/src/gdal/alg/gdalwarpoperation.cpp
Line | Count | Source |
1 | | /****************************************************************************** |
2 | | * |
3 | | * Project: High Performance Image Reprojector |
4 | | * Purpose: Implementation of the GDALWarpOperation class. |
5 | | * Author: Frank Warmerdam, warmerdam@pobox.com |
6 | | * |
7 | | ****************************************************************************** |
8 | | * Copyright (c) 2003, Frank Warmerdam <warmerdam@pobox.com> |
9 | | * Copyright (c) 2007-2012, Even Rouault <even dot rouault at spatialys.com> |
10 | | * |
11 | | * SPDX-License-Identifier: MIT |
12 | | ****************************************************************************/ |
13 | | |
14 | | #include "cpl_port.h" |
15 | | #include "gdalwarper.h" |
16 | | |
17 | | #include <cctype> |
18 | | #include <climits> |
19 | | #include <cmath> |
20 | | #include <cstddef> |
21 | | #include <cstdlib> |
22 | | #include <cstring> |
23 | | |
24 | | #include <algorithm> |
25 | | #include <limits> |
26 | | #include <map> |
27 | | #include <memory> |
28 | | #include <mutex> |
29 | | |
30 | | #include "cpl_config.h" |
31 | | #include "cpl_conv.h" |
32 | | #include "cpl_error.h" |
33 | | #include "cpl_error_internal.h" |
34 | | #include "cpl_mask.h" |
35 | | #include "cpl_multiproc.h" |
36 | | #include "cpl_string.h" |
37 | | #include "cpl_vsi.h" |
38 | | #include "gdal.h" |
39 | | #include "gdal_priv.h" |
40 | | #include "gdal_alg_priv.h" |
41 | | #include "ogr_api.h" |
42 | | #include "ogr_core.h" |
43 | | |
44 | | struct _GDALWarpChunk |
45 | | { |
46 | | int dx, dy, dsx, dsy; |
47 | | int sx, sy, ssx, ssy; |
48 | | double sExtraSx, sExtraSy; |
49 | | }; |
50 | | |
51 | | struct GDALWarpPrivateData |
52 | | { |
53 | | int nStepCount = 0; |
54 | | std::vector<int> abSuccess{}; |
55 | | std::vector<double> adfDstX{}; |
56 | | std::vector<double> adfDstY{}; |
57 | | }; |
58 | | |
59 | | static std::mutex gMutex{}; |
60 | | static std::map<GDALWarpOperation *, std::unique_ptr<GDALWarpPrivateData>> |
61 | | gMapPrivate{}; |
62 | | |
63 | | static GDALWarpPrivateData * |
64 | | GetWarpPrivateData(GDALWarpOperation *poWarpOperation) |
65 | 0 | { |
66 | 0 | std::lock_guard<std::mutex> oLock(gMutex); |
67 | 0 | auto oItem = gMapPrivate.find(poWarpOperation); |
68 | 0 | if (oItem != gMapPrivate.end()) |
69 | 0 | { |
70 | 0 | return oItem->second.get(); |
71 | 0 | } |
72 | 0 | else |
73 | 0 | { |
74 | 0 | gMapPrivate[poWarpOperation] = |
75 | 0 | std::unique_ptr<GDALWarpPrivateData>(new GDALWarpPrivateData()); |
76 | 0 | return gMapPrivate[poWarpOperation].get(); |
77 | 0 | } |
78 | 0 | } |
79 | | |
80 | | /************************************************************************/ |
81 | | /* ==================================================================== */ |
82 | | /* GDALWarpOperation */ |
83 | | /* ==================================================================== */ |
84 | | /************************************************************************/ |
85 | | |
86 | | /** |
87 | | * \class GDALWarpOperation "gdalwarper.h" |
88 | | * |
89 | | * High level image warping class. |
90 | | |
91 | | <h2>Warper Design</h2> |
92 | | |
93 | | The overall GDAL high performance image warper is split into a few components. |
94 | | |
95 | | - The transformation between input and output file coordinates is handled |
96 | | via GDALTransformerFunc() implementations such as the one returned by |
97 | | GDALCreateGenImgProjTransformer(). The transformers are ultimately responsible |
98 | | for translating pixel/line locations on the destination image to pixel/line |
99 | | locations on the source image. |
100 | | |
101 | | - In order to handle images too large to hold in RAM, the warper needs to |
102 | | segment large images. This is the responsibility of the GDALWarpOperation |
103 | | class. The GDALWarpOperation::ChunkAndWarpImage() invokes |
104 | | GDALWarpOperation::WarpRegion() on chunks of output and input image that |
105 | | are small enough to hold in the amount of memory allowed by the application. |
106 | | This process is described in greater detail in the <b>Image Chunking</b> |
107 | | section. |
108 | | |
109 | | - The GDALWarpOperation::WarpRegion() function creates and loads an output |
110 | | image buffer, and then calls WarpRegionToBuffer(). |
111 | | |
112 | | - GDALWarpOperation::WarpRegionToBuffer() is responsible for loading the |
113 | | source imagery corresponding to a particular output region, and generating |
114 | | masks and density masks from the source and destination imagery using |
115 | | the generator functions found in the GDALWarpOptions structure. Binds this |
116 | | all into an instance of GDALWarpKernel on which the |
117 | | GDALWarpKernel::PerformWarp() method is called. |
118 | | |
119 | | - GDALWarpKernel does the actual image warping, but is given an input image |
120 | | and an output image to operate on. The GDALWarpKernel does no IO, and in |
121 | | fact knows nothing about GDAL. It invokes the transformation function to |
122 | | get sample locations, builds output values based on the resampling algorithm |
123 | | in use. It also takes any validity and density masks into account during |
124 | | this operation. |
125 | | |
126 | | <h3>Chunk Size Selection</h3> |
127 | | |
128 | | The GDALWarpOptions ChunkAndWarpImage() method is responsible for invoking |
129 | | the WarpRegion() method on appropriate sized output chunks such that the |
130 | | memory required for the output image buffer, input image buffer and any |
131 | | required density and validity buffers is less than or equal to the application |
132 | | defined maximum memory available for use. |
133 | | |
134 | | It checks the memory required by walking the edges of the output region, |
135 | | transforming the locations back into source pixel/line coordinates and |
136 | | establishing a bounding rectangle of source imagery that would be required |
137 | | for the output area. This is actually accomplished by the private |
138 | | GDALWarpOperation::ComputeSourceWindow() method. |
139 | | |
140 | | Then memory requirements are used by totaling the memory required for all |
141 | | output bands, input bands, validity masks and density masks. If this is |
142 | | greater than the GDALWarpOptions::dfWarpMemoryLimit then the destination |
143 | | region is divided in two (splitting the longest dimension), and |
144 | | ChunkAndWarpImage() recursively invoked on each destination subregion. |
145 | | |
146 | | <h3>Validity and Density Masks Generation</h3> |
147 | | |
148 | | Fill in ways in which the validity and density masks may be generated here. |
149 | | Note that detailed semantics of the masks should be found in |
150 | | GDALWarpKernel. |
151 | | */ |
152 | | |
153 | | /************************************************************************/ |
154 | | /* GDALWarpOperation() */ |
155 | | /************************************************************************/ |
156 | | |
157 | 0 | GDALWarpOperation::GDALWarpOperation() = default; |
158 | | |
159 | | /************************************************************************/ |
160 | | /* ~GDALWarpOperation() */ |
161 | | /************************************************************************/ |
162 | | |
163 | | GDALWarpOperation::~GDALWarpOperation() |
164 | | |
165 | 0 | { |
166 | 0 | { |
167 | 0 | std::lock_guard<std::mutex> oLock(gMutex); |
168 | 0 | auto oItem = gMapPrivate.find(this); |
169 | 0 | if (oItem != gMapPrivate.end()) |
170 | 0 | { |
171 | 0 | gMapPrivate.erase(oItem); |
172 | 0 | } |
173 | 0 | } |
174 | |
|
175 | 0 | WipeOptions(); |
176 | |
|
177 | 0 | if (hIOMutex != nullptr) |
178 | 0 | { |
179 | 0 | CPLDestroyMutex(hIOMutex); |
180 | 0 | CPLDestroyMutex(hWarpMutex); |
181 | 0 | } |
182 | |
|
183 | 0 | WipeChunkList(); |
184 | 0 | if (psThreadData) |
185 | 0 | GWKThreadsEnd(psThreadData); |
186 | 0 | } |
187 | | |
188 | | /************************************************************************/ |
189 | | /* GetOptions() */ |
190 | | /************************************************************************/ |
191 | | |
192 | | /** Return warp options */ |
193 | | const GDALWarpOptions *GDALWarpOperation::GetOptions() |
194 | | |
195 | 0 | { |
196 | 0 | return psOptions; |
197 | 0 | } |
198 | | |
199 | | /************************************************************************/ |
200 | | /* WipeOptions() */ |
201 | | /************************************************************************/ |
202 | | |
203 | | void GDALWarpOperation::WipeOptions() |
204 | | |
205 | 0 | { |
206 | 0 | if (psOptions != nullptr) |
207 | 0 | { |
208 | 0 | GDALDestroyWarpOptions(psOptions); |
209 | 0 | psOptions = nullptr; |
210 | 0 | } |
211 | 0 | } |
212 | | |
213 | | /************************************************************************/ |
214 | | /* ValidateOptions() */ |
215 | | /************************************************************************/ |
216 | | |
217 | | int GDALWarpOperation::ValidateOptions() |
218 | | |
219 | 0 | { |
220 | 0 | if (psOptions == nullptr) |
221 | 0 | { |
222 | 0 | CPLError(CE_Failure, CPLE_IllegalArg, |
223 | 0 | "GDALWarpOptions.Validate(): " |
224 | 0 | "no options currently initialized."); |
225 | 0 | return FALSE; |
226 | 0 | } |
227 | | |
228 | 0 | if (psOptions->dfWarpMemoryLimit < 100000.0) |
229 | 0 | { |
230 | 0 | CPLError(CE_Failure, CPLE_IllegalArg, |
231 | 0 | "GDALWarpOptions.Validate(): " |
232 | 0 | "dfWarpMemoryLimit=%g is unreasonably small.", |
233 | 0 | psOptions->dfWarpMemoryLimit); |
234 | 0 | return FALSE; |
235 | 0 | } |
236 | | |
237 | 0 | if (psOptions->eResampleAlg != GRA_NearestNeighbour && |
238 | 0 | psOptions->eResampleAlg != GRA_Bilinear && |
239 | 0 | psOptions->eResampleAlg != GRA_Cubic && |
240 | 0 | psOptions->eResampleAlg != GRA_CubicSpline && |
241 | 0 | psOptions->eResampleAlg != GRA_Lanczos && |
242 | 0 | psOptions->eResampleAlg != GRA_Average && |
243 | 0 | psOptions->eResampleAlg != GRA_RMS && |
244 | 0 | psOptions->eResampleAlg != GRA_Mode && |
245 | 0 | psOptions->eResampleAlg != GRA_Max && |
246 | 0 | psOptions->eResampleAlg != GRA_Min && |
247 | 0 | psOptions->eResampleAlg != GRA_Med && |
248 | 0 | psOptions->eResampleAlg != GRA_Q1 && |
249 | 0 | psOptions->eResampleAlg != GRA_Q3 && psOptions->eResampleAlg != GRA_Sum) |
250 | 0 | { |
251 | 0 | CPLError(CE_Failure, CPLE_IllegalArg, |
252 | 0 | "GDALWarpOptions.Validate(): " |
253 | 0 | "eResampleArg=%d is not a supported value.", |
254 | 0 | psOptions->eResampleAlg); |
255 | 0 | return FALSE; |
256 | 0 | } |
257 | | |
258 | 0 | if (static_cast<int>(psOptions->eWorkingDataType) < 1 || |
259 | 0 | static_cast<int>(psOptions->eWorkingDataType) >= GDT_TypeCount) |
260 | 0 | { |
261 | 0 | CPLError(CE_Failure, CPLE_IllegalArg, |
262 | 0 | "GDALWarpOptions.Validate(): " |
263 | 0 | "eWorkingDataType=%d is not a supported value.", |
264 | 0 | psOptions->eWorkingDataType); |
265 | 0 | return FALSE; |
266 | 0 | } |
267 | | |
268 | 0 | if (GDALDataTypeIsComplex(psOptions->eWorkingDataType) != 0 && |
269 | 0 | (psOptions->eResampleAlg == GRA_Max || |
270 | 0 | psOptions->eResampleAlg == GRA_Min || |
271 | 0 | psOptions->eResampleAlg == GRA_Med || |
272 | 0 | psOptions->eResampleAlg == GRA_Q1 || |
273 | 0 | psOptions->eResampleAlg == GRA_Q3)) |
274 | 0 | { |
275 | |
|
276 | 0 | CPLError(CE_Failure, CPLE_NotSupported, |
277 | 0 | "GDALWarpOptions.Validate(): " |
278 | 0 | "min/max/qnt not supported for complex valued data."); |
279 | 0 | return FALSE; |
280 | 0 | } |
281 | | |
282 | 0 | if (psOptions->hSrcDS == nullptr) |
283 | 0 | { |
284 | 0 | CPLError(CE_Failure, CPLE_IllegalArg, |
285 | 0 | "GDALWarpOptions.Validate(): " |
286 | 0 | "hSrcDS is not set."); |
287 | 0 | return FALSE; |
288 | 0 | } |
289 | | |
290 | 0 | if (psOptions->nBandCount == 0) |
291 | 0 | { |
292 | 0 | CPLError(CE_Failure, CPLE_IllegalArg, |
293 | 0 | "GDALWarpOptions.Validate(): " |
294 | 0 | "nBandCount=0, no bands configured!"); |
295 | 0 | return FALSE; |
296 | 0 | } |
297 | | |
298 | 0 | if (psOptions->panSrcBands == nullptr) |
299 | 0 | { |
300 | 0 | CPLError(CE_Failure, CPLE_IllegalArg, |
301 | 0 | "GDALWarpOptions.Validate(): " |
302 | 0 | "panSrcBands is NULL."); |
303 | 0 | return FALSE; |
304 | 0 | } |
305 | | |
306 | 0 | if (psOptions->hDstDS != nullptr && psOptions->panDstBands == nullptr) |
307 | 0 | { |
308 | 0 | CPLError(CE_Failure, CPLE_IllegalArg, |
309 | 0 | "GDALWarpOptions.Validate(): " |
310 | 0 | "panDstBands is NULL."); |
311 | 0 | return FALSE; |
312 | 0 | } |
313 | | |
314 | 0 | for (int iBand = 0; iBand < psOptions->nBandCount; iBand++) |
315 | 0 | { |
316 | 0 | if (psOptions->panSrcBands[iBand] < 1 || |
317 | 0 | psOptions->panSrcBands[iBand] > |
318 | 0 | GDALGetRasterCount(psOptions->hSrcDS)) |
319 | 0 | { |
320 | 0 | CPLError(CE_Failure, CPLE_IllegalArg, |
321 | 0 | "panSrcBands[%d] = %d ... out of range for dataset.", |
322 | 0 | iBand, psOptions->panSrcBands[iBand]); |
323 | 0 | return FALSE; |
324 | 0 | } |
325 | 0 | if (psOptions->hDstDS != nullptr && |
326 | 0 | (psOptions->panDstBands[iBand] < 1 || |
327 | 0 | psOptions->panDstBands[iBand] > |
328 | 0 | GDALGetRasterCount(psOptions->hDstDS))) |
329 | 0 | { |
330 | 0 | CPLError(CE_Failure, CPLE_IllegalArg, |
331 | 0 | "panDstBands[%d] = %d ... out of range for dataset.", |
332 | 0 | iBand, psOptions->panDstBands[iBand]); |
333 | 0 | return FALSE; |
334 | 0 | } |
335 | | |
336 | 0 | if (psOptions->hDstDS != nullptr && |
337 | 0 | GDALGetRasterAccess(GDALGetRasterBand( |
338 | 0 | psOptions->hDstDS, psOptions->panDstBands[iBand])) == |
339 | 0 | GA_ReadOnly) |
340 | 0 | { |
341 | 0 | CPLError(CE_Failure, CPLE_IllegalArg, |
342 | 0 | "Destination band %d appears to be read-only.", |
343 | 0 | psOptions->panDstBands[iBand]); |
344 | 0 | return FALSE; |
345 | 0 | } |
346 | 0 | } |
347 | | |
348 | 0 | if (psOptions->nBandCount == 0) |
349 | 0 | { |
350 | 0 | CPLError(CE_Failure, CPLE_IllegalArg, |
351 | 0 | "GDALWarpOptions.Validate(): " |
352 | 0 | "nBandCount=0, no bands configured!"); |
353 | 0 | return FALSE; |
354 | 0 | } |
355 | | |
356 | 0 | if (psOptions->pfnProgress == nullptr) |
357 | 0 | { |
358 | 0 | CPLError(CE_Failure, CPLE_IllegalArg, |
359 | 0 | "GDALWarpOptions.Validate(): " |
360 | 0 | "pfnProgress is NULL."); |
361 | 0 | return FALSE; |
362 | 0 | } |
363 | | |
364 | 0 | if (psOptions->pfnTransformer == nullptr) |
365 | 0 | { |
366 | 0 | CPLError(CE_Failure, CPLE_IllegalArg, |
367 | 0 | "GDALWarpOptions.Validate(): " |
368 | 0 | "pfnTransformer is NULL."); |
369 | 0 | return FALSE; |
370 | 0 | } |
371 | | |
372 | 0 | { |
373 | 0 | CPLStringList aosWO(CSLDuplicate(psOptions->papszWarpOptions)); |
374 | | // A few internal/undocumented options |
375 | 0 | aosWO.SetNameValue("EXTRA_ELTS", nullptr); |
376 | 0 | aosWO.SetNameValue("USE_GENERAL_CASE", nullptr); |
377 | 0 | aosWO.SetNameValue("ERROR_THRESHOLD", nullptr); |
378 | 0 | aosWO.SetNameValue("ERROR_OUT_IF_EMPTY_SOURCE_WINDOW", nullptr); |
379 | 0 | aosWO.SetNameValue("MULT_FACTOR_VERTICAL_SHIFT_PIPELINE", nullptr); |
380 | 0 | aosWO.SetNameValue("SRC_FILL_RATIO_HEURISTICS", nullptr); |
381 | 0 | GDALValidateOptions(GDALWarpGetOptionList(), aosWO.List(), "option", |
382 | 0 | "warp options"); |
383 | 0 | } |
384 | |
|
385 | 0 | const char *pszSampleSteps = |
386 | 0 | CSLFetchNameValue(psOptions->papszWarpOptions, "SAMPLE_STEPS"); |
387 | 0 | if (pszSampleSteps) |
388 | 0 | { |
389 | 0 | if (!EQUAL(pszSampleSteps, "ALL") && atoi(pszSampleSteps) < 2) |
390 | 0 | { |
391 | 0 | CPLError(CE_Failure, CPLE_IllegalArg, |
392 | 0 | "GDALWarpOptions.Validate(): " |
393 | 0 | "SAMPLE_STEPS warp option has illegal value."); |
394 | 0 | return FALSE; |
395 | 0 | } |
396 | 0 | } |
397 | | |
398 | 0 | if (psOptions->nSrcAlphaBand > 0) |
399 | 0 | { |
400 | 0 | if (psOptions->hSrcDS == nullptr || |
401 | 0 | psOptions->nSrcAlphaBand > GDALGetRasterCount(psOptions->hSrcDS)) |
402 | 0 | { |
403 | 0 | CPLError(CE_Failure, CPLE_IllegalArg, |
404 | 0 | "nSrcAlphaBand = %d ... out of range for dataset.", |
405 | 0 | psOptions->nSrcAlphaBand); |
406 | 0 | return FALSE; |
407 | 0 | } |
408 | 0 | } |
409 | | |
410 | 0 | if (psOptions->nDstAlphaBand > 0) |
411 | 0 | { |
412 | 0 | if (psOptions->hDstDS == nullptr || |
413 | 0 | psOptions->nDstAlphaBand > GDALGetRasterCount(psOptions->hDstDS)) |
414 | 0 | { |
415 | 0 | CPLError(CE_Failure, CPLE_IllegalArg, |
416 | 0 | "nDstAlphaBand = %d ... out of range for dataset.", |
417 | 0 | psOptions->nDstAlphaBand); |
418 | 0 | return FALSE; |
419 | 0 | } |
420 | 0 | } |
421 | | |
422 | 0 | if (psOptions->nSrcAlphaBand > 0 && |
423 | 0 | psOptions->pfnSrcDensityMaskFunc != nullptr) |
424 | 0 | { |
425 | 0 | CPLError(CE_Failure, CPLE_IllegalArg, |
426 | 0 | "GDALWarpOptions.Validate(): " |
427 | 0 | "pfnSrcDensityMaskFunc provided as well as a SrcAlphaBand."); |
428 | 0 | return FALSE; |
429 | 0 | } |
430 | | |
431 | 0 | if (psOptions->nDstAlphaBand > 0 && |
432 | 0 | psOptions->pfnDstDensityMaskFunc != nullptr) |
433 | 0 | { |
434 | 0 | CPLError(CE_Failure, CPLE_IllegalArg, |
435 | 0 | "GDALWarpOptions.Validate(): " |
436 | 0 | "pfnDstDensityMaskFunc provided as well as a DstAlphaBand."); |
437 | 0 | return FALSE; |
438 | 0 | } |
439 | | |
440 | 0 | GDALRasterBandH hSrcBand = |
441 | 0 | GDALGetRasterBand(psOptions->hSrcDS, psOptions->panSrcBands[0]); |
442 | 0 | if (GDALGetMaskFlags(hSrcBand) == GMF_PER_DATASET && |
443 | 0 | psOptions->padfSrcNoDataReal != nullptr) |
444 | 0 | { |
445 | 0 | CPLError( |
446 | 0 | CE_Warning, CPLE_AppDefined, |
447 | 0 | "Source dataset has both a per-dataset mask band and the warper " |
448 | 0 | "has been also configured with a source nodata value. Only taking " |
449 | 0 | "into account the latter (i.e. ignoring the per-dataset mask " |
450 | 0 | "band)"); |
451 | 0 | } |
452 | |
|
453 | 0 | const bool bErrorOutIfEmptySourceWindow = CPLFetchBool( |
454 | 0 | psOptions->papszWarpOptions, "ERROR_OUT_IF_EMPTY_SOURCE_WINDOW", true); |
455 | 0 | if (!bErrorOutIfEmptySourceWindow && |
456 | 0 | CSLFetchNameValue(psOptions->papszWarpOptions, "INIT_DEST") == nullptr) |
457 | 0 | { |
458 | 0 | CPLError(CE_Failure, CPLE_IllegalArg, |
459 | 0 | "GDALWarpOptions.Validate(): " |
