/src/gdal/build/frmts/jpeg/libjpeg12/jddctmgr12.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * jddctmgr.c |
3 | | * |
4 | | * Copyright (C) 1994-1996, Thomas G. Lane. |
5 | | * This file is part of the Independent JPEG Group's software. |
6 | | * For conditions of distribution and use, see the accompanying README file. |
7 | | * |
8 | | * This file contains the inverse-DCT management logic. |
9 | | * This code selects a particular IDCT implementation to be used, |
10 | | * and it performs related housekeeping chores. No code in this file |
11 | | * is executed per IDCT step, only during output pass setup. |
12 | | * |
13 | | * Note that the IDCT routines are responsible for performing coefficient |
14 | | * dequantization as well as the IDCT proper. This module sets up the |
15 | | * dequantization multiplier table needed by the IDCT routine. |
16 | | */ |
17 | | |
18 | | #define JPEG_INTERNALS |
19 | | #include "jinclude.h" |
20 | | #include "jpeglib.h" |
21 | | #include "jdct.h" /* Private declarations for DCT subsystem */ |
22 | | |
23 | | |
24 | | /* |
25 | | * The decompressor input side (jdinput.c) saves away the appropriate |
26 | | * quantization table for each component at the start of the first scan |
27 | | * involving that component. (This is necessary in order to correctly |
28 | | * decode files that reuse Q-table slots.) |
29 | | * When we are ready to make an output pass, the saved Q-table is converted |
30 | | * to a multiplier table that will actually be used by the IDCT routine. |
31 | | * The multiplier table contents are IDCT-method-dependent. To support |
32 | | * application changes in IDCT method between scans, we can remake the |
33 | | * multiplier tables if necessary. |
34 | | * In buffered-image mode, the first output pass may occur before any data |
35 | | * has been seen for some components, and thus before their Q-tables have |
36 | | * been saved away. To handle this case, multiplier tables are preset |
37 | | * to zeroes; the result of the IDCT will be a neutral gray level. |
38 | | */ |
39 | | |
40 | | |
41 | | /* Private subobject for this module */ |
42 | | |
43 | | typedef struct { |
44 | | struct jpeg_inverse_dct pub; /* public fields */ |
45 | | |
46 | | /* This array contains the IDCT method code that each multiplier table |
47 | | * is currently set up for, or -1 if it's not yet set up. |
48 | | * The actual multiplier tables are pointed to by dct_table in the |
49 | | * per-component comp_info structures. |
50 | | */ |
51 | | int cur_method[MAX_COMPONENTS]; |
52 | | } my_idct_controller; |
53 | | |
54 | | typedef my_idct_controller * my_idct_ptr; |
55 | | |
56 | | |
57 | | /* Allocated multiplier tables: big enough for any supported variant */ |
58 | | |
59 | | typedef union { |
60 | | ISLOW_MULT_TYPE islow_array[DCTSIZE2]; |
61 | | #ifdef DCT_IFAST_SUPPORTED |
62 | | IFAST_MULT_TYPE ifast_array[DCTSIZE2]; |
63 | | #endif |
64 | | #ifdef DCT_FLOAT_SUPPORTED |
65 | | FLOAT_MULT_TYPE float_array[DCTSIZE2]; |
66 | | #endif |
67 | | } multiplier_table; |
68 | | |
69 | | |
70 | | /* The current scaled-IDCT routines require ISLOW-style multiplier tables, |
71 | | * so be sure to compile that code if either ISLOW or SCALING is requested. |
72 | | */ |
73 | | #ifdef DCT_ISLOW_SUPPORTED |
74 | | #define PROVIDE_ISLOW_TABLES |
75 | | #else |
76 | | #ifdef IDCT_SCALING_SUPPORTED |
77 | | #define PROVIDE_ISLOW_TABLES |
78 | | #endif |
79 | | #endif |
80 | | |
81 | | |
82 | | /* |
83 | | * Prepare for an output pass. |
