Coverage Report

Created: 2025-06-22 06:59

/src/gdal/third_party/libdivide/libdivide.h
Line
Count
Source (jump to first uncovered line)
1
// libdivide.h - Optimized integer division
2
// https://libdivide.com
3
//
4
// Copyright (C) 2010 - 2022 ridiculous_fish, <libdivide@ridiculousfish.com>
5
// Copyright (C) 2016 - 2022 Kim Walisch, <kim.walisch@gmail.com>
6
//
7
// libdivide is dual-licensed under the Boost or zlib licenses.
8
// You may use libdivide under the terms of either of these.
9
// See LICENSE.txt for more details.
10
11
#ifndef LIBDIVIDE_H
12
#define LIBDIVIDE_H
13
14
// *** Version numbers are auto generated - do not edit ***
15
#define LIBDIVIDE_VERSION "5.2.0"
16
#define LIBDIVIDE_VERSION_MAJOR 5
17
#define LIBDIVIDE_VERSION_MINOR 2
18
#define LIBDIVIDE_VERSION_PATCH 0
19
20
#include <stdint.h>
21
22
#if !defined(__AVR__) && __STDC_HOSTED__ != 0
23
#include <stdio.h>
24
#include <stdlib.h>
25
#endif
26
27
#if defined(_MSC_VER) && (defined(__cplusplus) && (__cplusplus >= 202002L)) || \
28
    (defined(_MSVC_LANG) && (_MSVC_LANG >= 202002L))
29
#include <limits.h>
30
#include <type_traits>
31
#define LIBDIVIDE_VC_CXX20
32
#endif
33
34
#if defined(LIBDIVIDE_SSE2)
35
#include <emmintrin.h>
36
#endif
37
38
#if defined(LIBDIVIDE_AVX2) || defined(LIBDIVIDE_AVX512)
39
#include <immintrin.h>
40
#endif
41
42
#if defined(LIBDIVIDE_NEON)
43
#include <arm_neon.h>
44
#endif
45
46
// Clang-cl prior to Visual Studio 2022 doesn't include __umulh/__mulh intrinsics
47
#if defined(_MSC_VER) && (!defined(__clang__) || _MSC_VER > 1930) && \
48
    (defined(_M_X64) || defined(_M_ARM64) || defined(_M_HYBRID_X86_ARM64) || defined(_M_ARM64EC))
49
#define LIBDIVIDE_MULH_INTRINSICS
50
#endif
51
52
#if defined(_MSC_VER)
53
#if defined(LIBDIVIDE_MULH_INTRINSICS) || !defined(__clang__)
54
#include <intrin.h>
55
#endif
56
#ifndef __clang__
57
#pragma warning(push)
58
// 4146: unary minus operator applied to unsigned type, result still unsigned
59
#pragma warning(disable : 4146)
60
61
// 4204: nonstandard extension used : non-constant aggregate initializer
62
#pragma warning(disable : 4204)
63
#endif
64
#define LIBDIVIDE_VC
65
#endif
66
67
#if !defined(__has_builtin)
68
#define __has_builtin(x) 0
69
#endif
70
71
#if defined(__SIZEOF_INT128__)
72
#define HAS_INT128_T
73
// clang-cl on Windows does not yet support 128-bit division
74
#if !(defined(__clang__) && defined(LIBDIVIDE_VC))
75
#define HAS_INT128_DIV
76
#endif
77
#endif
78
79
#if defined(__x86_64__) || defined(_M_X64)
80
#define LIBDIVIDE_X86_64
81
#endif
82
83
#if defined(__i386__)
84
#define LIBDIVIDE_i386
85
#endif
86
87
#if defined(__GNUC__) || defined(__clang__)
88
#define LIBDIVIDE_GCC_STYLE_ASM
89
#endif
90
91
#if defined(__cplusplus) || defined(LIBDIVIDE_VC)
92
0
#define LIBDIVIDE_FUNCTION __FUNCTION__
93
#else
94
#define LIBDIVIDE_FUNCTION __func__
95
#endif
96
97
// Set up forced inlining if possible.
98
// We need both the attribute and keyword to avoid "might not be inlineable" warnings.
99
#ifdef __has_attribute
100
#if __has_attribute(always_inline)
101
#define LIBDIVIDE_INLINE __attribute__((always_inline)) inline
102
#endif
103
#endif
104
#ifndef LIBDIVIDE_INLINE
105
#ifdef _MSC_VER
106
#define LIBDIVIDE_INLINE __forceinline
107
#else
108
#define LIBDIVIDE_INLINE inline
109
#endif
110
#endif
111
112
#if defined(__AVR__) || __STDC_HOSTED__ == 0
113
#define LIBDIVIDE_ERROR(msg)
114
#else
115
#define LIBDIVIDE_ERROR(msg)                                                                     \
116
0
    do {                                                                                         \
117
0
        fprintf(stderr, "libdivide.h:%d: %s(): Error: %s\n", __LINE__, LIBDIVIDE_FUNCTION, msg); \
118
0
        abort();                                                                                 \
119
0
    } while (0)
120
#endif
121
122
#if defined(LIBDIVIDE_ASSERTIONS_ON) && !defined(__AVR__) && __STDC_HOSTED__ != 0
123
#define LIBDIVIDE_ASSERT(x)                                                           \
124
    do {                                                                              \
125
        if (!(x)) {                                                                   \
126
            fprintf(stderr, "libdivide.h:%d: %s(): Assertion failed: %s\n", __LINE__, \
127
                LIBDIVIDE_FUNCTION, #x);                                              \
128
            abort();                                                                  \
129
        }                                                                             \
130
    } while (0)
131
#else
132
#define LIBDIVIDE_ASSERT(x)
133
#endif
134
135
#ifdef __cplusplus
136
137
// For constexpr zero initialization, c++11 might handle things ok,
138
// but just limit to at least c++14 to ensure we don't break anyone's code:
139
140
// Use https://en.cppreference.com/w/cpp/feature_test#cpp_constexpr
141
#if defined(__cpp_constexpr) && (__cpp_constexpr >= 201304L)
142
#define LIBDIVIDE_CONSTEXPR constexpr LIBDIVIDE_INLINE
143
144
// Supposedly, MSVC might not implement feature test macros right:
145
// https://stackoverflow.com/questions/49316752/feature-test-macros-not-working-properly-in-visual-c
146
// so check that _MSVC_LANG corresponds to at least c++14, and _MSC_VER corresponds to at least VS
147
// 2017 15.0 (for extended constexpr support:
148
// https://learn.microsoft.com/en-us/cpp/overview/visual-cpp-language-conformance?view=msvc-170)
149
#elif (defined(_MSC_VER) && _MSC_VER >= 1910) && (defined(_MSVC_LANG) && _MSVC_LANG >= 201402L)
150
#define LIBDIVIDE_CONSTEXPR constexpr LIBDIVIDE_INLINE
151
152
#else
153
#define LIBDIVIDE_CONSTEXPR LIBDIVIDE_INLINE
154
#endif
155
156
namespace libdivide {
157
#endif
158
159
#if defined(_MSC_VER) && !defined(__clang__)
160
#if defined(LIBDIVIDE_VC_CXX20)
161
static LIBDIVIDE_CONSTEXPR int __builtin_clz(unsigned x) {
162
    if (std::is_constant_evaluated()) {
163
        for (int i = 0; i < sizeof(x) * CHAR_BIT; ++i) {
164
            if (x >> (sizeof(x) * CHAR_BIT - 1 - i)) return i;
165
        }
166
        return sizeof(x) * CHAR_BIT;
167
    }
168
#else
169
static LIBDIVIDE_INLINE int __builtin_clz(unsigned x) {
170
#endif
171
#if defined(_M_ARM) || defined(_M_ARM64) || defined(_M_HYBRID_X86_ARM64) || defined(_M_ARM64EC)
172
    return (int)_CountLeadingZeros(x);
173
#elif defined(__AVX2__) || defined(__LZCNT__)
174
    return (int)_lzcnt_u32(x);
175
#else
176
    unsigned long r;
177
    _BitScanReverse(&r, x);
178
    return (int)(r ^ 31);
179
#endif
180
}
181
182
#if defined(LIBDIVIDE_VC_CXX20)
183
static LIBDIVIDE_CONSTEXPR int __builtin_clzll(unsigned long long x) {
184
    if (std::is_constant_evaluated()) {
185
        for (int i = 0; i < sizeof(x) * CHAR_BIT; ++i) {
186
            if (x >> (sizeof(x) * CHAR_BIT - 1 - i)) return i;
187
        }
188
        return sizeof(x) * CHAR_BIT;
189
    }
190
#else
191
static LIBDIVIDE_INLINE int __builtin_clzll(unsigned long long x) {
192
#endif
193
#if defined(_M_ARM) || defined(_M_ARM64) || defined(_M_HYBRID_X86_ARM64) || defined(_M_ARM64EC)
194
    return (int)_CountLeadingZeros64(x);
195
#elif defined(_WIN64)
196
#if defined(__AVX2__) || defined(__LZCNT__)
197
    return (int)_lzcnt_u64(x);
198
#else
199
    unsigned long r;
200
    _BitScanReverse64(&r, x);
201
    return (int)(r ^ 63);
202
#endif
203
#else
204
    int l = __builtin_clz((unsigned)x) + 32;
205
    int h = __builtin_clz((unsigned)(x >> 32));
206
    return !!((unsigned)(x >> 32)) ? h : l;
207
#endif
208
}
209
#endif // defined(_MSC_VER) && !defined(__clang__)
210
211
// pack divider structs to prevent compilers from padding.
212
// This reduces memory usage by up to 43% when using a large
213
// array of libdivide dividers and improves performance
214
// by up to 10% because of reduced memory bandwidth.
215
#pragma pack(push, 1)
216
217
struct libdivide_u16_t {
218
    uint16_t magic;
219
    uint8_t more;
220
};
221
222
struct libdivide_s16_t {
223
    int16_t magic;
224
    uint8_t more;
225
};
226
227
struct libdivide_u32_t {
228
    uint32_t magic;
229
    uint8_t more;
230
};
231
232
struct libdivide_s32_t {
233
    int32_t magic;
234
    uint8_t more;
235
};
236
237
struct libdivide_u64_t {
238
    uint64_t magic;
239
    uint8_t more;
240
};
241
242
struct libdivide_s64_t {
243
    int64_t magic;
244
    uint8_t more;
245
};
246
247
struct libdivide_u16_branchfree_t {
248
    uint16_t magic;
249
    uint8_t more;
250
};
251
252
struct libdivide_s16_branchfree_t {
253
    int16_t magic;
254
    uint8_t more;
255
};
256
257
struct libdivide_u32_branchfree_t {
258
    uint32_t magic;
259
    uint8_t more;
260
};
261
262
struct libdivide_s32_branchfree_t {
263
    int32_t magic;
264
    uint8_t more;
265
};
266
267
struct libdivide_u64_branchfree_t {
268
    uint64_t magic;
269
    uint8_t more;
270
};
271
272
struct libdivide_s64_branchfree_t {
273
    int64_t magic;
274
    uint8_t more;
275
};
276
277
#pragma pack(pop)
278
279
// Explanation of the "more" field:
280
//
281
// * Bits 0-5 is the shift value (for shift path or mult path).
282
// * Bit 6 is the add indicator for mult path.
283
// * Bit 7 is set if the divisor is negative. We use bit 7 as the negative
284
//   divisor indicator so that we can efficiently use sign extension to
285
//   create a bitmask with all bits set to 1 (if the divisor is negative)
286
//   or 0 (if the divisor is positive).
287
//
288
// u32: [0-4] shift value
289
//      [5] ignored
290
//      [6] add indicator
291
//      magic number of 0 indicates shift path
292
//
293
// s32: [0-4] shift value
294
//      [5] ignored
295
//      [6] add indicator
296
//      [7] indicates negative divisor
297
//      magic number of 0 indicates shift path
298
//
299
// u64: [0-5] shift value
300
//      [6] add indicator
301
//      magic number of 0 indicates shift path
302
//
303
// s64: [0-5] shift value
304
//      [6] add indicator
305
//      [7] indicates negative divisor
306
//      magic number of 0 indicates shift path
307
//
308
// In s32 and s64 branchfree modes, the magic number is negated according to
309
// whether the divisor is negated. In branchfree strategy, it is not negated.
310
311
enum {
312
    LIBDIVIDE_16_SHIFT_MASK = 0x1F,
313
    LIBDIVIDE_32_SHIFT_MASK = 0x1F,
314
    LIBDIVIDE_64_SHIFT_MASK = 0x3F,
315
    LIBDIVIDE_ADD_MARKER = 0x40,
316
    LIBDIVIDE_NEGATIVE_DIVISOR = 0x80
317
};
318
319
static LIBDIVIDE_INLINE struct libdivide_s16_t libdivide_s16_gen(int16_t d);
320
static LIBDIVIDE_INLINE struct libdivide_u16_t libdivide_u16_gen(uint16_t d);
321
static LIBDIVIDE_INLINE struct libdivide_s32_t libdivide_s32_gen(int32_t d);
322
static LIBDIVIDE_INLINE struct libdivide_u32_t libdivide_u32_gen(uint32_t d);
323
static LIBDIVIDE_INLINE struct libdivide_s64_t libdivide_s64_gen(int64_t d);
324
static LIBDIVIDE_INLINE struct libdivide_u64_t libdivide_u64_gen(uint64_t d);
325
326
static LIBDIVIDE_INLINE struct libdivide_s16_branchfree_t libdivide_s16_branchfree_gen(int16_t d);
327
static LIBDIVIDE_INLINE struct libdivide_u16_branchfree_t libdivide_u16_branchfree_gen(uint16_t d);
328
static LIBDIVIDE_INLINE struct libdivide_s32_branchfree_t libdivide_s32_branchfree_gen(int32_t d);
329
static LIBDIVIDE_INLINE struct libdivide_u32_branchfree_t libdivide_u32_branchfree_gen(uint32_t d);
330
static LIBDIVIDE_INLINE struct libdivide_s64_branchfree_t libdivide_s64_branchfree_gen(int64_t d);
331
static LIBDIVIDE_INLINE struct libdivide_u64_branchfree_t libdivide_u64_branchfree_gen(uint64_t d);
332
333
static LIBDIVIDE_INLINE int16_t libdivide_s16_do_raw(
334
    int16_t numer, int16_t magic, uint8_t more);
335
static LIBDIVIDE_INLINE int16_t libdivide_s16_do(
336
    int16_t numer, const struct libdivide_s16_t *denom);
337
static LIBDIVIDE_INLINE uint16_t libdivide_u16_do_raw(
338
    uint16_t numer, uint16_t magic, uint8_t more);
339
static LIBDIVIDE_INLINE uint16_t libdivide_u16_do(
340
    uint16_t numer, const struct libdivide_u16_t *denom);
341
static LIBDIVIDE_INLINE int32_t libdivide_s32_do_raw(
342
    int32_t numer, int32_t magic, uint8_t more);
343
static LIBDIVIDE_INLINE int32_t libdivide_s32_do(
344
    int32_t numer, const struct libdivide_s32_t *denom);
345
static LIBDIVIDE_INLINE uint32_t libdivide_u32_do_raw(
346
    uint32_t numer, uint32_t magic, uint8_t more);
347
static LIBDIVIDE_INLINE uint32_t libdivide_u32_do(
348
    uint32_t numer, const struct libdivide_u32_t *denom);
349
static LIBDIVIDE_INLINE int64_t libdivide_s64_do_raw(
350
    int64_t numer, int64_t magic, uint8_t more);
351
static LIBDIVIDE_INLINE int64_t libdivide_s64_do(
352
    int64_t numer, const struct libdivide_s64_t *denom);
353
static LIBDIVIDE_INLINE uint64_t libdivide_u64_do_raw(
354
    uint64_t numer, uint64_t magic, uint8_t more);
355
static LIBDIVIDE_INLINE uint64_t libdivide_u64_do(
356
    uint64_t numer, const struct libdivide_u64_t *denom);
357
358
static LIBDIVIDE_INLINE int16_t libdivide_s16_branchfree_do(
359
    int16_t numer, const struct libdivide_s16_branchfree_t *denom);
360
static LIBDIVIDE_INLINE uint16_t libdivide_u16_branchfree_do(
361
    uint16_t numer, const struct libdivide_u16_branchfree_t *denom);
362
static LIBDIVIDE_INLINE int32_t libdivide_s32_branchfree_do(
363
    int32_t numer, const struct libdivide_s32_branchfree_t *denom);
364
static LIBDIVIDE_INLINE uint32_t libdivide_u32_branchfree_do(
365
    uint32_t numer, const struct libdivide_u32_branchfree_t *denom);
366
static LIBDIVIDE_INLINE int64_t libdivide_s64_branchfree_do(
367
    int64_t numer, const struct libdivide_s64_branchfree_t *denom);
368
static LIBDIVIDE_INLINE uint64_t libdivide_u64_branchfree_do(
369
    uint64_t numer, const struct libdivide_u64_branchfree_t *denom);
370
371
static LIBDIVIDE_INLINE int16_t libdivide_s16_recover(const struct libdivide_s16_t *denom);
372
static LIBDIVIDE_INLINE uint16_t libdivide_u16_recover(const struct libdivide_u16_t *denom);
373
static LIBDIVIDE_INLINE int32_t libdivide_s32_recover(const struct libdivide_s32_t *denom);
374
static LIBDIVIDE_INLINE uint32_t libdivide_u32_recover(const struct libdivide_u32_t *denom);
375
static LIBDIVIDE_INLINE int64_t libdivide_s64_recover(const struct libdivide_s64_t *denom);
376
static LIBDIVIDE_INLINE uint64_t libdivide_u64_recover(const struct libdivide_u64_t *denom);
377
378
static LIBDIVIDE_INLINE int16_t libdivide_s16_branchfree_recover(
379
    const struct libdivide_s16_branchfree_t *denom);
380
static LIBDIVIDE_INLINE uint16_t libdivide_u16_branchfree_recover(
381
    const struct libdivide_u16_branchfree_t *denom);
382
static LIBDIVIDE_INLINE int32_t libdivide_s32_branchfree_recover(
383
    const struct libdivide_s32_branchfree_t *denom);
384
static LIBDIVIDE_INLINE uint32_t libdivide_u32_branchfree_recover(
385
    const struct libdivide_u32_branchfree_t *denom);
386
static LIBDIVIDE_INLINE int64_t libdivide_s64_branchfree_recover(
387
    const struct libdivide_s64_branchfree_t *denom);
388
static LIBDIVIDE_INLINE uint64_t libdivide_u64_branchfree_recover(
389
    const struct libdivide_u64_branchfree_t *denom);
390
391
//////// Internal Utility Functions
392
393
0
static LIBDIVIDE_INLINE uint16_t libdivide_mullhi_u16(uint16_t x, uint16_t y) {
394
0
    uint32_t xl = x, yl = y;
395
0
    uint32_t rl = xl * yl;
396
0
    return (uint16_t)(rl >> 16);
397
0
}
398
399
0
static LIBDIVIDE_INLINE int16_t libdivide_mullhi_s16(int16_t x, int16_t y) {
400
0
    int32_t xl = x, yl = y;
401
0
    int32_t rl = xl * yl;
402
0
    // needs to be arithmetic shift
403
0
    return (int16_t)(rl >> 16);
404
0
}
405
406
0
static LIBDIVIDE_INLINE uint32_t libdivide_mullhi_u32(uint32_t x, uint32_t y) {
407
0
    uint64_t xl = x, yl = y;
408
0
    uint64_t rl = xl * yl;
409
0
    return (uint32_t)(rl >> 32);
410
0
}
411
412
0
static LIBDIVIDE_INLINE int32_t libdivide_mullhi_s32(int32_t x, int32_t y) {
413
0
    int64_t xl = x, yl = y;
414
0
    int64_t rl = xl * yl;
415
0
    // needs to be arithmetic shift
416
0
    return (int32_t)(rl >> 32);
417
0
}
418
419
0
static LIBDIVIDE_INLINE uint64_t libdivide_mullhi_u64(uint64_t x, uint64_t y) {
420
0
#if defined(LIBDIVIDE_MULH_INTRINSICS)
421
0
    return __umulh(x, y);
422
0
#elif defined(HAS_INT128_T)
423
0
    __uint128_t xl = x, yl = y;
424
0
    __uint128_t rl = xl * yl;
425
0
    return (uint64_t)(rl >> 64);
426
0
#else
427
0
    // full 128 bits are x0 * y0 + (x0 * y1 << 32) + (x1 * y0 << 32) + (x1 * y1 << 64)
428
0
    uint32_t mask = 0xFFFFFFFF;
429
0
    uint32_t x0 = (uint32_t)(x & mask);
430
0
    uint32_t x1 = (uint32_t)(x >> 32);
431
0
    uint32_t y0 = (uint32_t)(y & mask);
432
0
    uint32_t y1 = (uint32_t)(y >> 32);
433
0
    uint32_t x0y0_hi = libdivide_mullhi_u32(x0, y0);
434
0
    uint64_t x0y1 = x0 * (uint64_t)y1;
435
0
    uint64_t x1y0 = x1 * (uint64_t)y0;
436
0
    uint64_t x1y1 = x1 * (uint64_t)y1;
437
0
    uint64_t temp = x1y0 + x0y0_hi;
438
0
    uint64_t temp_lo = temp & mask;
439
0
    uint64_t temp_hi = temp >> 32;
440
0
441
0
    return x1y1 + temp_hi + ((temp_lo + x0y1) >> 32);
442
0
#endif
443
0
}
444
445
0
static LIBDIVIDE_INLINE int64_t libdivide_mullhi_s64(int64_t x, int64_t y) {
446
0
#if defined(LIBDIVIDE_MULH_INTRINSICS)
447
0
    return __mulh(x, y);
448
0
#elif defined(HAS_INT128_T)
449
0
    __int128_t xl = x, yl = y;
450
0
    __int128_t rl = xl * yl;
451
0
    return (int64_t)(rl >> 64);
452
0
#else
453
0
    // full 128 bits are x0 * y0 + (x0 * y1 << 32) + (x1 * y0 << 32) + (x1 * y1 << 64)
454
0
    uint32_t mask = 0xFFFFFFFF;
455
0
    uint32_t x0 = (uint32_t)(x & mask);
456
0
    uint32_t y0 = (uint32_t)(y & mask);
457
0
    int32_t x1 = (int32_t)(x >> 32);
458
0
    int32_t y1 = (int32_t)(y >> 32);
459
0
    uint32_t x0y0_hi = libdivide_mullhi_u32(x0, y0);
460
0
    int64_t t = x1 * (int64_t)y0 + x0y0_hi;
461
0
    int64_t w1 = x0 * (int64_t)y1 + (t & mask);
462
0
463
0
    return x1 * (int64_t)y1 + (t >> 32) + (w1 >> 32);
464
0
#endif
465
0
}
466
467
0
static LIBDIVIDE_INLINE int16_t libdivide_count_leading_zeros16(uint16_t val) {
468
#if defined(__AVR__)
469
    // Fast way to count leading zeros
470
    // On the AVR 8-bit architecture __builtin_clz() works on a int16_t.
471
    return __builtin_clz(val);
472
#elif defined(__GNUC__) || __has_builtin(__builtin_clz) || defined(_MSC_VER)
473
    // Fast way to count leading zeros
474
0
    return (int16_t)(__builtin_clz(val) - 16);
475
#else
476
    if (val == 0) return 16;
477
    int16_t result = 4;
478
    uint16_t hi = 0xFU << 12;
479
    while ((val & hi) == 0) {
480
        hi >>= 4;
481
        result += 4;
482
    }
483
    while (val & hi) {
484
        result -= 1;
485
        hi <<= 1;
486
    }
487
    return result;
488
#endif
489
0
}
490
491
0
static LIBDIVIDE_INLINE int32_t libdivide_count_leading_zeros32(uint32_t val) {
492
#if defined(__AVR__)
493
    // Fast way to count leading zeros
494
    return __builtin_clzl(val);
495
#elif defined(__GNUC__) || __has_builtin(__builtin_clz) || defined(_MSC_VER)
496
    // Fast way to count leading zeros
497
0
    return __builtin_clz(val);
498
#else
499
    if (val == 0) return 32;
500
    int32_t result = 8;
501
    uint32_t hi = 0xFFU << 24;
502
    while ((val & hi) == 0) {
503
        hi >>= 8;
504
        result += 8;
505
    }
506
    while (val & hi) {
507
        result -= 1;
508
        hi <<= 1;
509
    }
510
    return result;
511
#endif
512
0
}
513
514
0
static LIBDIVIDE_INLINE int32_t libdivide_count_leading_zeros64(uint64_t val) {
515
0
#if defined(__GNUC__) || __has_builtin(__builtin_clzll) || defined(_MSC_VER)
516
0
    // Fast way to count leading zeros
517
0
    return __builtin_clzll(val);
518
0
#else
519
0
    uint32_t hi = val >> 32;
520
0
    uint32_t lo = val & 0xFFFFFFFF;
521
0
    if (hi != 0) return libdivide_count_leading_zeros32(hi);
522
0
    return 32 + libdivide_count_leading_zeros32(lo);
523
0
#endif
524
0
}
525
526
// libdivide_32_div_16_to_16: divides a 32-bit uint {u1, u0} by a 16-bit
527
// uint {v}. The result must fit in 16 bits.
