/src/gdal/alg/gdalwarpkernel.cpp
Line | Count | Source |
1 | | /****************************************************************************** |
2 | | * |
3 | | * Project: High Performance Image Reprojector |
4 | | * Purpose: Implementation of the GDALWarpKernel class. Implements the actual |
5 | | * image warping for a "chunk" of input and output imagery already |
6 | | * loaded into memory. |
7 | | * Author: Frank Warmerdam, warmerdam@pobox.com |
8 | | * |
9 | | ****************************************************************************** |
10 | | * Copyright (c) 2003, Frank Warmerdam <warmerdam@pobox.com> |
11 | | * Copyright (c) 2008-2013, Even Rouault <even dot rouault at spatialys.com> |
12 | | * |
13 | | * SPDX-License-Identifier: MIT |
14 | | ****************************************************************************/ |
15 | | |
16 | | #include "cpl_port.h" |
17 | | #include "gdalwarper.h" |
18 | | |
19 | | #include <cfloat> |
20 | | #include <cmath> |
21 | | #include <cstddef> |
22 | | #include <cstdlib> |
23 | | #include <cstring> |
24 | | |
25 | | #include <algorithm> |
26 | | #include <limits> |
27 | | #include <mutex> |
28 | | #include <new> |
29 | | #include <utility> |
30 | | #include <vector> |
31 | | |
32 | | #include "cpl_atomic_ops.h" |
33 | | #include "cpl_conv.h" |
34 | | #include "cpl_error.h" |
35 | | #include "cpl_float.h" |
36 | | #include "cpl_mask.h" |
37 | | #include "cpl_multiproc.h" |
38 | | #include "cpl_progress.h" |
39 | | #include "cpl_string.h" |
40 | | #include "cpl_vsi.h" |
41 | | #include "cpl_worker_thread_pool.h" |
42 | | #include "cpl_quad_tree.h" |
43 | | #include "gdal.h" |
44 | | #include "gdal_alg.h" |
45 | | #include "gdal_alg_priv.h" |
46 | | #include "gdal_thread_pool.h" |
47 | | #include "gdalresamplingkernels.h" |
48 | | |
49 | | // #define CHECK_SUM_WITH_GEOS |
50 | | #ifdef CHECK_SUM_WITH_GEOS |
51 | | #include "ogr_geometry.h" |
52 | | #include "ogr_geos.h" |
53 | | #endif |
54 | | |
55 | | #ifdef USE_NEON_OPTIMIZATIONS |
56 | | #include "include_sse2neon.h" |
57 | | #define USE_SSE2 |
58 | | |
59 | | #include "gdalsse_priv.h" |
60 | | |
61 | | // We restrict to 64bit processors because they are guaranteed to have SSE2. |
62 | | // Could possibly be used too on 32bit, but we would need to check at runtime. |
63 | | #elif defined(__x86_64) || defined(_M_X64) |
64 | | #define USE_SSE2 |
65 | | |
66 | | #include "gdalsse_priv.h" |
67 | | |
68 | | #if __SSE4_1__ |
69 | | #include <smmintrin.h> |
70 | | #endif |
71 | | |
72 | | #if __SSE3__ |
73 | | #include <pmmintrin.h> |
74 | | #endif |
75 | | |
76 | | #endif |
77 | | |
78 | | constexpr double BAND_DENSITY_THRESHOLD = 0.0000000001; |
79 | | constexpr float SRC_DENSITY_THRESHOLD_FLOAT = 0.000000001f; |
80 | | constexpr double SRC_DENSITY_THRESHOLD_DOUBLE = 0.000000001; |
81 | | |
82 | | // #define INSTANTIATE_FLOAT64_SSE2_IMPL |
83 | | |
84 | | static const int anGWKFilterRadius[] = { |
85 | | 0, // Nearest neighbour |
86 | | 1, // Bilinear |
87 | | 2, // Cubic Convolution (Catmull-Rom) |
88 | | 2, // Cubic B-Spline |
89 | | 3, // Lanczos windowed sinc |
90 | | 0, // Average |
91 | | 0, // Mode |
92 | | 0, // Reserved GRA_Gauss=7 |
93 | | 0, // Max |
94 | | 0, // Min |
95 | | 0, // Med |
96 | | 0, // Q1 |
97 | | 0, // Q3 |
98 | | 0, // Sum |
99 | | 0, // RMS |
100 | | }; |
101 | | |
102 | | static double GWKBilinear(double dfX); |
103 | | static double GWKCubic(double dfX); |
104 | | static double GWKBSpline(double dfX); |
105 | | static double GWKLanczosSinc(double dfX); |
106 | | |
107 | | static const FilterFuncType apfGWKFilter[] = { |
108 | | nullptr, // Nearest neighbour |
109 | | GWKBilinear, // Bilinear |
110 | | GWKCubic, // Cubic Convolution (Catmull-Rom) |
111 | | GWKBSpline, // Cubic B-Spline |
112 | | GWKLanczosSinc, // Lanczos windowed sinc |
113 | | nullptr, // Average |
114 | | nullptr, // Mode |
115 | | nullptr, // Reserved GRA_Gauss=7 |
116 | | nullptr, // Max |
117 | | nullptr, // Min |
118 | | nullptr, // Med |
119 | | nullptr, // Q1 |
120 | | nullptr, // Q3 |
121 | | nullptr, // Sum |
122 | | nullptr, // RMS |
123 | | }; |
124 | | |
125 | | // TODO(schwehr): Can we make these functions have a const * const arg? |
126 | | static double GWKBilinear4Values(double *padfVals); |
127 | | static double GWKCubic4Values(double *padfVals); |
128 | | static double GWKBSpline4Values(double *padfVals); |
129 | | static double GWKLanczosSinc4Values(double *padfVals); |
130 | | |
131 | | static const FilterFunc4ValuesType apfGWKFilter4Values[] = { |
132 | | nullptr, // Nearest neighbour |
133 | | GWKBilinear4Values, // Bilinear |
134 | | GWKCubic4Values, // Cubic Convolution (Catmull-Rom) |
135 | | GWKBSpline4Values, // Cubic B-Spline |
136 | | GWKLanczosSinc4Values, // Lanczos windowed sinc |
137 | | nullptr, // Average |
138 | | nullptr, // Mode |
139 | | nullptr, // Reserved GRA_Gauss=7 |
140 | | nullptr, // Max |
141 | | nullptr, // Min |
142 | | nullptr, // Med |
143 | | nullptr, // Q1 |
144 | | nullptr, // Q3 |
145 | | nullptr, // Sum |
146 | | nullptr, // RMS |
147 | | }; |
148 | | |
149 | | int GWKGetFilterRadius(GDALResampleAlg eResampleAlg) |
150 | 0 | { |
151 | 0 | static_assert(CPL_ARRAYSIZE(anGWKFilterRadius) == GRA_LAST_VALUE + 1, |
152 | 0 | "Bad size of anGWKFilterRadius"); |
153 | 0 | return anGWKFilterRadius[eResampleAlg]; |
154 | 0 | } |
155 | | |
156 | | FilterFuncType GWKGetFilterFunc(GDALResampleAlg eResampleAlg) |
157 | 0 | { |
158 | 0 | static_assert(CPL_ARRAYSIZE(apfGWKFilter) == GRA_LAST_VALUE + 1, |
159 | 0 | "Bad size of apfGWKFilter"); |
160 | 0 | return apfGWKFilter[eResampleAlg]; |
161 | 0 | } |
162 | | |
163 | | FilterFunc4ValuesType GWKGetFilterFunc4Values(GDALResampleAlg eResampleAlg) |
164 | 0 | { |
165 | 0 | static_assert(CPL_ARRAYSIZE(apfGWKFilter4Values) == GRA_LAST_VALUE + 1, |
166 | 0 | "Bad size of apfGWKFilter4Values"); |
167 | 0 | return apfGWKFilter4Values[eResampleAlg]; |
168 | 0 | } |
169 | | |
170 | | static CPLErr GWKGeneralCase(GDALWarpKernel *); |
171 | | static CPLErr GWKRealCase(GDALWarpKernel *poWK); |
172 | | static CPLErr GWKNearestNoMasksOrDstDensityOnlyByte(GDALWarpKernel *poWK); |
173 | | static CPLErr GWKBilinearNoMasksOrDstDensityOnlyByte(GDALWarpKernel *poWK); |
174 | | static CPLErr GWKCubicNoMasksOrDstDensityOnlyByte(GDALWarpKernel *poWK); |
175 | | static CPLErr GWKCubicNoMasksOrDstDensityOnlyFloat(GDALWarpKernel *poWK); |
176 | | #ifdef INSTANTIATE_FLOAT64_SSE2_IMPL |
177 | | static CPLErr GWKCubicNoMasksOrDstDensityOnlyDouble(GDALWarpKernel *poWK); |
178 | | #endif |
179 | | static CPLErr GWKCubicSplineNoMasksOrDstDensityOnlyByte(GDALWarpKernel *poWK); |
180 | | static CPLErr GWKNearestByte(GDALWarpKernel *poWK); |
181 | | static CPLErr GWKNearestNoMasksOrDstDensityOnlyShort(GDALWarpKernel *poWK); |
182 | | static CPLErr GWKBilinearNoMasksOrDstDensityOnlyShort(GDALWarpKernel *poWK); |
183 | | static CPLErr GWKBilinearNoMasksOrDstDensityOnlyFloat(GDALWarpKernel *poWK); |
184 | | #ifdef INSTANTIATE_FLOAT64_SSE2_IMPL |
185 | | static CPLErr GWKBilinearNoMasksOrDstDensityOnlyDouble(GDALWarpKernel *poWK); |
186 | | #endif |
187 | | static CPLErr GWKCubicNoMasksOrDstDensityOnlyShort(GDALWarpKernel *poWK); |
188 | | static CPLErr GWKCubicSplineNoMasksOrDstDensityOnlyShort(GDALWarpKernel *poWK); |
189 | | static CPLErr GWKNearestShort(GDALWarpKernel *poWK); |
190 | | static CPLErr GWKNearestUnsignedShort(GDALWarpKernel *poWK); |
191 | | static CPLErr GWKNearestNoMasksOrDstDensityOnlyFloat(GDALWarpKernel *poWK); |
192 | | static CPLErr GWKNearestFloat(GDALWarpKernel *poWK); |
193 | | static CPLErr GWKAverageOrMode(GDALWarpKernel *); |
194 | | static CPLErr GWKSumPreserving(GDALWarpKernel *); |
195 | | static CPLErr GWKCubicNoMasksOrDstDensityOnlyUShort(GDALWarpKernel *); |
196 | | static CPLErr GWKCubicSplineNoMasksOrDstDensityOnlyUShort(GDALWarpKernel *); |
197 | | static CPLErr GWKBilinearNoMasksOrDstDensityOnlyUShort(GDALWarpKernel *); |
198 | | |
199 | | /************************************************************************/ |
200 | | /* GWKJobStruct */ |
201 | | /************************************************************************/ |
202 | | |
203 | | struct GWKJobStruct |
204 | | { |
205 | | std::mutex &mutex; |
206 | | std::condition_variable &cv; |
207 | | int counterSingleThreaded = 0; |
208 | | int &counter; |
209 | | bool &stopFlag; |
210 | | GDALWarpKernel *poWK = nullptr; |
211 | | int iYMin = 0; |
212 | | int iYMax = 0; |
213 | | int (*pfnProgress)(GWKJobStruct *psJob) = nullptr; |
214 | | void *pTransformerArg = nullptr; |
215 | | // used by GWKRun() to assign the proper pTransformerArg |
216 | | void (*pfnFunc)(void *) = nullptr; |
217 | | |
218 | | GWKJobStruct(std::mutex &mutex_, std::condition_variable &cv_, |
219 | | int &counter_, bool &stopFlag_) |
220 | 0 | : mutex(mutex_), cv(cv_), counter(counter_), stopFlag(stopFlag_) |
221 | 0 | { |
222 | 0 | } |
223 | | }; |
224 | | |
225 | | struct GWKThreadData |
226 | | { |
227 | | std::unique_ptr<CPLJobQueue> poJobQueue{}; |
228 | | std::unique_ptr<std::vector<GWKJobStruct>> threadJobs{}; |
229 | | int nMaxThreads{0}; |
230 | | int counter{0}; |
231 | | bool stopFlag{false}; |
232 | | std::mutex mutex{}; |
233 | | std::condition_variable cv{}; |
234 | | bool bTransformerArgInputAssignedToThread{false}; |
235 | | void *pTransformerArgInput{ |
236 | | nullptr}; // owned by calling layer. Not to be destroyed |
237 | | std::map<GIntBig, void *> mapThreadToTransformerArg{}; |
238 | | int nTotalThreadCountForThisRun = 0; |
239 | | int nCurThreadCountForThisRun = 0; |
240 | | }; |
241 | | |
242 | | /************************************************************************/ |
243 | | /* GWKProgressThread() */ |
244 | | /************************************************************************/ |
245 | | |
246 | | // Return TRUE if the computation must be interrupted. |
247 | | static int GWKProgressThread(GWKJobStruct *psJob) |
248 | 0 | { |
249 | 0 | bool stop = false; |
250 | 0 | { |
251 | 0 | std::lock_guard<std::mutex> lock(psJob->mutex); |
252 | 0 | psJob->counter++; |
253 | 0 | stop = psJob->stopFlag; |
254 | 0 | } |
255 | 0 | psJob->cv.notify_one(); |
256 | |
|
257 | 0 | return stop; |
258 | 0 | } |
259 | | |
260 | | /************************************************************************/ |
261 | | /* GWKProgressMonoThread() */ |
262 | | /************************************************************************/ |
263 | | |
264 | | // Return TRUE if the computation must be interrupted. |
265 | | static int GWKProgressMonoThread(GWKJobStruct *psJob) |
266 | 0 | { |
267 | 0 | GDALWarpKernel *poWK = psJob->poWK; |
268 | 0 | if (!poWK->pfnProgress(poWK->dfProgressBase + |
269 | 0 | poWK->dfProgressScale * |
270 | 0 | (++psJob->counterSingleThreaded / |
271 | 0 | static_cast<double>(psJob->iYMax)), |
272 | 0 | "", poWK->pProgress)) |
273 | 0 | { |
274 | 0 | CPLError(CE_Failure, CPLE_UserInterrupt, "User terminated"); |
275 | 0 | psJob->stopFlag = true; |
276 | 0 | return TRUE; |
277 | 0 | } |
278 | 0 | return FALSE; |
279 | 0 | } |
280 | | |
281 | | /************************************************************************/ |
282 | | /* GWKGenericMonoThread() */ |
283 | | /************************************************************************/ |
284 | | |
285 | | static CPLErr GWKGenericMonoThread(GDALWarpKernel *poWK, |
286 | | void (*pfnFunc)(void *pUserData)) |
287 | 0 | { |
288 | 0 | GWKThreadData td; |
289 | | |
290 | | // NOTE: the mutex is not used. |
291 | 0 | GWKJobStruct job(td.mutex, td.cv, td.counter, td.stopFlag); |
292 | 0 | job.poWK = poWK; |
293 | 0 | job.iYMin = 0; |
294 | 0 | job.iYMax = poWK->nDstYSize; |
295 | 0 | job.pfnProgress = GWKProgressMonoThread; |
296 | 0 | job.pTransformerArg = poWK->pTransformerArg; |
297 | 0 | job.counterSingleThreaded = td.counter; |
298 | 0 | pfnFunc(&job); |
299 | 0 | td.counter = job.counterSingleThreaded; |
300 | |
|
301 | 0 | return td.stopFlag ? CE_Failure : CE_None; |
302 | 0 | } |
303 | | |
304 | | /************************************************************************/ |
305 | | /* GWKThreadsCreate() */ |
306 | | /************************************************************************/ |
307 | | |
308 | | void *GWKThreadsCreate(char **papszWarpOptions, |
309 | | GDALTransformerFunc /* pfnTransformer */, |
310 | | void *pTransformerArg) |
311 | 0 | { |
312 | 0 | const int nThreads = GDALGetNumThreads(papszWarpOptions, "NUM_THREADS", |
313 | 0 | GDAL_DEFAULT_MAX_THREAD_COUNT, |
314 | 0 | /* bDefaultAllCPUs = */ false); |
315 | 0 | GWKThreadData *psThreadData = new GWKThreadData(); |
316 | 0 | auto poThreadPool = |
317 | 0 | nThreads > 1 ? GDALGetGlobalThreadPool(nThreads) : nullptr; |
318 | 0 | if (poThreadPool) |
319 | 0 | { |
320 | 0 | psThreadData->nMaxThreads = nThreads; |
321 | 0 | psThreadData->threadJobs.reset(new std::vector<GWKJobStruct>( |
322 | 0 | nThreads, |
323 | 0 | GWKJobStruct(psThreadData->mutex, psThreadData->cv, |
324 | 0 | psThreadData->counter, psThreadData->stopFlag))); |
325 | |
|
326 | 0 | psThreadData->poJobQueue = poThreadPool->CreateJobQueue(); |
327 | 0 | psThreadData->pTransformerArgInput = pTransformerArg; |
328 | 0 | } |
329 | |
|
330 | 0 | return psThreadData; |
331 | 0 | } |
332 | | |
333 | | /************************************************************************/ |
334 | | /* GWKThreadsEnd() */ |
335 | | /************************************************************************/ |
336 | | |
337 | | void GWKThreadsEnd(void *psThreadDataIn) |
338 | 0 | { |
339 | 0 | if (psThreadDataIn == nullptr) |
340 | 0 | return; |
341 | | |
342 | 0 | GWKThreadData *psThreadData = static_cast<GWKThreadData *>(psThreadDataIn); |
343 | 0 | if (psThreadData->poJobQueue) |
344 | 0 | { |
345 | | // cppcheck-suppress constVariableReference |
346 | 0 | for (auto &pair : psThreadData->mapThreadToTransformerArg) |
347 | 0 | { |
348 | 0 | CPLAssert(pair.second != psThreadData->pTransformerArgInput); |
349 | 0 | GDALDestroyTransformer(pair.second); |
350 | 0 | } |
351 | 0 | psThreadData->poJobQueue.reset(); |
352 | 0 | } |
353 | 0 | delete psThreadData; |
354 | 0 | } |
355 | | |
356 | | /************************************************************************/ |
357 | | /* ThreadFuncAdapter() */ |
358 | | /************************************************************************/ |
359 | | |
360 | | static void ThreadFuncAdapter(void *pData) |
361 | 0 | { |
362 | 0 | GWKJobStruct *psJob = static_cast<GWKJobStruct *>(pData); |
363 | 0 | GWKThreadData *psThreadData = |
364 | 0 | static_cast<GWKThreadData *>(psJob->poWK->psThreadData); |
365 | | |
366 | | // Look if we have already a per-thread transformer |
367 | 0 | void *pTransformerArg = nullptr; |
368 | 0 | const GIntBig nThreadId = CPLGetPID(); |
369 | |
|
370 | 0 | { |
371 | 0 | std::lock_guard<std::mutex> lock(psThreadData->mutex); |
372 | 0 | ++psThreadData->nCurThreadCountForThisRun; |
373 | |
|
374 | 0 | auto oIter = psThreadData->mapThreadToTransformerArg.find(nThreadId); |
375 | 0 | if (oIter != psThreadData->mapThreadToTransformerArg.end()) |
376 | 0 | { |
377 | 0 | pTransformerArg = oIter->second; |
378 | 0 | } |
379 | 0 | else if (!psThreadData->bTransformerArgInputAssignedToThread && |
380 | 0 | psThreadData->nCurThreadCountForThisRun == |
381 | 0 | psThreadData->nTotalThreadCountForThisRun) |
382 | 0 | { |
383 | | // If we are the last thread to be started, temporarily borrow the |
384 | | // original transformer |
385 | 0 | psThreadData->bTransformerArgInputAssignedToThread = true; |
386 | 0 | pTransformerArg = psThreadData->pTransformerArgInput; |
387 | 0 | psThreadData->mapThreadToTransformerArg[nThreadId] = |
388 | 0 | pTransformerArg; |
389 | 0 | } |
390 | |
|
391 | 0 | if (pTransformerArg == nullptr) |
392 | 0 | { |
393 | 0 | CPLAssert(psThreadData->pTransformerArgInput != nullptr); |
394 | 0 | CPLAssert(!psThreadData->bTransformerArgInputAssignedToThread); |
395 | 0 | } |
396 | 0 | } |
397 | | |
398 | | // If no transformer assigned to current thread, instantiate one |
399 | 0 | if (pTransformerArg == nullptr) |
400 | 0 | { |
401 | | // This somehow assumes that GDALCloneTransformer() is thread-safe |
402 | | // which should normally be the case. |
403 | 0 | pTransformerArg = |
404 | 0 | GDALCloneTransformer(psThreadData->pTransformerArgInput); |
405 | | |
406 | | // Lock for the stop flag and the transformer map. |
407 | 0 | std::lock_guard<std::mutex> lock(psThreadData->mutex); |
408 | 0 | if (!pTransformerArg) |
409 | 0 | { |
410 | 0 | psJob->stopFlag = true; |
411 | 0 | return; |
412 | 0 | } |
413 | 0 | psThreadData->mapThreadToTransformerArg[nThreadId] = pTransformerArg; |
414 | 0 | } |
415 | | |
416 | 0 | psJob->pTransformerArg = pTransformerArg; |
417 | 0 | psJob->pfnFunc(pData); |
418 | | |
419 | | // Give back original transformer, if borrowed. |
420 | 0 | { |
421 | 0 | std::lock_guard<std::mutex> lock(psThreadData->mutex); |
422 | 0 | if (psThreadData->bTransformerArgInputAssignedToThread && |
423 | 0 | pTransformerArg == psThreadData->pTransformerArgInput) |
424 | 0 | { |
425 | 0 | psThreadData->mapThreadToTransformerArg.erase( |
426 | 0 | psThreadData->mapThreadToTransformerArg.find(nThreadId)); |
427 | 0 | psThreadData->bTransformerArgInputAssignedToThread = false; |
428 | 0 | } |
429 | 0 | } |
430 | 0 | } |
431 | | |
432 | | /************************************************************************/ |
433 | | /* GWKRun() */ |
434 | | /************************************************************************/ |
435 | | |
436 | | static CPLErr GWKRun(GDALWarpKernel *poWK, const char *pszFuncName, |
437 | | void (*pfnFunc)(void *pUserData)) |
438 | | |
439 | 0 | { |
440 | 0 | const int nDstYSize = poWK->nDstYSize; |
441 | |
|
442 | 0 | CPLDebug("GDAL", |
443 | 0 | "GDALWarpKernel()::%s() " |
444 | 0 | "Src=%d,%d,%dx%d Dst=%d,%d,%dx%d", |
445 | 0 | pszFuncName, poWK->nSrcXOff, poWK->nSrcYOff, poWK->nSrcXSize, |
446 | 0 | poWK->nSrcYSize, poWK->nDstXOff, poWK->nDstYOff, poWK->nDstXSize, |
447 | 0 | poWK->nDstYSize); |
448 | |
|
449 | 0 | if (!poWK->pfnProgress(poWK->dfProgressBase, "", poWK->pProgress)) |
450 | 0 | { |
451 | 0 | CPLError(CE_Failure, CPLE_UserInterrupt, "User terminated"); |
452 | 0 | return CE_Failure; |
453 | 0 | } |
454 | | |
455 | 0 | GWKThreadData *psThreadData = |
456 | 0 | static_cast<GWKThreadData *>(poWK->psThreadData); |
457 | 0 | if (psThreadData == nullptr || psThreadData->poJobQueue == nullptr) |
458 | 0 | { |
459 | 0 | return GWKGenericMonoThread(poWK, pfnFunc); |
460 | 0 | } |
461 | | |
462 | 0 | int nThreads = std::min(psThreadData->nMaxThreads, nDstYSize / 2); |
463 | | // Config option mostly useful for tests to be able to test multithreading |
464 | | // with small rasters |
465 | 0 | const int nWarpChunkSize = |
466 | 0 | atoi(CPLGetConfigOption("WARP_THREAD_CHUNK_SIZE", "65536")); |
467 | 0 | if (nWarpChunkSize > 0) |
468 | 0 | { |
469 | 0 | GIntBig nChunks = |
470 | 0 | static_cast<GIntBig>(nDstYSize) * poWK->nDstXSize / nWarpChunkSize; |
471 | 0 | if (nThreads > nChunks) |
472 | 0 | nThreads = static_cast<int>(nChunks); |
473 | 0 | } |
474 | 0 | if (nThreads <= 0) |
475 | 0 | nThreads = 1; |
476 | |
|
477 | 0 | CPLDebug("WARP", "Using %d threads", nThreads); |
478 | |
|
479 | 0 | auto &jobs = *psThreadData->threadJobs; |
480 | 0 | CPLAssert(static_cast<int>(jobs.size()) >= nThreads); |
481 | | // Fill-in job structures. |
482 | 0 | for (int i = 0; i < nThreads; ++i) |
483 | 0 | { |
484 | 0 | auto &job = jobs[i]; |
485 | 0 | job.poWK = poWK; |
486 | 0 | job.iYMin = |
487 | 0 | static_cast<int>(static_cast<int64_t>(i) * nDstYSize / nThreads); |
488 | 0 | job.iYMax = static_cast<int>(static_cast<int64_t>(i + 1) * nDstYSize / |
489 | 0 | nThreads); |
490 | 0 | if (poWK->pfnProgress != GDALDummyProgress) |
491 | 0 | job.pfnProgress = GWKProgressThread; |
492 | 0 | job.pfnFunc = pfnFunc; |
493 | 0 | } |
494 | |
|
495 | 0 | bool bStopFlag; |
496 | 0 | { |
497 | 0 | std::unique_lock<std::mutex> lock(psThreadData->mutex); |
498 | |
|
499 | 0 | psThreadData->nTotalThreadCountForThisRun = nThreads; |
500 | | // coverity[missing_lock] |
501 | 0 | psThreadData->nCurThreadCountForThisRun = 0; |
502 | | |
503 | | // Start jobs. |
504 | 0 | for (int i = 0; i < nThreads; ++i) |
505 | 0 | { |
506 | 0 | auto &job = jobs[i]; |
507 | 0 | psThreadData->poJobQueue->SubmitJob(ThreadFuncAdapter, |
508 | 0 | static_cast<void *>(&job)); |
509 | 0 | } |
510 | | |
511 | | /* -------------------------------------------------------------------- |
512 | | */ |
513 | | /* Report progress. */ |
514 | | /* -------------------------------------------------------------------- |
515 | | */ |
516 | 0 | if (poWK->pfnProgress != GDALDummyProgress) |
517 | 0 | { |
518 | 0 | while (psThreadData->counter < nDstYSize) |
519 | 0 | { |
520 | 0 | psThreadData->cv.wait(lock); |
521 | 0 | if (!poWK->pfnProgress(poWK->dfProgressBase + |
522 | 0 | poWK->dfProgressScale * |
523 | 0 | (psThreadData->counter / |
524 | 0 | static_cast<double>(nDstYSize)), |
525 | 0 | "", poWK->pProgress)) |
526 | 0 | { |
527 | 0 | CPLError(CE_Failure, CPLE_UserInterrupt, "User terminated"); |
528 | 0 | psThreadData->stopFlag = true; |
529 | 0 | break; |
530 | 0 | } |
531 | 0 | } |
532 | 0 | } |
533 | |
|
534 | 0 | bStopFlag = psThreadData->stopFlag; |
535 | 0 | } |
536 | | |
537 | | /* -------------------------------------------------------------------- */ |
538 | | /* Wait for all jobs to complete. */ |
539 | | /* -------------------------------------------------------------------- */ |
540 | 0 | psThreadData->poJobQueue->WaitCompletion(); |
541 | |
|
542 | 0 | return bStopFlag ? CE_Failure : CE_None; |
543 | 0 | } |
544 | | |
545 | | /************************************************************************/ |
546 | | /* ==================================================================== */ |
547 | | /* GDALWarpKernel */ |
548 | | /* ==================================================================== */ |
549 | | /************************************************************************/ |
550 | | |
551 | | /** |
552 | | * \class GDALWarpKernel "gdalwarper.h" |
553 | | * |
554 | | * Low level image warping class. |
555 | | * |
556 | | * This class is responsible for low level image warping for one |
557 | | * "chunk" of imagery. The class is essentially a structure with all |
558 | | * data members public - primarily so that new special-case functions |
559 | | * can be added without changing the class declaration. |
560 | | * |
561 | | * Applications are normally intended to interactive with warping facilities |
562 | | * through the GDALWarpOperation class, though the GDALWarpKernel can in |
563 | | * theory be used directly if great care is taken in setting up the |
564 | | * control data. |
565 | | * |
566 | | * <h3>Design Issues</h3> |
567 | | * |
568 | | * The intention is that PerformWarp() would analyze the setup in terms |
569 | | * of the datatype, resampling type, and validity/density mask usage and |
570 | | * pick one of many specific implementations of the warping algorithm over |
571 | | * a continuum of optimization vs. generality. At one end there will be a |
572 | | * reference general purpose implementation of the algorithm that supports |
573 | | * any data type (working internally in double precision complex), all three |
574 | | * resampling types, and any or all of the validity/density masks. At the |
575 | | * other end would be highly optimized algorithms for common cases like |
576 | | * nearest neighbour resampling on GDT_UInt8 data with no masks. |
577 | | * |
578 | | * The full set of optimized versions have not been decided but we should |
579 | | * expect to have at least: |
580 | | * - One for each resampling algorithm for 8bit data with no masks. |
581 | | * - One for each resampling algorithm for float data with no masks. |
582 | | * - One for each resampling algorithm for float data with any/all masks |
583 | | * (essentially the generic case for just float data). |
584 | | * - One for each resampling algorithm for 8bit data with support for |
585 | | * input validity masks (per band or per pixel). This handles the common |
586 | | * case of nodata masking. |
587 | | * - One for each resampling algorithm for float data with support for |
588 | | * input validity masks (per band or per pixel). This handles the common |