460 | 0 | "ERROR_OUT_IF_EMPTY_SOURCE_WINDOW=FALSE can only be used " |
461 | 0 | "if INIT_DEST is set"); |
462 | 0 | return FALSE; |
463 | 0 | } |
464 | | |
465 | 0 | return TRUE; |
466 | 0 | } |
467 | | |
468 | | /************************************************************************/ |
469 | | /* SetAlphaMax() */ |
470 | | /************************************************************************/ |
471 | | |
472 | | static void SetAlphaMax(GDALWarpOptions *psOptions, GDALRasterBandH hBand, |
473 | | const char *pszKey) |
474 | 0 | { |
475 | 0 | const char *pszNBits = |
476 | 0 | GDALGetMetadataItem(hBand, "NBITS", "IMAGE_STRUCTURE"); |
477 | 0 | const char *pszAlphaMax = nullptr; |
478 | 0 | if (pszNBits) |
479 | 0 | { |
480 | 0 | pszAlphaMax = CPLSPrintf("%u", (1U << atoi(pszNBits)) - 1U); |
481 | 0 | } |
482 | 0 | else if (GDALGetRasterDataType(hBand) == GDT_Int16) |
483 | 0 | { |
484 | 0 | pszAlphaMax = "32767"; |
485 | 0 | } |
486 | 0 | else if (GDALGetRasterDataType(hBand) == GDT_UInt16) |
487 | 0 | { |
488 | 0 | pszAlphaMax = "65535"; |
489 | 0 | } |
490 | |
|
491 | 0 | if (pszAlphaMax != nullptr) |
492 | 0 | psOptions->papszWarpOptions = |
493 | 0 | CSLSetNameValue(psOptions->papszWarpOptions, pszKey, pszAlphaMax); |
494 | 0 | else |
495 | 0 | CPLDebug("WARP", "SetAlphaMax: AlphaMax not set."); |
496 | 0 | } |
497 | | |
498 | | /************************************************************************/ |
499 | | /* SetTieStrategy() */ |
500 | | /************************************************************************/ |
501 | | |
502 | | static void SetTieStrategy(GDALWarpOptions *psOptions, CPLErr *peErr) |
503 | 0 | { |
504 | 0 | if (const char *pszTieStrategy = |
505 | 0 | CSLFetchNameValue(psOptions->papszWarpOptions, "MODE_TIES")) |
506 | 0 | { |
507 | 0 | if (EQUAL(pszTieStrategy, "FIRST")) |
508 | 0 | { |
509 | 0 | psOptions->eTieStrategy = GWKTS_First; |
510 | 0 | } |
511 | 0 | else if (EQUAL(pszTieStrategy, "MIN")) |
512 | 0 | { |
513 | 0 | psOptions->eTieStrategy = GWKTS_Min; |
514 | 0 | } |
515 | 0 | else if (EQUAL(pszTieStrategy, "MAX")) |
516 | 0 | { |
517 | 0 | psOptions->eTieStrategy = GWKTS_Max; |
518 | 0 | } |
519 | 0 | else |
520 | 0 | { |
521 | 0 | CPLError(CE_Failure, CPLE_IllegalArg, |
522 | 0 | "Unknown value of MODE_TIES: %s", pszTieStrategy); |
523 | 0 | *peErr = CE_Failure; |
524 | 0 | } |
525 | 0 | } |
526 | 0 | } |
527 | | |
528 | | /************************************************************************/ |
529 | | /* Initialize() */ |
530 | | /************************************************************************/ |
531 | | |
532 | | /** |
533 | | * \fn CPLErr GDALWarpOperation::Initialize( const GDALWarpOptions * ); |
534 | | * |
535 | | * This method initializes the GDALWarpOperation's concept of the warp |
536 | | * options in effect. It creates an internal copy of the GDALWarpOptions |
537 | | * structure and defaults a variety of additional fields in the internal |
538 | | * copy if not set in the provided warp options. |
539 | | * |
540 | | * Defaulting operations include: |
541 | | * - If the nBandCount is 0, it will be set to the number of bands in the |
542 | | * source image (which must match the output image) and the panSrcBands |
543 | | * and panDstBands will be populated. |
544 | | * |
545 | | * @param psNewOptions input set of warp options. These are copied and may |
546 | | * be destroyed after this call by the application. |
547 | | * @param pfnTransformer Transformer function that this GDALWarpOperation must use |
548 | | * and own, or NULL. When pfnTransformer is not NULL, this implies that |
549 | | * psNewOptions->pfnTransformer is NULL |
550 | | * @param psOwnedTransformerArg Transformer argument that this GDALWarpOperation |
551 | | * must use, and own, or NULL. When psOwnedTransformerArg is set, this implies that |
552 | | * psNewOptions->pTransformerArg is NULL |
553 | | * |
554 | | * @return CE_None on success or CE_Failure if an error occurs. |
555 | | */ |
556 | | |
557 | | CPLErr |
558 | | GDALWarpOperation::Initialize(const GDALWarpOptions *psNewOptions, |
559 | | GDALTransformerFunc pfnTransformer, |
560 | | GDALTransformerArgUniquePtr psOwnedTransformerArg) |
561 | | |
562 | 0 | { |
563 | | /* -------------------------------------------------------------------- */ |
564 | | /* Copy the passed in options. */ |
565 | | /* -------------------------------------------------------------------- */ |
566 | 0 | if (psOptions != nullptr) |
567 | 0 | WipeOptions(); |
568 | |
|
569 | 0 | CPLErr eErr = CE_None; |
570 | |
|
571 | 0 | psOptions = GDALCloneWarpOptions(psNewOptions); |
572 | |
|
573 | 0 | if (psOptions->pfnTransformer) |
574 | 0 | { |
575 | 0 | CPLAssert(pfnTransformer == nullptr); |
576 | 0 | CPLAssert(psOwnedTransformerArg.get() == nullptr); |
577 | 0 | } |
578 | 0 | else |
579 | 0 | { |
580 | 0 | m_psOwnedTransformerArg = std::move(psOwnedTransformerArg); |
581 | 0 | psOptions->pfnTransformer = pfnTransformer; |
582 | 0 | psOptions->pTransformerArg = m_psOwnedTransformerArg.get(); |
583 | 0 | } |
584 | | |
585 | 0 | psOptions->papszWarpOptions = |
586 | 0 | CSLSetNameValue(psOptions->papszWarpOptions, "EXTRA_ELTS", |
587 | 0 | CPLSPrintf("%d", WARP_EXTRA_ELTS)); |
588 | | |
589 | | /* -------------------------------------------------------------------- */ |
590 | | /* Default band mapping if missing. */ |
591 | | /* -------------------------------------------------------------------- */ |
592 | 0 | if (psOptions->nBandCount == 0 && psOptions->hSrcDS != nullptr && |
593 | 0 | psOptions->hDstDS != nullptr && |
594 | 0 | GDALGetRasterCount(psOptions->hSrcDS) == |
595 | 0 | GDALGetRasterCount(psOptions->hDstDS)) |
596 | 0 | { |
597 | 0 | GDALWarpInitDefaultBandMapping(psOptions, |
598 | 0 | GDALGetRasterCount(psOptions->hSrcDS)); |
599 | 0 | } |
600 | |
|
601 | 0 | GDALWarpResolveWorkingDataType(psOptions); |
602 | 0 | SetTieStrategy(psOptions, &eErr); |
603 | | |
604 | | /* -------------------------------------------------------------------- */ |
605 | | /* Default memory available. */ |
606 | | /* */ |
607 | | /* For now we default to 64MB of RAM, but eventually we should */ |
608 | | /* try various schemes to query physical RAM. This can */ |
609 | | /* certainly be done on Win32 and Linux. */ |
610 | | /* -------------------------------------------------------------------- */ |
611 | 0 | if (psOptions->dfWarpMemoryLimit == 0.0) |
612 | 0 | { |
613 | 0 | psOptions->dfWarpMemoryLimit = 64.0 * 1024 * 1024; |
614 | 0 | } |
615 | | |
616 | | /* -------------------------------------------------------------------- */ |
617 | | /* Are we doing timings? */ |
618 | | /* -------------------------------------------------------------------- */ |
619 | 0 | bReportTimings = |
620 | 0 | CPLFetchBool(psOptions->papszWarpOptions, "REPORT_TIMINGS", false); |
621 | | |
622 | | /* -------------------------------------------------------------------- */ |
623 | | /* Support creating cutline from text warpoption. */ |
624 | | /* -------------------------------------------------------------------- */ |
625 | 0 | const char *pszCutlineWKT = |
626 | 0 | CSLFetchNameValue(psOptions->papszWarpOptions, "CUTLINE"); |
627 | |
|
628 | 0 | if (pszCutlineWKT && psOptions->hCutline == nullptr) |
629 | 0 | { |
630 | 0 | char *pszWKTTmp = const_cast<char *>(pszCutlineWKT); |
631 | 0 | if (OGR_G_CreateFromWkt(&pszWKTTmp, nullptr, |
632 | 0 | reinterpret_cast<OGRGeometryH *>( |
633 | 0 | &(psOptions->hCutline))) != OGRERR_NONE) |
634 | 0 | { |
635 | 0 | eErr = CE_Failure; |
636 | 0 | CPLError(CE_Failure, CPLE_AppDefined, |
637 | 0 | "Failed to parse CUTLINE geometry wkt."); |
638 | 0 | } |
639 | 0 | } |
640 | 0 | const char *pszBD = |
641 | 0 | CSLFetchNameValue(psOptions->papszWarpOptions, "CUTLINE_BLEND_DIST"); |
642 | 0 | if (pszBD) |
643 | 0 | psOptions->dfCutlineBlendDist = CPLAtof(pszBD); |
644 | | |
645 | | /* -------------------------------------------------------------------- */ |
646 | | /* Set SRC_ALPHA_MAX if not provided. */ |
647 | | /* -------------------------------------------------------------------- */ |
648 | 0 | if (psOptions->hSrcDS != nullptr && psOptions->nSrcAlphaBand > 0 && |
649 | 0 | psOptions->nSrcAlphaBand <= GDALGetRasterCount(psOptions->hSrcDS) && |
650 | 0 | CSLFetchNameValue(psOptions->papszWarpOptions, "SRC_ALPHA_MAX") == |
651 | 0 | nullptr) |
652 | 0 | { |
653 | 0 | GDALRasterBandH hSrcAlphaBand = |
654 | 0 | GDALGetRasterBand(psOptions->hSrcDS, psOptions->nSrcAlphaBand); |
655 | 0 | SetAlphaMax(psOptions, hSrcAlphaBand, "SRC_ALPHA_MAX"); |
656 | 0 | } |
657 | | |
658 | | /* -------------------------------------------------------------------- */ |
659 | | /* Set DST_ALPHA_MAX if not provided. */ |
660 | | /* -------------------------------------------------------------------- */ |
661 | 0 | if (psOptions->hDstDS != nullptr && psOptions->nDstAlphaBand > 0 && |
662 | 0 | psOptions->nDstAlphaBand <= GDALGetRasterCount(psOptions->hDstDS) && |
663 | 0 | CSLFetchNameValue(psOptions->papszWarpOptions, "DST_ALPHA_MAX") == |
664 | 0 | nullptr) |
665 | 0 | { |
666 | 0 | GDALRasterBandH hDstAlphaBand = |
667 | 0 | GDALGetRasterBand(psOptions->hDstDS, psOptions->nDstAlphaBand); |
668 | 0 | SetAlphaMax(psOptions, hDstAlphaBand, "DST_ALPHA_MAX"); |
669 | 0 | } |
670 | | |
671 | | /* -------------------------------------------------------------------- */ |
672 | | /* If the options don't validate, then wipe them. */ |
673 | | /* -------------------------------------------------------------------- */ |
674 | 0 | if (!ValidateOptions()) |
675 | 0 | eErr = CE_Failure; |
676 | |
|
677 | 0 | if (eErr != CE_None) |
678 | 0 | { |
679 | 0 | WipeOptions(); |
680 | 0 | } |
681 | 0 | else |
682 | 0 | { |
683 | 0 | psThreadData = GWKThreadsCreate(psOptions->papszWarpOptions, |
684 | 0 | psOptions->pfnTransformer, |
685 | 0 | psOptions->pTransformerArg); |
686 | 0 | if (psThreadData == nullptr) |
687 | 0 | eErr = CE_Failure; |
688 | | |
689 | | /* -------------------------------------------------------------------- |
690 | | */ |
691 | | /* Compute dstcoordinates of a few special points. */ |
692 | | /* -------------------------------------------------------------------- |
693 | | */ |
694 | | |
695 | | // South and north poles. Do not exactly take +/-90 as the |
696 | | // round-tripping of the longitude value fails with some projections. |
697 | 0 | for (double dfY : {-89.9999, 89.9999}) |
698 | 0 | { |
699 | 0 | double dfX = 0; |
700 | 0 | if ((GDALIsTransformer(psOptions->pTransformerArg, |
701 | 0 | GDAL_APPROX_TRANSFORMER_CLASS_NAME) && |
702 | 0 | GDALTransformLonLatToDestApproxTransformer( |
703 | 0 | psOptions->pTransformerArg, &dfX, &dfY)) || |
704 | 0 | (GDALIsTransformer(psOptions->pTransformerArg, |
705 | 0 | GDAL_GEN_IMG_TRANSFORMER_CLASS_NAME) && |
706 | 0 | GDALTransformLonLatToDestGenImgProjTransformer( |
707 | 0 | psOptions->pTransformerArg, &dfX, &dfY))) |
708 | 0 | { |
709 | 0 | aDstXYSpecialPoints.emplace_back( |
710 | 0 | std::pair<double, double>(dfX, dfY)); |
711 | 0 | } |
712 | 0 | } |
713 | |
|
714 | 0 | m_bIsTranslationOnPixelBoundaries = |
715 | 0 | GDALTransformIsTranslationOnPixelBoundaries( |
716 | 0 | psOptions->pfnTransformer, psOptions->pTransformerArg) && |
717 | 0 | CPLTestBool( |
718 | 0 | CPLGetConfigOption("GDAL_WARP_USE_TRANSLATION_OPTIM", "YES")); |
719 | 0 | if (m_bIsTranslationOnPixelBoundaries) |
720 | 0 | { |
721 | 0 | CPLDebug("WARP", |
722 | 0 | "Using translation-on-pixel-boundaries optimization"); |
723 | 0 | } |
724 | 0 | } |
725 | |
|
726 | 0 | return eErr; |
727 | 0 | } |
728 | | |
729 | | /** |
730 | | * \fn void* GDALWarpOperation::CreateDestinationBuffer( |
731 | | int nDstXSize, int nDstYSize, int *pbInitialized); |
732 | | * |
733 | | * This method creates a destination buffer for use with WarpRegionToBuffer. |
734 | | * The output is initialized based on the INIT_DEST settings. |
735 | | * |
736 | | * @param nDstXSize Width of output window on destination buffer to be produced. |
737 | | * @param nDstYSize Height of output window on destination buffer to be |
738 | | produced. |
739 | | * @param pbInitialized Filled with boolean indicating if the buffer was |
740 | | initialized. |
741 | | * |
742 | | * @return Buffer capable for use as a warp operation output destination |
743 | | */ |
744 | | void *GDALWarpOperation::CreateDestinationBuffer(int nDstXSize, int nDstYSize, |
745 | | int *pbInitialized) |
746 | 0 | { |
747 | | |
748 | | /* -------------------------------------------------------------------- */ |
749 | | /* Allocate block of memory large enough to hold all the bands */ |
750 | | /* for this block. */ |
751 | | /* -------------------------------------------------------------------- */ |
752 | 0 | const int nWordSize = GDALGetDataTypeSizeBytes(psOptions->eWorkingDataType); |
753 | |
|
754 | 0 | void *pDstBuffer = VSI_MALLOC3_VERBOSE( |
755 | 0 | cpl::fits_on<int>(nWordSize * psOptions->nBandCount), nDstXSize, |
756 | 0 | nDstYSize); |
757 | 0 | if (pDstBuffer) |
758 | 0 | { |
759 | 0 | auto eErr = InitializeDestinationBuffer(pDstBuffer, nDstXSize, |
760 | 0 | nDstYSize, pbInitialized); |
761 | 0 | if (eErr != CE_None) |
762 | 0 | { |
763 | 0 | CPLFree(pDstBuffer); |
764 | 0 | return nullptr; |
765 | 0 | } |
766 | 0 | } |
767 | 0 | return pDstBuffer; |
768 | 0 | } |
769 | | |
770 | | /** |
771 | | * This method initializes a destination buffer for use with WarpRegionToBuffer. |
772 | | * |
773 | | * It is initialized based on the INIT_DEST settings. |
774 | | * |
775 | | * This method is called by CreateDestinationBuffer(). |
776 | | * It is meant at being used by callers that have already allocated the |
777 | | * destination buffer without using CreateDestinationBuffer(). |
778 | | * |
779 | | * @param pDstBuffer Buffer of size |
780 | | * GDALGetDataTypeSizeBytes(psOptions->eWorkingDataType) * |
781 | | * nDstXSize * nDstYSize * psOptions->nBandCount bytes. |
782 | | * @param nDstXSize Width of output window on destination buffer to be produced. |
783 | | * @param nDstYSize Height of output window on destination buffer to be |
784 | | * produced. |
785 | | * @param pbInitialized Filled with boolean indicating if the buffer was |
786 | | * initialized. |
787 | | * @since 3.10 |
788 | | */ |
789 | | CPLErr GDALWarpOperation::InitializeDestinationBuffer(void *pDstBuffer, |
790 | | int nDstXSize, |
791 | | int nDstYSize, |
792 | | int *pbInitialized) const |
793 | 0 | { |
794 | 0 | const int nWordSize = GDALGetDataTypeSizeBytes(psOptions->eWorkingDataType); |
795 | |
|
796 | 0 | const GPtrDiff_t nBandSize = |
797 | 0 | static_cast<GPtrDiff_t>(nWordSize) * nDstXSize * nDstYSize; |
798 | | |
799 | | /* -------------------------------------------------------------------- */ |
800 | | /* Initialize if requested in the options */ |
801 | | /* -------------------------------------------------------------------- */ |
802 | 0 | const char *pszInitDest = |
803 | 0 | CSLFetchNameValue(psOptions->papszWarpOptions, "INIT_DEST"); |
804 | |
|
805 | 0 | if (pszInitDest == nullptr || EQUAL(pszInitDest, "")) |
806 | 0 | { |
807 | 0 | if (pbInitialized != nullptr) |
808 | 0 | { |
809 | 0 | *pbInitialized = FALSE; |
810 | 0 | } |
811 | 0 | return CE_None; |
812 | 0 | } |
813 | | |
814 | 0 | if (pbInitialized != nullptr) |
815 | 0 | { |
816 | 0 | *pbInitialized = TRUE; |
817 | 0 | } |
818 | |
|
819 | 0 | CPLStringList aosInitValues( |
820 | 0 | CSLTokenizeStringComplex(pszInitDest, ",", FALSE, FALSE)); |
821 | 0 | const int nInitCount = aosInitValues.Count(); |
822 | |
|
823 | 0 | for (int iBand = 0; iBand < psOptions->nBandCount; iBand++) |
824 | 0 | { |
825 | 0 | double adfInitRealImag[2] = {0.0, 0.0}; |
826 | 0 | const char *pszBandInit = |
827 | 0 | aosInitValues[std::min(iBand, nInitCount - 1)]; |
828 | |
|
829 | 0 | if (EQUAL(pszBandInit, "NO_DATA")) |
830 | 0 | { |
831 | 0 | if (psOptions->padfDstNoDataReal == nullptr) |
832 | 0 | { |
833 | | // TODO: Change to CE_Failure and error out for GDAL 3.13 |
834 | | // See https://github.com/OSGeo/gdal/pull/12189 |
835 | 0 | CPLError(CE_Warning, CPLE_AppDefined, |
836 | 0 | "INIT_DEST was set to NO_DATA, but a NoData value was " |
837 | 0 | "not defined. This warning will become a failure in a " |
838 | 0 | "future GDAL release."); |
839 | 0 | } |
840 | 0 | else |
841 | 0 | { |
842 | 0 | adfInitRealImag[0] = psOptions->padfDstNoDataReal[iBand]; |
843 | 0 | if (psOptions->padfDstNoDataImag != nullptr) |
844 | 0 | { |
845 | 0 | adfInitRealImag[1] = psOptions->padfDstNoDataImag[iBand]; |
846 | 0 | } |
847 | 0 | } |
848 | 0 | } |
849 | 0 | else |
850 | 0 | { |
851 | 0 | if (CPLStringToComplex(pszBandInit, &adfInitRealImag[0], |
852 | 0 | &adfInitRealImag[1]) != CE_None) |
853 | 0 | { |
854 | 0 | CPLError(CE_Failure, CPLE_AppDefined, |
855 | 0 | "Error parsing INIT_DEST"); |
856 | 0 | return CE_Failure; |
857 | 0 | } |
858 | 0 | } |
859 | | |
860 | 0 | GByte *pBandData = static_cast<GByte *>(pDstBuffer) + iBand * nBandSize; |
861 | |
|
862 | 0 | if (psOptions->eWorkingDataType == GDT_Byte) |
863 | 0 | { |
864 | 0 | memset(pBandData, |
865 | 0 | std::max( |
866 | 0 | 0, std::min(255, static_cast<int>(adfInitRealImag[0]))), |
867 | 0 | nBandSize); |
868 | 0 | } |
869 | 0 | else if (!std::isnan(adfInitRealImag[0]) && adfInitRealImag[0] == 0.0 && |
870 | 0 | !std::isnan(adfInitRealImag[1]) && adfInitRealImag[1] == 0.0) |
871 | 0 | { |
872 | 0 | memset(pBandData, 0, nBandSize); |
873 | 0 | } |
874 | 0 | else if (!std::isnan(adfInitRealImag[1]) && adfInitRealImag[1] == 0.0) |
875 | 0 | { |
876 | 0 | GDALCopyWords64(&adfInitRealImag, GDT_Float64, 0, pBandData, |
877 | 0 | psOptions->eWorkingDataType, nWordSize, |
878 | 0 | static_cast<GPtrDiff_t>(nDstXSize) * nDstYSize); |
879 | 0 | } |
880 | 0 | else |
881 | 0 | { |
882 | 0 | GDALCopyWords64(&adfInitRealImag, GDT_CFloat64, 0, pBandData, |
883 | 0 | psOptions->eWorkingDataType, nWordSize, |
884 | 0 | static_cast<GPtrDiff_t>(nDstXSize) * nDstYSize); |
885 | 0 | } |
886 | 0 | } |
887 | | |
888 | 0 | return CE_None; |
889 | 0 | } |
890 | | |
891 | | /** |
892 | | * \fn void GDALWarpOperation::DestroyDestinationBuffer( void *pDstBuffer ) |
893 | | * |
894 | | * This method destroys a buffer previously retrieved from |
895 | | * CreateDestinationBuffer |