528
// Returns the quotient directly and the remainder in *r
529
static LIBDIVIDE_INLINE uint16_t libdivide_32_div_16_to_16(
530
0
    uint16_t u1, uint16_t u0, uint16_t v, uint16_t *r) {
531
0
    uint32_t n = ((uint32_t)u1 << 16) | u0;
532
0
    uint16_t result = (uint16_t)(n / v);
533
0
    *r = (uint16_t)(n - result * (uint32_t)v);
534
0
    return result;
535
0
}
536
537
// libdivide_64_div_32_to_32: divides a 64-bit uint {u1, u0} by a 32-bit
538
// uint {v}. The result must fit in 32 bits.
539
// Returns the quotient directly and the remainder in *r
540
static LIBDIVIDE_INLINE uint32_t libdivide_64_div_32_to_32(
541
0
    uint32_t u1, uint32_t u0, uint32_t v, uint32_t *r) {
542
0
#if (defined(LIBDIVIDE_i386) || defined(LIBDIVIDE_X86_64)) && defined(LIBDIVIDE_GCC_STYLE_ASM)
543
0
    uint32_t result;
544
0
    __asm__("divl %[v]" : "=a"(result), "=d"(*r) : [v] "r"(v), "a"(u0), "d"(u1));
545
0
    return result;
546
#else
547
    uint64_t n = ((uint64_t)u1 << 32) | u0;
548
    uint32_t result = (uint32_t)(n / v);
549
    *r = (uint32_t)(n - result * (uint64_t)v);
550
    return result;
551
#endif
552
0
}
553
554
// libdivide_128_div_64_to_64: divides a 128-bit uint {numhi, numlo} by a 64-bit uint {den}. The
555
// result must fit in 64 bits. Returns the quotient directly and the remainder in *r
556
static LIBDIVIDE_INLINE uint64_t libdivide_128_div_64_to_64(
557
0
    uint64_t numhi, uint64_t numlo, uint64_t den, uint64_t *r) {
558
0
    // N.B. resist the temptation to use __uint128_t here.
559
0
    // In LLVM compiler-rt, it performs a 128/128 -> 128 division which is many times slower than
560
0
    // necessary. In gcc it's better but still slower than the divlu implementation, perhaps because
561
0
    // it's not LIBDIVIDE_INLINEd.
562
0
#if defined(LIBDIVIDE_X86_64) && defined(LIBDIVIDE_GCC_STYLE_ASM)
563
0
    uint64_t result;
564
0
    __asm__("div %[v]" : "=a"(result), "=d"(*r) : [v] "r"(den), "a"(numlo), "d"(numhi));
565
0
    return result;
566
0
#else
567
0
    // We work in base 2**32.
568
0
    // A uint32 holds a single digit. A uint64 holds two digits.
569
0
    // Our numerator is conceptually [num3, num2, num1, num0].
570
0
    // Our denominator is [den1, den0].
571
0
    const uint64_t b = ((uint64_t)1 << 32);
572
0
573
0
    // The high and low digits of our computed quotient.
574
0
    uint32_t q1;
575
0
    uint32_t q0;
576
0
577
0
    // The normalization shift factor.
578
0
    int shift;
579
0
580
0
    // The high and low digits of our denominator (after normalizing).
581
0
    // Also the low 2 digits of our numerator (after normalizing).
582
0
    uint32_t den1;
583
0
    uint32_t den0;
584
0
    uint32_t num1;
585
0
    uint32_t num0;
586
0
587
0
    // A partial remainder.
588
0
    uint64_t rem;
589
0
590
0
    // The estimated quotient, and its corresponding remainder (unrelated to true remainder).
591
0
    uint64_t qhat;
592
0
    uint64_t rhat;
593
0
594
0
    // Variables used to correct the estimated quotient.
595
0
    uint64_t c1;
596
0
    uint64_t c2;
597
0
598
0
    // Check for overflow and divide by 0.
599
0
    if (numhi >= den) {
600
0
        if (r) *r = ~0ull;
601
0
        return ~0ull;
602
0
    }
603
0
604
0
    // Determine the normalization factor. We multiply den by this, so that its leading digit is at
605
0
    // least half b. In binary this means just shifting left by the number of leading zeros, so that
606
0
    // there's a 1 in the MSB.
607
0
    // We also shift numer by the same amount. This cannot overflow because numhi < den.
608
0
    // The expression (-shift & 63) is the same as (64 - shift), except it avoids the UB of shifting
609
0
    // by 64. The funny bitwise 'and' ensures that numlo does not get shifted into numhi if shift is
610
0
    // 0. clang 11 has an x86 codegen bug here: see LLVM bug 50118. The sequence below avoids it.
611
0
    shift = libdivide_count_leading_zeros64(den);
612
0
    den <<= shift;
613
0
    numhi <<= shift;
614
0
    numhi |= (numlo >> (-shift & 63)) & (uint64_t)(-(int64_t)shift >> 63);
615
0
    numlo <<= shift;
616
0
617
0
    // Extract the low digits of the numerator and both digits of the denominator.
618
0
    num1 = (uint32_t)(numlo >> 32);
619
0
    num0 = (uint32_t)(numlo & 0xFFFFFFFFu);
620
0
    den1 = (uint32_t)(den >> 32);
621
0
    den0 = (uint32_t)(den & 0xFFFFFFFFu);
622
0
623
0
    // We wish to compute q1 = [n3 n2 n1] / [d1 d0].
624
0
    // Estimate q1 as [n3 n2] / [d1], and then correct it.
625
0
    // Note while qhat may be 2 digits, q1 is always 1 digit.
626
0
    qhat = numhi / den1;
627
0
    rhat = numhi % den1;
628
0
    c1 = qhat * den0;
629
0
    c2 = rhat * b + num1;
630
0
    if (c1 > c2) qhat -= (c1 - c2 > den) ? 2 : 1;
631
0
    q1 = (uint32_t)qhat;
632
0
633
0
    // Compute the true (partial) remainder.
634
0
    rem = numhi * b + num1 - q1 * den;
635
0
636
0
    // We wish to compute q0 = [rem1 rem0 n0] / [d1 d0].
637
0
    // Estimate q0 as [rem1 rem0] / [d1] and correct it.
638
0
    qhat = rem / den1;
639
0
    rhat = rem % den1;
640
0
    c1 = qhat * den0;
641
0
    c2 = rhat * b + num0;
642
0
    if (c1 > c2) qhat -= (c1 - c2 > den) ? 2 : 1;
643
0
    q0 = (uint32_t)qhat;
644
0
645
0
    // Return remainder if requested.
646
0
    if (r) *r = (rem * b + num0 - q0 * den) >> shift;
647
0
    return ((uint64_t)q1 << 32) | q0;
648
0
#endif
649
0
}
650
651
#if !(defined(HAS_INT128_T) && \
652
      defined(HAS_INT128_DIV))
653
654
// Bitshift a u128 in place, left (signed_shift > 0) or right (signed_shift < 0)
655
static LIBDIVIDE_INLINE void libdivide_u128_shift(
656
    uint64_t *u1, uint64_t *u0, int32_t signed_shift) {
657
    if (signed_shift > 0) {
658
        uint32_t shift = signed_shift;
659
        *u1 <<= shift;
660
        *u1 |= *u0 >> (64 - shift);
661
        *u0 <<= shift;
662
    } else if (signed_shift < 0) {
663
        uint32_t shift = -signed_shift;
664
        *u0 >>= shift;
665
        *u0 |= *u1 << (64 - shift);
666
        *u1 >>= shift;
667
    }
668
}
669
670
#endif
671
672
// Computes a 128 / 128 -> 64 bit division, with a 128 bit remainder.
673
static LIBDIVIDE_INLINE uint64_t libdivide_128_div_128_to_64(
674
0
    uint64_t u_hi, uint64_t u_lo, uint64_t v_hi, uint64_t v_lo, uint64_t *r_hi, uint64_t *r_lo) {
675
0
#if defined(HAS_INT128_T) && defined(HAS_INT128_DIV)
676
0
    __uint128_t ufull = u_hi;
677
0
    __uint128_t vfull = v_hi;
678
0
    ufull = (ufull << 64) | u_lo;
679
0
    vfull = (vfull << 64) | v_lo;
680
0
    uint64_t res = (uint64_t)(ufull / vfull);
681
0
    __uint128_t remainder = ufull - (vfull * res);
682
0
    *r_lo = (uint64_t)remainder;
683
0
    *r_hi = (uint64_t)(remainder >> 64);
684
0
    return res;
685
0
#else
686
0
    // Adapted from "Unsigned Doubleword Division" in Hacker's Delight
687
0
    // We want to compute u / v
688
0
    typedef struct {
689
0
        uint64_t hi;
690
0
        uint64_t lo;
691
0
    } u128_t;
692
0
    u128_t u = {u_hi, u_lo};
693
0
    u128_t v = {v_hi, v_lo};
694
0
695
0
    if (v.hi == 0) {
696
0
        // divisor v is a 64 bit value, so we just need one 128/64 division
697
0
        // Note that we are simpler than Hacker's Delight here, because we know
698
0
        // the quotient fits in 64 bits whereas Hacker's Delight demands a full
699
0
        // 128 bit quotient
700
0
        *r_hi = 0;
701
0
        return libdivide_128_div_64_to_64(u.hi, u.lo, v.lo, r_lo);
702
0
    }
703
0
    // Here v >= 2**64
704
0
    // We know that v.hi != 0, so count leading zeros is OK
705
0
    // We have 0 <= n <= 63
706
0
    uint32_t n = libdivide_count_leading_zeros64(v.hi);
707
0
708
0
    // Normalize the divisor so its MSB is 1
709
0
    u128_t v1t = v;
710
0
    libdivide_u128_shift(&v1t.hi, &v1t.lo, n);
711
0
    uint64_t v1 = v1t.hi;  // i.e. v1 = v1t >> 64
712
0
713
0
    // To ensure no overflow
714
0
    u128_t u1 = u;
715
0
    libdivide_u128_shift(&u1.hi, &u1.lo, -1);
716
0
717
0
    // Get quotient from divide unsigned insn.
718
0
    uint64_t rem_ignored;
719
0
    uint64_t q1 = libdivide_128_div_64_to_64(u1.hi, u1.lo, v1, &rem_ignored);
720
0
721
0
    // Undo normalization and division of u by 2.
722
0
    u128_t q0 = {0, q1};
723
0
    libdivide_u128_shift(&q0.hi, &q0.lo, n);
724
0
    libdivide_u128_shift(&q0.hi, &q0.lo, -63);
725
0
726
0
    // Make q0 correct or too small by 1
727
0
    // Equivalent to `if (q0 != 0) q0 = q0 - 1;`
728
0
    if (q0.hi != 0 || q0.lo != 0) {
729
0
        q0.hi -= (q0.lo == 0);  // borrow
730
0
        q0.lo -= 1;
731
0
    }
732
0
733
0
    // Now q0 is correct.
734
0
    // Compute q0 * v as q0v
735
0
    // = (q0.hi << 64 + q0.lo) * (v.hi << 64 + v.lo)
736
0
    // = (q0.hi * v.hi << 128) + (q0.hi * v.lo << 64) +
737
0
    //   (q0.lo * v.hi <<  64) + q0.lo * v.lo)
738
0
    // Each term is 128 bit
739
0
    // High half of full product (upper 128 bits!) are dropped
740
0
    u128_t q0v = {0, 0};
741
0
    q0v.hi = q0.hi * v.lo + q0.lo * v.hi + libdivide_mullhi_u64(q0.lo, v.lo);
742
0
    q0v.lo = q0.lo * v.lo;
743
0
744
0
    // Compute u - q0v as u_q0v
745
0
    // This is the remainder
746
0
    u128_t u_q0v = u;
747
0
    u_q0v.hi -= q0v.hi + (u.lo < q0v.lo);  // second term is borrow
748
0
    u_q0v.lo -= q0v.lo;
749
0
750
0
    // Check if u_q0v >= v
751
0
    // This checks if our remainder is larger than the divisor
752
0
    if ((u_q0v.hi > v.hi) || (u_q0v.hi == v.hi && u_q0v.lo >= v.lo)) {
753
0
        // Increment q0
754
0
        q0.lo += 1;
755
0
        q0.hi += (q0.lo == 0);  // carry
756
0
757
0
        // Subtract v from remainder
758
0
        u_q0v.hi -= v.hi + (u_q0v.lo < v.lo);
759
0
        u_q0v.lo -= v.lo;
760
0
    }
761
0
762
0
    *r_hi = u_q0v.hi;
763
0
    *r_lo = u_q0v.lo;
764
0
765
0
    LIBDIVIDE_ASSERT(q0.hi == 0);
766
0
    return q0.lo;
767
0
#endif
768
0
}
769
770
////////// UINT16
771
772
static LIBDIVIDE_INLINE struct libdivide_u16_t libdivide_internal_u16_gen(
773
0
    uint16_t d, int branchfree) {
774
0
    if (d == 0) {
775
0
        LIBDIVIDE_ERROR("divider must be != 0");
776
0
    }
777
778
0
    struct libdivide_u16_t result;
779
0
    uint8_t floor_log_2_d = (uint8_t)(15 - libdivide_count_leading_zeros16(d));
780
781
    // Power of 2
782
0
    if ((d & (d - 1)) == 0) {
783
        // We need to subtract 1 from the shift value in case of an unsigned
784
        // branchfree divider because there is a hardcoded right shift by 1
785
        // in its division algorithm. Because of this we also need to add back
786
        // 1 in its recovery algorithm.
787
0
        result.magic = 0;
788
0
        result.more = (uint8_t)(floor_log_2_d - (branchfree != 0));
789
0
    } else {
790
0
        uint8_t more;
791
0
        uint16_t rem, proposed_m;
792
0
        proposed_m = libdivide_32_div_16_to_16((uint16_t)1 << floor_log_2_d, 0, d, &rem);
793
794
0
        LIBDIVIDE_ASSERT(rem > 0 && rem < d);
795
0
        const uint16_t e = d - rem;
796
797
        // This power works if e < 2**floor_log_2_d.
798
0
        if (!branchfree && (e < ((uint16_t)1 << floor_log_2_d))) {
799
            // This power works
800
0
            more = floor_log_2_d;
801
0
        } else {
802
            // We have to use the general 17-bit algorithm.  We need to compute
803
            // (2**power) / d. However, we already have (2**(power-1))/d and
804
            // its remainder.  By doubling both, and then correcting the
805
            // remainder, we can compute the larger division.
806
            // don't care about overflow here - in fact, we expect it
807
0
            proposed_m += proposed_m;
808
0
            const uint16_t twice_rem = rem + rem;
809
0
            if (twice_rem >= d || twice_rem < rem) proposed_m += 1;
810
0
            more = floor_log_2_d | LIBDIVIDE_ADD_MARKER;
811
0
        }
812
0
        result.magic = 1 + proposed_m;
813
0
        result.more = more;
814
        // result.more's shift should in general be ceil_log_2_d. But if we
815
        // used the smaller power, we subtract one from the shift because we're
816
        // using the smaller power. If we're using the larger power, we
817
        // subtract one from the shift because it's taken care of by the add
818
        // indicator. So floor_log_2_d happens to be correct in both cases.
819
0
    }
820
0
    return result;
821
0
}
822
823
0
static LIBDIVIDE_INLINE struct libdivide_u16_t libdivide_u16_gen(uint16_t d) {
824
0
    return libdivide_internal_u16_gen(d, 0);
825
0
}
826
827
0
static LIBDIVIDE_INLINE struct libdivide_u16_branchfree_t libdivide_u16_branchfree_gen(uint16_t d) {
828
0
    if (d == 1) {
829
0
        LIBDIVIDE_ERROR("branchfree divider must be != 1");
830
0
    }
831
0
    struct libdivide_u16_t tmp = libdivide_internal_u16_gen(d, 1);
832
0
    struct libdivide_u16_branchfree_t ret = {
833
0
        tmp.magic, (uint8_t)(tmp.more & LIBDIVIDE_16_SHIFT_MASK)};
834
0
    return ret;
835
0
}
836
837
// The original libdivide_u16_do takes a const pointer. However, this cannot be used
838
// with a compile time constant libdivide_u16_t: it will generate a warning about
839
// taking the address of a temporary. Hence this overload.
840
0
static LIBDIVIDE_INLINE uint16_t libdivide_u16_do_raw(uint16_t numer, uint16_t magic, uint8_t more) {
841
0
    if (!magic) {
842
0
        return numer >> more;
843
0
    } else {
844
0
        uint16_t q = libdivide_mullhi_u16(numer, magic);
845
0
        if (more & LIBDIVIDE_ADD_MARKER) {
846
0
            uint16_t t = ((numer - q) >> 1) + q;
847
0
            return t >> (more & LIBDIVIDE_16_SHIFT_MASK);
848
0
        } else {
849
0
            // All upper bits are 0,
850
0
            // don't need to mask them off.
851
0
            return q >> more;
852
0
        }
853
0
    }
854
0
}
855
856
0
static LIBDIVIDE_INLINE uint16_t libdivide_u16_do(uint16_t numer, const struct libdivide_u16_t *denom) {
857
0
    return libdivide_u16_do_raw(numer, denom->magic, denom->more);
858
0
}
859
860
static LIBDIVIDE_INLINE uint16_t libdivide_u16_branchfree_do(
861
0
    uint16_t numer, const struct libdivide_u16_branchfree_t *denom) {
862
0
    uint16_t q = libdivide_mullhi_u16(numer, denom->magic);
863
0
    uint16_t t = ((numer - q) >> 1) + q;
864
0
    return t >> denom->more;
865
0
}
866
867
0
static LIBDIVIDE_INLINE uint16_t libdivide_u16_recover(const struct libdivide_u16_t *denom) {
868
0
    uint8_t more = denom->more;
869
0
    uint8_t shift = more & LIBDIVIDE_16_SHIFT_MASK;
870
0
871
0
    if (!denom->magic) {
872
0
        return (uint16_t)1 << shift;
873
0
    } else if (!(more & LIBDIVIDE_ADD_MARKER)) {
874
0
        // We compute q = n/d = n*m / 2^(16 + shift)
875
0
        // Therefore we have d = 2^(16 + shift) / m
876
0
        // We need to ceil it.
877
0
        // We know d is not a power of 2, so m is not a power of 2,
878
0
        // so we can just add 1 to the floor
879
0
        uint16_t hi_dividend = (uint16_t)1 << shift;
880
0
        uint16_t rem_ignored;
881
0
        return 1 + libdivide_32_div_16_to_16(hi_dividend, 0, denom->magic, &rem_ignored);
882
0
    } else {
883
0
        // Here we wish to compute d = 2^(16+shift+1)/(m+2^16).
884
0
        // Notice (m + 2^16) is a 17 bit number. Use 32 bit division for now
885
0
        // Also note that shift may be as high as 15, so shift + 1 will
886
0
        // overflow. So we have to compute it as 2^(16+shift)/(m+2^16), and
887
0
        // then double the quotient and remainder.
888
0
        uint32_t half_n = (uint32_t)1 << (16 + shift);
889
0
        uint32_t d = ((uint32_t)1 << 16) | denom->magic;
890
0
        // Note that the quotient is guaranteed <= 16 bits, but the remainder
891
0
        // may need 17!
892
0
        uint16_t half_q = (uint16_t)(half_n / d);
893
0
        uint32_t rem = half_n % d;
894
0
        // We computed 2^(16+shift)/(m+2^16)
895
0
        // Need to double it, and then add 1 to the quotient if doubling th
896
0
        // remainder would increase the quotient.
897
0
        // Note that rem<<1 cannot overflow, since rem < d and d is 17 bits
898
0
        uint16_t full_q = half_q + half_q + ((rem << 1) >= d);
899
0
900
0
        // We rounded down in gen (hence +1)
901
0
        return full_q + 1;
902
0
    }
903
0
}
904
905
0
static LIBDIVIDE_INLINE uint16_t libdivide_u16_branchfree_recover(const struct libdivide_u16_branchfree_t *denom) {
906
0
    uint8_t more = denom->more;
907
0
    uint8_t shift = more & LIBDIVIDE_16_SHIFT_MASK;
908
0
909
0
    if (!denom->magic) {
910
0
        return (uint16_t)1 << (shift + 1);
911
0
    } else {
912
0
        // Here we wish to compute d = 2^(16+shift+1)/(m+2^16).
913
0
        // Notice (m + 2^16) is a 17 bit number. Use 32 bit division for now
914
0
        // Also note that shift may be as high as 15, so shift + 1 will
915
0
        // overflow. So we have to compute it as 2^(16+shift)/(m+2^16), and
916
0
        // then double the quotient and remainder.
917
0
        uint32_t half_n = (uint32_t)1 << (16 + shift);
918
0
        uint32_t d = ((uint32_t)1 << 16) | denom->magic;
919
0
        // Note that the quotient is guaranteed <= 16 bits, but the remainder
920
0
        // may need 17!
921
0
        uint16_t half_q = (uint16_t)(half_n / d);
922
0
        uint32_t rem = half_n % d;
923
0
        // We computed 2^(16+shift)/(m+2^16)
924
0
        // Need to double it, and then add 1 to the quotient if doubling th
925
0
        // remainder would increase the quotient.
926
0
        // Note that rem<<1 cannot overflow, since rem < d and d is 33 bits
927
0
        uint16_t full_q = half_q + half_q + ((rem << 1) >= d);
928
0
929
0
        // We rounded down in gen (hence +1)
930
0
        return full_q + 1;
931
0
    }
932
0
}
933
934
////////// UINT32
935
936
static LIBDIVIDE_INLINE struct libdivide_u32_t libdivide_internal_u32_gen(
937
0
    uint32_t d, int branchfree) {
938
0
    if (d == 0) {
939
0
        LIBDIVIDE_ERROR("divider must be != 0");
940
0
    }
941
942
0
    struct libdivide_u32_t result;
943
0
    uint32_t floor_log_2_d = 31 - libdivide_count_leading_zeros32(d);
944
945
    // Power of 2
946
0
    if ((d & (d - 1)) == 0) {
947
        // We need to subtract 1 from the shift value in case of an unsigned
948
        // branchfree divider because there is a hardcoded right shift by 1
949
        // in its division algorithm. Because of this we also need to add back
950
        // 1 in its recovery algorithm.
951
0
        result.magic = 0;
952
0
        result.more = (uint8_t)(floor_log_2_d - (branchfree != 0));
953
0
    } else {
954
0
        uint8_t more;
955
0
        uint32_t rem, proposed_m;
956
0
        proposed_m = libdivide_64_div_32_to_32((uint32_t)1 << floor_log_2_d, 0, d, &rem);
957
958
0
        LIBDIVIDE_ASSERT(rem > 0 && rem < d);
959
0
        const uint32_t e = d - rem;
960
961
        // This power works if e < 2**floor_log_2_d.
962
0
        if (!branchfree && (e < ((uint32_t)1 << floor_log_2_d))) {
963
            // This power works
964
0
            more = (uint8_t)floor_log_2_d;
965
0
        } else {
966
            // We have to use the general 33-bit algorithm.  We need to compute
967
            // (2**power) / d. However, we already have (2**(power-1))/d and
968
            // its remainder.  By doubling both, and then correcting the
969
            // remainder, we can compute the larger division.
970
            // don't care about overflow here - in fact, we expect it
971
0
            proposed_m += proposed_m;
972
0
            const uint32_t twice_rem = rem + rem;
973
0
            if (twice_rem >= d || twice_rem < rem) proposed_m += 1;
974
0
            more = (uint8_t)(floor_log_2_d | LIBDIVIDE_ADD_MARKER);
975
0
        }
976
0
        result.magic = 1 + proposed_m;
977
0
        result.more = more;
978
        // result.more's shift should in general be ceil_log_2_d. But if we
979
        // used the smaller power, we subtract one from the shift because we're
980
        // using the smaller power. If we're using the larger power, we
981
        // subtract one from the shift because it's taken care of by the add
982
        // indicator. So floor_log_2_d happens to be correct in both cases.
983
0
    }
984
0
    return result;
985
0
}
986
987
0
static LIBDIVIDE_INLINE struct libdivide_u32_t libdivide_u32_gen(uint32_t d) {
988
0
    return libdivide_internal_u32_gen(d, 0);
989
0
}
990
991
0
static LIBDIVIDE_INLINE struct libdivide_u32_branchfree_t libdivide_u32_branchfree_gen(uint32_t d) {
992
0
    if (d == 1) {
993
0
        LIBDIVIDE_ERROR("branchfree divider must be != 1");
994
0
    }
995
0
    struct libdivide_u32_t tmp = libdivide_internal_u32_gen(d, 1);
996
0
    struct libdivide_u32_branchfree_t ret = {
997
0
        tmp.magic, (uint8_t)(tmp.more & LIBDIVIDE_32_SHIFT_MASK)};
998
0
    return ret;
999
0
}
1000
1001
0
static LIBDIVIDE_INLINE uint32_t libdivide_u32_do_raw(uint32_t numer, uint32_t magic, uint8_t more) {
1002
0
    if (!magic) {
1003
0
        return numer >> more;
1004
0
    } else {
1005
0
        uint32_t q = libdivide_mullhi_u32(numer, magic);
1006
0
        if (more & LIBDIVIDE_ADD_MARKER) {
1007
0
            uint32_t t = ((numer - q) >> 1) + q;
1008
0
            return t >> (more & LIBDIVIDE_32_SHIFT_MASK);
1009
0
        } else {
1010
0
            // All upper bits are 0,
1011
0
            // don't need to mask them off.