589 | | * case of nodata masking. |
590 | | * |
591 | | * Some of the specializations would operate on all bands in one pass |
592 | | * (especially the ones without masking would do this), while others might |
593 | | * process each band individually to reduce code complexity. |
594 | | * |
595 | | * <h3>Masking Semantics</h3> |
596 | | * |
597 | | * A detailed explanation of the semantics of the validity and density masks, |
598 | | * and their effects on resampling kernels is needed here. |
599 | | */ |
600 | | |
601 | | /************************************************************************/ |
602 | | /* GDALWarpKernel Data Members */ |
603 | | /************************************************************************/ |
604 | | |
605 | | /** |
606 | | * \var GDALResampleAlg GDALWarpKernel::eResample; |
607 | | * |
608 | | * Resampling algorithm. |
609 | | * |
610 | | * The resampling algorithm to use. One of GRA_NearestNeighbour, GRA_Bilinear, |
611 | | * GRA_Cubic, GRA_CubicSpline, GRA_Lanczos, GRA_Average, GRA_RMS, |
612 | | * GRA_Mode or GRA_Sum. |
613 | | * |
614 | | * This field is required. GDT_NearestNeighbour may be used as a default |
615 | | * value. |
616 | | */ |
617 | | |
618 | | /** |
619 | | * \var GDALDataType GDALWarpKernel::eWorkingDataType; |
620 | | * |
621 | | * Working pixel data type. |
622 | | * |
623 | | * The datatype of pixels in the source image (papabySrcimage) and |
624 | | * destination image (papabyDstImage) buffers. Note that operations on |
625 | | * some data types (such as GDT_UInt8) may be much better optimized than other |
626 | | * less common cases. |
627 | | * |
628 | | * This field is required. It may not be GDT_Unknown. |
629 | | */ |
630 | | |
631 | | /** |
632 | | * \var int GDALWarpKernel::nBands; |
633 | | * |
634 | | * Number of bands. |
635 | | * |
636 | | * The number of bands (layers) of imagery being warped. Determines the |
637 | | * number of entries in the papabySrcImage, papanBandSrcValid, |
638 | | * and papabyDstImage arrays. |
639 | | * |
640 | | * This field is required. |
641 | | */ |
642 | | |
643 | | /** |
644 | | * \var int GDALWarpKernel::nSrcXSize; |
645 | | * |
646 | | * Source image width in pixels. |
647 | | * |
648 | | * This field is required. |
649 | | */ |
650 | | |
651 | | /** |
652 | | * \var int GDALWarpKernel::nSrcYSize; |
653 | | * |
654 | | * Source image height in pixels. |
655 | | * |
656 | | * This field is required. |
657 | | */ |
658 | | |
659 | | /** |
660 | | * \var double GDALWarpKernel::dfSrcXExtraSize; |
661 | | * |
662 | | * Number of pixels included in nSrcXSize that are present on the edges of |
663 | | * the area of interest to take into account the width of the kernel. |
664 | | * |
665 | | * This field is required. |
666 | | */ |
667 | | |
668 | | /** |
669 | | * \var double GDALWarpKernel::dfSrcYExtraSize; |
670 | | * |
671 | | * Number of pixels included in nSrcYExtraSize that are present on the edges of |
672 | | * the area of interest to take into account the height of the kernel. |
673 | | * |
674 | | * This field is required. |
675 | | */ |
676 | | |
677 | | /** |
678 | | * \var int GDALWarpKernel::papabySrcImage; |
679 | | * |
680 | | * Array of source image band data. |
681 | | * |
682 | | * This is an array of pointers (of size GDALWarpKernel::nBands) pointers |
683 | | * to image data. Each individual band of image data is organized as a single |
684 | | * block of image data in left to right, then bottom to top order. The actual |
685 | | * type of the image data is determined by GDALWarpKernel::eWorkingDataType. |
686 | | * |
687 | | * To access the pixel value for the (x=3, y=4) pixel (zero based) of |
688 | | * the second band with eWorkingDataType set to GDT_Float32 use code like |
689 | | * this: |
690 | | * |
691 | | * \code |
692 | | * float dfPixelValue; |
693 | | * int nBand = 2-1; // Band indexes are zero based. |
694 | | * int nPixel = 3; // Zero based. |
695 | | * int nLine = 4; // Zero based. |
696 | | * |
697 | | * assert( nPixel >= 0 && nPixel < poKern->nSrcXSize ); |
698 | | * assert( nLine >= 0 && nLine < poKern->nSrcYSize ); |
699 | | * assert( nBand >= 0 && nBand < poKern->nBands ); |
700 | | * dfPixelValue = ((float *) poKern->papabySrcImage[nBand]) |
701 | | * [nPixel + nLine * poKern->nSrcXSize]; |
702 | | * \endcode |
703 | | * |
704 | | * This field is required. |
705 | | */ |
706 | | |
707 | | /** |
708 | | * \var GUInt32 **GDALWarpKernel::papanBandSrcValid; |
709 | | * |
710 | | * Per band validity mask for source pixels. |
711 | | * |
712 | | * Array of pixel validity mask layers for each source band. Each of |
713 | | * the mask layers is the same size (in pixels) as the source image with |
714 | | * one bit per pixel. Note that it is legal (and common) for this to be |
715 | | * NULL indicating that none of the pixels are invalidated, or for some |
716 | | * band validity masks to be NULL in which case all pixels of the band are |
717 | | * valid. The following code can be used to test the validity of a particular |
718 | | * pixel. |
719 | | * |
720 | | * \code |
721 | | * int bIsValid = TRUE; |
722 | | * int nBand = 2-1; // Band indexes are zero based. |
723 | | * int nPixel = 3; // Zero based. |
724 | | * int nLine = 4; // Zero based. |
725 | | * |
726 | | * assert( nPixel >= 0 && nPixel < poKern->nSrcXSize ); |
727 | | * assert( nLine >= 0 && nLine < poKern->nSrcYSize ); |
728 | | * assert( nBand >= 0 && nBand < poKern->nBands ); |
729 | | * |
730 | | * if( poKern->papanBandSrcValid != NULL |
731 | | * && poKern->papanBandSrcValid[nBand] != NULL ) |
732 | | * { |
733 | | * GUInt32 *panBandMask = poKern->papanBandSrcValid[nBand]; |
734 | | * int iPixelOffset = nPixel + nLine * poKern->nSrcXSize; |
735 | | * |
736 | | * bIsValid = CPLMaskGet(panBandMask, iPixelOffset) |
737 | | * } |
738 | | * \endcode |
739 | | */ |
740 | | |
741 | | /** |
742 | | * \var GUInt32 *GDALWarpKernel::panUnifiedSrcValid; |
743 | | * |
744 | | * Per pixel validity mask for source pixels. |
745 | | * |
746 | | * A single validity mask layer that applies to the pixels of all source |
747 | | * bands. It is accessed similarly to papanBandSrcValid, but without the |
748 | | * extra level of band indirection. |
749 | | * |
750 | | * This pointer may be NULL indicating that all pixels are valid. |
751 | | * |
752 | | * Note that if both panUnifiedSrcValid, and papanBandSrcValid are available, |
753 | | * the pixel isn't considered to be valid unless both arrays indicate it is |
754 | | * valid. |
755 | | */ |
756 | | |
757 | | /** |
758 | | * \var float *GDALWarpKernel::pafUnifiedSrcDensity; |
759 | | * |
760 | | * Per pixel density mask for source pixels. |
761 | | * |
762 | | * A single density mask layer that applies to the pixels of all source |
763 | | * bands. It contains values between 0.0 and 1.0 indicating the degree to |
764 | | * which this pixel should be allowed to contribute to the output result. |
765 | | * |
766 | | * This pointer may be NULL indicating that all pixels have a density of 1.0. |
767 | | * |
768 | | * The density for a pixel may be accessed like this: |
769 | | * |
770 | | * \code |
771 | | * float fDensity = 1.0; |
772 | | * int nPixel = 3; // Zero based. |
773 | | * int nLine = 4; // Zero based. |
774 | | * |
775 | | * assert( nPixel >= 0 && nPixel < poKern->nSrcXSize ); |
776 | | * assert( nLine >= 0 && nLine < poKern->nSrcYSize ); |
777 | | * if( poKern->pafUnifiedSrcDensity != NULL ) |
778 | | * fDensity = poKern->pafUnifiedSrcDensity |
779 | | * [nPixel + nLine * poKern->nSrcXSize]; |
780 | | * \endcode |
781 | | */ |
782 | | |
783 | | /** |
784 | | * \var int GDALWarpKernel::nDstXSize; |
785 | | * |
786 | | * Width of destination image in pixels. |
787 | | * |
788 | | * This field is required. |
789 | | */ |
790 | | |
791 | | /** |
792 | | * \var int GDALWarpKernel::nDstYSize; |
793 | | * |
794 | | * Height of destination image in pixels. |
795 | | * |
796 | | * This field is required. |
797 | | */ |
798 | | |
799 | | /** |
800 | | * \var GByte **GDALWarpKernel::papabyDstImage; |
801 | | * |
802 | | * Array of destination image band data. |
803 | | * |
804 | | * This is an array of pointers (of size GDALWarpKernel::nBands) pointers |
805 | | * to image data. Each individual band of image data is organized as a single |
806 | | * block of image data in left to right, then bottom to top order. The actual |
807 | | * type of the image data is determined by GDALWarpKernel::eWorkingDataType. |
808 | | * |
809 | | * To access the pixel value for the (x=3, y=4) pixel (zero based) of |
810 | | * the second band with eWorkingDataType set to GDT_Float32 use code like |
811 | | * this: |
812 | | * |
813 | | * \code |
814 | | * float dfPixelValue; |
815 | | * int nBand = 2-1; // Band indexes are zero based. |
816 | | * int nPixel = 3; // Zero based. |
817 | | * int nLine = 4; // Zero based. |
818 | | * |
819 | | * assert( nPixel >= 0 && nPixel < poKern->nDstXSize ); |
820 | | * assert( nLine >= 0 && nLine < poKern->nDstYSize ); |
821 | | * assert( nBand >= 0 && nBand < poKern->nBands ); |
822 | | * dfPixelValue = ((float *) poKern->papabyDstImage[nBand]) |
823 | | * [nPixel + nLine * poKern->nSrcYSize]; |
824 | | * \endcode |
825 | | * |
826 | | * This field is required. |
827 | | */ |
828 | | |
829 | | /** |
830 | | * \var GUInt32 *GDALWarpKernel::panDstValid; |
831 | | * |
832 | | * Per pixel validity mask for destination pixels. |
833 | | * |
834 | | * A single validity mask layer that applies to the pixels of all destination |
835 | | * bands. It is accessed similarly to papanUnitifiedSrcValid, but based |
836 | | * on the size of the destination image. |
837 | | * |
838 | | * This pointer may be NULL indicating that all pixels are valid. |
839 | | */ |
840 | | |
841 | | /** |
842 | | * \var float *GDALWarpKernel::pafDstDensity; |
843 | | * |
844 | | * Per pixel density mask for destination pixels. |
845 | | * |
846 | | * A single density mask layer that applies to the pixels of all destination |
847 | | * bands. It contains values between 0.0 and 1.0. |
848 | | * |
849 | | * This pointer may be NULL indicating that all pixels have a density of 1.0. |
850 | | * |
851 | | * The density for a pixel may be accessed like this: |
852 | | * |
853 | | * \code |
854 | | * float fDensity = 1.0; |
855 | | * int nPixel = 3; // Zero based. |
856 | | * int nLine = 4; // Zero based. |
857 | | * |
858 | | * assert( nPixel >= 0 && nPixel < poKern->nDstXSize ); |
859 | | * assert( nLine >= 0 && nLine < poKern->nDstYSize ); |
860 | | * if( poKern->pafDstDensity != NULL ) |
861 | | * fDensity = poKern->pafDstDensity[nPixel + nLine * poKern->nDstXSize]; |
862 | | * \endcode |
863 | | */ |
864 | | |
865 | | /** |
866 | | * \var int GDALWarpKernel::nSrcXOff; |
867 | | * |
868 | | * X offset to source pixel coordinates for transformation. |
869 | | * |
870 | | * See pfnTransformer. |
871 | | * |
872 | | * This field is required. |
873 | | */ |
874 | | |
875 | | /** |
876 | | * \var int GDALWarpKernel::nSrcYOff; |
877 | | * |
878 | | * Y offset to source pixel coordinates for transformation. |
879 | | * |
880 | | * See pfnTransformer. |
881 | | * |
882 | | * This field is required. |
883 | | */ |
884 | | |
885 | | /** |
886 | | * \var int GDALWarpKernel::nDstXOff; |
887 | | * |
888 | | * X offset to destination pixel coordinates for transformation. |
889 | | * |
890 | | * See pfnTransformer. |
891 | | * |
892 | | * This field is required. |
893 | | */ |
894 | | |
895 | | /** |
896 | | * \var int GDALWarpKernel::nDstYOff; |
897 | | * |
898 | | * Y offset to destination pixel coordinates for transformation. |
899 | | * |
900 | | * See pfnTransformer. |
901 | | * |
902 | | * This field is required. |
903 | | */ |
904 | | |
905 | | /** |
906 | | * \var GDALTransformerFunc GDALWarpKernel::pfnTransformer; |
907 | | * |
908 | | * Source/destination location transformer. |
909 | | * |
910 | | * The function to call to transform coordinates between source image |
911 | | * pixel/line coordinates and destination image pixel/line coordinates. |
912 | | * See GDALTransformerFunc() for details of the semantics of this function. |
913 | | * |
914 | | * The GDALWarpKern algorithm will only ever use this transformer in |
915 | | * "destination to source" mode (bDstToSrc=TRUE), and will always pass |
916 | | * partial or complete scanlines of points in the destination image as |
917 | | * input. This means, among other things, that it is safe to the |
918 | | * approximating transform GDALApproxTransform() as the transformation |
919 | | * function. |
920 | | * |
921 | | * Source and destination images may be subsets of a larger overall image. |
922 | | * The transformation algorithms will expect and return pixel/line coordinates |
923 | | * in terms of this larger image, so coordinates need to be offset by |
924 | | * the offsets specified in nSrcXOff, nSrcYOff, nDstXOff, and nDstYOff before |
925 | | * passing to pfnTransformer, and after return from it. |
926 | | * |
927 | | * The GDALWarpKernel::pfnTransformerArg value will be passed as the callback |
928 | | * data to this function when it is called. |
929 | | * |
930 | | * This field is required. |
931 | | */ |
932 | | |
933 | | /** |
934 | | * \var void *GDALWarpKernel::pTransformerArg; |
935 | | * |
936 | | * Callback data for pfnTransformer. |
937 | | * |
938 | | * This field may be NULL if not required for the pfnTransformer being used. |
939 | | */ |
940 | | |
941 | | /** |
942 | | * \var GDALProgressFunc GDALWarpKernel::pfnProgress; |
943 | | * |
944 | | * The function to call to report progress of the algorithm, and to check |
945 | | * for a requested termination of the operation. It operates according to |
946 | | * GDALProgressFunc() semantics. |
947 | | * |
948 | | * Generally speaking the progress function will be invoked for each |
949 | | * scanline of the destination buffer that has been processed. |
950 | | * |
951 | | * This field may be NULL (internally set to GDALDummyProgress()). |
952 | | */ |
953 | | |
954 | | /** |
955 | | * \var void *GDALWarpKernel::pProgress; |
956 | | * |
957 | | * Callback data for pfnProgress. |
958 | | * |
959 | | * This field may be NULL if not required for the pfnProgress being used. |
960 | | */ |
961 | | |
962 | | /************************************************************************/ |
963 | | /* GDALWarpKernel() */ |
964 | | /************************************************************************/ |
965 | | |
966 | | GDALWarpKernel::GDALWarpKernel() |
967 | 0 | : papszWarpOptions(nullptr), eResample(GRA_NearestNeighbour), |
968 | 0 | eWorkingDataType(GDT_Unknown), nBands(0), nSrcXSize(0), nSrcYSize(0), |
969 | 0 | dfSrcXExtraSize(0.0), dfSrcYExtraSize(0.0), papabySrcImage(nullptr), |
970 | 0 | papanBandSrcValid(nullptr), panUnifiedSrcValid(nullptr), |
971 | 0 | pafUnifiedSrcDensity(nullptr), nDstXSize(0), nDstYSize(0), |
972 | 0 | papabyDstImage(nullptr), panDstValid(nullptr), pafDstDensity(nullptr), |
973 | 0 | dfXScale(1.0), dfYScale(1.0), dfXFilter(0.0), dfYFilter(0.0), nXRadius(0), |
974 | 0 | nYRadius(0), nFiltInitX(0), nFiltInitY(0), nSrcXOff(0), nSrcYOff(0), |
975 | 0 | nDstXOff(0), nDstYOff(0), pfnTransformer(nullptr), |
976 | 0 | pTransformerArg(nullptr), pfnProgress(GDALDummyProgress), |
977 | 0 | pProgress(nullptr), dfProgressBase(0.0), dfProgressScale(1.0), |
978 | 0 | padfDstNoDataReal(nullptr), psThreadData(nullptr), |
979 | 0 | eTieStrategy(GWKTS_First) |
980 | 0 | { |
981 | 0 | } |
982 | | |
983 | | /************************************************************************/ |
984 | | /* ~GDALWarpKernel() */ |
985 | | /************************************************************************/ |
986 | | |
987 | | GDALWarpKernel::~GDALWarpKernel() |
988 | 0 | { |
989 | 0 | } |
990 | | |
991 | | /************************************************************************/ |
992 | | /* getArea() */ |
993 | | /************************************************************************/ |
994 | | |
995 | | typedef std::pair<double, double> XYPair; |
996 | | |
997 | | typedef std::vector<XYPair> XYPoly; |
998 | | |
999 | | // poly may or may not be closed. |
1000 | | static double getArea(const XYPoly &poly) |
1001 | 0 | { |
1002 | | // CPLAssert(poly.size() >= 2); |
1003 | 0 | const size_t nPointCount = poly.size(); |
1004 | 0 | double dfAreaSum = |
1005 | 0 | poly[0].first * (poly[1].second - poly[nPointCount - 1].second); |
1006 | |
|
1007 | 0 | for (size_t i = 1; i < nPointCount - 1; i++) |
1008 | 0 | { |
1009 | 0 | dfAreaSum += poly[i].first * (poly[i + 1].second - poly[i - 1].second); |
1010 | 0 | } |
1011 | |
|
1012 | 0 | dfAreaSum += poly[nPointCount - 1].first * |
1013 | 0 | (poly[0].second - poly[nPointCount - 2].second); |
1014 | |
|
1015 | 0 | return 0.5 * std::fabs(dfAreaSum); |
1016 | 0 | } |
1017 | | |
1018 | | /************************************************************************/ |
1019 | | /* CanUse4SamplesFormula() */ |
1020 | | /************************************************************************/ |
1021 | | |
1022 | | static bool CanUse4SamplesFormula(const GDALWarpKernel *poWK) |
1023 | 0 | { |
1024 | 0 | if (poWK->eResample == GRA_Bilinear || poWK->eResample == GRA_Cubic) |
1025 | 0 | { |
1026 | | // Use 4-sample formula if we are not downsampling by more than a |
1027 | | // factor of 1:2 |
1028 | 0 | if (poWK->dfXScale > 0.5 && poWK->dfYScale > 0.5) |
1029 | 0 | return true; |
1030 | 0 | CPLDebugOnce("WARP", |
1031 | 0 | "Not using 4-sample bilinear/bicubic formula because " |
1032 | 0 | "XSCALE(=%f) and/or YSCALE(=%f) <= 0.5", |
1033 | 0 | poWK->dfXScale, poWK->dfYScale); |
1034 | 0 | } |
1035 | 0 | return false; |
1036 | 0 | } |
1037 | | |
1038 | | /************************************************************************/ |
1039 | | /* PerformWarp() */ |
1040 | | /************************************************************************/ |
1041 | | |
1042 | | /** |
1043 | | * \fn CPLErr GDALWarpKernel::PerformWarp(); |
1044 | | * |
1045 | | * This method performs the warp described in the GDALWarpKernel. |
1046 | | * |
1047 | | * @return CE_None on success or CE_Failure if an error occurs. |
1048 | | */ |
1049 | | |
1050 | | CPLErr GDALWarpKernel::PerformWarp() |
1051 | | |
1052 | 0 | { |
1053 | 0 | const CPLErr eErr = Validate(); |
1054 | |
|
1055 | 0 | if (eErr != CE_None) |
1056 | 0 | return eErr; |
1057 | | |
1058 | | // See #2445 and #3079. |
1059 | 0 | if (nSrcXSize <= 0 || nSrcYSize <= 0) |
1060 | 0 | { |
1061 | 0 | if (!pfnProgress(dfProgressBase + dfProgressScale, "", pProgress)) |
1062 | 0 | { |
1063 | 0 | CPLError(CE_Failure, CPLE_UserInterrupt, "User terminated"); |
1064 | 0 | return CE_Failure; |
1065 | 0 | } |
1066 | 0 | return CE_None; |
1067 | 0 | } |
1068 | | |
1069 | | /* -------------------------------------------------------------------- */ |
1070 | | /* Pre-calculate resampling scales and window sizes for filtering. */ |
1071 | | /* -------------------------------------------------------------------- */ |
1072 | | |
1073 | 0 | dfXScale = 0.0; |
1074 | 0 | dfYScale = 0.0; |
1075 | | |
1076 | | // XSCALE and YSCALE per warping chunk is not necessarily ideal, in case of |
1077 | | // heterogeneous change in shapes. |
1078 | | // Best would probably be a per-pixel scale computation. |
1079 | 0 | const char *pszXScale = CSLFetchNameValue(papszWarpOptions, "XSCALE"); |
1080 | 0 | const char *pszYScale = CSLFetchNameValue(papszWarpOptions, "YSCALE"); |
1081 | 0 | if (!pszXScale || !pszYScale) |
1082 | 0 | { |
1083 | | // Sample points along a grid in the destination space |
1084 | 0 | constexpr int MAX_POINTS_PER_DIM = 10; |
1085 | 0 | const int nPointsX = std::min(MAX_POINTS_PER_DIM, nDstXSize); |
1086 | 0 | const int nPointsY = std::min(MAX_POINTS_PER_DIM, nDstYSize); |
1087 | 0 | constexpr int CORNER_COUNT_PER_SQUARE = 4; |
1088 | 0 | const int nPoints = CORNER_COUNT_PER_SQUARE * nPointsX * nPointsY; |
1089 | 0 | std::vector<double> adfX; |
1090 | 0 | std::vector<double> adfY; |
1091 | 0 | adfX.reserve(CORNER_COUNT_PER_SQUARE * nPoints); |
1092 | 0 | adfY.reserve(CORNER_COUNT_PER_SQUARE * nPoints); |
1093 | 0 | std::vector<double> adfZ(CORNER_COUNT_PER_SQUARE * nPoints); |
1094 | 0 | std::vector<int> abSuccess(CORNER_COUNT_PER_SQUARE * nPoints); |
1095 | 0 | for (int iY = 0; iY < nPointsY; iY++) |
1096 | 0 | { |
1097 | 0 | const double dfYShift = (iY > 0 && iY == nPointsY - 1) ? -1.0 : 0.0; |
1098 | 0 | const double dfY = |
1099 | 0 | dfYShift + (nPointsY == 1 ? 0.0 |
1100 | 0 | : static_cast<double>(iY) * |
1101 | 0 | nDstYSize / (nPointsY - 1)); |
1102 | |
|
1103 | 0 | for (int iX = 0; iX < nPointsX; iX++) |
1104 | 0 | { |
1105 | 0 | const double dfXShift = |
1106 | 0 | (iX > 0 && iX == nPointsX - 1) ? -1.0 : 0.0; |
1107 | |
|
1108 | 0 | const double dfX = |
1109 | 0 | dfXShift + (nPointsX == 1 ? 0.0 |
1110 | 0 | : static_cast<double>(iX) * |
1111 | 0 | nDstXSize / (nPointsX - 1)); |
1112 | | |
1113 | | // Reproject a unit square at each sample point |
1114 | 0 | adfX.push_back(dfX); |
1115 | 0 | adfY.push_back(dfY); |
1116 | |
|
1117 | 0 | adfX.push_back(dfX + 1); |
1118 | 0 | adfY.push_back(dfY); |
1119 | |
|
1120 | 0 | adfX.push_back(dfX); |
1121 | 0 | adfY.push_back(dfY + 1); |
1122 | |
|
1123 | 0 | adfX.push_back(dfX + 1); |
1124 | 0 | adfY.push_back(dfY + 1); |
1125 | 0 | } |
1126 | 0 | } |
1127 | 0 | pfnTransformer(pTransformerArg, TRUE, static_cast<int>(adfX.size()), |
1128 | 0 | adfX.data(), adfY.data(), adfZ.data(), abSuccess.data()); |
1129 | |
|
1130 | 0 | std::vector<XYPair> adfXYScales; |
1131 | 0 | adfXYScales.reserve(nPoints); |
1132 | 0 | for (int i = 0; i < nPoints; i += CORNER_COUNT_PER_SQUARE) |
1133 | 0 | { |
1134 | 0 | if (abSuccess[i + 0] && abSuccess[i + 1] && abSuccess[i + 2] && |
1135 | 0 | abSuccess[i + 3]) |
1136 | 0 | { |
1137 | 0 | const auto square = [](double x) { return x * x; }; |
1138 | |
|
1139 | 0 | const double vx01 = adfX[i + 1] - adfX[i + 0]; |
1140 | 0 | const double vy01 = adfY[i + 1] - adfY[i + 0]; |
1141 | 0 | const double len01_sq = square(vx01) + square(vy01); |
1142 | |
|
1143 | 0 | const double vx23 = adfX[i + 3] - adfX[i + 2]; |
1144 | 0 | const double vy23 = adfY[i + 3] - adfY[i + 2]; |
1145 | 0 | const double len23_sq = square(vx23) + square(vy23); |
1146 | |
|
1147 | 0 | const double vx02 = adfX[i + 2] - adfX[i + 0]; |
1148 | 0 | const double vy02 = adfY[i + 2] - adfY[i + 0]; |
1149 | 0 | const double len02_sq = square(vx02) + square(vy02); |
1150 | |
|
1151 | 0 | const double vx13 = adfX[i + 3] - adfX[i + 1]; |
1152 | 0 | const double vy13 = adfY[i + 3] - adfY[i + 1]; |
1153 | 0 | const double len13_sq = square(vx13) + square(vy13); |
1154 | | |
1155 | | // ~ 20 degree, heuristic |
1156 | 0 | constexpr double TAN_MODEST_ANGLE = 0.35; |
1157 | | |
1158 | | // 10%, heuristic |
1159 | 0 | constexpr double LENGTH_RELATIVE_TOLERANCE = 0.1; |
1160 | | |
1161 | | // Security margin to avoid division by zero (would only |
1162 | | // happen in case of degenerated coordinate transformation, |
1163 | | // or insane upsampling) |
1164 | 0 | constexpr double EPSILON = 1e-10; |
1165 | | |
1166 | | // Does the transformed square looks like an almost non-rotated |
1167 | | // quasi-rectangle ? |
1168 | 0 | if (std::fabs(vy01) < TAN_MODEST_ANGLE * vx01 && |
1169 | 0 | std::fabs(vy23) < TAN_MODEST_ANGLE * vx23 && |
1170 | 0 | std::fabs(len01_sq - len23_sq) < |
1171 | 0 | LENGTH_RELATIVE_TOLERANCE * std::fabs(len01_sq) && |
1172 | 0 | std::fabs(len02_sq - len13_sq) < |
1173 | 0 | LENGTH_RELATIVE_TOLERANCE * std::fabs(len02_sq)) |
1174 | 0 | { |
1175 | | // Using a geometric average here of lenAB_sq and lenCD_sq, |
1176 | | // hence a sqrt(), and as this is still a squared value, |
1177 | | // we need another sqrt() to get a distance. |
1178 | 0 | const double dfXLength = |
1179 | 0 | std::sqrt(std::sqrt(len01_sq * len23_sq)); |
1180 | 0 | const double dfYLength = |
1181 | 0 | std::sqrt(std::sqrt(len02_sq * len13_sq)); |
1182 | 0 | if (dfXLength > EPSILON && dfYLength > EPSILON) |
1183 | 0 | { |
1184 | 0 | const double dfThisXScale = 1.0 / dfXLength; |
1185 | 0 | const double dfThisYScale = 1.0 / dfYLength; |
1186 | 0 | adfXYScales.push_back({dfThisXScale, dfThisYScale}); |
1187 | 0 | } |
1188 | 0 | } |
1189 | 0 | else |
1190 | 0 | { |
1191 | | // If not, then consider the area of the transformed unit |