896 | | * |
897 | | * @param pDstBuffer destination buffer to be destroyed |
898 | | * |
899 | | */ |
900 | | void GDALWarpOperation::DestroyDestinationBuffer(void *pDstBuffer) |
901 | 0 | { |
902 | 0 | VSIFree(pDstBuffer); |
903 | 0 | } |
904 | | |
905 | | /************************************************************************/ |
906 | | /* GDALCreateWarpOperation() */ |
907 | | /************************************************************************/ |
908 | | |
909 | | /** |
910 | | * @see GDALWarpOperation::Initialize() |
911 | | */ |
912 | | |
913 | | GDALWarpOperationH GDALCreateWarpOperation(const GDALWarpOptions *psNewOptions) |
914 | 0 | { |
915 | 0 | GDALWarpOperation *poOperation = new GDALWarpOperation; |
916 | 0 | if (poOperation->Initialize(psNewOptions) != CE_None) |
917 | 0 | { |
918 | 0 | delete poOperation; |
919 | 0 | return nullptr; |
920 | 0 | } |
921 | | |
922 | 0 | return reinterpret_cast<GDALWarpOperationH>(poOperation); |
923 | 0 | } |
924 | | |
925 | | /************************************************************************/ |
926 | | /* GDALDestroyWarpOperation() */ |
927 | | /************************************************************************/ |
928 | | |
929 | | /** |
930 | | * @see GDALWarpOperation::~GDALWarpOperation() |
931 | | */ |
932 | | |
933 | | void GDALDestroyWarpOperation(GDALWarpOperationH hOperation) |
934 | 0 | { |
935 | 0 | if (hOperation) |
936 | 0 | delete static_cast<GDALWarpOperation *>(hOperation); |
937 | 0 | } |
938 | | |
939 | | /************************************************************************/ |
940 | | /* CollectChunkList() */ |
941 | | /************************************************************************/ |
942 | | |
943 | | void GDALWarpOperation::CollectChunkList(int nDstXOff, int nDstYOff, |
944 | | int nDstXSize, int nDstYSize) |
945 | | |
946 | 0 | { |
947 | | /* -------------------------------------------------------------------- */ |
948 | | /* Collect the list of chunks to operate on. */ |
949 | | /* -------------------------------------------------------------------- */ |
950 | 0 | WipeChunkList(); |
951 | 0 | CollectChunkListInternal(nDstXOff, nDstYOff, nDstXSize, nDstYSize); |
952 | | |
953 | | // Sort chunks from top to bottom, and for equal y, from left to right. |
954 | 0 | if (nChunkListCount > 1) |
955 | 0 | { |
956 | 0 | std::sort(pasChunkList, pasChunkList + nChunkListCount, |
957 | 0 | [](const GDALWarpChunk &a, const GDALWarpChunk &b) |
958 | 0 | { |
959 | 0 | if (a.dy < b.dy) |
960 | 0 | return true; |
961 | 0 | if (a.dy > b.dy) |
962 | 0 | return false; |
963 | 0 | return a.dx < b.dx; |
964 | 0 | }); |
965 | 0 | } |
966 | | |
967 | | /* -------------------------------------------------------------------- */ |
968 | | /* Find the global source window. */ |
969 | | /* -------------------------------------------------------------------- */ |
970 | |
|
971 | 0 | const int knIntMax = std::numeric_limits<int>::max(); |
972 | 0 | const int knIntMin = std::numeric_limits<int>::min(); |
973 | 0 | int nSrcXOff = knIntMax; |
974 | 0 | int nSrcYOff = knIntMax; |
975 | 0 | int nSrcX2Off = knIntMin; |
976 | 0 | int nSrcY2Off = knIntMin; |
977 | 0 | double dfApproxAccArea = 0; |
978 | 0 | for (int iChunk = 0; pasChunkList != nullptr && iChunk < nChunkListCount; |
979 | 0 | iChunk++) |
980 | 0 | { |
981 | 0 | GDALWarpChunk *pasThisChunk = pasChunkList + iChunk; |
982 | 0 | nSrcXOff = std::min(nSrcXOff, pasThisChunk->sx); |
983 | 0 | nSrcYOff = std::min(nSrcYOff, pasThisChunk->sy); |
984 | 0 | nSrcX2Off = std::max(nSrcX2Off, pasThisChunk->sx + pasThisChunk->ssx); |
985 | 0 | nSrcY2Off = std::max(nSrcY2Off, pasThisChunk->sy + pasThisChunk->ssy); |
986 | 0 | dfApproxAccArea += |
987 | 0 | static_cast<double>(pasThisChunk->ssx) * pasThisChunk->ssy; |
988 | 0 | } |
989 | 0 | if (nSrcXOff < nSrcX2Off) |
990 | 0 | { |
991 | 0 | const double dfTotalArea = |
992 | 0 | static_cast<double>(nSrcX2Off - nSrcXOff) * (nSrcY2Off - nSrcYOff); |
993 | | // This is really a gross heuristics, but should work in most cases |
994 | 0 | if (dfApproxAccArea >= dfTotalArea * 0.80) |
995 | 0 | { |
996 | 0 | GDALDataset::FromHandle(psOptions->hSrcDS) |
997 | 0 | ->AdviseRead(nSrcXOff, nSrcYOff, nSrcX2Off - nSrcXOff, |
998 | 0 | nSrcY2Off - nSrcYOff, nDstXSize, nDstYSize, |
999 | 0 | psOptions->eWorkingDataType, psOptions->nBandCount, |
1000 | 0 | psOptions->panSrcBands, nullptr); |
1001 | 0 | } |
1002 | 0 | } |
1003 | 0 | } |
1004 | | |
1005 | | /************************************************************************/ |
1006 | | /* ChunkAndWarpImage() */ |
1007 | | /************************************************************************/ |
1008 | | |
1009 | | /** |
1010 | | * \fn CPLErr GDALWarpOperation::ChunkAndWarpImage( |
1011 | | int nDstXOff, int nDstYOff, int nDstXSize, int nDstYSize ); |
1012 | | * |
1013 | | * This method does a complete warp of the source image to the destination |
1014 | | * image for the indicated region with the current warp options in effect. |
1015 | | * Progress is reported to the installed progress monitor, if any. |
1016 | | * |
1017 | | * This function will subdivide the region and recursively call itself |
1018 | | * until the total memory required to process a region chunk will all fit |
1019 | | * in the memory pool defined by GDALWarpOptions::dfWarpMemoryLimit. |
1020 | | * |
1021 | | * Once an appropriate region is selected GDALWarpOperation::WarpRegion() |
1022 | | * is invoked to do the actual work. |
1023 | | * |
1024 | | * @param nDstXOff X offset to window of destination data to be produced. |
1025 | | * @param nDstYOff Y offset to window of destination data to be produced. |
1026 | | * @param nDstXSize Width of output window on destination file to be produced. |
1027 | | * @param nDstYSize Height of output window on destination file to be produced. |
1028 | | * |
1029 | | * @return CE_None on success or CE_Failure if an error occurs. |
1030 | | */ |
1031 | | |
1032 | | CPLErr GDALWarpOperation::ChunkAndWarpImage(int nDstXOff, int nDstYOff, |
1033 | | int nDstXSize, int nDstYSize) |
1034 | | |
1035 | 0 | { |
1036 | | /* -------------------------------------------------------------------- */ |
1037 | | /* Collect the list of chunks to operate on. */ |
1038 | | /* -------------------------------------------------------------------- */ |
1039 | 0 | CollectChunkList(nDstXOff, nDstYOff, nDstXSize, nDstYSize); |
1040 | | |
1041 | | /* -------------------------------------------------------------------- */ |
1042 | | /* Total up output pixels to process. */ |
1043 | | /* -------------------------------------------------------------------- */ |
1044 | 0 | double dfTotalPixels = 0.0; |
1045 | |
|
1046 | 0 | for (int iChunk = 0; pasChunkList != nullptr && iChunk < nChunkListCount; |
1047 | 0 | iChunk++) |
1048 | 0 | { |
1049 | 0 | GDALWarpChunk *pasThisChunk = pasChunkList + iChunk; |
1050 | 0 | const double dfChunkPixels = |
1051 | 0 | pasThisChunk->dsx * static_cast<double>(pasThisChunk->dsy); |
1052 | |
|
1053 | 0 | dfTotalPixels += dfChunkPixels; |
1054 | 0 | } |
1055 | | |
1056 | | /* -------------------------------------------------------------------- */ |
1057 | | /* Process them one at a time, updating the progress */ |
1058 | | /* information for each region. */ |
1059 | | /* -------------------------------------------------------------------- */ |
1060 | 0 | double dfPixelsProcessed = 0.0; |
1061 | |
|
1062 | 0 | for (int iChunk = 0; pasChunkList != nullptr && iChunk < nChunkListCount; |
1063 | 0 | iChunk++) |
1064 | 0 | { |
1065 | 0 | GDALWarpChunk *pasThisChunk = pasChunkList + iChunk; |
1066 | 0 | const double dfChunkPixels = |
1067 | 0 | pasThisChunk->dsx * static_cast<double>(pasThisChunk->dsy); |
1068 | |
|
1069 | 0 | const double dfProgressBase = dfPixelsProcessed / dfTotalPixels; |
1070 | 0 | const double dfProgressScale = dfChunkPixels / dfTotalPixels; |
1071 | |
|
1072 | 0 | CPLErr eErr = WarpRegion( |
1073 | 0 | pasThisChunk->dx, pasThisChunk->dy, pasThisChunk->dsx, |
1074 | 0 | pasThisChunk->dsy, pasThisChunk->sx, pasThisChunk->sy, |
1075 | 0 | pasThisChunk->ssx, pasThisChunk->ssy, pasThisChunk->sExtraSx, |
1076 | 0 | pasThisChunk->sExtraSy, dfProgressBase, dfProgressScale); |
1077 | |
|
1078 | 0 | if (eErr != CE_None) |
1079 | 0 | return eErr; |
1080 | | |
1081 | 0 | dfPixelsProcessed += dfChunkPixels; |
1082 | 0 | } |
1083 | | |
1084 | 0 | WipeChunkList(); |
1085 | |
|
1086 | 0 | psOptions->pfnProgress(1.0, "", psOptions->pProgressArg); |
1087 | |
|
1088 | 0 | return CE_None; |
1089 | 0 | } |
1090 | | |
1091 | | /************************************************************************/ |
1092 | | /* GDALChunkAndWarpImage() */ |
1093 | | /************************************************************************/ |
1094 | | |
1095 | | /** |
1096 | | * @see GDALWarpOperation::ChunkAndWarpImage() |
1097 | | */ |
1098 | | |
1099 | | CPLErr GDALChunkAndWarpImage(GDALWarpOperationH hOperation, int nDstXOff, |
1100 | | int nDstYOff, int nDstXSize, int nDstYSize) |
1101 | 0 | { |
1102 | 0 | VALIDATE_POINTER1(hOperation, "GDALChunkAndWarpImage", CE_Failure); |
1103 | | |
1104 | 0 | return reinterpret_cast<GDALWarpOperation *>(hOperation) |
1105 | 0 | ->ChunkAndWarpImage(nDstXOff, nDstYOff, nDstXSize, nDstYSize); |
1106 | 0 | } |
1107 | | |
1108 | | /************************************************************************/ |
1109 | | /* ChunkThreadMain() */ |
1110 | | /************************************************************************/ |
1111 | | |
1112 | | struct ChunkThreadData |
1113 | | { |
1114 | | GDALWarpOperation *poOperation = nullptr; |
1115 | | GDALWarpChunk *pasChunkInfo = nullptr; |
1116 | | CPLJoinableThread *hThreadHandle = nullptr; |
1117 | | CPLErr eErr = CE_None; |
1118 | | double dfProgressBase = 0; |
1119 | | double dfProgressScale = 0; |
1120 | | CPLMutex *hIOMutex = nullptr; |
1121 | | |
1122 | | CPLMutex *hCondMutex = nullptr; |
1123 | | volatile int bIOMutexTaken = 0; |
1124 | | CPLCond *hCond = nullptr; |
1125 | | |
1126 | | CPLErrorAccumulator *poErrorAccumulator = nullptr; |
1127 | | }; |
1128 | | |
1129 | | static void ChunkThreadMain(void *pThreadData) |
1130 | | |
1131 | 0 | { |
1132 | 0 | volatile ChunkThreadData *psData = |
1133 | 0 | static_cast<volatile ChunkThreadData *>(pThreadData); |
1134 | |
|
1135 | 0 | GDALWarpChunk *pasChunkInfo = psData->pasChunkInfo; |
1136 | | |
1137 | | /* -------------------------------------------------------------------- */ |
1138 | | /* Acquire IO mutex. */ |
1139 | | /* -------------------------------------------------------------------- */ |
1140 | 0 | if (!CPLAcquireMutex(psData->hIOMutex, 600.0)) |
1141 | 0 | { |
1142 | 0 | CPLError(CE_Failure, CPLE_AppDefined, |
1143 | 0 | "Failed to acquire IOMutex in WarpRegion()."); |
1144 | 0 | psData->eErr = CE_Failure; |
1145 | 0 | } |
1146 | 0 | else |
1147 | 0 | { |
1148 | 0 | if (psData->hCond != nullptr) |
1149 | 0 | { |
1150 | 0 | CPLAcquireMutex(psData->hCondMutex, 1.0); |
1151 | 0 | psData->bIOMutexTaken = TRUE; |
1152 | 0 | CPLCondSignal(psData->hCond); |
1153 | 0 | CPLReleaseMutex(psData->hCondMutex); |
1154 | 0 | } |
1155 | |
|
1156 | 0 | auto oAccumulator = |
1157 | 0 | psData->poErrorAccumulator->InstallForCurrentScope(); |
1158 | 0 | CPL_IGNORE_RET_VAL(oAccumulator); |
1159 | |
|
1160 | 0 | psData->eErr = psData->poOperation->WarpRegion( |
1161 | 0 | pasChunkInfo->dx, pasChunkInfo->dy, pasChunkInfo->dsx, |
1162 | 0 | pasChunkInfo->dsy, pasChunkInfo->sx, pasChunkInfo->sy, |
1163 | 0 | pasChunkInfo->ssx, pasChunkInfo->ssy, pasChunkInfo->sExtraSx, |
1164 | 0 | pasChunkInfo->sExtraSy, psData->dfProgressBase, |
1165 | 0 | psData->dfProgressScale); |
1166 | | |
1167 | | /* -------------------------------------------------------------------- |
1168 | | */ |
1169 | | /* Release the IO mutex. */ |
1170 | | /* -------------------------------------------------------------------- |
1171 | | */ |
1172 | 0 | CPLReleaseMutex(psData->hIOMutex); |
1173 | 0 | } |
1174 | 0 | } |
1175 | | |
1176 | | /************************************************************************/ |
1177 | | /* ChunkAndWarpMulti() */ |
1178 | | /************************************************************************/ |
1179 | | |
1180 | | /** |
1181 | | * \fn CPLErr GDALWarpOperation::ChunkAndWarpMulti( |
1182 | | int nDstXOff, int nDstYOff, int nDstXSize, int nDstYSize ); |
1183 | | * |
1184 | | * This method does a complete warp of the source image to the destination |
1185 | | * image for the indicated region with the current warp options in effect. |
1186 | | * Progress is reported to the installed progress monitor, if any. |
1187 | | * |
1188 | | * Externally this method operates the same as ChunkAndWarpImage(), but |
1189 | | * internally this method uses multiple threads to interleave input/output |
1190 | | * for one region while the processing is being done for another. |
1191 | | * |
1192 | | * @param nDstXOff X offset to window of destination data to be produced. |
1193 | | * @param nDstYOff Y offset to window of destination data to be produced. |
1194 | | * @param nDstXSize Width of output window on destination file to be produced. |
1195 | | * @param nDstYSize Height of output window on destination file to be produced. |
1196 | | * |
1197 | | * @return CE_None on success or CE_Failure if an error occurs. |
1198 | | */ |
1199 | | |
1200 | | CPLErr GDALWarpOperation::ChunkAndWarpMulti(int nDstXOff, int nDstYOff, |
1201 | | int nDstXSize, int nDstYSize) |
1202 | | |
1203 | 0 | { |
1204 | 0 | hIOMutex = CPLCreateMutex(); |
1205 | 0 | hWarpMutex = CPLCreateMutex(); |
1206 | |
|
1207 | 0 | CPLReleaseMutex(hIOMutex); |
1208 | 0 | CPLReleaseMutex(hWarpMutex); |
1209 | |
|
1210 | 0 | CPLCond *hCond = CPLCreateCond(); |
1211 | 0 | CPLMutex *hCondMutex = CPLCreateMutex(); |
1212 | 0 | CPLReleaseMutex(hCondMutex); |
1213 | | |
1214 | | /* -------------------------------------------------------------------- */ |
1215 | | /* Collect the list of chunks to operate on. */ |
1216 | | /* -------------------------------------------------------------------- */ |
1217 | 0 | CollectChunkList(nDstXOff, nDstYOff, nDstXSize, nDstYSize); |
1218 | | |
1219 | | /* -------------------------------------------------------------------- */ |
1220 | | /* Process them one at a time, updating the progress */ |
1221 | | /* information for each region. */ |
1222 | | /* -------------------------------------------------------------------- */ |
1223 | 0 | ChunkThreadData volatile asThreadData[2] = {}; |
1224 | 0 | CPLErrorAccumulator oErrorAccumulator; |
1225 | 0 | for (int i = 0; i < 2; ++i) |
1226 | 0 | { |
1227 | 0 | asThreadData[i].poOperation = this; |
1228 | 0 | asThreadData[i].hIOMutex = hIOMutex; |
1229 | 0 | asThreadData[i].poErrorAccumulator = &oErrorAccumulator; |
1230 | 0 | } |
1231 | |
|
1232 | 0 | double dfPixelsProcessed = 0.0; |
1233 | 0 | double dfTotalPixels = static_cast<double>(nDstXSize) * nDstYSize; |
1234 | |
|
1235 | 0 | CPLErr eErr = CE_None; |
1236 | 0 | for (int iChunk = 0; iChunk < nChunkListCount + 1; iChunk++) |
1237 | 0 | { |
1238 | 0 | int iThread = iChunk % 2; |
1239 | | |
1240 | | /* -------------------------------------------------------------------- |
1241 | | */ |
1242 | | /* Launch thread for this chunk. */ |
1243 | | /* -------------------------------------------------------------------- |
1244 | | */ |
1245 | 0 | if (pasChunkList != nullptr && iChunk < nChunkListCount) |
1246 | 0 | { |
1247 | 0 | GDALWarpChunk *pasThisChunk = pasChunkList + iChunk; |
1248 | 0 | const double dfChunkPixels = |
1249 | 0 | pasThisChunk->dsx * static_cast<double>(pasThisChunk->dsy); |
1250 | |
|
1251 | 0 | asThreadData[iThread].dfProgressBase = |
1252 | 0 | dfPixelsProcessed / dfTotalPixels; |
1253 | 0 | asThreadData[iThread].dfProgressScale = |
1254 | 0 | dfChunkPixels / dfTotalPixels; |
1255 | |
|
1256 | 0 | dfPixelsProcessed += dfChunkPixels; |
1257 | |
|
1258 | 0 | asThreadData[iThread].pasChunkInfo = pasThisChunk; |
1259 | |
|
1260 | 0 | if (iChunk == 0) |
1261 | 0 | { |
1262 | 0 | asThreadData[iThread].hCond = hCond; |
1263 | 0 | asThreadData[iThread].hCondMutex = hCondMutex; |
1264 | 0 | } |
1265 | 0 | else |
1266 | 0 | { |
1267 | 0 | asThreadData[iThread].hCond = nullptr; |
1268 | 0 | asThreadData[iThread].hCondMutex = nullptr; |
1269 | 0 | } |
1270 | 0 | asThreadData[iThread].bIOMutexTaken = FALSE; |
1271 | |
|
1272 | 0 | CPLDebug("GDAL", "Start chunk %d / %d.", iChunk, nChunkListCount); |
1273 | 0 | asThreadData[iThread].hThreadHandle = CPLCreateJoinableThread( |
1274 | 0 | ChunkThreadMain, |
1275 | 0 | const_cast<ChunkThreadData *>(&asThreadData[iThread])); |
1276 | 0 | if (asThreadData[iThread].hThreadHandle == nullptr) |
1277 | 0 | { |
1278 | 0 | CPLError( |
1279 | 0 | CE_Failure, CPLE_AppDefined, |
1280 | 0 | "CPLCreateJoinableThread() failed in ChunkAndWarpMulti()"); |
1281 | 0 | eErr = CE_Failure; |
1282 | 0 | break; |
1283 | 0 | } |
1284 | | |
1285 | | // Wait that the first thread has acquired the IO mutex before |
1286 | | // proceeding. This will ensure that the first thread will run |
1287 | | // before the second one. |
1288 | 0 | if (iChunk == 0) |
1289 | 0 | { |
1290 | 0 | CPLAcquireMutex(hCondMutex, 1.0); |
1291 | 0 | while (asThreadData[iThread].bIOMutexTaken == FALSE) |
1292 | 0 | CPLCondWait(hCond, hCondMutex); |
1293 | 0 | CPLReleaseMutex(hCondMutex); |
1294 | 0 | } |
1295 | 0 | } |
1296 | | |
1297 | | /* -------------------------------------------------------------------- |
1298 | | */ |
1299 | | /* Wait for previous chunks thread to complete. */ |
1300 | | /* -------------------------------------------------------------------- |
1301 | | */ |
1302 | 0 | if (iChunk > 0) |
1303 | 0 | { |
1304 | 0 | iThread = (iChunk - 1) % 2; |
1305 | | |
1306 | | // Wait for thread to finish. |
1307 | 0 | CPLJoinThread(asThreadData[iThread].hThreadHandle); |
1308 | 0 | asThreadData[iThread].hThreadHandle = nullptr; |
1309 | |
|
1310 | 0 | CPLDebug("GDAL", "Finished chunk %d / %d.", iChunk - 1, |
1311 | 0 | nChunkListCount); |
1312 | |
|
1313 | 0 | eErr = asThreadData[iThread].eErr; |
1314 | |
|
1315 | 0 | if (eErr != CE_None) |
1316 | 0 | break; |
1317 | 0 | } |
1318 | 0 | } |
1319 | | |
