/src/proj/src/projections/tmerc.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Transverse Mercator implementations |
3 | | * |
4 | | * In this file two transverse mercator implementations are found. One of Gerald |
5 | | * Evenden/John Snyder origin and one of Knud Poder/Karsten Engsager origin. The |
6 | | * former is regarded as "approximate" in the following and the latter is |
7 | | * "exact". This word choice has been made to distinguish between the two |
8 | | * algorithms, where the Evenden/Snyder implementation is the faster, less |
9 | | * accurate implementation and the Poder/Engsager algorithm is a slightly |
10 | | * slower, but more accurate implementation. |
11 | | */ |
12 | | |
13 | | #include <errno.h> |
14 | | #include <math.h> |
15 | | |
16 | | #include "proj.h" |
17 | | #include "proj_internal.h" |
18 | | #include <math.h> |
19 | | |
20 | | PROJ_HEAD(tmerc, "Transverse Mercator") "\n\tCyl, Sph&Ell\n\tapprox"; |
21 | | PROJ_HEAD(etmerc, "Extended Transverse Mercator") "\n\tCyl, Sph"; |
22 | | PROJ_HEAD(utm, "Universal Transverse Mercator (UTM)") |
23 | | "\n\tCyl, Ell\n\tzone= south approx"; |
24 | | |
25 | | namespace { // anonymous namespace |
26 | | |
27 | | // Approximate: Evenden/Snyder |
28 | | struct EvendenSnyder { |
29 | | double esp; |
30 | | double ml0; |
31 | | double *en; |
32 | | }; |
33 | | |
34 | | // More exact: Poder/Engsager |
35 | | struct PoderEngsager { |
36 | | double Qn; /* Merid. quad., scaled to the projection */ |
37 | | double Zb; /* Radius vector in polar coord. systems */ |
38 | | double cgb[6]; /* Constants for Gauss -> Geo lat */ |
39 | | double cbg[6]; /* Constants for Geo lat -> Gauss */ |
40 | | double utg[6]; /* Constants for transv. merc. -> geo */ |
41 | | double gtu[6]; /* Constants for geo -> transv. merc. */ |
42 | | }; |
43 | | |
44 | | struct tmerc_data { |
45 | | EvendenSnyder approx; |
46 | | PoderEngsager exact; |
47 | | }; |
48 | | |
49 | | } // anonymous namespace |
50 | | |
51 | | /* Constants for "approximate" transverse mercator */ |
52 | 0 | #define EPS10 1.e-10 |
53 | 0 | #define FC1 1. |
54 | 0 | #define FC2 .5 |
55 | 0 | #define FC3 .16666666666666666666 |
56 | 0 | #define FC4 .08333333333333333333 |
57 | 0 | #define FC5 .05 |
58 | 0 | #define FC6 .03333333333333333333 |
59 | 0 | #define FC7 .02380952380952380952 |
60 | 0 | #define FC8 .01785714285714285714 |
61 | | |
62 | | /* Constant for "exact" transverse mercator */ |
63 | 5.00k | #define PROJ_ETMERC_ORDER 6 |
64 | | |
65 | | /*****************************************************************************/ |
66 | | // |
67 | | // Approximate Transverse Mercator functions |
68 | | // |
69 | | /*****************************************************************************/ |
70 | | |
71 | 0 | static PJ_XY approx_e_fwd(PJ_LP lp, PJ *P) { |
72 | 0 | PJ_XY xy = {0.0, 0.0}; |
73 | 0 | const auto *Q = &(static_cast<struct tmerc_data *>(P->opaque)->approx); |
74 | 0 | double al, als, n, cosphi, sinphi, t; |
75 | | |
76 | | /* |
77 | | * Fail if our longitude is more than 90 degrees from the |
78 | | * central meridian since the results are essentially garbage. |
79 | | * Is error -20 really an appropriate return value? |
80 | | * |
81 | | * http://trac.osgeo.org/proj/ticket/5 |
82 | | */ |