1192 | | // square to determine the X/Y scales. |
1193 | 0 | const XYPoly poly{{adfX[i + 0], adfY[i + 0]}, |
1194 | 0 | {adfX[i + 1], adfY[i + 1]}, |
1195 | 0 | {adfX[i + 3], adfY[i + 3]}, |
1196 | 0 | {adfX[i + 2], adfY[i + 2]}}; |
1197 | 0 | const double dfSrcArea = getArea(poly); |
1198 | 0 | const double dfFactor = std::sqrt(dfSrcArea); |
1199 | 0 | if (dfFactor > EPSILON) |
1200 | 0 | { |
1201 | 0 | const double dfThisXScale = 1.0 / dfFactor; |
1202 | 0 | const double dfThisYScale = dfThisXScale; |
1203 | 0 | adfXYScales.push_back({dfThisXScale, dfThisYScale}); |
1204 | 0 | } |
1205 | 0 | } |
1206 | 0 | } |
1207 | 0 | } |
1208 | |
|
1209 | 0 | if (!adfXYScales.empty()) |
1210 | 0 | { |
1211 | | // Sort by increasing xscale * yscale |
1212 | 0 | std::sort(adfXYScales.begin(), adfXYScales.end(), |
1213 | 0 | [](const XYPair &a, const XYPair &b) |
1214 | 0 | { return a.first * a.second < b.first * b.second; }); |
1215 | | |
1216 | | // Compute the per-axis maximum of scale |
1217 | 0 | double dfXMax = 0; |
1218 | 0 | double dfYMax = 0; |
1219 | 0 | for (const auto &[dfX, dfY] : adfXYScales) |
1220 | 0 | { |
1221 | 0 | dfXMax = std::max(dfXMax, dfX); |
1222 | 0 | dfYMax = std::max(dfYMax, dfY); |
1223 | 0 | } |
1224 | | |
1225 | | // Now eliminate outliers, defined as ones whose value is < 10% of |
1226 | | // the maximum value, typically found at a polar discontinuity, and |
1227 | | // compute the average of non-outlier values. |
1228 | 0 | dfXScale = 0; |
1229 | 0 | dfYScale = 0; |
1230 | 0 | int i = 0; |
1231 | 0 | constexpr double THRESHOLD = 0.1; // 10%, rather arbitrary |
1232 | 0 | for (const auto &[dfX, dfY] : adfXYScales) |
1233 | 0 | { |
1234 | 0 | if (dfX > THRESHOLD * dfXMax && dfY > THRESHOLD * dfYMax) |
1235 | 0 | { |
1236 | 0 | ++i; |
1237 | 0 | const double dfXDelta = dfX - dfXScale; |
1238 | 0 | const double dfYDelta = dfY - dfYScale; |
1239 | 0 | const double dfInvI = 1.0 / i; |
1240 | 0 | dfXScale += dfXDelta * dfInvI; |
1241 | 0 | dfYScale += dfYDelta * dfInvI; |
1242 | 0 | } |
1243 | 0 | } |
1244 | 0 | } |
1245 | 0 | } |
1246 | | |
1247 | | // Round to closest integer reciprocal scale if we are very close to it |
1248 | 0 | const auto RoundToClosestIntegerReciprocalScaleIfCloseEnough = |
1249 | 0 | [](double dfScale) |
1250 | 0 | { |
1251 | 0 | if (dfScale < 1.0) |
1252 | 0 | { |
1253 | 0 | double dfReciprocalScale = 1.0 / dfScale; |
1254 | 0 | const int nReciprocalScale = |
1255 | 0 | static_cast<int>(dfReciprocalScale + 0.5); |
1256 | 0 | if (fabs(dfReciprocalScale - nReciprocalScale) < 0.05) |
1257 | 0 | dfScale = 1.0 / nReciprocalScale; |
1258 | 0 | } |
1259 | 0 | return dfScale; |
1260 | 0 | }; |
1261 | |
|
1262 | 0 | if (dfXScale <= 0) |
1263 | 0 | dfXScale = 1.0; |
1264 | 0 | if (dfYScale <= 0) |
1265 | 0 | dfYScale = 1.0; |
1266 | |
|
1267 | 0 | dfXScale = RoundToClosestIntegerReciprocalScaleIfCloseEnough(dfXScale); |
1268 | 0 | dfYScale = RoundToClosestIntegerReciprocalScaleIfCloseEnough(dfYScale); |
1269 | |
|
1270 | 0 | if (pszXScale != nullptr) |
1271 | 0 | dfXScale = CPLAtof(pszXScale); |
1272 | 0 | if (pszYScale != nullptr) |
1273 | 0 | dfYScale = CPLAtof(pszYScale); |
1274 | |
|
1275 | 0 | if (!pszXScale || !pszYScale) |
1276 | 0 | CPLDebug("WARP", "dfXScale = %f, dfYScale = %f", dfXScale, dfYScale); |
1277 | |
|
1278 | 0 | const int bUse4SamplesFormula = CanUse4SamplesFormula(this); |
1279 | | |
1280 | | // Safety check for callers that would use GDALWarpKernel without using |
1281 | | // GDALWarpOperation. |
1282 | 0 | if ((eResample == GRA_CubicSpline || eResample == GRA_Lanczos || |
1283 | 0 | ((eResample == GRA_Cubic || eResample == GRA_Bilinear) && |
1284 | 0 | !bUse4SamplesFormula)) && |
1285 | 0 | atoi(CSLFetchNameValueDef(papszWarpOptions, "EXTRA_ELTS", "0")) != |
1286 | 0 | WARP_EXTRA_ELTS) |
1287 | 0 | { |
1288 | 0 | CPLError(CE_Failure, CPLE_AppDefined, |
1289 | 0 | "Source arrays must have WARP_EXTRA_ELTS extra elements at " |
1290 | 0 | "their end. " |
1291 | 0 | "See GDALWarpKernel class definition. If this condition is " |
1292 | 0 | "fulfilled, define a EXTRA_ELTS=%d warp options", |
1293 | 0 | WARP_EXTRA_ELTS); |
1294 | 0 | return CE_Failure; |
1295 | 0 | } |
1296 | | |
1297 | 0 | dfXFilter = anGWKFilterRadius[eResample]; |
1298 | 0 | dfYFilter = anGWKFilterRadius[eResample]; |
1299 | |
|
1300 | 0 | nXRadius = dfXScale < 1.0 ? static_cast<int>(ceil(dfXFilter / dfXScale)) |
1301 | 0 | : static_cast<int>(dfXFilter); |
1302 | 0 | nYRadius = dfYScale < 1.0 ? static_cast<int>(ceil(dfYFilter / dfYScale)) |
1303 | 0 | : static_cast<int>(dfYFilter); |
1304 | | |
1305 | | // Filter window offset depends on the parity of the kernel radius. |
1306 | 0 | nFiltInitX = ((anGWKFilterRadius[eResample] + 1) % 2) - nXRadius; |
1307 | 0 | nFiltInitY = ((anGWKFilterRadius[eResample] + 1) % 2) - nYRadius; |
1308 | |
|
1309 | 0 | bApplyVerticalShift = |
1310 | 0 | CPLFetchBool(papszWarpOptions, "APPLY_VERTICAL_SHIFT", false); |
1311 | 0 | dfMultFactorVerticalShift = CPLAtof(CSLFetchNameValueDef( |
1312 | 0 | papszWarpOptions, "MULT_FACTOR_VERTICAL_SHIFT", "1.0")); |
1313 | | |
1314 | | /* -------------------------------------------------------------------- */ |
1315 | | /* Set up resampling functions. */ |
1316 | | /* -------------------------------------------------------------------- */ |
1317 | 0 | if (CPLFetchBool(papszWarpOptions, "USE_GENERAL_CASE", false)) |
1318 | 0 | return GWKGeneralCase(this); |
1319 | | |
1320 | 0 | const bool bNoMasksOrDstDensityOnly = |
1321 | 0 | papanBandSrcValid == nullptr && panUnifiedSrcValid == nullptr && |
1322 | 0 | pafUnifiedSrcDensity == nullptr && panDstValid == nullptr; |
1323 | |
|
1324 | 0 | if (eWorkingDataType == GDT_UInt8 && eResample == GRA_NearestNeighbour && |
1325 | 0 | bNoMasksOrDstDensityOnly) |
1326 | 0 | return GWKNearestNoMasksOrDstDensityOnlyByte(this); |
1327 | | |
1328 | 0 | if (eWorkingDataType == GDT_UInt8 && eResample == GRA_Bilinear && |
1329 | 0 | bNoMasksOrDstDensityOnly) |
1330 | 0 | return GWKBilinearNoMasksOrDstDensityOnlyByte(this); |
1331 | | |
1332 | 0 | if (eWorkingDataType == GDT_UInt8 && eResample == GRA_Cubic && |
1333 | 0 | bNoMasksOrDstDensityOnly) |
1334 | 0 | return GWKCubicNoMasksOrDstDensityOnlyByte(this); |
1335 | | |
1336 | 0 | if (eWorkingDataType == GDT_UInt8 && eResample == GRA_CubicSpline && |
1337 | 0 | bNoMasksOrDstDensityOnly) |
1338 | 0 | return GWKCubicSplineNoMasksOrDstDensityOnlyByte(this); |
1339 | | |
1340 | 0 | if (eWorkingDataType == GDT_UInt8 && eResample == GRA_NearestNeighbour) |
1341 | 0 | return GWKNearestByte(this); |
1342 | | |
1343 | 0 | if ((eWorkingDataType == GDT_Int16 || eWorkingDataType == GDT_UInt16) && |
1344 | 0 | eResample == GRA_NearestNeighbour && bNoMasksOrDstDensityOnly) |
1345 | 0 | return GWKNearestNoMasksOrDstDensityOnlyShort(this); |
1346 | | |
1347 | 0 | if ((eWorkingDataType == GDT_Int16) && eResample == GRA_Cubic && |
1348 | 0 | bNoMasksOrDstDensityOnly) |
1349 | 0 | return GWKCubicNoMasksOrDstDensityOnlyShort(this); |
1350 | | |
1351 | 0 | if ((eWorkingDataType == GDT_Int16) && eResample == GRA_CubicSpline && |
1352 | 0 | bNoMasksOrDstDensityOnly) |
1353 | 0 | return GWKCubicSplineNoMasksOrDstDensityOnlyShort(this); |
1354 | | |
1355 | 0 | if ((eWorkingDataType == GDT_Int16) && eResample == GRA_Bilinear && |
1356 | 0 | bNoMasksOrDstDensityOnly) |
1357 | 0 | return GWKBilinearNoMasksOrDstDensityOnlyShort(this); |
1358 | | |
1359 | 0 | if ((eWorkingDataType == GDT_UInt16) && eResample == GRA_Cubic && |
1360 | 0 | bNoMasksOrDstDensityOnly) |
1361 | 0 | return GWKCubicNoMasksOrDstDensityOnlyUShort(this); |
1362 | | |
1363 | 0 | if ((eWorkingDataType == GDT_UInt16) && eResample == GRA_CubicSpline && |
1364 | 0 | bNoMasksOrDstDensityOnly) |
1365 | 0 | return GWKCubicSplineNoMasksOrDstDensityOnlyUShort(this); |
1366 | | |
1367 | 0 | if ((eWorkingDataType == GDT_UInt16) && eResample == GRA_Bilinear && |
1368 | 0 | bNoMasksOrDstDensityOnly) |
1369 | 0 | return GWKBilinearNoMasksOrDstDensityOnlyUShort(this); |
1370 | | |
1371 | 0 | if (eWorkingDataType == GDT_Int16 && eResample == GRA_NearestNeighbour) |
1372 | 0 | return GWKNearestShort(this); |
1373 | | |
1374 | 0 | if (eWorkingDataType == GDT_UInt16 && eResample == GRA_NearestNeighbour) |
1375 | 0 | return GWKNearestUnsignedShort(this); |
1376 | | |
1377 | 0 | if (eWorkingDataType == GDT_Float32 && eResample == GRA_NearestNeighbour && |
1378 | 0 | bNoMasksOrDstDensityOnly) |
1379 | 0 | return GWKNearestNoMasksOrDstDensityOnlyFloat(this); |
1380 | | |
1381 | 0 | if (eWorkingDataType == GDT_Float32 && eResample == GRA_NearestNeighbour) |
1382 | 0 | return GWKNearestFloat(this); |
1383 | | |
1384 | 0 | if (eWorkingDataType == GDT_Float32 && eResample == GRA_Bilinear && |
1385 | 0 | bNoMasksOrDstDensityOnly) |
1386 | 0 | return GWKBilinearNoMasksOrDstDensityOnlyFloat(this); |
1387 | | |
1388 | 0 | if (eWorkingDataType == GDT_Float32 && eResample == GRA_Cubic && |
1389 | 0 | bNoMasksOrDstDensityOnly) |
1390 | 0 | return GWKCubicNoMasksOrDstDensityOnlyFloat(this); |
1391 | | |
1392 | | #ifdef INSTANTIATE_FLOAT64_SSE2_IMPL |
1393 | | if (eWorkingDataType == GDT_Float64 && eResample == GRA_Bilinear && |
1394 | | bNoMasksOrDstDensityOnly) |
1395 | | return GWKBilinearNoMasksOrDstDensityOnlyDouble(this); |
1396 | | |
1397 | | if (eWorkingDataType == GDT_Float64 && eResample == GRA_Cubic && |
1398 | | bNoMasksOrDstDensityOnly) |
1399 | | return GWKCubicNoMasksOrDstDensityOnlyDouble(this); |
1400 | | #endif |
1401 | | |
1402 | 0 | if (eResample == GRA_Average) |
1403 | 0 | return GWKAverageOrMode(this); |
1404 | | |
1405 | 0 | if (eResample == GRA_RMS) |
1406 | 0 | return GWKAverageOrMode(this); |
1407 | | |
1408 | 0 | if (eResample == GRA_Mode) |
1409 | 0 | return GWKAverageOrMode(this); |
1410 | | |
1411 | 0 | if (eResample == GRA_Max) |
1412 | 0 | return GWKAverageOrMode(this); |
1413 | | |
1414 | 0 | if (eResample == GRA_Min) |
1415 | 0 | return GWKAverageOrMode(this); |
1416 | | |
1417 | 0 | if (eResample == GRA_Med) |
1418 | 0 | return GWKAverageOrMode(this); |
1419 | | |
1420 | 0 | if (eResample == GRA_Q1) |
1421 | 0 | return GWKAverageOrMode(this); |
1422 | | |
1423 | 0 | if (eResample == GRA_Q3) |
1424 | 0 | return GWKAverageOrMode(this); |
1425 | | |
1426 | 0 | if (eResample == GRA_Sum) |
1427 | 0 | return GWKSumPreserving(this); |
1428 | | |
1429 | 0 | if (!GDALDataTypeIsComplex(eWorkingDataType)) |
1430 | 0 | { |
1431 | 0 | return GWKRealCase(this); |
1432 | 0 | } |
1433 | | |
1434 | 0 | return GWKGeneralCase(this); |
1435 | 0 | } |
1436 | | |
1437 | | /************************************************************************/ |
1438 | | /* Validate() */ |
1439 | | /************************************************************************/ |
1440 | | |
1441 | | /** |
1442 | | * \fn CPLErr GDALWarpKernel::Validate() |
1443 | | * |
1444 | | * Check the settings in the GDALWarpKernel, and issue a CPLError() |
1445 | | * (and return CE_Failure) if the configuration is considered to be |
1446 | | * invalid for some reason. |
1447 | | * |
1448 | | * This method will also do some standard defaulting such as setting |
1449 | | * pfnProgress to GDALDummyProgress() if it is NULL. |
1450 | | * |
1451 | | * @return CE_None on success or CE_Failure if an error is detected. |
1452 | | */ |
1453 | | |
1454 | | CPLErr GDALWarpKernel::Validate() |
1455 | | |
1456 | 0 | { |
1457 | 0 | if (static_cast<size_t>(eResample) >= |
1458 | 0 | (sizeof(anGWKFilterRadius) / sizeof(anGWKFilterRadius[0]))) |
1459 | 0 | { |
1460 | 0 | CPLError(CE_Failure, CPLE_AppDefined, |
1461 | 0 | "Unsupported resampling method %d.", |
1462 | 0 | static_cast<int>(eResample)); |
1463 | 0 | return CE_Failure; |
1464 | 0 | } |
1465 | | |
1466 | | // Tuples of values (e.g. "<R>,<G>,<B>" or "(<R1>,<G1>,<B1>),(<R2>,<G2>,<B2>)") that must |
1467 | | // be ignored as contributing source pixels during resampling. Only taken into account by |
1468 | | // Average currently |
1469 | 0 | const char *pszExcludedValues = |
1470 | 0 | CSLFetchNameValue(papszWarpOptions, "EXCLUDED_VALUES"); |
1471 | 0 | if (pszExcludedValues) |
1472 | 0 | { |
1473 | 0 | const CPLStringList aosTokens( |
1474 | 0 | CSLTokenizeString2(pszExcludedValues, "(,)", 0)); |
1475 | 0 | if ((aosTokens.size() % nBands) != 0) |
1476 | 0 | { |
1477 | 0 | CPLError(CE_Failure, CPLE_AppDefined, |
1478 | 0 | "EXCLUDED_VALUES should contain one or several tuples of " |
1479 | 0 | "%d values formatted like <R>,<G>,<B> or " |
1480 | 0 | "(<R1>,<G1>,<B1>),(<R2>,<G2>,<B2>) if there are multiple " |
1481 | 0 | "tuples", |
1482 | 0 | nBands); |
1483 | 0 | return CE_Failure; |
1484 | 0 | } |
1485 | 0 | std::vector<double> adfTuple; |
1486 | 0 | for (int i = 0; i < aosTokens.size(); ++i) |
1487 | 0 | { |
1488 | 0 | adfTuple.push_back(CPLAtof(aosTokens[i])); |
1489 | 0 | if (((i + 1) % nBands) == 0) |
1490 | 0 | { |
1491 | 0 | m_aadfExcludedValues.push_back(adfTuple); |
1492 | 0 | adfTuple.clear(); |
1493 | 0 | } |
1494 | 0 | } |
1495 | 0 | } |
1496 | | |
1497 | 0 | return CE_None; |
1498 | 0 | } |
1499 | | |
1500 | | /************************************************************************/ |
1501 | | /* GWKOverlayDensity() */ |
1502 | | /* */ |
1503 | | /* Compute the final density for the destination pixel. This */ |
1504 | | /* is a function of the overlay density (passed in) and the */ |
1505 | | /* original density. */ |
1506 | | /************************************************************************/ |
1507 | | |
1508 | | static void GWKOverlayDensity(const GDALWarpKernel *poWK, GPtrDiff_t iDstOffset, |
1509 | | double dfDensity) |
1510 | 0 | { |
1511 | 0 | if (dfDensity < 0.0001 || poWK->pafDstDensity == nullptr) |
1512 | 0 | return; |
1513 | | |
1514 | 0 | poWK->pafDstDensity[iDstOffset] = |
1515 | 0 | 1.0f - |
1516 | 0 | (1.0f - float(dfDensity)) * (1.0f - poWK->pafDstDensity[iDstOffset]); |
1517 | 0 | } |
1518 | | |
1519 | | /************************************************************************/ |
1520 | | /* GWKRoundValueT() */ |
1521 | | /************************************************************************/ |
1522 | | |
1523 | | template <class T, class U, bool is_signed> struct sGWKRoundValueT |
1524 | | { |
1525 | | static T eval(U); |
1526 | | }; |
1527 | | |
1528 | | template <class T, class U> struct sGWKRoundValueT<T, U, true> /* signed */ |
1529 | | { |
1530 | | static T eval(U value) |
1531 | 0 | { |
1532 | 0 | return static_cast<T>(floor(value + U(0.5))); |
1533 | 0 | } Unexecuted instantiation: sGWKRoundValueT<short, double, true>::eval(double) Unexecuted instantiation: sGWKRoundValueT<int, double, true>::eval(double) Unexecuted instantiation: sGWKRoundValueT<long, double, true>::eval(double) Unexecuted instantiation: sGWKRoundValueT<cpl::Float16, double, true>::eval(double) Unexecuted instantiation: sGWKRoundValueT<double, double, true>::eval(double) |
1534 | | }; |
1535 | | |
1536 | | template <class T, class U> struct sGWKRoundValueT<T, U, false> /* unsigned */ |
1537 | | { |
1538 | | static T eval(U value) |
1539 | 0 | { |
1540 | 0 | return static_cast<T>(value + U(0.5)); |
1541 | 0 | } Unexecuted instantiation: sGWKRoundValueT<unsigned char, double, false>::eval(double) Unexecuted instantiation: sGWKRoundValueT<unsigned char, float, false>::eval(float) Unexecuted instantiation: sGWKRoundValueT<unsigned short, double, false>::eval(double) Unexecuted instantiation: sGWKRoundValueT<unsigned short, float, false>::eval(float) Unexecuted instantiation: sGWKRoundValueT<unsigned int, double, false>::eval(double) Unexecuted instantiation: sGWKRoundValueT<unsigned long, double, false>::eval(double) |
1542 | | }; |
1543 | | |
1544 | | template <class T, class U> static T GWKRoundValueT(U value) |
1545 | 0 | { |
1546 | 0 | return sGWKRoundValueT<T, U, cpl::NumericLimits<T>::is_signed>::eval(value); |
1547 | 0 | } Unexecuted instantiation: gdalwarpkernel.cpp:unsigned char GWKRoundValueT<unsigned char, double>(double) Unexecuted instantiation: gdalwarpkernel.cpp:unsigned char GWKRoundValueT<unsigned char, float>(float) Unexecuted instantiation: gdalwarpkernel.cpp:short GWKRoundValueT<short, double>(double) Unexecuted instantiation: gdalwarpkernel.cpp:unsigned short GWKRoundValueT<unsigned short, double>(double) Unexecuted instantiation: gdalwarpkernel.cpp:unsigned short GWKRoundValueT<unsigned short, float>(float) Unexecuted instantiation: gdalwarpkernel.cpp:int GWKRoundValueT<int, double>(double) Unexecuted instantiation: gdalwarpkernel.cpp:unsigned int GWKRoundValueT<unsigned int, double>(double) Unexecuted instantiation: gdalwarpkernel.cpp:long GWKRoundValueT<long, double>(double) Unexecuted instantiation: gdalwarpkernel.cpp:unsigned long GWKRoundValueT<unsigned long, double>(double) Unexecuted instantiation: gdalwarpkernel.cpp:cpl::Float16 GWKRoundValueT<cpl::Float16, double>(double) Unexecuted instantiation: gdalwarpkernel.cpp:double GWKRoundValueT<double, double>(double) |
1548 | | |
1549 | | template <> float GWKRoundValueT<float, double>(double value) |
1550 | 0 | { |
1551 | 0 | return static_cast<float>(value); |
1552 | 0 | } |
1553 | | |
1554 | | #ifdef notused |
1555 | | template <> double GWKRoundValueT<double, double>(double value) |
1556 | | { |
1557 | | return value; |
1558 | | } |
1559 | | #endif |
1560 | | |
1561 | | /************************************************************************/ |
1562 | | /* GWKClampValueT() */ |
1563 | | /************************************************************************/ |
1564 | | |
1565 | | template <class T, class U> static CPL_INLINE T GWKClampValueT(U value) |
1566 | 0 | { |
1567 | 0 | if (value < static_cast<U>(cpl::NumericLimits<T>::min())) |
1568 | 0 | return cpl::NumericLimits<T>::min(); |
1569 | 0 | else if (value > static_cast<U>(cpl::NumericLimits<T>::max())) |
1570 | 0 | return cpl::NumericLimits<T>::max(); |
1571 | 0 | else |
1572 | 0 | return GWKRoundValueT<T, U>(value); |
1573 | 0 | } Unexecuted instantiation: gdalwarpkernel.cpp:unsigned char GWKClampValueT<unsigned char, double>(double) Unexecuted instantiation: gdalwarpkernel.cpp:unsigned char GWKClampValueT<unsigned char, float>(float) Unexecuted instantiation: gdalwarpkernel.cpp:short GWKClampValueT<short, double>(double) Unexecuted instantiation: gdalwarpkernel.cpp:unsigned short GWKClampValueT<unsigned short, double>(double) Unexecuted instantiation: gdalwarpkernel.cpp:unsigned short GWKClampValueT<unsigned short, float>(float) Unexecuted instantiation: gdalwarpkernel.cpp:int GWKClampValueT<int, double>(double) Unexecuted instantiation: gdalwarpkernel.cpp:unsigned int GWKClampValueT<unsigned int, double>(double) Unexecuted instantiation: gdalwarpkernel.cpp:long GWKClampValueT<long, double>(double) Unexecuted instantiation: gdalwarpkernel.cpp:unsigned long GWKClampValueT<unsigned long, double>(double) Unexecuted instantiation: gdalwarpkernel.cpp:cpl::Float16 GWKClampValueT<cpl::Float16, double>(double) Unexecuted instantiation: gdalwarpkernel.cpp:double GWKClampValueT<double, double>(double) |
1574 | | |
1575 | | template <> float GWKClampValueT<float, double>(double dfValue) |
1576 | 0 | { |
1577 | 0 | return static_cast<float>(dfValue); |
1578 | 0 | } |
1579 | | |
1580 | | #ifdef notused |
1581 | | template <> double GWKClampValueT<double, double>(double dfValue) |
1582 | | { |
1583 | | return dfValue; |
1584 | | } |
1585 | | #endif |
1586 | | |
1587 | | /************************************************************************/ |
1588 | | /* AvoidNoData() */ |
1589 | | /************************************************************************/ |
1590 | | |
1591 | | template <class T> inline void AvoidNoData(T *pDst, GPtrDiff_t iDstOffset) |
1592 | 0 | { |
1593 | | if constexpr (cpl::NumericLimits<T>::is_integer) |
1594 | 0 | { |
1595 | 0 | if (pDst[iDstOffset] == static_cast<T>(cpl::NumericLimits<T>::lowest())) |
1596 | 0 | { |
1597 | 0 | pDst[iDstOffset] = |
1598 | 0 | static_cast<T>(cpl::NumericLimits<T>::lowest() + 1); |
1599 | 0 | } |
1600 | 0 | else |
1601 | 0 | pDst[iDstOffset]--; |
1602 | | } |
1603 | | else |
1604 | 0 | { |
1605 | 0 | if (pDst[iDstOffset] == cpl::NumericLimits<T>::max()) |
1606 | 0 | { |
1607 | 0 | using std::nextafter; |
1608 | 0 | pDst[iDstOffset] = nextafter(pDst[iDstOffset], static_cast<T>(0)); |
1609 | 0 | } |
1610 | 0 | else |
1611 | 0 | { |
1612 | 0 | using std::nextafter; |
1613 | 0 | pDst[iDstOffset] = |
1614 | 0 | nextafter(pDst[iDstOffset], cpl::NumericLimits<T>::max()); |
1615 | 0 | } |
1616 | 0 | } |
1617 | 0 | } Unexecuted instantiation: void AvoidNoData<unsigned char>(unsigned char*, long long) Unexecuted instantiation: void AvoidNoData<signed char>(signed char*, long long) Unexecuted instantiation: void AvoidNoData<short>(short*, long long) Unexecuted instantiation: void AvoidNoData<unsigned short>(unsigned short*, long long) Unexecuted instantiation: void AvoidNoData<unsigned int>(unsigned int*, long long) Unexecuted instantiation: void AvoidNoData<int>(int*, long long) Unexecuted instantiation: void AvoidNoData<unsigned long>(unsigned long*, long long) Unexecuted instantiation: void AvoidNoData<long>(long*, long long) Unexecuted instantiation: void AvoidNoData<cpl::Float16>(cpl::Float16*, long long) Unexecuted instantiation: void AvoidNoData<float>(float*, long long) Unexecuted instantiation: void AvoidNoData<double>(double*, long long) |
1618 | | |
1619 | | /************************************************************************/ |
1620 | | /* AvoidNoData() */ |
1621 | | /************************************************************************/ |
1622 | | |
1623 | | template <class T> |
1624 | | inline void AvoidNoData(const GDALWarpKernel *poWK, int iBand, |
1625 | | GPtrDiff_t iDstOffset) |
1626 | 0 | { |
1627 | 0 | GByte *pabyDst = poWK->papabyDstImage[iBand]; |
1628 | 0 | T *pDst = reinterpret_cast<T *>(pabyDst); |
1629 | |
|
1630 | 0 | if (poWK->padfDstNoDataReal != nullptr && |
1631 | 0 | poWK->padfDstNoDataReal[iBand] == static_cast<double>(pDst[iDstOffset])) |
1632 | 0 | { |
1633 | 0 | AvoidNoData(pDst, iDstOffset); |
1634 | |
|
1635 | 0 | if (!poWK->bWarnedAboutDstNoDataReplacement) |
1636 | 0 | { |
1637 | 0 | const_cast<GDALWarpKernel *>(poWK) |
1638 | 0 | ->bWarnedAboutDstNoDataReplacement = true; |
1639 | 0 | CPLError(CE_Warning, CPLE_AppDefined, |
1640 | 0 | "Value %g in the source dataset has been changed to %g " |
1641 | 0 | "in the destination dataset to avoid being treated as " |
1642 | 0 | "NoData. To avoid this, select a different NoData value " |
1643 | 0 | "for the destination dataset.", |
1644 | 0 | poWK->padfDstNoDataReal[iBand], |
1645 | 0 | static_cast<double>(pDst[iDstOffset])); |
1646 | 0 | } |
1647 | 0 | } |
1648 | 0 | } Unexecuted instantiation: void AvoidNoData<unsigned char>(GDALWarpKernel const*, int, long long) Unexecuted instantiation: void AvoidNoData<signed char>(GDALWarpKernel const*, int, long long) Unexecuted instantiation: void AvoidNoData<short>(GDALWarpKernel const*, int, long long) Unexecuted instantiation: void AvoidNoData<unsigned short>(GDALWarpKernel const*, int, long long) Unexecuted instantiation: void AvoidNoData<unsigned int>(GDALWarpKernel const*, int, long long) Unexecuted instantiation: void AvoidNoData<int>(GDALWarpKernel const*, int, long long) Unexecuted instantiation: void AvoidNoData<unsigned long>(GDALWarpKernel const*, int, long long) Unexecuted instantiation: void AvoidNoData<long>(GDALWarpKernel const*, int, long long) Unexecuted instantiation: void AvoidNoData<cpl::Float16>(GDALWarpKernel const*, int, long long) Unexecuted instantiation: void AvoidNoData<float>(GDALWarpKernel const*, int, long long) Unexecuted instantiation: void AvoidNoData<double>(GDALWarpKernel const*, int, long long) |
1649 | | |
1650 | | /************************************************************************/ |
1651 | | /* GWKAvoidNoDataMultiBand() */ |
1652 | | /************************************************************************/ |
1653 | | |
1654 | | template <class T> |
1655 | | static void GWKAvoidNoDataMultiBand(const GDALWarpKernel *poWK, |
1656 | | GPtrDiff_t iDstOffset) |
1657 | 0 | { |
1658 | 0 | T **ppDst = reinterpret_cast<T **>(poWK->papabyDstImage); |
1659 | 0 | if (poWK->padfDstNoDataReal != nullptr) |
1660 | 0 | { |
1661 | 0 | for (int iBand = 0; iBand < poWK->nBands; ++iBand) |
1662 | 0 | { |
1663 | 0 | if (poWK->padfDstNoDataReal[iBand] != |
1664 | 0 | static_cast<double>(ppDst[iBand][iDstOffset])) |