1320 | | /* -------------------------------------------------------------------- */ |
1321 | | /* Wait for all threads to complete. */ |
1322 | | /* -------------------------------------------------------------------- */ |
1323 | 0 | for (int iThread = 0; iThread < 2; iThread++) |
1324 | 0 | { |
1325 | 0 | if (asThreadData[iThread].hThreadHandle) |
1326 | 0 | CPLJoinThread(asThreadData[iThread].hThreadHandle); |
1327 | 0 | } |
1328 | |
|
1329 | 0 | CPLDestroyCond(hCond); |
1330 | 0 | CPLDestroyMutex(hCondMutex); |
1331 | |
|
1332 | 0 | WipeChunkList(); |
1333 | |
|
1334 | 0 | oErrorAccumulator.ReplayErrors(); |
1335 | |
|
1336 | 0 | psOptions->pfnProgress(1.0, "", psOptions->pProgressArg); |
1337 | |
|
1338 | 0 | return eErr; |
1339 | 0 | } |
1340 | | |
1341 | | /************************************************************************/ |
1342 | | /* GDALChunkAndWarpMulti() */ |
1343 | | /************************************************************************/ |
1344 | | |
1345 | | /** |
1346 | | * @see GDALWarpOperation::ChunkAndWarpMulti() |
1347 | | */ |
1348 | | |
1349 | | CPLErr GDALChunkAndWarpMulti(GDALWarpOperationH hOperation, int nDstXOff, |
1350 | | int nDstYOff, int nDstXSize, int nDstYSize) |
1351 | 0 | { |
1352 | 0 | VALIDATE_POINTER1(hOperation, "GDALChunkAndWarpMulti", CE_Failure); |
1353 | | |
1354 | 0 | return reinterpret_cast<GDALWarpOperation *>(hOperation) |
1355 | 0 | ->ChunkAndWarpMulti(nDstXOff, nDstYOff, nDstXSize, nDstYSize); |
1356 | 0 | } |
1357 | | |
1358 | | /************************************************************************/ |
1359 | | /* WipeChunkList() */ |
1360 | | /************************************************************************/ |
1361 | | |
1362 | | void GDALWarpOperation::WipeChunkList() |
1363 | | |
1364 | 0 | { |
1365 | 0 | CPLFree(pasChunkList); |
1366 | 0 | pasChunkList = nullptr; |
1367 | 0 | nChunkListCount = 0; |
1368 | 0 | nChunkListMax = 0; |
1369 | 0 | } |
1370 | | |
1371 | | /************************************************************************/ |
1372 | | /* GetWorkingMemoryForWindow() */ |
1373 | | /************************************************************************/ |
1374 | | |
1375 | | /** Returns the amount of working memory, in bytes, required to process |
1376 | | * a warped window of source dimensions nSrcXSize x nSrcYSize and target |
1377 | | * dimensions nDstXSize x nDstYSize. |
1378 | | */ |
1379 | | double GDALWarpOperation::GetWorkingMemoryForWindow(int nSrcXSize, |
1380 | | int nSrcYSize, |
1381 | | int nDstXSize, |
1382 | | int nDstYSize) const |
1383 | 0 | { |
1384 | | /* -------------------------------------------------------------------- */ |
1385 | | /* Based on the types of masks in use, how many bits will each */ |
1386 | | /* source pixel cost us? */ |
1387 | | /* -------------------------------------------------------------------- */ |
1388 | 0 | int nSrcPixelCostInBits = |
1389 | 0 | GDALGetDataTypeSizeBits(psOptions->eWorkingDataType) * |
1390 | 0 | psOptions->nBandCount; |
1391 | |
|
1392 | 0 | if (psOptions->pfnSrcDensityMaskFunc != nullptr) |
1393 | 0 | nSrcPixelCostInBits += 32; // Float mask? |
1394 | |
|
1395 | 0 | GDALRasterBandH hSrcBand = nullptr; |
1396 | 0 | if (psOptions->nBandCount > 0) |
1397 | 0 | hSrcBand = |
1398 | 0 | GDALGetRasterBand(psOptions->hSrcDS, psOptions->panSrcBands[0]); |
1399 | |
|
1400 | 0 | if (psOptions->nSrcAlphaBand > 0 || psOptions->hCutline != nullptr) |
1401 | 0 | nSrcPixelCostInBits += 32; // UnifiedSrcDensity float mask. |
1402 | 0 | else if (hSrcBand != nullptr && |
1403 | 0 | (GDALGetMaskFlags(hSrcBand) & GMF_PER_DATASET)) |
1404 | 0 | nSrcPixelCostInBits += 1; // UnifiedSrcValid bit mask. |
1405 | |
|
1406 | 0 | if (psOptions->papfnSrcPerBandValidityMaskFunc != nullptr || |
1407 | 0 | psOptions->padfSrcNoDataReal != nullptr) |
1408 | 0 | nSrcPixelCostInBits += psOptions->nBandCount; // Bit/band mask. |
1409 | |
|
1410 | 0 | if (psOptions->pfnSrcValidityMaskFunc != nullptr) |
1411 | 0 | nSrcPixelCostInBits += 1; // Bit mask. |
1412 | | |
1413 | | /* -------------------------------------------------------------------- */ |
1414 | | /* What about the cost for the destination. */ |
1415 | | /* -------------------------------------------------------------------- */ |
1416 | 0 | int nDstPixelCostInBits = |
1417 | 0 | GDALGetDataTypeSizeBits(psOptions->eWorkingDataType) * |
1418 | 0 | psOptions->nBandCount; |
1419 | |
|
1420 | 0 | if (psOptions->pfnDstDensityMaskFunc != nullptr) |
1421 | 0 | nDstPixelCostInBits += 32; |
1422 | |
|
1423 | 0 | if (psOptions->padfDstNoDataReal != nullptr || |
1424 | 0 | psOptions->pfnDstValidityMaskFunc != nullptr) |
1425 | 0 | nDstPixelCostInBits += psOptions->nBandCount; |
1426 | |
|
1427 | 0 | if (psOptions->nDstAlphaBand > 0) |
1428 | 0 | nDstPixelCostInBits += 32; // DstDensity float mask. |
1429 | |
|
1430 | 0 | const double dfTotalMemoryUse = |
1431 | 0 | (static_cast<double>(nSrcPixelCostInBits) * nSrcXSize * nSrcYSize + |
1432 | 0 | static_cast<double>(nDstPixelCostInBits) * nDstXSize * nDstYSize) / |
1433 | 0 | 8.0; |
1434 | 0 | return dfTotalMemoryUse; |
1435 | 0 | } |
1436 | | |
1437 | | /************************************************************************/ |
1438 | | /* CollectChunkListInternal() */ |
1439 | | /************************************************************************/ |
1440 | | |
1441 | | CPLErr GDALWarpOperation::CollectChunkListInternal(int nDstXOff, int nDstYOff, |
1442 | | int nDstXSize, int nDstYSize) |
1443 | | |
1444 | 0 | { |
1445 | | /* -------------------------------------------------------------------- */ |
1446 | | /* Compute the bounds of the input area corresponding to the */ |
1447 | | /* output area. */ |
1448 | | /* -------------------------------------------------------------------- */ |
1449 | 0 | int nSrcXOff = 0; |
1450 | 0 | int nSrcYOff = 0; |
1451 | 0 | int nSrcXSize = 0; |
1452 | 0 | int nSrcYSize = 0; |
1453 | 0 | double dfSrcXExtraSize = 0.0; |
1454 | 0 | double dfSrcYExtraSize = 0.0; |
1455 | 0 | double dfSrcFillRatio = 0.0; |
1456 | 0 | CPLErr eErr; |
1457 | 0 | { |
1458 | 0 | CPLTurnFailureIntoWarningBackuper oBackuper; |
1459 | 0 | eErr = ComputeSourceWindow(nDstXOff, nDstYOff, nDstXSize, nDstYSize, |
1460 | 0 | &nSrcXOff, &nSrcYOff, &nSrcXSize, &nSrcYSize, |
1461 | 0 | &dfSrcXExtraSize, &dfSrcYExtraSize, |
1462 | 0 | &dfSrcFillRatio); |
1463 | 0 | } |
1464 | |
|
1465 | 0 | if (eErr != CE_None) |
1466 | 0 | { |
1467 | 0 | const bool bErrorOutIfEmptySourceWindow = |
1468 | 0 | CPLFetchBool(psOptions->papszWarpOptions, |
1469 | 0 | "ERROR_OUT_IF_EMPTY_SOURCE_WINDOW", true); |
1470 | 0 | if (bErrorOutIfEmptySourceWindow) |
1471 | 0 | { |
1472 | 0 | CPLError(CE_Warning, CPLE_AppDefined, |
1473 | 0 | "Unable to compute source region for " |
1474 | 0 | "output window %d,%d,%d,%d, skipping.", |
1475 | 0 | nDstXOff, nDstYOff, nDstXSize, nDstYSize); |
1476 | 0 | } |
1477 | 0 | else |
1478 | 0 | { |
1479 | 0 | CPLDebug("WARP", |
1480 | 0 | "Unable to compute source region for " |
1481 | 0 | "output window %d,%d,%d,%d, skipping.", |
1482 | 0 | nDstXOff, nDstYOff, nDstXSize, nDstYSize); |
1483 | 0 | } |
1484 | 0 | } |
1485 | | |
1486 | | /* -------------------------------------------------------------------- */ |
1487 | | /* If we are allowed to drop no-source regions, do so now if */ |
1488 | | /* appropriate. */ |
1489 | | /* -------------------------------------------------------------------- */ |
1490 | 0 | if ((nSrcXSize == 0 || nSrcYSize == 0) && |
1491 | 0 | CPLFetchBool(psOptions->papszWarpOptions, "SKIP_NOSOURCE", false)) |
1492 | 0 | return CE_None; |
1493 | | |
1494 | | /* -------------------------------------------------------------------- */ |
1495 | | /* Does the cost of the current rectangle exceed our memory */ |
1496 | | /* limit? If so, split the destination along the longest */ |
1497 | | /* dimension and recurse. */ |
1498 | | /* -------------------------------------------------------------------- */ |
1499 | 0 | const double dfTotalMemoryUse = |
1500 | 0 | GetWorkingMemoryForWindow(nSrcXSize, nSrcYSize, nDstXSize, nDstYSize); |
1501 | | |
1502 | | // If size of working buffers need exceed the allow limit, then divide |
1503 | | // the target area |
1504 | | // Do it also if the "fill ratio" of the source is too low (#3120), but |
1505 | | // only if there's at least some source pixel intersecting. The |
1506 | | // SRC_FILL_RATIO_HEURISTICS warping option is undocumented and only here |
1507 | | // in case the heuristics would cause issues. |
1508 | | #if DEBUG_VERBOSE |
1509 | | CPLDebug("WARP", |
1510 | | "dst=(%d,%d,%d,%d) src=(%d,%d,%d,%d) srcfillratio=%.17g, " |
1511 | | "dfTotalMemoryUse=%.1f MB", |
1512 | | nDstXOff, nDstYOff, nDstXSize, nDstYSize, nSrcXOff, nSrcYOff, |
1513 | | nSrcXSize, nSrcYSize, dfSrcFillRatio, |
1514 | | dfTotalMemoryUse / (1024 * 1024)); |
1515 | | #endif |
1516 | 0 | if ((dfTotalMemoryUse > psOptions->dfWarpMemoryLimit && |
1517 | 0 | (nDstXSize > 2 || nDstYSize > 2)) || |
1518 | 0 | (dfSrcFillRatio > 0 && dfSrcFillRatio < 0.5 && |
1519 | 0 | (nDstXSize > 100 || nDstYSize > 100) && |
1520 | 0 | CPLFetchBool(psOptions->papszWarpOptions, "SRC_FILL_RATIO_HEURISTICS", |
1521 | 0 | true))) |
1522 | 0 | { |
1523 | 0 | int nBlockXSize = 1; |
1524 | 0 | int nBlockYSize = 1; |
1525 | 0 | if (psOptions->hDstDS) |
1526 | 0 | { |
1527 | 0 | GDALGetBlockSize(GDALGetRasterBand(psOptions->hDstDS, 1), |
1528 | 0 | &nBlockXSize, &nBlockYSize); |
1529 | 0 | } |
1530 | |
|
1531 | 0 | int bStreamableOutput = CPLFetchBool(psOptions->papszWarpOptions, |
1532 | 0 | "STREAMABLE_OUTPUT", false); |
1533 | 0 | const char *pszOptimizeSize = |
1534 | 0 | CSLFetchNameValue(psOptions->papszWarpOptions, "OPTIMIZE_SIZE"); |
1535 | 0 | const bool bOptimizeSizeAuto = |
1536 | 0 | !pszOptimizeSize || EQUAL(pszOptimizeSize, "AUTO"); |
1537 | 0 | const bool bOptimizeSize = |
1538 | 0 | !bStreamableOutput && |
1539 | 0 | ((pszOptimizeSize && !bOptimizeSizeAuto && |
1540 | 0 | CPLTestBool(pszOptimizeSize)) || |
1541 | | // Auto-enable optimize-size mode if output region is at least |
1542 | | // 2x2 blocks large and the shapes of the source and target regions |
1543 | | // are not excessively different. All those thresholds are a bit |
1544 | | // arbitrary |
1545 | 0 | (bOptimizeSizeAuto && nSrcXSize > 0 && nDstYSize > 0 && |
1546 | 0 | (nDstXSize > nDstYSize ? fabs(double(nDstXSize) / nDstYSize - |
1547 | 0 | double(nSrcXSize) / nSrcYSize) < |
1548 | 0 | 5 * double(nDstXSize) / nDstYSize |
1549 | 0 | : fabs(double(nDstYSize) / nDstXSize - |
1550 | 0 | double(nSrcYSize) / nSrcXSize) < |
1551 | 0 | 5 * double(nDstYSize) / nDstXSize) && |
1552 | 0 | nDstXSize / 2 >= nBlockXSize && nDstYSize / 2 >= nBlockYSize)); |
1553 | | |
1554 | | // If the region width is greater than the region height, |
1555 | | // cut in half in the width. When we want to optimize the size |
1556 | | // of a compressed output dataset, do this only if each half part |
1557 | | // is at least as wide as the block width. |
1558 | 0 | bool bHasDivided = false; |
1559 | 0 | CPLErr eErr2 = CE_None; |
1560 | 0 | if (nDstXSize > nDstYSize && |
1561 | 0 | ((!bOptimizeSize && !bStreamableOutput) || |
1562 | 0 | (bOptimizeSize && |
1563 | 0 | (nDstXSize / 2 >= nBlockXSize || nDstYSize == 1)) || |
1564 | 0 | (bStreamableOutput && nDstXSize / 2 >= nBlockXSize && |
1565 | 0 | nDstYSize == nBlockYSize))) |
1566 | 0 | { |
1567 | 0 | bHasDivided = true; |
1568 | 0 | int nChunk1 = nDstXSize / 2; |
1569 | | |
1570 | | // In the optimize size case, try to stick on target block |
1571 | | // boundaries. |
1572 | 0 | if ((bOptimizeSize || bStreamableOutput) && nChunk1 > nBlockXSize) |
1573 | 0 | nChunk1 = (nChunk1 / nBlockXSize) * nBlockXSize; |
1574 | |
|
1575 | 0 | int nChunk2 = nDstXSize - nChunk1; |
1576 | |
|
1577 | 0 | eErr = CollectChunkListInternal(nDstXOff, nDstYOff, nChunk1, |
1578 | 0 | nDstYSize); |
1579 | |
|
1580 | 0 | eErr2 = CollectChunkListInternal(nDstXOff + nChunk1, nDstYOff, |
1581 | 0 | nChunk2, nDstYSize); |
1582 | 0 | } |
1583 | 0 | else if (!(bStreamableOutput && nDstYSize / 2 < nBlockYSize)) |
1584 | 0 | { |
1585 | 0 | bHasDivided = true; |
1586 | 0 | int nChunk1 = nDstYSize / 2; |
1587 | | |
1588 | | // In the optimize size case, try to stick on target block |
1589 | | // boundaries. |
1590 | 0 | if ((bOptimizeSize || bStreamableOutput) && nChunk1 > nBlockYSize) |
1591 | 0 | nChunk1 = (nChunk1 / nBlockYSize) * nBlockYSize; |
1592 | |
|
1593 | 0 | const int nChunk2 = nDstYSize - nChunk1; |
1594 | |
|
1595 | 0 | eErr = CollectChunkListInternal(nDstXOff, nDstYOff, nDstXSize, |
1596 | 0 | nChunk1); |
1597 | |
|
1598 | 0 | eErr2 = CollectChunkListInternal(nDstXOff, nDstYOff + nChunk1, |
1599 | 0 | nDstXSize, nChunk2); |
1600 | 0 | } |
1601 | |
|
1602 | 0 | if (bHasDivided) |
1603 | 0 | { |
1604 | 0 | if (eErr == CE_None) |
1605 | 0 | return eErr2; |
1606 | 0 | else |
1607 | 0 | return eErr; |
1608 | 0 | } |
1609 | 0 | } |
1610 | | |
1611 | | /* -------------------------------------------------------------------- */ |
1612 | | /* OK, everything fits, so add to the chunk list. */ |
1613 | | /* -------------------------------------------------------------------- */ |
1614 | 0 | if (nChunkListCount == nChunkListMax) |
1615 | 0 | { |
1616 | 0 | nChunkListMax = nChunkListMax * 2 + 1; |
1617 | 0 | pasChunkList = static_cast<GDALWarpChunk *>( |
1618 | 0 | CPLRealloc(pasChunkList, sizeof(GDALWarpChunk) * nChunkListMax)); |
1619 | 0 | } |
1620 | |
|
1621 | 0 | pasChunkList[nChunkListCount].dx = nDstXOff; |
1622 | 0 | pasChunkList[nChunkListCount].dy = nDstYOff; |
1623 | 0 | pasChunkList[nChunkListCount].dsx = nDstXSize; |
1624 | 0 | pasChunkList[nChunkListCount].dsy = nDstYSize; |
1625 | 0 | pasChunkList[nChunkListCount].sx = nSrcXOff; |
1626 | 0 | pasChunkList[nChunkListCount].sy = nSrcYOff; |
1627 | 0 | pasChunkList[nChunkListCount].ssx = nSrcXSize; |
1628 | 0 | pasChunkList[nChunkListCount].ssy = nSrcYSize; |
1629 | 0 | pasChunkList[nChunkListCount].sExtraSx = dfSrcXExtraSize; |
1630 | 0 | pasChunkList[nChunkListCount].sExtraSy = dfSrcYExtraSize; |
1631 | |
|
1632 | 0 | nChunkListCount++; |
1633 | |
|
1634 | 0 | return CE_None; |
1635 | 0 | } |
1636 | | |
1637 | | /************************************************************************/ |
1638 | | /* WarpRegion() */ |
1639 | | /************************************************************************/ |
1640 | | |
1641 | | /** |
1642 | | * This method requests the indicated region of the output file be generated. |
1643 | | * |
1644 | | * Note that WarpRegion() will produce the requested area in one low level warp |
1645 | | * operation without verifying that this does not exceed the stated memory |
1646 | | * limits for the warp operation. Applications should take care not to call |
1647 | | * WarpRegion() on too large a region! This function |
1648 | | * is normally called by ChunkAndWarpImage(), the normal entry point for |
1649 | | * applications. Use it instead if staying within memory constraints is |
1650 | | * desired. |
1651 | | * |
1652 | | * Progress is reported from dfProgressBase to dfProgressBase + dfProgressScale |
1653 | | * for the indicated region. |
1654 | | * |
1655 | | * @param nDstXOff X offset to window of destination data to be produced. |
1656 | | * @param nDstYOff Y offset to window of destination data to be produced. |
1657 | | * @param nDstXSize Width of output window on destination file to be produced. |
1658 | | * @param nDstYSize Height of output window on destination file to be produced. |
1659 | | * @param nSrcXOff source window X offset (computed if window all zero) |
1660 | | * @param nSrcYOff source window Y offset (computed if window all zero) |
1661 | | * @param nSrcXSize source window X size (computed if window all zero) |
1662 | | * @param nSrcYSize source window Y size (computed if window all zero) |
1663 | | * @param dfProgressBase minimum progress value reported |
1664 | | * @param dfProgressScale value such as dfProgressBase + dfProgressScale is the |
1665 | | * maximum progress value reported |
1666 | | * |
1667 | | * @return CE_None on success or CE_Failure if an error occurs. |
1668 | | */ |
1669 | | |
1670 | | CPLErr GDALWarpOperation::WarpRegion(int nDstXOff, int nDstYOff, int nDstXSize, |
1671 | | int nDstYSize, int nSrcXOff, int nSrcYOff, |
1672 | | int nSrcXSize, int nSrcYSize, |
1673 | | double dfProgressBase, |
1674 | | double dfProgressScale) |
1675 | 0 | { |
1676 | 0 | return WarpRegion(nDstXOff, nDstYOff, nDstXSize, nDstYSize, nSrcXOff, |
1677 | 0 | nSrcYOff, nSrcXSize, nSrcYSize, 0, 0, dfProgressBase, |
1678 | 0 | dfProgressScale); |
1679 | 0 | } |
1680 | | |
1681 | | /** |
1682 | | * This method requests the indicated region of the output file be generated. |
1683 | | * |
1684 | | * Note that WarpRegion() will produce the requested area in one low level warp |
1685 | | * operation without verifying that this does not exceed the stated memory |
1686 | | * limits for the warp operation. Applications should take care not to call |
1687 | | * WarpRegion() on too large a region! This function |
1688 | | * is normally called by ChunkAndWarpImage(), the normal entry point for |
1689 | | * applications. Use it instead if staying within memory constraints is |
1690 | | * desired. |
1691 | | * |
1692 | | * Progress is reported from dfProgressBase to dfProgressBase + dfProgressScale |
1693 | | * for the indicated region. |
1694 | | * |
1695 | | * @param nDstXOff X offset to window of destination data to be produced. |
1696 | | * @param nDstYOff Y offset to window of destination data to be produced. |
1697 | | * @param nDstXSize Width of output window on destination file to be produced. |
1698 | | * @param nDstYSize Height of output window on destination file to be produced. |
1699 | | * @param nSrcXOff source window X offset (computed if window all zero) |
1700 | | * @param nSrcYOff source window Y offset (computed if window all zero) |
1701 | | * @param nSrcXSize source window X size (computed if window all zero) |
1702 | | * @param nSrcYSize source window Y size (computed if window all zero) |
1703 | | * @param dfSrcXExtraSize Extra pixels (included in nSrcXSize) reserved |
1704 | | * for filter window. Should be ignored in scale computation |