83 | 0 | if (lp.lam < -M_HALFPI || lp.lam > M_HALFPI) { |
84 | 0 | xy.x = HUGE_VAL; |
85 | 0 | xy.y = HUGE_VAL; |
86 | 0 | proj_context_errno_set( |
87 | 0 | P->ctx, PROJ_ERR_COORD_TRANSFM_OUTSIDE_PROJECTION_DOMAIN); |
88 | 0 | return xy; |
89 | 0 | } |
90 | | |
91 | 0 | sinphi = sin(lp.phi); |
92 | 0 | cosphi = cos(lp.phi); |
93 | 0 | t = fabs(cosphi) > 1e-10 ? sinphi / cosphi : 0.; |
94 | 0 | t *= t; |
95 | 0 | al = cosphi * lp.lam; |
96 | 0 | als = al * al; |
97 | 0 | al /= sqrt(1. - P->es * sinphi * sinphi); |
98 | 0 | n = Q->esp * cosphi * cosphi; |
99 | 0 | xy.x = P->k0 * al * |
100 | 0 | (FC1 + FC3 * als * |
101 | 0 | (1. - t + n + |
102 | 0 | FC5 * als * |
103 | 0 | (5. + t * (t - 18.) + n * (14. - 58. * t) + |
104 | 0 | FC7 * als * (61. + t * (t * (179. - t) - 479.))))); |
105 | 0 | xy.y = |
106 | 0 | P->k0 * |
107 | 0 | (pj_mlfn(lp.phi, sinphi, cosphi, Q->en) - Q->ml0 + |
108 | 0 | sinphi * al * lp.lam * FC2 * |
109 | 0 | (1. + |
110 | 0 | FC4 * als * |
111 | 0 | (5. - t + n * (9. + 4. * n) + |
112 | 0 | FC6 * als * |
113 | 0 | (61. + t * (t - 58.) + n * (270. - 330 * t) + |
114 | 0 | FC8 * als * (1385. + t * (t * (543. - t) - 3111.)))))); |
115 | 0 | return (xy); |
116 | 0 | } |
117 | | |
118 | 0 | static PJ_XY tmerc_spherical_fwd(PJ_LP lp, PJ *P) { |
119 | 0 | PJ_XY xy = {0.0, 0.0}; |
120 | 0 | double b, cosphi; |
121 | 0 | const auto *Q = &(static_cast<struct tmerc_data *>(P->opaque)->approx); |
122 | |
|
123 | 0 | cosphi = cos(lp.phi); |
124 | 0 | b = cosphi * sin(lp.lam); |
125 | 0 | if (fabs(fabs(b) - 1.) <= EPS10) { |
126 | 0 | proj_errno_set(P, PROJ_ERR_COORD_TRANSFM_OUTSIDE_PROJECTION_DOMAIN); |
127 | 0 | return xy; |
128 | 0 | } |
129 | | |
130 | 0 | xy.x = Q->ml0 * log((1. + b) / (1. - b)); |
131 | 0 | xy.y = cosphi * cos(lp.lam) / sqrt(1. - b * b); |
132 | |
|
133 | 0 | b = fabs(xy.y); |
134 | 0 | if (cosphi == 1 && (lp.lam < -M_HALFPI || lp.lam > M_HALFPI)) { |
135 | | /* Helps to be able to roundtrip |longitudes| > 90 at lat=0 */ |
136 | | /* We could also map to -M_PI ... */ |
137 | 0 | xy.y = M_PI; |
138 | 0 | } else if (b >= 1.) { |
139 | 0 | if ((b - 1.) > EPS10) { |
140 | 0 | proj_errno_set(P, PROJ_ERR_COORD_TRANSFM_OUTSIDE_PROJECTION_DOMAIN); |
141 | 0 | return xy; |
142 | 0 | } else |
143 | 0 | xy.y = 0.; |
144 | 0 | } else |
145 | 0 | xy.y = acos(xy.y); |
146 | | |
147 | 0 | if (lp.phi < 0.) |
148 | 0 | xy.y = -xy.y; |
149 | 0 | xy.y = Q->esp * (xy.y - P->phi0); |
150 | 0 | return xy; |
151 | 0 | } |
152 | | |
153 | 0 | static PJ_LP approx_e_inv(PJ_XY xy, PJ *P) { |
154 | 0 | PJ_LP lp = {0.0, 0.0}; |
155 | 0 | const auto *Q = &(static_cast<struct tmerc_data *>(P->opaque)->approx); |
156 | |
|
157 | 0 | lp.phi = pj_inv_mlfn(Q->ml0 + xy.y / P->k0, Q->en); |
158 | 0 | if (fabs(lp.phi) >= M_HALFPI) { |
159 | 0 | lp.phi = xy.y < 0. ? -M_HALFPI : M_HALFPI; |
160 | 0 | lp.lam = 0.; |
161 | 0 | } else { |
162 | 0 | double sinphi = sin(lp.phi), cosphi = cos(lp.phi); |
163 | 0 | double t = fabs(cosphi) > 1e-10 ? sinphi / cosphi : 0.; |
164 | 0 | const double n = Q->esp * cosphi * cosphi; |
165 | 0 | double con = 1. - P->es * sinphi * sinphi; |
166 | 0 | const double d = xy.x * sqrt(con) / P->k0; |
167 | 0 | con *= t; |
168 | 0 | t *= t; |
169 | 0 | const double ds = d * d; |
170 | 0 | lp.phi -= |