1665 | 0 | return; |
1666 | 0 | } |
1667 | 0 | for (int iBand = 0; iBand < poWK->nBands; ++iBand) |
1668 | 0 | { |
1669 | 0 | AvoidNoData(ppDst[iBand], iDstOffset); |
1670 | 0 | } |
1671 | |
|
1672 | 0 | if (!poWK->bWarnedAboutDstNoDataReplacement) |
1673 | 0 | { |
1674 | 0 | const_cast<GDALWarpKernel *>(poWK) |
1675 | 0 | ->bWarnedAboutDstNoDataReplacement = true; |
1676 | 0 | std::string valueSrc, valueDst; |
1677 | 0 | for (int iBand = 0; iBand < poWK->nBands; ++iBand) |
1678 | 0 | { |
1679 | 0 | if (!valueSrc.empty()) |
1680 | 0 | { |
1681 | 0 | valueSrc += ','; |
1682 | 0 | valueDst += ','; |
1683 | 0 | } |
1684 | 0 | valueSrc += CPLSPrintf("%g", poWK->padfDstNoDataReal[iBand]); |
1685 | 0 | valueDst += CPLSPrintf( |
1686 | 0 | "%g", static_cast<double>(ppDst[iBand][iDstOffset])); |
1687 | 0 | } |
1688 | 0 | CPLError(CE_Warning, CPLE_AppDefined, |
1689 | 0 | "Value %s in the source dataset has been changed to %s " |
1690 | 0 | "in the destination dataset to avoid being treated as " |
1691 | 0 | "NoData. To avoid this, select a different NoData value " |
1692 | 0 | "for the destination dataset.", |
1693 | 0 | valueSrc.c_str(), valueDst.c_str()); |
1694 | 0 | } |
1695 | 0 | } |
1696 | 0 | } Unexecuted instantiation: gdalwarpkernel.cpp:void GWKAvoidNoDataMultiBand<unsigned char>(GDALWarpKernel const*, long long) Unexecuted instantiation: gdalwarpkernel.cpp:void GWKAvoidNoDataMultiBand<signed char>(GDALWarpKernel const*, long long) Unexecuted instantiation: gdalwarpkernel.cpp:void GWKAvoidNoDataMultiBand<short>(GDALWarpKernel const*, long long) Unexecuted instantiation: gdalwarpkernel.cpp:void GWKAvoidNoDataMultiBand<unsigned short>(GDALWarpKernel const*, long long) Unexecuted instantiation: gdalwarpkernel.cpp:void GWKAvoidNoDataMultiBand<int>(GDALWarpKernel const*, long long) Unexecuted instantiation: gdalwarpkernel.cpp:void GWKAvoidNoDataMultiBand<unsigned int>(GDALWarpKernel const*, long long) Unexecuted instantiation: gdalwarpkernel.cpp:void GWKAvoidNoDataMultiBand<long>(GDALWarpKernel const*, long long) Unexecuted instantiation: gdalwarpkernel.cpp:void GWKAvoidNoDataMultiBand<unsigned long>(GDALWarpKernel const*, long long) Unexecuted instantiation: gdalwarpkernel.cpp:void GWKAvoidNoDataMultiBand<cpl::Float16>(GDALWarpKernel const*, long long) Unexecuted instantiation: gdalwarpkernel.cpp:void GWKAvoidNoDataMultiBand<float>(GDALWarpKernel const*, long long) Unexecuted instantiation: gdalwarpkernel.cpp:void GWKAvoidNoDataMultiBand<double>(GDALWarpKernel const*, long long) |
1697 | | |
1698 | | /************************************************************************/ |
1699 | | /* GWKAvoidNoDataMultiBand() */ |
1700 | | /************************************************************************/ |
1701 | | |
1702 | | static void GWKAvoidNoDataMultiBand(const GDALWarpKernel *poWK, |
1703 | | GPtrDiff_t iDstOffset) |
1704 | 0 | { |
1705 | 0 | switch (poWK->eWorkingDataType) |
1706 | 0 | { |
1707 | 0 | case GDT_UInt8: |
1708 | 0 | GWKAvoidNoDataMultiBand<std::uint8_t>(poWK, iDstOffset); |
1709 | 0 | break; |
1710 | | |
1711 | 0 | case GDT_Int8: |
1712 | 0 | GWKAvoidNoDataMultiBand<std::int8_t>(poWK, iDstOffset); |
1713 | 0 | break; |
1714 | | |
1715 | 0 | case GDT_Int16: |
1716 | 0 | GWKAvoidNoDataMultiBand<std::int16_t>(poWK, iDstOffset); |
1717 | 0 | break; |
1718 | | |
1719 | 0 | case GDT_UInt16: |
1720 | 0 | GWKAvoidNoDataMultiBand<std::uint16_t>(poWK, iDstOffset); |
1721 | 0 | break; |
1722 | | |
1723 | 0 | case GDT_Int32: |
1724 | 0 | GWKAvoidNoDataMultiBand<std::int32_t>(poWK, iDstOffset); |
1725 | 0 | break; |
1726 | | |
1727 | 0 | case GDT_UInt32: |
1728 | 0 | GWKAvoidNoDataMultiBand<std::uint32_t>(poWK, iDstOffset); |
1729 | 0 | break; |
1730 | | |
1731 | 0 | case GDT_Int64: |
1732 | 0 | GWKAvoidNoDataMultiBand<std::int64_t>(poWK, iDstOffset); |
1733 | 0 | break; |
1734 | | |
1735 | 0 | case GDT_UInt64: |
1736 | 0 | GWKAvoidNoDataMultiBand<std::uint64_t>(poWK, iDstOffset); |
1737 | 0 | break; |
1738 | | |
1739 | 0 | case GDT_Float16: |
1740 | 0 | GWKAvoidNoDataMultiBand<GFloat16>(poWK, iDstOffset); |
1741 | 0 | break; |
1742 | | |
1743 | 0 | case GDT_Float32: |
1744 | 0 | GWKAvoidNoDataMultiBand<float>(poWK, iDstOffset); |
1745 | 0 | break; |
1746 | | |
1747 | 0 | case GDT_Float64: |
1748 | 0 | GWKAvoidNoDataMultiBand<double>(poWK, iDstOffset); |
1749 | 0 | break; |
1750 | | |
1751 | 0 | case GDT_CInt16: |
1752 | 0 | case GDT_CInt32: |
1753 | 0 | case GDT_CFloat16: |
1754 | 0 | case GDT_CFloat32: |
1755 | 0 | case GDT_CFloat64: |
1756 | 0 | case GDT_Unknown: |
1757 | 0 | case GDT_TypeCount: |
1758 | 0 | break; |
1759 | 0 | } |
1760 | 0 | } |
1761 | | |
1762 | | /************************************************************************/ |
1763 | | /* GWKSetPixelValueRealT() */ |
1764 | | /************************************************************************/ |
1765 | | |
1766 | | template <class T> |
1767 | | static bool GWKSetPixelValueRealT(const GDALWarpKernel *poWK, int iBand, |
1768 | | GPtrDiff_t iDstOffset, double dfDensity, |
1769 | | T value, bool bAvoidNoDataSingleBand) |
1770 | 0 | { |
1771 | 0 | T *pDst = reinterpret_cast<T *>(poWK->papabyDstImage[iBand]); |
1772 | | |
1773 | | /* -------------------------------------------------------------------- */ |
1774 | | /* If the source density is less than 100% we need to fetch the */ |
1775 | | /* existing destination value, and mix it with the source to */ |
1776 | | /* get the new "to apply" value. Also compute composite */ |
1777 | | /* density. */ |
1778 | | /* */ |
1779 | | /* We avoid mixing if density is very near one or risk mixing */ |
1780 | | /* in very extreme nodata values and causing odd results (#1610) */ |
1781 | | /* -------------------------------------------------------------------- */ |
1782 | 0 | if (dfDensity < 0.9999) |
1783 | 0 | { |
1784 | 0 | if (dfDensity < 0.0001) |
1785 | 0 | return true; |
1786 | | |
1787 | 0 | double dfDstDensity = 1.0; |
1788 | |
|
1789 | 0 | if (poWK->pafDstDensity != nullptr) |
1790 | 0 | dfDstDensity = double(poWK->pafDstDensity[iDstOffset]); |
1791 | 0 | else if (poWK->panDstValid != nullptr && |
1792 | 0 | !CPLMaskGet(poWK->panDstValid, iDstOffset)) |
1793 | 0 | dfDstDensity = 0.0; |
1794 | | |
1795 | | // It seems like we also ought to be testing panDstValid[] here! |
1796 | |
|
1797 | 0 | const double dfDstReal = static_cast<double>(pDst[iDstOffset]); |
1798 | | |
1799 | | // The destination density is really only relative to the portion |
1800 | | // not occluded by the overlay. |
1801 | 0 | const double dfDstInfluence = (1.0 - dfDensity) * dfDstDensity; |
1802 | |
|
1803 | 0 | const double dfReal = |
1804 | 0 | (double(value) * dfDensity + dfDstReal * dfDstInfluence) / |
1805 | 0 | (dfDensity + dfDstInfluence); |
1806 | | |
1807 | | /* -------------------------------------------------------------------- |
1808 | | */ |
1809 | | /* Actually apply the destination value. */ |
1810 | | /* */ |
1811 | | /* Avoid using the destination nodata value for integer datatypes |
1812 | | */ |
1813 | | /* if by chance it is equal to the computed pixel value. */ |
1814 | | /* -------------------------------------------------------------------- |
1815 | | */ |
1816 | 0 | pDst[iDstOffset] = GWKClampValueT<T>(dfReal); |
1817 | 0 | } |
1818 | 0 | else |
1819 | 0 | { |
1820 | 0 | pDst[iDstOffset] = value; |
1821 | 0 | } |
1822 | | |
1823 | 0 | if (bAvoidNoDataSingleBand) |
1824 | 0 | AvoidNoData<T>(poWK, iBand, iDstOffset); |
1825 | |
|
1826 | 0 | return true; |
1827 | 0 | } Unexecuted instantiation: gdalwarpkernel.cpp:bool GWKSetPixelValueRealT<unsigned char>(GDALWarpKernel const*, int, long long, double, unsigned char, bool) Unexecuted instantiation: gdalwarpkernel.cpp:bool GWKSetPixelValueRealT<short>(GDALWarpKernel const*, int, long long, double, short, bool) Unexecuted instantiation: gdalwarpkernel.cpp:bool GWKSetPixelValueRealT<unsigned short>(GDALWarpKernel const*, int, long long, double, unsigned short, bool) Unexecuted instantiation: gdalwarpkernel.cpp:bool GWKSetPixelValueRealT<float>(GDALWarpKernel const*, int, long long, double, float, bool) Unexecuted instantiation: gdalwarpkernel.cpp:bool GWKSetPixelValueRealT<int>(GDALWarpKernel const*, int, long long, double, int, bool) Unexecuted instantiation: gdalwarpkernel.cpp:bool GWKSetPixelValueRealT<unsigned int>(GDALWarpKernel const*, int, long long, double, unsigned int, bool) Unexecuted instantiation: gdalwarpkernel.cpp:bool GWKSetPixelValueRealT<long>(GDALWarpKernel const*, int, long long, double, long, bool) Unexecuted instantiation: gdalwarpkernel.cpp:bool GWKSetPixelValueRealT<unsigned long>(GDALWarpKernel const*, int, long long, double, unsigned long, bool) Unexecuted instantiation: gdalwarpkernel.cpp:bool GWKSetPixelValueRealT<cpl::Float16>(GDALWarpKernel const*, int, long long, double, cpl::Float16, bool) Unexecuted instantiation: gdalwarpkernel.cpp:bool GWKSetPixelValueRealT<double>(GDALWarpKernel const*, int, long long, double, double, bool) |
1828 | | |
1829 | | /************************************************************************/ |
1830 | | /* ClampRoundAndAvoidNoData() */ |
1831 | | /************************************************************************/ |
1832 | | |
1833 | | template <class T> |
1834 | | inline void ClampRoundAndAvoidNoData(const GDALWarpKernel *poWK, int iBand, |
1835 | | GPtrDiff_t iDstOffset, double dfReal, |
1836 | | bool bAvoidNoDataSingleBand) |
1837 | 0 | { |
1838 | 0 | GByte *pabyDst = poWK->papabyDstImage[iBand]; |
1839 | 0 | T *pDst = reinterpret_cast<T *>(pabyDst); |
1840 | |
|
1841 | | if constexpr (cpl::NumericLimits<T>::is_integer) |
1842 | 0 | { |
1843 | 0 | using std::floor; |
1844 | 0 | if (dfReal < static_cast<double>(cpl::NumericLimits<T>::lowest())) |
1845 | 0 | pDst[iDstOffset] = static_cast<T>(cpl::NumericLimits<T>::lowest()); |
1846 | 0 | else if (dfReal > static_cast<double>(cpl::NumericLimits<T>::max())) |
1847 | 0 | pDst[iDstOffset] = static_cast<T>(cpl::NumericLimits<T>::max()); |
1848 | | else if constexpr (cpl::NumericLimits<T>::is_signed) |
1849 | 0 | pDst[iDstOffset] = static_cast<T>(floor(dfReal + 0.5)); |
1850 | | else |
1851 | 0 | pDst[iDstOffset] = static_cast<T>(dfReal + 0.5); |
1852 | | } |
1853 | | else |
1854 | 0 | { |
1855 | 0 | pDst[iDstOffset] = static_cast<T>(dfReal); |
1856 | 0 | } |
1857 | |
|
1858 | 0 | if (bAvoidNoDataSingleBand) |
1859 | 0 | AvoidNoData<T>(poWK, iBand, iDstOffset); |
1860 | 0 | } Unexecuted instantiation: void ClampRoundAndAvoidNoData<unsigned char>(GDALWarpKernel const*, int, long long, double, bool) Unexecuted instantiation: void ClampRoundAndAvoidNoData<signed char>(GDALWarpKernel const*, int, long long, double, bool) Unexecuted instantiation: void ClampRoundAndAvoidNoData<short>(GDALWarpKernel const*, int, long long, double, bool) Unexecuted instantiation: void ClampRoundAndAvoidNoData<unsigned short>(GDALWarpKernel const*, int, long long, double, bool) Unexecuted instantiation: void ClampRoundAndAvoidNoData<unsigned int>(GDALWarpKernel const*, int, long long, double, bool) Unexecuted instantiation: void ClampRoundAndAvoidNoData<int>(GDALWarpKernel const*, int, long long, double, bool) Unexecuted instantiation: void ClampRoundAndAvoidNoData<unsigned long>(GDALWarpKernel const*, int, long long, double, bool) Unexecuted instantiation: void ClampRoundAndAvoidNoData<long>(GDALWarpKernel const*, int, long long, double, bool) Unexecuted instantiation: void ClampRoundAndAvoidNoData<cpl::Float16>(GDALWarpKernel const*, int, long long, double, bool) Unexecuted instantiation: void ClampRoundAndAvoidNoData<float>(GDALWarpKernel const*, int, long long, double, bool) Unexecuted instantiation: void ClampRoundAndAvoidNoData<double>(GDALWarpKernel const*, int, long long, double, bool) |
1861 | | |
1862 | | /************************************************************************/ |
1863 | | /* GWKSetPixelValue() */ |
1864 | | /************************************************************************/ |
1865 | | |
1866 | | static bool GWKSetPixelValue(const GDALWarpKernel *poWK, int iBand, |
1867 | | GPtrDiff_t iDstOffset, double dfDensity, |
1868 | | double dfReal, double dfImag, |
1869 | | bool bAvoidNoDataSingleBand) |
1870 | | |
1871 | 0 | { |
1872 | 0 | GByte *pabyDst = poWK->papabyDstImage[iBand]; |
1873 | | |
1874 | | /* -------------------------------------------------------------------- */ |
1875 | | /* If the source density is less than 100% we need to fetch the */ |
1876 | | /* existing destination value, and mix it with the source to */ |
1877 | | /* get the new "to apply" value. Also compute composite */ |
1878 | | /* density. */ |
1879 | | /* */ |
1880 | | /* We avoid mixing if density is very near one or risk mixing */ |
1881 | | /* in very extreme nodata values and causing odd results (#1610) */ |
1882 | | /* -------------------------------------------------------------------- */ |
1883 | 0 | if (dfDensity < 0.9999) |
1884 | 0 | { |
1885 | 0 | if (dfDensity < 0.0001) |
1886 | 0 | return true; |
1887 | | |
1888 | 0 | double dfDstDensity = 1.0; |
1889 | 0 | if (poWK->pafDstDensity != nullptr) |
1890 | 0 | dfDstDensity = double(poWK->pafDstDensity[iDstOffset]); |
1891 | 0 | else if (poWK->panDstValid != nullptr && |
1892 | 0 | !CPLMaskGet(poWK->panDstValid, iDstOffset)) |
1893 | 0 | dfDstDensity = 0.0; |
1894 | |
|
1895 | 0 | double dfDstReal = 0.0; |
1896 | 0 | double dfDstImag = 0.0; |
1897 | | // It seems like we also ought to be testing panDstValid[] here! |
1898 | | |
1899 | | // TODO(schwehr): Factor out this repreated type of set. |
1900 | 0 | switch (poWK->eWorkingDataType) |
1901 | 0 | { |
1902 | 0 | case GDT_UInt8: |
1903 | 0 | dfDstReal = pabyDst[iDstOffset]; |
1904 | 0 | dfDstImag = 0.0; |
1905 | 0 | break; |
1906 | | |
1907 | 0 | case GDT_Int8: |
1908 | 0 | dfDstReal = reinterpret_cast<GInt8 *>(pabyDst)[iDstOffset]; |
1909 | 0 | dfDstImag = 0.0; |
1910 | 0 | break; |
1911 | | |
1912 | 0 | case GDT_Int16: |
1913 | 0 | dfDstReal = reinterpret_cast<GInt16 *>(pabyDst)[iDstOffset]; |
1914 | 0 | dfDstImag = 0.0; |
1915 | 0 | break; |
1916 | | |
1917 | 0 | case GDT_UInt16: |
1918 | 0 | dfDstReal = reinterpret_cast<GUInt16 *>(pabyDst)[iDstOffset]; |
1919 | 0 | dfDstImag = 0.0; |
1920 | 0 | break; |
1921 | | |
1922 | 0 | case GDT_Int32: |
1923 | 0 | dfDstReal = reinterpret_cast<GInt32 *>(pabyDst)[iDstOffset]; |
1924 | 0 | dfDstImag = 0.0; |
1925 | 0 | break; |
1926 | | |
1927 | 0 | case GDT_UInt32: |
1928 | 0 | dfDstReal = reinterpret_cast<GUInt32 *>(pabyDst)[iDstOffset]; |
1929 | 0 | dfDstImag = 0.0; |
1930 | 0 | break; |
1931 | | |
1932 | 0 | case GDT_Int64: |
1933 | 0 | dfDstReal = static_cast<double>( |
1934 | 0 | reinterpret_cast<std::int64_t *>(pabyDst)[iDstOffset]); |
1935 | 0 | dfDstImag = 0.0; |
1936 | 0 | break; |
1937 | | |
1938 | 0 | case GDT_UInt64: |
1939 | 0 | dfDstReal = static_cast<double>( |
1940 | 0 | reinterpret_cast<std::uint64_t *>(pabyDst)[iDstOffset]); |
1941 | 0 | dfDstImag = 0.0; |
1942 | 0 | break; |
1943 | | |
1944 | 0 | case GDT_Float16: |
1945 | 0 | dfDstReal = reinterpret_cast<GFloat16 *>(pabyDst)[iDstOffset]; |
1946 | 0 | dfDstImag = 0.0; |
1947 | 0 | break; |
1948 | | |
1949 | 0 | case GDT_Float32: |
1950 | 0 | dfDstReal = |
1951 | 0 | double(reinterpret_cast<float *>(pabyDst)[iDstOffset]); |
1952 | 0 | dfDstImag = 0.0; |
1953 | 0 | break; |
1954 | | |
1955 | 0 | case GDT_Float64: |
1956 | 0 | dfDstReal = reinterpret_cast<double *>(pabyDst)[iDstOffset]; |
1957 | 0 | dfDstImag = 0.0; |
1958 | 0 | break; |
1959 | | |
1960 | 0 | case GDT_CInt16: |
1961 | 0 | dfDstReal = reinterpret_cast<GInt16 *>(pabyDst)[iDstOffset * 2]; |
1962 | 0 | dfDstImag = |
1963 | 0 | reinterpret_cast<GInt16 *>(pabyDst)[iDstOffset * 2 + 1]; |
1964 | 0 | break; |
1965 | | |
1966 | 0 | case GDT_CInt32: |
1967 | 0 | dfDstReal = reinterpret_cast<GInt32 *>(pabyDst)[iDstOffset * 2]; |
1968 | 0 | dfDstImag = |
1969 | 0 | reinterpret_cast<GInt32 *>(pabyDst)[iDstOffset * 2 + 1]; |
1970 | 0 | break; |
1971 | | |
1972 | 0 | case GDT_CFloat16: |
1973 | 0 | dfDstReal = |
1974 | 0 | reinterpret_cast<GFloat16 *>(pabyDst)[iDstOffset * 2]; |
1975 | 0 | dfDstImag = |
1976 | 0 | reinterpret_cast<GFloat16 *>(pabyDst)[iDstOffset * 2 + 1]; |
1977 | 0 | break; |
1978 | | |
1979 | 0 | case GDT_CFloat32: |
1980 | 0 | dfDstReal = |
1981 | 0 | double(reinterpret_cast<float *>(pabyDst)[iDstOffset * 2]); |
1982 | 0 | dfDstImag = double( |
1983 | 0 | reinterpret_cast<float *>(pabyDst)[iDstOffset * 2 + 1]); |
1984 | 0 | break; |
1985 | | |
1986 | 0 | case GDT_CFloat64: |
1987 | 0 | dfDstReal = reinterpret_cast<double *>(pabyDst)[iDstOffset * 2]; |
1988 | 0 | dfDstImag = |
1989 | 0 | reinterpret_cast<double *>(pabyDst)[iDstOffset * 2 + 1]; |
1990 | 0 | break; |
1991 | | |
1992 | 0 | case GDT_Unknown: |
1993 | 0 | case GDT_TypeCount: |
1994 | 0 | CPLAssert(false); |
1995 | 0 | return false; |
1996 | 0 | } |
1997 | | |
1998 | | // The destination density is really only relative to the portion |
1999 | | // not occluded by the overlay. |
2000 | 0 | const double dfDstInfluence = (1.0 - dfDensity) * dfDstDensity; |
2001 | |
|
2002 | 0 | dfReal = (dfReal * dfDensity + dfDstReal * dfDstInfluence) / |
2003 | 0 | (dfDensity + dfDstInfluence); |
2004 | |
|
2005 | 0 | dfImag = (dfImag * dfDensity + dfDstImag * dfDstInfluence) / |
2006 | 0 | (dfDensity + dfDstInfluence); |
2007 | 0 | } |
2008 | | |
2009 | | /* -------------------------------------------------------------------- */ |
2010 | | /* Actually apply the destination value. */ |
2011 | | /* */ |
2012 | | /* Avoid using the destination nodata value for integer datatypes */ |
2013 | | /* if by chance it is equal to the computed pixel value. */ |
2014 | | /* -------------------------------------------------------------------- */ |
2015 | | |
2016 | 0 | switch (poWK->eWorkingDataType) |
2017 | 0 | { |
2018 | 0 | case GDT_UInt8: |
2019 | 0 | ClampRoundAndAvoidNoData<GByte>(poWK, iBand, iDstOffset, dfReal, |
2020 | 0 | bAvoidNoDataSingleBand); |
2021 | 0 | break; |
2022 | | |
2023 | 0 | case GDT_Int8: |
2024 | 0 | ClampRoundAndAvoidNoData<GInt8>(poWK, iBand, iDstOffset, dfReal, |
2025 | 0 | bAvoidNoDataSingleBand); |
2026 | 0 | break; |
2027 | | |
2028 | 0 | case GDT_Int16: |
2029 | 0 | ClampRoundAndAvoidNoData<GInt16>(poWK, iBand, iDstOffset, dfReal, |
2030 | 0 | bAvoidNoDataSingleBand); |
2031 | 0 | break; |
2032 | | |
2033 | 0 | case GDT_UInt16: |
2034 | 0 | ClampRoundAndAvoidNoData<GUInt16>(poWK, iBand, iDstOffset, dfReal, |
2035 | 0 | bAvoidNoDataSingleBand); |
2036 | 0 | break; |
2037 | | |
2038 | 0 | case GDT_UInt32: |
2039 | 0 | ClampRoundAndAvoidNoData<GUInt32>(poWK, iBand, iDstOffset, dfReal, |
2040 | 0 | bAvoidNoDataSingleBand); |
2041 | 0 | break; |
2042 | | |
2043 | 0 | case GDT_Int32: |
2044 | 0 | ClampRoundAndAvoidNoData<GInt32>(poWK, iBand, iDstOffset, dfReal, |
2045 | 0 | bAvoidNoDataSingleBand); |
2046 | 0 | break; |
2047 | | |
2048 | 0 | case GDT_UInt64: |
2049 | 0 | ClampRoundAndAvoidNoData<std::uint64_t>( |
2050 | 0 | poWK, iBand, iDstOffset, dfReal, bAvoidNoDataSingleBand); |
2051 | 0 | break; |
2052 | | |
2053 | 0 | case GDT_Int64: |
2054 | 0 | ClampRoundAndAvoidNoData<std::int64_t>( |
2055 | 0 | poWK, iBand, iDstOffset, dfReal, bAvoidNoDataSingleBand); |
2056 | 0 | break; |
2057 | | |
2058 | 0 | case GDT_Float16: |
2059 | 0 | ClampRoundAndAvoidNoData<GFloat16>(poWK, iBand, iDstOffset, dfReal, |
2060 | 0 | bAvoidNoDataSingleBand); |
2061 | 0 | break; |
2062 | | |
2063 | 0 | case GDT_Float32: |
2064 | 0 | ClampRoundAndAvoidNoData<float>(poWK, iBand, iDstOffset, dfReal, |
2065 | 0 | bAvoidNoDataSingleBand); |
2066 | 0 | break; |
2067 | | |
2068 | 0 | case GDT_Float64: |
2069 | 0 | ClampRoundAndAvoidNoData<double>(poWK, iBand, iDstOffset, dfReal, |
2070 | 0 | bAvoidNoDataSingleBand); |
2071 | 0 | break; |
2072 | | |
2073 | 0 | case GDT_CInt16: |
2074 | 0 | { |
2075 | 0 | typedef GInt16 T; |
2076 | 0 | if (dfReal < static_cast<double>(cpl::NumericLimits<T>::min())) |
2077 | 0 | reinterpret_cast<T *>(pabyDst)[iDstOffset * 2] = |
2078 | 0 | cpl::NumericLimits<T>::min(); |
2079 | 0 | else if (dfReal > static_cast<double>(cpl::NumericLimits<T>::max())) |
2080 | 0 | reinterpret_cast<T *>(pabyDst)[iDstOffset * 2] = |
2081 | 0 | cpl::NumericLimits<T>::max(); |
2082 | 0 | else |
2083 | 0 | reinterpret_cast<T *>(pabyDst)[iDstOffset * 2] = |
2084 | 0 | static_cast<T>(floor(dfReal + 0.5)); |
2085 | 0 | if (dfImag < static_cast<double>(cpl::NumericLimits<T>::min())) |
2086 | 0 | reinterpret_cast<T *>(pabyDst)[iDstOffset * 2 + 1] = |
2087 | 0 | cpl::NumericLimits<T>::min(); |
2088 | 0 | else if (dfImag > static_cast<double>(cpl::NumericLimits<T>::max())) |
2089 | 0 | reinterpret_cast<T *>(pabyDst)[iDstOffset * 2 + 1] = |
2090 | 0 | cpl::NumericLimits<T>::max(); |
2091 | 0 | else |
2092 | 0 | reinterpret_cast<T *>(pabyDst)[iDstOffset * 2 + 1] = |
2093 | 0 | static_cast<T>(floor(dfImag + 0.5)); |
2094 | 0 | break; |
2095 | 0 | } |
2096 | | |
2097 | 0 | case GDT_CInt32: |
2098 | 0 | { |
2099 | 0 | typedef GInt32 T; |
2100 | 0 | if (dfReal < static_cast<double>(cpl::NumericLimits<T>::min())) |
2101 | 0 | reinterpret_cast<T *>(pabyDst)[iDstOffset * 2] = |
2102 | 0 | cpl::NumericLimits<T>::min(); |
2103 | 0 | else if (dfReal > static_cast<double>(cpl::NumericLimits<T>::max())) |
2104 | 0 | reinterpret_cast<T *>(pabyDst)[iDstOffset * 2] = |
2105 | 0 | cpl::NumericLimits<T>::max(); |
2106 | 0 | else |
2107 | 0 | reinterpret_cast<T *>(pabyDst)[iDstOffset * 2] = |
2108 | 0 | static_cast<T>(floor(dfReal + 0.5)); |
2109 | 0 | if (dfImag < static_cast<double>(cpl::NumericLimits<T>::min())) |
2110 | 0 | reinterpret_cast<T *>(pabyDst)[iDstOffset * 2 + 1] = |
2111 | 0 | cpl::NumericLimits<T>::min(); |
2112 | 0 | else if (dfImag > static_cast<double>(cpl::NumericLimits<T>::max())) |
2113 | 0 | reinterpret_cast<T *>(pabyDst)[iDstOffset * 2 + 1] = |
2114 | 0 | cpl::NumericLimits<T>::max(); |
2115 | 0 | else |
2116 | 0 | reinterpret_cast<T *>(pabyDst)[iDstOffset * 2 + 1] = |
2117 | 0 | static_cast<T>(floor(dfImag + 0.5)); |
2118 | 0 | break; |
2119 | 0 | } |
2120 | | |
2121 | 0 | case GDT_CFloat16: |
2122 | 0 | reinterpret_cast<GFloat16 *>(pabyDst)[iDstOffset * 2] = |
2123 | 0 | static_cast<GFloat16>(dfReal); |
2124 | 0 | reinterpret_cast<GFloat16 *>(pabyDst)[iDstOffset * 2 + 1] = |
2125 | 0 | static_cast<GFloat16>(dfImag); |
2126 | 0 | break; |
2127 | | |
2128 | 0 | case GDT_CFloat32: |
2129 | 0 | reinterpret_cast<float *>(pabyDst)[iDstOffset * 2] = |
2130 | 0 | static_cast<float>(dfReal); |
2131 | 0 | reinterpret_cast<float *>(pabyDst)[iDstOffset * 2 + 1] = |
2132 | 0 | static_cast<float>(dfImag); |
2133 | 0 | break; |
2134 | | |
2135 | 0 | case GDT_CFloat64: |
2136 | 0 | reinterpret_cast<double *>(pabyDst)[iDstOffset * 2] = dfReal; |
2137 | 0 | reinterpret_cast<double *>(pabyDst)[iDstOffset * 2 + 1] = dfImag; |
2138 | 0 | break; |
2139 | | |
2140 | 0 | case GDT_Unknown: |
2141 | 0 | case GDT_TypeCount: |
2142 | 0 | return false; |
2143 | 0 | } |
2144 | | |
2145 | 0 | return true; |
2146 | 0 | } |
2147 | | |
2148 | | /************************************************************************/ |
2149 | | /* GWKSetPixelValueReal() */ |
2150 | | /************************************************************************/ |
2151 | | |
2152 | | static bool GWKSetPixelValueReal(const GDALWarpKernel *poWK, int iBand, |
2153 | | GPtrDiff_t iDstOffset, double dfDensity, |
2154 | | double dfReal, bool bAvoidNoDataSingleBand) |
2155 | | |
2156 | 0 | { |
2157 | 0 | GByte *pabyDst = poWK->papabyDstImage[iBand]; |
2158 | | |
2159 | | /* -------------------------------------------------------------------- */ |
2160 | | /* If the source density is less than 100% we need to fetch the */ |
2161 | | /* existing destination value, and mix it with the source to */ |
2162 | | /* get the new "to apply" value. Also compute composite */ |
2163 | | /* density. */ |
2164 | | /* */ |
2165 | | /* We avoid mixing if density is very near one or risk mixing */ |
2166 | | /* in very extreme nodata values and causing odd results (#1610) */ |
2167 | | /* -------------------------------------------------------------------- */ |
2168 | 0 | if (dfDensity < 0.9999) |
2169 | 0 | { |
2170 | 0 | if (dfDensity < 0.0001) |
2171 | 0 | return true; |
2172 | | |
2173 | 0 | double dfDstReal = 0.0; |
2174 | 0 | double dfDstDensity = 1.0; |
2175 | |
|
2176 | 0 | if (poWK->pafDstDensity != nullptr) |