1705 | | * @param dfSrcYExtraSize Extra pixels (included in nSrcYSize) reserved |
1706 | | * for filter window. Should be ignored in scale computation |
1707 | | * @param dfProgressBase minimum progress value reported |
1708 | | * @param dfProgressScale value such as dfProgressBase + dfProgressScale is the |
1709 | | * maximum progress value reported |
1710 | | * |
1711 | | * @return CE_None on success or CE_Failure if an error occurs. |
1712 | | */ |
1713 | | |
1714 | | CPLErr GDALWarpOperation::WarpRegion( |
1715 | | int nDstXOff, int nDstYOff, int nDstXSize, int nDstYSize, int nSrcXOff, |
1716 | | int nSrcYOff, int nSrcXSize, int nSrcYSize, double dfSrcXExtraSize, |
1717 | | double dfSrcYExtraSize, double dfProgressBase, double dfProgressScale) |
1718 | | |
1719 | 0 | { |
1720 | 0 | ReportTiming(nullptr); |
1721 | | |
1722 | | /* -------------------------------------------------------------------- */ |
1723 | | /* Allocate the output buffer. */ |
1724 | | /* -------------------------------------------------------------------- */ |
1725 | 0 | int bDstBufferInitialized = FALSE; |
1726 | 0 | void *pDstBuffer = |
1727 | 0 | CreateDestinationBuffer(nDstXSize, nDstYSize, &bDstBufferInitialized); |
1728 | 0 | if (pDstBuffer == nullptr) |
1729 | 0 | { |
1730 | 0 | return CE_Failure; |
1731 | 0 | } |
1732 | | |
1733 | | /* -------------------------------------------------------------------- */ |
1734 | | /* If we aren't doing fixed initialization of the output buffer */ |
1735 | | /* then read it from disk so we can overlay on existing imagery. */ |
1736 | | /* -------------------------------------------------------------------- */ |
1737 | 0 | GDALDataset *poDstDS = GDALDataset::FromHandle(psOptions->hDstDS); |
1738 | 0 | if (!bDstBufferInitialized) |
1739 | 0 | { |
1740 | 0 | CPLErr eErr = CE_None; |
1741 | 0 | if (psOptions->nBandCount == 1) |
1742 | 0 | { |
1743 | | // Particular case to simplify the stack a bit. |
1744 | | // TODO(rouault): Need an explanation of what and why r34502 helps. |
1745 | 0 | eErr = poDstDS->GetRasterBand(psOptions->panDstBands[0]) |
1746 | 0 | ->RasterIO(GF_Read, nDstXOff, nDstYOff, nDstXSize, |
1747 | 0 | nDstYSize, pDstBuffer, nDstXSize, nDstYSize, |
1748 | 0 | psOptions->eWorkingDataType, 0, 0, nullptr); |
1749 | 0 | } |
1750 | 0 | else |
1751 | 0 | { |
1752 | 0 | eErr = poDstDS->RasterIO(GF_Read, nDstXOff, nDstYOff, nDstXSize, |
1753 | 0 | nDstYSize, pDstBuffer, nDstXSize, |
1754 | 0 | nDstYSize, psOptions->eWorkingDataType, |
1755 | 0 | psOptions->nBandCount, |
1756 | 0 | psOptions->panDstBands, 0, 0, 0, nullptr); |
1757 | 0 | } |
1758 | |
|
1759 | 0 | if (eErr != CE_None) |
1760 | 0 | { |
1761 | 0 | DestroyDestinationBuffer(pDstBuffer); |
1762 | 0 | return eErr; |
1763 | 0 | } |
1764 | | |
1765 | 0 | ReportTiming("Output buffer read"); |
1766 | 0 | } |
1767 | | |
1768 | | /* -------------------------------------------------------------------- */ |
1769 | | /* Perform the warp. */ |
1770 | | /* -------------------------------------------------------------------- */ |
1771 | 0 | CPLErr eErr = nSrcXSize == 0 |
1772 | 0 | ? CE_None |
1773 | 0 | : WarpRegionToBuffer( |
1774 | 0 | nDstXOff, nDstYOff, nDstXSize, nDstYSize, |
1775 | 0 | pDstBuffer, psOptions->eWorkingDataType, nSrcXOff, |
1776 | 0 | nSrcYOff, nSrcXSize, nSrcYSize, dfSrcXExtraSize, |
1777 | 0 | dfSrcYExtraSize, dfProgressBase, dfProgressScale); |
1778 | | |
1779 | | /* -------------------------------------------------------------------- */ |
1780 | | /* Write the output data back to disk if all went well. */ |
1781 | | /* -------------------------------------------------------------------- */ |
1782 | 0 | if (eErr == CE_None) |
1783 | 0 | { |
1784 | 0 | if (psOptions->nBandCount == 1) |
1785 | 0 | { |
1786 | | // Particular case to simplify the stack a bit. |
1787 | 0 | eErr = poDstDS->GetRasterBand(psOptions->panDstBands[0]) |
1788 | 0 | ->RasterIO(GF_Write, nDstXOff, nDstYOff, nDstXSize, |
1789 | 0 | nDstYSize, pDstBuffer, nDstXSize, nDstYSize, |
1790 | 0 | psOptions->eWorkingDataType, 0, 0, nullptr); |
1791 | 0 | } |
1792 | 0 | else |
1793 | 0 | { |
1794 | 0 | eErr = poDstDS->RasterIO(GF_Write, nDstXOff, nDstYOff, nDstXSize, |
1795 | 0 | nDstYSize, pDstBuffer, nDstXSize, |
1796 | 0 | nDstYSize, psOptions->eWorkingDataType, |
1797 | 0 | psOptions->nBandCount, |
1798 | 0 | psOptions->panDstBands, 0, 0, 0, nullptr); |
1799 | 0 | } |
1800 | |
|
1801 | 0 | if (eErr == CE_None && |
1802 | 0 | CPLFetchBool(psOptions->papszWarpOptions, "WRITE_FLUSH", false)) |
1803 | 0 | { |
1804 | 0 | const CPLErr eOldErr = CPLGetLastErrorType(); |
1805 | 0 | const CPLString osLastErrMsg = CPLGetLastErrorMsg(); |
1806 | 0 | GDALFlushCache(psOptions->hDstDS); |
1807 | 0 | const CPLErr eNewErr = CPLGetLastErrorType(); |
1808 | 0 | if (eNewErr != eOldErr || |
1809 | 0 | osLastErrMsg.compare(CPLGetLastErrorMsg()) != 0) |
1810 | 0 | eErr = CE_Failure; |
1811 | 0 | } |
1812 | 0 | ReportTiming("Output buffer write"); |
1813 | 0 | } |
1814 | | |
1815 | | /* -------------------------------------------------------------------- */ |
1816 | | /* Cleanup and return. */ |
1817 | | /* -------------------------------------------------------------------- */ |
1818 | 0 | DestroyDestinationBuffer(pDstBuffer); |
1819 | |
|
1820 | 0 | return eErr; |
1821 | 0 | } |
1822 | | |
1823 | | /************************************************************************/ |
1824 | | /* GDALWarpRegion() */ |
1825 | | /************************************************************************/ |
1826 | | |
1827 | | /** |
1828 | | * @see GDALWarpOperation::WarpRegion() |
1829 | | */ |
1830 | | |
1831 | | CPLErr GDALWarpRegion(GDALWarpOperationH hOperation, int nDstXOff, int nDstYOff, |
1832 | | int nDstXSize, int nDstYSize, int nSrcXOff, int nSrcYOff, |
1833 | | int nSrcXSize, int nSrcYSize) |
1834 | | |
1835 | 0 | { |
1836 | 0 | VALIDATE_POINTER1(hOperation, "GDALWarpRegion", CE_Failure); |
1837 | | |
1838 | 0 | return reinterpret_cast<GDALWarpOperation *>(hOperation) |
1839 | 0 | ->WarpRegion(nDstXOff, nDstYOff, nDstXSize, nDstYSize, nSrcXOff, |
1840 | 0 | nSrcYOff, nSrcXSize, nSrcYSize); |
1841 | 0 | } |
1842 | | |
1843 | | /************************************************************************/ |
1844 | | /* WarpRegionToBuffer() */ |
1845 | | /************************************************************************/ |
1846 | | |
1847 | | /** |
1848 | | * This method requests that a particular window of the output dataset |
1849 | | * be warped and the result put into the provided data buffer. The output |
1850 | | * dataset doesn't even really have to exist to use this method as long as |
1851 | | * the transformation function in the GDALWarpOptions is setup to map to |
1852 | | * a virtual pixel/line space. |
1853 | | * |
1854 | | * This method will do the whole region in one chunk, so be wary of the |
1855 | | * amount of memory that might be used. |
1856 | | * |
1857 | | * @param nDstXOff X offset to window of destination data to be produced. |
1858 | | * @param nDstYOff Y offset to window of destination data to be produced. |
1859 | | * @param nDstXSize Width of output window on destination file to be produced. |
1860 | | * @param nDstYSize Height of output window on destination file to be produced. |
1861 | | * @param pDataBuf the data buffer to place result in, of type eBufDataType. |
1862 | | * @param eBufDataType the type of the output data buffer. For now this |
1863 | | * must match GDALWarpOptions::eWorkingDataType. |
1864 | | * @param nSrcXOff source window X offset (computed if window all zero) |
1865 | | * @param nSrcYOff source window Y offset (computed if window all zero) |
1866 | | * @param nSrcXSize source window X size (computed if window all zero) |
1867 | | * @param nSrcYSize source window Y size (computed if window all zero) |
1868 | | * @param dfProgressBase minimum progress value reported |
1869 | | * @param dfProgressScale value such as dfProgressBase + dfProgressScale is the |
1870 | | * maximum progress value reported |
1871 | | * |
1872 | | * @return CE_None on success or CE_Failure if an error occurs. |
1873 | | */ |
1874 | | |
1875 | | CPLErr GDALWarpOperation::WarpRegionToBuffer( |
1876 | | int nDstXOff, int nDstYOff, int nDstXSize, int nDstYSize, void *pDataBuf, |
1877 | | GDALDataType eBufDataType, int nSrcXOff, int nSrcYOff, int nSrcXSize, |
1878 | | int nSrcYSize, double dfProgressBase, double dfProgressScale) |
1879 | 0 | { |
1880 | 0 | return WarpRegionToBuffer(nDstXOff, nDstYOff, nDstXSize, nDstYSize, |
1881 | 0 | pDataBuf, eBufDataType, nSrcXOff, nSrcYOff, |
1882 | 0 | nSrcXSize, nSrcYSize, 0, 0, dfProgressBase, |
1883 | 0 | dfProgressScale); |
1884 | 0 | } |
1885 | | |
1886 | | /** |
1887 | | * This method requests that a particular window of the output dataset |
1888 | | * be warped and the result put into the provided data buffer. The output |
1889 | | * dataset doesn't even really have to exist to use this method as long as |
1890 | | * the transformation function in the GDALWarpOptions is setup to map to |
1891 | | * a virtual pixel/line space. |
1892 | | * |
1893 | | * This method will do the whole region in one chunk, so be wary of the |
1894 | | * amount of memory that might be used. |
1895 | | * |
1896 | | * @param nDstXOff X offset to window of destination data to be produced. |
1897 | | * @param nDstYOff Y offset to window of destination data to be produced. |
1898 | | * @param nDstXSize Width of output window on destination file to be produced. |
1899 | | * @param nDstYSize Height of output window on destination file to be produced. |
1900 | | * @param pDataBuf the data buffer to place result in, of type eBufDataType. |
1901 | | * @param eBufDataType the type of the output data buffer. For now this |
1902 | | * must match GDALWarpOptions::eWorkingDataType. |
1903 | | * @param nSrcXOff source window X offset (computed if window all zero) |
1904 | | * @param nSrcYOff source window Y offset (computed if window all zero) |
1905 | | * @param nSrcXSize source window X size (computed if window all zero) |
1906 | | * @param nSrcYSize source window Y size (computed if window all zero) |
1907 | | * @param dfSrcXExtraSize Extra pixels (included in nSrcXSize) reserved |
1908 | | * for filter window. Should be ignored in scale computation |
1909 | | * @param dfSrcYExtraSize Extra pixels (included in nSrcYSize) reserved |
1910 | | * for filter window. Should be ignored in scale computation |
1911 | | * @param dfProgressBase minimum progress value reported |
1912 | | * @param dfProgressScale value such as dfProgressBase + dfProgressScale is the |
1913 | | * maximum progress value reported |
1914 | | * |
1915 | | * @return CE_None on success or CE_Failure if an error occurs. |
1916 | | */ |
1917 | | |
1918 | | CPLErr GDALWarpOperation::WarpRegionToBuffer( |
1919 | | int nDstXOff, int nDstYOff, int nDstXSize, int nDstYSize, void *pDataBuf, |
1920 | | // Only in a CPLAssert. |
1921 | | CPL_UNUSED GDALDataType eBufDataType, int nSrcXOff, int nSrcYOff, |
1922 | | int nSrcXSize, int nSrcYSize, double dfSrcXExtraSize, |
1923 | | double dfSrcYExtraSize, double dfProgressBase, double dfProgressScale) |
1924 | | |
1925 | 0 | { |
1926 | 0 | const int nWordSize = GDALGetDataTypeSizeBytes(psOptions->eWorkingDataType); |
1927 | |
|
1928 | 0 | CPLAssert(eBufDataType == psOptions->eWorkingDataType); |
1929 | | |
1930 | | /* -------------------------------------------------------------------- */ |
1931 | | /* If not given a corresponding source window compute one now. */ |
1932 | | /* -------------------------------------------------------------------- */ |
1933 | 0 | if (nSrcXSize == 0 && nSrcYSize == 0) |
1934 | 0 | { |
1935 | | // TODO: This taking of the warp mutex is suboptimal. We could get rid |
1936 | | // of it, but that would require making sure ComputeSourceWindow() |
1937 | | // uses a different pTransformerArg than the warp kernel. |
1938 | 0 | if (hWarpMutex != nullptr && !CPLAcquireMutex(hWarpMutex, 600.0)) |
1939 | 0 | { |
1940 | 0 | CPLError(CE_Failure, CPLE_AppDefined, |
1941 | 0 | "Failed to acquire WarpMutex in WarpRegion()."); |
1942 | 0 | return CE_Failure; |
1943 | 0 | } |
1944 | 0 | const CPLErr eErr = |
1945 | 0 | ComputeSourceWindow(nDstXOff, nDstYOff, nDstXSize, nDstYSize, |
1946 | 0 | &nSrcXOff, &nSrcYOff, &nSrcXSize, &nSrcYSize, |
1947 | 0 | &dfSrcXExtraSize, &dfSrcYExtraSize, nullptr); |
1948 | 0 | if (hWarpMutex != nullptr) |
1949 | 0 | CPLReleaseMutex(hWarpMutex); |
1950 | 0 | if (eErr != CE_None) |
1951 | 0 | { |
1952 | 0 | const bool bErrorOutIfEmptySourceWindow = |
1953 | 0 | CPLFetchBool(psOptions->papszWarpOptions, |
1954 | 0 | "ERROR_OUT_IF_EMPTY_SOURCE_WINDOW", true); |
1955 | 0 | if (!bErrorOutIfEmptySourceWindow) |
1956 | 0 | return CE_None; |
1957 | 0 | return eErr; |
1958 | 0 | } |
1959 | 0 | } |
1960 | | |
1961 | | /* -------------------------------------------------------------------- */ |
1962 | | /* Prepare a WarpKernel object to match this operation. */ |
1963 | | /* -------------------------------------------------------------------- */ |
1964 | 0 | GDALWarpKernel oWK; |
1965 | |
|
1966 | 0 | oWK.eResample = m_bIsTranslationOnPixelBoundaries ? GRA_NearestNeighbour |
1967 | 0 | : psOptions->eResampleAlg; |
1968 | 0 | oWK.eTieStrategy = psOptions->eTieStrategy; |
1969 | 0 | oWK.nBands = psOptions->nBandCount; |
1970 | 0 | oWK.eWorkingDataType = psOptions->eWorkingDataType; |
1971 | |
|
1972 | 0 | oWK.pfnTransformer = psOptions->pfnTransformer; |
1973 | 0 | oWK.pTransformerArg = psOptions->pTransformerArg; |
1974 | |
|
1975 | 0 | oWK.pfnProgress = psOptions->pfnProgress; |
1976 | 0 | oWK.pProgress = psOptions->pProgressArg; |
1977 | 0 | oWK.dfProgressBase = dfProgressBase; |
1978 | 0 | oWK.dfProgressScale = dfProgressScale; |
1979 | |
|
1980 | 0 | oWK.papszWarpOptions = psOptions->papszWarpOptions; |
1981 | 0 | oWK.psThreadData = psThreadData; |
1982 | |
|
1983 | 0 | oWK.padfDstNoDataReal = psOptions->padfDstNoDataReal; |
1984 | | |
1985 | | /* -------------------------------------------------------------------- */ |
1986 | | /* Setup the source buffer. */ |
1987 | | /* */ |
1988 | | /* Eventually we may need to take advantage of pixel */ |
1989 | | /* interleaved reading here. */ |
1990 | | /* -------------------------------------------------------------------- */ |
1991 | 0 | oWK.nSrcXOff = nSrcXOff; |
1992 | 0 | oWK.nSrcYOff = nSrcYOff; |
1993 | 0 | oWK.nSrcXSize = nSrcXSize; |
1994 | 0 | oWK.nSrcYSize = nSrcYSize; |
1995 | 0 | oWK.dfSrcXExtraSize = dfSrcXExtraSize; |
1996 | 0 | oWK.dfSrcYExtraSize = dfSrcYExtraSize; |
1997 | |
|
1998 | 0 | GInt64 nAlloc64 = |
1999 | 0 | nWordSize * |
2000 | 0 | (static_cast<GInt64>(nSrcXSize) * nSrcYSize + WARP_EXTRA_ELTS) * |
2001 | 0 | psOptions->nBandCount; |
2002 | | #if SIZEOF_VOIDP == 4 |
2003 | | if (nAlloc64 != static_cast<GInt64>(static_cast<size_t>(nAlloc64))) |
2004 | | { |
2005 | | CPLError(CE_Failure, CPLE_AppDefined, |
2006 | | "Integer overflow : nSrcXSize=%d, nSrcYSize=%d", nSrcXSize, |
2007 | | nSrcYSize); |
2008 | | return CE_Failure; |
2009 | | } |
2010 | | #endif |
2011 | |
|
2012 | 0 | oWK.papabySrcImage = static_cast<GByte **>( |
2013 | 0 | CPLCalloc(sizeof(GByte *), psOptions->nBandCount)); |
2014 | 0 | oWK.papabySrcImage[0] = |
2015 | 0 | static_cast<GByte *>(VSI_MALLOC_VERBOSE(static_cast<size_t>(nAlloc64))); |
2016 | |
|
2017 | 0 | CPLErr eErr = |
2018 | 0 | nSrcXSize != 0 && nSrcYSize != 0 && oWK.papabySrcImage[0] == nullptr |
2019 | 0 | ? CE_Failure |
2020 | 0 | : CE_None; |
2021 | |
|
2022 | 0 | for (int i = 0; i < psOptions->nBandCount && eErr == CE_None; i++) |
2023 | 0 | oWK.papabySrcImage[i] = |
2024 | 0 | reinterpret_cast<GByte *>(oWK.papabySrcImage[0]) + |
2025 | 0 | nWordSize * |
2026 | 0 | (static_cast<GPtrDiff_t>(nSrcXSize) * nSrcYSize + |
2027 | 0 | WARP_EXTRA_ELTS) * |
2028 | 0 | i; |
2029 | |
|
2030 | 0 | if (eErr == CE_None && nSrcXSize > 0 && nSrcYSize > 0) |
2031 | 0 | { |
2032 | 0 | GDALDataset *poSrcDS = GDALDataset::FromHandle(psOptions->hSrcDS); |
2033 | 0 | if (psOptions->nBandCount == 1) |
2034 | 0 | { |
2035 | | // Particular case to simplify the stack a bit. |
2036 | 0 | eErr = poSrcDS->GetRasterBand(psOptions->panSrcBands[0]) |
2037 | 0 | ->RasterIO(GF_Read, nSrcXOff, nSrcYOff, nSrcXSize, |
2038 | 0 | nSrcYSize, oWK.papabySrcImage[0], nSrcXSize, |
2039 | 0 | nSrcYSize, psOptions->eWorkingDataType, 0, 0, |
2040 | 0 | nullptr); |
2041 | 0 | } |
2042 | 0 | else |
2043 | 0 | { |
2044 | 0 | eErr = poSrcDS->RasterIO( |
2045 | 0 | GF_Read, nSrcXOff, nSrcYOff, nSrcXSize, nSrcYSize, |
2046 | 0 | oWK.papabySrcImage[0], nSrcXSize, nSrcYSize, |
2047 | 0 | psOptions->eWorkingDataType, psOptions->nBandCount, |
2048 | 0 | psOptions->panSrcBands, 0, 0, |
2049 | 0 | nWordSize * (static_cast<GPtrDiff_t>(nSrcXSize) * nSrcYSize + |
2050 | 0 | WARP_EXTRA_ELTS), |
2051 | 0 | nullptr); |
2052 | 0 | } |
2053 | 0 | } |
2054 | |
|
2055 | 0 | ReportTiming("Input buffer read"); |
2056 | | |
2057 | | /* -------------------------------------------------------------------- */ |
2058 | | /* Initialize destination buffer. */ |
2059 | | /* -------------------------------------------------------------------- */ |
2060 | 0 | oWK.nDstXOff = nDstXOff; |
2061 | 0 | oWK.nDstYOff = nDstYOff; |
2062 | 0 | oWK.nDstXSize = nDstXSize; |
2063 | 0 | oWK.nDstYSize = nDstYSize; |
2064 | |
|
2065 | 0 | oWK.papabyDstImage = reinterpret_cast<GByte **>( |
2066 | 0 | CPLCalloc(sizeof(GByte *), psOptions->nBandCount)); |
2067 | |
|
2068 | 0 | for (int i = 0; i < psOptions->nBandCount && eErr == CE_None; i++) |
2069 | 0 | { |
2070 | 0 | oWK.papabyDstImage[i] = |
2071 | 0 | static_cast<GByte *>(pDataBuf) + |
2072 | 0 | i * static_cast<GPtrDiff_t>(nDstXSize) * nDstYSize * nWordSize; |
2073 | 0 | } |
2074 | | |
2075 | | /* -------------------------------------------------------------------- */ |
2076 | | /* Eventually we need handling for a whole bunch of the */ |
2077 | | /* validity and density masks here. */ |
2078 | | /* -------------------------------------------------------------------- */ |
2079 | | |
2080 | | // TODO |
2081 | | |
2082 | | /* -------------------------------------------------------------------- */ |
2083 | | /* Generate a source density mask if we have a source alpha band */ |