171 | 0 | (con * ds / (1. - P->es)) * FC2 * |
172 | 0 | (1. - |
173 | 0 | ds * FC4 * |
174 | 0 | (5. + t * (3. - 9. * n) + n * (1. - 4 * n) - |
175 | 0 | ds * FC6 * |
176 | 0 | (61. + t * (90. - 252. * n + 45. * t) + 46. * n - |
177 | 0 | ds * FC8 * |
178 | 0 | (1385. + t * (3633. + t * (4095. + 1575. * t)))))); |
179 | 0 | lp.lam = d * |
180 | 0 | (FC1 - |
181 | 0 | ds * FC3 * |
182 | 0 | (1. + 2. * t + n - |
183 | 0 | ds * FC5 * |
184 | 0 | (5. + t * (28. + 24. * t + 8. * n) + 6. * n - |
185 | 0 | ds * FC7 * |
186 | 0 | (61. + t * (662. + t * (1320. + 720. * t)))))) / |
187 | 0 | cosphi; |
188 | 0 | } |
189 | 0 | return lp; |
190 | 0 | } |
191 | | |
192 | 0 | static PJ_LP tmerc_spherical_inv(PJ_XY xy, PJ *P) { |
193 | 0 | PJ_LP lp = {0.0, 0.0}; |
194 | 0 | double h, g; |
195 | 0 | const auto *Q = &(static_cast<struct tmerc_data *>(P->opaque)->approx); |
196 | |
|
197 | 0 | h = exp(xy.x / Q->esp); |
198 | 0 | if (h == 0) { |
199 | 0 | proj_errno_set(P, PROJ_ERR_COORD_TRANSFM_OUTSIDE_PROJECTION_DOMAIN); |
200 | 0 | return proj_coord_error().lp; |
201 | 0 | } |
202 | 0 | g = .5 * (h - 1. / h); |
203 | | /* D, as in equation 8-8 of USGS "Map Projections - A Working Manual" */ |
204 | 0 | const double D = P->phi0 + xy.y / Q->esp; |
205 | 0 | h = cos(D); |
206 | 0 | lp.phi = asin(sqrt((1. - h * h) / (1. + g * g))); |
207 | | |
208 | | /* Make sure that phi is on the correct hemisphere when false northing is |
209 | | * used |
210 | | */ |
211 | 0 | lp.phi = copysign(lp.phi, D); |
212 | |
|
213 | 0 | lp.lam = (g != 0.0 || h != 0.0) ? atan2(g, h) : 0.; |
214 | 0 | return lp; |
215 | 0 | } |
216 | | |
217 | 268 | static PJ *destructor(PJ *P, int errlev) { |
218 | 268 | if (nullptr == P) |
219 | 0 | return nullptr; |
220 | | |
221 | 268 | if (nullptr == P->opaque) |
222 | 0 | return pj_default_destructor(P, errlev); |
223 | | |
224 | 268 | free(static_cast<struct tmerc_data *>(P->opaque)->approx.en); |
225 | 268 | return pj_default_destructor(P, errlev); |
226 | 268 | } |
227 | | |
228 | 268 | static PJ *setup_approx(PJ *P) { |
229 | 268 | auto *Q = &(static_cast<struct tmerc_data *>(P->opaque)->approx); |
230 | | |
231 | 268 | if (P->es != 0.0) { |
232 | 190 | if (!(Q->en = pj_enfn(P->n))) |
233 | 0 | return pj_default_destructor(P, PROJ_ERR_OTHER /*ENOMEM*/); |
234 | | |
235 | 190 | Q->ml0 = pj_mlfn(P->phi0, sin(P->phi0), cos(P->phi0), Q->en); |
236 | 190 | Q->esp = P->es / (1. - P->es); |
237 | 190 | } else { |
238 | 78 | Q->esp = P->k0; |
239 | 78 | Q->ml0 = .5 * Q->esp; |
240 | 78 | } |
241 | 268 | return P; |
242 | 268 | } |
243 | | |
244 | | /*****************************************************************************/ |
245 | | // |
246 | | // Exact Transverse Mercator functions |
247 | | // |
248 | | // |
249 | | // The code in this file is largly based upon procedures: |
250 | | // |
251 | | // Written by: Knud Poder and Karsten Engsager |
252 | | // |
253 | | // Based on math from: R.Koenig and K.H. Weise, "Mathematische |
254 | | // Grundlagen der hoeheren Geodaesie und Kartographie, |
255 | | // Springer-Verlag, Berlin/Goettingen" Heidelberg, 1951. |
256 | | // |
257 | | // Modified and used here by permission of Reference Networks |
258 | | // Division, Kort og Matrikelstyrelsen (KMS), Copenhagen, Denmark |
259 | | // |