1012
0
            return q >> more;
1013
0
        }
1014
0
    }
1015
0
}
1016
1017
0
static LIBDIVIDE_INLINE uint32_t libdivide_u32_do(uint32_t numer, const struct libdivide_u32_t *denom) {
1018
0
    return libdivide_u32_do_raw(numer, denom->magic, denom->more);
1019
0
}
1020
1021
static LIBDIVIDE_INLINE uint32_t libdivide_u32_branchfree_do(
1022
0
    uint32_t numer, const struct libdivide_u32_branchfree_t *denom) {
1023
0
    uint32_t q = libdivide_mullhi_u32(numer, denom->magic);
1024
0
    uint32_t t = ((numer - q) >> 1) + q;
1025
0
    return t >> denom->more;
1026
0
}
1027
1028
0
static LIBDIVIDE_INLINE uint32_t libdivide_u32_recover(const struct libdivide_u32_t *denom) {
1029
0
    uint8_t more = denom->more;
1030
0
    uint8_t shift = more & LIBDIVIDE_32_SHIFT_MASK;
1031
0
1032
0
    if (!denom->magic) {
1033
0
        return (uint32_t)1 << shift;
1034
0
    } else if (!(more & LIBDIVIDE_ADD_MARKER)) {
1035
0
        // We compute q = n/d = n*m / 2^(32 + shift)
1036
0
        // Therefore we have d = 2^(32 + shift) / m
1037
0
        // We need to ceil it.
1038
0
        // We know d is not a power of 2, so m is not a power of 2,
1039
0
        // so we can just add 1 to the floor
1040
0
        uint32_t hi_dividend = (uint32_t)1 << shift;
1041
0
        uint32_t rem_ignored;
1042
0
        return 1 + libdivide_64_div_32_to_32(hi_dividend, 0, denom->magic, &rem_ignored);
1043
0
    } else {
1044
0
        // Here we wish to compute d = 2^(32+shift+1)/(m+2^32).
1045
0
        // Notice (m + 2^32) is a 33 bit number. Use 64 bit division for now
1046
0
        // Also note that shift may be as high as 31, so shift + 1 will
1047
0
        // overflow. So we have to compute it as 2^(32+shift)/(m+2^32), and
1048
0
        // then double the quotient and remainder.
1049
0
        uint64_t half_n = (uint64_t)1 << (32 + shift);
1050
0
        uint64_t d = ((uint64_t)1 << 32) | denom->magic;
1051
0
        // Note that the quotient is guaranteed <= 32 bits, but the remainder
1052
0
        // may need 33!
1053
0
        uint32_t half_q = (uint32_t)(half_n / d);
1054
0
        uint64_t rem = half_n % d;
1055
0
        // We computed 2^(32+shift)/(m+2^32)
1056
0
        // Need to double it, and then add 1 to the quotient if doubling th
1057
0
        // remainder would increase the quotient.
1058
0
        // Note that rem<<1 cannot overflow, since rem < d and d is 33 bits
1059
0
        uint32_t full_q = half_q + half_q + ((rem << 1) >= d);
1060
0
1061
0
        // We rounded down in gen (hence +1)
1062
0
        return full_q + 1;
1063
0
    }
1064
0
}
1065
1066
0
static LIBDIVIDE_INLINE uint32_t libdivide_u32_branchfree_recover(const struct libdivide_u32_branchfree_t *denom) {
1067
0
    uint8_t more = denom->more;
1068
0
    uint8_t shift = more & LIBDIVIDE_32_SHIFT_MASK;
1069
0
1070
0
    if (!denom->magic) {
1071
0
        return (uint32_t)1 << (shift + 1);
1072
0
    } else {
1073
0
        // Here we wish to compute d = 2^(32+shift+1)/(m+2^32).
1074
0
        // Notice (m + 2^32) is a 33 bit number. Use 64 bit division for now
1075
0
        // Also note that shift may be as high as 31, so shift + 1 will
1076
0
        // overflow. So we have to compute it as 2^(32+shift)/(m+2^32), and
1077
0
        // then double the quotient and remainder.
1078
0
        uint64_t half_n = (uint64_t)1 << (32 + shift);
1079
0
        uint64_t d = ((uint64_t)1 << 32) | denom->magic;
1080
0
        // Note that the quotient is guaranteed <= 32 bits, but the remainder
1081
0
        // may need 33!
1082
0
        uint32_t half_q = (uint32_t)(half_n / d);
1083
0
        uint64_t rem = half_n % d;
1084
0
        // We computed 2^(32+shift)/(m+2^32)
1085
0
        // Need to double it, and then add 1 to the quotient if doubling th
1086
0
        // remainder would increase the quotient.
1087
0
        // Note that rem<<1 cannot overflow, since rem < d and d is 33 bits
1088
0
        uint32_t full_q = half_q + half_q + ((rem << 1) >= d);
1089
0
1090
0
        // We rounded down in gen (hence +1)
1091
0
        return full_q + 1;
1092
0
    }
1093
0
}
1094
1095
////////// UINT64
1096
1097
static LIBDIVIDE_INLINE struct libdivide_u64_t libdivide_internal_u64_gen(
1098
0
    uint64_t d, int branchfree) {
1099
0
    if (d == 0) {
1100
0
        LIBDIVIDE_ERROR("divider must be != 0");
1101
0
    }
1102
0
1103
0
    struct libdivide_u64_t result;
1104
0
    uint32_t floor_log_2_d = 63 - libdivide_count_leading_zeros64(d);
1105
0
1106
0
    // Power of 2
1107
0
    if ((d & (d - 1)) == 0) {
1108
0
        // We need to subtract 1 from the shift value in case of an unsigned
1109
0
        // branchfree divider because there is a hardcoded right shift by 1
1110
0
        // in its division algorithm. Because of this we also need to add back
1111
0
        // 1 in its recovery algorithm.
1112
0
        result.magic = 0;
1113
0
        result.more = (uint8_t)(floor_log_2_d - (branchfree != 0));
1114
0
    } else {
1115
0
        uint64_t proposed_m, rem;
1116
0
        uint8_t more;
1117
0
        // (1 << (64 + floor_log_2_d)) / d
1118
0
        proposed_m = libdivide_128_div_64_to_64((uint64_t)1 << floor_log_2_d, 0, d, &rem);
1119
0
1120
0
        LIBDIVIDE_ASSERT(rem > 0 && rem < d);
1121
0
        const uint64_t e = d - rem;
1122
0
1123
0
        // This power works if e < 2**floor_log_2_d.
1124
0
        if (!branchfree && e < ((uint64_t)1 << floor_log_2_d)) {
1125
0
            // This power works
1126
0
            more = (uint8_t)floor_log_2_d;
1127
0
        } else {
1128
0
            // We have to use the general 65-bit algorithm.  We need to compute
1129
0
            // (2**power) / d. However, we already have (2**(power-1))/d and
1130
0
            // its remainder. By doubling both, and then correcting the
1131
0
            // remainder, we can compute the larger division.
1132
0
            // don't care about overflow here - in fact, we expect it
1133
0
            proposed_m += proposed_m;
1134
0
            const uint64_t twice_rem = rem + rem;
1135
0
            if (twice_rem >= d || twice_rem < rem) proposed_m += 1;
1136
0
            more = (uint8_t)(floor_log_2_d | LIBDIVIDE_ADD_MARKER);
1137
0
        }
1138
0
        result.magic = 1 + proposed_m;
1139
0
        result.more = more;
1140
0
        // result.more's shift should in general be ceil_log_2_d. But if we
1141
0
        // used the smaller power, we subtract one from the shift because we're
1142
0
        // using the smaller power. If we're using the larger power, we
1143
0
        // subtract one from the shift because it's taken care of by the add
1144
0
        // indicator. So floor_log_2_d happens to be correct in both cases,
1145
0
        // which is why we do it outside of the if statement.
1146
0
    }
1147
0
    return result;
1148
0
}
1149
1150
0
static LIBDIVIDE_INLINE struct libdivide_u64_t libdivide_u64_gen(uint64_t d) {
1151
0
    return libdivide_internal_u64_gen(d, 0);
1152
0
}
1153
1154
0
static LIBDIVIDE_INLINE struct libdivide_u64_branchfree_t libdivide_u64_branchfree_gen(uint64_t d) {
1155
0
    if (d == 1) {
1156
0
        LIBDIVIDE_ERROR("branchfree divider must be != 1");
1157
0
    }
1158
0
    struct libdivide_u64_t tmp = libdivide_internal_u64_gen(d, 1);
1159
0
    struct libdivide_u64_branchfree_t ret = {
1160
0
        tmp.magic, (uint8_t)(tmp.more & LIBDIVIDE_64_SHIFT_MASK)};
1161
0
    return ret;
1162
0
}
1163
1164
0
static LIBDIVIDE_INLINE uint64_t libdivide_u64_do_raw(uint64_t numer, uint64_t magic, uint8_t more) {
1165
0
   if (!magic) {
1166
0
        return numer >> more;
1167
0
    } else {
1168
0
        uint64_t q = libdivide_mullhi_u64(numer, magic);
1169
0
        if (more & LIBDIVIDE_ADD_MARKER) {
1170
0
            uint64_t t = ((numer - q) >> 1) + q;
1171
0
            return t >> (more & LIBDIVIDE_64_SHIFT_MASK);
1172
0
        } else {
1173
0
            // All upper bits are 0,
1174
0
            // don't need to mask them off.
1175
0
            return q >> more;
1176
0
        }
1177
0
    }
1178
0
}
1179
1180
0
static LIBDIVIDE_INLINE uint64_t libdivide_u64_do(uint64_t numer, const struct libdivide_u64_t *denom) {
1181
0
    return libdivide_u64_do_raw(numer, denom->magic, denom->more);
1182
0
}
1183
1184
static LIBDIVIDE_INLINE uint64_t libdivide_u64_branchfree_do(
1185
0
    uint64_t numer, const struct libdivide_u64_branchfree_t *denom) {
1186
0
    uint64_t q = libdivide_mullhi_u64(numer, denom->magic);
1187
0
    uint64_t t = ((numer - q) >> 1) + q;
1188
0
    return t >> denom->more;
1189
0
}
1190
1191
0
static LIBDIVIDE_INLINE uint64_t libdivide_u64_recover(const struct libdivide_u64_t *denom) {
1192
0
    uint8_t more = denom->more;
1193
0
    uint8_t shift = more & LIBDIVIDE_64_SHIFT_MASK;
1194
0
1195
0
    if (!denom->magic) {
1196
0
        return (uint64_t)1 << shift;
1197
0
    } else if (!(more & LIBDIVIDE_ADD_MARKER)) {
1198
0
        // We compute q = n/d = n*m / 2^(64 + shift)
1199
0
        // Therefore we have d = 2^(64 + shift) / m
1200
0
        // We need to ceil it.
1201
0
        // We know d is not a power of 2, so m is not a power of 2,
1202
0
        // so we can just add 1 to the floor
1203
0
        uint64_t hi_dividend = (uint64_t)1 << shift;
1204
0
        uint64_t rem_ignored;
1205
0
        return 1 + libdivide_128_div_64_to_64(hi_dividend, 0, denom->magic, &rem_ignored);
1206
0
    } else {
1207
0
        // Here we wish to compute d = 2^(64+shift+1)/(m+2^64).
1208
0
        // Notice (m + 2^64) is a 65 bit number. This gets hairy. See
1209
0
        // libdivide_u32_recover for more on what we do here.
1210
0
        // TODO: do something better than 128 bit math
1211
0
1212
0
        // Full n is a (potentially) 129 bit value
1213
0
        // half_n is a 128 bit value
1214
0
        // Compute the hi half of half_n. Low half is 0.
1215
0
        uint64_t half_n_hi = (uint64_t)1 << shift, half_n_lo = 0;
1216
0
        // d is a 65 bit value. The high bit is always set to 1.
1217
0
        const uint64_t d_hi = 1, d_lo = denom->magic;
1218
0
        // Note that the quotient is guaranteed <= 64 bits,
1219
0
        // but the remainder may need 65!
1220
0
        uint64_t r_hi, r_lo;
1221
0
        uint64_t half_q =
1222
0
            libdivide_128_div_128_to_64(half_n_hi, half_n_lo, d_hi, d_lo, &r_hi, &r_lo);
1223
0
        // We computed 2^(64+shift)/(m+2^64)
1224
0
        // Double the remainder ('dr') and check if that is larger than d
1225
0
        // Note that d is a 65 bit value, so r1 is small and so r1 + r1
1226
0
        // cannot overflow
1227
0
        uint64_t dr_lo = r_lo + r_lo;
1228
0
        uint64_t dr_hi = r_hi + r_hi + (dr_lo < r_lo);  // last term is carry
1229
0
        int dr_exceeds_d = (dr_hi > d_hi) || (dr_hi == d_hi && dr_lo >= d_lo);
1230
0
        uint64_t full_q = half_q + half_q + (dr_exceeds_d ? 1 : 0);
1231
0
        return full_q + 1;
1232
0
    }
1233
0
}
1234
1235
0
static LIBDIVIDE_INLINE uint64_t libdivide_u64_branchfree_recover(const struct libdivide_u64_branchfree_t *denom) {
1236
0
    uint8_t more = denom->more;
1237
0
    uint8_t shift = more & LIBDIVIDE_64_SHIFT_MASK;
1238
0
1239
0
    if (!denom->magic) {
1240
0
        return (uint64_t)1 << (shift + 1);
1241
0
    } else {
1242
0
        // Here we wish to compute d = 2^(64+shift+1)/(m+2^64).
1243
0
        // Notice (m + 2^64) is a 65 bit number. This gets hairy. See
1244
0
        // libdivide_u32_recover for more on what we do here.
1245
0
        // TODO: do something better than 128 bit math
1246
0
1247
0
        // Full n is a (potentially) 129 bit value
1248
0
        // half_n is a 128 bit value
1249
0
        // Compute the hi half of half_n. Low half is 0.
1250
0
        uint64_t half_n_hi = (uint64_t)1 << shift, half_n_lo = 0;
1251
0
        // d is a 65 bit value. The high bit is always set to 1.
1252
0
        const uint64_t d_hi = 1, d_lo = denom->magic;
1253
0
        // Note that the quotient is guaranteed <= 64 bits,
1254
0
        // but the remainder may need 65!
1255
0
        uint64_t r_hi, r_lo;
1256
0
        uint64_t half_q =
1257
0
            libdivide_128_div_128_to_64(half_n_hi, half_n_lo, d_hi, d_lo, &r_hi, &r_lo);
1258
0
        // We computed 2^(64+shift)/(m+2^64)
1259
0
        // Double the remainder ('dr') and check if that is larger than d
1260
0
        // Note that d is a 65 bit value, so r1 is small and so r1 + r1
1261
0
        // cannot overflow
1262
0
        uint64_t dr_lo = r_lo + r_lo;
1263
0
        uint64_t dr_hi = r_hi + r_hi + (dr_lo < r_lo);  // last term is carry
1264
0
        int dr_exceeds_d = (dr_hi > d_hi) || (dr_hi == d_hi && dr_lo >= d_lo);
1265
0
        uint64_t full_q = half_q + half_q + (dr_exceeds_d ? 1 : 0);
1266
0
        return full_q + 1;
1267
0
    }
1268
0
}
1269
1270
////////// SINT16
1271
1272
static LIBDIVIDE_INLINE struct libdivide_s16_t libdivide_internal_s16_gen(
1273
0
    int16_t d, int branchfree) {
1274
0
    if (d == 0) {
1275
0
        LIBDIVIDE_ERROR("divider must be != 0");
1276
0
    }
1277
0
1278
0
    struct libdivide_s16_t result;
1279
0
1280
0
    // If d is a power of 2, or negative a power of 2, we have to use a shift.
1281
0
    // This is especially important because the magic algorithm fails for -1.
1282
0
    // To check if d is a power of 2 or its inverse, it suffices to check
1283
0
    // whether its absolute value has exactly one bit set. This works even for
1284
0
    // INT_MIN, because abs(INT_MIN) == INT_MIN, and INT_MIN has one bit set
1285
0
    // and is a power of 2.
1286
0
    uint16_t ud = (uint16_t)d;
1287
0
    uint16_t absD = (d < 0) ? -ud : ud;
1288
0
    uint16_t floor_log_2_d = 15 - libdivide_count_leading_zeros16(absD);
1289
0
    // check if exactly one bit is set,
1290
0
    // don't care if absD is 0 since that's divide by zero
1291
0
    if ((absD & (absD - 1)) == 0) {
1292
0
        // Branchfree and normal paths are exactly the same
1293
0
        result.magic = 0;
1294
0
        result.more = (uint8_t)(floor_log_2_d | (d < 0 ? LIBDIVIDE_NEGATIVE_DIVISOR : 0));
1295
0
    } else {
1296
0
        LIBDIVIDE_ASSERT(floor_log_2_d >= 1);
1297
0
1298
0
        uint8_t more;
1299
0
        // the dividend here is 2**(floor_log_2_d + 31), so the low 16 bit word
1300
0
        // is 0 and the high word is floor_log_2_d - 1
1301
0
        uint16_t rem, proposed_m;
1302
0
        proposed_m = libdivide_32_div_16_to_16((uint16_t)1 << (floor_log_2_d - 1), 0, absD, &rem);
1303
0
        const uint16_t e = absD - rem;
1304
0
1305
0
        // We are going to start with a power of floor_log_2_d - 1.
1306
0
        // This works if works if e < 2**floor_log_2_d.
1307
0
        if (!branchfree && e < ((uint16_t)1 << floor_log_2_d)) {
1308
0
            // This power works
1309
0
            more = (uint8_t)(floor_log_2_d - 1);
1310
0
        } else {
1311
0
            // We need to go one higher. This should not make proposed_m
1312
0
            // overflow, but it will make it negative when interpreted as an
1313
0
            // int16_t.
1314
0
            proposed_m += proposed_m;
1315
0
            const uint16_t twice_rem = rem + rem;
1316
0
            if (twice_rem >= absD || twice_rem < rem) proposed_m += 1;
1317
0
            more = (uint8_t)(floor_log_2_d | LIBDIVIDE_ADD_MARKER);
1318
0
        }
1319
0
1320
0
        proposed_m += 1;
1321
0
        int16_t magic = (int16_t)proposed_m;
1322
0
1323
0
        // Mark if we are negative. Note we only negate the magic number in the
1324
0
        // branchfull case.
1325
0
        if (d < 0) {
1326
0
            more |= LIBDIVIDE_NEGATIVE_DIVISOR;
1327
0
            if (!branchfree) {
1328
0
                magic = -magic;
1329
0
            }
1330
0
        }
1331
0
1332
0
        result.more = more;
1333
0
        result.magic = magic;
1334
0
    }
1335
0
    return result;
1336
0
}
1337
1338
0
static LIBDIVIDE_INLINE struct libdivide_s16_t libdivide_s16_gen(int16_t d) {
1339
0
    return libdivide_internal_s16_gen(d, 0);
1340
0
}
1341
1342
0
static LIBDIVIDE_INLINE struct libdivide_s16_branchfree_t libdivide_s16_branchfree_gen(int16_t d) {
1343
0
    struct libdivide_s16_t tmp = libdivide_internal_s16_gen(d, 1);
1344
0
    struct libdivide_s16_branchfree_t result = {tmp.magic, tmp.more};
1345
0
    return result;
1346
0
}
1347
1348
// The original libdivide_s16_do takes a const pointer. However, this cannot be used
1349
// with a compile time constant libdivide_s16_t: it will generate a warning about
1350
// taking the address of a temporary. Hence this overload.
1351
0
static LIBDIVIDE_INLINE int16_t libdivide_s16_do_raw(int16_t numer, int16_t magic, uint8_t more) {
1352
0
    uint8_t shift = more & LIBDIVIDE_16_SHIFT_MASK;
1353
0
1354
0
    if (!magic) {
1355
0
        uint16_t sign = (int8_t)more >> 7;
1356
0
        uint16_t mask = ((uint16_t)1 << shift) - 1;
1357
0
        uint16_t uq = numer + ((numer >> 15) & mask);
1358
0
        int16_t q = (int16_t)uq;
1359
0
        q >>= shift;
1360
0
        q = (q ^ sign) - sign;
1361
0
        return q;
1362
0
    } else {
1363
0
        uint16_t uq = (uint16_t)libdivide_mullhi_s16(numer, magic);
1364
0
        if (more & LIBDIVIDE_ADD_MARKER) {
1365
0
            // must be arithmetic shift and then sign extend
1366
0
            int16_t sign = (int8_t)more >> 7;
1367
0
            // q += (more < 0 ? -numer : numer)
1368
0
            // cast required to avoid UB
1369
0
            uq += ((uint16_t)numer ^ sign) - sign;
1370
0
        }
1371
0
        int16_t q = (int16_t)uq;
1372
0
        q >>= shift;
1373
0
        q += (q < 0);
1374
0
        return q;
1375
0
    }
1376
0
}
1377
1378
0
static LIBDIVIDE_INLINE int16_t libdivide_s16_do(int16_t numer, const struct libdivide_s16_t *denom) {
1379
0
    return libdivide_s16_do_raw(numer, denom->magic, denom->more);
1380
0
}
1381
1382
0
static LIBDIVIDE_INLINE int16_t libdivide_s16_branchfree_do(int16_t numer, const struct libdivide_s16_branchfree_t *denom) {
1383
0
    uint8_t more = denom->more;
1384
0
    uint8_t shift = more & LIBDIVIDE_16_SHIFT_MASK;
1385
0
    // must be arithmetic shift and then sign extend
1386
0
    int16_t sign = (int8_t)more >> 7;
1387
0
    int16_t magic = denom->magic;
1388
0
    int16_t q = libdivide_mullhi_s16(numer, magic);
1389
0
    q += numer;
1390
0
1391
0
    // If q is non-negative, we have nothing to do
1392
0
    // If q is negative, we want to add either (2**shift)-1 if d is a power of
1393
0
    // 2, or (2**shift) if it is not a power of 2
1394
0
    uint16_t is_power_of_2 = (magic == 0);
1395
0
    uint16_t q_sign = (uint16_t)(q >> 15);
1396
0
    q += q_sign & (((uint16_t)1 << shift) - is_power_of_2);
1397
0
1398
0
    // Now arithmetic right shift
1399
0
    q >>= shift;
1400
0
    // Negate if needed
1401
0
    q = (q ^ sign) - sign;
1402
0
1403
0
    return q;
1404
0
}
1405
1406
0
static LIBDIVIDE_INLINE int16_t libdivide_s16_recover(const struct libdivide_s16_t *denom) {
1407
0
    uint8_t more = denom->more;
1408
0
    uint8_t shift = more & LIBDIVIDE_16_SHIFT_MASK;
1409
0
    if (!denom->magic) {
1410
0
        uint16_t absD = (uint16_t)1 << shift;
1411
0
        if (more & LIBDIVIDE_NEGATIVE_DIVISOR) {
1412
0
            absD = -absD;
1413
0
        }
1414
0
        return (int16_t)absD;
1415
0
    } else {
1416
0
        // Unsigned math is much easier
1417
0
        // We negate the magic number only in the branchfull case, and we don't
1418
0
        // know which case we're in. However we have enough information to
1419
0
        // determine the correct sign of the magic number. The divisor was
1420
0
        // negative if LIBDIVIDE_NEGATIVE_DIVISOR is set. If ADD_MARKER is set,
1421
0
        // the magic number's sign is opposite that of the divisor.
1422
0
        // We want to compute the positive magic number.
1423
0
        int negative_divisor = (more & LIBDIVIDE_NEGATIVE_DIVISOR);
1424
0
        int magic_was_negated = (more & LIBDIVIDE_ADD_MARKER) ? denom->magic > 0 : denom->magic < 0;
1425
0
1426
0
        // Handle the power of 2 case (including branchfree)
1427
0
        if (denom->magic == 0) {
1428
0
            int16_t result = (uint16_t)1 << shift;
1429
0
            return negative_divisor ? -result : result;
1430
0
        }
1431
0
1432
0
        uint16_t d = (uint16_t)(magic_was_negated ? -denom->magic : denom->magic);
1433
0
        uint32_t n = (uint32_t)1 << (16 + shift);  // this shift cannot exceed 30
1434
0
        uint16_t q = (uint16_t)(n / d);
1435
0
        int16_t result = (int16_t)q;
1436
0
        result += 1;
1437
0
        return negative_divisor ? -result : result;
1438
0
    }
1439
0
}
1440
1441
0
static LIBDIVIDE_INLINE int16_t libdivide_s16_branchfree_recover(const struct libdivide_s16_branchfree_t *denom) {
1442
0
    const struct libdivide_s16_t den = {denom->magic, denom->more};
1443
0
    return libdivide_s16_recover(&den);
1444
0
}
1445
1446
////////// SINT32
1447
1448
static LIBDIVIDE_INLINE struct libdivide_s32_t libdivide_internal_s32_gen(
1449
0
    int32_t d, int branchfree) {
1450
0
    if (d == 0) {
1451
0
        LIBDIVIDE_ERROR("divider must be != 0");
1452
0
    }
1453
0
1454
0
    struct libdivide_s32_t result;
1455
0
1456
0
    // If d is a power of 2, or negative a power of 2, we have to use a shift.