2084 | | /* -------------------------------------------------------------------- */ |
2085 | 0 | if (eErr == CE_None && psOptions->nSrcAlphaBand > 0 && nSrcXSize > 0 && |
2086 | 0 | nSrcYSize > 0) |
2087 | 0 | { |
2088 | 0 | CPLAssert(oWK.pafUnifiedSrcDensity == nullptr); |
2089 | | |
2090 | 0 | eErr = CreateKernelMask(&oWK, 0 /* not used */, "UnifiedSrcDensity"); |
2091 | |
|
2092 | 0 | if (eErr == CE_None) |
2093 | 0 | { |
2094 | 0 | int bOutAllOpaque = FALSE; |
2095 | 0 | eErr = GDALWarpSrcAlphaMasker( |
2096 | 0 | psOptions, psOptions->nBandCount, psOptions->eWorkingDataType, |
2097 | 0 | oWK.nSrcXOff, oWK.nSrcYOff, oWK.nSrcXSize, oWK.nSrcYSize, |
2098 | 0 | oWK.papabySrcImage, TRUE, oWK.pafUnifiedSrcDensity, |
2099 | 0 | &bOutAllOpaque); |
2100 | 0 | if (bOutAllOpaque) |
2101 | 0 | { |
2102 | | #if DEBUG_VERBOSE |
2103 | | CPLDebug("WARP", |
2104 | | "No need for a source density mask as all values " |
2105 | | "are opaque"); |
2106 | | #endif |
2107 | 0 | CPLFree(oWK.pafUnifiedSrcDensity); |
2108 | 0 | oWK.pafUnifiedSrcDensity = nullptr; |
2109 | 0 | } |
2110 | 0 | } |
2111 | 0 | } |
2112 | | |
2113 | | /* -------------------------------------------------------------------- */ |
2114 | | /* Generate a source density mask if we have a source cutline. */ |
2115 | | /* -------------------------------------------------------------------- */ |
2116 | 0 | if (eErr == CE_None && psOptions->hCutline != nullptr && nSrcXSize > 0 && |
2117 | 0 | nSrcYSize > 0) |
2118 | 0 | { |
2119 | 0 | const bool bUnifiedSrcDensityJustCreated = |
2120 | 0 | (oWK.pafUnifiedSrcDensity == nullptr); |
2121 | 0 | if (bUnifiedSrcDensityJustCreated) |
2122 | 0 | { |
2123 | 0 | eErr = |
2124 | 0 | CreateKernelMask(&oWK, 0 /* not used */, "UnifiedSrcDensity"); |
2125 | |
|
2126 | 0 | if (eErr == CE_None) |
2127 | 0 | { |
2128 | 0 | for (GPtrDiff_t j = 0; |
2129 | 0 | j < static_cast<GPtrDiff_t>(oWK.nSrcXSize) * oWK.nSrcYSize; |
2130 | 0 | j++) |
2131 | 0 | oWK.pafUnifiedSrcDensity[j] = 1.0; |
2132 | 0 | } |
2133 | 0 | } |
2134 | |
|
2135 | 0 | int nValidityFlag = 0; |
2136 | 0 | if (eErr == CE_None) |
2137 | 0 | eErr = GDALWarpCutlineMaskerEx( |
2138 | 0 | psOptions, psOptions->nBandCount, psOptions->eWorkingDataType, |
2139 | 0 | oWK.nSrcXOff, oWK.nSrcYOff, oWK.nSrcXSize, oWK.nSrcYSize, |
2140 | 0 | oWK.papabySrcImage, TRUE, oWK.pafUnifiedSrcDensity, |
2141 | 0 | &nValidityFlag); |
2142 | 0 | if (nValidityFlag == GCMVF_CHUNK_FULLY_WITHIN_CUTLINE && |
2143 | 0 | bUnifiedSrcDensityJustCreated) |
2144 | 0 | { |
2145 | 0 | VSIFree(oWK.pafUnifiedSrcDensity); |
2146 | 0 | oWK.pafUnifiedSrcDensity = nullptr; |
2147 | 0 | } |
2148 | 0 | } |
2149 | | |
2150 | | /* -------------------------------------------------------------------- */ |
2151 | | /* Generate a destination density mask if we have a destination */ |
2152 | | /* alpha band. */ |
2153 | | /* -------------------------------------------------------------------- */ |
2154 | 0 | if (eErr == CE_None && psOptions->nDstAlphaBand > 0) |
2155 | 0 | { |
2156 | 0 | CPLAssert(oWK.pafDstDensity == nullptr); |
2157 | | |
2158 | 0 | eErr = CreateKernelMask(&oWK, 0 /* not used */, "DstDensity"); |
2159 | |
|
2160 | 0 | if (eErr == CE_None) |
2161 | 0 | eErr = GDALWarpDstAlphaMasker( |
2162 | 0 | psOptions, psOptions->nBandCount, psOptions->eWorkingDataType, |
2163 | 0 | oWK.nDstXOff, oWK.nDstYOff, oWK.nDstXSize, oWK.nDstYSize, |
2164 | 0 | oWK.papabyDstImage, TRUE, oWK.pafDstDensity); |
2165 | 0 | } |
2166 | | |
2167 | | /* -------------------------------------------------------------------- */ |
2168 | | /* If we have source nodata values create the validity mask. */ |
2169 | | /* -------------------------------------------------------------------- */ |
2170 | 0 | if (eErr == CE_None && psOptions->padfSrcNoDataReal != nullptr && |
2171 | 0 | nSrcXSize > 0 && nSrcYSize > 0) |
2172 | 0 | { |
2173 | 0 | CPLAssert(oWK.papanBandSrcValid == nullptr); |
2174 | | |
2175 | 0 | bool bAllBandsAllValid = true; |
2176 | 0 | for (int i = 0; i < psOptions->nBandCount && eErr == CE_None; i++) |
2177 | 0 | { |
2178 | 0 | eErr = CreateKernelMask(&oWK, i, "BandSrcValid"); |
2179 | 0 | if (eErr == CE_None) |
2180 | 0 | { |
2181 | 0 | double adfNoData[2] = {psOptions->padfSrcNoDataReal[i], |
2182 | 0 | psOptions->padfSrcNoDataImag != nullptr |
2183 | 0 | ? psOptions->padfSrcNoDataImag[i] |
2184 | 0 | : 0.0}; |
2185 | |
|
2186 | 0 | int bAllValid = FALSE; |
2187 | 0 | eErr = GDALWarpNoDataMasker( |
2188 | 0 | adfNoData, 1, psOptions->eWorkingDataType, oWK.nSrcXOff, |
2189 | 0 | oWK.nSrcYOff, oWK.nSrcXSize, oWK.nSrcYSize, |
2190 | 0 | &(oWK.papabySrcImage[i]), FALSE, oWK.papanBandSrcValid[i], |
2191 | 0 | &bAllValid); |
2192 | 0 | if (!bAllValid) |
2193 | 0 | bAllBandsAllValid = false; |
2194 | 0 | } |
2195 | 0 | } |
2196 | | |
2197 | | // Optimization: if all pixels in all bands are valid, |
2198 | | // we don't need a mask. |
2199 | 0 | if (bAllBandsAllValid) |
2200 | 0 | { |
2201 | | #if DEBUG_VERBOSE |
2202 | | CPLDebug( |
2203 | | "WARP", |
2204 | | "No need for a source nodata mask as all values are valid"); |
2205 | | #endif |
2206 | 0 | for (int k = 0; k < psOptions->nBandCount; k++) |
2207 | 0 | CPLFree(oWK.papanBandSrcValid[k]); |
2208 | 0 | CPLFree(oWK.papanBandSrcValid); |
2209 | 0 | oWK.papanBandSrcValid = nullptr; |
2210 | 0 | } |
2211 | | |
2212 | | /* -------------------------------------------------------------------- |
2213 | | */ |
2214 | | /* If there's just a single band, then transfer */ |
2215 | | /* papanBandSrcValid[0] as panUnifiedSrcValid. */ |
2216 | | /* -------------------------------------------------------------------- |
2217 | | */ |
2218 | 0 | if (oWK.papanBandSrcValid != nullptr && psOptions->nBandCount == 1) |
2219 | 0 | { |
2220 | 0 | oWK.panUnifiedSrcValid = oWK.papanBandSrcValid[0]; |
2221 | 0 | CPLFree(oWK.papanBandSrcValid); |
2222 | 0 | oWK.papanBandSrcValid = nullptr; |
2223 | 0 | } |
2224 | | |
2225 | | /* -------------------------------------------------------------------- |
2226 | | */ |
2227 | | /* Compute a unified input pixel mask if and only if all bands */ |
2228 | | /* nodata is true. That is, we only treat a pixel as nodata if */ |
2229 | | /* all bands match their respective nodata values. */ |
2230 | | /* -------------------------------------------------------------------- |
2231 | | */ |
2232 | 0 | else if (oWK.papanBandSrcValid != nullptr && eErr == CE_None) |
2233 | 0 | { |
2234 | 0 | bool bAtLeastOneBandAllValid = false; |
2235 | 0 | for (int k = 0; k < psOptions->nBandCount; k++) |
2236 | 0 | { |
2237 | 0 | if (oWK.papanBandSrcValid[k] == nullptr) |
2238 | 0 | { |
2239 | 0 | bAtLeastOneBandAllValid = true; |
2240 | 0 | break; |
2241 | 0 | } |
2242 | 0 | } |
2243 | |
|
2244 | 0 | const char *pszUnifiedSrcNoData = CSLFetchNameValue( |
2245 | 0 | psOptions->papszWarpOptions, "UNIFIED_SRC_NODATA"); |
2246 | 0 | if (!bAtLeastOneBandAllValid && (pszUnifiedSrcNoData == nullptr || |
2247 | 0 | CPLTestBool(pszUnifiedSrcNoData))) |
2248 | 0 | { |
2249 | 0 | auto nMaskBits = |
2250 | 0 | static_cast<GPtrDiff_t>(oWK.nSrcXSize) * oWK.nSrcYSize; |
2251 | |
|
2252 | 0 | eErr = |
2253 | 0 | CreateKernelMask(&oWK, 0 /* not used */, "UnifiedSrcValid"); |
2254 | |
|
2255 | 0 | if (eErr == CE_None) |
2256 | 0 | { |
2257 | 0 | CPLMaskClearAll(oWK.panUnifiedSrcValid, nMaskBits); |
2258 | |
|
2259 | 0 | for (int k = 0; k < psOptions->nBandCount; k++) |
2260 | 0 | { |
2261 | 0 | CPLMaskMerge(oWK.panUnifiedSrcValid, |
2262 | 0 | oWK.papanBandSrcValid[k], nMaskBits); |
2263 | 0 | } |
2264 | | |
2265 | | // If UNIFIED_SRC_NODATA is set, then we will ignore the |
2266 | | // individual nodata status of each band. If it is not set, |
2267 | | // both mechanism apply: |
2268 | | // - if panUnifiedSrcValid[] indicates a pixel is invalid |
2269 | | // (that is all its bands are at nodata), then the output |
2270 | | // pixel will be invalid |
2271 | | // - otherwise, the status band per band will be check with |
2272 | | // papanBandSrcValid[iBand][], and the output pixel will |
2273 | | // be valid |
2274 | 0 | if (pszUnifiedSrcNoData != nullptr && |
2275 | 0 | !EQUAL(pszUnifiedSrcNoData, "PARTIAL")) |
2276 | 0 | { |
2277 | 0 | for (int k = 0; k < psOptions->nBandCount; k++) |
2278 | 0 | CPLFree(oWK.papanBandSrcValid[k]); |
2279 | 0 | CPLFree(oWK.papanBandSrcValid); |
2280 | 0 | oWK.papanBandSrcValid = nullptr; |
2281 | 0 | } |
2282 | 0 | } |
2283 | 0 | } |
2284 | 0 | } |
2285 | 0 | } |
2286 | | |
2287 | | /* -------------------------------------------------------------------- */ |
2288 | | /* Generate a source validity mask if we have a source mask for */ |
2289 | | /* the whole input dataset (and didn't already treat it as */ |
2290 | | /* alpha band). */ |
2291 | | /* -------------------------------------------------------------------- */ |
2292 | 0 | GDALRasterBandH hSrcBand = |
2293 | 0 | psOptions->nBandCount < 1 |
2294 | 0 | ? nullptr |
2295 | 0 | : GDALGetRasterBand(psOptions->hSrcDS, psOptions->panSrcBands[0]); |
2296 | |
|
2297 | 0 | if (eErr == CE_None && oWK.pafUnifiedSrcDensity == nullptr && |
2298 | 0 | oWK.panUnifiedSrcValid == nullptr && psOptions->nSrcAlphaBand <= 0 && |
2299 | 0 | (GDALGetMaskFlags(hSrcBand) & GMF_PER_DATASET) |
2300 | | // Need to double check for -nosrcalpha case. |
2301 | 0 | && !(GDALGetMaskFlags(hSrcBand) & GMF_ALPHA) && |
2302 | 0 | psOptions->padfSrcNoDataReal == nullptr && nSrcXSize > 0 && |
2303 | 0 | nSrcYSize > 0) |
2304 | | |
2305 | 0 | { |
2306 | 0 | eErr = CreateKernelMask(&oWK, 0 /* not used */, "UnifiedSrcValid"); |
2307 | |
|
2308 | 0 | if (eErr == CE_None) |
2309 | 0 | eErr = GDALWarpSrcMaskMasker( |
2310 | 0 | psOptions, psOptions->nBandCount, psOptions->eWorkingDataType, |
2311 | 0 | oWK.nSrcXOff, oWK.nSrcYOff, oWK.nSrcXSize, oWK.nSrcYSize, |
2312 | 0 | oWK.papabySrcImage, FALSE, oWK.panUnifiedSrcValid); |
2313 | 0 | } |
2314 | | |
2315 | | /* -------------------------------------------------------------------- */ |
2316 | | /* If we have destination nodata values create the */ |
2317 | | /* validity mask. We set the DstValid for any pixel that we */ |
2318 | | /* do no have valid data in *any* of the source bands. */ |
2319 | | /* */ |
2320 | | /* Note that we don't support any concept of unified nodata on */ |
2321 | | /* the destination image. At some point that should be added */ |
2322 | | /* and then this logic will be significantly different. */ |
2323 | | /* -------------------------------------------------------------------- */ |
2324 | 0 | if (eErr == CE_None && psOptions->padfDstNoDataReal != nullptr) |
2325 | 0 | { |
2326 | 0 | CPLAssert(oWK.panDstValid == nullptr); |
2327 | | |
2328 | 0 | const GPtrDiff_t nMaskBits = |
2329 | 0 | static_cast<GPtrDiff_t>(oWK.nDstXSize) * oWK.nDstYSize; |
2330 | |
|
2331 | 0 | eErr = CreateKernelMask(&oWK, 0 /* not used */, "DstValid"); |
2332 | 0 | GUInt32 *panBandMask = |
2333 | 0 | eErr == CE_None ? CPLMaskCreate(nMaskBits, true) : nullptr; |
2334 | |
|
2335 | 0 | if (eErr == CE_None && panBandMask != nullptr) |
2336 | 0 | { |
2337 | 0 | for (int iBand = 0; iBand < psOptions->nBandCount; iBand++) |
2338 | 0 | { |
2339 | 0 | CPLMaskSetAll(panBandMask, nMaskBits); |
2340 | |
|
2341 | 0 | double adfNoData[2] = {psOptions->padfDstNoDataReal[iBand], |
2342 | 0 | psOptions->padfDstNoDataImag != nullptr |
2343 | 0 | ? psOptions->padfDstNoDataImag[iBand] |
2344 | 0 | : 0.0}; |
2345 | |
|
2346 | 0 | int bAllValid = FALSE; |
2347 | 0 | eErr = GDALWarpNoDataMasker( |
2348 | 0 | adfNoData, 1, psOptions->eWorkingDataType, oWK.nDstXOff, |
2349 | 0 | oWK.nDstYOff, oWK.nDstXSize, oWK.nDstYSize, |
2350 | 0 | oWK.papabyDstImage + iBand, FALSE, panBandMask, &bAllValid); |
2351 | | |
2352 | | // Optimization: if there's a single band and all pixels are |
2353 | | // valid then we don't need a mask. |
2354 | 0 | if (bAllValid && psOptions->nBandCount == 1) |
2355 | 0 | { |
2356 | | #if DEBUG_VERBOSE |
2357 | | CPLDebug("WARP", "No need for a destination nodata mask as " |
2358 | | "all values are valid"); |
2359 | | #endif |
2360 | 0 | CPLFree(oWK.panDstValid); |
2361 | 0 | oWK.panDstValid = nullptr; |
2362 | 0 | break; |
2363 | 0 | } |
2364 | | |
2365 | 0 | CPLMaskMerge(oWK.panDstValid, panBandMask, nMaskBits); |
2366 | 0 | } |
2367 | 0 | CPLFree(panBandMask); |
2368 | 0 | } |
2369 | 0 | } |
2370 | | |
2371 | | /* -------------------------------------------------------------------- */ |
2372 | | /* Release IO Mutex, and acquire warper mutex. */ |
2373 | | /* -------------------------------------------------------------------- */ |
2374 | 0 | if (hIOMutex != nullptr) |
2375 | 0 | { |
2376 | 0 | CPLReleaseMutex(hIOMutex); |
2377 | 0 | if (!CPLAcquireMutex(hWarpMutex, 600.0)) |
2378 | 0 | { |
2379 | 0 | CPLError(CE_Failure, CPLE_AppDefined, |
2380 | 0 | "Failed to acquire WarpMutex in WarpRegion()."); |
2381 | 0 | return CE_Failure; |
2382 | 0 | } |
2383 | 0 | } |
2384 | | |
2385 | | /* -------------------------------------------------------------------- */ |
2386 | | /* Optional application provided prewarp chunk processor. */ |
2387 | | /* -------------------------------------------------------------------- */ |
2388 | 0 | if (eErr == CE_None && psOptions->pfnPreWarpChunkProcessor != nullptr) |
2389 | 0 | eErr = psOptions->pfnPreWarpChunkProcessor( |
2390 | 0 | &oWK, psOptions->pPreWarpProcessorArg); |
2391 | | |
2392 | | /* -------------------------------------------------------------------- */ |
2393 | | /* Perform the warp. */ |
2394 | | /* -------------------------------------------------------------------- */ |
2395 | 0 | if (eErr == CE_None) |
2396 | 0 | { |
2397 | 0 | eErr = oWK.PerformWarp(); |
2398 | 0 | ReportTiming("In memory warp operation"); |
2399 | 0 | } |
2400 | | |
2401 | | /* -------------------------------------------------------------------- */ |
2402 | | /* Optional application provided postwarp chunk processor. */ |
2403 | | /* -------------------------------------------------------------------- */ |
2404 | 0 | if (eErr == CE_None && psOptions->pfnPostWarpChunkProcessor != nullptr) |
2405 | 0 | eErr = psOptions->pfnPostWarpChunkProcessor( |
2406 | 0 | &oWK, psOptions->pPostWarpProcessorArg); |
2407 | | |
2408 | | /* -------------------------------------------------------------------- */ |
2409 | | /* Release Warp Mutex, and acquire io mutex. */ |
2410 | | /* -------------------------------------------------------------------- */ |
2411 | 0 | if (hIOMutex != nullptr) |
2412 | 0 | { |
2413 | 0 | CPLReleaseMutex(hWarpMutex); |
2414 | 0 | if (!CPLAcquireMutex(hIOMutex, 600.0)) |
2415 | 0 | { |
2416 | 0 | CPLError(CE_Failure, CPLE_AppDefined, |
2417 | 0 | "Failed to acquire IOMutex in WarpRegion()."); |
2418 | 0 | return CE_Failure; |
2419 | 0 | } |
2420 | 0 | } |
2421 | | |
2422 | | /* -------------------------------------------------------------------- */ |
2423 | | /* Write destination alpha if available. */ |
2424 | | /* -------------------------------------------------------------------- */ |
2425 | 0 | if (eErr == CE_None && psOptions->nDstAlphaBand > 0) |
2426 | 0 | { |
2427 | 0 | eErr = GDALWarpDstAlphaMasker( |
2428 | 0 | psOptions, -psOptions->nBandCount, psOptions->eWorkingDataType, |
2429 | 0 | oWK.nDstXOff, oWK.nDstYOff, oWK.nDstXSize, oWK.nDstYSize, |
2430 | 0 | oWK.papabyDstImage, TRUE, oWK.pafDstDensity); |
2431 | 0 | } |
2432 | | |
2433 | | /* -------------------------------------------------------------------- */ |
2434 | | /* Cleanup. */ |
2435 | | /* -------------------------------------------------------------------- */ |
2436 | 0 | CPLFree(oWK.papabySrcImage[0]); |
2437 | 0 | CPLFree(oWK.papabySrcImage); |
2438 | 0 | CPLFree(oWK.papabyDstImage); |
2439 | |
|
2440 | 0 | if (oWK.papanBandSrcValid != nullptr) |
2441 | 0 | { |
2442 | 0 | for (int i = 0; i < oWK.nBands; i++) |
2443 | 0 | CPLFree(oWK.papanBandSrcValid[i]); |
2444 | 0 | CPLFree(oWK.papanBandSrcValid); |
2445 | 0 | } |
2446 | 0 | CPLFree(oWK.panUnifiedSrcValid); |
2447 | 0 | CPLFree(oWK.pafUnifiedSrcDensity); |
2448 | 0 | CPLFree(oWK.panDstValid); |
2449 | 0 | CPLFree(oWK.pafDstDensity); |
2450 | |
|
2451 | 0 | return eErr; |
2452 | 0 | } |
2453 | | |
2454 | | /************************************************************************/ |
2455 | | /* GDALWarpRegionToBuffer() */ |
2456 | | /************************************************************************/ |
2457 | | |
2458 | | /** |
2459 | | * @see GDALWarpOperation::WarpRegionToBuffer() |
2460 | | */ |
2461 | | |
2462 | | CPLErr GDALWarpRegionToBuffer(GDALWarpOperationH hOperation, int nDstXOff, |
2463 | | int nDstYOff, int nDstXSize, int nDstYSize, |
2464 | | void *pDataBuf, GDALDataType eBufDataType, |
2465 | | int nSrcXOff, int nSrcYOff, int nSrcXSize, |
2466 | | int nSrcYSize) |
2467 | | |
2468 | 0 | { |
2469 | 0 | VALIDATE_POINTER1(hOperation, "GDALWarpRegionToBuffer", CE_Failure); |
2470 | | |
2471 | 0 | return reinterpret_cast<GDALWarpOperation *>(hOperation) |
2472 | 0 | ->WarpRegionToBuffer(nDstXOff, nDstYOff, nDstXSize, nDstYSize, pDataBuf, |
2473 | 0 | eBufDataType, nSrcXOff, nSrcYOff, nSrcXSize, |
2474 | 0 | nSrcYSize); |
2475 | 0 | } |
2476 | | |
2477 | | /************************************************************************/ |
2478 | | /* CreateKernelMask() */ |
2479 | | /* */ |
2480 | | /* If mask does not yet exist, create it. Supported types are */ |
2481 | | /* the name of the variable in question. That is */ |
2482 | | /* "BandSrcValid", "UnifiedSrcValid", "UnifiedSrcDensity", */ |
2483 | | /* "DstValid", and "DstDensity". */ |
2484 | | /************************************************************************/ |
2485 | | |
2486 | | CPLErr GDALWarpOperation::CreateKernelMask(GDALWarpKernel *poKernel, int iBand, |
2487 | | const char *pszType) |
2488 | | |
2489 | 0 | { |
2490 | 0 | void **ppMask = nullptr; |
2491 | 0 | int nXSize = 0; |
2492 | 0 | int nYSize = 0; |
2493 | 0 | int nBitsPerPixel = 0; |
2494 | 0 | int nDefault = 0; |
2495 | 0 | int nExtraElts = 0; |
2496 | 0 | bool bDoMemset = true; |
2497 | | |
2498 | | /* -------------------------------------------------------------------- */ |
2499 | | /* Get particulars of mask to be updated. */ |
2500 | | /* -------------------------------------------------------------------- */ |
2501 | 0 | if (EQUAL(pszType, "BandSrcValid")) |