260 | | /*****************************************************************************/ |
261 | | |
262 | | /* Complex Clenshaw summation */ |
263 | | inline static double clenS(const double *a, int size, double sin_arg_r, |
264 | | double cos_arg_r, double sinh_arg_i, |
265 | 0 | double cosh_arg_i, double *R, double *I) { |
266 | 0 | double r, i, hr, hr1, hr2, hi, hi1, hi2; |
267 | | |
268 | | /* arguments */ |
269 | 0 | const double *p = a + size; |
270 | 0 | r = 2 * cos_arg_r * cosh_arg_i; |
271 | 0 | i = -2 * sin_arg_r * sinh_arg_i; |
272 | | |
273 | | /* summation loop */ |
274 | 0 | hi1 = hr1 = hi = 0; |
275 | 0 | hr = *--p; |
276 | 0 | for (; a - p;) { |
277 | 0 | hr2 = hr1; |
278 | 0 | hi2 = hi1; |
279 | 0 | hr1 = hr; |
280 | 0 | hi1 = hi; |
281 | 0 | hr = -hr2 + r * hr1 - i * hi1 + *--p; |
282 | 0 | hi = -hi2 + i * hr1 + r * hi1; |
283 | 0 | } |
284 | |
|
285 | 0 | r = sin_arg_r * cosh_arg_i; |
286 | 0 | i = cos_arg_r * sinh_arg_i; |
287 | 0 | *R = r * hr - i * hi; |
288 | 0 | *I = r * hi + i * hr; |
289 | 0 | return *R; |
290 | 0 | } |
291 | | |
292 | | /* Ellipsoidal, forward */ |
293 | 0 | static PJ_XY exact_e_fwd(PJ_LP lp, PJ *P) { |
294 | 0 | PJ_XY xy = {0.0, 0.0}; |
295 | 0 | const auto *Q = &(static_cast<struct tmerc_data *>(P->opaque)->exact); |
296 | | |
297 | | /* ell. LAT, LNG -> Gaussian LAT, LNG */ |
298 | 0 | double Cn = pj_auxlat_convert(lp.phi, Q->cbg, PROJ_ETMERC_ORDER); |
299 | | /* Gaussian LAT, LNG -> compl. sph. LAT */ |
300 | 0 | const double sin_Cn = sin(Cn); |
301 | 0 | const double cos_Cn = cos(Cn); |
302 | 0 | const double sin_Ce = sin(lp.lam); |
303 | 0 | const double cos_Ce = cos(lp.lam); |
304 | |
|
305 | 0 | const double cos_Cn_cos_Ce = cos_Cn * cos_Ce; |
306 | 0 | Cn = atan2(sin_Cn, cos_Cn_cos_Ce); |
307 | |
|
308 | 0 | const double inv_denom_tan_Ce = 1. / hypot(sin_Cn, cos_Cn_cos_Ce); |
309 | 0 | const double tan_Ce = sin_Ce * cos_Cn * inv_denom_tan_Ce; |
310 | | #if 0 |
311 | | // Variant of the above: found not to be measurably faster |
312 | | const double sin_Ce_cos_Cn = sin_Ce*cos_Cn; |
313 | | const double denom = sqrt(1 - sin_Ce_cos_Cn * sin_Ce_cos_Cn); |
314 | | const double tan_Ce = sin_Ce_cos_Cn / denom; |
315 | | #endif |
316 | | |
317 | | /* compl. sph. N, E -> ell. norm. N, E */ |
318 | 0 | double Ce = asinh(tan_Ce); /* Replaces: Ce = log(tan(FORTPI + Ce*0.5)); */ |
319 | | |
320 | | /* |
321 | | * Non-optimized version: |
322 | | * const double sin_arg_r = sin(2*Cn); |
323 | | * const double cos_arg_r = cos(2*Cn); |
324 | | * |
325 | | * Given: |
326 | | * sin(2 * Cn) = 2 sin(Cn) cos(Cn) |
327 | | * sin(atan(y)) = y / sqrt(1 + y^2) |
328 | | * cos(atan(y)) = 1 / sqrt(1 + y^2) |
329 | | * ==> sin(2 * Cn) = 2 tan_Cn / (1 + tan_Cn^2) |
330 | | * |
331 | | * cos(2 * Cn) = 2cos^2(Cn) - 1 |
332 | | * = 2 / (1 + tan_Cn^2) - 1 |
333 | | */ |
334 | 0 | const double two_inv_denom_tan_Ce = 2 * inv_denom_tan_Ce; |
335 | 0 | const double two_inv_denom_tan_Ce_square = |
336 | 0 | two_inv_denom_tan_Ce * inv_denom_tan_Ce; |
337 | 0 | const double tmp_r = cos_Cn_cos_Ce * two_inv_denom_tan_Ce_square; |
338 | 0 | const double sin_arg_r = sin_Cn * tmp_r; |
339 | 0 | const double cos_arg_r = cos_Cn_cos_Ce * tmp_r - 1; |
340 | | |
341 | | /* |
342 | | * Non-optimized version: |