2177 | 0 | dfDstDensity = double(poWK->pafDstDensity[iDstOffset]); |
2178 | 0 | else if (poWK->panDstValid != nullptr && |
2179 | 0 | !CPLMaskGet(poWK->panDstValid, iDstOffset)) |
2180 | 0 | dfDstDensity = 0.0; |
2181 | | |
2182 | | // It seems like we also ought to be testing panDstValid[] here! |
2183 | |
|
2184 | 0 | switch (poWK->eWorkingDataType) |
2185 | 0 | { |
2186 | 0 | case GDT_UInt8: |
2187 | 0 | dfDstReal = pabyDst[iDstOffset]; |
2188 | 0 | break; |
2189 | | |
2190 | 0 | case GDT_Int8: |
2191 | 0 | dfDstReal = reinterpret_cast<GInt8 *>(pabyDst)[iDstOffset]; |
2192 | 0 | break; |
2193 | | |
2194 | 0 | case GDT_Int16: |
2195 | 0 | dfDstReal = reinterpret_cast<GInt16 *>(pabyDst)[iDstOffset]; |
2196 | 0 | break; |
2197 | | |
2198 | 0 | case GDT_UInt16: |
2199 | 0 | dfDstReal = reinterpret_cast<GUInt16 *>(pabyDst)[iDstOffset]; |
2200 | 0 | break; |
2201 | | |
2202 | 0 | case GDT_Int32: |
2203 | 0 | dfDstReal = reinterpret_cast<GInt32 *>(pabyDst)[iDstOffset]; |
2204 | 0 | break; |
2205 | | |
2206 | 0 | case GDT_UInt32: |
2207 | 0 | dfDstReal = reinterpret_cast<GUInt32 *>(pabyDst)[iDstOffset]; |
2208 | 0 | break; |
2209 | | |
2210 | 0 | case GDT_Int64: |
2211 | 0 | dfDstReal = static_cast<double>( |
2212 | 0 | reinterpret_cast<std::int64_t *>(pabyDst)[iDstOffset]); |
2213 | 0 | break; |
2214 | | |
2215 | 0 | case GDT_UInt64: |
2216 | 0 | dfDstReal = static_cast<double>( |
2217 | 0 | reinterpret_cast<std::uint64_t *>(pabyDst)[iDstOffset]); |
2218 | 0 | break; |
2219 | | |
2220 | 0 | case GDT_Float16: |
2221 | 0 | dfDstReal = reinterpret_cast<GFloat16 *>(pabyDst)[iDstOffset]; |
2222 | 0 | break; |
2223 | | |
2224 | 0 | case GDT_Float32: |
2225 | 0 | dfDstReal = |
2226 | 0 | double(reinterpret_cast<float *>(pabyDst)[iDstOffset]); |
2227 | 0 | break; |
2228 | | |
2229 | 0 | case GDT_Float64: |
2230 | 0 | dfDstReal = reinterpret_cast<double *>(pabyDst)[iDstOffset]; |
2231 | 0 | break; |
2232 | | |
2233 | 0 | case GDT_CInt16: |
2234 | 0 | case GDT_CInt32: |
2235 | 0 | case GDT_CFloat16: |
2236 | 0 | case GDT_CFloat32: |
2237 | 0 | case GDT_CFloat64: |
2238 | 0 | case GDT_Unknown: |
2239 | 0 | case GDT_TypeCount: |
2240 | 0 | CPLAssert(false); |
2241 | 0 | return false; |
2242 | 0 | } |
2243 | | |
2244 | | // The destination density is really only relative to the portion |
2245 | | // not occluded by the overlay. |
2246 | 0 | const double dfDstInfluence = (1.0 - dfDensity) * dfDstDensity; |
2247 | |
|
2248 | 0 | dfReal = (dfReal * dfDensity + dfDstReal * dfDstInfluence) / |
2249 | 0 | (dfDensity + dfDstInfluence); |
2250 | 0 | } |
2251 | | |
2252 | | /* -------------------------------------------------------------------- */ |
2253 | | /* Actually apply the destination value. */ |
2254 | | /* */ |
2255 | | /* Avoid using the destination nodata value for integer datatypes */ |
2256 | | /* if by chance it is equal to the computed pixel value. */ |
2257 | | /* -------------------------------------------------------------------- */ |
2258 | | |
2259 | 0 | switch (poWK->eWorkingDataType) |
2260 | 0 | { |
2261 | 0 | case GDT_UInt8: |
2262 | 0 | ClampRoundAndAvoidNoData<GByte>(poWK, iBand, iDstOffset, dfReal, |
2263 | 0 | bAvoidNoDataSingleBand); |
2264 | 0 | break; |
2265 | | |
2266 | 0 | case GDT_Int8: |
2267 | 0 | ClampRoundAndAvoidNoData<GInt8>(poWK, iBand, iDstOffset, dfReal, |
2268 | 0 | bAvoidNoDataSingleBand); |
2269 | 0 | break; |
2270 | | |
2271 | 0 | case GDT_Int16: |
2272 | 0 | ClampRoundAndAvoidNoData<GInt16>(poWK, iBand, iDstOffset, dfReal, |
2273 | 0 | bAvoidNoDataSingleBand); |
2274 | 0 | break; |
2275 | | |
2276 | 0 | case GDT_UInt16: |
2277 | 0 | ClampRoundAndAvoidNoData<GUInt16>(poWK, iBand, iDstOffset, dfReal, |
2278 | 0 | bAvoidNoDataSingleBand); |
2279 | 0 | break; |
2280 | | |
2281 | 0 | case GDT_UInt32: |
2282 | 0 | ClampRoundAndAvoidNoData<GUInt32>(poWK, iBand, iDstOffset, dfReal, |
2283 | 0 | bAvoidNoDataSingleBand); |
2284 | 0 | break; |
2285 | | |
2286 | 0 | case GDT_Int32: |
2287 | 0 | ClampRoundAndAvoidNoData<GInt32>(poWK, iBand, iDstOffset, dfReal, |
2288 | 0 | bAvoidNoDataSingleBand); |
2289 | 0 | break; |
2290 | | |
2291 | 0 | case GDT_UInt64: |
2292 | 0 | ClampRoundAndAvoidNoData<std::uint64_t>( |
2293 | 0 | poWK, iBand, iDstOffset, dfReal, bAvoidNoDataSingleBand); |
2294 | 0 | break; |
2295 | | |
2296 | 0 | case GDT_Int64: |
2297 | 0 | ClampRoundAndAvoidNoData<std::int64_t>( |
2298 | 0 | poWK, iBand, iDstOffset, dfReal, bAvoidNoDataSingleBand); |
2299 | 0 | break; |
2300 | | |
2301 | 0 | case GDT_Float16: |
2302 | 0 | ClampRoundAndAvoidNoData<GFloat16>(poWK, iBand, iDstOffset, dfReal, |
2303 | 0 | bAvoidNoDataSingleBand); |
2304 | 0 | break; |
2305 | | |
2306 | 0 | case GDT_Float32: |
2307 | 0 | ClampRoundAndAvoidNoData<float>(poWK, iBand, iDstOffset, dfReal, |
2308 | 0 | bAvoidNoDataSingleBand); |
2309 | 0 | break; |
2310 | | |
2311 | 0 | case GDT_Float64: |
2312 | 0 | ClampRoundAndAvoidNoData<double>(poWK, iBand, iDstOffset, dfReal, |
2313 | 0 | bAvoidNoDataSingleBand); |
2314 | 0 | break; |
2315 | | |
2316 | 0 | case GDT_CInt16: |
2317 | 0 | case GDT_CInt32: |
2318 | 0 | case GDT_CFloat16: |
2319 | 0 | case GDT_CFloat32: |
2320 | 0 | case GDT_CFloat64: |
2321 | 0 | return false; |
2322 | | |
2323 | 0 | case GDT_Unknown: |
2324 | 0 | case GDT_TypeCount: |
2325 | 0 | CPLAssert(false); |
2326 | 0 | return false; |
2327 | 0 | } |
2328 | | |
2329 | 0 | return true; |
2330 | 0 | } |
2331 | | |
2332 | | /************************************************************************/ |
2333 | | /* GWKGetPixelValue() */ |
2334 | | /************************************************************************/ |
2335 | | |
2336 | | /* It is assumed that panUnifiedSrcValid has been checked before */ |
2337 | | |
2338 | | static bool GWKGetPixelValue(const GDALWarpKernel *poWK, int iBand, |
2339 | | GPtrDiff_t iSrcOffset, double *pdfDensity, |
2340 | | double *pdfReal, double *pdfImag) |
2341 | | |
2342 | 0 | { |
2343 | 0 | GByte *pabySrc = poWK->papabySrcImage[iBand]; |
2344 | |
|
2345 | 0 | if (poWK->papanBandSrcValid != nullptr && |
2346 | 0 | poWK->papanBandSrcValid[iBand] != nullptr && |
2347 | 0 | !CPLMaskGet(poWK->papanBandSrcValid[iBand], iSrcOffset)) |
2348 | 0 | { |
2349 | 0 | *pdfDensity = 0.0; |
2350 | 0 | return false; |
2351 | 0 | } |
2352 | | |
2353 | 0 | *pdfReal = 0.0; |
2354 | 0 | *pdfImag = 0.0; |
2355 | | |
2356 | | // TODO(schwehr): Fix casting. |
2357 | 0 | switch (poWK->eWorkingDataType) |
2358 | 0 | { |
2359 | 0 | case GDT_UInt8: |
2360 | 0 | *pdfReal = pabySrc[iSrcOffset]; |
2361 | 0 | *pdfImag = 0.0; |
2362 | 0 | break; |
2363 | | |
2364 | 0 | case GDT_Int8: |
2365 | 0 | *pdfReal = reinterpret_cast<GInt8 *>(pabySrc)[iSrcOffset]; |
2366 | 0 | *pdfImag = 0.0; |
2367 | 0 | break; |
2368 | | |
2369 | 0 | case GDT_Int16: |
2370 | 0 | *pdfReal = reinterpret_cast<GInt16 *>(pabySrc)[iSrcOffset]; |
2371 | 0 | *pdfImag = 0.0; |
2372 | 0 | break; |
2373 | | |
2374 | 0 | case GDT_UInt16: |
2375 | 0 | *pdfReal = reinterpret_cast<GUInt16 *>(pabySrc)[iSrcOffset]; |
2376 | 0 | *pdfImag = 0.0; |
2377 | 0 | break; |
2378 | | |
2379 | 0 | case GDT_Int32: |
2380 | 0 | *pdfReal = reinterpret_cast<GInt32 *>(pabySrc)[iSrcOffset]; |
2381 | 0 | *pdfImag = 0.0; |
2382 | 0 | break; |
2383 | | |
2384 | 0 | case GDT_UInt32: |
2385 | 0 | *pdfReal = reinterpret_cast<GUInt32 *>(pabySrc)[iSrcOffset]; |
2386 | 0 | *pdfImag = 0.0; |
2387 | 0 | break; |
2388 | | |
2389 | 0 | case GDT_Int64: |
2390 | 0 | *pdfReal = static_cast<double>( |
2391 | 0 | reinterpret_cast<std::int64_t *>(pabySrc)[iSrcOffset]); |
2392 | 0 | *pdfImag = 0.0; |
2393 | 0 | break; |
2394 | | |
2395 | 0 | case GDT_UInt64: |
2396 | 0 | *pdfReal = static_cast<double>( |
2397 | 0 | reinterpret_cast<std::uint64_t *>(pabySrc)[iSrcOffset]); |
2398 | 0 | *pdfImag = 0.0; |
2399 | 0 | break; |
2400 | | |
2401 | 0 | case GDT_Float16: |
2402 | 0 | *pdfReal = reinterpret_cast<GFloat16 *>(pabySrc)[iSrcOffset]; |
2403 | 0 | *pdfImag = 0.0; |
2404 | 0 | break; |
2405 | | |
2406 | 0 | case GDT_Float32: |
2407 | 0 | *pdfReal = double(reinterpret_cast<float *>(pabySrc)[iSrcOffset]); |
2408 | 0 | *pdfImag = 0.0; |
2409 | 0 | break; |
2410 | | |
2411 | 0 | case GDT_Float64: |
2412 | 0 | *pdfReal = reinterpret_cast<double *>(pabySrc)[iSrcOffset]; |
2413 | 0 | *pdfImag = 0.0; |
2414 | 0 | break; |
2415 | | |
2416 | 0 | case GDT_CInt16: |
2417 | 0 | *pdfReal = reinterpret_cast<GInt16 *>(pabySrc)[iSrcOffset * 2]; |
2418 | 0 | *pdfImag = reinterpret_cast<GInt16 *>(pabySrc)[iSrcOffset * 2 + 1]; |
2419 | 0 | break; |
2420 | | |
2421 | 0 | case GDT_CInt32: |
2422 | 0 | *pdfReal = reinterpret_cast<GInt32 *>(pabySrc)[iSrcOffset * 2]; |
2423 | 0 | *pdfImag = reinterpret_cast<GInt32 *>(pabySrc)[iSrcOffset * 2 + 1]; |
2424 | 0 | break; |
2425 | | |
2426 | 0 | case GDT_CFloat16: |
2427 | 0 | *pdfReal = reinterpret_cast<GFloat16 *>(pabySrc)[iSrcOffset * 2]; |
2428 | 0 | *pdfImag = |
2429 | 0 | reinterpret_cast<GFloat16 *>(pabySrc)[iSrcOffset * 2 + 1]; |
2430 | 0 | break; |
2431 | | |
2432 | 0 | case GDT_CFloat32: |
2433 | 0 | *pdfReal = |
2434 | 0 | double(reinterpret_cast<float *>(pabySrc)[iSrcOffset * 2]); |
2435 | 0 | *pdfImag = |
2436 | 0 | double(reinterpret_cast<float *>(pabySrc)[iSrcOffset * 2 + 1]); |
2437 | 0 | break; |
2438 | | |
2439 | 0 | case GDT_CFloat64: |
2440 | 0 | *pdfReal = reinterpret_cast<double *>(pabySrc)[iSrcOffset * 2]; |
2441 | 0 | *pdfImag = reinterpret_cast<double *>(pabySrc)[iSrcOffset * 2 + 1]; |
2442 | 0 | break; |
2443 | | |
2444 | 0 | case GDT_Unknown: |
2445 | 0 | case GDT_TypeCount: |
2446 | 0 | CPLAssert(false); |
2447 | 0 | *pdfDensity = 0.0; |
2448 | 0 | return false; |
2449 | 0 | } |
2450 | | |
2451 | 0 | if (poWK->pafUnifiedSrcDensity != nullptr) |
2452 | 0 | *pdfDensity = double(poWK->pafUnifiedSrcDensity[iSrcOffset]); |
2453 | 0 | else |
2454 | 0 | *pdfDensity = 1.0; |
2455 | |
|
2456 | 0 | return *pdfDensity != 0.0; |
2457 | 0 | } |
2458 | | |
2459 | | /************************************************************************/ |
2460 | | /* GWKGetPixelValueReal() */ |
2461 | | /************************************************************************/ |
2462 | | |
2463 | | static bool GWKGetPixelValueReal(const GDALWarpKernel *poWK, int iBand, |
2464 | | GPtrDiff_t iSrcOffset, double *pdfDensity, |
2465 | | double *pdfReal) |
2466 | | |
2467 | 0 | { |
2468 | 0 | GByte *pabySrc = poWK->papabySrcImage[iBand]; |
2469 | |
|
2470 | 0 | if (poWK->papanBandSrcValid != nullptr && |
2471 | 0 | poWK->papanBandSrcValid[iBand] != nullptr && |
2472 | 0 | !CPLMaskGet(poWK->papanBandSrcValid[iBand], iSrcOffset)) |
2473 | 0 | { |
2474 | 0 | *pdfDensity = 0.0; |
2475 | 0 | return false; |
2476 | 0 | } |
2477 | | |
2478 | 0 | switch (poWK->eWorkingDataType) |
2479 | 0 | { |
2480 | 0 | case GDT_UInt8: |
2481 | 0 | *pdfReal = pabySrc[iSrcOffset]; |
2482 | 0 | break; |
2483 | | |
2484 | 0 | case GDT_Int8: |
2485 | 0 | *pdfReal = reinterpret_cast<GInt8 *>(pabySrc)[iSrcOffset]; |
2486 | 0 | break; |
2487 | | |
2488 | 0 | case GDT_Int16: |
2489 | 0 | *pdfReal = reinterpret_cast<GInt16 *>(pabySrc)[iSrcOffset]; |
2490 | 0 | break; |
2491 | | |
2492 | 0 | case GDT_UInt16: |
2493 | 0 | *pdfReal = reinterpret_cast<GUInt16 *>(pabySrc)[iSrcOffset]; |
2494 | 0 | break; |
2495 | | |
2496 | 0 | case GDT_Int32: |
2497 | 0 | *pdfReal = reinterpret_cast<GInt32 *>(pabySrc)[iSrcOffset]; |
2498 | 0 | break; |
2499 | | |
2500 | 0 | case GDT_UInt32: |
2501 | 0 | *pdfReal = reinterpret_cast<GUInt32 *>(pabySrc)[iSrcOffset]; |
2502 | 0 | break; |
2503 | | |
2504 | 0 | case GDT_Int64: |
2505 | 0 | *pdfReal = static_cast<double>( |
2506 | 0 | reinterpret_cast<std::int64_t *>(pabySrc)[iSrcOffset]); |
2507 | 0 | break; |
2508 | | |
2509 | 0 | case GDT_UInt64: |
2510 | 0 | *pdfReal = static_cast<double>( |
2511 | 0 | reinterpret_cast<std::uint64_t *>(pabySrc)[iSrcOffset]); |
2512 | 0 | break; |
2513 | | |
2514 | 0 | case GDT_Float16: |
2515 | 0 | *pdfReal = reinterpret_cast<GFloat16 *>(pabySrc)[iSrcOffset]; |
2516 | 0 | break; |
2517 | | |
2518 | 0 | case GDT_Float32: |
2519 | 0 | *pdfReal = double(reinterpret_cast<float *>(pabySrc)[iSrcOffset]); |
2520 | 0 | break; |
2521 | | |
2522 | 0 | case GDT_Float64: |
2523 | 0 | *pdfReal = reinterpret_cast<double *>(pabySrc)[iSrcOffset]; |
2524 | 0 | break; |
2525 | | |
2526 | 0 | case GDT_CInt16: |
2527 | 0 | case GDT_CInt32: |
2528 | 0 | case GDT_CFloat16: |
2529 | 0 | case GDT_CFloat32: |
2530 | 0 | case GDT_CFloat64: |
2531 | 0 | case GDT_Unknown: |
2532 | 0 | case GDT_TypeCount: |
2533 | 0 | CPLAssert(false); |
2534 | 0 | return false; |
2535 | 0 | } |
2536 | | |
2537 | 0 | if (poWK->pafUnifiedSrcDensity != nullptr) |
2538 | 0 | *pdfDensity = double(poWK->pafUnifiedSrcDensity[iSrcOffset]); |
2539 | 0 | else |
2540 | 0 | *pdfDensity = 1.0; |
2541 | |
|
2542 | 0 | return *pdfDensity != 0.0; |
2543 | 0 | } |
2544 | | |
2545 | | /************************************************************************/ |
2546 | | /* GWKGetPixelRow() */ |
2547 | | /************************************************************************/ |
2548 | | |
2549 | | /* It is assumed that adfImag[] is set to 0 by caller code for non-complex */ |
2550 | | /* data-types. */ |
2551 | | |
2552 | | static bool GWKGetPixelRow(const GDALWarpKernel *poWK, int iBand, |
2553 | | GPtrDiff_t iSrcOffset, int nHalfSrcLen, |
2554 | | double *padfDensity, double adfReal[], |
2555 | | double *padfImag) |
2556 | 0 | { |
2557 | | // We know that nSrcLen is even, so we can *always* unroll loops 2x. |
2558 | 0 | const int nSrcLen = nHalfSrcLen * 2; |
2559 | 0 | bool bHasValid = false; |
2560 | |
|
2561 | 0 | if (padfDensity != nullptr) |
2562 | 0 | { |
2563 | | // Init the density. |
2564 | 0 | for (int i = 0; i < nSrcLen; i += 2) |
2565 | 0 | { |
2566 | 0 | padfDensity[i] = 1.0; |
2567 | 0 | padfDensity[i + 1] = 1.0; |
2568 | 0 | } |
2569 | |
|
2570 | 0 | if (poWK->panUnifiedSrcValid != nullptr) |
2571 | 0 | { |
2572 | 0 | for (int i = 0; i < nSrcLen; i += 2) |
2573 | 0 | { |
2574 | 0 | if (CPLMaskGet(poWK->panUnifiedSrcValid, iSrcOffset + i)) |
2575 | 0 | bHasValid = true; |
2576 | 0 | else |
2577 | 0 | padfDensity[i] = 0.0; |
2578 | |
|
2579 | 0 | if (CPLMaskGet(poWK->panUnifiedSrcValid, iSrcOffset + i + 1)) |
2580 | 0 | bHasValid = true; |
2581 | 0 | else |
2582 | 0 | padfDensity[i + 1] = 0.0; |
2583 | 0 | } |
2584 | | |
2585 | | // Reset or fail as needed. |
2586 | 0 | if (bHasValid) |
2587 | 0 | bHasValid = false; |
2588 | 0 | else |
2589 | 0 | return false; |
2590 | 0 | } |
2591 | | |
2592 | 0 | if (poWK->papanBandSrcValid != nullptr && |
2593 | 0 | poWK->papanBandSrcValid[iBand] != nullptr) |
2594 | 0 | { |
2595 | 0 | for (int i = 0; i < nSrcLen; i += 2) |
2596 | 0 | { |
2597 | 0 | if (CPLMaskGet(poWK->papanBandSrcValid[iBand], iSrcOffset + i)) |
2598 | 0 | bHasValid = true; |
2599 | 0 | else |
2600 | 0 | padfDensity[i] = 0.0; |
2601 | |
|
2602 | 0 | if (CPLMaskGet(poWK->papanBandSrcValid[iBand], |
2603 | 0 | iSrcOffset + i + 1)) |
2604 | 0 | bHasValid = true; |
2605 | 0 | else |
2606 | 0 | padfDensity[i + 1] = 0.0; |
2607 | 0 | } |
2608 | | |
2609 | | // Reset or fail as needed. |
2610 | 0 | if (bHasValid) |
2611 | 0 | bHasValid = false; |
2612 | 0 | else |
2613 | 0 | return false; |
2614 | 0 | } |
2615 | 0 | } |
2616 | | |
2617 | | // TODO(schwehr): Fix casting. |
2618 | | // Fetch data. |
2619 | 0 | switch (poWK->eWorkingDataType) |
2620 | 0 | { |
2621 | 0 | case GDT_UInt8: |
2622 | 0 | { |
2623 | 0 | GByte *pSrc = |
2624 | 0 | reinterpret_cast<GByte *>(poWK->papabySrcImage[iBand]); |
2625 | 0 | pSrc += iSrcOffset; |
2626 | 0 | for (int i = 0; i < nSrcLen; i += 2) |
2627 | 0 | { |
2628 | 0 | adfReal[i] = pSrc[i]; |
2629 | 0 | adfReal[i + 1] = pSrc[i + 1]; |
2630 | 0 | } |
2631 | 0 | break; |
2632 | 0 | } |
2633 | | |
2634 | 0 | case GDT_Int8: |
2635 | 0 | { |
2636 | 0 | GInt8 *pSrc = |
2637 | 0 | reinterpret_cast<GInt8 *>(poWK->papabySrcImage[iBand]); |
2638 | 0 | pSrc += iSrcOffset; |
2639 | 0 | for (int i = 0; i < nSrcLen; i += 2) |
2640 | 0 | { |
2641 | 0 | adfReal[i] = pSrc[i]; |
2642 | 0 | adfReal[i + 1] = pSrc[i + 1]; |
2643 | 0 | } |
2644 | 0 | break; |
2645 | 0 | } |
2646 | | |
2647 | 0 | case GDT_Int16: |
2648 | 0 | { |
2649 | 0 | GInt16 *pSrc = |
2650 | 0 | reinterpret_cast<GInt16 *>(poWK->papabySrcImage[iBand]); |
2651 | 0 | pSrc += iSrcOffset; |
2652 | 0 | for (int i = 0; i < nSrcLen; i += 2) |
2653 | 0 | { |
2654 | 0 | adfReal[i] = pSrc[i]; |
2655 | 0 | adfReal[i + 1] = pSrc[i + 1]; |
2656 | 0 | } |
2657 | 0 | break; |
2658 | 0 | } |
2659 | | |
2660 | 0 | case GDT_UInt16: |
2661 | 0 | { |
2662 | 0 | GUInt16 *pSrc = |
2663 | 0 | reinterpret_cast<GUInt16 *>(poWK->papabySrcImage[iBand]); |
2664 | 0 | pSrc += iSrcOffset; |
2665 | 0 | for (int i = 0; i < nSrcLen; i += 2) |
2666 | 0 | { |
2667 | 0 | adfReal[i] = pSrc[i]; |
2668 | 0 | adfReal[i + 1] = pSrc[i + 1]; |
2669 | 0 | } |
2670 | 0 | break; |
2671 | 0 | } |
2672 | | |
2673 | 0 | case GDT_Int32: |
2674 | 0 | { |
2675 | 0 | GInt32 *pSrc = |
2676 | 0 | reinterpret_cast<GInt32 *>(poWK->papabySrcImage[iBand]); |
2677 | 0 | pSrc += iSrcOffset; |
2678 | 0 | for (int i = 0; i < nSrcLen; i += 2) |
2679 | 0 | { |
2680 | 0 | adfReal[i] = pSrc[i]; |
2681 | 0 | adfReal[i + 1] = pSrc[i + 1]; |
2682 | 0 | } |
2683 | 0 | break; |
2684 | 0 | } |
2685 | | |
2686 | 0 | case GDT_UInt32: |
2687 | 0 | { |
2688 | 0 | GUInt32 *pSrc = |
2689 | 0 | reinterpret_cast<GUInt32 *>(poWK->papabySrcImage[iBand]); |
2690 | 0 | pSrc += iSrcOffset; |
2691 | 0 | for (int i = 0; i < nSrcLen; i += 2) |
2692 | 0 | { |
2693 | 0 | adfReal[i] = pSrc[i]; |
2694 | 0 | adfReal[i + 1] = pSrc[i + 1]; |
2695 | 0 | } |
2696 | 0 | break; |
2697 | 0 | } |
2698 | | |
2699 | 0 | case GDT_Int64: |
2700 | 0 | { |
2701 | 0 | auto pSrc = |
2702 | 0 | reinterpret_cast<std::int64_t *>(poWK->papabySrcImage[iBand]); |
2703 | 0 | pSrc += iSrcOffset; |
2704 | 0 | for (int i = 0; i < nSrcLen; i += 2) |
2705 | 0 | { |
2706 | 0 | adfReal[i] = static_cast<double>(pSrc[i]); |
2707 | 0 | adfReal[i + 1] = static_cast<double>(pSrc[i + 1]); |
2708 | 0 | } |
2709 | 0 | break; |
2710 | 0 | } |
2711 | | |
2712 | 0 | case GDT_UInt64: |
2713 | 0 | { |
2714 | 0 | auto pSrc = |
2715 | 0 | reinterpret_cast<std::uint64_t *>(poWK->papabySrcImage[iBand]); |
2716 | 0 | pSrc += iSrcOffset; |
2717 | 0 | for (int i = 0; i < nSrcLen; i += 2) |
2718 | 0 | { |
2719 | 0 | adfReal[i] = static_cast<double>(pSrc[i]); |
2720 | 0 | adfReal[i + 1] = static_cast<double>(pSrc[i + 1]); |
2721 | 0 | } |
2722 | 0 | break; |
2723 | 0 | } |
2724 | | |
2725 | 0 | case GDT_Float16: |
2726 | 0 | { |
2727 | 0 | GFloat16 *pSrc = |
2728 | 0 | reinterpret_cast<GFloat16 *>(poWK->papabySrcImage[iBand]); |
2729 | 0 | pSrc += iSrcOffset; |
2730 | 0 | for (int i = 0; i < nSrcLen; i += 2) |
2731 | 0 | { |
2732 | 0 | adfReal[i] = pSrc[i]; |
2733 | 0 | adfReal[i + 1] = pSrc[i + 1]; |
2734 | 0 | } |
2735 | 0 | break; |
2736 | 0 | } |
2737 | | |
2738 | 0 | case GDT_Float32: |
2739 | 0 | { |
2740 | 0 | float *pSrc = |
2741 | 0 | reinterpret_cast<float *>(poWK->papabySrcImage[iBand]); |
2742 | 0 | pSrc += iSrcOffset; |
2743 | 0 | for (int i = 0; i < nSrcLen; i += 2) |
2744 | 0 | { |
2745 | 0 | adfReal[i] = double(pSrc[i]); |
2746 | 0 | adfReal[i + 1] = double(pSrc[i + 1]); |
2747 | 0 | } |
2748 | 0 | break; |
2749 | 0 | } |
2750 | | |
2751 | 0 | case GDT_Float64: |
2752 | 0 | { |
2753 | 0 | double *pSrc = |
2754 | 0 | reinterpret_cast<double *>(poWK->papabySrcImage[iBand]); |
2755 | 0 | pSrc += iSrcOffset; |
2756 | 0 | for (int i = 0; i < nSrcLen; i += 2) |
2757 | 0 | { |
2758 | 0 | adfReal[i] = pSrc[i]; |
2759 | 0 | adfReal[i + 1] = pSrc[i + 1]; |
2760 | 0 | } |
2761 | 0 | break; |
2762 | 0 | } |
2763 | | |
2764 | 0 | case GDT_CInt16: |
2765 | 0 | { |
2766 | 0 | GInt16 *pSrc = |
2767 | 0 | reinterpret_cast<GInt16 *>(poWK->papabySrcImage[iBand]); |
2768 | 0 | pSrc += 2 * iSrcOffset; |
2769 | 0 | for (int i = 0; i < nSrcLen; i += 2) |
2770 | 0 | { |
2771 | 0 | adfReal[i] = pSrc[2 * i]; |
2772 | 0 | padfImag[i] = pSrc[2 * i + 1]; |
2773 | |
|
2774 | 0 | adfReal[i + 1] = pSrc[2 * i + 2]; |
2775 | 0 | padfImag[i + 1] = pSrc[2 * i + 3]; |
2776 | 0 | } |
2777 | 0 | break; |
2778 | 0 | } |
2779 | | |
2780 | 0 | case GDT_CInt32: |
2781 | 0 | { |
2782 | 0 | GInt32 *pSrc = |
2783 | 0 | reinterpret_cast<GInt32 *>(poWK->papabySrcImage[iBand]); |
2784 | 0 | pSrc += 2 * iSrcOffset; |
2785 | 0 | for (int i = 0; i < nSrcLen; i += 2) |
2786 | 0 | { |
2787 | 0 | adfReal[i] = pSrc[2 * i]; |
2788 | 0 | padfImag[i] = pSrc[2 * i + 1]; |
2789 | |
|
2790 | 0 | adfReal[i + 1] = pSrc[2 * i + 2]; |
2791 | 0 | padfImag[i + 1] = pSrc[2 * i + 3]; |
2792 | 0 | } |
2793 | 0 | break; |
2794 | 0 | } |
2795 | | |
2796 | 0 | case GDT_CFloat16: |
2797 | 0 | { |
2798 | 0 | GFloat16 *pSrc = |
2799 | 0 | reinterpret_cast<GFloat16 *>(poWK->papabySrcImage[iBand]); |
2800 | 0 | pSrc += 2 * iSrcOffset; |
2801 | 0 | for (int i = 0; i < nSrcLen; i += 2) |
2802 | 0 | { |
2803 | 0 | adfReal[i] = pSrc[2 * i]; |
2804 | 0 | padfImag[i] = pSrc[2 * i + 1]; |
2805 | |
|
2806 | 0 | adfReal[i + 1] = pSrc[2 * i + 2]; |
2807 | 0 | padfImag[i + 1] = pSrc[2 * i + 3]; |
2808 | 0 | } |
2809 | 0 | break; |
2810 | 0 | } |
2811 | | |
2812 | 0 | case GDT_CFloat32: |
2813 | 0 | { |
2814 | 0 | float *pSrc = |
2815 | 0 | reinterpret_cast<float *>(poWK->papabySrcImage[iBand]); |
2816 | 0 | pSrc += 2 * iSrcOffset; |
2817 | 0 | for (int i = 0; i < nSrcLen; i += 2) |
2818 | 0 | { |
2819 | 0 | adfReal[i] = double(pSrc[2 * i]); |
2820 | 0 | padfImag[i] = double(pSrc[2 * i + 1]); |
2821 | |
|
2822 | 0 | adfReal[i + 1] = double(pSrc[2 * i + 2]); |
2823 | 0 | padfImag[i + 1] = double(pSrc[2 * i + 3]); |
2824 | 0 | } |
2825 | 0 | break; |
2826 | 0 | } |
2827 | | |
2828 | 0 | case GDT_CFloat64: |
2829 | 0 | { |
2830 | 0 | double *pSrc = |
2831 | 0 | reinterpret_cast<double *>(poWK->papabySrcImage[iBand]); |
2832 | 0 | pSrc += 2 * iSrcOffset; |
2833 | 0 | for (int i = 0; i < nSrcLen; i += 2) |
2834 | 0 | { |
2835 | 0 | adfReal[i] = pSrc[2 * i]; |
2836 | 0 | padfImag[i] = pSrc[2 * i + 1]; |
2837 | |
|
2838 | 0 | adfReal[i + 1] = pSrc[2 * i + 2]; |
2839 | 0 | padfImag[i + 1] = pSrc[2 * i + 3]; |
2840 | 0 | } |
2841 | 0 | break; |
2842 | 0 | } |
2843 | | |
2844 | 0 | case GDT_Unknown: |
2845 | 0 | case GDT_TypeCount: |
2846 | 0 | CPLAssert(false); |
2847 | 0 | if (padfDensity) |
2848 | 0 | memset(padfDensity, 0, nSrcLen * sizeof(double)); |
2849 | 0 | return false; |
2850 | 0 | } |
2851 | | |
2852 | 0 | if (padfDensity == nullptr) |
2853 | 0 | return true; |
2854 | | |
2855 | 0 | if (poWK->pafUnifiedSrcDensity == nullptr) |
2856 | 0 | { |
2857 | 0 | for (int i = 0; i < nSrcLen; i += 2) |
2858 | 0 | { |
2859 | | // Take into account earlier calcs. |
2860 | 0 | if (padfDensity[i] > SRC_DENSITY_THRESHOLD_DOUBLE) |
2861 | 0 | { |
2862 | 0 | padfDensity[i] = 1.0; |
2863 | 0 | bHasValid = true; |
2864 | 0 | } |
2865 | |
|
2866 | 0 | if (padfDensity[i + 1] > SRC_DENSITY_THRESHOLD_DOUBLE) |
2867 | 0 | { |
2868 | 0 | padfDensity[i + 1] = 1.0; |
2869 | 0 | bHasValid = true; |
2870 | 0 | } |
2871 | 0 | } |
2872 | 0 | } |
2873 | 0 | else |
2874 | 0 | { |
2875 | 0 | for (int i = 0; i < nSrcLen; i += 2) |
2876 | 0 | { |
2877 | 0 | if (padfDensity[i] > SRC_DENSITY_THRESHOLD_DOUBLE) |
2878 | 0 | padfDensity[i] = |
2879 | 0 | double(poWK->pafUnifiedSrcDensity[iSrcOffset + i]); |
2880 | 0 | if (padfDensity[i] > SRC_DENSITY_THRESHOLD_DOUBLE) |
2881 | 0 | bHasValid = true; |
2882 | |
|
2883 | 0 | if (padfDensity[i + 1] > SRC_DENSITY_THRESHOLD_DOUBLE) |
2884 | 0 | padfDensity[i + 1] = |
2885 | 0 | double(poWK->pafUnifiedSrcDensity[iSrcOffset + i + 1]); |
2886 | 0 | if (padfDensity[i + 1] > SRC_DENSITY_THRESHOLD_DOUBLE) |
2887 | 0 | bHasValid = true; |
2888 | 0 | } |
2889 | 0 | } |
2890 | |
|
2891 | 0 | return bHasValid; |
2892 | 0 | } |
2893 | | |
2894 | | /************************************************************************/ |
2895 | | /* GWKGetPixelT() */ |
2896 | | /************************************************************************/ |
2897 | | |
2898 | | template <class T> |
2899 | | static bool GWKGetPixelT(const GDALWarpKernel *poWK, int iBand, |
2900 | | GPtrDiff_t iSrcOffset, double *pdfDensity, T *pValue) |
2901 | | |
2902 | 0 | { |
2903 | 0 | T *pSrc = reinterpret_cast<T *>(poWK->papabySrcImage[iBand]); |
2904 | |
|
2905 | 0 | if ((poWK->panUnifiedSrcValid != nullptr && |
2906 | 0 | !CPLMaskGet(poWK->panUnifiedSrcValid, iSrcOffset)) || |