2502 | 0 | { |
2503 | 0 | if (poKernel->papanBandSrcValid == nullptr) |
2504 | 0 | poKernel->papanBandSrcValid = static_cast<GUInt32 **>( |
2505 | 0 | CPLCalloc(sizeof(void *), poKernel->nBands)); |
2506 | |
|
2507 | 0 | ppMask = |
2508 | 0 | reinterpret_cast<void **>(&(poKernel->papanBandSrcValid[iBand])); |
2509 | 0 | nExtraElts = WARP_EXTRA_ELTS; |
2510 | 0 | nXSize = poKernel->nSrcXSize; |
2511 | 0 | nYSize = poKernel->nSrcYSize; |
2512 | 0 | nBitsPerPixel = 1; |
2513 | 0 | nDefault = 0xff; |
2514 | 0 | } |
2515 | 0 | else if (EQUAL(pszType, "UnifiedSrcValid")) |
2516 | 0 | { |
2517 | 0 | ppMask = reinterpret_cast<void **>(&(poKernel->panUnifiedSrcValid)); |
2518 | 0 | nExtraElts = WARP_EXTRA_ELTS; |
2519 | 0 | nXSize = poKernel->nSrcXSize; |
2520 | 0 | nYSize = poKernel->nSrcYSize; |
2521 | 0 | nBitsPerPixel = 1; |
2522 | 0 | nDefault = 0xff; |
2523 | 0 | } |
2524 | 0 | else if (EQUAL(pszType, "UnifiedSrcDensity")) |
2525 | 0 | { |
2526 | 0 | ppMask = reinterpret_cast<void **>(&(poKernel->pafUnifiedSrcDensity)); |
2527 | 0 | nExtraElts = WARP_EXTRA_ELTS; |
2528 | 0 | nXSize = poKernel->nSrcXSize; |
2529 | 0 | nYSize = poKernel->nSrcYSize; |
2530 | 0 | nBitsPerPixel = 32; |
2531 | 0 | nDefault = 0; |
2532 | 0 | bDoMemset = false; |
2533 | 0 | } |
2534 | 0 | else if (EQUAL(pszType, "DstValid")) |
2535 | 0 | { |
2536 | 0 | ppMask = reinterpret_cast<void **>(&(poKernel->panDstValid)); |
2537 | 0 | nXSize = poKernel->nDstXSize; |
2538 | 0 | nYSize = poKernel->nDstYSize; |
2539 | 0 | nBitsPerPixel = 1; |
2540 | 0 | nDefault = 0; |
2541 | 0 | } |
2542 | 0 | else if (EQUAL(pszType, "DstDensity")) |
2543 | 0 | { |
2544 | 0 | ppMask = reinterpret_cast<void **>(&(poKernel->pafDstDensity)); |
2545 | 0 | nXSize = poKernel->nDstXSize; |
2546 | 0 | nYSize = poKernel->nDstYSize; |
2547 | 0 | nBitsPerPixel = 32; |
2548 | 0 | nDefault = 0; |
2549 | 0 | bDoMemset = false; |
2550 | 0 | } |
2551 | 0 | else |
2552 | 0 | { |
2553 | 0 | CPLError(CE_Failure, CPLE_AppDefined, |
2554 | 0 | "Internal error in CreateKernelMask(%s).", pszType); |
2555 | 0 | return CE_Failure; |
2556 | 0 | } |
2557 | | |
2558 | | /* -------------------------------------------------------------------- */ |
2559 | | /* Allocate if needed. */ |
2560 | | /* -------------------------------------------------------------------- */ |
2561 | 0 | if (*ppMask == nullptr) |
2562 | 0 | { |
2563 | 0 | const GIntBig nBytes = |
2564 | 0 | nBitsPerPixel == 32 |
2565 | 0 | ? (static_cast<GIntBig>(nXSize) * nYSize + nExtraElts) * 4 |
2566 | 0 | : (static_cast<GIntBig>(nXSize) * nYSize + nExtraElts + 31) / 8; |
2567 | |
|
2568 | 0 | const size_t nByteSize_t = static_cast<size_t>(nBytes); |
2569 | | #if SIZEOF_VOIDP == 4 |
2570 | | if (static_cast<GIntBig>(nByteSize_t) != nBytes) |
2571 | | { |
2572 | | CPLError(CE_Failure, CPLE_OutOfMemory, |
2573 | | "Cannot allocate " CPL_FRMT_GIB " bytes", nBytes); |
2574 | | return CE_Failure; |
2575 | | } |
2576 | | #endif |
2577 | |
|
2578 | 0 | *ppMask = VSI_MALLOC_VERBOSE(nByteSize_t); |
2579 | |
|
2580 | 0 | if (*ppMask == nullptr) |
2581 | 0 | { |
2582 | 0 | return CE_Failure; |
2583 | 0 | } |
2584 | | |
2585 | 0 | if (bDoMemset) |
2586 | 0 | memset(*ppMask, nDefault, nByteSize_t); |
2587 | 0 | } |
2588 | | |
2589 | 0 | return CE_None; |
2590 | 0 | } |
2591 | | |
2592 | | /************************************************************************/ |
2593 | | /* ComputeSourceWindowStartingFromSource() */ |
2594 | | /************************************************************************/ |
2595 | | |
2596 | | constexpr int DEFAULT_STEP_COUNT = 21; |
2597 | | |
2598 | | void GDALWarpOperation::ComputeSourceWindowStartingFromSource( |
2599 | | int nDstXOff, int nDstYOff, int nDstXSize, int nDstYSize, |
2600 | | double *padfSrcMinX, double *padfSrcMinY, double *padfSrcMaxX, |
2601 | | double *padfSrcMaxY) |
2602 | 0 | { |
2603 | 0 | const int nSrcRasterXSize = GDALGetRasterXSize(psOptions->hSrcDS); |
2604 | 0 | const int nSrcRasterYSize = GDALGetRasterYSize(psOptions->hSrcDS); |
2605 | 0 | if (nSrcRasterXSize == 0 || nSrcRasterYSize == 0) |
2606 | 0 | return; |
2607 | | |
2608 | 0 | GDALWarpPrivateData *privateData = GetWarpPrivateData(this); |
2609 | 0 | if (privateData->nStepCount == 0) |
2610 | 0 | { |
2611 | 0 | int nStepCount = DEFAULT_STEP_COUNT; |
2612 | 0 | std::vector<double> adfDstZ{}; |
2613 | |
|
2614 | 0 | const char *pszSampleSteps = |
2615 | 0 | CSLFetchNameValue(psOptions->papszWarpOptions, "SAMPLE_STEPS"); |
2616 | 0 | constexpr int knIntMax = std::numeric_limits<int>::max(); |
2617 | 0 | if (pszSampleSteps && !EQUAL(pszSampleSteps, "ALL")) |
2618 | 0 | { |
2619 | 0 | nStepCount = atoi( |
2620 | 0 | CSLFetchNameValue(psOptions->papszWarpOptions, "SAMPLE_STEPS")); |
2621 | 0 | nStepCount = std::max(2, nStepCount); |
2622 | 0 | } |
2623 | |
|
2624 | 0 | const double dfStepSize = 1.0 / (nStepCount - 1); |
2625 | 0 | if (nStepCount > knIntMax - 2 || |
2626 | 0 | (nStepCount + 2) > knIntMax / (nStepCount + 2)) |
2627 | 0 | { |
2628 | 0 | CPLError(CE_Failure, CPLE_AppDefined, "Too many steps : %d", |
2629 | 0 | nStepCount); |
2630 | 0 | return; |
2631 | 0 | } |
2632 | 0 | const int nSampleMax = (nStepCount + 2) * (nStepCount + 2); |
2633 | |
|
2634 | 0 | try |
2635 | 0 | { |
2636 | 0 | privateData->abSuccess.resize(nSampleMax); |
2637 | 0 | privateData->adfDstX.resize(nSampleMax); |
2638 | 0 | privateData->adfDstY.resize(nSampleMax); |
2639 | 0 | adfDstZ.resize(nSampleMax); |
2640 | 0 | } |
2641 | 0 | catch (const std::exception &) |
2642 | 0 | { |
2643 | 0 | return; |
2644 | 0 | } |
2645 | | |
2646 | | /* -------------------------------------------------------------------- |
2647 | | */ |
2648 | | /* Setup sample points on a grid pattern throughout the source */ |
2649 | | /* raster. */ |
2650 | | /* -------------------------------------------------------------------- |
2651 | | */ |
2652 | 0 | int iPoint = 0; |
2653 | 0 | for (int iY = 0; iY < nStepCount + 2; iY++) |
2654 | 0 | { |
2655 | 0 | const double dfRatioY = (iY == 0) ? 0.5 / nSrcRasterYSize |
2656 | 0 | : (iY <= nStepCount) |
2657 | 0 | ? (iY - 1) * dfStepSize |
2658 | 0 | : 1 - 0.5 / nSrcRasterYSize; |
2659 | 0 | for (int iX = 0; iX < nStepCount + 2; iX++) |
2660 | 0 | { |
2661 | 0 | const double dfRatioX = (iX == 0) ? 0.5 / nSrcRasterXSize |
2662 | 0 | : (iX <= nStepCount) |
2663 | 0 | ? (iX - 1) * dfStepSize |
2664 | 0 | : 1 - 0.5 / nSrcRasterXSize; |
2665 | 0 | privateData->adfDstX[iPoint] = dfRatioX * nSrcRasterXSize; |
2666 | 0 | privateData->adfDstY[iPoint] = dfRatioY * nSrcRasterYSize; |
2667 | 0 | iPoint++; |
2668 | 0 | } |
2669 | 0 | } |
2670 | 0 | CPLAssert(iPoint == nSampleMax); |
2671 | | |
2672 | | /* -------------------------------------------------------------------- |
2673 | | */ |
2674 | | /* Transform them to the output pixel coordinate space */ |
2675 | | /* -------------------------------------------------------------------- |
2676 | | */ |
2677 | 0 | psOptions->pfnTransformer(psOptions->pTransformerArg, FALSE, nSampleMax, |
2678 | 0 | privateData->adfDstX.data(), |
2679 | 0 | privateData->adfDstY.data(), adfDstZ.data(), |
2680 | 0 | privateData->abSuccess.data()); |
2681 | 0 | privateData->nStepCount = nStepCount; |
2682 | 0 | } |
2683 | | |
2684 | | /* -------------------------------------------------------------------- */ |
2685 | | /* Collect the bounds, ignoring any failed points. */ |
2686 | | /* -------------------------------------------------------------------- */ |
2687 | 0 | const int nStepCount = privateData->nStepCount; |
2688 | 0 | const double dfStepSize = 1.0 / (nStepCount - 1); |
2689 | 0 | int iPoint = 0; |
2690 | 0 | #ifdef DEBUG |
2691 | 0 | const size_t nSampleMax = |
2692 | 0 | static_cast<size_t>(nStepCount + 2) * (nStepCount + 2); |
2693 | 0 | CPL_IGNORE_RET_VAL(nSampleMax); |
2694 | 0 | CPLAssert(privateData->adfDstX.size() == nSampleMax); |
2695 | 0 | CPLAssert(privateData->adfDstY.size() == nSampleMax); |
2696 | 0 | CPLAssert(privateData->abSuccess.size() == nSampleMax); |
2697 | 0 | #endif |
2698 | 0 | for (int iY = 0; iY < nStepCount + 2; iY++) |
2699 | 0 | { |
2700 | 0 | const double dfRatioY = (iY == 0) ? 0.5 / nSrcRasterYSize |
2701 | 0 | : (iY <= nStepCount) |
2702 | 0 | ? (iY - 1) * dfStepSize |
2703 | 0 | : 1 - 0.5 / nSrcRasterYSize; |
2704 | 0 | for (int iX = 0; iX < nStepCount + 2; iX++) |
2705 | 0 | { |
2706 | 0 | if (privateData->abSuccess[iPoint] && |
2707 | 0 | privateData->adfDstX[iPoint] >= nDstXOff && |
2708 | 0 | privateData->adfDstX[iPoint] <= nDstXOff + nDstXSize && |
2709 | 0 | privateData->adfDstY[iPoint] >= nDstYOff && |
2710 | 0 | privateData->adfDstY[iPoint] <= nDstYOff + nDstYSize) |
2711 | 0 | { |
2712 | 0 | const double dfRatioX = (iX == 0) ? 0.5 / nSrcRasterXSize |
2713 | 0 | : (iX <= nStepCount) |
2714 | 0 | ? (iX - 1) * dfStepSize |
2715 | 0 | : 1 - 0.5 / nSrcRasterXSize; |
2716 | 0 | double dfSrcX = dfRatioX * nSrcRasterXSize; |
2717 | 0 | double dfSrcY = dfRatioY * nSrcRasterYSize; |
2718 | 0 | *padfSrcMinX = std::min(*padfSrcMinX, dfSrcX); |
2719 | 0 | *padfSrcMinY = std::min(*padfSrcMinY, dfSrcY); |
2720 | 0 | *padfSrcMaxX = std::max(*padfSrcMaxX, dfSrcX); |
2721 | 0 | *padfSrcMaxY = std::max(*padfSrcMaxY, dfSrcY); |
2722 | 0 | } |
2723 | 0 | iPoint++; |
2724 | 0 | } |
2725 | 0 | } |
2726 | 0 | } |
2727 | | |
2728 | | /************************************************************************/ |
2729 | | /* ComputeSourceWindowTransformPoints() */ |
2730 | | /************************************************************************/ |
2731 | | |
2732 | | bool GDALWarpOperation::ComputeSourceWindowTransformPoints( |
2733 | | int nDstXOff, int nDstYOff, int nDstXSize, int nDstYSize, bool bUseGrid, |
2734 | | bool bAll, int nStepCount, bool bTryWithCheckWithInvertProj, |
2735 | | double &dfMinXOut, double &dfMinYOut, double &dfMaxXOut, double &dfMaxYOut, |
2736 | | int &nSamplePoints, int &nFailedCount) |
2737 | 0 | { |
2738 | 0 | nSamplePoints = 0; |
2739 | 0 | nFailedCount = 0; |
2740 | |
|
2741 | 0 | const double dfStepSize = bAll ? 0 : 1.0 / (nStepCount - 1); |
2742 | 0 | constexpr int knIntMax = std::numeric_limits<int>::max(); |
2743 | 0 | int nSampleMax = 0; |
2744 | 0 | if (bUseGrid) |
2745 | 0 | { |
2746 | 0 | if (bAll) |
2747 | 0 | { |
2748 | 0 | if (nDstYSize > knIntMax / (nDstXSize + 1) - 1) |
2749 | 0 | { |
2750 | 0 | CPLError(CE_Failure, CPLE_AppDefined, "Too many steps"); |
2751 | 0 | return false; |
2752 | 0 | } |
2753 | 0 | nSampleMax = (nDstXSize + 1) * (nDstYSize + 1); |
2754 | 0 | } |
2755 | 0 | else |
2756 | 0 | { |
2757 | 0 | if (nStepCount > knIntMax - 2 || |
2758 | 0 | (nStepCount + 2) > knIntMax / (nStepCount + 2)) |
2759 | 0 | { |
2760 | 0 | CPLError(CE_Failure, CPLE_AppDefined, "Too many steps : %d", |
2761 | 0 | nStepCount); |
2762 | 0 | return false; |
2763 | 0 | } |
2764 | 0 | nSampleMax = (nStepCount + 2) * (nStepCount + 2); |
2765 | 0 | } |
2766 | 0 | } |
2767 | 0 | else |
2768 | 0 | { |
2769 | 0 | if (bAll) |
2770 | 0 | { |
2771 | 0 | if (nDstXSize > (knIntMax - 2 * nDstYSize) / 2) |
2772 | 0 | { |
2773 | | // Extremely unlikely ! |
2774 | 0 | CPLError(CE_Failure, CPLE_AppDefined, "Too many steps"); |
2775 | 0 | return false; |
2776 | 0 | } |
2777 | 0 | nSampleMax = 2 * (nDstXSize + nDstYSize); |
2778 | 0 | } |
2779 | 0 | else |
2780 | 0 | { |
2781 | 0 | if (nStepCount > knIntMax / 4) |
2782 | 0 | { |
2783 | 0 | CPLError(CE_Failure, CPLE_AppDefined, "Too many steps : %d * 4", |
2784 | 0 | nStepCount); |
2785 | 0 | return false; |
2786 | 0 | } |
2787 | 0 | nSampleMax = nStepCount * 4; |
2788 | 0 | } |
2789 | 0 | } |
2790 | | |
2791 | 0 | int *pabSuccess = |
2792 | 0 | static_cast<int *>(VSI_MALLOC2_VERBOSE(sizeof(int), nSampleMax)); |
2793 | 0 | double *padfX = static_cast<double *>( |
2794 | 0 | VSI_MALLOC2_VERBOSE(sizeof(double) * 3, nSampleMax)); |
2795 | 0 | if (pabSuccess == nullptr || padfX == nullptr) |
2796 | 0 | { |
2797 | 0 | CPLFree(padfX); |
2798 | 0 | CPLFree(pabSuccess); |
2799 | 0 | return false; |
2800 | 0 | } |
2801 | 0 | double *padfY = padfX + nSampleMax; |
2802 | 0 | double *padfZ = padfX + nSampleMax * 2; |
2803 | | |
2804 | | /* -------------------------------------------------------------------- */ |
2805 | | /* Setup sample points on a grid pattern throughout the area. */ |
2806 | | /* -------------------------------------------------------------------- */ |
2807 | 0 | if (bUseGrid) |
2808 | 0 | { |
2809 | 0 | if (bAll) |
2810 | 0 | { |
2811 | 0 | for (int iY = 0; iY <= nDstYSize; ++iY) |
2812 | 0 | { |
2813 | 0 | for (int iX = 0; iX <= nDstXSize; ++iX) |
2814 | 0 | { |
2815 | 0 | padfX[nSamplePoints] = nDstXOff + iX; |
2816 | 0 | padfY[nSamplePoints] = nDstYOff + iY; |
2817 | 0 | padfZ[nSamplePoints++] = 0.0; |
2818 | 0 | } |
2819 | 0 | } |
2820 | 0 | } |
2821 | 0 | else |
2822 | 0 | { |
2823 | 0 | for (int iY = 0; iY < nStepCount + 2; iY++) |
2824 | 0 | { |
2825 | 0 | const double dfRatioY = (iY == 0) ? 0.5 / nDstXSize |
2826 | 0 | : (iY <= nStepCount) |
2827 | 0 | ? (iY - 1) * dfStepSize |
2828 | 0 | : 1 - 0.5 / nDstXSize; |
2829 | 0 | for (int iX = 0; iX < nStepCount + 2; iX++) |
2830 | 0 | { |
2831 | 0 | const double dfRatioX = (iX == 0) ? 0.5 / nDstXSize |
2832 | 0 | : (iX <= nStepCount) |
2833 | 0 | ? (iX - 1) * dfStepSize |
2834 | 0 | : 1 - 0.5 / nDstXSize; |
2835 | 0 | padfX[nSamplePoints] = dfRatioX * nDstXSize + nDstXOff; |
2836 | 0 | padfY[nSamplePoints] = dfRatioY * nDstYSize + nDstYOff; |
2837 | 0 | padfZ[nSamplePoints++] = 0.0; |
2838 | 0 | } |
2839 | 0 | } |
2840 | 0 | } |
2841 | 0 | } |
2842 | | /* -------------------------------------------------------------------- */ |
2843 | | /* Setup sample points all around the edge of the output raster. */ |
2844 | | /* -------------------------------------------------------------------- */ |
2845 | 0 | else |
2846 | 0 | { |
2847 | 0 | if (bAll) |
2848 | 0 | { |
2849 | 0 | for (int iX = 0; iX <= nDstXSize; ++iX) |
2850 | 0 | { |
2851 | | // Along top |
2852 | 0 | padfX[nSamplePoints] = nDstXOff + iX; |
2853 | 0 | padfY[nSamplePoints] = nDstYOff; |
2854 | 0 | padfZ[nSamplePoints++] = 0.0; |
2855 | | |
2856 | | // Along bottom |
2857 | 0 | padfX[nSamplePoints] = nDstXOff + iX; |
2858 | 0 | padfY[nSamplePoints] = nDstYOff + nDstYSize; |
2859 | 0 | padfZ[nSamplePoints++] = 0.0; |
2860 | 0 | } |
2861 | |
|
2862 | 0 | for (int iY = 1; iY < nDstYSize; ++iY) |
2863 | 0 | { |
2864 | | // Along left |
2865 | 0 | padfX[nSamplePoints] = nDstXOff; |
2866 | 0 | padfY[nSamplePoints] = nDstYOff + iY; |
2867 | 0 | padfZ[nSamplePoints++] = 0.0; |
2868 | | |
2869 | | // Along right |
2870 | 0 | padfX[nSamplePoints] = nDstXOff + nDstXSize; |
2871 | 0 | padfY[nSamplePoints] = nDstYOff + iY; |
2872 | 0 | padfZ[nSamplePoints++] = 0.0; |
2873 | 0 | } |
2874 | 0 | } |
2875 | 0 | else |
2876 | 0 | { |
2877 | 0 | for (double dfRatio = 0.0; dfRatio <= 1.0 + dfStepSize * 0.5; |
2878 | 0 | dfRatio += dfStepSize) |
2879 | 0 | { |
2880 | | // Along top |
2881 | 0 | padfX[nSamplePoints] = dfRatio * nDstXSize + nDstXOff; |
2882 | 0 | padfY[nSamplePoints] = nDstYOff; |
2883 | 0 | padfZ[nSamplePoints++] = 0.0; |
2884 | | |
2885 | | // Along bottom |
2886 | 0 | padfX[nSamplePoints] = dfRatio * nDstXSize + nDstXOff; |
2887 | 0 | padfY[nSamplePoints] = nDstYOff + nDstYSize; |
2888 | 0 | padfZ[nSamplePoints++] = 0.0; |
2889 | | |
2890 | | // Along left |
2891 | 0 | padfX[nSamplePoints] = nDstXOff; |
2892 | 0 | padfY[nSamplePoints] = dfRatio * nDstYSize + nDstYOff; |
2893 | 0 | padfZ[nSamplePoints++] = 0.0; |
2894 | | |
2895 | | // Along right |
2896 | 0 | padfX[nSamplePoints] = nDstXSize + nDstXOff; |
2897 | 0 | padfY[nSamplePoints] = dfRatio * nDstYSize + nDstYOff; |
2898 | 0 | padfZ[nSamplePoints++] = 0.0; |
2899 | 0 | } |
2900 | 0 | } |
2901 | 0 | } |
2902 | |
|
2903 | 0 | CPLAssert(nSamplePoints == nSampleMax); |
2904 | | |
2905 | | /* -------------------------------------------------------------------- */ |
2906 | | /* Transform them to the input pixel coordinate space */ |
2907 | | /* -------------------------------------------------------------------- */ |
2908 | | |
2909 | 0 | const auto RefreshTransformer = [this]() |
2910 | 0 | { |
2911 | 0 | if (GDALIsTransformer(psOptions->pTransformerArg, |
2912 | 0 | GDAL_GEN_IMG_TRANSFORMER_CLASS_NAME)) |
2913 | 0 | { |
2914 | 0 | GDALRefreshGenImgProjTransformer(psOptions->pTransformerArg); |
2915 | 0 | } |
2916 | 0 | else if (GDALIsTransformer(psOptions->pTransformerArg, |
2917 | 0 | GDAL_APPROX_TRANSFORMER_CLASS_NAME)) |
2918 | 0 | { |
2919 | 0 | GDALRefreshApproxTransformer(psOptions->pTransformerArg); |
2920 | 0 | } |
2921 | 0 | }; |
2922 | |
|
2923 | 0 | if (bTryWithCheckWithInvertProj) |
2924 | 0 | { |
2925 | 0 | CPLSetThreadLocalConfigOption("CHECK_WITH_INVERT_PROJ", "YES"); |
2926 | 0 | RefreshTransformer(); |
2927 | 0 | } |
2928 | 0 | psOptions->pfnTransformer(psOptions->pTransformerArg, TRUE, nSamplePoints, |
2929 | 0 | padfX, padfY, padfZ, pabSuccess); |
2930 | 0 | if (bTryWithCheckWithInvertProj) |
2931 | 0 | { |
2932 | 0 | CPLSetThreadLocalConfigOption("CHECK_WITH_INVERT_PROJ", nullptr); |
2933 | 0 | RefreshTransformer(); |
2934 | 0 | } |
2935 | | |
2936 | | /* -------------------------------------------------------------------- */ |
2937 | | /* Collect the bounds, ignoring any failed points. */ |
2938 | | /* -------------------------------------------------------------------- */ |
2939 | 0 | for (int i = 0; i < nSamplePoints; i++) |
2940 | 0 | { |
2941 | 0 | if (!pabSuccess[i]) |
2942 | 0 | { |
2943 | 0 | nFailedCount++; |
2944 | 0 | continue; |
2945 | 0 | } |
2946 | | |
2947 | | // If this happens this is likely the symptom of a bug somewhere. |
2948 | 0 | if (std::isnan(padfX[i]) || std::isnan(padfY[i])) |
2949 | 0 | { |
2950 | 0 | static bool bNanCoordFound = false; |
2951 | 0 | if (!bNanCoordFound) |
2952 | 0 | { |
2953 | 0 | CPLDebug("WARP", |
2954 | 0 | "ComputeSourceWindow(): " |
2955 | 0 | "NaN coordinate found on point %d.", |
2956 | 0 | i); |
2957 | 0 | bNanCoordFound = true; |
2958 | 0 | } |
2959 | 0 | nFailedCount++; |
2960 | 0 | continue; |
2961 | 0 | } |
2962 | | |
2963 | 0 | dfMinXOut = std::min(dfMinXOut, padfX[i]); |
2964 | 0 | dfMinYOut = std::min(dfMinYOut, padfY[i]); |
2965 | 0 | dfMaxXOut = std::max(dfMaxXOut, padfX[i]); |