84 | | * Here we select the proper IDCT routine for each component and build |
85 | | * a matching multiplier table. |
86 | | */ |
87 | | |
88 | | METHODDEF(void) |
89 | | start_pass (j_decompress_ptr cinfo) |
90 | 0 | { |
91 | 0 | my_idct_ptr idct = (my_idct_ptr) cinfo->idct; |
92 | 0 | int ci, i; |
93 | 0 | jpeg_component_info *compptr; |
94 | 0 | int method = 0; |
95 | 0 | inverse_DCT_method_ptr method_ptr = NULL; |
96 | 0 | JQUANT_TBL * qtbl; |
97 | |
|
98 | 0 | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
99 | 0 | ci++, compptr++) { |
100 | | /* Select the proper IDCT routine for this component's scaling */ |
101 | 0 | switch (compptr->DCT_scaled_size) { |
102 | 0 | #ifdef IDCT_SCALING_SUPPORTED |
103 | 0 | case 1: |
104 | 0 | method_ptr = jpeg_idct_1x1; |
105 | 0 | method = JDCT_ISLOW; /* jidctred uses islow-style table */ |
106 | 0 | break; |
107 | 0 | case 2: |
108 | 0 | method_ptr = jpeg_idct_2x2; |
109 | 0 | method = JDCT_ISLOW; /* jidctred uses islow-style table */ |
110 | 0 | break; |
111 | 0 | case 4: |
112 | 0 | method_ptr = jpeg_idct_4x4; |
113 | 0 | method = JDCT_ISLOW; /* jidctred uses islow-style table */ |
114 | 0 | break; |
115 | 0 | #endif |
116 | 0 | case DCTSIZE: |
117 | 0 | switch (cinfo->dct_method) { |
118 | 0 | #ifdef DCT_ISLOW_SUPPORTED |
119 | 0 | case JDCT_ISLOW: |
120 | 0 | method_ptr = jpeg_idct_islow; |
121 | 0 | method = JDCT_ISLOW; |
122 | 0 | break; |
123 | 0 | #endif |
124 | 0 | #ifdef DCT_IFAST_SUPPORTED |
125 | 0 | case JDCT_IFAST: |
126 | 0 | method_ptr = jpeg_idct_ifast; |
127 | 0 | method = JDCT_IFAST; |
128 | 0 | break; |
129 | 0 | #endif |
130 | 0 | #ifdef DCT_FLOAT_SUPPORTED |
131 | 0 | case JDCT_FLOAT: |
132 | 0 | method_ptr = jpeg_idct_float; |
133 | 0 | method = JDCT_FLOAT; |
134 | 0 | break; |
135 | 0 | #endif |
136 | 0 | default: |
137 | 0 | ERREXIT(cinfo, JERR_NOT_COMPILED); |
138 | 0 | break; |
139 | 0 | } |
140 | 0 | break; |
141 | 0 | default: |
142 | 0 | ERREXIT1(cinfo, JERR_BAD_DCTSIZE, compptr->DCT_scaled_size); |
143 | 0 | break; |
144 | 0 | } |
145 | 0 | idct->pub.inverse_DCT[ci] = method_ptr; |
146 | | /* Create multiplier table from quant table. |
147 | | * However, we can skip this if the component is uninteresting |
148 | | * or if we already built the table. Also, if no quant table |
149 | | * has yet been saved for the component, we leave the |
150 | | * multiplier table all-zero; we'll be reading zeroes from the |
151 | | * coefficient controller's buffer anyway. |
152 | | */ |
153 | 0 | if (! compptr->component_needed || idct->cur_method[ci] == method) |
154 | 0 | continue; |
155 | 0 | qtbl = compptr->quant_table; |
156 | 0 | if (qtbl == NULL) /* happens if no data yet for component */ |
157 | 0 | continue; |
158 | 0 | idct->cur_method[ci] = method; |
159 | 0 | switch (method) { |
160 | 0 | #ifdef PROVIDE_ISLOW_TABLES |
161 | 0 | case JDCT_ISLOW: |
162 | 0 | { |
163 | | /* For LL&M IDCT method, multipliers are equal to raw quantization |
164 | | * coefficients, but are stored as ints to ensure access efficiency. |
165 | | */ |
166 | 0 | ISLOW_MULT_TYPE * ismtbl = (ISLOW_MULT_TYPE *) compptr->dct_table; |
167 | 0 | for (i = 0; i < DCTSIZE2; i++) { |
168 | 0 | ismtbl[i] = (ISLOW_MULT_TYPE) qtbl->quantval[i]; |
169 | 0 | } |
170 | 0 | } |
171 | 0 | break; |
172 | 0 | #endif |
173 | 0 | #ifdef DCT_IFAST_SUPPORTED |
174 | 0 | case JDCT_IFAST: |
175 | 0 | { |
176 | | /* For AA&N IDCT method, multipliers are equal to quantization |
177 | | * coefficients scaled by scalefactor[row]*scalefactor[col], where |