2907 | 0 | (poWK->papanBandSrcValid != nullptr && |
2908 | 0 | poWK->papanBandSrcValid[iBand] != nullptr && |
2909 | 0 | !CPLMaskGet(poWK->papanBandSrcValid[iBand], iSrcOffset))) |
2910 | 0 | { |
2911 | 0 | *pdfDensity = 0.0; |
2912 | 0 | return false; |
2913 | 0 | } |
2914 | | |
2915 | 0 | *pValue = pSrc[iSrcOffset]; |
2916 | |
|
2917 | 0 | if (poWK->pafUnifiedSrcDensity == nullptr) |
2918 | 0 | *pdfDensity = 1.0; |
2919 | 0 | else |
2920 | 0 | *pdfDensity = double(poWK->pafUnifiedSrcDensity[iSrcOffset]); |
2921 | |
|
2922 | 0 | return *pdfDensity != 0.0; |
2923 | 0 | } Unexecuted instantiation: gdalwarpkernel.cpp:bool GWKGetPixelT<unsigned char>(GDALWarpKernel const*, int, long long, double*, unsigned char*) Unexecuted instantiation: gdalwarpkernel.cpp:bool GWKGetPixelT<short>(GDALWarpKernel const*, int, long long, double*, short*) Unexecuted instantiation: gdalwarpkernel.cpp:bool GWKGetPixelT<unsigned short>(GDALWarpKernel const*, int, long long, double*, unsigned short*) Unexecuted instantiation: gdalwarpkernel.cpp:bool GWKGetPixelT<float>(GDALWarpKernel const*, int, long long, double*, float*) Unexecuted instantiation: gdalwarpkernel.cpp:bool GWKGetPixelT<int>(GDALWarpKernel const*, int, long long, double*, int*) Unexecuted instantiation: gdalwarpkernel.cpp:bool GWKGetPixelT<unsigned int>(GDALWarpKernel const*, int, long long, double*, unsigned int*) Unexecuted instantiation: gdalwarpkernel.cpp:bool GWKGetPixelT<long>(GDALWarpKernel const*, int, long long, double*, long*) Unexecuted instantiation: gdalwarpkernel.cpp:bool GWKGetPixelT<unsigned long>(GDALWarpKernel const*, int, long long, double*, unsigned long*) Unexecuted instantiation: gdalwarpkernel.cpp:bool GWKGetPixelT<cpl::Float16>(GDALWarpKernel const*, int, long long, double*, cpl::Float16*) Unexecuted instantiation: gdalwarpkernel.cpp:bool GWKGetPixelT<double>(GDALWarpKernel const*, int, long long, double*, double*) |
2924 | | |
2925 | | /************************************************************************/ |
2926 | | /* GWKBilinearResample() */ |
2927 | | /* Set of bilinear interpolators */ |
2928 | | /************************************************************************/ |
2929 | | |
2930 | | static bool GWKBilinearResample4Sample(const GDALWarpKernel *poWK, int iBand, |
2931 | | double dfSrcX, double dfSrcY, |
2932 | | double *pdfDensity, double *pdfReal, |
2933 | | double *pdfImag) |
2934 | | |
2935 | 0 | { |
2936 | | // Save as local variables to avoid following pointers. |
2937 | 0 | const int nSrcXSize = poWK->nSrcXSize; |
2938 | 0 | const int nSrcYSize = poWK->nSrcYSize; |
2939 | |
|
2940 | 0 | int iSrcX = static_cast<int>(floor(dfSrcX - 0.5)); |
2941 | 0 | int iSrcY = static_cast<int>(floor(dfSrcY - 0.5)); |
2942 | 0 | double dfRatioX = 1.5 - (dfSrcX - iSrcX); |
2943 | 0 | double dfRatioY = 1.5 - (dfSrcY - iSrcY); |
2944 | 0 | bool bShifted = false; |
2945 | |
|
2946 | 0 | if (iSrcX == -1) |
2947 | 0 | { |
2948 | 0 | iSrcX = 0; |
2949 | 0 | dfRatioX = 1; |
2950 | 0 | } |
2951 | 0 | if (iSrcY == -1) |
2952 | 0 | { |
2953 | 0 | iSrcY = 0; |
2954 | 0 | dfRatioY = 1; |
2955 | 0 | } |
2956 | 0 | GPtrDiff_t iSrcOffset = iSrcX + static_cast<GPtrDiff_t>(iSrcY) * nSrcXSize; |
2957 | | |
2958 | | // Shift so we don't overrun the array. |
2959 | 0 | if (static_cast<GPtrDiff_t>(nSrcXSize) * nSrcYSize == iSrcOffset + 1 || |
2960 | 0 | static_cast<GPtrDiff_t>(nSrcXSize) * nSrcYSize == |
2961 | 0 | iSrcOffset + nSrcXSize + 1) |
2962 | 0 | { |
2963 | 0 | bShifted = true; |
2964 | 0 | --iSrcOffset; |
2965 | 0 | } |
2966 | |
|
2967 | 0 | double adfDensity[2] = {0.0, 0.0}; |
2968 | 0 | double adfReal[2] = {0.0, 0.0}; |
2969 | 0 | double adfImag[2] = {0.0, 0.0}; |
2970 | 0 | double dfAccumulatorReal = 0.0; |
2971 | 0 | double dfAccumulatorImag = 0.0; |
2972 | 0 | double dfAccumulatorDensity = 0.0; |
2973 | 0 | double dfAccumulatorDivisor = 0.0; |
2974 | |
|
2975 | 0 | const GPtrDiff_t nSrcPixels = |
2976 | 0 | static_cast<GPtrDiff_t>(nSrcXSize) * nSrcYSize; |
2977 | | // Get pixel row. |
2978 | 0 | if (iSrcY >= 0 && iSrcY < nSrcYSize && iSrcOffset >= 0 && |
2979 | 0 | iSrcOffset < nSrcPixels && |
2980 | 0 | GWKGetPixelRow(poWK, iBand, iSrcOffset, 1, adfDensity, adfReal, |
2981 | 0 | adfImag)) |
2982 | 0 | { |
2983 | 0 | double dfMult1 = dfRatioX * dfRatioY; |
2984 | 0 | double dfMult2 = (1.0 - dfRatioX) * dfRatioY; |
2985 | | |
2986 | | // Shifting corrected. |
2987 | 0 | if (bShifted) |
2988 | 0 | { |
2989 | 0 | adfReal[0] = adfReal[1]; |
2990 | 0 | adfImag[0] = adfImag[1]; |
2991 | 0 | adfDensity[0] = adfDensity[1]; |
2992 | 0 | } |
2993 | | |
2994 | | // Upper Left Pixel. |
2995 | 0 | if (iSrcX >= 0 && iSrcX < nSrcXSize && |
2996 | 0 | adfDensity[0] > SRC_DENSITY_THRESHOLD_DOUBLE) |
2997 | 0 | { |
2998 | 0 | dfAccumulatorDivisor += dfMult1; |
2999 | |
|
3000 | 0 | dfAccumulatorReal += adfReal[0] * dfMult1; |
3001 | 0 | dfAccumulatorImag += adfImag[0] * dfMult1; |
3002 | 0 | dfAccumulatorDensity += adfDensity[0] * dfMult1; |
3003 | 0 | } |
3004 | | |
3005 | | // Upper Right Pixel. |
3006 | 0 | if (iSrcX + 1 >= 0 && iSrcX + 1 < nSrcXSize && |
3007 | 0 | adfDensity[1] > SRC_DENSITY_THRESHOLD_DOUBLE) |
3008 | 0 | { |
3009 | 0 | dfAccumulatorDivisor += dfMult2; |
3010 | |
|
3011 | 0 | dfAccumulatorReal += adfReal[1] * dfMult2; |
3012 | 0 | dfAccumulatorImag += adfImag[1] * dfMult2; |
3013 | 0 | dfAccumulatorDensity += adfDensity[1] * dfMult2; |
3014 | 0 | } |
3015 | 0 | } |
3016 | | |
3017 | | // Get pixel row. |
3018 | 0 | if (iSrcY + 1 >= 0 && iSrcY + 1 < nSrcYSize && |
3019 | 0 | iSrcOffset + nSrcXSize >= 0 && iSrcOffset + nSrcXSize < nSrcPixels && |
3020 | 0 | GWKGetPixelRow(poWK, iBand, iSrcOffset + nSrcXSize, 1, adfDensity, |
3021 | 0 | adfReal, adfImag)) |
3022 | 0 | { |
3023 | 0 | double dfMult1 = dfRatioX * (1.0 - dfRatioY); |
3024 | 0 | double dfMult2 = (1.0 - dfRatioX) * (1.0 - dfRatioY); |
3025 | | |
3026 | | // Shifting corrected |
3027 | 0 | if (bShifted) |
3028 | 0 | { |
3029 | 0 | adfReal[0] = adfReal[1]; |
3030 | 0 | adfImag[0] = adfImag[1]; |
3031 | 0 | adfDensity[0] = adfDensity[1]; |
3032 | 0 | } |
3033 | | |
3034 | | // Lower Left Pixel |
3035 | 0 | if (iSrcX >= 0 && iSrcX < nSrcXSize && |
3036 | 0 | adfDensity[0] > SRC_DENSITY_THRESHOLD_DOUBLE) |
3037 | 0 | { |
3038 | 0 | dfAccumulatorDivisor += dfMult1; |
3039 | |
|
3040 | 0 | dfAccumulatorReal += adfReal[0] * dfMult1; |
3041 | 0 | dfAccumulatorImag += adfImag[0] * dfMult1; |
3042 | 0 | dfAccumulatorDensity += adfDensity[0] * dfMult1; |
3043 | 0 | } |
3044 | | |
3045 | | // Lower Right Pixel. |
3046 | 0 | if (iSrcX + 1 >= 0 && iSrcX + 1 < nSrcXSize && |
3047 | 0 | adfDensity[1] > SRC_DENSITY_THRESHOLD_DOUBLE) |
3048 | 0 | { |
3049 | 0 | dfAccumulatorDivisor += dfMult2; |
3050 | |
|
3051 | 0 | dfAccumulatorReal += adfReal[1] * dfMult2; |
3052 | 0 | dfAccumulatorImag += adfImag[1] * dfMult2; |
3053 | 0 | dfAccumulatorDensity += adfDensity[1] * dfMult2; |
3054 | 0 | } |
3055 | 0 | } |
3056 | | |
3057 | | /* -------------------------------------------------------------------- */ |
3058 | | /* Return result. */ |
3059 | | /* -------------------------------------------------------------------- */ |
3060 | 0 | if (dfAccumulatorDivisor == 1.0) |
3061 | 0 | { |
3062 | 0 | *pdfReal = dfAccumulatorReal; |
3063 | 0 | *pdfImag = dfAccumulatorImag; |
3064 | 0 | *pdfDensity = dfAccumulatorDensity; |
3065 | 0 | return false; |
3066 | 0 | } |
3067 | 0 | else if (dfAccumulatorDivisor < 0.00001) |
3068 | 0 | { |
3069 | 0 | *pdfReal = 0.0; |
3070 | 0 | *pdfImag = 0.0; |
3071 | 0 | *pdfDensity = 0.0; |
3072 | 0 | return false; |
3073 | 0 | } |
3074 | 0 | else |
3075 | 0 | { |
3076 | 0 | *pdfReal = dfAccumulatorReal / dfAccumulatorDivisor; |
3077 | 0 | *pdfImag = dfAccumulatorImag / dfAccumulatorDivisor; |
3078 | 0 | *pdfDensity = dfAccumulatorDensity / dfAccumulatorDivisor; |
3079 | 0 | return true; |
3080 | 0 | } |
3081 | 0 | } |
3082 | | |
3083 | | template <class T> |
3084 | | static bool GWKBilinearResampleNoMasks4SampleT(const GDALWarpKernel *poWK, |
3085 | | int iBand, double dfSrcX, |
3086 | | double dfSrcY, T *pValue) |
3087 | | |
3088 | 0 | { |
3089 | |
|
3090 | 0 | const int iSrcX = static_cast<int>(floor(dfSrcX - 0.5)); |
3091 | 0 | const int iSrcY = static_cast<int>(floor(dfSrcY - 0.5)); |
3092 | 0 | GPtrDiff_t iSrcOffset = |
3093 | 0 | iSrcX + static_cast<GPtrDiff_t>(iSrcY) * poWK->nSrcXSize; |
3094 | 0 | const double dfRatioX = 1.5 - (dfSrcX - iSrcX); |
3095 | 0 | const double dfRatioY = 1.5 - (dfSrcY - iSrcY); |
3096 | |
|
3097 | 0 | const T *const pSrc = reinterpret_cast<T *>(poWK->papabySrcImage[iBand]); |
3098 | |
|
3099 | 0 | if (iSrcX >= 0 && iSrcX + 1 < poWK->nSrcXSize && iSrcY >= 0 && |
3100 | 0 | iSrcY + 1 < poWK->nSrcYSize) |
3101 | 0 | { |
3102 | 0 | const double dfAccumulator = |
3103 | 0 | (double(pSrc[iSrcOffset]) * dfRatioX + |
3104 | 0 | double(pSrc[iSrcOffset + 1]) * (1.0 - dfRatioX)) * |
3105 | 0 | dfRatioY + |
3106 | 0 | (double(pSrc[iSrcOffset + poWK->nSrcXSize]) * dfRatioX + |
3107 | 0 | double(pSrc[iSrcOffset + 1 + poWK->nSrcXSize]) * |
3108 | 0 | (1.0 - dfRatioX)) * |
3109 | 0 | (1.0 - dfRatioY); |
3110 | |
|
3111 | 0 | *pValue = GWKRoundValueT<T>(dfAccumulator); |
3112 | |
|
3113 | 0 | return true; |
3114 | 0 | } |
3115 | | |
3116 | 0 | double dfAccumulatorDivisor = 0.0; |
3117 | 0 | double dfAccumulator = 0.0; |
3118 | | |
3119 | | // Upper Left Pixel. |
3120 | 0 | if (iSrcX >= 0 && iSrcX < poWK->nSrcXSize && iSrcY >= 0 && |
3121 | 0 | iSrcY < poWK->nSrcYSize) |
3122 | 0 | { |
3123 | 0 | const double dfMult = dfRatioX * dfRatioY; |
3124 | |
|
3125 | 0 | dfAccumulatorDivisor += dfMult; |
3126 | |
|
3127 | 0 | dfAccumulator += double(pSrc[iSrcOffset]) * dfMult; |
3128 | 0 | } |
3129 | | |
3130 | | // Upper Right Pixel. |
3131 | 0 | if (iSrcX + 1 >= 0 && iSrcX + 1 < poWK->nSrcXSize && iSrcY >= 0 && |
3132 | 0 | iSrcY < poWK->nSrcYSize) |
3133 | 0 | { |
3134 | 0 | const double dfMult = (1.0 - dfRatioX) * dfRatioY; |
3135 | |
|
3136 | 0 | dfAccumulatorDivisor += dfMult; |
3137 | |
|
3138 | 0 | dfAccumulator += double(pSrc[iSrcOffset + 1]) * dfMult; |
3139 | 0 | } |
3140 | | |
3141 | | // Lower Right Pixel. |
3142 | 0 | if (iSrcX + 1 >= 0 && iSrcX + 1 < poWK->nSrcXSize && iSrcY + 1 >= 0 && |
3143 | 0 | iSrcY + 1 < poWK->nSrcYSize) |
3144 | 0 | { |
3145 | 0 | const double dfMult = (1.0 - dfRatioX) * (1.0 - dfRatioY); |
3146 | |
|
3147 | 0 | dfAccumulatorDivisor += dfMult; |
3148 | |
|
3149 | 0 | dfAccumulator += |
3150 | 0 | double(pSrc[iSrcOffset + 1 + poWK->nSrcXSize]) * dfMult; |
3151 | 0 | } |
3152 | | |
3153 | | // Lower Left Pixel. |
3154 | 0 | if (iSrcX >= 0 && iSrcX < poWK->nSrcXSize && iSrcY + 1 >= 0 && |
3155 | 0 | iSrcY + 1 < poWK->nSrcYSize) |
3156 | 0 | { |
3157 | 0 | const double dfMult = dfRatioX * (1.0 - dfRatioY); |
3158 | |
|
3159 | 0 | dfAccumulatorDivisor += dfMult; |
3160 | |
|
3161 | 0 | dfAccumulator += double(pSrc[iSrcOffset + poWK->nSrcXSize]) * dfMult; |
3162 | 0 | } |
3163 | | |
3164 | | /* -------------------------------------------------------------------- */ |
3165 | | /* Return result. */ |
3166 | | /* -------------------------------------------------------------------- */ |
3167 | 0 | double dfValue = 0.0; |
3168 | |
|
3169 | 0 | if (dfAccumulatorDivisor < 0.00001) |
3170 | 0 | { |
3171 | 0 | *pValue = 0; |
3172 | 0 | return false; |
3173 | 0 | } |
3174 | 0 | else if (dfAccumulatorDivisor == 1.0) |
3175 | 0 | { |
3176 | 0 | dfValue = dfAccumulator; |
3177 | 0 | } |
3178 | 0 | else |
3179 | 0 | { |
3180 | 0 | dfValue = dfAccumulator / dfAccumulatorDivisor; |
3181 | 0 | } |
3182 | | |
3183 | 0 | *pValue = GWKRoundValueT<T>(dfValue); |
3184 | |
|
3185 | 0 | return true; |
3186 | 0 | } Unexecuted instantiation: gdalwarpkernel.cpp:bool GWKBilinearResampleNoMasks4SampleT<unsigned char>(GDALWarpKernel const*, int, double, double, unsigned char*) Unexecuted instantiation: gdalwarpkernel.cpp:bool GWKBilinearResampleNoMasks4SampleT<float>(GDALWarpKernel const*, int, double, double, float*) Unexecuted instantiation: gdalwarpkernel.cpp:bool GWKBilinearResampleNoMasks4SampleT<short>(GDALWarpKernel const*, int, double, double, short*) Unexecuted instantiation: gdalwarpkernel.cpp:bool GWKBilinearResampleNoMasks4SampleT<unsigned short>(GDALWarpKernel const*, int, double, double, unsigned short*) |
3187 | | |
3188 | | /************************************************************************/ |
3189 | | /* GWKCubicResample() */ |
3190 | | /* Set of bicubic interpolators using cubic convolution. */ |
3191 | | /************************************************************************/ |
3192 | | |
3193 | | // http://verona.fi-p.unam.mx/boris/practicas/CubConvInterp.pdf Formula 18 |
3194 | | // or http://en.wikipedia.org/wiki/Cubic_Hermite_spline : CINTx(p_1,p0,p1,p2) |
3195 | | // http://en.wikipedia.org/wiki/Bicubic_interpolation: matrix notation |
3196 | | |
3197 | | template <typename T> |
3198 | | static inline T CubicConvolution(T distance1, T distance2, T distance3, T f0, |
3199 | | T f1, T f2, T f3) |
3200 | 0 | { |
3201 | 0 | return (f1 + T(0.5) * (distance1 * (f2 - f0) + |
3202 | 0 | distance2 * (2 * f0 - 5 * f1 + 4 * f2 - f3) + |
3203 | 0 | distance3 * (3 * (f1 - f2) + f3 - f0))); |
3204 | 0 | } |
3205 | | |
3206 | | /************************************************************************/ |
3207 | | /* GWKCubicComputeWeights() */ |
3208 | | /************************************************************************/ |
3209 | | |
3210 | | // adfCoeffs[2] = 1.0 - (adfCoeffs[0] + adfCoeffs[1] - adfCoeffs[3]); |
3211 | | |
3212 | | template <typename T> |
3213 | | static inline void GWKCubicComputeWeights(T x, T coeffs[4]) |
3214 | 0 | { |
3215 | 0 | const T halfX = T(0.5) * x; |
3216 | 0 | const T threeX = T(3.0) * x; |
3217 | 0 | const T halfX2 = halfX * x; |
3218 | |
|
3219 | 0 | coeffs[0] = halfX * (-1 + x * (2 - x)); |
3220 | 0 | coeffs[1] = 1 + halfX2 * (-5 + threeX); |
3221 | 0 | coeffs[2] = halfX * (1 + x * (4 - threeX)); |
3222 | 0 | coeffs[3] = halfX2 * (-1 + x); |
3223 | 0 | } Unexecuted instantiation: gdalwarpkernel.cpp:void GWKCubicComputeWeights<double>(double, double*) Unexecuted instantiation: gdalwarpkernel.cpp:void GWKCubicComputeWeights<float>(float, float*) |
3224 | | |
3225 | | template <typename T> inline double CONVOL4(const double v1[4], const T v2[4]) |
3226 | 0 | { |
3227 | 0 | return v1[0] * double(v2[0]) + v1[1] * double(v2[1]) + |
3228 | 0 | v1[2] * double(v2[2]) + v1[3] * double(v2[3]); |
3229 | 0 | } Unexecuted instantiation: double CONVOL4<double>(double const*, double const*) Unexecuted instantiation: double CONVOL4<float>(double const*, float const*) Unexecuted instantiation: double CONVOL4<unsigned char>(double const*, unsigned char const*) Unexecuted instantiation: double CONVOL4<unsigned short>(double const*, unsigned short const*) Unexecuted instantiation: double CONVOL4<short>(double const*, short const*) |
3230 | | |
3231 | | #if 0 |
3232 | | // Optimal (in theory...) for max 2 convolutions: 14 multiplications |
3233 | | // instead of 17. |
3234 | | // TODO(schwehr): Use an inline function. |
3235 | | #define GWKCubicComputeWeights_Optim2MAX(dfX_, adfCoeffs, dfHalfX) \ |
3236 | | { \ |
3237 | | const double dfX = dfX_; \ |
3238 | | dfHalfX = 0.5 * dfX; \ |
3239 | | const double dfThreeX = 3.0 * dfX; \ |
3240 | | const double dfXMinus1 = dfX - 1; \ |
3241 | | \ |
3242 | | adfCoeffs[0] = -1 + dfX * (2 - dfX); \ |
3243 | | adfCoeffs[1] = dfX * (-5 + dfThreeX); \ |
3244 | | /*adfCoeffs[2] = 1 + dfX * (4 - dfThreeX);*/ \ |
3245 | | adfCoeffs[2] = -dfXMinus1 - adfCoeffs[1]; \ |
3246 | | /*adfCoeffs[3] = dfX * (-1 + dfX); */ \ |
3247 | | adfCoeffs[3] = dfXMinus1 - adfCoeffs[0]; \ |
3248 | | } |
3249 | | |
3250 | | // TODO(schwehr): Use an inline function. |
3251 | | #define CONVOL4_Optim2MAX(adfCoeffs, v, dfHalfX) \ |
3252 | | ((v)[1] + (dfHalfX) * ((adfCoeffs)[0] * (v)[0] + (adfCoeffs)[1] * (v)[1] + \ |
3253 | | (adfCoeffs)[2] * (v)[2] + (adfCoeffs)[3] * (v)[3])) |
3254 | | #endif |
3255 | | |
3256 | | static bool GWKCubicResample4Sample(const GDALWarpKernel *poWK, int iBand, |
3257 | | double dfSrcX, double dfSrcY, |
3258 | | double *pdfDensity, double *pdfReal, |
3259 | | double *pdfImag) |
3260 | | |
3261 | 0 | { |
3262 | 0 | const int iSrcX = static_cast<int>(dfSrcX - 0.5); |
3263 | 0 | const int iSrcY = static_cast<int>(dfSrcY - 0.5); |
3264 | 0 | GPtrDiff_t iSrcOffset = |
3265 | 0 | iSrcX + static_cast<GPtrDiff_t>(iSrcY) * poWK->nSrcXSize; |
3266 | 0 | const double dfDeltaX = dfSrcX - 0.5 - iSrcX; |
3267 | 0 | const double dfDeltaY = dfSrcY - 0.5 - iSrcY; |
3268 | 0 | double adfDensity[4] = {}; |
3269 | 0 | double adfReal[4] = {}; |
3270 | 0 | double adfImag[4] = {}; |
3271 | | |
3272 | | // Get the bilinear interpolation at the image borders. |
3273 | 0 | if (iSrcX - 1 < 0 || iSrcX + 2 >= poWK->nSrcXSize || iSrcY - 1 < 0 || |
3274 | 0 | iSrcY + 2 >= poWK->nSrcYSize) |
3275 | 0 | return GWKBilinearResample4Sample(poWK, iBand, dfSrcX, dfSrcY, |
3276 | 0 | pdfDensity, pdfReal, pdfImag); |
3277 | | |
3278 | 0 | double adfValueDens[4] = {}; |
3279 | 0 | double adfValueReal[4] = {}; |
3280 | 0 | double adfValueImag[4] = {}; |
3281 | |
|
3282 | 0 | double adfCoeffsX[4] = {}; |
3283 | 0 | GWKCubicComputeWeights(dfDeltaX, adfCoeffsX); |
3284 | |
|
3285 | 0 | for (GPtrDiff_t i = -1; i < 3; i++) |
3286 | 0 | { |
3287 | 0 | if (!GWKGetPixelRow(poWK, iBand, iSrcOffset + i * poWK->nSrcXSize - 1, |
3288 | 0 | 2, adfDensity, adfReal, adfImag) || |
3289 | 0 | adfDensity[0] < SRC_DENSITY_THRESHOLD_DOUBLE || |
3290 | 0 | adfDensity[1] < SRC_DENSITY_THRESHOLD_DOUBLE || |
3291 | 0 | adfDensity[2] < SRC_DENSITY_THRESHOLD_DOUBLE || |
3292 | 0 | adfDensity[3] < SRC_DENSITY_THRESHOLD_DOUBLE) |
3293 | 0 | { |
3294 | 0 | return GWKBilinearResample4Sample(poWK, iBand, dfSrcX, dfSrcY, |
3295 | 0 | pdfDensity, pdfReal, pdfImag); |
3296 | 0 | } |
3297 | | |
3298 | 0 | adfValueDens[i + 1] = CONVOL4(adfCoeffsX, adfDensity); |
3299 | 0 | adfValueReal[i + 1] = CONVOL4(adfCoeffsX, adfReal); |
3300 | 0 | adfValueImag[i + 1] = CONVOL4(adfCoeffsX, adfImag); |
3301 | 0 | } |
3302 | | |
3303 | | /* -------------------------------------------------------------------- */ |
3304 | | /* For now, if we have any pixels missing in the kernel area, */ |
3305 | | /* we fallback on using bilinear interpolation. Ideally we */ |
3306 | | /* should do "weight adjustment" of our results similarly to */ |
3307 | | /* what is done for the cubic spline and lanc. interpolators. */ |
3308 | | /* -------------------------------------------------------------------- */ |
3309 | | |
3310 | 0 | double adfCoeffsY[4] = {}; |
3311 | 0 | GWKCubicComputeWeights(dfDeltaY, adfCoeffsY); |
3312 | |
|
3313 | 0 | *pdfDensity = CONVOL4(adfCoeffsY, adfValueDens); |
3314 | 0 | *pdfReal = CONVOL4(adfCoeffsY, adfValueReal); |
3315 | 0 | *pdfImag = CONVOL4(adfCoeffsY, adfValueImag); |
3316 | |
|
3317 | 0 | return true; |
3318 | 0 | } |
3319 | | |
3320 | | #ifdef USE_SSE2 |
3321 | | |
3322 | | /************************************************************************/ |
3323 | | /* XMMLoad4Values() */ |
3324 | | /* */ |
3325 | | /* Load 4 packed byte or uint16, cast them to float and put them in a */ |
3326 | | /* m128 register. */ |
3327 | | /************************************************************************/ |
3328 | | |
3329 | | static CPL_INLINE __m128 XMMLoad4Values(const GByte *ptr) |
3330 | 0 | { |
3331 | 0 | unsigned int i; |
3332 | 0 | memcpy(&i, ptr, 4); |
3333 | 0 | __m128i xmm_i = _mm_cvtsi32_si128(i); |
3334 | | // Zero extend 4 packed unsigned 8-bit integers in a to packed |
3335 | | // 32-bit integers. |
3336 | | #if defined(__SSE4_1__) || defined(__AVX__) || defined(USE_NEON_OPTIMIZATIONS) |
3337 | | xmm_i = _mm_cvtepu8_epi32(xmm_i); |
3338 | | #else |
3339 | 0 | xmm_i = _mm_unpacklo_epi8(xmm_i, _mm_setzero_si128()); |
3340 | 0 | xmm_i = _mm_unpacklo_epi16(xmm_i, _mm_setzero_si128()); |
3341 | 0 | #endif |
3342 | 0 | return _mm_cvtepi32_ps(xmm_i); |
3343 | 0 | } |
3344 | | |
3345 | | static CPL_INLINE __m128 XMMLoad4Values(const GUInt16 *ptr) |
3346 | 0 | { |
3347 | 0 | GUInt64 i; |
3348 | 0 | memcpy(&i, ptr, 8); |
3349 | 0 | __m128i xmm_i = _mm_cvtsi64_si128(i); |
3350 | | // Zero extend 4 packed unsigned 16-bit integers in a to packed |
3351 | | // 32-bit integers. |
3352 | | #if defined(__SSE4_1__) || defined(__AVX__) || defined(USE_NEON_OPTIMIZATIONS) |
3353 | | xmm_i = _mm_cvtepu16_epi32(xmm_i); |
3354 | | #else |
3355 | 0 | xmm_i = _mm_unpacklo_epi16(xmm_i, _mm_setzero_si128()); |
3356 | 0 | #endif |
3357 | 0 | return _mm_cvtepi32_ps(xmm_i); |
3358 | 0 | } |
3359 | | |
3360 | | /************************************************************************/ |
3361 | | /* XMMHorizontalAdd() */ |
3362 | | /* */ |
3363 | | /* Return the sum of the 4 floating points of the register. */ |
3364 | | /************************************************************************/ |
3365 | | |
3366 | | #if defined(__SSE3__) || defined(USE_NEON_OPTIMIZATIONS) |
3367 | | static CPL_INLINE float XMMHorizontalAdd(__m128 v) |
3368 | | { |
3369 | | __m128 shuf = _mm_movehdup_ps(v); // (v3 , v3 , v1 , v1) |
3370 | | __m128 sums = _mm_add_ps(v, shuf); // (v3+v3, v3+v2, v1+v1, v1+v0) |
3371 | | shuf = _mm_movehl_ps(shuf, sums); // (v3 , v3 , v3+v3, v3+v2) |
3372 | | sums = _mm_add_ss(sums, shuf); // (v1+v0)+(v3+v2) |
3373 | | return _mm_cvtss_f32(sums); |
3374 | | } |
3375 | | #else |
3376 | | static CPL_INLINE float XMMHorizontalAdd(__m128 v) |
3377 | 0 | { |
3378 | 0 | __m128 shuf = _mm_movehl_ps(v, v); // (v3 , v2 , v3 , v2) |
3379 | 0 | __m128 sums = _mm_add_ps(v, shuf); // (v3+v3, v2+v2, v3+v1, v2+v0) |
3380 | 0 | shuf = _mm_shuffle_ps(sums, sums, 1); // (v2+v0, v2+v0, v2+v0, v3+v1) |
3381 | 0 | sums = _mm_add_ss(sums, shuf); // (v2+v0)+(v3+v1) |
3382 | 0 | return _mm_cvtss_f32(sums); |
3383 | 0 | } |
3384 | | #endif |
3385 | | |
3386 | | #endif // define USE_SSE2 |
3387 | | |
3388 | | /************************************************************************/ |
3389 | | /* GWKCubicResampleSrcMaskIsDensity4SampleRealT() */ |
3390 | | /************************************************************************/ |
3391 | | |
3392 | | // Note: if USE_SSE_CUBIC_IMPL, only instantiate that for Byte and UInt16, |
3393 | | // because there are a few assumptions above those types. |
3394 | | // We do not define USE_SSE_CUBIC_IMPL since in practice, it gives zero |
3395 | | // perf benefit. |
3396 | | |
3397 | | template <class T> |
3398 | | static CPL_INLINE bool GWKCubicResampleSrcMaskIsDensity4SampleRealT( |
3399 | | const GDALWarpKernel *poWK, int iBand, double dfSrcX, double dfSrcY, |
3400 | | double *pdfDensity, double *pdfReal) |
3401 | 0 | { |
3402 | 0 | const int iSrcX = static_cast<int>(dfSrcX - 0.5); |
3403 | 0 | const int iSrcY = static_cast<int>(dfSrcY - 0.5); |
3404 | 0 | const GPtrDiff_t iSrcOffset = |
3405 | 0 | iSrcX + static_cast<GPtrDiff_t>(iSrcY) * poWK->nSrcXSize; |
3406 | | |
3407 | | // Get the bilinear interpolation at the image borders. |
3408 | 0 | if (iSrcX - 1 < 0 || iSrcX + 2 >= poWK->nSrcXSize || iSrcY - 1 < 0 || |
3409 | 0 | iSrcY + 2 >= poWK->nSrcYSize) |
3410 | 0 | { |
3411 | 0 | double adfImagIgnored[4] = {}; |
3412 | 0 | return GWKBilinearResample4Sample(poWK, iBand, dfSrcX, dfSrcY, |
3413 | 0 | pdfDensity, pdfReal, adfImagIgnored); |
3414 | 0 | } |
3415 | | |
3416 | | #if defined(USE_SSE_CUBIC_IMPL) && defined(USE_SSE2) |
3417 | | const float fDeltaX = static_cast<float>(dfSrcX) - 0.5f - iSrcX; |
3418 | | const float fDeltaY = static_cast<float>(dfSrcY) - 0.5f - iSrcY; |
3419 | | |
3420 | | // TODO(schwehr): Explain the magic numbers. |
3421 | | float afTemp[4 + 4 + 4 + 1]; |
3422 | | float *pafAligned = |
3423 | | reinterpret_cast<float *>(afTemp + ((size_t)afTemp & 0xf)); |
3424 | | float *pafCoeffs = pafAligned; |
3425 | | float *pafDensity = pafAligned + 4; |
3426 | | float *pafValue = pafAligned + 8; |
3427 | | |
3428 | | const float fHalfDeltaX = 0.5f * fDeltaX; |
3429 | | const float fThreeDeltaX = 3.0f * fDeltaX; |
3430 | | const float fHalfDeltaX2 = fHalfDeltaX * fDeltaX; |
3431 | | |
3432 | | pafCoeffs[0] = fHalfDeltaX * (-1 + fDeltaX * (2 - fDeltaX)); |
3433 | | pafCoeffs[1] = 1 + fHalfDeltaX2 * (-5 + fThreeDeltaX); |
3434 | | pafCoeffs[2] = fHalfDeltaX * (1 + fDeltaX * (4 - fThreeDeltaX)); |
3435 | | pafCoeffs[3] = fHalfDeltaX2 * (-1 + fDeltaX); |