2966 | 0 | dfMaxYOut = std::max(dfMaxYOut, padfY[i]); |
2967 | 0 | } |
2968 | |
|
2969 | 0 | CPLFree(padfX); |
2970 | 0 | CPLFree(pabSuccess); |
2971 | 0 | return true; |
2972 | 0 | } |
2973 | | |
2974 | | /************************************************************************/ |
2975 | | /* ComputeSourceWindow() */ |
2976 | | /************************************************************************/ |
2977 | | |
2978 | | /** Given a target window starting at pixel (nDstOff, nDstYOff) and of |
2979 | | * dimension (nDstXSize, nDstYSize), compute the corresponding window in |
2980 | | * the source raster, and return the source position in (*pnSrcXOff, *pnSrcYOff), |
2981 | | * the source dimension in (*pnSrcXSize, *pnSrcYSize). |
2982 | | * If pdfSrcXExtraSize is not null, its pointed value will be filled with the |
2983 | | * number of extra source pixels in X dimension to acquire to take into account |
2984 | | * the size of the resampling kernel. Similarly for pdfSrcYExtraSize for the |
2985 | | * Y dimension. |
2986 | | * If pdfSrcFillRatio is not null, its pointed value will be filled with the |
2987 | | * the ratio of the clamped source raster window size over the unclamped source |
2988 | | * raster window size. When this ratio is too low, this might be an indication |
2989 | | * that it might be beneficial to split the target window to avoid requesting |
2990 | | * too many source pixels. |
2991 | | */ |
2992 | | CPLErr GDALWarpOperation::ComputeSourceWindow( |
2993 | | int nDstXOff, int nDstYOff, int nDstXSize, int nDstYSize, int *pnSrcXOff, |
2994 | | int *pnSrcYOff, int *pnSrcXSize, int *pnSrcYSize, double *pdfSrcXExtraSize, |
2995 | | double *pdfSrcYExtraSize, double *pdfSrcFillRatio) |
2996 | | |
2997 | 0 | { |
2998 | | /* -------------------------------------------------------------------- */ |
2999 | | /* Figure out whether we just want to do the usual "along the */ |
3000 | | /* edge" sampling, or using a grid. The grid usage is */ |
3001 | | /* important in some weird "inside out" cases like WGS84 to */ |
3002 | | /* polar stereographic around the pole. Also figure out the */ |
3003 | | /* sampling rate. */ |
3004 | | /* -------------------------------------------------------------------- */ |
3005 | 0 | int nStepCount = DEFAULT_STEP_COUNT; |
3006 | 0 | bool bAll = false; |
3007 | |
|
3008 | 0 | bool bUseGrid = |
3009 | 0 | CPLFetchBool(psOptions->papszWarpOptions, "SAMPLE_GRID", false); |
3010 | |
|
3011 | 0 | const char *pszSampleSteps = |
3012 | 0 | CSLFetchNameValue(psOptions->papszWarpOptions, "SAMPLE_STEPS"); |
3013 | 0 | if (pszSampleSteps) |
3014 | 0 | { |
3015 | 0 | if (EQUAL(pszSampleSteps, "ALL")) |
3016 | 0 | { |
3017 | 0 | bAll = true; |
3018 | 0 | } |
3019 | 0 | else |
3020 | 0 | { |
3021 | 0 | nStepCount = atoi(pszSampleSteps); |
3022 | 0 | nStepCount = std::max(2, nStepCount); |
3023 | 0 | } |
3024 | 0 | } |
3025 | 0 | else if (!bUseGrid) |
3026 | 0 | { |
3027 | | // Detect if at least one of the 4 corner in destination raster fails |
3028 | | // to project back to source. |
3029 | | // Helps for long-lat to orthographic on areas that are partly in |
3030 | | // space / partly on Earth. Cf https://github.com/OSGeo/gdal/issues/9056 |
3031 | 0 | double adfCornerX[4]; |
3032 | 0 | double adfCornerY[4]; |
3033 | 0 | double adfCornerZ[4] = {0, 0, 0, 0}; |
3034 | 0 | int anCornerSuccess[4] = {FALSE, FALSE, FALSE, FALSE}; |
3035 | 0 | adfCornerX[0] = nDstXOff; |
3036 | 0 | adfCornerY[0] = nDstYOff; |
3037 | 0 | adfCornerX[1] = nDstXOff + nDstXSize; |
3038 | 0 | adfCornerY[1] = nDstYOff; |
3039 | 0 | adfCornerX[2] = nDstXOff; |
3040 | 0 | adfCornerY[2] = nDstYOff + nDstYSize; |
3041 | 0 | adfCornerX[3] = nDstXOff + nDstXSize; |
3042 | 0 | adfCornerY[3] = nDstYOff + nDstYSize; |
3043 | 0 | if (!psOptions->pfnTransformer(psOptions->pTransformerArg, TRUE, 4, |
3044 | 0 | adfCornerX, adfCornerY, adfCornerZ, |
3045 | 0 | anCornerSuccess) || |
3046 | 0 | !anCornerSuccess[0] || !anCornerSuccess[1] || !anCornerSuccess[2] || |
3047 | 0 | !anCornerSuccess[3]) |
3048 | 0 | { |
3049 | 0 | bAll = true; |
3050 | 0 | } |
3051 | 0 | } |
3052 | |
|
3053 | 0 | bool bTryWithCheckWithInvertProj = false; |
3054 | 0 | double dfMinXOut = std::numeric_limits<double>::infinity(); |
3055 | 0 | double dfMinYOut = std::numeric_limits<double>::infinity(); |
3056 | 0 | double dfMaxXOut = -std::numeric_limits<double>::infinity(); |
3057 | 0 | double dfMaxYOut = -std::numeric_limits<double>::infinity(); |
3058 | |
|
3059 | 0 | int nSamplePoints = 0; |
3060 | 0 | int nFailedCount = 0; |
3061 | 0 | if (!ComputeSourceWindowTransformPoints( |
3062 | 0 | nDstXOff, nDstYOff, nDstXSize, nDstYSize, bUseGrid, bAll, |
3063 | 0 | nStepCount, bTryWithCheckWithInvertProj, dfMinXOut, dfMinYOut, |
3064 | 0 | dfMaxXOut, dfMaxYOut, nSamplePoints, nFailedCount)) |
3065 | 0 | { |
3066 | 0 | return CE_Failure; |
3067 | 0 | } |
3068 | | |
3069 | | // Use grid sampling as soon as a special point falls into the extent of |
3070 | | // the target raster. |
3071 | 0 | if (!bUseGrid && psOptions->hDstDS) |
3072 | 0 | { |
3073 | 0 | for (const auto &xy : aDstXYSpecialPoints) |
3074 | 0 | { |
3075 | 0 | if (0 <= xy.first && |
3076 | 0 | GDALGetRasterXSize(psOptions->hDstDS) >= xy.first && |
3077 | 0 | 0 <= xy.second && |
3078 | 0 | GDALGetRasterYSize(psOptions->hDstDS) >= xy.second) |
3079 | 0 | { |
3080 | 0 | bUseGrid = true; |
3081 | 0 | bAll = false; |
3082 | 0 | if (!ComputeSourceWindowTransformPoints( |
3083 | 0 | nDstXOff, nDstYOff, nDstXSize, nDstYSize, bUseGrid, |
3084 | 0 | bAll, nStepCount, bTryWithCheckWithInvertProj, |
3085 | 0 | dfMinXOut, dfMinYOut, dfMaxXOut, dfMaxYOut, |
3086 | 0 | nSamplePoints, nFailedCount)) |
3087 | 0 | { |
3088 | 0 | return CE_Failure; |
3089 | 0 | } |
3090 | 0 | break; |
3091 | 0 | } |
3092 | 0 | } |
3093 | 0 | } |
3094 | | |
3095 | 0 | const int nRasterXSize = GDALGetRasterXSize(psOptions->hSrcDS); |
3096 | 0 | const int nRasterYSize = GDALGetRasterYSize(psOptions->hSrcDS); |
3097 | | |
3098 | | // Try to detect crazy values coming from reprojection that would not |
3099 | | // have resulted in a PROJ error. Could happen for example with PROJ |
3100 | | // <= 4.9.2 with inverse UTM/tmerc (Snyder approximation without sanity |
3101 | | // check) when being far away from the central meridian. But might be worth |
3102 | | // keeping that even for later versions in case some exotic projection isn't |
3103 | | // properly sanitized. |
3104 | 0 | if (nFailedCount == 0 && !bTryWithCheckWithInvertProj && |
3105 | 0 | (dfMinXOut < -1e6 || dfMinYOut < -1e6 || |
3106 | 0 | dfMaxXOut > nRasterXSize + 1e6 || dfMaxYOut > nRasterYSize + 1e6) && |
3107 | 0 | !CPLTestBool(CPLGetConfigOption("CHECK_WITH_INVERT_PROJ", "NO"))) |
3108 | 0 | { |
3109 | 0 | CPLDebug("WARP", |
3110 | 0 | "ComputeSourceWindow(): bogus source dataset window " |
3111 | 0 | "returned. Trying again with CHECK_WITH_INVERT_PROJ=YES"); |
3112 | 0 | bTryWithCheckWithInvertProj = true; |
3113 | | |
3114 | | // We should probably perform the coordinate transformation in the |
3115 | | // warp kernel under CHECK_WITH_INVERT_PROJ too... |
3116 | 0 | if (!ComputeSourceWindowTransformPoints( |
3117 | 0 | nDstXOff, nDstYOff, nDstXSize, nDstYSize, bUseGrid, bAll, |
3118 | 0 | nStepCount, bTryWithCheckWithInvertProj, dfMinXOut, dfMinYOut, |
3119 | 0 | dfMaxXOut, dfMaxYOut, nSamplePoints, nFailedCount)) |
3120 | 0 | { |
3121 | 0 | return CE_Failure; |
3122 | 0 | } |
3123 | 0 | } |
3124 | | |
3125 | | /* -------------------------------------------------------------------- */ |
3126 | | /* If we got any failures when not using a grid, we should */ |
3127 | | /* really go back and try again with the grid. Sorry for the */ |
3128 | | /* goto. */ |
3129 | | /* -------------------------------------------------------------------- */ |
3130 | 0 | if (!bUseGrid && nFailedCount > 0) |
3131 | 0 | { |
3132 | 0 | bUseGrid = true; |
3133 | 0 | bAll = false; |
3134 | 0 | if (!ComputeSourceWindowTransformPoints( |
3135 | 0 | nDstXOff, nDstYOff, nDstXSize, nDstYSize, bUseGrid, bAll, |
3136 | 0 | nStepCount, bTryWithCheckWithInvertProj, dfMinXOut, dfMinYOut, |
3137 | 0 | dfMaxXOut, dfMaxYOut, nSamplePoints, nFailedCount)) |
3138 | 0 | { |
3139 | 0 | return CE_Failure; |
3140 | 0 | } |
3141 | 0 | } |
3142 | | |
3143 | | /* -------------------------------------------------------------------- */ |
3144 | | /* If we get hardly any points (or none) transforming, we give */ |
3145 | | /* up. */ |
3146 | | /* -------------------------------------------------------------------- */ |
3147 | 0 | if (nFailedCount > nSamplePoints - 5) |
3148 | 0 | { |
3149 | 0 | const bool bErrorOutIfEmptySourceWindow = |
3150 | 0 | CPLFetchBool(psOptions->papszWarpOptions, |
3151 | 0 | "ERROR_OUT_IF_EMPTY_SOURCE_WINDOW", true); |
3152 | 0 | if (bErrorOutIfEmptySourceWindow) |
3153 | 0 | { |
3154 | 0 | CPLError(CE_Failure, CPLE_AppDefined, |
3155 | 0 | "Too many points (%d out of %d) failed to transform, " |
3156 | 0 | "unable to compute output bounds.", |
3157 | 0 | nFailedCount, nSamplePoints); |
3158 | 0 | } |
3159 | 0 | else |
3160 | 0 | { |
3161 | 0 | CPLDebug("WARP", "Cannot determine source window for %d,%d,%d,%d", |
3162 | 0 | nDstXOff, nDstYOff, nDstXSize, nDstYSize); |
3163 | 0 | } |
3164 | 0 | return CE_Failure; |
3165 | 0 | } |
3166 | | |
3167 | 0 | if (nFailedCount > 0) |
3168 | 0 | CPLDebug("GDAL", |
3169 | 0 | "GDALWarpOperation::ComputeSourceWindow() %d out of %d " |
3170 | 0 | "points failed to transform.", |
3171 | 0 | nFailedCount, nSamplePoints); |
3172 | | |
3173 | | /* -------------------------------------------------------------------- */ |
3174 | | /* In some cases (see https://github.com/OSGeo/gdal/issues/862) */ |
3175 | | /* the reverse transform does not work at some points, so try by */ |
3176 | | /* transforming from source raster space to target raster space and */ |
3177 | | /* see which source coordinates end up being in the AOI in the target */ |
3178 | | /* raster space. */ |
3179 | | /* -------------------------------------------------------------------- */ |
3180 | 0 | if (bUseGrid) |
3181 | 0 | { |
3182 | 0 | ComputeSourceWindowStartingFromSource(nDstXOff, nDstYOff, nDstXSize, |
3183 | 0 | nDstYSize, &dfMinXOut, &dfMinYOut, |
3184 | 0 | &dfMaxXOut, &dfMaxYOut); |
3185 | 0 | } |
3186 | | |
3187 | | /* -------------------------------------------------------------------- */ |
3188 | | /* Early exit to avoid crazy values to cause a huge nResWinSize that */ |
3189 | | /* would result in a result window wrongly covering the whole raster. */ |
3190 | | /* -------------------------------------------------------------------- */ |
3191 | 0 | if (dfMinXOut > nRasterXSize || dfMaxXOut < 0 || dfMinYOut > nRasterYSize || |
3192 | 0 | dfMaxYOut < 0) |
3193 | 0 | { |
3194 | 0 | *pnSrcXOff = 0; |
3195 | 0 | *pnSrcYOff = 0; |
3196 | 0 | *pnSrcXSize = 0; |
3197 | 0 | *pnSrcYSize = 0; |
3198 | 0 | if (pdfSrcXExtraSize) |
3199 | 0 | *pdfSrcXExtraSize = 0.0; |
3200 | 0 | if (pdfSrcYExtraSize) |
3201 | 0 | *pdfSrcYExtraSize = 0.0; |
3202 | 0 | if (pdfSrcFillRatio) |
3203 | 0 | *pdfSrcFillRatio = 0.0; |
3204 | 0 | return CE_None; |
3205 | 0 | } |
3206 | | |
3207 | | // For scenarios where warping is used as a "decoration", try to clamp |
3208 | | // source pixel coordinates to integer when very close. |
3209 | 0 | const auto roundIfCloseEnough = [](double dfVal) |
3210 | 0 | { |
3211 | 0 | const double dfRounded = std::round(dfVal); |
3212 | 0 | if (std::fabs(dfRounded - dfVal) < 1e-6) |
3213 | 0 | return dfRounded; |
3214 | 0 | return dfVal; |
3215 | 0 | }; |
3216 | |
|
3217 | 0 | dfMinXOut = roundIfCloseEnough(dfMinXOut); |
3218 | 0 | dfMinYOut = roundIfCloseEnough(dfMinYOut); |
3219 | 0 | dfMaxXOut = roundIfCloseEnough(dfMaxXOut); |
3220 | 0 | dfMaxYOut = roundIfCloseEnough(dfMaxYOut); |
3221 | |
|
3222 | 0 | if (m_bIsTranslationOnPixelBoundaries) |
3223 | 0 | { |
3224 | 0 | CPLAssert(dfMinXOut == std::round(dfMinXOut)); |
3225 | 0 | CPLAssert(dfMinYOut == std::round(dfMinYOut)); |
3226 | 0 | CPLAssert(dfMaxXOut == std::round(dfMaxXOut)); |
3227 | 0 | CPLAssert(dfMaxYOut == std::round(dfMaxYOut)); |
3228 | 0 | CPLAssert(std::round(dfMaxXOut - dfMinXOut) == nDstXSize); |
3229 | 0 | CPLAssert(std::round(dfMaxYOut - dfMinYOut) == nDstYSize); |
3230 | 0 | } |
3231 | | |
3232 | | /* -------------------------------------------------------------------- */ |
3233 | | /* How much of a window around our source pixel might we need */ |
3234 | | /* to collect data from based on the resampling kernel? Even */ |
3235 | | /* if the requested central pixel falls off the source image, */ |
3236 | | /* we may need to collect data if some portion of the */ |
3237 | | /* resampling kernel could be on-image. */ |
3238 | | /* -------------------------------------------------------------------- */ |
3239 | 0 | const int nResWinSize = m_bIsTranslationOnPixelBoundaries |
3240 | 0 | ? 0 |
3241 | 0 | : GWKGetFilterRadius(psOptions->eResampleAlg); |
3242 | | |
3243 | | // Take scaling into account. |
3244 | | // Avoid ridiculous small scaling factors to avoid potential further integer |
3245 | | // overflows |
3246 | 0 | const double dfXScale = std::max(1e-3, static_cast<double>(nDstXSize) / |
3247 | 0 | (dfMaxXOut - dfMinXOut)); |
3248 | 0 | const double dfYScale = std::max(1e-3, static_cast<double>(nDstYSize) / |
3249 | 0 | (dfMaxYOut - dfMinYOut)); |
3250 | 0 | int nXRadius = dfXScale < 0.95 |
3251 | 0 | ? static_cast<int>(ceil(nResWinSize / dfXScale)) |
3252 | 0 | : nResWinSize; |
3253 | 0 | int nYRadius = dfYScale < 0.95 |
3254 | 0 | ? static_cast<int>(ceil(nResWinSize / dfYScale)) |
3255 | 0 | : nResWinSize; |
3256 | | |
3257 | | /* -------------------------------------------------------------------- */ |
3258 | | /* Allow addition of extra sample pixels to source window to */ |
3259 | | /* avoid missing pixels due to sampling error. In fact, */ |
3260 | | /* fallback to adding a bit to the window if any points failed */ |
3261 | | /* to transform. */ |
3262 | | /* -------------------------------------------------------------------- */ |
3263 | 0 | if (const char *pszSourceExtra = |
3264 | 0 | CSLFetchNameValue(psOptions->papszWarpOptions, "SOURCE_EXTRA")) |
3265 | 0 | { |
3266 | 0 | const int nSrcExtra = atoi(pszSourceExtra); |
3267 | 0 | nXRadius += nSrcExtra; |
3268 | 0 | nYRadius += nSrcExtra; |
3269 | 0 | } |
3270 | 0 | else if (nFailedCount > 0) |
3271 | 0 | { |
3272 | 0 | nXRadius += 10; |
3273 | 0 | nYRadius += 10; |
3274 | 0 | } |
3275 | | |
3276 | | /* -------------------------------------------------------------------- */ |
3277 | | /* return bounds. */ |
3278 | | /* -------------------------------------------------------------------- */ |
3279 | | #if DEBUG_VERBOSE |
3280 | | CPLDebug("WARP", |
3281 | | "dst=(%d,%d,%d,%d) raw " |
3282 | | "src=(minx=%.17g,miny=%.17g,maxx=%.17g,maxy=%.17g)", |
3283 | | nDstXOff, nDstYOff, nDstXSize, nDstYSize, dfMinXOut, dfMinYOut, |
3284 | | dfMaxXOut, dfMaxYOut); |
3285 | | #endif |
3286 | 0 | const int nMinXOutClamped = static_cast<int>(std::max(0.0, dfMinXOut)); |
3287 | 0 | const int nMinYOutClamped = static_cast<int>(std::max(0.0, dfMinYOut)); |
3288 | 0 | const int nMaxXOutClamped = static_cast<int>( |
3289 | 0 | std::min(ceil(dfMaxXOut), static_cast<double>(nRasterXSize))); |
3290 | 0 | const int nMaxYOutClamped = static_cast<int>( |
3291 | 0 | std::min(ceil(dfMaxYOut), static_cast<double>(nRasterYSize))); |
3292 | |
|
3293 | 0 | const double dfSrcXSizeRaw = std::max( |
3294 | 0 | 0.0, std::min(static_cast<double>(nRasterXSize - nMinXOutClamped), |
3295 | 0 | dfMaxXOut - dfMinXOut)); |
3296 | 0 | const double dfSrcYSizeRaw = std::max( |
3297 | 0 | 0.0, std::min(static_cast<double>(nRasterYSize - nMinYOutClamped), |
3298 | 0 | dfMaxYOut - dfMinYOut)); |
3299 | | |
3300 | | // If we cover more than 90% of the width, then use it fully (helps for |
3301 | | // anti-meridian discontinuities) |
3302 | 0 | if (nMaxXOutClamped - nMinXOutClamped > 0.9 * nRasterXSize) |
3303 | 0 | { |
3304 | 0 | *pnSrcXOff = 0; |
3305 | 0 | *pnSrcXSize = nRasterXSize; |
3306 | 0 | } |
3307 | 0 | else |
3308 | 0 | { |
3309 | 0 | *pnSrcXOff = |
3310 | 0 | std::max(0, std::min(nMinXOutClamped - nXRadius, nRasterXSize)); |
3311 | 0 | *pnSrcXSize = |
3312 | 0 | std::max(0, std::min(nRasterXSize - *pnSrcXOff, |
3313 | 0 | nMaxXOutClamped - *pnSrcXOff + nXRadius)); |
3314 | 0 | } |
3315 | |
|
3316 | 0 | if (nMaxYOutClamped - nMinYOutClamped > 0.9 * nRasterYSize) |
3317 | 0 | { |
3318 | 0 | *pnSrcYOff = 0; |
3319 | 0 | *pnSrcYSize = nRasterYSize; |
3320 | 0 | } |
3321 | 0 | else |
3322 | 0 | { |
3323 | 0 | *pnSrcYOff = |
3324 | 0 | std::max(0, std::min(nMinYOutClamped - nYRadius, nRasterYSize)); |
3325 | 0 | *pnSrcYSize = |
3326 | 0 | std::max(0, std::min(nRasterYSize - *pnSrcYOff, |
3327 | 0 | nMaxYOutClamped - *pnSrcYOff + nYRadius)); |
3328 | 0 | } |
3329 | |
|
3330 | 0 | if (pdfSrcXExtraSize) |
3331 | 0 | *pdfSrcXExtraSize = *pnSrcXSize - dfSrcXSizeRaw; |
3332 | 0 | if (pdfSrcYExtraSize) |
3333 | 0 | *pdfSrcYExtraSize = *pnSrcYSize - dfSrcYSizeRaw; |
3334 | | |
3335 | | // Computed the ratio of the clamped source raster window size over |
3336 | | // the unclamped source raster window size. |
3337 | 0 | if (pdfSrcFillRatio) |
3338 | 0 | *pdfSrcFillRatio = |
3339 | 0 | static_cast<double>(*pnSrcXSize) * (*pnSrcYSize) / |
3340 | 0 | std::max(1.0, (dfMaxXOut - dfMinXOut + 2 * nXRadius) * |
3341 | 0 | (dfMaxYOut - dfMinYOut + 2 * nYRadius)); |
3342 | |
|
3343 | 0 | return CE_None; |
3344 | 0 | } |
3345 | | |
3346 | | /************************************************************************/ |
3347 | | /* ReportTiming() */ |
3348 | | /************************************************************************/ |
3349 | | |
3350 | | void GDALWarpOperation::ReportTiming(const char *pszMessage) |
3351 | | |
3352 | 0 | { |
3353 | 0 | if (!bReportTimings) |
3354 | 0 | return; |
3355 | | |
3356 | 0 | const unsigned long nNewTime = VSITime(nullptr); |
3357 | |
|
3358 | 0 | if (pszMessage != nullptr) |
3359 | 0 | { |
3360 | 0 | CPLDebug("WARP_TIMING", "%s: %lds", pszMessage, |
3361 | 0 | static_cast<long>(nNewTime - nLastTimeReported)); |
3362 | 0 | } |
3363 | |
|
3364 | 0 | nLastTimeReported = nNewTime; |
3365 | 0 | } |