343 | | * const double sinh_arg_i = sinh(2*Ce); |
344 | | * const double cosh_arg_i = cosh(2*Ce); |
345 | | * |
346 | | * Given |
347 | | * sinh(2 * Ce) = 2 sinh(Ce) cosh(Ce) |
348 | | * sinh(asinh(y)) = y |
349 | | * cosh(asinh(y)) = sqrt(1 + y^2) |
350 | | * ==> sinh(2 * Ce) = 2 tan_Ce sqrt(1 + tan_Ce^2) |
351 | | * |
352 | | * cosh(2 * Ce) = 2cosh^2(Ce) - 1 |
353 | | * = 2 * (1 + tan_Ce^2) - 1 |
354 | | * |
355 | | * and 1+tan_Ce^2 = 1 + sin_Ce^2 * cos_Cn^2 / (sin_Cn^2 + cos_Cn^2 * |
356 | | * cos_Ce^2) = (sin_Cn^2 + cos_Cn^2 * cos_Ce^2 + sin_Ce^2 * cos_Cn^2) / |
357 | | * (sin_Cn^2 + cos_Cn^2 * cos_Ce^2) = 1. / (sin_Cn^2 + cos_Cn^2 * cos_Ce^2) |
358 | | * = inv_denom_tan_Ce^2 |
359 | | * |
360 | | */ |
361 | 0 | const double sinh_arg_i = tan_Ce * two_inv_denom_tan_Ce; |
362 | 0 | const double cosh_arg_i = two_inv_denom_tan_Ce_square - 1; |
363 | |
|
364 | 0 | double dCn, dCe; |
365 | 0 | Cn += clenS(Q->gtu, PROJ_ETMERC_ORDER, sin_arg_r, cos_arg_r, sinh_arg_i, |
366 | 0 | cosh_arg_i, &dCn, &dCe); |
367 | 0 | Ce += dCe; |
368 | 0 | if (fabs(Ce) <= 2.623395162778) { |
369 | 0 | xy.y = Q->Qn * Cn + Q->Zb; /* Northing */ |
370 | 0 | xy.x = Q->Qn * Ce; /* Easting */ |
371 | 0 | } else { |
372 | 0 | proj_errno_set(P, PROJ_ERR_COORD_TRANSFM_OUTSIDE_PROJECTION_DOMAIN); |
373 | 0 | xy.x = xy.y = HUGE_VAL; |
374 | 0 | } |
375 | 0 | return xy; |
376 | 0 | } |
377 | | |
378 | | /* Ellipsoidal, inverse */ |
379 | 0 | static PJ_LP exact_e_inv(PJ_XY xy, PJ *P) { |
380 | 0 | PJ_LP lp = {0.0, 0.0}; |
381 | 0 | const auto *Q = &(static_cast<struct tmerc_data *>(P->opaque)->exact); |
382 | | |
383 | | /* normalize N, E */ |
384 | 0 | double Cn = (xy.y - Q->Zb) / Q->Qn; |
385 | 0 | double Ce = xy.x / Q->Qn; |
386 | |
|
387 | 0 | if (fabs(Ce) <= 2.623395162778) { /* 150 degrees */ |
388 | | /* norm. N, E -> compl. sph. LAT, LNG */ |
389 | 0 | const double sin_arg_r = sin(2 * Cn); |
390 | 0 | const double cos_arg_r = cos(2 * Cn); |
391 | | |
392 | | // const double sinh_arg_i = sinh(2*Ce); |
393 | | // const double cosh_arg_i = cosh(2*Ce); |
394 | 0 | const double exp_2_Ce = exp(2 * Ce); |
395 | 0 | const double half_inv_exp_2_Ce = 0.5 / exp_2_Ce; |
396 | 0 | const double sinh_arg_i = 0.5 * exp_2_Ce - half_inv_exp_2_Ce; |
397 | 0 | const double cosh_arg_i = 0.5 * exp_2_Ce + half_inv_exp_2_Ce; |
398 | |
|
399 | 0 | double dCn_ignored, dCe; |
400 | 0 | Cn += clenS(Q->utg, PROJ_ETMERC_ORDER, sin_arg_r, cos_arg_r, sinh_arg_i, |
401 | 0 | cosh_arg_i, &dCn_ignored, &dCe); |
402 | 0 | Ce += dCe; |
403 | | |
404 | | /* compl. sph. LAT -> Gaussian LAT, LNG */ |
405 | 0 | const double sin_Cn = sin(Cn); |
406 | 0 | const double cos_Cn = cos(Cn); |
407 | |
|
408 | | #if 0 |
409 | | // Non-optimized version: |
410 | | double sin_Ce, cos_Ce; |
411 | | Ce = atan (sinh (Ce)); // Replaces: Ce = 2*(atan(exp(Ce)) - FORTPI); |
412 | | sin_Ce = sin (Ce); |
413 | | cos_Ce = cos (Ce); |
414 | | Ce = atan2 (sin_Ce, cos_Ce*cos_Cn); |
415 | | Cn = atan2 (sin_Cn*cos_Ce, hypot (sin_Ce, cos_Ce*cos_Cn)); |
416 | | #else |
417 | | /* |
418 | | * One can divide both member of Ce = atan2(...) by cos_Ce, which |
419 | | * gives: Ce = atan2 (tan_Ce, cos_Cn) = atan2(sinh(Ce), cos_Cn) |
420 | | * |
421 | | * and the same for Cn = atan2(...) |
422 | | * Cn = atan2 (sin_Cn, hypot (sin_Ce, cos_Ce*cos_Cn)/cos_Ce) |