3436 | | __m128 xmmCoeffs = _mm_load_ps(pafCoeffs); |
3437 | | const __m128 xmmThreshold = _mm_load1_ps(&SRC_DENSITY_THRESHOLD_FLOAT); |
3438 | | |
3439 | | __m128 xmmMaskLowDensity = _mm_setzero_ps(); |
3440 | | for (GPtrDiff_t i = -1, iOffset = iSrcOffset - poWK->nSrcXSize - 1; i < 3; |
3441 | | i++, iOffset += poWK->nSrcXSize) |
3442 | | { |
3443 | | const __m128 xmmDensity = |
3444 | | _mm_loadu_ps(poWK->pafUnifiedSrcDensity + iOffset); |
3445 | | xmmMaskLowDensity = _mm_or_ps(xmmMaskLowDensity, |
3446 | | _mm_cmplt_ps(xmmDensity, xmmThreshold)); |
3447 | | pafDensity[i + 1] = XMMHorizontalAdd(_mm_mul_ps(xmmCoeffs, xmmDensity)); |
3448 | | |
3449 | | const __m128 xmmValues = |
3450 | | XMMLoad4Values(((T *)poWK->papabySrcImage[iBand]) + iOffset); |
3451 | | pafValue[i + 1] = XMMHorizontalAdd(_mm_mul_ps(xmmCoeffs, xmmValues)); |
3452 | | } |
3453 | | if (_mm_movemask_ps(xmmMaskLowDensity)) |
3454 | | { |
3455 | | double adfImagIgnored[4] = {}; |
3456 | | return GWKBilinearResample4Sample(poWK, iBand, dfSrcX, dfSrcY, |
3457 | | pdfDensity, pdfReal, adfImagIgnored); |
3458 | | } |
3459 | | |
3460 | | const float fHalfDeltaY = 0.5f * fDeltaY; |
3461 | | const float fThreeDeltaY = 3.0f * fDeltaY; |
3462 | | const float fHalfDeltaY2 = fHalfDeltaY * fDeltaY; |
3463 | | |
3464 | | pafCoeffs[0] = fHalfDeltaY * (-1 + fDeltaY * (2 - fDeltaY)); |
3465 | | pafCoeffs[1] = 1 + fHalfDeltaY2 * (-5 + fThreeDeltaY); |
3466 | | pafCoeffs[2] = fHalfDeltaY * (1 + fDeltaY * (4 - fThreeDeltaY)); |
3467 | | pafCoeffs[3] = fHalfDeltaY2 * (-1 + fDeltaY); |
3468 | | |
3469 | | xmmCoeffs = _mm_load_ps(pafCoeffs); |
3470 | | |
3471 | | const __m128 xmmDensity = _mm_load_ps(pafDensity); |
3472 | | const __m128 xmmValue = _mm_load_ps(pafValue); |
3473 | | *pdfDensity = XMMHorizontalAdd(_mm_mul_ps(xmmCoeffs, xmmDensity)); |
3474 | | *pdfReal = XMMHorizontalAdd(_mm_mul_ps(xmmCoeffs, xmmValue)); |
3475 | | |
3476 | | // We did all above computations on float32 whereas the general case is |
3477 | | // float64. Not sure if one is fundamentally more correct than the other |
3478 | | // one, but we want our optimization to give the same result as the |
3479 | | // general case as much as possible, so if the resulting value is |
3480 | | // close to some_int_value + 0.5, redo the computation with the general |
3481 | | // case. |
3482 | | // Note: If other types than Byte or UInt16, will need changes. |
3483 | | if (fabs(*pdfReal - static_cast<int>(*pdfReal) - 0.5) > .007) |
3484 | | return true; |
3485 | | |
3486 | | #endif // defined(USE_SSE_CUBIC_IMPL) && defined(USE_SSE2) |
3487 | | |
3488 | 0 | const double dfDeltaX = dfSrcX - 0.5 - iSrcX; |
3489 | 0 | const double dfDeltaY = dfSrcY - 0.5 - iSrcY; |
3490 | |
|
3491 | 0 | double adfValueDens[4] = {}; |
3492 | 0 | double adfValueReal[4] = {}; |
3493 | |
|
3494 | 0 | double adfCoeffsX[4] = {}; |
3495 | 0 | GWKCubicComputeWeights(dfDeltaX, adfCoeffsX); |
3496 | |
|
3497 | 0 | double adfCoeffsY[4] = {}; |
3498 | 0 | GWKCubicComputeWeights(dfDeltaY, adfCoeffsY); |
3499 | |
|
3500 | 0 | for (GPtrDiff_t i = -1; i < 3; i++) |
3501 | 0 | { |
3502 | 0 | const GPtrDiff_t iOffset = iSrcOffset + i * poWK->nSrcXSize - 1; |
3503 | 0 | #if !(defined(USE_SSE_CUBIC_IMPL) && defined(USE_SSE2)) |
3504 | 0 | if (poWK->pafUnifiedSrcDensity[iOffset + 0] < |
3505 | 0 | SRC_DENSITY_THRESHOLD_FLOAT || |
3506 | 0 | poWK->pafUnifiedSrcDensity[iOffset + 1] < |
3507 | 0 | SRC_DENSITY_THRESHOLD_FLOAT || |
3508 | 0 | poWK->pafUnifiedSrcDensity[iOffset + 2] < |
3509 | 0 | SRC_DENSITY_THRESHOLD_FLOAT || |
3510 | 0 | poWK->pafUnifiedSrcDensity[iOffset + 3] < |
3511 | 0 | SRC_DENSITY_THRESHOLD_FLOAT) |
3512 | 0 | { |
3513 | 0 | double adfImagIgnored[4] = {}; |
3514 | 0 | return GWKBilinearResample4Sample(poWK, iBand, dfSrcX, dfSrcY, |
3515 | 0 | pdfDensity, pdfReal, |
3516 | 0 | adfImagIgnored); |
3517 | 0 | } |
3518 | 0 | #endif |
3519 | | |
3520 | 0 | adfValueDens[i + 1] = |
3521 | 0 | CONVOL4(adfCoeffsX, poWK->pafUnifiedSrcDensity + iOffset); |
3522 | |
|
3523 | 0 | adfValueReal[i + 1] = CONVOL4( |
3524 | 0 | adfCoeffsX, |
3525 | 0 | reinterpret_cast<T *>(poWK->papabySrcImage[iBand]) + iOffset); |
3526 | 0 | } |
3527 | | |
3528 | 0 | *pdfDensity = CONVOL4(adfCoeffsY, adfValueDens); |
3529 | 0 | *pdfReal = CONVOL4(adfCoeffsY, adfValueReal); |
3530 | |
|
3531 | 0 | return true; |
3532 | 0 | } Unexecuted instantiation: gdalwarpkernel.cpp:bool GWKCubicResampleSrcMaskIsDensity4SampleRealT<unsigned char>(GDALWarpKernel const*, int, double, double, double*, double*) Unexecuted instantiation: gdalwarpkernel.cpp:bool GWKCubicResampleSrcMaskIsDensity4SampleRealT<unsigned short>(GDALWarpKernel const*, int, double, double, double*, double*) |
3533 | | |
3534 | | /************************************************************************/ |
3535 | | /* GWKCubicResampleSrcMaskIsDensity4SampleReal() */ |
3536 | | /* Bi-cubic when source has and only has pafUnifiedSrcDensity. */ |
3537 | | /************************************************************************/ |
3538 | | |
3539 | | static bool GWKCubicResampleSrcMaskIsDensity4SampleReal( |
3540 | | const GDALWarpKernel *poWK, int iBand, double dfSrcX, double dfSrcY, |
3541 | | double *pdfDensity, double *pdfReal) |
3542 | | |
3543 | 0 | { |
3544 | 0 | const int iSrcX = static_cast<int>(dfSrcX - 0.5); |
3545 | 0 | const int iSrcY = static_cast<int>(dfSrcY - 0.5); |
3546 | 0 | const GPtrDiff_t iSrcOffset = |
3547 | 0 | iSrcX + static_cast<GPtrDiff_t>(iSrcY) * poWK->nSrcXSize; |
3548 | 0 | const double dfDeltaX = dfSrcX - 0.5 - iSrcX; |
3549 | 0 | const double dfDeltaY = dfSrcY - 0.5 - iSrcY; |
3550 | | |
3551 | | // Get the bilinear interpolation at the image borders. |
3552 | 0 | if (iSrcX - 1 < 0 || iSrcX + 2 >= poWK->nSrcXSize || iSrcY - 1 < 0 || |
3553 | 0 | iSrcY + 2 >= poWK->nSrcYSize) |
3554 | 0 | { |
3555 | 0 | double adfImagIgnored[4] = {}; |
3556 | 0 | return GWKBilinearResample4Sample(poWK, iBand, dfSrcX, dfSrcY, |
3557 | 0 | pdfDensity, pdfReal, adfImagIgnored); |
3558 | 0 | } |
3559 | | |
3560 | 0 | double adfCoeffsX[4] = {}; |
3561 | 0 | GWKCubicComputeWeights(dfDeltaX, adfCoeffsX); |
3562 | |
|
3563 | 0 | double adfCoeffsY[4] = {}; |
3564 | 0 | GWKCubicComputeWeights(dfDeltaY, adfCoeffsY); |
3565 | |
|
3566 | 0 | double adfValueDens[4] = {}; |
3567 | 0 | double adfValueReal[4] = {}; |
3568 | 0 | double adfDensity[4] = {}; |
3569 | 0 | double adfReal[4] = {}; |
3570 | 0 | double adfImagIgnored[4] = {}; |
3571 | |
|
3572 | 0 | for (GPtrDiff_t i = -1; i < 3; i++) |
3573 | 0 | { |
3574 | 0 | if (!GWKGetPixelRow(poWK, iBand, iSrcOffset + i * poWK->nSrcXSize - 1, |
3575 | 0 | 2, adfDensity, adfReal, adfImagIgnored) || |
3576 | 0 | adfDensity[0] < SRC_DENSITY_THRESHOLD_DOUBLE || |
3577 | 0 | adfDensity[1] < SRC_DENSITY_THRESHOLD_DOUBLE || |
3578 | 0 | adfDensity[2] < SRC_DENSITY_THRESHOLD_DOUBLE || |
3579 | 0 | adfDensity[3] < SRC_DENSITY_THRESHOLD_DOUBLE) |
3580 | 0 | { |
3581 | 0 | return GWKBilinearResample4Sample(poWK, iBand, dfSrcX, dfSrcY, |
3582 | 0 | pdfDensity, pdfReal, |
3583 | 0 | adfImagIgnored); |
3584 | 0 | } |
3585 | | |
3586 | 0 | adfValueDens[i + 1] = CONVOL4(adfCoeffsX, adfDensity); |
3587 | 0 | adfValueReal[i + 1] = CONVOL4(adfCoeffsX, adfReal); |
3588 | 0 | } |
3589 | | |
3590 | 0 | *pdfDensity = CONVOL4(adfCoeffsY, adfValueDens); |
3591 | 0 | *pdfReal = CONVOL4(adfCoeffsY, adfValueReal); |
3592 | |
|
3593 | 0 | return true; |
3594 | 0 | } |
3595 | | |
3596 | | template <class T> |
3597 | | static bool GWKCubicResampleNoMasks4SampleT(const GDALWarpKernel *poWK, |
3598 | | int iBand, double dfSrcX, |
3599 | | double dfSrcY, T *pValue) |
3600 | | |
3601 | 0 | { |
3602 | 0 | const int iSrcX = static_cast<int>(dfSrcX - 0.5); |
3603 | 0 | const int iSrcY = static_cast<int>(dfSrcY - 0.5); |
3604 | 0 | const GPtrDiff_t iSrcOffset = |
3605 | 0 | iSrcX + static_cast<GPtrDiff_t>(iSrcY) * poWK->nSrcXSize; |
3606 | 0 | const double dfDeltaX = dfSrcX - 0.5 - iSrcX; |
3607 | 0 | const double dfDeltaY = dfSrcY - 0.5 - iSrcY; |
3608 | 0 | const double dfDeltaY2 = dfDeltaY * dfDeltaY; |
3609 | 0 | const double dfDeltaY3 = dfDeltaY2 * dfDeltaY; |
3610 | | |
3611 | | // Get the bilinear interpolation at the image borders. |
3612 | 0 | if (iSrcX - 1 < 0 || iSrcX + 2 >= poWK->nSrcXSize || iSrcY - 1 < 0 || |
3613 | 0 | iSrcY + 2 >= poWK->nSrcYSize) |
3614 | 0 | return GWKBilinearResampleNoMasks4SampleT(poWK, iBand, dfSrcX, dfSrcY, |
3615 | 0 | pValue); |
3616 | | |
3617 | 0 | double adfCoeffs[4] = {}; |
3618 | 0 | GWKCubicComputeWeights(dfDeltaX, adfCoeffs); |
3619 | |
|
3620 | 0 | double adfValue[4] = {}; |
3621 | |
|
3622 | 0 | for (GPtrDiff_t i = -1; i < 3; i++) |
3623 | 0 | { |
3624 | 0 | const GPtrDiff_t iOffset = iSrcOffset + i * poWK->nSrcXSize - 1; |
3625 | |
|
3626 | 0 | adfValue[i + 1] = CONVOL4( |
3627 | 0 | adfCoeffs, |
3628 | 0 | reinterpret_cast<T *>(poWK->papabySrcImage[iBand]) + iOffset); |
3629 | 0 | } |
3630 | |
|
3631 | 0 | const double dfValue = |
3632 | 0 | CubicConvolution(dfDeltaY, dfDeltaY2, dfDeltaY3, adfValue[0], |
3633 | 0 | adfValue[1], adfValue[2], adfValue[3]); |
3634 | |
|
3635 | 0 | *pValue = GWKClampValueT<T>(dfValue); |
3636 | |
|
3637 | 0 | return true; |
3638 | 0 | } Unexecuted instantiation: gdalwarpkernel.cpp:bool GWKCubicResampleNoMasks4SampleT<unsigned char>(GDALWarpKernel const*, int, double, double, unsigned char*) Unexecuted instantiation: gdalwarpkernel.cpp:bool GWKCubicResampleNoMasks4SampleT<float>(GDALWarpKernel const*, int, double, double, float*) Unexecuted instantiation: gdalwarpkernel.cpp:bool GWKCubicResampleNoMasks4SampleT<short>(GDALWarpKernel const*, int, double, double, short*) Unexecuted instantiation: gdalwarpkernel.cpp:bool GWKCubicResampleNoMasks4SampleT<unsigned short>(GDALWarpKernel const*, int, double, double, unsigned short*) |
3639 | | |
3640 | | /************************************************************************/ |
3641 | | /* GWKLanczosSinc() */ |
3642 | | /************************************************************************/ |
3643 | | |
3644 | | /* |
3645 | | * Lanczos windowed sinc interpolation kernel with radius r. |
3646 | | * / |
3647 | | * | sinc(x) * sinc(x/r), if |x| < r |
3648 | | * L(x) = | 1, if x = 0 , |
3649 | | * | 0, otherwise |
3650 | | * \ |
3651 | | * |
3652 | | * where sinc(x) = sin(PI * x) / (PI * x). |
3653 | | */ |
3654 | | |
3655 | | static double GWKLanczosSinc(double dfX) |
3656 | 0 | { |
3657 | 0 | if (dfX == 0.0) |
3658 | 0 | return 1.0; |
3659 | | |
3660 | 0 | const double dfPIX = M_PI * dfX; |
3661 | 0 | const double dfPIXoverR = dfPIX / 3; |
3662 | 0 | const double dfPIX2overR = dfPIX * dfPIXoverR; |
3663 | | // Given that sin(3x) = 3 sin(x) - 4 sin^3 (x) |
3664 | | // we can compute sin(dfSinPIX) from sin(dfPIXoverR) |
3665 | 0 | const double dfSinPIXoverR = sin(dfPIXoverR); |
3666 | 0 | const double dfSinPIXoverRSquared = dfSinPIXoverR * dfSinPIXoverR; |
3667 | 0 | const double dfSinPIXMulSinPIXoverR = |
3668 | 0 | (3 - 4 * dfSinPIXoverRSquared) * dfSinPIXoverRSquared; |
3669 | 0 | return dfSinPIXMulSinPIXoverR / dfPIX2overR; |
3670 | 0 | } |
3671 | | |
3672 | | static double GWKLanczosSinc4Values(double *padfValues) |
3673 | 0 | { |
3674 | 0 | for (int i = 0; i < 4; i++) |
3675 | 0 | { |
3676 | 0 | if (padfValues[i] == 0.0) |
3677 | 0 | { |
3678 | 0 | padfValues[i] = 1.0; |
3679 | 0 | } |
3680 | 0 | else |
3681 | 0 | { |
3682 | 0 | const double dfPIX = M_PI * padfValues[i]; |
3683 | 0 | const double dfPIXoverR = dfPIX / 3; |
3684 | 0 | const double dfPIX2overR = dfPIX * dfPIXoverR; |
3685 | | // Given that sin(3x) = 3 sin(x) - 4 sin^3 (x) |
3686 | | // we can compute sin(dfSinPIX) from sin(dfPIXoverR) |
3687 | 0 | const double dfSinPIXoverR = sin(dfPIXoverR); |
3688 | 0 | const double dfSinPIXoverRSquared = dfSinPIXoverR * dfSinPIXoverR; |
3689 | 0 | const double dfSinPIXMulSinPIXoverR = |
3690 | 0 | (3 - 4 * dfSinPIXoverRSquared) * dfSinPIXoverRSquared; |
3691 | 0 | padfValues[i] = dfSinPIXMulSinPIXoverR / dfPIX2overR; |
3692 | 0 | } |
3693 | 0 | } |
3694 | 0 | return padfValues[0] + padfValues[1] + padfValues[2] + padfValues[3]; |
3695 | 0 | } |
3696 | | |
3697 | | /************************************************************************/ |
3698 | | /* GWKBilinear() */ |
3699 | | /************************************************************************/ |
3700 | | |
3701 | | static double GWKBilinear(double dfX) |
3702 | 0 | { |
3703 | 0 | double dfAbsX = fabs(dfX); |
3704 | 0 | if (dfAbsX <= 1.0) |
3705 | 0 | return 1 - dfAbsX; |
3706 | 0 | else |
3707 | 0 | return 0.0; |
3708 | 0 | } |
3709 | | |
3710 | | static double GWKBilinear4Values(double *padfValues) |
3711 | 0 | { |
3712 | 0 | double dfAbsX0 = fabs(padfValues[0]); |
3713 | 0 | double dfAbsX1 = fabs(padfValues[1]); |
3714 | 0 | double dfAbsX2 = fabs(padfValues[2]); |
3715 | 0 | double dfAbsX3 = fabs(padfValues[3]); |
3716 | 0 | if (dfAbsX0 <= 1.0) |
3717 | 0 | padfValues[0] = 1 - dfAbsX0; |
3718 | 0 | else |
3719 | 0 | padfValues[0] = 0.0; |
3720 | 0 | if (dfAbsX1 <= 1.0) |
3721 | 0 | padfValues[1] = 1 - dfAbsX1; |
3722 | 0 | else |
3723 | 0 | padfValues[1] = 0.0; |
3724 | 0 | if (dfAbsX2 <= 1.0) |
3725 | 0 | padfValues[2] = 1 - dfAbsX2; |
3726 | 0 | else |
3727 | 0 | padfValues[2] = 0.0; |
3728 | 0 | if (dfAbsX3 <= 1.0) |
3729 | 0 | padfValues[3] = 1 - dfAbsX3; |
3730 | 0 | else |
3731 | 0 | padfValues[3] = 0.0; |
3732 | 0 | return padfValues[0] + padfValues[1] + padfValues[2] + padfValues[3]; |
3733 | 0 | } |
3734 | | |
3735 | | /************************************************************************/ |
3736 | | /* GWKCubic() */ |
3737 | | /************************************************************************/ |
3738 | | |
3739 | | static double GWKCubic(double dfX) |
3740 | 0 | { |
3741 | 0 | return CubicKernel(dfX); |
3742 | 0 | } |
3743 | | |
3744 | | static double GWKCubic4Values(double *padfValues) |
3745 | 0 | { |
3746 | 0 | const double dfAbsX_0 = fabs(padfValues[0]); |
3747 | 0 | const double dfAbsX_1 = fabs(padfValues[1]); |
3748 | 0 | const double dfAbsX_2 = fabs(padfValues[2]); |
3749 | 0 | const double dfAbsX_3 = fabs(padfValues[3]); |
3750 | 0 | const double dfX2_0 = padfValues[0] * padfValues[0]; |
3751 | 0 | const double dfX2_1 = padfValues[1] * padfValues[1]; |
3752 | 0 | const double dfX2_2 = padfValues[2] * padfValues[2]; |
3753 | 0 | const double dfX2_3 = padfValues[3] * padfValues[3]; |
3754 | |
|
3755 | 0 | double dfVal0 = 0.0; |
3756 | 0 | if (dfAbsX_0 <= 1.0) |
3757 | 0 | dfVal0 = dfX2_0 * (1.5 * dfAbsX_0 - 2.5) + 1.0; |
3758 | 0 | else if (dfAbsX_0 <= 2.0) |
3759 | 0 | dfVal0 = dfX2_0 * (-0.5 * dfAbsX_0 + 2.5) - 4.0 * dfAbsX_0 + 2.0; |
3760 | |
|
3761 | 0 | double dfVal1 = 0.0; |
3762 | 0 | if (dfAbsX_1 <= 1.0) |
3763 | 0 | dfVal1 = dfX2_1 * (1.5 * dfAbsX_1 - 2.5) + 1.0; |
3764 | 0 | else if (dfAbsX_1 <= 2.0) |
3765 | 0 | dfVal1 = dfX2_1 * (-0.5 * dfAbsX_1 + 2.5) - 4.0 * dfAbsX_1 + 2.0; |
3766 | |
|
3767 | 0 | double dfVal2 = 0.0; |
3768 | 0 | if (dfAbsX_2 <= 1.0) |
3769 | 0 | dfVal2 = dfX2_2 * (1.5 * dfAbsX_2 - 2.5) + 1.0; |
3770 | 0 | else if (dfAbsX_2 <= 2.0) |
3771 | 0 | dfVal2 = dfX2_2 * (-0.5 * dfAbsX_2 + 2.5) - 4.0 * dfAbsX_2 + 2.0; |
3772 | |
|
3773 | 0 | double dfVal3 = 0.0; |
3774 | 0 | if (dfAbsX_3 <= 1.0) |
3775 | 0 | dfVal3 = dfX2_3 * (1.5 * dfAbsX_3 - 2.5) + 1.0; |
3776 | 0 | else if (dfAbsX_3 <= 2.0) |
3777 | 0 | dfVal3 = dfX2_3 * (-0.5 * dfAbsX_3 + 2.5) - 4.0 * dfAbsX_3 + 2.0; |
3778 | |
|
3779 | 0 | padfValues[0] = dfVal0; |
3780 | 0 | padfValues[1] = dfVal1; |
3781 | 0 | padfValues[2] = dfVal2; |
3782 | 0 | padfValues[3] = dfVal3; |
3783 | 0 | return dfVal0 + dfVal1 + dfVal2 + dfVal3; |
3784 | 0 | } |
3785 | | |
3786 | | /************************************************************************/ |
3787 | | /* GWKBSpline() */ |
3788 | | /************************************************************************/ |
3789 | | |
3790 | | // https://www.cs.utexas.edu/~fussell/courses/cs384g-fall2013/lectures/mitchell/Mitchell.pdf |
3791 | | // Equation 8 with (B,C)=(1,0) |
3792 | | // 1/6 * ( 3 * |x|^3 - 6 * |x|^2 + 4) |x| < 1 |
3793 | | // 1/6 * ( -|x|^3 + 6 |x|^2 - 12|x| + 8) |x| >= 1 and |x| < 2 |
3794 | | |
3795 | | static double GWKBSpline(double x) |
3796 | 0 | { |
3797 | 0 | const double xp2 = x + 2.0; |
3798 | 0 | const double xp1 = x + 1.0; |
3799 | 0 | const double xm1 = x - 1.0; |
3800 | | |
3801 | | // This will most likely be used, so we'll compute it ahead of time to |
3802 | | // avoid stalling the processor. |
3803 | 0 | const double xp2c = xp2 * xp2 * xp2; |
3804 | | |
3805 | | // Note that the test is computed only if it is needed. |
3806 | | // TODO(schwehr): Make this easier to follow. |
3807 | 0 | return xp2 > 0.0 |
3808 | 0 | ? ((xp1 > 0.0) |
3809 | 0 | ? ((x > 0.0) |
3810 | 0 | ? ((xm1 > 0.0) ? -4.0 * xm1 * xm1 * xm1 : 0.0) + |
3811 | 0 | 6.0 * x * x * x |
3812 | 0 | : 0.0) + |
3813 | 0 | -4.0 * xp1 * xp1 * xp1 |
3814 | 0 | : 0.0) + |
3815 | 0 | xp2c |
3816 | 0 | : 0.0; // * 0.166666666666666666666 |
3817 | 0 | } |
3818 | | |
3819 | | static double GWKBSpline4Values(double *padfValues) |
3820 | 0 | { |
3821 | 0 | for (int i = 0; i < 4; i++) |
3822 | 0 | { |
3823 | 0 | const double x = padfValues[i]; |
3824 | 0 | const double xp2 = x + 2.0; |
3825 | 0 | const double xp1 = x + 1.0; |
3826 | 0 | const double xm1 = x - 1.0; |
3827 | | |
3828 | | // This will most likely be used, so we'll compute it ahead of time to |
3829 | | // avoid stalling the processor. |
3830 | 0 | const double xp2c = xp2 * xp2 * xp2; |
3831 | | |
3832 | | // Note that the test is computed only if it is needed. |
3833 | | // TODO(schwehr): Make this easier to follow. |
3834 | 0 | padfValues[i] = |
3835 | 0 | (xp2 > 0.0) |
3836 | 0 | ? ((xp1 > 0.0) |
3837 | 0 | ? ((x > 0.0) |
3838 | 0 | ? ((xm1 > 0.0) ? -4.0 * xm1 * xm1 * xm1 : 0.0) + |
3839 | 0 | 6.0 * x * x * x |
3840 | 0 | : 0.0) + |
3841 | 0 | -4.0 * xp1 * xp1 * xp1 |
3842 | 0 | : 0.0) + |
3843 | 0 | xp2c |
3844 | 0 | : 0.0; // * 0.166666666666666666666 |
3845 | 0 | } |
3846 | 0 | return padfValues[0] + padfValues[1] + padfValues[2] + padfValues[3]; |
3847 | 0 | } |
3848 | | /************************************************************************/ |
3849 | | /* GWKResampleWrkStruct */ |
3850 | | /************************************************************************/ |
3851 | | |
3852 | | typedef struct _GWKResampleWrkStruct GWKResampleWrkStruct; |
3853 | | |
3854 | | typedef bool (*pfnGWKResampleType)(const GDALWarpKernel *poWK, int iBand, |
3855 | | double dfSrcX, double dfSrcY, |
3856 | | double *pdfDensity, double *pdfReal, |
3857 | | double *pdfImag, |
3858 | | GWKResampleWrkStruct *psWrkStruct); |
3859 | | |
3860 | | struct _GWKResampleWrkStruct |
3861 | | { |
3862 | | pfnGWKResampleType pfnGWKResample; |
3863 | | |
3864 | | // Space for saved X weights. |
3865 | | double *padfWeightsX; |
3866 | | bool *pabCalcX; |
3867 | | |
3868 | | double *padfWeightsY; // Only used by GWKResampleOptimizedLanczos. |
3869 | | int iLastSrcX; // Only used by GWKResampleOptimizedLanczos. |
3870 | | int iLastSrcY; // Only used by GWKResampleOptimizedLanczos. |
3871 | | double dfLastDeltaX; // Only used by GWKResampleOptimizedLanczos. |
3872 | | double dfLastDeltaY; // Only used by GWKResampleOptimizedLanczos. |
3873 | | double dfCosPiXScale; // Only used by GWKResampleOptimizedLanczos. |
3874 | | double dfSinPiXScale; // Only used by GWKResampleOptimizedLanczos. |
3875 | | double dfCosPiXScaleOver3; // Only used by GWKResampleOptimizedLanczos. |
3876 | | double dfSinPiXScaleOver3; // Only used by GWKResampleOptimizedLanczos. |
3877 | | double dfCosPiYScale; // Only used by GWKResampleOptimizedLanczos. |
3878 | | double dfSinPiYScale; // Only used by GWKResampleOptimizedLanczos. |
3879 | | double dfCosPiYScaleOver3; // Only used by GWKResampleOptimizedLanczos. |
3880 | | double dfSinPiYScaleOver3; // Only used by GWKResampleOptimizedLanczos. |
3881 | | |
3882 | | // Space for saving a row of pixels. |
3883 | | double *padfRowDensity; |
3884 | | double *padfRowReal; |
3885 | | double *padfRowImag; |
3886 | | }; |
3887 | | |
3888 | | /************************************************************************/ |
3889 | | /* GWKResampleCreateWrkStruct() */ |
3890 | | /************************************************************************/ |
3891 | | |
3892 | | static bool GWKResample(const GDALWarpKernel *poWK, int iBand, double dfSrcX, |
3893 | | double dfSrcY, double *pdfDensity, double *pdfReal, |
3894 | | double *pdfImag, GWKResampleWrkStruct *psWrkStruct); |
3895 | | |
3896 | | static bool GWKResampleOptimizedLanczos(const GDALWarpKernel *poWK, int iBand, |
3897 | | double dfSrcX, double dfSrcY, |
3898 | | double *pdfDensity, double *pdfReal, |
3899 | | double *pdfImag, |
3900 | | GWKResampleWrkStruct *psWrkStruct); |
3901 | | |
3902 | | static GWKResampleWrkStruct *GWKResampleCreateWrkStruct(GDALWarpKernel *poWK) |
3903 | 0 | { |
3904 | 0 | const int nXDist = (poWK->nXRadius + 1) * 2; |
3905 | 0 | const int nYDist = (poWK->nYRadius + 1) * 2; |
3906 | |
|
3907 | 0 | GWKResampleWrkStruct *psWrkStruct = static_cast<GWKResampleWrkStruct *>( |
3908 | 0 | CPLCalloc(1, sizeof(GWKResampleWrkStruct))); |
3909 | | |
3910 | | // Alloc space for saved X weights. |
3911 | 0 | psWrkStruct->padfWeightsX = |
3912 | 0 | static_cast<double *>(CPLCalloc(nXDist, sizeof(double))); |
3913 | 0 | psWrkStruct->pabCalcX = |
3914 | 0 | static_cast<bool *>(CPLMalloc(nXDist * sizeof(bool))); |
3915 | |
|
3916 | 0 | psWrkStruct->padfWeightsY = |
3917 | 0 | static_cast<double *>(CPLCalloc(nYDist, sizeof(double))); |
3918 | 0 | psWrkStruct->iLastSrcX = -10; |
3919 | 0 | psWrkStruct->iLastSrcY = -10; |
3920 | 0 | psWrkStruct->dfLastDeltaX = -10; |
3921 | 0 | psWrkStruct->dfLastDeltaY = -10; |
3922 | | |
3923 | | // Alloc space for saving a row of pixels. |
3924 | 0 | if (poWK->pafUnifiedSrcDensity == nullptr && |
3925 | 0 | poWK->panUnifiedSrcValid == nullptr && |
3926 | 0 | poWK->papanBandSrcValid == nullptr) |
3927 | 0 | { |
3928 | 0 | psWrkStruct->padfRowDensity = nullptr; |
3929 | 0 | } |
3930 | 0 | else |
3931 | 0 | { |
3932 | 0 | psWrkStruct->padfRowDensity = |
3933 | 0 | static_cast<double *>(CPLCalloc(nXDist, sizeof(double))); |
3934 | 0 | } |
3935 | 0 | psWrkStruct->padfRowReal = |
3936 | 0 | static_cast<double *>(CPLCalloc(nXDist, sizeof(double))); |
3937 | 0 | psWrkStruct->padfRowImag = |
3938 | 0 | static_cast<double *>(CPLCalloc(nXDist, sizeof(double))); |
3939 | |
|
3940 | 0 | if (poWK->eResample == GRA_Lanczos) |
3941 | 0 | { |
3942 | 0 | psWrkStruct->pfnGWKResample = GWKResampleOptimizedLanczos; |
3943 | |
|
3944 | 0 | if (poWK->dfXScale < 1) |
3945 | 0 | { |
3946 | 0 | psWrkStruct->dfCosPiXScaleOver3 = cos(M_PI / 3 * poWK->dfXScale); |
3947 | 0 | psWrkStruct->dfSinPiXScaleOver3 = |
3948 | 0 | sqrt(1 - psWrkStruct->dfCosPiXScaleOver3 * |
3949 | 0 | psWrkStruct->dfCosPiXScaleOver3); |
3950 | | // "Naive": |
3951 | | // const double dfCosPiXScale = cos( M_PI * dfXScale ); |
3952 | | // const double dfSinPiXScale = sin( M_PI * dfXScale ); |
3953 | | // but given that cos(3x) = 4 cos^3(x) - 3 cos(x) and x between 0 and M_PI |
3954 | 0 | psWrkStruct->dfCosPiXScale = (4 * psWrkStruct->dfCosPiXScaleOver3 * |
3955 | 0 | psWrkStruct->dfCosPiXScaleOver3 - |
3956 | 0 | 3) * |
3957 | 0 | psWrkStruct->dfCosPiXScaleOver3; |
3958 | 0 | psWrkStruct->dfSinPiXScale = sqrt( |
3959 | 0 | 1 - psWrkStruct->dfCosPiXScale * psWrkStruct->dfCosPiXScale); |
3960 | 0 | } |
3961 | |
|
3962 | 0 | if (poWK->dfYScale < 1) |
3963 | 0 | { |
3964 | 0 | psWrkStruct->dfCosPiYScaleOver3 = cos(M_PI / 3 * poWK->dfYScale); |
3965 | 0 | psWrkStruct->dfSinPiYScaleOver3 = |
3966 | 0 | sqrt(1 - psWrkStruct->dfCosPiYScaleOver3 * |
3967 | 0 | psWrkStruct->dfCosPiYScaleOver3); |
3968 | | // "Naive": |
3969 | | // const double dfCosPiYScale = cos( M_PI * dfYScale ); |
3970 | | // const double dfSinPiYScale = sin( M_PI * dfYScale ); |
3971 | | // but given that cos(3x) = 4 cos^3(x) - 3 cos(x) and x between 0 and M_PI |
3972 | 0 | psWrkStruct->dfCosPiYScale = (4 * psWrkStruct->dfCosPiYScaleOver3 * |
3973 | 0 | psWrkStruct->dfCosPiYScaleOver3 - |
3974 | 0 | 3) * |
3975 | 0 | psWrkStruct->dfCosPiYScaleOver3; |
3976 | 0 | psWrkStruct->dfSinPiYScale = sqrt( |
3977 | 0 | 1 - psWrkStruct->dfCosPiYScale * psWrkStruct->dfCosPiYScale); |
3978 | 0 | } |
3979 | 0 | } |
3980 | 0 | else |