1457
0
    // This is especially important because the magic algorithm fails for -1.
1458
0
    // To check if d is a power of 2 or its inverse, it suffices to check
1459
0
    // whether its absolute value has exactly one bit set. This works even for
1460
0
    // INT_MIN, because abs(INT_MIN) == INT_MIN, and INT_MIN has one bit set
1461
0
    // and is a power of 2.
1462
0
    uint32_t ud = (uint32_t)d;
1463
0
    uint32_t absD = (d < 0) ? -ud : ud;
1464
0
    uint32_t floor_log_2_d = 31 - libdivide_count_leading_zeros32(absD);
1465
0
    // check if exactly one bit is set,
1466
0
    // don't care if absD is 0 since that's divide by zero
1467
0
    if ((absD & (absD - 1)) == 0) {
1468
0
        // Branchfree and normal paths are exactly the same
1469
0
        result.magic = 0;
1470
0
        result.more = (uint8_t)(floor_log_2_d | (d < 0 ? LIBDIVIDE_NEGATIVE_DIVISOR : 0));
1471
0
    } else {
1472
0
        LIBDIVIDE_ASSERT(floor_log_2_d >= 1);
1473
0
1474
0
        uint8_t more;
1475
0
        // the dividend here is 2**(floor_log_2_d + 31), so the low 32 bit word
1476
0
        // is 0 and the high word is floor_log_2_d - 1
1477
0
        uint32_t rem, proposed_m;
1478
0
        proposed_m = libdivide_64_div_32_to_32((uint32_t)1 << (floor_log_2_d - 1), 0, absD, &rem);
1479
0
        const uint32_t e = absD - rem;
1480
0
1481
0
        // We are going to start with a power of floor_log_2_d - 1.
1482
0
        // This works if works if e < 2**floor_log_2_d.
1483
0
        if (!branchfree && e < ((uint32_t)1 << floor_log_2_d)) {
1484
0
            // This power works
1485
0
            more = (uint8_t)(floor_log_2_d - 1);
1486
0
        } else {
1487
0
            // We need to go one higher. This should not make proposed_m
1488
0
            // overflow, but it will make it negative when interpreted as an
1489
0
            // int32_t.
1490
0
            proposed_m += proposed_m;
1491
0
            const uint32_t twice_rem = rem + rem;
1492
0
            if (twice_rem >= absD || twice_rem < rem) proposed_m += 1;
1493
0
            more = (uint8_t)(floor_log_2_d | LIBDIVIDE_ADD_MARKER);
1494
0
        }
1495
0
1496
0
        proposed_m += 1;
1497
0
        int32_t magic = (int32_t)proposed_m;
1498
0
1499
0
        // Mark if we are negative. Note we only negate the magic number in the
1500
0
        // branchfull case.
1501
0
        if (d < 0) {
1502
0
            more |= LIBDIVIDE_NEGATIVE_DIVISOR;
1503
0
            if (!branchfree) {
1504
0
                magic = -magic;
1505
0
            }
1506
0
        }
1507
0
1508
0
        result.more = more;
1509
0
        result.magic = magic;
1510
0
    }
1511
0
    return result;
1512
0
}
1513
1514
0
static LIBDIVIDE_INLINE struct libdivide_s32_t libdivide_s32_gen(int32_t d) {
1515
0
    return libdivide_internal_s32_gen(d, 0);
1516
0
}
1517
1518
0
static LIBDIVIDE_INLINE struct libdivide_s32_branchfree_t libdivide_s32_branchfree_gen(int32_t d) {
1519
0
    struct libdivide_s32_t tmp = libdivide_internal_s32_gen(d, 1);
1520
0
    struct libdivide_s32_branchfree_t result = {tmp.magic, tmp.more};
1521
0
    return result;
1522
0
}
1523
1524
0
static LIBDIVIDE_INLINE int32_t libdivide_s32_do_raw(int32_t numer, int32_t magic, uint8_t more) {
1525
0
    uint8_t shift = more & LIBDIVIDE_32_SHIFT_MASK;
1526
0
1527
0
    if (!magic) {
1528
0
        uint32_t sign = (int8_t)more >> 7;
1529
0
        uint32_t mask = ((uint32_t)1 << shift) - 1;
1530
0
        uint32_t uq = numer + ((numer >> 31) & mask);
1531
0
        int32_t q = (int32_t)uq;
1532
0
        q >>= shift;
1533
0
        q = (q ^ sign) - sign;
1534
0
        return q;
1535
0
    } else {
1536
0
        uint32_t uq = (uint32_t)libdivide_mullhi_s32(numer, magic);
1537
0
        if (more & LIBDIVIDE_ADD_MARKER) {
1538
0
            // must be arithmetic shift and then sign extend
1539
0
            int32_t sign = (int8_t)more >> 7;
1540
0
            // q += (more < 0 ? -numer : numer)
1541
0
            // cast required to avoid UB
1542
0
            uq += ((uint32_t)numer ^ sign) - sign;
1543
0
        }
1544
0
        int32_t q = (int32_t)uq;
1545
0
        q >>= shift;
1546
0
        q += (q < 0);
1547
0
        return q;
1548
0
    }
1549
0
}
1550
1551
0
static LIBDIVIDE_INLINE int32_t libdivide_s32_do(int32_t numer, const struct libdivide_s32_t *denom) {
1552
0
    return libdivide_s32_do_raw(numer, denom->magic, denom->more);
1553
0
}
1554
1555
0
static LIBDIVIDE_INLINE int32_t libdivide_s32_branchfree_do(int32_t numer, const struct libdivide_s32_branchfree_t *denom) {
1556
0
    uint8_t more = denom->more;
1557
0
    uint8_t shift = more & LIBDIVIDE_32_SHIFT_MASK;
1558
0
    // must be arithmetic shift and then sign extend
1559
0
    int32_t sign = (int8_t)more >> 7;
1560
0
    int32_t magic = denom->magic;
1561
0
    int32_t q = libdivide_mullhi_s32(numer, magic);
1562
0
    q += numer;
1563
0
1564
0
    // If q is non-negative, we have nothing to do
1565
0
    // If q is negative, we want to add either (2**shift)-1 if d is a power of
1566
0
    // 2, or (2**shift) if it is not a power of 2
1567
0
    uint32_t is_power_of_2 = (magic == 0);
1568
0
    uint32_t q_sign = (uint32_t)(q >> 31);
1569
0
    q += q_sign & (((uint32_t)1 << shift) - is_power_of_2);
1570
0
1571
0
    // Now arithmetic right shift
1572
0
    q >>= shift;
1573
0
    // Negate if needed
1574
0
    q = (q ^ sign) - sign;
1575
0
1576
0
    return q;
1577
0
}
1578
1579
0
static LIBDIVIDE_INLINE int32_t libdivide_s32_recover(const struct libdivide_s32_t *denom) {
1580
0
    uint8_t more = denom->more;
1581
0
    uint8_t shift = more & LIBDIVIDE_32_SHIFT_MASK;
1582
0
    if (!denom->magic) {
1583
0
        uint32_t absD = (uint32_t)1 << shift;
1584
0
        if (more & LIBDIVIDE_NEGATIVE_DIVISOR) {
1585
0
            absD = -absD;
1586
0
        }
1587
0
        return (int32_t)absD;
1588
0
    } else {
1589
0
        // Unsigned math is much easier
1590
0
        // We negate the magic number only in the branchfull case, and we don't
1591
0
        // know which case we're in. However we have enough information to
1592
0
        // determine the correct sign of the magic number. The divisor was
1593
0
        // negative if LIBDIVIDE_NEGATIVE_DIVISOR is set. If ADD_MARKER is set,
1594
0
        // the magic number's sign is opposite that of the divisor.
1595
0
        // We want to compute the positive magic number.
1596
0
        int negative_divisor = (more & LIBDIVIDE_NEGATIVE_DIVISOR);
1597
0
        int magic_was_negated = (more & LIBDIVIDE_ADD_MARKER) ? denom->magic > 0 : denom->magic < 0;
1598
0
1599
0
        // Handle the power of 2 case (including branchfree)
1600
0
        if (denom->magic == 0) {
1601
0
            int32_t result = (uint32_t)1 << shift;
1602
0
            return negative_divisor ? -result : result;
1603
0
        }
1604
0
1605
0
        uint32_t d = (uint32_t)(magic_was_negated ? -denom->magic : denom->magic);
1606
0
        uint64_t n = (uint64_t)1 << (32 + shift);  // this shift cannot exceed 30
1607
0
        uint32_t q = (uint32_t)(n / d);
1608
0
        int32_t result = (int32_t)q;
1609
0
        result += 1;
1610
0
        return negative_divisor ? -result : result;
1611
0
    }
1612
0
}
1613
1614
0
static LIBDIVIDE_INLINE int32_t libdivide_s32_branchfree_recover(const struct libdivide_s32_branchfree_t *denom) {
1615
0
    const struct libdivide_s32_t den = {denom->magic, denom->more};
1616
0
    return libdivide_s32_recover(&den);
1617
0
}
1618
1619
////////// SINT64
1620
1621
static LIBDIVIDE_INLINE struct libdivide_s64_t libdivide_internal_s64_gen(
1622
0
    int64_t d, int branchfree) {
1623
0
    if (d == 0) {
1624
0
        LIBDIVIDE_ERROR("divider must be != 0");
1625
0
    }
1626
0
1627
0
    struct libdivide_s64_t result;
1628
0
1629
0
    // If d is a power of 2, or negative a power of 2, we have to use a shift.
1630
0
    // This is especially important because the magic algorithm fails for -1.
1631
0
    // To check if d is a power of 2 or its inverse, it suffices to check
1632
0
    // whether its absolute value has exactly one bit set.  This works even for
1633
0
    // INT_MIN, because abs(INT_MIN) == INT_MIN, and INT_MIN has one bit set
1634
0
    // and is a power of 2.
1635
0
    uint64_t ud = (uint64_t)d;
1636
0
    uint64_t absD = (d < 0) ? -ud : ud;
1637
0
    uint32_t floor_log_2_d = 63 - libdivide_count_leading_zeros64(absD);
1638
0
    // check if exactly one bit is set,
1639
0
    // don't care if absD is 0 since that's divide by zero
1640
0
    if ((absD & (absD - 1)) == 0) {
1641
0
        // Branchfree and non-branchfree cases are the same
1642
0
        result.magic = 0;
1643
0
        result.more = (uint8_t)(floor_log_2_d | (d < 0 ? LIBDIVIDE_NEGATIVE_DIVISOR : 0));
1644
0
    } else {
1645
0
        // the dividend here is 2**(floor_log_2_d + 63), so the low 64 bit word
1646
0
        // is 0 and the high word is floor_log_2_d - 1
1647
0
        uint8_t more;
1648
0
        uint64_t rem, proposed_m;
1649
0
        proposed_m = libdivide_128_div_64_to_64((uint64_t)1 << (floor_log_2_d - 1), 0, absD, &rem);
1650
0
        const uint64_t e = absD - rem;
1651
0
1652
0
        // We are going to start with a power of floor_log_2_d - 1.
1653
0
        // This works if works if e < 2**floor_log_2_d.
1654
0
        if (!branchfree && e < ((uint64_t)1 << floor_log_2_d)) {
1655
0
            // This power works
1656
0
            more = (uint8_t)(floor_log_2_d - 1);
1657
0
        } else {
1658
0
            // We need to go one higher. This should not make proposed_m
1659
0
            // overflow, but it will make it negative when interpreted as an
1660
0
            // int32_t.
1661
0
            proposed_m += proposed_m;
1662
0
            const uint64_t twice_rem = rem + rem;
1663
0
            if (twice_rem >= absD || twice_rem < rem) proposed_m += 1;
1664
0
            // note that we only set the LIBDIVIDE_NEGATIVE_DIVISOR bit if we
1665
0
            // also set ADD_MARKER this is an annoying optimization that
1666
0
            // enables algorithm #4 to avoid the mask. However we always set it
1667
0
            // in the branchfree case
1668
0
            more = (uint8_t)(floor_log_2_d | LIBDIVIDE_ADD_MARKER);
1669
0
        }
1670
0
        proposed_m += 1;
1671
0
        int64_t magic = (int64_t)proposed_m;
1672
0
1673
0
        // Mark if we are negative
1674
0
        if (d < 0) {
1675
0
            more |= LIBDIVIDE_NEGATIVE_DIVISOR;
1676
0
            if (!branchfree) {
1677
0
                magic = -magic;
1678
0
            }
1679
0
        }
1680
0
1681
0
        result.more = more;
1682
0
        result.magic = magic;
1683
0
    }
1684
0
    return result;
1685
0
}
1686
1687
0
static LIBDIVIDE_INLINE struct libdivide_s64_t libdivide_s64_gen(int64_t d) {
1688
0
    return libdivide_internal_s64_gen(d, 0);
1689
0
}
1690
1691
0
static LIBDIVIDE_INLINE struct libdivide_s64_branchfree_t libdivide_s64_branchfree_gen(int64_t d) {
1692
0
    struct libdivide_s64_t tmp = libdivide_internal_s64_gen(d, 1);
1693
0
    struct libdivide_s64_branchfree_t ret = {tmp.magic, tmp.more};
1694
0
    return ret;
1695
0
}
1696
1697
0
static LIBDIVIDE_INLINE int64_t libdivide_s64_do_raw(int64_t numer, int64_t magic, uint8_t more) {
1698
0
    uint8_t shift = more & LIBDIVIDE_64_SHIFT_MASK;
1699
0
1700
0
    if (!magic) {  // shift path
1701
0
        uint64_t mask = ((uint64_t)1 << shift) - 1;
1702
0
        uint64_t uq = numer + ((numer >> 63) & mask);
1703
0
        int64_t q = (int64_t)uq;
1704
0
        q >>= shift;
1705
0
        // must be arithmetic shift and then sign-extend
1706
0
        int64_t sign = (int8_t)more >> 7;
1707
0
        q = (q ^ sign) - sign;
1708
0
        return q;
1709
0
    } else {
1710
0
        uint64_t uq = (uint64_t)libdivide_mullhi_s64(numer, magic);
1711
0
        if (more & LIBDIVIDE_ADD_MARKER) {
1712
0
            // must be arithmetic shift and then sign extend
1713
0
            int64_t sign = (int8_t)more >> 7;
1714
0
            // q += (more < 0 ? -numer : numer)
1715
0
            // cast required to avoid UB
1716
0
            uq += ((uint64_t)numer ^ sign) - sign;
1717
0
        }
1718
0
        int64_t q = (int64_t)uq;
1719
0
        q >>= shift;
1720
0
        q += (q < 0);
1721
0
        return q;
1722
0
    }
1723
0
}
1724
1725
0
static LIBDIVIDE_INLINE int64_t libdivide_s64_do(int64_t numer, const struct libdivide_s64_t *denom) {
1726
0
    return libdivide_s64_do_raw(numer, denom->magic, denom->more);
1727
0
}
1728
1729
0
static LIBDIVIDE_INLINE int64_t libdivide_s64_branchfree_do(int64_t numer, const struct libdivide_s64_branchfree_t *denom) {
1730
0
    uint8_t more = denom->more;
1731
0
    uint8_t shift = more & LIBDIVIDE_64_SHIFT_MASK;
1732
0
    // must be arithmetic shift and then sign extend
1733
0
    int64_t sign = (int8_t)more >> 7;
1734
0
    int64_t magic = denom->magic;
1735
0
    int64_t q = libdivide_mullhi_s64(numer, magic);
1736
0
    q += numer;
1737
0
1738
0
    // If q is non-negative, we have nothing to do.
1739
0
    // If q is negative, we want to add either (2**shift)-1 if d is a power of
1740
0
    // 2, or (2**shift) if it is not a power of 2.
1741
0
    uint64_t is_power_of_2 = (magic == 0);
1742
0
    uint64_t q_sign = (uint64_t)(q >> 63);
1743
0
    q += q_sign & (((uint64_t)1 << shift) - is_power_of_2);
1744
0
1745
0
    // Arithmetic right shift
1746
0
    q >>= shift;
1747
0
    // Negate if needed
1748
0
    q = (q ^ sign) - sign;
1749
0
1750
0
    return q;
1751
0
}
1752
1753
0
static LIBDIVIDE_INLINE int64_t libdivide_s64_recover(const struct libdivide_s64_t *denom) {
1754
0
    uint8_t more = denom->more;
1755
0
    uint8_t shift = more & LIBDIVIDE_64_SHIFT_MASK;
1756
0
    if (denom->magic == 0) {  // shift path
1757
0
        uint64_t absD = (uint64_t)1 << shift;
1758
0
        if (more & LIBDIVIDE_NEGATIVE_DIVISOR) {
1759
0
            absD = -absD;
1760
0
        }
1761
0
        return (int64_t)absD;
1762
0
    } else {
1763
0
        // Unsigned math is much easier
1764
0
        int negative_divisor = (more & LIBDIVIDE_NEGATIVE_DIVISOR);
1765
0
        int magic_was_negated = (more & LIBDIVIDE_ADD_MARKER) ? denom->magic > 0 : denom->magic < 0;
1766
0
1767
0
        uint64_t d = (uint64_t)(magic_was_negated ? -denom->magic : denom->magic);
1768
0
        uint64_t n_hi = (uint64_t)1 << shift, n_lo = 0;
1769
0
        uint64_t rem_ignored;
1770
0
        uint64_t q = libdivide_128_div_64_to_64(n_hi, n_lo, d, &rem_ignored);
1771
0
        int64_t result = (int64_t)(q + 1);
1772
0
        if (negative_divisor) {
1773
0
            result = -result;
1774
0
        }
1775
0
        return result;
1776
0
    }
1777
0
}
1778
1779
0
static LIBDIVIDE_INLINE int64_t libdivide_s64_branchfree_recover(const struct libdivide_s64_branchfree_t *denom) {
1780
0
    const struct libdivide_s64_t den = {denom->magic, denom->more};
1781
0
    return libdivide_s64_recover(&den);
1782
0
}
1783
1784
// Simplest possible vector type division: treat the vector type as an array
1785
// of underlying native type.
1786
//
1787
// Use a union to read a vector via pointer-to-integer, without violating strict
1788
// aliasing.
1789
#define SIMPLE_VECTOR_DIVISION(IntT, VecT, Algo)                          \
1790
    const size_t count = sizeof(VecT) / sizeof(IntT);                     \
1791
    union type_pun_vec {                                                  \
1792
        VecT vec;                                                         \
1793
        IntT arr[sizeof(VecT) / sizeof(IntT)];                            \
1794
    };                                                                    \
1795
    union type_pun_vec result;                                            \
1796
    union type_pun_vec input;                                             \
1797
    input.vec = numers;                                                   \
1798
    for (size_t loop = 0; loop < count; ++loop) {                         \
1799
        result.arr[loop] = libdivide_##Algo##_do(input.arr[loop], denom); \
1800
    }                                                                     \
1801
    return result.vec;
1802
1803
#if defined(LIBDIVIDE_NEON)
1804
1805
static LIBDIVIDE_INLINE uint16x8_t libdivide_u16_do_vec128(
1806
    uint16x8_t numers, const struct libdivide_u16_t *denom);
1807
static LIBDIVIDE_INLINE int16x8_t libdivide_s16_do_vec128(
1808
    int16x8_t numers, const struct libdivide_s16_t *denom);
1809
static LIBDIVIDE_INLINE uint32x4_t libdivide_u32_do_vec128(
1810
    uint32x4_t numers, const struct libdivide_u32_t *denom);
1811
static LIBDIVIDE_INLINE int32x4_t libdivide_s32_do_vec128(
1812
    int32x4_t numers, const struct libdivide_s32_t *denom);
1813
static LIBDIVIDE_INLINE uint64x2_t libdivide_u64_do_vec128(
1814
    uint64x2_t numers, const struct libdivide_u64_t *denom);
1815
static LIBDIVIDE_INLINE int64x2_t libdivide_s64_do_vec128(
1816
    int64x2_t numers, const struct libdivide_s64_t *denom);
1817
1818
static LIBDIVIDE_INLINE uint16x8_t libdivide_u16_branchfree_do_vec128(
1819
    uint16x8_t numers, const struct libdivide_u16_branchfree_t *denom);
1820
static LIBDIVIDE_INLINE int16x8_t libdivide_s16_branchfree_do_vec128(
1821
    int16x8_t numers, const struct libdivide_s16_branchfree_t *denom);
1822
static LIBDIVIDE_INLINE uint32x4_t libdivide_u32_branchfree_do_vec128(
1823
    uint32x4_t numers, const struct libdivide_u32_branchfree_t *denom);
1824
static LIBDIVIDE_INLINE int32x4_t libdivide_s32_branchfree_do_vec128(
1825
    int32x4_t numers, const struct libdivide_s32_branchfree_t *denom);
1826
static LIBDIVIDE_INLINE uint64x2_t libdivide_u64_branchfree_do_vec128(
1827
    uint64x2_t numers, const struct libdivide_u64_branchfree_t *denom);
1828
static LIBDIVIDE_INLINE int64x2_t libdivide_s64_branchfree_do_vec128(
1829
    int64x2_t numers, const struct libdivide_s64_branchfree_t *denom);
1830
1831
//////// Internal Utility Functions
1832
1833
// Logical right shift by runtime value.
1834
// NEON implements right shift as left shits by negative values.
1835
static LIBDIVIDE_INLINE uint32x4_t libdivide_u32_neon_srl(uint32x4_t v, uint8_t amt) {
1836
    int32_t wamt = (int32_t)(amt);
1837
    return vshlq_u32(v, vdupq_n_s32(-wamt));
1838
}
1839
1840
static LIBDIVIDE_INLINE uint64x2_t libdivide_u64_neon_srl(uint64x2_t v, uint8_t amt) {
1841
    int64_t wamt = (int64_t)(amt);
1842
    return vshlq_u64(v, vdupq_n_s64(-wamt));
1843
}
1844
1845
// Arithmetic right shift by runtime value.
1846
static LIBDIVIDE_INLINE int32x4_t libdivide_s32_neon_sra(int32x4_t v, uint8_t amt) {
1847
    int32_t wamt = (int32_t)(amt);
1848
    return vshlq_s32(v, vdupq_n_s32(-wamt));
1849
}
1850
1851
static LIBDIVIDE_INLINE int64x2_t libdivide_s64_neon_sra(int64x2_t v, uint8_t amt) {
1852
    int64_t wamt = (int64_t)(amt);
1853
    return vshlq_s64(v, vdupq_n_s64(-wamt));
1854
}
1855
1856
static LIBDIVIDE_INLINE int64x2_t libdivide_s64_signbits(int64x2_t v) { return vshrq_n_s64(v, 63); }
1857
1858
static LIBDIVIDE_INLINE uint32x4_t libdivide_mullhi_u32_vec128(uint32x4_t a, uint32_t b) {
1859
    // Desire is [x0, x1, x2, x3]
1860
    uint32x4_t w1 = vreinterpretq_u32_u64(vmull_n_u32(vget_low_u32(a), b));  // [_, x0, _, x1]
1861
    uint32x4_t w2 = vreinterpretq_u32_u64(vmull_high_n_u32(a, b));           //[_, x2, _, x3]
1862
    return vuzp2q_u32(w1, w2);                                               // [x0, x1, x2, x3]
1863
}
1864
1865
static LIBDIVIDE_INLINE int32x4_t libdivide_mullhi_s32_vec128(int32x4_t a, int32_t b) {
1866
    int32x4_t w1 = vreinterpretq_s32_s64(vmull_n_s32(vget_low_s32(a), b));  // [_, x0, _, x1]
1867
    int32x4_t w2 = vreinterpretq_s32_s64(vmull_high_n_s32(a, b));           //[_, x2, _, x3]
1868
    return vuzp2q_s32(w1, w2);                                              // [x0, x1, x2, x3]
1869
}
1870
1871
static LIBDIVIDE_INLINE uint64x2_t libdivide_mullhi_u64_vec128(uint64x2_t x, uint64_t sy) {
1872
    // full 128 bits product is:
1873
    // x0*y0 + (x0*y1 << 32) + (x1*y0 << 32) + (x1*y1 << 64)
1874
    // Note x0,y0,x1,y1 are all conceptually uint32, products are 32x32->64.
1875
1876
    // Get low and high words. x0 contains low 32 bits, x1 is high 32 bits.
1877
    uint64x2_t y = vdupq_n_u64(sy);
1878
    uint32x2_t x0 = vmovn_u64(x);
1879
    uint32x2_t y0 = vmovn_u64(y);
1880
    uint32x2_t x1 = vshrn_n_u64(x, 32);
1881
    uint32x2_t y1 = vshrn_n_u64(y, 32);
1882
1883
    // Compute x0*y0.