423 | | * = atan2 (sin_Cn, hypot (sin_Ce/cos_Ce, cos_Cn)) |
424 | | * = atan2 (sin_Cn, hypot (tan_Ce, cos_Cn)) |
425 | | * = atan2 (sin_Cn, hypot (sinhCe, cos_Cn)) |
426 | | */ |
427 | 0 | const double sinhCe = sinh(Ce); |
428 | 0 | Ce = atan2(sinhCe, cos_Cn); |
429 | 0 | const double modulus_Ce = hypot(sinhCe, cos_Cn), |
430 | 0 | rr = hypot(sin_Cn, modulus_Ce); |
431 | 0 | Cn = atan2(sin_Cn, modulus_Ce); |
432 | 0 | #endif |
433 | | |
434 | | /* Gaussian LAT, LNG -> ell. LAT, LNG */ |
435 | 0 | lp.phi = pj_auxlat_convert(Cn, sin_Cn/rr, modulus_Ce/rr, |
436 | 0 | Q->cgb, PROJ_ETMERC_ORDER); |
437 | 0 | lp.lam = Ce; |
438 | 0 | } else { |
439 | 0 | proj_errno_set(P, PROJ_ERR_COORD_TRANSFM_OUTSIDE_PROJECTION_DOMAIN); |
440 | 0 | lp.phi = lp.lam = HUGE_VAL; |
441 | 0 | } |
442 | 0 | return lp; |
443 | 0 | } |
444 | | |
445 | 2.50k | static PJ *setup_exact(PJ *P) { |
446 | 2.50k | auto *Q = &(static_cast<struct tmerc_data *>(P->opaque)->exact); |
447 | | |
448 | 2.50k | assert(P->es > 0); |
449 | 2.50k | static_assert( PROJ_ETMERC_ORDER == int(AuxLat::ORDER), |
450 | 2.50k | "Inconsistent orders etmerc vs auxorder" ); |
451 | | /* third flattening */ |
452 | 2.50k | const double n = P->n; |
453 | | |
454 | | // N.B., Engsager and Poder terminology (simplifying a little here...) |
455 | | // geodetic coordinates = geographic latitude |
456 | | // Soldner sphere + complex gaussian coordinates = conformal latitude |
457 | | // transverse Mercator coordinates = rectifying latitude |
458 | | |
459 | | /* COEF. OF TRIG SERIES GEO <-> GAUSS */ |
460 | | /* cgb := Gaussian -> Geodetic, KW p190 - 191 (61) - (62) */ |
461 | | /* cbg := Geodetic -> Gaussian, KW p186 - 187 (51) - (52) */ |
462 | | /* PROJ_ETMERC_ORDER = 6th degree : Engsager and Poder: ICC2007 */ |
463 | 2.50k | pj_auxlat_coeffs(n, AuxLat::CONFORMAL, AuxLat::GEOGRAPHIC, Q->cgb); |
464 | 2.50k | pj_auxlat_coeffs(n, AuxLat::GEOGRAPHIC, AuxLat::CONFORMAL, Q->cbg); |
465 | | /* Constants of the projections */ |
466 | | /* Transverse Mercator (UTM, ITM, etc) */ |
467 | | /* Norm. mer. quad, K&W p.50 (96), p.19 (38b), p.5 (2) */ |
468 | 2.50k | Q->Qn = P->k0 * pj_rectifying_radius(n); |
469 | | /* coef of trig series */ |
470 | | /* utg := ell. N, E -> sph. N, E, KW p194 (65) */ |
471 | | /* gtu := sph. N, E -> ell. N, E, KW p196 (69) */ |
472 | 2.50k | pj_auxlat_coeffs(n, AuxLat::RECTIFYING, AuxLat::CONFORMAL, Q->utg); |
473 | 2.50k | pj_auxlat_coeffs(n, AuxLat::CONFORMAL, AuxLat::RECTIFYING, Q->gtu); |
474 | | /* Gaussian latitude value of the origin latitude */ |
475 | 2.50k | const double Z = pj_auxlat_convert(P->phi0, Q->cbg, PROJ_ETMERC_ORDER); |
476 | | |
477 | | /* Origin northing minus true northing at the origin latitude */ |
478 | | /* i.e. true northing = N - P->Zb */ |
479 | 2.50k | Q->Zb = -Q->Qn * pj_auxlat_convert(Z, Q->gtu, PROJ_ETMERC_ORDER); |
480 | | |
481 | 2.50k | return P; |
482 | 2.50k | } |
483 | | |
484 | 0 | static PJ_XY auto_e_fwd(PJ_LP lp, PJ *P) { |
485 | 0 | if (fabs(lp.lam) > 3 * DEG_TO_RAD) |
486 | 0 | return exact_e_fwd(lp, P); |
487 | 0 | else |
488 | 0 | return approx_e_fwd(lp, P); |
489 | 0 | } |
490 | | |
491 | 0 | static PJ_LP auto_e_inv(PJ_XY xy, PJ *P) { |
492 | | // For k = 1 and long = 3 (from central meridian), |
