf[2] += c;
278
0
    buf[3] += d;
279
0
}
280
#endif
281
282
/**
283
 * @brief CPLMD5String Transform string to MD5 hash
284
 * @param pszText Text to transform
285
 * @return MD5 hash string
286
 */
287
const char *CPLMD5String(const char *pszText)
288
0
{
289
0
    struct CPLMD5Context context;
290
0
    CPLMD5Init(&context);
291
0
    CPLMD5Update(&context, pszText, strlen(pszText));
292
0
    unsigned char hash[16];
293
0
    CPLMD5Final(hash, &context);
294
295
0
    constexpr char tohex[] = "0123456789abcdef";
296
0
    char hhash[33];
297
0
    for (int i = 0; i < 16; ++i)
298
0
    {
299
0
        hhash[i * 2] = tohex[(hash[i] >> 4) & 0xf];
300
0
        hhash[i * 2 + 1] = tohex[hash[i] & 0xf];
301
0
    }
302
0
    hhash[32] = '\0';
303
0
    return CPLSPrintf("%s", hhash);
304
0
}