1884
    uint64x2_t x0y0 = vmull_u32(x0, y0);
1885
    uint64x2_t x0y0_hi = vshrq_n_u64(x0y0, 32);
1886
1887
    // Compute other intermediate products.
1888
    uint64x2_t temp = vmlal_u32(x0y0_hi, x1, y0);  // temp = x0y0_hi + x1*y0;
1889
    // We want to split temp into its low 32 bits and high 32 bits, both
1890
    // in the low half of 64 bit registers.
1891
    // Use shifts to avoid needing a reg for the mask.
1892
    uint64x2_t temp_lo = vshrq_n_u64(vshlq_n_u64(temp, 32), 32);  // temp_lo = temp & 0xFFFFFFFF;
1893
    uint64x2_t temp_hi = vshrq_n_u64(temp, 32);                   // temp_hi = temp >> 32;
1894
1895
    temp_lo = vmlal_u32(temp_lo, x0, y1);  // temp_lo += x0*y0
1896
    temp_lo = vshrq_n_u64(temp_lo, 32);    // temp_lo >>= 32
1897
    temp_hi = vmlal_u32(temp_hi, x1, y1);  // temp_hi += x1*y1
1898
    uint64x2_t result = vaddq_u64(temp_hi, temp_lo);
1899
    return result;
1900
}
1901
1902
static LIBDIVIDE_INLINE int64x2_t libdivide_mullhi_s64_vec128(int64x2_t x, int64_t sy) {
1903
    int64x2_t p = vreinterpretq_s64_u64(
1904
        libdivide_mullhi_u64_vec128(vreinterpretq_u64_s64(x), (uint64_t)(sy)));
1905
    int64x2_t y = vdupq_n_s64(sy);
1906
    int64x2_t t1 = vandq_s64(libdivide_s64_signbits(x), y);
1907
    int64x2_t t2 = vandq_s64(libdivide_s64_signbits(y), x);
1908
    p = vsubq_s64(p, t1);
1909
    p = vsubq_s64(p, t2);
1910
    return p;
1911
}
1912
1913
////////// UINT16
1914
1915
uint16x8_t libdivide_u16_do_vec128(uint16x8_t numers, const struct libdivide_u16_t *denom){
1916
    SIMPLE_VECTOR_DIVISION(uint16_t, uint16x8_t, u16)}
1917
1918
uint16x8_t libdivide_u16_branchfree_do_vec128(
1919
    uint16x8_t numers, const struct libdivide_u16_branchfree_t *denom){
1920
    SIMPLE_VECTOR_DIVISION(uint16_t, uint16x8_t, u16_branchfree)}
1921
1922
////////// UINT32
1923
1924
uint32x4_t libdivide_u32_do_vec128(uint32x4_t numers, const struct libdivide_u32_t *denom) {
1925
    uint8_t more = denom->more;
1926
    if (!denom->magic) {
1927
        return libdivide_u32_neon_srl(numers, more);
1928
    } else {
1929
        uint32x4_t q = libdivide_mullhi_u32_vec128(numers, denom->magic);
1930
        if (more & LIBDIVIDE_ADD_MARKER) {
1931
            // uint32_t t = ((numer - q) >> 1) + q;
1932
            // return t >> denom->shift;
1933
            // Note we can use halving-subtract to avoid the shift.
1934
            uint8_t shift = more & LIBDIVIDE_32_SHIFT_MASK;
1935
            uint32x4_t t = vaddq_u32(vhsubq_u32(numers, q), q);
1936
            return libdivide_u32_neon_srl(t, shift);
1937
        } else {
1938
            return libdivide_u32_neon_srl(q, more);
1939
        }
1940
    }
1941
}
1942
1943
uint32x4_t libdivide_u32_branchfree_do_vec128(
1944
    uint32x4_t numers, const struct libdivide_u32_branchfree_t *denom) {
1945
    uint32x4_t q = libdivide_mullhi_u32_vec128(numers, denom->magic);
1946
    uint32x4_t t = vaddq_u32(vhsubq_u32(numers, q), q);
1947
    return libdivide_u32_neon_srl(t, denom->more);
1948
}
1949
1950
////////// UINT64
1951
1952
uint64x2_t libdivide_u64_do_vec128(uint64x2_t numers, const struct libdivide_u64_t *denom) {
1953
    uint8_t more = denom->more;
1954
    if (!denom->magic) {
1955
        return libdivide_u64_neon_srl(numers, more);
1956
    } else {
1957
        uint64x2_t q = libdivide_mullhi_u64_vec128(numers, denom->magic);
1958
        if (more & LIBDIVIDE_ADD_MARKER) {
1959
            // uint32_t t = ((numer - q) >> 1) + q;
1960
            // return t >> denom->shift;
1961
            // No 64-bit halving subtracts in NEON :(
1962
            uint8_t shift = more & LIBDIVIDE_64_SHIFT_MASK;
1963
            uint64x2_t t = vaddq_u64(vshrq_n_u64(vsubq_u64(numers, q), 1), q);
1964
            return libdivide_u64_neon_srl(t, shift);
1965
        } else {
1966
            return libdivide_u64_neon_srl(q, more);
1967
        }
1968
    }
1969
}
1970
1971
uint64x2_t libdivide_u64_branchfree_do_vec128(
1972
    uint64x2_t numers, const struct libdivide_u64_branchfree_t *denom) {
1973
    uint64x2_t q = libdivide_mullhi_u64_vec128(numers, denom->magic);
1974
    uint64x2_t t = vaddq_u64(vshrq_n_u64(vsubq_u64(numers, q), 1), q);
1975
    return libdivide_u64_neon_srl(t, denom->more);
1976
}
1977
1978
////////// SINT16
1979
1980
int16x8_t libdivide_s16_do_vec128(int16x8_t numers, const struct libdivide_s16_t *denom){
1981
    SIMPLE_VECTOR_DIVISION(int16_t, int16x8_t, s16)}
1982
1983
int16x8_t libdivide_s16_branchfree_do_vec128(
1984
    int16x8_t numers, const struct libdivide_s16_branchfree_t *denom){
1985
    SIMPLE_VECTOR_DIVISION(int16_t, int16x8_t, s16_branchfree)}
1986
1987
////////// SINT32
1988
1989
int32x4_t libdivide_s32_do_vec128(int32x4_t numers, const struct libdivide_s32_t *denom) {
1990
    uint8_t more = denom->more;
1991
    if (!denom->magic) {
1992
        uint8_t shift = more & LIBDIVIDE_32_SHIFT_MASK;
1993
        uint32_t mask = ((uint32_t)1 << shift) - 1;
1994
        int32x4_t roundToZeroTweak = vdupq_n_s32((int)mask);
1995
        // q = numer + ((numer >> 31) & roundToZeroTweak);
1996
        int32x4_t q = vaddq_s32(numers, vandq_s32(vshrq_n_s32(numers, 31), roundToZeroTweak));
1997
        q = libdivide_s32_neon_sra(q, shift);
1998
        int32x4_t sign = vdupq_n_s32((int8_t)more >> 7);
1999
        // q = (q ^ sign) - sign;
2000
        q = vsubq_s32(veorq_s32(q, sign), sign);
2001
        return q;
2002
    } else {
2003
        int32x4_t q = libdivide_mullhi_s32_vec128(numers, denom->magic);
2004
        if (more & LIBDIVIDE_ADD_MARKER) {
2005
            // must be arithmetic shift
2006
            int32x4_t sign = vdupq_n_s32((int8_t)more >> 7);
2007
            // q += ((numer ^ sign) - sign);
2008
            q = vaddq_s32(q, vsubq_s32(veorq_s32(numers, sign), sign));
2009
        }
2010
        // q >>= shift
2011
        q = libdivide_s32_neon_sra(q, more & LIBDIVIDE_32_SHIFT_MASK);
2012
        q = vaddq_s32(
2013
            q, vreinterpretq_s32_u32(vshrq_n_u32(vreinterpretq_u32_s32(q), 31)));  // q += (q < 0)
2014
        return q;
2015
    }
2016
}
2017
2018
int32x4_t libdivide_s32_branchfree_do_vec128(
2019
    int32x4_t numers, const struct libdivide_s32_branchfree_t *denom) {
2020
    int32_t magic = denom->magic;
2021
    uint8_t more = denom->more;
2022
    uint8_t shift = more & LIBDIVIDE_32_SHIFT_MASK;
2023
    // must be arithmetic shift
2024
    int32x4_t sign = vdupq_n_s32((int8_t)more >> 7);
2025
    int32x4_t q = libdivide_mullhi_s32_vec128(numers, magic);
2026
    q = vaddq_s32(q, numers);  // q += numers
2027
2028
    // If q is non-negative, we have nothing to do
2029
    // If q is negative, we want to add either (2**shift)-1 if d is
2030
    // a power of 2, or (2**shift) if it is not a power of 2
2031
    uint32_t is_power_of_2 = (magic == 0);
2032
    int32x4_t q_sign = vshrq_n_s32(q, 31);  // q_sign = q >> 31
2033
    int32x4_t mask = vdupq_n_s32(((uint32_t)1 << shift) - is_power_of_2);
2034
    q = vaddq_s32(q, vandq_s32(q_sign, mask));  // q = q + (q_sign & mask)
2035
    q = libdivide_s32_neon_sra(q, shift);       // q >>= shift
2036
    q = vsubq_s32(veorq_s32(q, sign), sign);    // q = (q ^ sign) - sign
2037
    return q;
2038
}
2039
2040
////////// SINT64
2041
2042
int64x2_t libdivide_s64_do_vec128(int64x2_t numers, const struct libdivide_s64_t *denom) {
2043
    uint8_t more = denom->more;
2044
    int64_t magic = denom->magic;
2045
    if (magic == 0) {  // shift path
2046
        uint8_t shift = more & LIBDIVIDE_64_SHIFT_MASK;
2047
        uint64_t mask = ((uint64_t)1 << shift) - 1;
2048
        int64x2_t roundToZeroTweak = vdupq_n_s64(mask);  // TODO: no need to sign extend
2049
        // q = numer + ((numer >> 63) & roundToZeroTweak);
2050
        int64x2_t q =
2051
            vaddq_s64(numers, vandq_s64(libdivide_s64_signbits(numers), roundToZeroTweak));
2052
        q = libdivide_s64_neon_sra(q, shift);
2053
        // q = (q ^ sign) - sign;
2054
        int64x2_t sign = vreinterpretq_s64_s8(vdupq_n_s8((int8_t)more >> 7));
2055
        q = vsubq_s64(veorq_s64(q, sign), sign);
2056
        return q;
2057
    } else {
2058
        int64x2_t q = libdivide_mullhi_s64_vec128(numers, magic);
2059
        if (more & LIBDIVIDE_ADD_MARKER) {
2060
            // must be arithmetic shift
2061
            int64x2_t sign = vdupq_n_s64((int8_t)more >> 7);  // TODO: no need to widen
2062
            // q += ((numer ^ sign) - sign);
2063
            q = vaddq_s64(q, vsubq_s64(veorq_s64(numers, sign), sign));
2064
        }
2065
        // q >>= denom->mult_path.shift
2066
        q = libdivide_s64_neon_sra(q, more & LIBDIVIDE_64_SHIFT_MASK);
2067
        q = vaddq_s64(
2068
            q, vreinterpretq_s64_u64(vshrq_n_u64(vreinterpretq_u64_s64(q), 63)));  // q += (q < 0)
2069
        return q;
2070
    }
2071
}
2072
2073
int64x2_t libdivide_s64_branchfree_do_vec128(
2074
    int64x2_t numers, const struct libdivide_s64_branchfree_t *denom) {
2075
    int64_t magic = denom->magic;
2076
    uint8_t more = denom->more;
2077
    uint8_t shift = more & LIBDIVIDE_64_SHIFT_MASK;
2078
    // must be arithmetic shift
2079
    int64x2_t sign = vdupq_n_s64((int8_t)more >> 7);  // TODO: avoid sign extend
2080
2081
    // libdivide_mullhi_s64(numers, magic);
2082
    int64x2_t q = libdivide_mullhi_s64_vec128(numers, magic);
2083
    q = vaddq_s64(q, numers);  // q += numers
2084
2085
    // If q is non-negative, we have nothing to do.
2086
    // If q is negative, we want to add either (2**shift)-1 if d is
2087
    // a power of 2, or (2**shift) if it is not a power of 2.
2088
    uint32_t is_power_of_2 = (magic == 0);
2089
    int64x2_t q_sign = libdivide_s64_signbits(q);  // q_sign = q >> 63
2090
    int64x2_t mask = vdupq_n_s64(((uint64_t)1 << shift) - is_power_of_2);
2091
    q = vaddq_s64(q, vandq_s64(q_sign, mask));  // q = q + (q_sign & mask)
2092
    q = libdivide_s64_neon_sra(q, shift);       // q >>= shift
2093
    q = vsubq_s64(veorq_s64(q, sign), sign);    // q = (q ^ sign) - sign
2094
    return q;
2095
}
2096
2097
#endif
2098
2099
#if defined(LIBDIVIDE_AVX512)
2100
2101
static LIBDIVIDE_INLINE __m512i libdivide_u16_do_vec512(
2102
    __m512i numers, const struct libdivide_u16_t *denom);
2103
static LIBDIVIDE_INLINE __m512i libdivide_s16_do_vec512(
2104
    __m512i numers, const struct libdivide_s16_t *denom);
2105
static LIBDIVIDE_INLINE __m512i libdivide_u32_do_vec512(
2106
    __m512i numers, const struct libdivide_u32_t *denom);
2107
static LIBDIVIDE_INLINE __m512i libdivide_s32_do_vec512(
2108
    __m512i numers, const struct libdivide_s32_t *denom);
2109
static LIBDIVIDE_INLINE __m512i libdivide_u64_do_vec512(
2110
    __m512i numers, const struct libdivide_u64_t *denom);
2111
static LIBDIVIDE_INLINE __m512i libdivide_s64_do_vec512(
2112
    __m512i numers, const struct libdivide_s64_t *denom);
2113
2114
static LIBDIVIDE_INLINE __m512i libdivide_u16_branchfree_do_vec512(
2115
    __m512i numers, const struct libdivide_u16_branchfree_t *denom);
2116
static LIBDIVIDE_INLINE __m512i libdivide_s16_branchfree_do_vec512(
2117
    __m512i numers, const struct libdivide_s16_branchfree_t *denom);
2118
static LIBDIVIDE_INLINE __m512i libdivide_u32_branchfree_do_vec512(
2119
    __m512i numers, const struct libdivide_u32_branchfree_t *denom);
2120
static LIBDIVIDE_INLINE __m512i libdivide_s32_branchfree_do_vec512(
2121
    __m512i numers, const struct libdivide_s32_branchfree_t *denom);
2122
static LIBDIVIDE_INLINE __m512i libdivide_u64_branchfree_do_vec512(
2123
    __m512i numers, const struct libdivide_u64_branchfree_t *denom);
2124
static LIBDIVIDE_INLINE __m512i libdivide_s64_branchfree_do_vec512(
2125
    __m512i numers, const struct libdivide_s64_branchfree_t *denom);
2126
2127
//////// Internal Utility Functions
2128
2129
static LIBDIVIDE_INLINE __m512i libdivide_s64_signbits_vec512(__m512i v) {
2130
    ;
2131
    return _mm512_srai_epi64(v, 63);
2132
}
2133
2134
static LIBDIVIDE_INLINE __m512i libdivide_s64_shift_right_vec512(__m512i v, int amt) {
2135
    return _mm512_srai_epi64(v, amt);
2136
}
2137
2138
// Here, b is assumed to contain one 32-bit value repeated.
2139
static LIBDIVIDE_INLINE __m512i libdivide_mullhi_u32_vec512(__m512i a, __m512i b) {
2140
    __m512i hi_product_0Z2Z = _mm512_srli_epi64(_mm512_mul_epu32(a, b), 32);
2141
    __m512i a1X3X = _mm512_srli_epi64(a, 32);
2142
    __m512i mask = _mm512_set_epi32(-1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0);
2143
    __m512i hi_product_Z1Z3 = _mm512_and_si512(_mm512_mul_epu32(a1X3X, b), mask);
2144
    return _mm512_or_si512(hi_product_0Z2Z, hi_product_Z1Z3);
2145
}
2146
2147
// b is one 32-bit value repeated.
2148
static LIBDIVIDE_INLINE __m512i libdivide_mullhi_s32_vec512(__m512i a, __m512i b) {
2149
    __m512i hi_product_0Z2Z = _mm512_srli_epi64(_mm512_mul_epi32(a, b), 32);
2150
    __m512i a1X3X = _mm512_srli_epi64(a, 32);
2151
    __m512i mask = _mm512_set_epi32(-1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0);
2152
    __m512i hi_product_Z1Z3 = _mm512_and_si512(_mm512_mul_epi32(a1X3X, b), mask);
2153
    return _mm512_or_si512(hi_product_0Z2Z, hi_product_Z1Z3);
2154
}
2155
2156
// Here, y is assumed to contain one 64-bit value repeated.
2157
static LIBDIVIDE_INLINE __m512i libdivide_mullhi_u64_vec512(__m512i x, __m512i y) {
2158
    // see m128i variant for comments.
2159
    __m512i x0y0 = _mm512_mul_epu32(x, y);
2160
    __m512i x0y0_hi = _mm512_srli_epi64(x0y0, 32);
2161
2162
    __m512i x1 = _mm512_shuffle_epi32(x, (_MM_PERM_ENUM)_MM_SHUFFLE(3, 3, 1, 1));
2163
    __m512i y1 = _mm512_shuffle_epi32(y, (_MM_PERM_ENUM)_MM_SHUFFLE(3, 3, 1, 1));
2164
2165
    __m512i x0y1 = _mm512_mul_epu32(x, y1);
2166
    __m512i x1y0 = _mm512_mul_epu32(x1, y);
2167
    __m512i x1y1 = _mm512_mul_epu32(x1, y1);
2168
2169
    __m512i mask = _mm512_set1_epi64(0xFFFFFFFF);
2170
    __m512i temp = _mm512_add_epi64(x1y0, x0y0_hi);
2171
    __m512i temp_lo = _mm512_and_si512(temp, mask);
2172
    __m512i temp_hi = _mm512_srli_epi64(temp, 32);
2173
2174
    temp_lo = _mm512_srli_epi64(_mm512_add_epi64(temp_lo, x0y1), 32);
2175
    temp_hi = _mm512_add_epi64(x1y1, temp_hi);
2176
    return _mm512_add_epi64(temp_lo, temp_hi);
2177
}
2178
2179
// y is one 64-bit value repeated.
2180
static LIBDIVIDE_INLINE __m512i libdivide_mullhi_s64_vec512(__m512i x, __m512i y) {
2181
    __m512i p = libdivide_mullhi_u64_vec512(x, y);
2182
    __m512i t1 = _mm512_and_si512(libdivide_s64_signbits_vec512(x), y);
2183
    __m512i t2 = _mm512_and_si512(libdivide_s64_signbits_vec512(y), x);
2184
    p = _mm512_sub_epi64(p, t1);
2185
    p = _mm512_sub_epi64(p, t2);
2186
    return p;
2187
}
2188
2189
////////// UINT16
2190
2191
__m512i libdivide_u16_do_vec512(__m512i numers, const struct libdivide_u16_t *denom){
2192
    SIMPLE_VECTOR_DIVISION(uint16_t, __m512i, u16)}
2193
2194
__m512i libdivide_u16_branchfree_do_vec512(
2195
    __m512i numers, const struct libdivide_u16_branchfree_t *denom){
2196
    SIMPLE_VECTOR_DIVISION(uint16_t, __m512i, u16_branchfree)}
2197
2198
////////// UINT32
2199
2200
__m512i libdivide_u32_do_vec512(__m512i numers, const struct libdivide_u32_t *denom) {
2201
    uint8_t more = denom->more;
2202
    if (!denom->magic) {
2203
        return _mm512_srli_epi32(numers, more);
2204
    } else {
2205
        __m512i q = libdivide_mullhi_u32_vec512(numers, _mm512_set1_epi32(denom->magic));
2206
        if (more & LIBDIVIDE_ADD_MARKER) {
2207
            // uint32_t t = ((numer - q) >> 1) + q;
2208
            // return t >> denom->shift;
2209
            uint32_t shift = more & LIBDIVIDE_32_SHIFT_MASK;
2210
            __m512i t = _mm512_add_epi32(_mm512_srli_epi32(_mm512_sub_epi32(numers, q), 1), q);
2211
            return _mm512_srli_epi32(t, shift);
2212
        } else {
2213
            return _mm512_srli_epi32(q, more);
2214
        }
2215
    }
2216
}
2217
2218
__m512i libdivide_u32_branchfree_do_vec512(
2219
    __m512i numers, const struct libdivide_u32_branchfree_t *denom) {
2220
    __m512i q = libdivide_mullhi_u32_vec512(numers, _mm512_set1_epi32(denom->magic));
2221
    __m512i t = _mm512_add_epi32(_mm512_srli_epi32(_mm512_sub_epi32(numers, q), 1), q);
2222
    return _mm512_srli_epi32(t, denom->more);
2223
}
2224
2225
////////// UINT64
2226
2227
__m512i libdivide_u64_do_vec512(__m512i numers, const struct libdivide_u64_t *denom) {
2228
    uint8_t more = denom->more;
2229
    if (!denom->magic) {
2230
        return _mm512_srli_epi64(numers, more);
2231
    } else {
2232
        __m512i q = libdivide_mullhi_u64_vec512(numers, _mm512_set1_epi64(denom->magic));
2233
        if (more & LIBDIVIDE_ADD_MARKER) {
2234
            // uint32_t t = ((numer - q) >> 1) + q;
2235
            // return t >> denom->shift;
2236
            uint32_t shift = more & LIBDIVIDE_64_SHIFT_MASK;
2237
            __m512i t = _mm512_add_epi64(_mm512_srli_epi64(_mm512_sub_epi64(numers, q), 1), q);
2238
            return _mm512_srli_epi64(t, shift);
2239
        } else {
2240
            return _mm512_srli_epi64(q, more);
2241
        }
2242
    }
2243
}
2244
2245
__m512i libdivide_u64_branchfree_do_vec512(
2246
    __m512i numers, const struct libdivide_u64_branchfree_t *denom) {
2247
    __m512i q = libdivide_mullhi_u64_vec512(numers, _mm512_set1_epi64(denom->magic));
2248
    __m512i t = _mm512_add_epi64(_mm512_srli_epi64(_mm512_sub_epi64(numers, q), 1), q);
2249
    return _mm512_srli_epi64(t, denom->more);
2250
}
2251
2252
////////// SINT16
2253
2254
__m512i libdivide_s16_do_vec512(__m512i numers, const struct libdivide_s16_t *denom){
2255
    SIMPLE_VECTOR_DIVISION(int16_t, __m512i, s16)}
2256
2257
__m512i libdivide_s16_branchfree_do_vec512(
2258
    __m512i numers, const struct libdivide_s16_branchfree_t *denom){
2259
    SIMPLE_VECTOR_DIVISION(int16_t, __m512i, s16_branchfree)}
2260
2261
////////// SINT32
2262
2263
__m512i libdivide_s32_do_vec512(__m512i numers, const struct libdivide_s32_t *denom) {
2264
    uint8_t more = denom->more;
2265
    if (!denom->magic) {
2266
        uint32_t shift = more & LIBDIVIDE_32_SHIFT_MASK;
2267
        uint32_t mask = ((uint32_t)1 << shift) - 1;
2268
        __m512i roundToZeroTweak = _mm512_set1_epi32(mask);
2269
        // q = numer + ((numer >> 31) & roundToZeroTweak);
2270
        __m512i q = _mm512_add_epi32(
2271
            numers, _mm512_and_si512(_mm512_srai_epi32(numers, 31), roundToZeroTweak));
2272
        q = _mm512_srai_epi32(q, shift);
2273
        __m512i sign = _mm512_set1_epi32((int8_t)more >> 7);
2274
        // q = (q ^ sign) - sign;
2275
        q = _mm512_sub_epi32(_mm512_xor_si512(q, sign), sign);
2276
        return q;
2277
    } else {
2278
        __m512i q = libdivide_mullhi_s32_vec512(numers, _mm512_set1_epi32(denom->magic));
2279
        if (more & LIBDIVIDE_ADD_MARKER) {
2280
            // must be arithmetic shift
2281
            __m512i sign = _mm512_set1_epi32((int8_t)more >> 7);
2282
            // q += ((numer ^ sign) - sign);
2283
            q = _mm512_add_epi32(q, _mm512_sub_epi32(_mm512_xor_si512(numers, sign), sign));
2284
        }
2285
        // q >>= shift
2286
        q = _mm512_srai_epi32(q, more & LIBDIVIDE_32_SHIFT_MASK);
2287
        q = _mm512_add_epi32(q, _mm512_srli_epi32(q, 31));  // q += (q < 0)
2288
        return q;
2289
    }
2290
}
2291
2292
__m512i libdivide_s32_branchfree_do_vec512(
2293
    __m512i numers, const struct libdivide_s32_branchfree_t *denom) {
2294
    int32_t magic = denom->magic;
2295
    uint8_t more = denom->more;
2296
    uint8_t shift = more & LIBDIVIDE_32_SHIFT_MASK;
2297
    // must be arithmetic shift
2298
    __m512i sign = _mm512_set1_epi32((int8_t)more >> 7);
2299
    __m512i q = libdivide_mullhi_s32_vec512(numers, _mm512_set1_epi32(magic));
2300
    q = _mm512_add_epi32(q, numers);  // q += numers
2301
2302
    // If q is non-negative, we have nothing to do
2303
    // If q is negative, we want to add either (2**shift)-1 if d is
2304
    // a power of 2, or (2**shift) if it is not a power of 2
2305
    uint32_t is_power_of_2 = (magic == 0);
2306
    __m512i q_sign = _mm512_srai_epi32(q, 31);  // q_sign = q >> 31
2307
    __m512i mask = _mm512_set1_epi32(((uint32_t)1 << shift) - is_power_of_2);
2308
    q = _mm512_add_epi32(q, _mm512_and_si512(q_sign, mask));  // q = q + (q_sign & mask)
2309
    q = _mm512_srai_epi32(q, shift);                          // q >>= shift
2310
    q = _mm512_sub_epi32(_mm512_xor_si512(q, sign), sign);    // q = (q ^ sign) - sign
2311
    return q;
2312
}
2313
2314
////////// SINT64
2315
2316
__m512i libdivide_s64_do_vec512(__m512i numers, const struct libdivide_s64_t *denom) {
2317
    uint8_t more = denom->more;
2318
    int64_t magic = denom->magic;
2319
    if (magic == 0) {  // shift path
2320
        uint32_t shift = more & LIBDIVIDE_64_SHIFT_MASK;
2321
        uint64_t mask = ((uint64_t)1 << shift) - 1;
2322
        __m512i roundToZeroTweak = _mm512_set1_epi64(mask);
2323
        // q = numer + ((numer >> 63) & roundToZeroTweak);
2324
        __m512i q = _mm512_add_epi64(
2325
            numers, _mm512_and_si512(libdivide_s64_signbits_vec512(numers), roundToZeroTweak));
2326
        q = libdivide_s64_shift_right_vec512(q, shift);
2327
        __m512i sign = _mm512_set1_epi32((int8_t)more >> 7);
2328
        // q = (q ^ sign) - sign;
2329
        q = _mm512_sub_epi64(_mm512_xor_si512(q, sign), sign);
2330
        return q;
2331
    } else {
2332
        __m512i q = libdivide_mullhi_s64_vec512(numers, _mm512_set1_epi64(magic));
2333
        if (more & LIBDIVIDE_ADD_MARKER) {
2334
            // must be arithmetic shift
2335
            __m512i sign = _mm512_set1_epi32((int8_t)more >> 7);
2336
            // q += ((numer ^ sign) - sign);
2337
            q = _mm512_add_epi64(q, _mm512_sub_epi64(_mm512_xor_si512(numers, sign), sign));
2338
        }
2339
        // q >>= denom->mult_path.shift
2340
        q = libdivide_s64_shift_right_vec512(q, more & LIBDIVIDE_64_SHIFT_MASK);
2341
        q = _mm512_add_epi64(q, _mm512_srli_epi64(q, 63));  // q += (q < 0)
2342
        return q;
2343
    }
2344
}
2345
2346
__m512i libdivide_s64_branchfree_do_vec512(
2347
    __m512i numers, const struct libdivide_s64_branchfree_t *denom) {
2348
    int64_t magic = denom->magic;
2349
    uint8_t more = denom->more;
2350
    uint8_t shift = more & LIBDIVIDE_64_SHIFT_MASK;
2351
    // must be arithmetic shift
2352
    __m512i sign = _mm512_set1_epi32((int8_t)more >> 7);
2353
2354
    // libdivide_mullhi_s64(numers, magic);
2355
    __m512i q = libdivide_mullhi_s64_vec512(numers, _mm512_set1_epi64(magic));
2356
    q = _mm512_add_epi64(q, numers);  // q += numers
2357
2358
    // If q is non-negative, we have nothing to do.
