/src/proj/src/projections/comill.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | The Compact Miller projection was designed by Tom Patterson, US National |
3 | | Park Service, in 2014. The polynomial equation was developed by Bojan |
4 | | Savric and Bernhard Jenny, College of Earth, Ocean, and Atmospheric |
5 | | Sciences, Oregon State University. |
6 | | Port to PROJ.4 by Bojan Savric, 4 April 2016 |
7 | | */ |
8 | | |
9 | | #include <math.h> |
10 | | |
11 | | #include "proj.h" |
12 | | #include "proj_internal.h" |
13 | | |
14 | | PROJ_HEAD(comill, "Compact Miller") "\n\tCyl, Sph"; |
15 | | |
16 | 0 | #define K1 0.9902 |
17 | 0 | #define K2 0.1604 |
18 | 0 | #define K3 -0.03054 |
19 | 0 | #define C1 K1 |
20 | 0 | #define C2 (3 * K2) |
21 | 0 | #define C3 (5 * K3) |
22 | 0 | #define EPS 1e-11 |
23 | 0 | #define MAX_Y (0.6000207669862655 * M_PI) |
24 | | /* Not sure at all of the appropriate number for MAX_ITER... */ |
25 | 0 | #define MAX_ITER 100 |
26 | | |
27 | 0 | static PJ_XY comill_s_forward(PJ_LP lp, PJ *P) { /* Spheroidal, forward */ |
28 | 0 | PJ_XY xy = {0.0, 0.0}; |
29 | 0 | double lat_sq; |
30 | |
|
31 | 0 | (void)P; /* silence unused parameter warnings */ |
32 | |
|
33 | 0 | lat_sq = lp.phi * lp.phi; |
34 | 0 | xy.x = lp.lam; |
35 | 0 | xy.y = lp.phi * (K1 + lat_sq * (K2 + K3 * lat_sq)); |
36 | 0 | return xy; |
37 | 0 | } |
38 | | |
39 | 0 | static PJ_LP comill_s_inverse(PJ_XY xy, PJ *P) { /* Spheroidal, inverse */ |
40 | 0 | PJ_LP lp = {0.0, 0.0}; |
41 | 0 | double yc, tol, y2, f, fder; |
42 | 0 | int i; |
43 | |
|
44 | 0 | (void)P; /* silence unused parameter warnings */ |
45 | | |
46 | | /* make sure y is inside valid range */ |
47 | 0 | if (xy.y > MAX_Y) { |
48 | 0 | xy.y = MAX_Y; |
49 | 0 | } else if (xy.y < -MAX_Y) { |
50 | 0 | xy.y = -MAX_Y; |
51 | 0 | } |
52 | | |
53 | | /* latitude */ |
54 | 0 | yc = xy.y; |
55 | 0 | for (i = MAX_ITER; i; --i) { /* Newton-Raphson */ |
56 | 0 | y2 = yc * yc; |
57 | 0 | f = (yc * (K1 + y2 * (K2 + K3 * y2))) - xy.y; |
58 | 0 | fder = C1 + y2 * (C2 + C3 * y2); |
59 | 0 | tol = f / fder; |
60 | 0 | yc -= tol; |
61 | 0 | if (fabs(tol) < EPS) { |
62 | 0 | break; |
63 | 0 | } |
64 | 0 | } |
65 | 0 | if (i == 0) |
66 | 0 | proj_context_errno_set( |
67 | 0 | P->ctx, PROJ_ERR_COORD_TRANSFM_OUTSIDE_PROJECTION_DOMAIN); |
68 | 0 | lp.phi = yc; |
69 | | |
70 | | /* longitude */ |
71 | 0 | lp.lam = xy.x; |
72 | |
|
73 | 0 | return lp; |
74 | 0 | } |
75 | | |
76 | 201 | PJ *PJ_PROJECTION(comill) { |
77 | 201 | P->es = 0; |
78 | | |
79 | 201 | P->inv = comill_s_inverse; |
80 | 201 | P->fwd = comill_s_forward; |
81 | | |
82 | 201 | return P; |
83 | 201 | } |
84 | | |
85 | | #undef K1 |
86 | | #undef K2 |
87 | | #undef K3 |
88 | | #undef C1 |
89 | | #undef C2 |
90 | | #undef C3 |
91 | | #undef EPS |
92 | | #undef MAX_Y |
93 | | #undef MAX_ITER |