493 | | // At lat = 0, we get x ~= 0.052, y = 0 |
494 | | // At lat = 90, we get x = 0, y ~= 1.57 |
495 | | // And the shape of this x=f(y) frontier curve is very very roughly a |
496 | | // parabola. Hence: |
497 | 0 | if (fabs(xy.x) > 0.053 - 0.022 * xy.y * xy.y) |
498 | 0 | return exact_e_inv(xy, P); |
499 | 0 | else |
500 | 0 | return approx_e_inv(xy, P); |
501 | 0 | } |
502 | | |
503 | 2.70k | static PJ *setup(PJ *P, TMercAlgo eAlg) { |
504 | | |
505 | 2.70k | struct tmerc_data *Q = |
506 | 2.70k | static_cast<struct tmerc_data *>(calloc(1, sizeof(struct tmerc_data))); |
507 | 2.70k | if (nullptr == Q) |
508 | 0 | return pj_default_destructor(P, PROJ_ERR_OTHER /*ENOMEM*/); |
509 | 2.70k | P->opaque = Q; |
510 | | |
511 | 2.70k | if (P->es == 0) |
512 | 78 | eAlg = TMercAlgo::EVENDEN_SNYDER; |
513 | | |
514 | 2.70k | switch (eAlg) { |
515 | 204 | case TMercAlgo::EVENDEN_SNYDER: { |
516 | 204 | P->destructor = destructor; |
517 | 204 | if (!setup_approx(P)) |
518 | 0 | return nullptr; |
519 | 204 | if (P->es == 0) { |
520 | 78 | P->inv = tmerc_spherical_inv; |
521 | 78 | P->fwd = tmerc_spherical_fwd; |
522 | 126 | } else { |
523 | 126 | P->inv = approx_e_inv; |
524 | 126 | P->fwd = approx_e_fwd; |
525 | 126 | } |
526 | 204 | break; |
527 | 204 | } |
528 | | |
529 | 2.43k | case TMercAlgo::PODER_ENGSAGER: { |
530 | 2.43k | setup_exact(P); |
531 | 2.43k | P->inv = exact_e_inv; |
532 | 2.43k | P->fwd = exact_e_fwd; |
533 | 2.43k | break; |
534 | 204 | } |
535 | | |
536 | 64 | case TMercAlgo::AUTO: { |
537 | 64 | P->destructor = destructor; |
538 | 64 | if (!setup_approx(P)) |
539 | 0 | return nullptr; |
540 | 64 | setup_exact(P); |
541 | | |
542 | 64 | P->inv = auto_e_inv; |
543 | 64 | P->fwd = auto_e_fwd; |
544 | 64 | break; |
545 | 64 | } |
546 | 2.70k | } |
547 | 2.70k | return P; |
548 | 2.70k | } |
549 | | |
550 | 2.48k | static bool getAlgoFromParams(PJ *P, TMercAlgo &algo) { |
551 | 2.48k | if (pj_param(P->ctx, P->params, "bapprox").i) { |
552 | 123 | algo = TMercAlgo::EVENDEN_SNYDER; |
553 | 123 | return true; |
554 | 123 | } |
555 | | |
556 | 2.36k | const char *algStr = pj_param(P->ctx, P->params, "salgo").s; |
557 | 2.36k | if (algStr) { |
558 | 265 | if (strcmp(algStr, "evenden_snyder") == 0) { |
559 | 3 | algo = TMercAlgo::EVENDEN_SNYDER; |
560 | 3 | return true; |
561 | 3 | } |
562 | 262 | if (strcmp(algStr, "poder_engsager") == 0) { |
563 | 187 | algo = TMercAlgo::PODER_ENGSAGER; |
564 | 187 | return true; |
565 | 187 | } |
566 | 75 | if (strcmp(algStr, "auto") == 0) { |
567 | 64 | algo = TMercAlgo::AUTO; |
568 | | // Don't return so that we can run a later validity check |
569 | 64 | } else { |
570 | 11 | proj_log_error(P, "unknown value for +algo"); |
571 | 11 | return false; |
572 | 11 | } |
573 | 2.09k | } else { |
574 | 2.09k | pj_load_ini(P->ctx); // if not already done |
575 | 2.09k | proj_context_errno_set( |
576 | 2.09k | P->ctx, |
577 | 2.09k | 0); // reset error in case proj.ini couldn't be found |
578 | 2.09k | algo = P->ctx->defaultTmercAlgo; |
579 | 2.09k | } |
580 | | |
581 | | // We haven't worked on the criterion on inverse transformation |
582 | | // when phi0 != 0 or if k0 is not close to 1 or for very oblate |
583 | | // ellipsoid (es > 0.1 is ~ rf < 200) |