2359
    // If q is negative, we want to add either (2**shift)-1 if d is
2360
    // a power of 2, or (2**shift) if it is not a power of 2.
2361
    uint32_t is_power_of_2 = (magic == 0);
2362
    __m512i q_sign = libdivide_s64_signbits_vec512(q);  // q_sign = q >> 63
2363
    __m512i mask = _mm512_set1_epi64(((uint64_t)1 << shift) - is_power_of_2);
2364
    q = _mm512_add_epi64(q, _mm512_and_si512(q_sign, mask));  // q = q + (q_sign & mask)
2365
    q = libdivide_s64_shift_right_vec512(q, shift);           // q >>= shift
2366
    q = _mm512_sub_epi64(_mm512_xor_si512(q, sign), sign);    // q = (q ^ sign) - sign
2367
    return q;
2368
}
2369
2370
#endif
2371
2372
#if defined(LIBDIVIDE_AVX2)
2373
2374
static LIBDIVIDE_INLINE __m256i libdivide_u16_do_vec256(
2375
    __m256i numers, const struct libdivide_u16_t *denom);
2376
static LIBDIVIDE_INLINE __m256i libdivide_s16_do_vec256(
2377
    __m256i numers, const struct libdivide_s16_t *denom);
2378
static LIBDIVIDE_INLINE __m256i libdivide_u32_do_vec256(
2379
    __m256i numers, const struct libdivide_u32_t *denom);
2380
static LIBDIVIDE_INLINE __m256i libdivide_s32_do_vec256(
2381
    __m256i numers, const struct libdivide_s32_t *denom);
2382
static LIBDIVIDE_INLINE __m256i libdivide_u64_do_vec256(
2383
    __m256i numers, const struct libdivide_u64_t *denom);
2384
static LIBDIVIDE_INLINE __m256i libdivide_s64_do_vec256(
2385
    __m256i numers, const struct libdivide_s64_t *denom);
2386
2387
static LIBDIVIDE_INLINE __m256i libdivide_u16_branchfree_do_vec256(
2388
    __m256i numers, const struct libdivide_u16_branchfree_t *denom);
2389
static LIBDIVIDE_INLINE __m256i libdivide_s16_branchfree_do_vec256(
2390
    __m256i numers, const struct libdivide_s16_branchfree_t *denom);
2391
static LIBDIVIDE_INLINE __m256i libdivide_u32_branchfree_do_vec256(
2392
    __m256i numers, const struct libdivide_u32_branchfree_t *denom);
2393
static LIBDIVIDE_INLINE __m256i libdivide_s32_branchfree_do_vec256(
2394
    __m256i numers, const struct libdivide_s32_branchfree_t *denom);
2395
static LIBDIVIDE_INLINE __m256i libdivide_u64_branchfree_do_vec256(
2396
    __m256i numers, const struct libdivide_u64_branchfree_t *denom);
2397
static LIBDIVIDE_INLINE __m256i libdivide_s64_branchfree_do_vec256(
2398
    __m256i numers, const struct libdivide_s64_branchfree_t *denom);
2399
2400
//////// Internal Utility Functions
2401
2402
// Implementation of _mm256_srai_epi64(v, 63) (from AVX512).
2403
static LIBDIVIDE_INLINE __m256i libdivide_s64_signbits_vec256(__m256i v) {
2404
    __m256i hiBitsDuped = _mm256_shuffle_epi32(v, _MM_SHUFFLE(3, 3, 1, 1));
2405
    __m256i signBits = _mm256_srai_epi32(hiBitsDuped, 31);
2406
    return signBits;
2407
}
2408
2409
// Implementation of _mm256_srai_epi64 (from AVX512).
2410
static LIBDIVIDE_INLINE __m256i libdivide_s64_shift_right_vec256(__m256i v, int amt) {
2411
    const int b = 64 - amt;
2412
    __m256i m = _mm256_set1_epi64x((uint64_t)1 << (b - 1));
2413
    __m256i x = _mm256_srli_epi64(v, amt);
2414
    __m256i result = _mm256_sub_epi64(_mm256_xor_si256(x, m), m);
2415
    return result;
2416
}
2417
2418
// Here, b is assumed to contain one 32-bit value repeated.
2419
static LIBDIVIDE_INLINE __m256i libdivide_mullhi_u32_vec256(__m256i a, __m256i b) {
2420
    __m256i hi_product_0Z2Z = _mm256_srli_epi64(_mm256_mul_epu32(a, b), 32);
2421
    __m256i a1X3X = _mm256_srli_epi64(a, 32);
2422
    __m256i mask = _mm256_set_epi32(-1, 0, -1, 0, -1, 0, -1, 0);
2423
    __m256i hi_product_Z1Z3 = _mm256_and_si256(_mm256_mul_epu32(a1X3X, b), mask);
2424
    return _mm256_or_si256(hi_product_0Z2Z, hi_product_Z1Z3);
2425
}
2426
2427
// b is one 32-bit value repeated.
2428
static LIBDIVIDE_INLINE __m256i libdivide_mullhi_s32_vec256(__m256i a, __m256i b) {
2429
    __m256i hi_product_0Z2Z = _mm256_srli_epi64(_mm256_mul_epi32(a, b), 32);
2430
    __m256i a1X3X = _mm256_srli_epi64(a, 32);
2431
    __m256i mask = _mm256_set_epi32(-1, 0, -1, 0, -1, 0, -1, 0);
2432
    __m256i hi_product_Z1Z3 = _mm256_and_si256(_mm256_mul_epi32(a1X3X, b), mask);
2433
    return _mm256_or_si256(hi_product_0Z2Z, hi_product_Z1Z3);
2434
}
2435
2436
// Here, y is assumed to contain one 64-bit value repeated.
2437
static LIBDIVIDE_INLINE __m256i libdivide_mullhi_u64_vec256(__m256i x, __m256i y) {
2438
    // see m128i variant for comments.
2439
    __m256i x0y0 = _mm256_mul_epu32(x, y);
2440
    __m256i x0y0_hi = _mm256_srli_epi64(x0y0, 32);
2441
2442
    __m256i x1 = _mm256_shuffle_epi32(x, _MM_SHUFFLE(3, 3, 1, 1));
2443
    __m256i y1 = _mm256_shuffle_epi32(y, _MM_SHUFFLE(3, 3, 1, 1));
2444
2445
    __m256i x0y1 = _mm256_mul_epu32(x, y1);
2446
    __m256i x1y0 = _mm256_mul_epu32(x1, y);
2447
    __m256i x1y1 = _mm256_mul_epu32(x1, y1);
2448
2449
    __m256i mask = _mm256_set1_epi64x(0xFFFFFFFF);
2450
    __m256i temp = _mm256_add_epi64(x1y0, x0y0_hi);
2451
    __m256i temp_lo = _mm256_and_si256(temp, mask);
2452
    __m256i temp_hi = _mm256_srli_epi64(temp, 32);
2453
2454
    temp_lo = _mm256_srli_epi64(_mm256_add_epi64(temp_lo, x0y1), 32);
2455
    temp_hi = _mm256_add_epi64(x1y1, temp_hi);
2456
    return _mm256_add_epi64(temp_lo, temp_hi);
2457
}
2458
2459
// y is one 64-bit value repeated.
2460
static LIBDIVIDE_INLINE __m256i libdivide_mullhi_s64_vec256(__m256i x, __m256i y) {
2461
    __m256i p = libdivide_mullhi_u64_vec256(x, y);
2462
    __m256i t1 = _mm256_and_si256(libdivide_s64_signbits_vec256(x), y);
2463
    __m256i t2 = _mm256_and_si256(libdivide_s64_signbits_vec256(y), x);
2464
    p = _mm256_sub_epi64(p, t1);
2465
    p = _mm256_sub_epi64(p, t2);
2466
    return p;
2467
}
2468
2469
////////// UINT16
2470
2471
__m256i libdivide_u16_do_vec256(__m256i numers, const struct libdivide_u16_t *denom) {
2472
    uint8_t more = denom->more;
2473
    if (!denom->magic) {
2474
        return _mm256_srli_epi16(numers, more);
2475
    } else {
2476
        __m256i q = _mm256_mulhi_epu16(numers, _mm256_set1_epi16(denom->magic));
2477
        if (more & LIBDIVIDE_ADD_MARKER) {
2478
            __m256i t = _mm256_adds_epu16(_mm256_srli_epi16(_mm256_subs_epu16(numers, q), 1), q);
2479
            return _mm256_srli_epi16(t, (more & LIBDIVIDE_16_SHIFT_MASK));
2480
        } else {
2481
            return _mm256_srli_epi16(q, more);
2482
        }
2483
    }
2484
}
2485
2486
__m256i libdivide_u16_branchfree_do_vec256(
2487
    __m256i numers, const struct libdivide_u16_branchfree_t *denom) {
2488
    __m256i q = _mm256_mulhi_epu16(numers, _mm256_set1_epi16(denom->magic));
2489
    __m256i t = _mm256_adds_epu16(_mm256_srli_epi16(_mm256_subs_epu16(numers, q), 1), q);
2490
    return _mm256_srli_epi16(t, denom->more);
2491
}
2492
2493
////////// UINT32
2494
2495
__m256i libdivide_u32_do_vec256(__m256i numers, const struct libdivide_u32_t *denom) {
2496
    uint8_t more = denom->more;
2497
    if (!denom->magic) {
2498
        return _mm256_srli_epi32(numers, more);
2499
    } else {
2500
        __m256i q = libdivide_mullhi_u32_vec256(numers, _mm256_set1_epi32(denom->magic));
2501
        if (more & LIBDIVIDE_ADD_MARKER) {
2502
            // uint32_t t = ((numer - q) >> 1) + q;
2503
            // return t >> denom->shift;
2504
            uint32_t shift = more & LIBDIVIDE_32_SHIFT_MASK;
2505
            __m256i t = _mm256_add_epi32(_mm256_srli_epi32(_mm256_sub_epi32(numers, q), 1), q);
2506
            return _mm256_srli_epi32(t, shift);
2507
        } else {
2508
            return _mm256_srli_epi32(q, more);
2509
        }
2510
    }
2511
}
2512
2513
__m256i libdivide_u32_branchfree_do_vec256(
2514
    __m256i numers, const struct libdivide_u32_branchfree_t *denom) {
2515
    __m256i q = libdivide_mullhi_u32_vec256(numers, _mm256_set1_epi32(denom->magic));
2516
    __m256i t = _mm256_add_epi32(_mm256_srli_epi32(_mm256_sub_epi32(numers, q), 1), q);
2517
    return _mm256_srli_epi32(t, denom->more);
2518
}
2519
2520
////////// UINT64
2521
2522
__m256i libdivide_u64_do_vec256(__m256i numers, const struct libdivide_u64_t *denom) {
2523
    uint8_t more = denom->more;
2524
    if (!denom->magic) {
2525
        return _mm256_srli_epi64(numers, more);
2526
    } else {
2527
        __m256i q = libdivide_mullhi_u64_vec256(numers, _mm256_set1_epi64x(denom->magic));
2528
        if (more & LIBDIVIDE_ADD_MARKER) {
2529
            // uint32_t t = ((numer - q) >> 1) + q;
2530
            // return t >> denom->shift;
2531
            uint32_t shift = more & LIBDIVIDE_64_SHIFT_MASK;
2532
            __m256i t = _mm256_add_epi64(_mm256_srli_epi64(_mm256_sub_epi64(numers, q), 1), q);
2533
            return _mm256_srli_epi64(t, shift);
2534
        } else {
2535
            return _mm256_srli_epi64(q, more);
2536
        }
2537
    }
2538
}
2539
2540
__m256i libdivide_u64_branchfree_do_vec256(
2541
    __m256i numers, const struct libdivide_u64_branchfree_t *denom) {
2542
    __m256i q = libdivide_mullhi_u64_vec256(numers, _mm256_set1_epi64x(denom->magic));
2543
    __m256i t = _mm256_add_epi64(_mm256_srli_epi64(_mm256_sub_epi64(numers, q), 1), q);
2544
    return _mm256_srli_epi64(t, denom->more);
2545
}
2546
2547
////////// SINT16
2548
2549
__m256i libdivide_s16_do_vec256(__m256i numers, const struct libdivide_s16_t *denom) {
2550
    uint8_t more = denom->more;
2551
    if (!denom->magic) {
2552
        uint16_t shift = more & LIBDIVIDE_16_SHIFT_MASK;
2553
        uint16_t mask = ((uint16_t)1 << shift) - 1;
2554
        __m256i roundToZeroTweak = _mm256_set1_epi16(mask);
2555
        // q = numer + ((numer >> 15) & roundToZeroTweak);
2556
        __m256i q = _mm256_add_epi16(
2557
            numers, _mm256_and_si256(_mm256_srai_epi16(numers, 15), roundToZeroTweak));
2558
        q = _mm256_srai_epi16(q, shift);
2559
        __m256i sign = _mm256_set1_epi16((int8_t)more >> 7);
2560
        // q = (q ^ sign) - sign;
2561
        q = _mm256_sub_epi16(_mm256_xor_si256(q, sign), sign);
2562
        return q;
2563
    } else {
2564
        __m256i q = _mm256_mulhi_epi16(numers, _mm256_set1_epi16(denom->magic));
2565
        if (more & LIBDIVIDE_ADD_MARKER) {
2566
            // must be arithmetic shift
2567
            __m256i sign = _mm256_set1_epi16((int8_t)more >> 7);
2568
            // q += ((numer ^ sign) - sign);
2569
            q = _mm256_add_epi16(q, _mm256_sub_epi16(_mm256_xor_si256(numers, sign), sign));
2570
        }
2571
        // q >>= shift
2572
        q = _mm256_srai_epi16(q, more & LIBDIVIDE_16_SHIFT_MASK);
2573
        q = _mm256_add_epi16(q, _mm256_srli_epi16(q, 15));  // q += (q < 0)
2574
        return q;
2575
    }
2576
}
2577
2578
__m256i libdivide_s16_branchfree_do_vec256(
2579
    __m256i numers, const struct libdivide_s16_branchfree_t *denom) {
2580
    int16_t magic = denom->magic;
2581
    uint8_t more = denom->more;
2582
    uint8_t shift = more & LIBDIVIDE_16_SHIFT_MASK;
2583
    // must be arithmetic shift
2584
    __m256i sign = _mm256_set1_epi16((int8_t)more >> 7);
2585
    __m256i q = _mm256_mulhi_epi16(numers, _mm256_set1_epi16(magic));
2586
    q = _mm256_add_epi16(q, numers);  // q += numers
2587
2588
    // If q is non-negative, we have nothing to do
2589
    // If q is negative, we want to add either (2**shift)-1 if d is
2590
    // a power of 2, or (2**shift) if it is not a power of 2
2591
    uint16_t is_power_of_2 = (magic == 0);
2592
    __m256i q_sign = _mm256_srai_epi16(q, 15);  // q_sign = q >> 15
2593
    __m256i mask = _mm256_set1_epi16(((uint16_t)1 << shift) - is_power_of_2);
2594
    q = _mm256_add_epi16(q, _mm256_and_si256(q_sign, mask));  // q = q + (q_sign & mask)
2595
    q = _mm256_srai_epi16(q, shift);                          // q >>= shift
2596
    q = _mm256_sub_epi16(_mm256_xor_si256(q, sign), sign);    // q = (q ^ sign) - sign
2597
    return q;
2598
}
2599
2600
////////// SINT32
2601
2602
__m256i libdivide_s32_do_vec256(__m256i numers, const struct libdivide_s32_t *denom) {
2603
    uint8_t more = denom->more;
2604
    if (!denom->magic) {
2605
        uint32_t shift = more & LIBDIVIDE_32_SHIFT_MASK;
2606
        uint32_t mask = ((uint32_t)1 << shift) - 1;
2607
        __m256i roundToZeroTweak = _mm256_set1_epi32(mask);
2608
        // q = numer + ((numer >> 31) & roundToZeroTweak);
2609
        __m256i q = _mm256_add_epi32(
2610
            numers, _mm256_and_si256(_mm256_srai_epi32(numers, 31), roundToZeroTweak));
2611
        q = _mm256_srai_epi32(q, shift);
2612
        __m256i sign = _mm256_set1_epi32((int8_t)more >> 7);
2613
        // q = (q ^ sign) - sign;
2614
        q = _mm256_sub_epi32(_mm256_xor_si256(q, sign), sign);
2615
        return q;
2616
    } else {
2617
        __m256i q = libdivide_mullhi_s32_vec256(numers, _mm256_set1_epi32(denom->magic));
2618
        if (more & LIBDIVIDE_ADD_MARKER) {
2619
            // must be arithmetic shift
2620
            __m256i sign = _mm256_set1_epi32((int8_t)more >> 7);
2621
            // q += ((numer ^ sign) - sign);
2622
            q = _mm256_add_epi32(q, _mm256_sub_epi32(_mm256_xor_si256(numers, sign), sign));
2623
        }
2624
        // q >>= shift
2625
        q = _mm256_srai_epi32(q, more & LIBDIVIDE_32_SHIFT_MASK);
2626
        q = _mm256_add_epi32(q, _mm256_srli_epi32(q, 31));  // q += (q < 0)
2627
        return q;
2628
    }
2629
}
2630
2631
__m256i libdivide_s32_branchfree_do_vec256(
2632
    __m256i numers, const struct libdivide_s32_branchfree_t *denom) {
2633
    int32_t magic = denom->magic;
2634
    uint8_t more = denom->more;
2635
    uint8_t shift = more & LIBDIVIDE_32_SHIFT_MASK;
2636
    // must be arithmetic shift
2637
    __m256i sign = _mm256_set1_epi32((int8_t)more >> 7);
2638
    __m256i q = libdivide_mullhi_s32_vec256(numers, _mm256_set1_epi32(magic));
2639
    q = _mm256_add_epi32(q, numers);  // q += numers
2640
2641
    // If q is non-negative, we have nothing to do
2642
    // If q is negative, we want to add either (2**shift)-1 if d is
2643
    // a power of 2, or (2**shift) if it is not a power of 2
2644
    uint32_t is_power_of_2 = (magic == 0);
2645
    __m256i q_sign = _mm256_srai_epi32(q, 31);  // q_sign = q >> 31
2646
    __m256i mask = _mm256_set1_epi32(((uint32_t)1 << shift) - is_power_of_2);
2647
    q = _mm256_add_epi32(q, _mm256_and_si256(q_sign, mask));  // q = q + (q_sign & mask)
2648
    q = _mm256_srai_epi32(q, shift);                          // q >>= shift
2649
    q = _mm256_sub_epi32(_mm256_xor_si256(q, sign), sign);    // q = (q ^ sign) - sign
2650
    return q;
2651
}
2652
2653
////////// SINT64
2654
2655
__m256i libdivide_s64_do_vec256(__m256i numers, const struct libdivide_s64_t *denom) {
2656
    uint8_t more = denom->more;
2657
    int64_t magic = denom->magic;
2658
    if (magic == 0) {  // shift path
2659
        uint32_t shift = more & LIBDIVIDE_64_SHIFT_MASK;
2660
        uint64_t mask = ((uint64_t)1 << shift) - 1;
2661
        __m256i roundToZeroTweak = _mm256_set1_epi64x(mask);
2662
        // q = numer + ((numer >> 63) & roundToZeroTweak);
2663
        __m256i q = _mm256_add_epi64(
2664
            numers, _mm256_and_si256(libdivide_s64_signbits_vec256(numers), roundToZeroTweak));
2665
        q = libdivide_s64_shift_right_vec256(q, shift);
2666
        __m256i sign = _mm256_set1_epi32((int8_t)more >> 7);
2667
        // q = (q ^ sign) - sign;
2668
        q = _mm256_sub_epi64(_mm256_xor_si256(q, sign), sign);
2669
        return q;
2670
    } else {
2671
        __m256i q = libdivide_mullhi_s64_vec256(numers, _mm256_set1_epi64x(magic));
2672
        if (more & LIBDIVIDE_ADD_MARKER) {
2673
            // must be arithmetic shift
2674
            __m256i sign = _mm256_set1_epi32((int8_t)more >> 7);
2675
            // q += ((numer ^ sign) - sign);
2676
            q = _mm256_add_epi64(q, _mm256_sub_epi64(_mm256_xor_si256(numers, sign), sign));
2677
        }
2678
        // q >>= denom->mult_path.shift
2679
        q = libdivide_s64_shift_right_vec256(q, more & LIBDIVIDE_64_SHIFT_MASK);
2680
        q = _mm256_add_epi64(q, _mm256_srli_epi64(q, 63));  // q += (q < 0)
2681
        return q;
2682
    }
2683
}
2684
2685
__m256i libdivide_s64_branchfree_do_vec256(
2686
    __m256i numers, const struct libdivide_s64_branchfree_t *denom) {
2687
    int64_t magic = denom->magic;
2688
    uint8_t more = denom->more;
2689
    uint8_t shift = more & LIBDIVIDE_64_SHIFT_MASK;
2690
    // must be arithmetic shift
2691
    __m256i sign = _mm256_set1_epi32((int8_t)more >> 7);
2692
2693
    // libdivide_mullhi_s64(numers, magic);
2694
    __m256i q = libdivide_mullhi_s64_vec256(numers, _mm256_set1_epi64x(magic));
2695
    q = _mm256_add_epi64(q, numers);  // q += numers
2696
2697
    // If q is non-negative, we have nothing to do.