178 | | * scalefactor[0] = 1 |
179 | | * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 |
180 | | * For integer operation, the multiplier table is to be scaled by |
181 | | * IFAST_SCALE_BITS. |
182 | | */ |
183 | 0 | IFAST_MULT_TYPE * ifmtbl = (IFAST_MULT_TYPE *) compptr->dct_table; |
184 | 0 | #define CONST_BITS 14 |
185 | 0 | static const INT16 aanscales[DCTSIZE2] = { |
186 | | /* precomputed values scaled up by 14 bits */ |
187 | 0 | 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, |
188 | 0 | 22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270, |
189 | 0 | 21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906, |
190 | 0 | 19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315, |
191 | 0 | 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, |
192 | 0 | 12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552, |
193 | 0 | 8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446, |
194 | 0 | 4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247 |
195 | 0 | }; |
196 | 0 | SHIFT_TEMPS |
197 | |
|
198 | 0 | for (i = 0; i < DCTSIZE2; i++) { |
199 | 0 | ifmtbl[i] = (IFAST_MULT_TYPE) |
200 | 0 | DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i], |
201 | 0 | (INT32) aanscales[i]), |
202 | 0 | CONST_BITS-IFAST_SCALE_BITS); |
203 | 0 | } |
204 | 0 | } |
205 | 0 | break; |
206 | 0 | #endif |
207 | 0 | #ifdef DCT_FLOAT_SUPPORTED |
208 | 0 | case JDCT_FLOAT: |
209 | 0 | { |
210 | | /* For float AA&N IDCT method, multipliers are equal to quantization |
211 | | * coefficients scaled by scalefactor[row]*scalefactor[col], where |
212 | | * scalefactor[0] = 1 |
213 | | * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 |
214 | | */ |
215 | 0 | FLOAT_MULT_TYPE * fmtbl = (FLOAT_MULT_TYPE *) compptr->dct_table; |
216 | 0 | int row, col; |
217 | 0 | static const double aanscalefactor[DCTSIZE] = { |
218 | 0 | 1.0, 1.387039845, 1.306562965, 1.175875602, |
219 | 0 | 1.0, 0.785694958, 0.541196100, 0.275899379 |
220 | 0 | }; |
221 | |
|
222 | 0 | i = 0; |
223 | 0 | for (row = 0; row < DCTSIZE; row++) { |
224 | 0 | for (col = 0; col < DCTSIZE; col++) { |
225 | 0 | fmtbl[i] = (FLOAT_MULT_TYPE) |
226 | 0 | ((double) qtbl->quantval[i] * |
227 | 0 | aanscalefactor[row] * aanscalefactor[col]); |
228 | 0 | i++; |
229 | 0 | } |
230 | 0 | } |
231 | 0 | } |
232 | 0 | break; |
233 | 0 | #endif |
234 | 0 | default: |
235 | 0 | ERREXIT(cinfo, JERR_NOT_COMPILED); |
236 | 0 | break; |
237 | 0 | } |
238 | 0 | } |
239 | 0 | } |
240 | | |
241 | | |
242 | | /* |
243 | | * Initialize IDCT manager. |
244 | | */ |
245 | | |
246 | | GLOBAL(void) |
247 | | jinit_inverse_dct (j_decompress_ptr cinfo) |
248 | 0 | { |
249 | 0 | my_idct_ptr idct; |
250 | 0 | int ci; |
251 | 0 | jpeg_component_info *compptr; |
252 | |
|
253 | 0 | idct = (my_idct_ptr) |
254 | 0 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
255 | 0 | SIZEOF(my_idct_controller)); |
256 | 0 | cinfo->idct = (struct jpeg_inverse_dct *) idct; |
257 | 0 | idct->pub.start_pass = start_pass; |
258 | |
|
259 | 0 | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
260 | 0 | ci++, compptr++) { |
261 | | /* Allocate and pre-zero a multiplier table for each component */ |
262 | 0 | compptr->dct_table = |
263 | 0 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
264 | 0 | SIZEOF(multiplier_table)); |
265 | 0 | MEMZERO(compptr->dct_table, SIZEOF(multiplier_table)); |
266 | | /* Mark multiplier table not yet set up for any method */ |
267 | 0 | idct->cur_method[ci] = -1; |
268 | 0 | } |
269 | 0 | } |