584 | 2.16k | if (algo == TMercAlgo::AUTO && |
585 | 2.16k | (P->es > 0.1 || P->phi0 != 0 || fabs(P->k0 - 1) > 0.01)) { |
586 | 0 | algo = TMercAlgo::PODER_ENGSAGER; |
587 | 0 | } |
588 | | |
589 | 2.16k | return true; |
590 | 2.36k | } |
591 | | |
592 | | /*****************************************************************************/ |
593 | | // |
594 | | // Operation Setups |
595 | | // |
596 | | /*****************************************************************************/ |
597 | | |
598 | 1.62k | PJ *PJ_PROJECTION(tmerc) { |
599 | | /* exact transverse mercator only exists in ellipsoidal form, */ |
600 | | /* use approximate version if +a sphere is requested */ |
601 | | |
602 | 1.62k | TMercAlgo algo; |
603 | 1.62k | if (!getAlgoFromParams(P, algo)) { |
604 | 11 | proj_log_error(P, _("Invalid value for algo")); |
605 | 11 | return pj_default_destructor(P, PROJ_ERR_INVALID_OP_ILLEGAL_ARG_VALUE); |
606 | 11 | } |
607 | 1.61k | return setup(P, algo); |
608 | 1.62k | } |
609 | | |
610 | 231 | PJ *PJ_PROJECTION(etmerc) { |
611 | 231 | if (P->es == 0.0) { |
612 | 3 | proj_log_error( |
613 | 3 | P, _("Invalid value for eccentricity: it should not be zero")); |
614 | 3 | return pj_default_destructor(P, PROJ_ERR_INVALID_OP_ILLEGAL_ARG_VALUE); |
615 | 3 | } |
616 | | |
617 | 228 | return setup(P, TMercAlgo::PODER_ENGSAGER); |
618 | 231 | } |
619 | | |
620 | | /* UTM uses the Poder/Engsager implementation for the underlying projection */ |
621 | | /* UNLESS +approx is set in which case the Evenden/Snyder implementation is |
622 | | * used. */ |
623 | 865 | PJ *PJ_PROJECTION(utm) { |
624 | 865 | long zone; |
625 | 865 | if (P->es == 0.0) { |
626 | 2 | proj_log_error( |
627 | 2 | P, _("Invalid value for eccentricity: it should not be zero")); |
628 | 2 | return pj_default_destructor(P, PROJ_ERR_INVALID_OP_ILLEGAL_ARG_VALUE); |
629 | 2 | } |
630 | 863 | if (P->lam0 < -1000.0 || P->lam0 > 1000.0) { |
631 | 0 | proj_log_error(P, _("Invalid value for lon_0")); |
632 | 0 | return pj_default_destructor(P, PROJ_ERR_INVALID_OP_ILLEGAL_ARG_VALUE); |
633 | 0 | } |
634 | | |
635 | 863 | P->y0 = pj_param(P->ctx, P->params, "bsouth").i ? 10000000. : 0.; |
636 | 863 | P->x0 = 500000.; |
637 | 863 | if (pj_param(P->ctx, P->params, "tzone").i) /* zone input ? */ |
638 | 832 | { |
639 | 832 | zone = pj_param(P->ctx, P->params, "izone").i; |
640 | 832 | if (zone > 0 && zone <= 60) |
641 | 831 | --zone; |
642 | 1 | else { |
643 | 1 | proj_log_error(P, _("Invalid value for zone")); |
644 | 1 | return pj_default_destructor(P, |
645 | 1 | PROJ_ERR_INVALID_OP_ILLEGAL_ARG_VALUE); |
646 | 1 | } |
647 | 832 | } else /* nearest central meridian input */ |
648 | 31 | { |
649 | 31 | zone = lround((floor((adjlon(P->lam0) + M_PI) * 30. / M_PI))); |
650 | 31 | if (zone < 0) |
651 | 0 | zone = 0; |
652 | 31 | else if (zone >= 60) |
653 | 0 | zone = 59; |
654 | 31 | } |
655 | 862 | P->lam0 = (zone + .5) * M_PI / 30. - M_PI; |
656 | 862 | P->k0 = 0.9996; |
657 | 862 | P->phi0 = 0.; |
658 | | |
659 | 862 | TMercAlgo algo; |
660 | 862 | if (!getAlgoFromParams(P, algo)) { |
661 | 0 | proj_log_error(P, _("Invalid value for algo")); |
662 | 0 | return pj_default_destructor(P, PROJ_ERR_INVALID_OP_ILLEGAL_ARG_VALUE); |
663 | 0 | } |
664 | 862 | return setup(P, algo); |
665 | 862 | } |