2698
    // If q is negative, we want to add either (2**shift)-1 if d is
2699
    // a power of 2, or (2**shift) if it is not a power of 2.
2700
    uint32_t is_power_of_2 = (magic == 0);
2701
    __m256i q_sign = libdivide_s64_signbits_vec256(q);  // q_sign = q >> 63
2702
    __m256i mask = _mm256_set1_epi64x(((uint64_t)1 << shift) - is_power_of_2);
2703
    q = _mm256_add_epi64(q, _mm256_and_si256(q_sign, mask));  // q = q + (q_sign & mask)
2704
    q = libdivide_s64_shift_right_vec256(q, shift);           // q >>= shift
2705
    q = _mm256_sub_epi64(_mm256_xor_si256(q, sign), sign);    // q = (q ^ sign) - sign
2706
    return q;
2707
}
2708
2709
#endif
2710
2711
#if defined(LIBDIVIDE_SSE2)
2712
2713
static LIBDIVIDE_INLINE __m128i libdivide_u16_do_vec128(
2714
    __m128i numers, const struct libdivide_u16_t *denom);
2715
static LIBDIVIDE_INLINE __m128i libdivide_s16_do_vec128(
2716
    __m128i numers, const struct libdivide_s16_t *denom);
2717
static LIBDIVIDE_INLINE __m128i libdivide_u32_do_vec128(
2718
    __m128i numers, const struct libdivide_u32_t *denom);
2719
static LIBDIVIDE_INLINE __m128i libdivide_s32_do_vec128(
2720
    __m128i numers, const struct libdivide_s32_t *denom);
2721
static LIBDIVIDE_INLINE __m128i libdivide_u64_do_vec128(
2722
    __m128i numers, const struct libdivide_u64_t *denom);
2723
static LIBDIVIDE_INLINE __m128i libdivide_s64_do_vec128(
2724
    __m128i numers, const struct libdivide_s64_t *denom);
2725
2726
static LIBDIVIDE_INLINE __m128i libdivide_u16_branchfree_do_vec128(
2727
    __m128i numers, const struct libdivide_u16_branchfree_t *denom);
2728
static LIBDIVIDE_INLINE __m128i libdivide_s16_branchfree_do_vec128(
2729
    __m128i numers, const struct libdivide_s16_branchfree_t *denom);
2730
static LIBDIVIDE_INLINE __m128i libdivide_u32_branchfree_do_vec128(
2731
    __m128i numers, const struct libdivide_u32_branchfree_t *denom);
2732
static LIBDIVIDE_INLINE __m128i libdivide_s32_branchfree_do_vec128(
2733
    __m128i numers, const struct libdivide_s32_branchfree_t *denom);
2734
static LIBDIVIDE_INLINE __m128i libdivide_u64_branchfree_do_vec128(
2735
    __m128i numers, const struct libdivide_u64_branchfree_t *denom);
2736
static LIBDIVIDE_INLINE __m128i libdivide_s64_branchfree_do_vec128(
2737
    __m128i numers, const struct libdivide_s64_branchfree_t *denom);
2738
2739
//////// Internal Utility Functions
2740
2741
// Implementation of _mm_srai_epi64(v, 63) (from AVX512).
2742
0
static LIBDIVIDE_INLINE __m128i libdivide_s64_signbits_vec128(__m128i v) {
2743
0
    __m128i hiBitsDuped = _mm_shuffle_epi32(v, _MM_SHUFFLE(3, 3, 1, 1));
2744
0
    __m128i signBits = _mm_srai_epi32(hiBitsDuped, 31);
2745
0
    return signBits;
2746
0
}
2747
2748
// Implementation of _mm_srai_epi64 (from AVX512).
2749
0
static LIBDIVIDE_INLINE __m128i libdivide_s64_shift_right_vec128(__m128i v, int amt) {
2750
0
    const int b = 64 - amt;
2751
0
    __m128i m = _mm_set1_epi64x((uint64_t)1 << (b - 1));
2752
0
    __m128i x = _mm_srli_epi64(v, amt);
2753
0
    __m128i result = _mm_sub_epi64(_mm_xor_si128(x, m), m);
2754
0
    return result;
2755
0
}
2756
2757
// Here, b is assumed to contain one 32-bit value repeated.
2758
0
static LIBDIVIDE_INLINE __m128i libdivide_mullhi_u32_vec128(__m128i a, __m128i b) {
2759
0
    __m128i hi_product_0Z2Z = _mm_srli_epi64(_mm_mul_epu32(a, b), 32);
2760
0
    __m128i a1X3X = _mm_srli_epi64(a, 32);
2761
0
    __m128i mask = _mm_set_epi32(-1, 0, -1, 0);
2762
0
    __m128i hi_product_Z1Z3 = _mm_and_si128(_mm_mul_epu32(a1X3X, b), mask);
2763
0
    return _mm_or_si128(hi_product_0Z2Z, hi_product_Z1Z3);
2764
0
}
2765
2766
// SSE2 does not have a signed multiplication instruction, but we can convert
2767
// unsigned to signed pretty efficiently. Again, b is just a 32 bit value
2768
// repeated four times.
2769
0
static LIBDIVIDE_INLINE __m128i libdivide_mullhi_s32_vec128(__m128i a, __m128i b) {
2770
0
    __m128i p = libdivide_mullhi_u32_vec128(a, b);
2771
0
    // t1 = (a >> 31) & y, arithmetic shift
2772
0
    __m128i t1 = _mm_and_si128(_mm_srai_epi32(a, 31), b);
2773
0
    __m128i t2 = _mm_and_si128(_mm_srai_epi32(b, 31), a);
2774
0
    p = _mm_sub_epi32(p, t1);
2775
0
    p = _mm_sub_epi32(p, t2);
2776
0
    return p;
2777
0
}
2778
2779
// Here, y is assumed to contain one 64-bit value repeated.
2780
0
static LIBDIVIDE_INLINE __m128i libdivide_mullhi_u64_vec128(__m128i x, __m128i y) {
2781
0
    // full 128 bits product is:
2782
0
    // x0*y0 + (x0*y1 << 32) + (x1*y0 << 32) + (x1*y1 << 64)
2783
0
    // Note x0,y0,x1,y1 are all conceptually uint32, products are 32x32->64.
2784
0
2785
0
    // Compute x0*y0.
2786
0
    // Note x1, y1 are ignored by mul_epu32.
2787
0
    __m128i x0y0 = _mm_mul_epu32(x, y);
2788
0
    __m128i x0y0_hi = _mm_srli_epi64(x0y0, 32);
2789
0
2790
0
    // Get x1, y1 in the low bits.
2791
0
    // We could shuffle or right shift. Shuffles are preferred as they preserve
2792
0
    // the source register for the next computation.
2793
0
    __m128i x1 = _mm_shuffle_epi32(x, _MM_SHUFFLE(3, 3, 1, 1));
2794
0
    __m128i y1 = _mm_shuffle_epi32(y, _MM_SHUFFLE(3, 3, 1, 1));
2795
0
2796
0
    // No need to mask off top 32 bits for mul_epu32.
2797
0
    __m128i x0y1 = _mm_mul_epu32(x, y1);
2798
0
    __m128i x1y0 = _mm_mul_epu32(x1, y);
2799
0
    __m128i x1y1 = _mm_mul_epu32(x1, y1);
2800
0
2801
0
    // Mask here selects low bits only.
2802
0
    __m128i mask = _mm_set1_epi64x(0xFFFFFFFF);
2803
0
    __m128i temp = _mm_add_epi64(x1y0, x0y0_hi);
2804
0
    __m128i temp_lo = _mm_and_si128(temp, mask);
2805
0
    __m128i temp_hi = _mm_srli_epi64(temp, 32);
2806
0
2807
0
    temp_lo = _mm_srli_epi64(_mm_add_epi64(temp_lo, x0y1), 32);
2808
0
    temp_hi = _mm_add_epi64(x1y1, temp_hi);
2809
0
    return _mm_add_epi64(temp_lo, temp_hi);
2810
0
}
2811
2812
// y is one 64-bit value repeated.
2813
0
static LIBDIVIDE_INLINE __m128i libdivide_mullhi_s64_vec128(__m128i x, __m128i y) {
2814
0
    __m128i p = libdivide_mullhi_u64_vec128(x, y);
2815
0
    __m128i t1 = _mm_and_si128(libdivide_s64_signbits_vec128(x), y);
2816
0
    __m128i t2 = _mm_and_si128(libdivide_s64_signbits_vec128(y), x);
2817
0
    p = _mm_sub_epi64(p, t1);
2818
0
    p = _mm_sub_epi64(p, t2);
2819
0
    return p;
2820
0
}
2821
2822
////////// UINT26
2823
2824
0
__m128i libdivide_u16_do_vec128(__m128i numers, const struct libdivide_u16_t *denom) {
2825
0
    uint8_t more = denom->more;
2826
0
    if (!denom->magic) {
2827
0
        return _mm_srli_epi16(numers, more);
2828
0
    } else {
2829
0
        __m128i q = _mm_mulhi_epu16(numers, _mm_set1_epi16(denom->magic));
2830
0
        if (more & LIBDIVIDE_ADD_MARKER) {
2831
0
            __m128i t = _mm_adds_epu16(_mm_srli_epi16(_mm_subs_epu16(numers, q), 1), q);
2832
0
            return _mm_srli_epi16(t, (more & LIBDIVIDE_16_SHIFT_MASK));
2833
0
        } else {
2834
0
            return _mm_srli_epi16(q, more);
2835
0
        }
2836
0
    }
2837
0
}
2838
2839
__m128i libdivide_u16_branchfree_do_vec128(
2840
0
    __m128i numers, const struct libdivide_u16_branchfree_t *denom) {
2841
0
    __m128i q = _mm_mulhi_epu16(numers, _mm_set1_epi16(denom->magic));
2842
0
    __m128i t = _mm_adds_epu16(_mm_srli_epi16(_mm_subs_epu16(numers, q), 1), q);
2843
0
    return _mm_srli_epi16(t, denom->more);
2844
0
}
2845
2846
////////// UINT32
2847
2848
0
__m128i libdivide_u32_do_vec128(__m128i numers, const struct libdivide_u32_t *denom) {
2849
0
    uint8_t more = denom->more;
2850
0
    if (!denom->magic) {
2851
0
        return _mm_srli_epi32(numers, more);
2852
0
    } else {
2853
0
        __m128i q = libdivide_mullhi_u32_vec128(numers, _mm_set1_epi32(denom->magic));
2854
0
        if (more & LIBDIVIDE_ADD_MARKER) {
2855
            // uint32_t t = ((numer - q) >> 1) + q;
2856
            // return t >> denom->shift;
2857
0
            uint32_t shift = more & LIBDIVIDE_32_SHIFT_MASK;
2858
0
            __m128i t = _mm_add_epi32(_mm_srli_epi32(_mm_sub_epi32(numers, q), 1), q);
2859
0
            return _mm_srli_epi32(t, shift);
2860
0
        } else {
2861
0
            return _mm_srli_epi32(q, more);
2862
0
        }
2863
0
    }
2864
0
}
2865
2866
__m128i libdivide_u32_branchfree_do_vec128(
2867
0
    __m128i numers, const struct libdivide_u32_branchfree_t *denom) {
2868
0
    __m128i q = libdivide_mullhi_u32_vec128(numers, _mm_set1_epi32(denom->magic));
2869
0
    __m128i t = _mm_add_epi32(_mm_srli_epi32(_mm_sub_epi32(numers, q), 1), q);
2870
0
    return _mm_srli_epi32(t, denom->more);
2871
0
}
2872
2873
////////// UINT64
2874
2875
0
__m128i libdivide_u64_do_vec128(__m128i numers, const struct libdivide_u64_t *denom) {
2876
0
    uint8_t more = denom->more;
2877
0
    if (!denom->magic) {
2878
0
        return _mm_srli_epi64(numers, more);
2879
0
    } else {
2880
0
        __m128i q = libdivide_mullhi_u64_vec128(numers, _mm_set1_epi64x(denom->magic));
2881
0
        if (more & LIBDIVIDE_ADD_MARKER) {
2882
0
            // uint32_t t = ((numer - q) >> 1) + q;
2883
0
            // return t >> denom->shift;
2884
0
            uint32_t shift = more & LIBDIVIDE_64_SHIFT_MASK;
2885
0
            __m128i t = _mm_add_epi64(_mm_srli_epi64(_mm_sub_epi64(numers, q), 1), q);
2886
0
            return _mm_srli_epi64(t, shift);
2887
0
        } else {
2888
0
            return _mm_srli_epi64(q, more);
2889
0
        }
2890
0
    }
2891
0
}
2892
2893
__m128i libdivide_u64_branchfree_do_vec128(
2894
0
    __m128i numers, const struct libdivide_u64_branchfree_t *denom) {
2895
0
    __m128i q = libdivide_mullhi_u64_vec128(numers, _mm_set1_epi64x(denom->magic));
2896
0
    __m128i t = _mm_add_epi64(_mm_srli_epi64(_mm_sub_epi64(numers, q), 1), q);
2897
0
    return _mm_srli_epi64(t, denom->more);
2898
0
}
2899
2900
////////// SINT16
2901
2902
0
__m128i libdivide_s16_do_vec128(__m128i numers, const struct libdivide_s16_t *denom) {
2903
0
    uint8_t more = denom->more;
2904
0
    if (!denom->magic) {
2905
0
        uint16_t shift = more & LIBDIVIDE_16_SHIFT_MASK;
2906
0
        uint16_t mask = ((uint16_t)1 << shift) - 1;
2907
0
        __m128i roundToZeroTweak = _mm_set1_epi16(mask);
2908
0
        // q = numer + ((numer >> 15) & roundToZeroTweak);
2909
0
        __m128i q =
2910
0
            _mm_add_epi16(numers, _mm_and_si128(_mm_srai_epi16(numers, 15), roundToZeroTweak));
2911
0
        q = _mm_srai_epi16(q, shift);
2912
0
        __m128i sign = _mm_set1_epi16((int8_t)more >> 7);
2913
0
        // q = (q ^ sign) - sign;
2914
0
        q = _mm_sub_epi16(_mm_xor_si128(q, sign), sign);
2915
0
        return q;
2916
0
    } else {
2917
0
        __m128i q = _mm_mulhi_epi16(numers, _mm_set1_epi16(denom->magic));
2918
0
        if (more & LIBDIVIDE_ADD_MARKER) {
2919
0
            // must be arithmetic shift
2920
0
            __m128i sign = _mm_set1_epi16((int8_t)more >> 7);
2921
0
            // q += ((numer ^ sign) - sign);
2922
0
            q = _mm_add_epi16(q, _mm_sub_epi16(_mm_xor_si128(numers, sign), sign));
2923
0
        }
2924
0
        // q >>= shift
2925
0
        q = _mm_srai_epi16(q, more & LIBDIVIDE_16_SHIFT_MASK);
2926
0
        q = _mm_add_epi16(q, _mm_srli_epi16(q, 15));  // q += (q < 0)
2927
0
        return q;
2928
0
    }
2929
0
}
2930
2931
__m128i libdivide_s16_branchfree_do_vec128(
2932
0
    __m128i numers, const struct libdivide_s16_branchfree_t *denom) {
2933
0
    int16_t magic = denom->magic;
2934
0
    uint8_t more = denom->more;
2935
0
    uint8_t shift = more & LIBDIVIDE_16_SHIFT_MASK;
2936
0
    // must be arithmetic shift
2937
0
    __m128i sign = _mm_set1_epi16((int8_t)more >> 7);
2938
0
    __m128i q = _mm_mulhi_epi16(numers, _mm_set1_epi16(magic));
2939
0
    q = _mm_add_epi16(q, numers);  // q += numers
2940
0
2941
0
    // If q is non-negative, we have nothing to do
2942
0
    // If q is negative, we want to add either (2**shift)-1 if d is
2943
0
    // a power of 2, or (2**shift) if it is not a power of 2
2944
0
    uint16_t is_power_of_2 = (magic == 0);
2945
0
    __m128i q_sign = _mm_srai_epi16(q, 15);  // q_sign = q >> 15
2946
0
    __m128i mask = _mm_set1_epi16(((uint16_t)1 << shift) - is_power_of_2);
2947
0
    q = _mm_add_epi16(q, _mm_and_si128(q_sign, mask));  // q = q + (q_sign & mask)
2948
0
    q = _mm_srai_epi16(q, shift);                       // q >>= shift
2949
0
    q = _mm_sub_epi16(_mm_xor_si128(q, sign), sign);    // q = (q ^ sign) - sign
2950
0
    return q;
2951
0
}
2952
2953
////////// SINT32
2954
2955
0
__m128i libdivide_s32_do_vec128(__m128i numers, const struct libdivide_s32_t *denom) {
2956
0
    uint8_t more = denom->more;
2957
0
    if (!denom->magic) {
2958
0
        uint32_t shift = more & LIBDIVIDE_32_SHIFT_MASK;
2959
0
        uint32_t mask = ((uint32_t)1 << shift) - 1;
2960
0
        __m128i roundToZeroTweak = _mm_set1_epi32(mask);
2961
0
        // q = numer + ((numer >> 31) & roundToZeroTweak);
2962
0
        __m128i q =
2963
0
            _mm_add_epi32(numers, _mm_and_si128(_mm_srai_epi32(numers, 31), roundToZeroTweak));
2964
0
        q = _mm_srai_epi32(q, shift);
2965
0
        __m128i sign = _mm_set1_epi32((int8_t)more >> 7);
2966
0
        // q = (q ^ sign) - sign;
2967
0
        q = _mm_sub_epi32(_mm_xor_si128(q, sign), sign);
2968
0
        return q;
2969
0
    } else {
2970
0
        __m128i q = libdivide_mullhi_s32_vec128(numers, _mm_set1_epi32(denom->magic));
2971
0
        if (more & LIBDIVIDE_ADD_MARKER) {
2972
0
            // must be arithmetic shift
2973
0
            __m128i sign = _mm_set1_epi32((int8_t)more >> 7);
2974
0
            // q += ((numer ^ sign) - sign);
2975
0
            q = _mm_add_epi32(q, _mm_sub_epi32(_mm_xor_si128(numers, sign), sign));
2976
0
        }
2977
0
        // q >>= shift
2978
0
        q = _mm_srai_epi32(q, more & LIBDIVIDE_32_SHIFT_MASK);
2979
0
        q = _mm_add_epi32(q, _mm_srli_epi32(q, 31));  // q += (q < 0)
2980
0
        return q;
2981
0
    }
2982
0
}
2983
2984
__m128i libdivide_s32_branchfree_do_vec128(
2985
0
    __m128i numers, const struct libdivide_s32_branchfree_t *denom) {
2986
0
    int32_t magic = denom->magic;
2987
0
    uint8_t more = denom->more;
2988
0
    uint8_t shift = more & LIBDIVIDE_32_SHIFT_MASK;
2989
0
    // must be arithmetic shift
2990
0
    __m128i sign = _mm_set1_epi32((int8_t)more >> 7);
2991
0
    __m128i q = libdivide_mullhi_s32_vec128(numers, _mm_set1_epi32(magic));
2992
0
    q = _mm_add_epi32(q, numers);  // q += numers
2993
0
2994
0
    // If q is non-negative, we have nothing to do
2995
0
    // If q is negative, we want to add either (2**shift)-1 if d is
2996
0
    // a power of 2, or (2**shift) if it is not a power of 2
2997
0
    uint32_t is_power_of_2 = (magic == 0);
2998
0
    __m128i q_sign = _mm_srai_epi32(q, 31);  // q_sign = q >> 31
2999
0
    __m128i mask = _mm_set1_epi32(((uint32_t)1 << shift) - is_power_of_2);
3000
0
    q = _mm_add_epi32(q, _mm_and_si128(q_sign, mask));  // q = q + (q_sign & mask)
3001
0
    q = _mm_srai_epi32(q, shift);                       // q >>= shift
3002
0
    q = _mm_sub_epi32(_mm_xor_si128(q, sign), sign);    // q = (q ^ sign) - sign
3003
0
    return q;
3004
0
}
3005
3006
////////// SINT64
3007
3008
0
__m128i libdivide_s64_do_vec128(__m128i numers, const struct libdivide_s64_t *denom) {
3009
0
    uint8_t more = denom->more;
3010
0
    int64_t magic = denom->magic;
3011
0
    if (magic == 0) {  // shift path
3012
0
        uint32_t shift = more & LIBDIVIDE_64_SHIFT_MASK;
3013
0
        uint64_t mask = ((uint64_t)1 << shift) - 1;
3014
0
        __m128i roundToZeroTweak = _mm_set1_epi64x(mask);
3015
0
        // q = numer + ((numer >> 63) & roundToZeroTweak);
3016
0
        __m128i q = _mm_add_epi64(
3017
0
            numers, _mm_and_si128(libdivide_s64_signbits_vec128(numers), roundToZeroTweak));
3018
0
        q = libdivide_s64_shift_right_vec128(q, shift);
3019
0
        __m128i sign = _mm_set1_epi32((int8_t)more >> 7);
3020
0
        // q = (q ^ sign) - sign;
3021
0
        q = _mm_sub_epi64(_mm_xor_si128(q, sign), sign);
3022
0
        return q;
3023
0
    } else {
3024
0
        __m128i q = libdivide_mullhi_s64_vec128(numers, _mm_set1_epi64x(magic));
3025
0
        if (more & LIBDIVIDE_ADD_MARKER) {
3026
0
            // must be arithmetic shift
3027
0
            __m128i sign = _mm_set1_epi32((int8_t)more >> 7);
3028
0
            // q += ((numer ^ sign) - sign);
3029
0
            q = _mm_add_epi64(q, _mm_sub_epi64(_mm_xor_si128(numers, sign), sign));
3030
0
        }
3031
0
        // q >>= denom->mult_path.shift
3032
0
        q = libdivide_s64_shift_right_vec128(q, more & LIBDIVIDE_64_SHIFT_MASK);
3033
0
        q = _mm_add_epi64(q, _mm_srli_epi64(q, 63));  // q += (q < 0)
3034
0
        return q;
3035
0
    }
3036
0
}
3037
3038
__m128i libdivide_s64_branchfree_do_vec128(
3039
0
    __m128i numers, const struct libdivide_s64_branchfree_t *denom) {
3040
0
    int64_t magic = denom->magic;
3041
0
    uint8_t more = denom->more;
3042
0
    uint8_t shift = more & LIBDIVIDE_64_SHIFT_MASK;
3043
0
    // must be arithmetic shift
3044
0
    __m128i sign = _mm_set1_epi32((int8_t)more >> 7);
3045
0
3046
0
    // libdivide_mullhi_s64(numers, magic);
3047
0
    __m128i q = libdivide_mullhi_s64_vec128(numers, _mm_set1_epi64x(magic));
3048
0
    q = _mm_add_epi64(q, numers);  // q += numers
3049
0
3050
0
    // If q is non-negative, we have nothing to do.
3051
0
    // If q is negative, we want to add either (2**shift)-1 if d is
3052
0
    // a power of 2, or (2**shift) if it is not a power of 2.
3053
0
    uint32_t is_power_of_2 = (magic == 0);
3054
0
    __m128i q_sign = libdivide_s64_signbits_vec128(q);  // q_sign = q >> 63
3055
0
    __m128i mask = _mm_set1_epi64x(((uint64_t)1 << shift) - is_power_of_2);
3056
0
    q = _mm_add_epi64(q, _mm_and_si128(q_sign, mask));  // q = q + (q_sign & mask)
3057
0
    q = libdivide_s64_shift_right_vec128(q, shift);     // q >>= shift
3058
0
    q = _mm_sub_epi64(_mm_xor_si128(q, sign), sign);    // q = (q ^ sign) - sign
3059
0
    return q;
3060
0
}
3061
3062
#endif
3063
3064
////////// C++ stuff
3065
3066
#ifdef __cplusplus
3067
3068
enum Branching {
3069
    BRANCHFULL,  // use branching algorithms
3070
    BRANCHFREE   // use branchfree algorithms
3071
};
3072
3073
namespace detail {
3074
enum Signedness {
3075
    SIGNED,
3076
    UNSIGNED,
3077
};
3078
3079
#if defined(LIBDIVIDE_NEON)
3080
// Helper to deduce NEON vector type for integral type.
3081
template <int _WIDTH, Signedness _SIGN>
3082
struct NeonVec {};
3083
3084
template <>
3085
struct NeonVec<16, UNSIGNED> {
3086
    typedef uint16x8_t type;
3087
};
3088
3089
template <>
3090
struct NeonVec<16, SIGNED> {
3091
    typedef int16x8_t type;
3092
};
3093
3094
template <>
3095
struct NeonVec<32, UNSIGNED> {
3096
    typedef uint32x4_t type;
3097
};
3098
3099
template <>
3100
struct NeonVec<32, SIGNED> {
3101
    typedef int32x4_t type;
3102
};
3103
3104
template <>
3105
struct NeonVec<64, UNSIGNED> {
3106
    typedef uint64x2_t type;
3107
};
3108
3109
template <>
3110
struct NeonVec<64, SIGNED> {
3111
    typedef int64x2_t type;
3112
};
3113
3114
template <typename T>
3115
struct NeonVecFor {
3116
    // See 'class divider' for an explanation of these template parameters.
3117
    typedef typename NeonVec<sizeof(T) * 8, (((T)0 >> 0) > (T)(-1) ? SIGNED : UNSIGNED)>::type type;
3118
};
3119
3120
#define LIBDIVIDE_DIVIDE_NEON(ALGO, INT_TYPE)                    \
3121
    LIBDIVIDE_INLINE typename NeonVecFor<INT_TYPE>::type divide( \
3122
        typename NeonVecFor<INT_TYPE>::type n) const {           \
3123
        return libdivide_##ALGO##_do_vec128(n, &denom);          \
3124
    }
3125
#else
3126
#define LIBDIVIDE_DIVIDE_NEON(ALGO, INT_TYPE)
3127
#endif
3128
3129
#if defined(LIBDIVIDE_SSE2)
3130
#define LIBDIVIDE_DIVIDE_SSE2(ALGO)                     \
3131
0
    LIBDIVIDE_INLINE __m128i divide(__m128i n) const {  \
3132
0
        return libdivide_##ALGO##_do_vec128(n, &denom); \
3133
0
    }
Unexecuted instantiation: libdivide::detail::dispatcher<16, (libdivide::detail::Signedness)1, (libdivide::Branching)0>::divide(long long __vector(2)) const
Unexecuted instantiation: libdivide::detail::dispatcher<32, (libdivide::detail::Signedness)1, (libdivide::Branching)0>::divide(long long __vector(2)) const
Unexecuted instantiation: libdivide::detail::dispatcher<16, (libdivide::detail::Signedness)0, (libdivide::Branching)0>::divide(long long __vector(2)) const
Unexecuted instantiation: libdivide::detail::dispatcher<16, (libdivide::detail::Signedness)0, (libdivide::Branching)1>::divide(long long __vector(2)) const
Unexecuted instantiation: libdivide::detail::dispatcher<16, (libdivide::detail::Signedness)1, (libdivide::Branching)1>::divide(long long __vector(2)) const
Unexecuted instantiation: libdivide::detail::dispatcher<32, (libdivide::detail::Signedness)0, (libdivide::Branching)0>::divide(long long __vector(2)) const
Unexecuted instantiation: libdivide::detail::dispatcher<32, (libdivide::detail::Signedness)0, (libdivide::Branching)1>::divide(long long __vector(2)) const
Unexecuted instantiation: libdivide::detail::dispatcher<32, (libdivide::detail::Signedness)1, (libdivide::Branching)1>::divide(long long __vector(2)) const
Unexecuted instantiation: libdivide::detail::dispatcher<64, (libdivide::detail::Signedness)0, (libdivide::Branching)0>::divide(long long __vector(2)) const
Unexecuted instantiation: libdivide::detail::dispatcher<64, (libdivide::detail::Signedness)0, (libdivide::Branching)1>::divide(long long __vector(2)) const
Unexecuted instantiation: libdivide::detail::dispatcher<64, (libdivide::detail::Signedness)1, (libdivide::Branching)0>::divide(long long __vector(2)) const
Unexecuted instantiation: libdivide::detail::dispatcher<64, (libdivide::detail::Signedness)1, (libdivide::Branching)1>::divide(long long __vector(2)) const
3134
#else
3135
#define LIBDIVIDE_DIVIDE_SSE2(ALGO)
3136
#endif
3137
3138
#if defined(LIBDIVIDE_AVX2)
3139
#define LIBDIVIDE_DIVIDE_AVX2(ALGO)                     \
3140
    LIBDIVIDE_INLINE __m256i divide(__m256i n) const {  \
3141
        return libdivide_##ALGO##_do_vec256(n, &denom); \
3142
    }
3143
#else
3144
#define LIBDIVIDE_DIVIDE_AVX2(ALGO)
3145
#endif
3146
3147
#if defined(LIBDIVIDE_AVX512)
3148
#define LIBDIVIDE_DIVIDE_AVX512(ALGO)                   \
3149
    LIBDIVIDE_INLINE __m512i divide(__m512i n) const {  \
3150
        return libdivide_##ALGO##_do_vec512(n, &denom); \
3151
    }
3152
#else
3153
#define LIBDIVIDE_DIVIDE_AVX512(ALGO)
3154
#endif
3155
3156
// The DISPATCHER_GEN() macro generates C++ methods (for the given integer
3157
// and algorithm types) that redirect to libdivide's C API.
3158
#define DISPATCHER_GEN(T, ALGO)                                                       \
3159
    libdivide_##ALGO##_t denom;                                                       \
3160
0
    LIBDIVIDE_INLINE dispatcher() {}                                                  \
Unexecuted instantiation: libdivide::detail::dispatcher<16, (libdivide::detail::Signedness)0, (libdivide::Branching)0>::dispatcher()
Unexecuted instantiation: libdivide::detail::dispatcher<16, (libdivide::detail::Signedness)0, (libdivide::Branching)1>::dispatcher()
Unexecuted instantiation: libdivide::detail::dispatcher<16, (libdivide::detail::Signedness)1, (libdivide::Branching)0>::dispatcher()
Unexecuted instantiation: libdivide::detail::dispatcher<16, (libdivide::detail::Signedness)1, (libdivide::Branching)1>::dispatcher()
Unexecuted instantiation: libdivide::detail::dispatcher<32, (libdivide::detail::Signedness)0, (libdivide::Branching)0>::dispatcher()
Unexecuted instantiation: libdivide::detail::dispatcher<32, (libdivide::detail::Signedness)0, (libdivide::Branching)1>::dispatcher()
Unexecuted instantiation: libdivide::detail::dispatcher<32, (libdivide::detail::Signedness)1, (libdivide::Branching)0>::dispatcher()
Unexecuted instantiation: libdivide::detail::dispatcher<32, (libdivide::detail::Signedness)1, (libdivide::Branching)1>::dispatcher()
Unexecuted instantiation: libdivide::detail::dispatcher<64, (libdivide::detail::Signedness)0, (libdivide::Branching)0>::dispatcher()
Unexecuted instantiation: libdivide::detail::dispatcher<64, (libdivide::detail::Signedness)0, (libdivide::Branching)1>::dispatcher()
Unexecuted instantiation: libdivide::detail::dispatcher<64, (libdivide::detail::Signedness)1, (libdivide::Branching)0>::dispatcher()
Unexecuted instantiation: libdivide::detail::dispatcher<64, (libdivide::detail::Signedness)1, (libdivide::Branching)1>::dispatcher()
3161
0
    explicit LIBDIVIDE_CONSTEXPR dispatcher(decltype(nullptr)) : denom{} {}              \
Unexecuted instantiation: libdivide::detail::dispatcher<16, (libdivide::detail::Signedness)0, (libdivide::Branching)0>::dispatcher(decltype(nullptr))
Unexecuted instantiation: libdivide::detail::dispatcher<16, (libdivide::detail::Signedness)0, (libdivide::Branching)1>::dispatcher(decltype(nullptr))
Unexecuted instantiation: libdivide::detail::dispatcher<16, (libdivide::detail::Signedness)1, (libdivide::Branching)0>::dispatcher(decltype(nullptr))
Unexecuted instantiation: libdivide::detail::dispatcher<16, (libdivide::detail::Signedness)1, (libdivide::Branching)1>::dispatcher(decltype(nullptr))
Unexecuted instantiation: libdivide::detail::dispatcher<32, (libdivide::detail::Signedness)0, (libdivide::Branching)0>::dispatcher(decltype(nullptr))
Unexecuted instantiation: libdivide::detail::dispatcher<32, (libdivide::detail::Signedness)0, (libdivide::Branching)1>::dispatcher(decltype(nullptr))
Unexecuted instantiation: libdivide::detail::dispatcher<32, (libdivide::detail::Signedness)1, (libdivide::Branching)0>::dispatcher(decltype(nullptr))
Unexecuted instantiation: libdivide::detail::dispatcher<32, (libdivide::detail::Signedness)1, (libdivide::Branching)1>::dispatcher(decltype(nullptr))
Unexecuted instantiation: libdivide::detail::dispatcher<64, (libdivide::detail::Signedness)0, (libdivide::Branching)0>::dispatcher(decltype(nullptr))
Unexecuted instantiation: libdivide::detail::dispatcher<64, (libdivide::detail::Signedness)0, (libdivide::Branching)1>::dispatcher(decltype(nullptr))
Unexecuted instantiation: libdivide::detail::dispatcher<64, (libdivide::detail::Signedness)1, (libdivide::Branching)0>::dispatcher(decltype(nullptr))
Unexecuted instantiation: libdivide::detail::dispatcher<64, (libdivide::detail::Signedness)1, (libdivide::Branching)1>::dispatcher(decltype(nullptr))
3162
0
    LIBDIVIDE_INLINE dispatcher(T d) : denom(libdivide_##ALGO##_gen(d)) {}            \
Unexecuted instantiation: libdivide::detail::dispatcher<16, (libdivide::detail::Signedness)1, (libdivide::Branching)0>::dispatcher(unsigned short)
Unexecuted instantiation: libdivide::detail::dispatcher<32, (libdivide::detail::Signedness)1, (libdivide::Branching)0>::dispatcher(unsigned int)
Unexecuted instantiation: libdivide::detail::dispatcher<16, (libdivide::detail::Signedness)0, (libdivide::Branching)0>::dispatcher(short)
Unexecuted instantiation: libdivide::detail::dispatcher<16, (libdivide::detail::Signedness)0, (libdivide::Branching)1>::dispatcher(short)
Unexecuted instantiation: libdivide::detail::dispatcher<16, (libdivide::detail::Signedness)1, (libdivide::Branching)1>::dispatcher(unsigned short)
Unexecuted instantiation: libdivide::detail::dispatcher<32, (libdivide::detail::Signedness)0, (libdivide::Branching)0>::dispatcher(int)
Unexecuted instantiation: libdivide::detail::dispatcher<32, (libdivide::detail::Signedness)0, (libdivide::Branching)1>::dispatcher(int)
Unexecuted instantiation: libdivide::detail::dispatcher<32, (libdivide::detail::Signedness)1, (libdivide::Branching)1>::dispatcher(unsigned int)
Unexecuted instantiation: libdivide::detail::dispatcher<64, (libdivide::detail::Signedness)0, (libdivide::Branching)0>::dispatcher(long)
Unexecuted instantiation: libdivide::detail::dispatcher<64, (libdivide::detail::Signedness)0, (libdivide::Branching)1>::dispatcher(long)
Unexecuted instantiation: libdivide::detail::dispatcher<64, (libdivide::detail::Signedness)1, (libdivide::Branching)0>::dispatcher(unsigned long)
Unexecuted instantiation: libdivide::detail::dispatcher<64, (libdivide::detail::Signedness)1, (libdivide::Branching)1>::dispatcher(unsigned long)
3163
0
    LIBDIVIDE_INLINE T divide(T n) const { return libdivide_##ALGO##_do(n, &denom); } \
Unexecuted instantiation: libdivide::detail::dispatcher<16, (libdivide::detail::Signedness)0, (libdivide::Branching)0>::divide(short) const
Unexecuted instantiation: libdivide::detail::dispatcher<16, (libdivide::detail::Signedness)0, (libdivide::Branching)1>::divide(short) const
Unexecuted instantiation: libdivide::detail::dispatcher<16, (libdivide::detail::Signedness)1, (libdivide::Branching)0>::divide(unsigned short) const
Unexecuted instantiation: libdivide::detail::dispatcher<16, (libdivide::detail::Signedness)1, (libdivide::Branching)1>::divide(unsigned short) const
Unexecuted instantiation: libdivide::detail::dispatcher<32, (libdivide::detail::Signedness)0, (libdivide::Branching)0>::divide(int) const
Unexecuted instantiation: libdivide::detail::dispatcher<32, (libdivide::detail::Signedness)0, (libdivide::Branching)1>::divide(int) const
Unexecuted instantiation: libdivide::detail::dispatcher<32, (libdivide::detail::Signedness)1, (libdivide::Branching)0>::divide(unsigned int) const
Unexecuted instantiation: libdivide::detail::dispatcher<32, (libdivide::detail::Signedness)1, (libdivide::Branching)1>::divide(unsigned int) const
Unexecuted instantiation: libdivide::detail::dispatcher<64, (libdivide::detail::Signedness)0, (libdivide::Branching)0>::divide(long) const
Unexecuted instantiation: libdivide::detail::dispatcher<64, (libdivide::detail::Signedness)0, (libdivide::Branching)1>::divide(long) const
Unexecuted instantiation: libdivide::detail::dispatcher<64, (libdivide::detail::Signedness)1, (libdivide::Branching)0>::divide(unsigned long) const
Unexecuted instantiation: libdivide::detail::dispatcher<64, (libdivide::detail::Signedness)1, (libdivide::Branching)1>::divide(unsigned long) const
3164
0
    LIBDIVIDE_INLINE T recover() const { return libdivide_##ALGO##_recover(&denom); } \
Unexecuted instantiation: libdivide::detail::dispatcher<16, (libdivide::detail::Signedness)0, (libdivide::Branching)0>::recover() const
Unexecuted instantiation: libdivide::detail::dispatcher<16, (libdivide::detail::Signedness)0, (libdivide::Branching)1>::recover() const
Unexecuted instantiation: libdivide::detail::dispatcher<16, (libdivide::detail::Signedness)1, (libdivide::Branching)0>::recover() const
Unexecuted instantiation: libdivide::detail::dispatcher<16, (libdivide::detail::Signedness)1, (libdivide::Branching)1>::recover() const
Unexecuted instantiation: libdivide::detail::dispatcher<32, (libdivide::detail::Signedness)0, (libdivide::Branching)0>::recover() const
Unexecuted instantiation: libdivide::detail::dispatcher<32, (libdivide::detail::Signedness)0, (libdivide::Branching)1>::recover() const
Unexecuted instantiation: libdivide::detail::dispatcher<32, (libdivide::detail::Signedness)1, (libdivide::Branching)0>::recover() const
Unexecuted instantiation: libdivide::detail::dispatcher<32, (libdivide::detail::Signedness)1, (libdivide::Branching)1>::recover() const
Unexecuted instantiation: libdivide::detail::dispatcher<64, (libdivide::detail::Signedness)0, (libdivide::Branching)0>::recover() const
Unexecuted instantiation: libdivide::detail::dispatcher<64, (libdivide::detail::Signedness)0, (libdivide::Branching)1>::recover() const
Unexecuted instantiation: libdivide::detail::dispatcher<64, (libdivide::detail::Signedness)1, (libdivide::Branching)0>::recover() const
Unexecuted instantiation: libdivide::detail::dispatcher<64, (libdivide::detail::Signedness)1, (libdivide::Branching)1>::recover() const
3165
    LIBDIVIDE_DIVIDE_NEON(ALGO, T)                                                    \
3166
    LIBDIVIDE_DIVIDE_SSE2(ALGO)                                                       \
3167
    LIBDIVIDE_DIVIDE_AVX2(ALGO)                                                       \
3168
    LIBDIVIDE_DIVIDE_AVX512(ALGO)
3169
3170
// The dispatcher selects a specific division algorithm for a given
3171
// width, signedness, and ALGO using partial template specialization.
3172
template <int _WIDTH, Signedness _SIGN, Branching _ALGO>
3173
struct dispatcher {};
3174
3175
template <>
3176
struct dispatcher<16, SIGNED, BRANCHFULL> {
3177
    DISPATCHER_GEN(int16_t, s16)
3178
};
3179
template <>
3180
struct dispatcher<16, SIGNED, BRANCHFREE> {
3181
    DISPATCHER_GEN(int16_t, s16_branchfree)
3182
};
3183
template <>
3184
struct dispatcher<16, UNSIGNED, BRANCHFULL> {
3185
    DISPATCHER_GEN(uint16_t, u16)
3186
};
3187
template <>
3188
struct dispatcher<16, UNSIGNED, BRANCHFREE> {
3189
    DISPATCHER_GEN(uint16_t, u16_branchfree)
3190
};
3191
template <>
3192
struct dispatcher<32, SIGNED, BRANCHFULL> {
3193
    DISPATCHER_GEN(int32_t, s32)
3194
};
3195
template <>
3196
struct dispatcher<32, SIGNED, BRANCHFREE> {
3197
    DISPATCHER_GEN(int32_t, s32_branchfree)
3198
};
3199
template <>
3200
struct dispatcher<32, UNSIGNED, BRANCHFULL> {
3201
    DISPATCHER_GEN(uint32_t, u32)
3202
};
3203
template <>
3204
struct dispatcher<32, UNSIGNED, BRANCHFREE> {
3205
    DISPATCHER_GEN(uint32_t, u32_branchfree)
3206
};
3207
template <>
3208
struct dispatcher<64, SIGNED, BRANCHFULL> {
3209
    DISPATCHER_GEN(int64_t, s64)
3210
};
3211
template <>
3212
struct dispatcher<64, SIGNED, BRANCHFREE> {
3213
    DISPATCHER_GEN(int64_t, s64_branchfree)
3214
};
3215
template <>
3216
struct dispatcher<64, UNSIGNED, BRANCHFULL> {
3217
    DISPATCHER_GEN(uint64_t, u64)
3218
};
3219
template <>
3220
struct dispatcher<64, UNSIGNED, BRANCHFREE> {
3221
    DISPATCHER_GEN(uint64_t, u64_branchfree)
3222
};
3223
}  // namespace detail
3224
3225
#if defined(LIBDIVIDE_NEON)
3226
// Allow NeonVecFor outside of detail namespace.
3227
template <typename T>
3228
struct NeonVecFor {
3229
    typedef typename detail::NeonVecFor<T>::type type;
3230
};
3231
#endif
3232
3233
// This is the main divider class for use by the user (C++ API).
3234
// The actual division algorithm is selected using the dispatcher struct
3235
// based on the integer width and algorithm template parameters.
3236
template <typename T, Branching ALGO = BRANCHFULL>
3237
class divider {
3238
   private:
3239
    // Dispatch based on the size and signedness.
3240
    // We avoid using type_traits as it's not available in AVR.
3241
    // Detect signedness by checking if T(-1) is less than T(0).
3242
    // Also throw in a shift by 0, which prevents floating point types from being passed.
3243
    typedef detail::dispatcher<sizeof(T) * 8,
3244
        (((T)0 >> 0) > (T)(-1) ? detail::SIGNED : detail::UNSIGNED), ALGO>
3245
        dispatcher_t;
3246
3247
   public:
3248
    // We leave the default constructor empty so that creating
3249
    // an array of dividers and then initializing them
3250
    // later doesn't slow us down.
3251
    divider() {}
3252
3253
    // constexpr zero-initialization to allow for use w/ static constinit
3254
    explicit LIBDIVIDE_CONSTEXPR divider(decltype(nullptr)) : div(nullptr) {}
3255
3256
    // Constructor that takes the divisor as a parameter
3257
0
    LIBDIVIDE_INLINE divider(T d) : div(d) {}
Unexecuted instantiation: libdivide::divider<unsigned short, (libdivide::Branching)0>::divider(unsigned short)
Unexecuted instantiation: libdivide::divider<unsigned int, (libdivide::Branching)0>::divider(unsigned int)
3258
3259
    // Divides n by the divisor
3260
    LIBDIVIDE_INLINE T divide(T n) const { return div.divide(n); }
3261
3262
    // Recovers the divisor, returns the value that was
3263
    // used to initialize this divider object.
3264
    T recover() const { return div.recover(); }
3265
3266
    bool operator==(const divider<T, ALGO> &other) const {
3267
        return div.denom.magic == other.div.denom.magic && div.denom.more == other.div.denom.more;
3268
    }
3269
3270
    bool operator!=(const divider<T, ALGO> &other) const { return !(*this == other); }
3271
3272
    // Vector variants treat the input as packed integer values with the same type as the divider
3273
    // (e.g. s32, u32, s64, u64) and divides each of them by the divider, returning the packed
3274
    // quotients.
3275
#if defined(LIBDIVIDE_SSE2)
3276
0
    LIBDIVIDE_INLINE __m128i divide(__m128i n) const { return div.divide(n); }
Unexecuted instantiation: libdivide::divider<unsigned short, (libdivide::Branching)0>::divide(long long __vector(2)) const
Unexecuted instantiation: libdivide::divider<unsigned int, (libdivide::Branching)0>::divide(long long __vector(2)) const
3277
#endif
3278
#if defined(LIBDIVIDE_AVX2)
3279
    LIBDIVIDE_INLINE __m256i divide(__m256i n) const { return div.divide(n); }
3280
#endif
3281
#if defined(LIBDIVIDE_AVX512)
3282
    LIBDIVIDE_INLINE __m512i divide(__m512i n) const { return div.divide(n); }
3283
#endif
3284
#if defined(LIBDIVIDE_NEON)
3285
    LIBDIVIDE_INLINE typename NeonVecFor<T>::type divide(typename NeonVecFor<T>::type n) const {
3286
        return div.divide(n);
3287
    }
3288
#endif
3289
3290
   private:
3291
    // Storage for the actual divisor
3292
    dispatcher_t div;
3293
};
3294
3295
// Overload of operator / for scalar division
3296
template <typename T, Branching ALGO>
3297
LIBDIVIDE_INLINE T operator/(T n, const divider<T, ALGO> &div) {
3298
    return div.divide(n);
3299
}
3300
3301
// Overload of operator /= for scalar division
3302
template <typename T, Branching ALGO>
3303
LIBDIVIDE_INLINE T &operator/=(T &n, const divider<T, ALGO> &div) {
3304
    n = div.divide(n);
3305
    return n;
3306
}
3307
3308
// Overloads for vector types.
3309
#if defined(LIBDIVIDE_SSE2)
3310
template <typename T, Branching ALGO>
3311
LIBDIVIDE_INLINE __m128i operator/(__m128i n, const divider<T, ALGO> &div) {
3312
    return div.divide(n);
3313
}
3314
3315
template <typename T, Branching ALGO>
3316
0
LIBDIVIDE_INLINE __m128i operator/=(__m128i &n, const divider<T, ALGO> &div) {
3317
0
    n = div.divide(n);
3318
0
    return n;
3319
0
}
Unexecuted instantiation: long long __vector(2) libdivide::operator/=<unsigned short, (libdivide::Branching)0>(long long __vector(2)&, libdivide::divider<unsigned short, (libdivide::Branching)0> const&)
Unexecuted instantiation: long long __vector(2) libdivide::operator/=<unsigned int, (libdivide::Branching)0>(long long __vector(2)&, libdivide::divider<unsigned int, (libdivide::Branching)0> const&)
3320
#endif
3321
#if defined(LIBDIVIDE_AVX2)
3322
template <typename T, Branching ALGO>
3323
LIBDIVIDE_INLINE __m256i operator/(__m256i n, const divider<T, ALGO> &div) {
3324
    return div.divide(n);
3325
}
3326
3327
template <typename T, Branching ALGO>
3328
LIBDIVIDE_INLINE __m256i operator/=(__m256i &n, const divider<T, ALGO> &div) {
3329
    n = div.divide(n);
3330
    return n;
3331
}
3332
#endif
3333
#if defined(LIBDIVIDE_AVX512)
3334
template <typename T, Branching ALGO>
3335
LIBDIVIDE_INLINE __m512i operator/(__m512i n, const divider<T, ALGO> &div) {
3336
    return div.divide(n);
3337
}
3338
3339
template <typename T, Branching ALGO>
3340
LIBDIVIDE_INLINE __m512i operator/=(__m512i &n, const divider<T, ALGO> &div) {
3341
    n = div.divide(n);
3342
    return n;
3343
}
3344
#endif
3345
3346
#if defined(LIBDIVIDE_NEON)
3347
template <typename T, Branching ALGO>
3348
LIBDIVIDE_INLINE typename NeonVecFor<T>::type operator/(
3349
    typename NeonVecFor<T>::type n, const divider<T, ALGO> &div) {
3350
    return div.divide(n);
3351
}
3352
3353
template <typename T, Branching ALGO>
3354
LIBDIVIDE_INLINE typename NeonVecFor<T>::type operator/=(
3355
    typename NeonVecFor<T>::type &n, const divider<T, ALGO> &div) {
3356
    n = div.divide(n);
3357
    return n;
3358
}
3359
#endif
3360
3361
#if __cplusplus >= 201103L || (defined(_MSC_VER) && _MSC_VER >= 1900)
3362
// libdivide::branchfree_divider<T>
3363
template <typename T>
3364
using branchfree_divider = divider<T, BRANCHFREE>;
3365
#endif
3366
3367
}  // namespace libdivide
3368
3369
#endif  // __cplusplus
3370
3371
#if defined(_MSC_VER) && !defined(__clang__)
3372
#pragma warning(pop)
3373
#endif
3374
3375
#endif  // LIBDIVIDE_H