3981 | 0 | psWrkStruct->pfnGWKResample = GWKResample; |
3982 | |
|
3983 | 0 | return psWrkStruct; |
3984 | 0 | } |
3985 | | |
3986 | | /************************************************************************/ |
3987 | | /* GWKResampleDeleteWrkStruct() */ |
3988 | | /************************************************************************/ |
3989 | | |
3990 | | static void GWKResampleDeleteWrkStruct(GWKResampleWrkStruct *psWrkStruct) |
3991 | 0 | { |
3992 | 0 | CPLFree(psWrkStruct->padfWeightsX); |
3993 | 0 | CPLFree(psWrkStruct->padfWeightsY); |
3994 | 0 | CPLFree(psWrkStruct->pabCalcX); |
3995 | 0 | CPLFree(psWrkStruct->padfRowDensity); |
3996 | 0 | CPLFree(psWrkStruct->padfRowReal); |
3997 | 0 | CPLFree(psWrkStruct->padfRowImag); |
3998 | 0 | CPLFree(psWrkStruct); |
3999 | 0 | } |
4000 | | |
4001 | | /************************************************************************/ |
4002 | | /* GWKResample() */ |
4003 | | /************************************************************************/ |
4004 | | |
4005 | | static bool GWKResample(const GDALWarpKernel *poWK, int iBand, double dfSrcX, |
4006 | | double dfSrcY, double *pdfDensity, double *pdfReal, |
4007 | | double *pdfImag, GWKResampleWrkStruct *psWrkStruct) |
4008 | | |
4009 | 0 | { |
4010 | | // Save as local variables to avoid following pointers in loops. |
4011 | 0 | const int nSrcXSize = poWK->nSrcXSize; |
4012 | 0 | const int nSrcYSize = poWK->nSrcYSize; |
4013 | |
|
4014 | 0 | double dfAccumulatorReal = 0.0; |
4015 | 0 | double dfAccumulatorImag = 0.0; |
4016 | 0 | double dfAccumulatorDensity = 0.0; |
4017 | 0 | double dfAccumulatorWeight = 0.0; |
4018 | 0 | const int iSrcX = static_cast<int>(floor(dfSrcX - 0.5)); |
4019 | 0 | const int iSrcY = static_cast<int>(floor(dfSrcY - 0.5)); |
4020 | 0 | const GPtrDiff_t iSrcOffset = |
4021 | 0 | iSrcX + static_cast<GPtrDiff_t>(iSrcY) * nSrcXSize; |
4022 | 0 | const double dfDeltaX = dfSrcX - 0.5 - iSrcX; |
4023 | 0 | const double dfDeltaY = dfSrcY - 0.5 - iSrcY; |
4024 | |
|
4025 | 0 | const double dfXScale = poWK->dfXScale; |
4026 | 0 | const double dfYScale = poWK->dfYScale; |
4027 | |
|
4028 | 0 | const int nXDist = (poWK->nXRadius + 1) * 2; |
4029 | | |
4030 | | // Space for saved X weights. |
4031 | 0 | double *padfWeightsX = psWrkStruct->padfWeightsX; |
4032 | 0 | bool *pabCalcX = psWrkStruct->pabCalcX; |
4033 | | |
4034 | | // Space for saving a row of pixels. |
4035 | 0 | double *padfRowDensity = psWrkStruct->padfRowDensity; |
4036 | 0 | double *padfRowReal = psWrkStruct->padfRowReal; |
4037 | 0 | double *padfRowImag = psWrkStruct->padfRowImag; |
4038 | | |
4039 | | // Mark as needing calculation (don't calculate the weights yet, |
4040 | | // because a mask may render it unnecessary). |
4041 | 0 | memset(pabCalcX, false, nXDist * sizeof(bool)); |
4042 | |
|
4043 | 0 | FilterFuncType pfnGetWeight = apfGWKFilter[poWK->eResample]; |
4044 | 0 | CPLAssert(pfnGetWeight); |
4045 | | |
4046 | | // Skip sampling over edge of image. |
4047 | 0 | int j = poWK->nFiltInitY; |
4048 | 0 | int jMax = poWK->nYRadius; |
4049 | 0 | if (iSrcY + j < 0) |
4050 | 0 | j = -iSrcY; |
4051 | 0 | if (iSrcY + jMax >= nSrcYSize) |
4052 | 0 | jMax = nSrcYSize - iSrcY - 1; |
4053 | |
|
4054 | 0 | int iMin = poWK->nFiltInitX; |
4055 | 0 | int iMax = poWK->nXRadius; |
4056 | 0 | if (iSrcX + iMin < 0) |
4057 | 0 | iMin = -iSrcX; |
4058 | 0 | if (iSrcX + iMax >= nSrcXSize) |
4059 | 0 | iMax = nSrcXSize - iSrcX - 1; |
4060 | |
|
4061 | 0 | const int bXScaleBelow1 = (dfXScale < 1.0); |
4062 | 0 | const int bYScaleBelow1 = (dfYScale < 1.0); |
4063 | |
|
4064 | 0 | GPtrDiff_t iRowOffset = |
4065 | 0 | iSrcOffset + static_cast<GPtrDiff_t>(j - 1) * nSrcXSize + iMin; |
4066 | | |
4067 | | // Loop over pixel rows in the kernel. |
4068 | 0 | for (; j <= jMax; ++j) |
4069 | 0 | { |
4070 | 0 | iRowOffset += nSrcXSize; |
4071 | | |
4072 | | // Get pixel values. |
4073 | | // We can potentially read extra elements after the "normal" end of the |
4074 | | // source arrays, but the contract of papabySrcImage[iBand], |
4075 | | // papanBandSrcValid[iBand], panUnifiedSrcValid and pafUnifiedSrcDensity |
4076 | | // is to have WARP_EXTRA_ELTS reserved at their end. |
4077 | 0 | if (!GWKGetPixelRow(poWK, iBand, iRowOffset, (iMax - iMin + 2) / 2, |
4078 | 0 | padfRowDensity, padfRowReal, padfRowImag)) |
4079 | 0 | continue; |
4080 | | |
4081 | | // Calculate the Y weight. |
4082 | 0 | double dfWeight1 = (bYScaleBelow1) |
4083 | 0 | ? pfnGetWeight((j - dfDeltaY) * dfYScale) |
4084 | 0 | : pfnGetWeight(j - dfDeltaY); |
4085 | | |
4086 | | // Iterate over pixels in row. |
4087 | 0 | double dfAccumulatorRealLocal = 0.0; |
4088 | 0 | double dfAccumulatorImagLocal = 0.0; |
4089 | 0 | double dfAccumulatorDensityLocal = 0.0; |
4090 | 0 | double dfAccumulatorWeightLocal = 0.0; |
4091 | |
|
4092 | 0 | for (int i = iMin; i <= iMax; ++i) |
4093 | 0 | { |
4094 | | // Skip sampling if pixel has zero density. |
4095 | 0 | if (padfRowDensity != nullptr && |
4096 | 0 | padfRowDensity[i - iMin] < SRC_DENSITY_THRESHOLD_DOUBLE) |
4097 | 0 | continue; |
4098 | | |
4099 | 0 | double dfWeight2 = 0.0; |
4100 | | |
4101 | | // Make or use a cached set of weights for this row. |
4102 | 0 | if (pabCalcX[i - iMin]) |
4103 | 0 | { |
4104 | | // Use saved weight value instead of recomputing it. |
4105 | 0 | dfWeight2 = padfWeightsX[i - iMin]; |
4106 | 0 | } |
4107 | 0 | else |
4108 | 0 | { |
4109 | | // Calculate & save the X weight. |
4110 | 0 | padfWeightsX[i - iMin] = dfWeight2 = |
4111 | 0 | (bXScaleBelow1) ? pfnGetWeight((i - dfDeltaX) * dfXScale) |
4112 | 0 | : pfnGetWeight(i - dfDeltaX); |
4113 | |
|
4114 | 0 | pabCalcX[i - iMin] = true; |
4115 | 0 | } |
4116 | | |
4117 | | // Accumulate! |
4118 | 0 | dfAccumulatorRealLocal += padfRowReal[i - iMin] * dfWeight2; |
4119 | 0 | dfAccumulatorImagLocal += padfRowImag[i - iMin] * dfWeight2; |
4120 | 0 | if (padfRowDensity != nullptr) |
4121 | 0 | dfAccumulatorDensityLocal += |
4122 | 0 | padfRowDensity[i - iMin] * dfWeight2; |
4123 | 0 | dfAccumulatorWeightLocal += dfWeight2; |
4124 | 0 | } |
4125 | |
|
4126 | 0 | dfAccumulatorReal += dfAccumulatorRealLocal * dfWeight1; |
4127 | 0 | dfAccumulatorImag += dfAccumulatorImagLocal * dfWeight1; |
4128 | 0 | dfAccumulatorDensity += dfAccumulatorDensityLocal * dfWeight1; |
4129 | 0 | dfAccumulatorWeight += dfAccumulatorWeightLocal * dfWeight1; |
4130 | 0 | } |
4131 | |
|
4132 | 0 | if (dfAccumulatorWeight < 0.000001 || |
4133 | 0 | (padfRowDensity != nullptr && dfAccumulatorDensity < 0.000001)) |
4134 | 0 | { |
4135 | 0 | *pdfDensity = 0.0; |
4136 | 0 | return false; |
4137 | 0 | } |
4138 | | |
4139 | | // Calculate the output taking into account weighting. |
4140 | 0 | if (dfAccumulatorWeight < 0.99999 || dfAccumulatorWeight > 1.00001) |
4141 | 0 | { |
4142 | 0 | *pdfReal = dfAccumulatorReal / dfAccumulatorWeight; |
4143 | 0 | *pdfImag = dfAccumulatorImag / dfAccumulatorWeight; |
4144 | 0 | if (padfRowDensity != nullptr) |
4145 | 0 | *pdfDensity = dfAccumulatorDensity / dfAccumulatorWeight; |
4146 | 0 | else |
4147 | 0 | *pdfDensity = 1.0; |
4148 | 0 | } |
4149 | 0 | else |
4150 | 0 | { |
4151 | 0 | *pdfReal = dfAccumulatorReal; |
4152 | 0 | *pdfImag = dfAccumulatorImag; |
4153 | 0 | if (padfRowDensity != nullptr) |
4154 | 0 | *pdfDensity = dfAccumulatorDensity; |
4155 | 0 | else |
4156 | 0 | *pdfDensity = 1.0; |
4157 | 0 | } |
4158 | |
|
4159 | 0 | return true; |
4160 | 0 | } |
4161 | | |
4162 | | /************************************************************************/ |
4163 | | /* GWKResampleOptimizedLanczos() */ |
4164 | | /************************************************************************/ |
4165 | | |
4166 | | static bool GWKResampleOptimizedLanczos(const GDALWarpKernel *poWK, int iBand, |
4167 | | double dfSrcX, double dfSrcY, |
4168 | | double *pdfDensity, double *pdfReal, |
4169 | | double *pdfImag, |
4170 | | GWKResampleWrkStruct *psWrkStruct) |
4171 | | |
4172 | 0 | { |
4173 | | // Save as local variables to avoid following pointers in loops. |
4174 | 0 | const int nSrcXSize = poWK->nSrcXSize; |
4175 | 0 | const int nSrcYSize = poWK->nSrcYSize; |
4176 | |
|
4177 | 0 | double dfAccumulatorReal = 0.0; |
4178 | 0 | double dfAccumulatorImag = 0.0; |
4179 | 0 | double dfAccumulatorDensity = 0.0; |
4180 | 0 | double dfAccumulatorWeight = 0.0; |
4181 | 0 | const int iSrcX = static_cast<int>(floor(dfSrcX - 0.5)); |
4182 | 0 | const int iSrcY = static_cast<int>(floor(dfSrcY - 0.5)); |
4183 | 0 | const GPtrDiff_t iSrcOffset = |
4184 | 0 | iSrcX + static_cast<GPtrDiff_t>(iSrcY) * nSrcXSize; |
4185 | 0 | const double dfDeltaX = dfSrcX - 0.5 - iSrcX; |
4186 | 0 | const double dfDeltaY = dfSrcY - 0.5 - iSrcY; |
4187 | |
|
4188 | 0 | const double dfXScale = poWK->dfXScale; |
4189 | 0 | const double dfYScale = poWK->dfYScale; |
4190 | | |
4191 | | // Space for saved X weights. |
4192 | 0 | double *const padfWeightsXShifted = |
4193 | 0 | psWrkStruct->padfWeightsX - poWK->nFiltInitX; |
4194 | 0 | double *const padfWeightsYShifted = |
4195 | 0 | psWrkStruct->padfWeightsY - poWK->nFiltInitY; |
4196 | | |
4197 | | // Space for saving a row of pixels. |
4198 | 0 | double *const padfRowDensity = psWrkStruct->padfRowDensity; |
4199 | 0 | double *const padfRowReal = psWrkStruct->padfRowReal; |
4200 | 0 | double *const padfRowImag = psWrkStruct->padfRowImag; |
4201 | | |
4202 | | // Skip sampling over edge of image. |
4203 | 0 | int jMin = poWK->nFiltInitY; |
4204 | 0 | int jMax = poWK->nYRadius; |
4205 | 0 | if (iSrcY + jMin < 0) |
4206 | 0 | jMin = -iSrcY; |
4207 | 0 | if (iSrcY + jMax >= nSrcYSize) |
4208 | 0 | jMax = nSrcYSize - iSrcY - 1; |
4209 | |
|
4210 | 0 | int iMin = poWK->nFiltInitX; |
4211 | 0 | int iMax = poWK->nXRadius; |
4212 | 0 | if (iSrcX + iMin < 0) |
4213 | 0 | iMin = -iSrcX; |
4214 | 0 | if (iSrcX + iMax >= nSrcXSize) |
4215 | 0 | iMax = nSrcXSize - iSrcX - 1; |
4216 | |
|
4217 | 0 | if (dfXScale < 1.0) |
4218 | 0 | { |
4219 | 0 | while ((iMin - dfDeltaX) * dfXScale < -3.0) |
4220 | 0 | iMin++; |
4221 | 0 | while ((iMax - dfDeltaX) * dfXScale > 3.0) |
4222 | 0 | iMax--; |
4223 | | |
4224 | | // clang-format off |
4225 | | /* |
4226 | | Naive version: |
4227 | | for (int i = iMin; i <= iMax; ++i) |
4228 | | { |
4229 | | psWrkStruct->padfWeightsXShifted[i] = |
4230 | | GWKLanczosSinc((i - dfDeltaX) * dfXScale); |
4231 | | } |
4232 | | |
4233 | | but given that: |
4234 | | |
4235 | | GWKLanczosSinc(x): |
4236 | | if (dfX == 0.0) |
4237 | | return 1.0; |
4238 | | |
4239 | | const double dfPIX = M_PI * dfX; |
4240 | | const double dfPIXoverR = dfPIX / 3; |
4241 | | const double dfPIX2overR = dfPIX * dfPIXoverR; |
4242 | | return sin(dfPIX) * sin(dfPIXoverR) / dfPIX2overR; |
4243 | | |
4244 | | and |
4245 | | sin (a + b) = sin a cos b + cos a sin b. |
4246 | | cos (a + b) = cos a cos b - sin a sin b. |
4247 | | |
4248 | | we can skip any sin() computation within the loop |
4249 | | */ |
4250 | | // clang-format on |
4251 | |
|
4252 | 0 | if (iSrcX != psWrkStruct->iLastSrcX || |
4253 | 0 | dfDeltaX != psWrkStruct->dfLastDeltaX) |
4254 | 0 | { |
4255 | 0 | double dfX = (iMin - dfDeltaX) * dfXScale; |
4256 | |
|
4257 | 0 | double dfPIXover3 = M_PI / 3 * dfX; |
4258 | 0 | double dfCosOver3 = cos(dfPIXover3); |
4259 | 0 | double dfSinOver3 = sin(dfPIXover3); |
4260 | | |
4261 | | // "Naive": |
4262 | | // double dfSin = sin( M_PI * dfX ); |
4263 | | // double dfCos = cos( M_PI * dfX ); |
4264 | | // but given that cos(3x) = 4 cos^3(x) - 3 cos(x) and sin(3x) = 3 sin(x) - 4 sin^3 (x). |
4265 | 0 | double dfSin = (3 - 4 * dfSinOver3 * dfSinOver3) * dfSinOver3; |
4266 | 0 | double dfCos = (4 * dfCosOver3 * dfCosOver3 - 3) * dfCosOver3; |
4267 | |
|
4268 | 0 | const double dfCosPiXScaleOver3 = psWrkStruct->dfCosPiXScaleOver3; |
4269 | 0 | const double dfSinPiXScaleOver3 = psWrkStruct->dfSinPiXScaleOver3; |
4270 | 0 | const double dfCosPiXScale = psWrkStruct->dfCosPiXScale; |
4271 | 0 | const double dfSinPiXScale = psWrkStruct->dfSinPiXScale; |
4272 | 0 | constexpr double THREE_PI_PI = 3 * M_PI * M_PI; |
4273 | 0 | padfWeightsXShifted[iMin] = |
4274 | 0 | dfX == 0 ? 1.0 : THREE_PI_PI * dfSin * dfSinOver3 / (dfX * dfX); |
4275 | 0 | for (int i = iMin + 1; i <= iMax; ++i) |
4276 | 0 | { |
4277 | 0 | dfX += dfXScale; |
4278 | 0 | const double dfNewSin = |
4279 | 0 | dfSin * dfCosPiXScale + dfCos * dfSinPiXScale; |
4280 | 0 | const double dfNewSinOver3 = dfSinOver3 * dfCosPiXScaleOver3 + |
4281 | 0 | dfCosOver3 * dfSinPiXScaleOver3; |
4282 | 0 | padfWeightsXShifted[i] = |
4283 | 0 | dfX == 0 |
4284 | 0 | ? 1.0 |
4285 | 0 | : THREE_PI_PI * dfNewSin * dfNewSinOver3 / (dfX * dfX); |
4286 | 0 | const double dfNewCos = |
4287 | 0 | dfCos * dfCosPiXScale - dfSin * dfSinPiXScale; |
4288 | 0 | const double dfNewCosOver3 = dfCosOver3 * dfCosPiXScaleOver3 - |
4289 | 0 | dfSinOver3 * dfSinPiXScaleOver3; |
4290 | 0 | dfSin = dfNewSin; |
4291 | 0 | dfCos = dfNewCos; |
4292 | 0 | dfSinOver3 = dfNewSinOver3; |
4293 | 0 | dfCosOver3 = dfNewCosOver3; |
4294 | 0 | } |
4295 | |
|
4296 | 0 | psWrkStruct->iLastSrcX = iSrcX; |
4297 | 0 | psWrkStruct->dfLastDeltaX = dfDeltaX; |
4298 | 0 | } |
4299 | 0 | } |
4300 | 0 | else |
4301 | 0 | { |
4302 | 0 | while (iMin - dfDeltaX < -3.0) |
4303 | 0 | iMin++; |
4304 | 0 | while (iMax - dfDeltaX > 3.0) |
4305 | 0 | iMax--; |
4306 | |
|
4307 | 0 | if (iSrcX != psWrkStruct->iLastSrcX || |
4308 | 0 | dfDeltaX != psWrkStruct->dfLastDeltaX) |
4309 | 0 | { |
4310 | | // Optimisation of GWKLanczosSinc(i - dfDeltaX) based on the |
4311 | | // following trigonometric formulas. |
4312 | | |
4313 | | // TODO(schwehr): Move this somewhere where it can be rendered at |
4314 | | // LaTeX. |
4315 | | // clang-format off |
4316 | | // sin(M_PI * (dfBase + k)) = sin(M_PI * dfBase) * cos(M_PI * k) + |
4317 | | // cos(M_PI * dfBase) * sin(M_PI * k) |
4318 | | // sin(M_PI * (dfBase + k)) = dfSinPIBase * cos(M_PI * k) + dfCosPIBase * sin(M_PI * k) |
4319 | | // sin(M_PI * (dfBase + k)) = dfSinPIBase * cos(M_PI * k) |
4320 | | // sin(M_PI * (dfBase + k)) = dfSinPIBase * (((k % 2) == 0) ? 1 : -1) |
4321 | | |
4322 | | // sin(M_PI / dfR * (dfBase + k)) = sin(M_PI / dfR * dfBase) * cos(M_PI / dfR * k) + |
4323 | | // cos(M_PI / dfR * dfBase) * sin(M_PI / dfR * k) |
4324 | | // sin(M_PI / dfR * (dfBase + k)) = dfSinPIBaseOverR * cos(M_PI / dfR * k) + dfCosPIBaseOverR * sin(M_PI / dfR * k) |
4325 | | // clang-format on |
4326 | |
|
4327 | 0 | const double dfSinPIDeltaXOver3 = sin((-M_PI / 3.0) * dfDeltaX); |
4328 | 0 | const double dfSin2PIDeltaXOver3 = |
4329 | 0 | dfSinPIDeltaXOver3 * dfSinPIDeltaXOver3; |
4330 | | // Ok to use sqrt(1-sin^2) since M_PI / 3 * dfDeltaX < PI/2. |
4331 | 0 | const double dfCosPIDeltaXOver3 = sqrt(1.0 - dfSin2PIDeltaXOver3); |
4332 | 0 | const double dfSinPIDeltaX = |
4333 | 0 | (3.0 - 4 * dfSin2PIDeltaXOver3) * dfSinPIDeltaXOver3; |
4334 | 0 | const double dfInvPI2Over3 = 3.0 / (M_PI * M_PI); |
4335 | 0 | const double dfInvPI2Over3xSinPIDeltaX = |
4336 | 0 | dfInvPI2Over3 * dfSinPIDeltaX; |
4337 | 0 | const double dfInvPI2Over3xSinPIDeltaXxm0d5SinPIDeltaXOver3 = |
4338 | 0 | -0.5 * dfInvPI2Over3xSinPIDeltaX * dfSinPIDeltaXOver3; |
4339 | 0 | const double dfSinPIOver3 = 0.8660254037844386; |
4340 | 0 | const double dfInvPI2Over3xSinPIDeltaXxSinPIOver3xCosPIDeltaXOver3 = |
4341 | 0 | dfSinPIOver3 * dfInvPI2Over3xSinPIDeltaX * dfCosPIDeltaXOver3; |
4342 | 0 | const double padfCst[] = { |
4343 | 0 | dfInvPI2Over3xSinPIDeltaX * dfSinPIDeltaXOver3, |
4344 | 0 | dfInvPI2Over3xSinPIDeltaXxm0d5SinPIDeltaXOver3 - |
4345 | 0 | dfInvPI2Over3xSinPIDeltaXxSinPIOver3xCosPIDeltaXOver3, |
4346 | 0 | dfInvPI2Over3xSinPIDeltaXxm0d5SinPIDeltaXOver3 + |
4347 | 0 | dfInvPI2Over3xSinPIDeltaXxSinPIOver3xCosPIDeltaXOver3}; |
4348 | |
|
4349 | 0 | for (int i = iMin; i <= iMax; ++i) |
4350 | 0 | { |
4351 | 0 | const double dfX = i - dfDeltaX; |
4352 | 0 | if (dfX == 0.0) |
4353 | 0 | padfWeightsXShifted[i] = 1.0; |
4354 | 0 | else |
4355 | 0 | padfWeightsXShifted[i] = padfCst[(i + 3) % 3] / (dfX * dfX); |
4356 | | #if DEBUG_VERBOSE |
4357 | | // TODO(schwehr): AlmostEqual. |
4358 | | // CPLAssert(fabs(padfWeightsX[i-poWK->nFiltInitX] - |
4359 | | // GWKLanczosSinc(dfX, 3.0)) < 1e-10); |
4360 | | #endif |
4361 | 0 | } |
4362 | |
|
4363 | 0 | psWrkStruct->iLastSrcX = iSrcX; |
4364 | 0 | psWrkStruct->dfLastDeltaX = dfDeltaX; |
4365 | 0 | } |
4366 | 0 | } |
4367 | |
|
4368 | 0 | if (dfYScale < 1.0) |
4369 | 0 | { |
4370 | 0 | while ((jMin - dfDeltaY) * dfYScale < -3.0) |
4371 | 0 | jMin++; |
4372 | 0 | while ((jMax - dfDeltaY) * dfYScale > 3.0) |
4373 | 0 | jMax--; |
4374 | | |
4375 | | // clang-format off |
4376 | | /* |
4377 | | Naive version: |
4378 | | for (int j = jMin; j <= jMax; ++j) |
4379 | | { |
4380 | | padfWeightsYShifted[j] = |
4381 | | GWKLanczosSinc((j - dfDeltaY) * dfYScale); |
4382 | | } |
4383 | | */ |
4384 | | // clang-format on |
4385 | |
|
4386 | 0 | if (iSrcY != psWrkStruct->iLastSrcY || |
4387 | 0 | dfDeltaY != psWrkStruct->dfLastDeltaY) |
4388 | 0 | { |
4389 | 0 | double dfY = (jMin - dfDeltaY) * dfYScale; |
4390 | |
|
4391 | 0 | double dfPIYover3 = M_PI / 3 * dfY; |
4392 | 0 | double dfCosOver3 = cos(dfPIYover3); |
4393 | 0 | double dfSinOver3 = sin(dfPIYover3); |
4394 | | |
4395 | | // "Naive": |
4396 | | // double dfSin = sin( M_PI * dfY ); |
4397 | | // double dfCos = cos( M_PI * dfY ); |
4398 | | // but given that cos(3x) = 4 cos^3(x) - 3 cos(x) and sin(3x) = 3 sin(x) - 4 sin^3 (x). |
4399 | 0 | double dfSin = (3 - 4 * dfSinOver3 * dfSinOver3) * dfSinOver3; |
4400 | 0 | double dfCos = (4 * dfCosOver3 * dfCosOver3 - 3) * dfCosOver3; |
4401 | |
|
4402 | 0 | const double dfCosPiYScaleOver3 = psWrkStruct->dfCosPiYScaleOver3; |
4403 | 0 | const double dfSinPiYScaleOver3 = psWrkStruct->dfSinPiYScaleOver3; |
4404 | 0 | const double dfCosPiYScale = psWrkStruct->dfCosPiYScale; |
4405 | 0 | const double dfSinPiYScale = psWrkStruct->dfSinPiYScale; |
4406 | 0 | constexpr double THREE_PI_PI = 3 * M_PI * M_PI; |
4407 | 0 | padfWeightsYShifted[jMin] = |
4408 | 0 | dfY == 0 ? 1.0 : THREE_PI_PI * dfSin * dfSinOver3 / (dfY * dfY); |
4409 | 0 | for (int j = jMin + 1; j <= jMax; ++j) |
4410 | 0 | { |
4411 | 0 | dfY += dfYScale; |
4412 | 0 | const double dfNewSin = |
4413 | 0 | dfSin * dfCosPiYScale + dfCos * dfSinPiYScale; |
4414 | 0 | const double dfNewSinOver3 = dfSinOver3 * dfCosPiYScaleOver3 + |
4415 | 0 | dfCosOver3 * dfSinPiYScaleOver3; |
4416 | 0 | padfWeightsYShifted[j] = |
4417 | 0 | dfY == 0 |
4418 | 0 | ? 1.0 |
4419 | 0 | : THREE_PI_PI * dfNewSin * dfNewSinOver3 / (dfY * dfY); |
4420 | 0 | const double dfNewCos = |
4421 | 0 | dfCos * dfCosPiYScale - dfSin * dfSinPiYScale; |
4422 | 0 | const double dfNewCosOver3 = dfCosOver3 * dfCosPiYScaleOver3 - |
4423 | 0 | dfSinOver3 * dfSinPiYScaleOver3; |
4424 | 0 | dfSin = dfNewSin; |
4425 | 0 | dfCos = dfNewCos; |
4426 | 0 | dfSinOver3 = dfNewSinOver3; |
4427 | 0 | dfCosOver3 = dfNewCosOver3; |
4428 | 0 | } |
4429 | |
|
4430 | 0 | psWrkStruct->iLastSrcY = iSrcY; |
4431 | 0 | psWrkStruct->dfLastDeltaY = dfDeltaY; |
4432 | 0 | } |
4433 | 0 | } |
4434 | 0 | else |
4435 | 0 | { |
4436 | 0 | while (jMin - dfDeltaY < -3.0) |
4437 | 0 | jMin++; |
4438 | 0 | while (jMax - dfDeltaY > 3.0) |
4439 | 0 | jMax--; |
4440 | |
|
4441 | 0 | if (iSrcY != psWrkStruct->iLastSrcY || |
4442 | 0 | dfDeltaY != psWrkStruct->dfLastDeltaY) |
4443 | 0 | { |
4444 | 0 | const double dfSinPIDeltaYOver3 = sin((-M_PI / 3.0) * dfDeltaY); |
4445 | 0 | const double dfSin2PIDeltaYOver3 = |
4446 | 0 | dfSinPIDeltaYOver3 * dfSinPIDeltaYOver3; |
4447 | | // Ok to use sqrt(1-sin^2) since M_PI / 3 * dfDeltaY < PI/2. |
4448 | 0 | const double dfCosPIDeltaYOver3 = sqrt(1.0 - dfSin2PIDeltaYOver3); |
4449 | 0 | const double dfSinPIDeltaY = |
4450 | 0 | (3.0 - 4.0 * dfSin2PIDeltaYOver3) * dfSinPIDeltaYOver3; |
4451 | 0 | const double dfInvPI2Over3 = 3.0 / (M_PI * M_PI); |
4452 | 0 | const double dfInvPI2Over3xSinPIDeltaY = |
4453 | 0 | dfInvPI2Over3 * dfSinPIDeltaY; |
4454 | 0 | const double dfInvPI2Over3xSinPIDeltaYxm0d5SinPIDeltaYOver3 = |
4455 | 0 | -0.5 * dfInvPI2Over3xSinPIDeltaY * dfSinPIDeltaYOver3; |
4456 | 0 | const double dfSinPIOver3 = 0.8660254037844386; |
4457 | 0 | const double dfInvPI2Over3xSinPIDeltaYxSinPIOver3xCosPIDeltaYOver3 = |
4458 | 0 | dfSinPIOver3 * dfInvPI2Over3xSinPIDeltaY * dfCosPIDeltaYOver3; |
4459 | 0 | const double padfCst[] = { |
4460 | 0 | dfInvPI2Over3xSinPIDeltaY * dfSinPIDeltaYOver3, |
4461 | 0 | dfInvPI2Over3xSinPIDeltaYxm0d5SinPIDeltaYOver3 - |
4462 | 0 | dfInvPI2Over3xSinPIDeltaYxSinPIOver3xCosPIDeltaYOver3, |
4463 | 0 | dfInvPI2Over3xSinPIDeltaYxm0d5SinPIDeltaYOver3 + |
4464 | 0 | dfInvPI2Over3xSinPIDeltaYxSinPIOver3xCosPIDeltaYOver3}; |
4465 | |
|
4466 | 0 | for (int j = jMin; j <= jMax; ++j) |
4467 | 0 | { |
4468 | 0 | const double dfY = j - dfDeltaY; |
4469 | 0 | if (dfY == 0.0) |
4470 | 0 | padfWeightsYShifted[j] = 1.0; |
4471 | 0 | else |
4472 | 0 | padfWeightsYShifted[j] = padfCst[(j + 3) % 3] / (dfY * dfY); |
4473 | | #if DEBUG_VERBOSE |
4474 | | // TODO(schwehr): AlmostEqual. |
4475 | | // CPLAssert(fabs(padfWeightsYShifted[j] - |
4476 | | // GWKLanczosSinc(dfY, 3.0)) < 1e-10); |
4477 | | #endif |
4478 | 0 | } |
4479 | |
|
4480 | 0 | psWrkStruct->iLastSrcY = iSrcY; |
4481 | 0 | psWrkStruct->dfLastDeltaY = dfDeltaY; |
4482 | 0 | } |
4483 | 0 | } |
4484 | | |
4485 | | // If we have no density information, we can simply compute the |
4486 | | // accumulated weight. |
4487 | 0 | if (padfRowDensity == nullptr) |
4488 | 0 | { |
4489 | 0 | double dfRowAccWeight = 0.0; |
4490 | 0 | for (int i = iMin; i <= iMax; ++i) |
4491 | 0 | { |
4492 | 0 | dfRowAccWeight += padfWeightsXShifted[i]; |
4493 | 0 | } |
4494 | 0 | double dfColAccWeight = 0.0; |
4495 | 0 | for (int j = jMin; j <= jMax; ++j) |
4496 | 0 | { |
4497 | 0 | dfColAccWeight += padfWeightsYShifted[j]; |
4498 | 0 | } |
4499 | 0 | dfAccumulatorWeight = dfRowAccWeight * dfColAccWeight; |
4500 | 0 | } |
4501 | | |
4502 | | // Loop over pixel rows in the kernel. |
4503 | |
|
4504 | 0 | if (poWK->eWorkingDataType == GDT_UInt8 && !poWK->panUnifiedSrcValid && |
4505 | 0 | !poWK->papanBandSrcValid && !poWK->pafUnifiedSrcDensity && |
4506 | 0 | !padfRowDensity) |
4507 | 0 | { |
4508 | | // Optimization for Byte case without any masking/alpha |
4509 | |
|
4510 | 0 | if (dfAccumulatorWeight < 0.000001) |
4511 | 0 | { |
4512 | 0 | *pdfDensity = 0.0; |
4513 | 0 | return false; |
4514 | 0 | } |
4515 | | |
4516 | 0 | const GByte *pSrc = |
4517 | 0 | reinterpret_cast<const GByte *>(poWK->papabySrcImage[iBand]); |
4518 | 0 | pSrc += iSrcOffset + static_cast<GPtrDiff_t>(jMin) * nSrcXSize; |
4519 | |
|
4520 | 0 | #if defined(USE_SSE2) |
4521 | 0 | if (iMax - iMin + 1 == 6) |
4522 | 0 | { |
4523 | | // This is just an optimized version of the general case in |
4524 | | // the else clause. |
4525 | |
|
4526 | 0 | pSrc += iMin; |
4527 | 0 | int j = jMin; |
4528 | 0 | const auto fourXWeights = |
4529 | 0 | XMMReg4Double::Load4Val(padfWeightsXShifted + iMin); |
4530 | | |
4531 | | // Process 2 lines at the same time. |
4532 | 0 | for (; j < jMax; j += 2) |
4533 | 0 | { |
4534 | 0 | const XMMReg4Double v_acc = |
4535 | 0 | XMMReg4Double::Load4Val(pSrc) * fourXWeights; |
4536 | 0 | const XMMReg4Double v_acc2 = |
4537 | 0 | XMMReg4Double::Load4Val(pSrc + nSrcXSize) * fourXWeights; |
4538 | 0 | const double dfRowAcc = v_acc.GetHorizSum(); |
4539 | 0 | const double dfRowAccEnd = |
4540 | 0 | pSrc[4] * padfWeightsXShifted[iMin + 4] + |
4541 | 0 | pSrc[5] * padfWeightsXShifted[iMin + 5]; |
4542 | 0 | dfAccumulatorReal += |
4543 | 0 | (dfRowAcc + dfRowAccEnd) * padfWeightsYShifted[j]; |
4544 | 0 | const double dfRowAcc2 = v_acc2.GetHorizSum(); |
4545 | 0 | const double dfRowAcc2End = |
4546 | 0 | pSrc[nSrcXSize + 4] * padfWeightsXShifted[iMin + 4] + |
4547 | 0 | pSrc[nSrcXSize + 5] * padfWeightsXShifted[iMin + 5]; |
4548 | 0 | dfAccumulatorReal += |
4549 | 0 | (dfRowAcc2 + dfRowAcc2End) * padfWeightsYShifted[j + 1]; |
4550 | 0 | pSrc += 2 * nSrcXSize; |
4551 | 0 | } |
4552 | 0 | if (j == jMax) |
4553 | 0 | { |
4554 | | // Process last line if there's an odd number of them. |
4555 | |
|
4556 | 0 | const XMMReg4Double v_acc = |
4557 | 0 | XMMReg4Double::Load4Val(pSrc) * fourXWeights; |
4558 | 0 | const double dfRowAcc = v_acc.GetHorizSum(); |
4559 | 0 | const double dfRowAccEnd = |
4560 | 0 | pSrc[4] * padfWeightsXShifted[iMin + 4] + |
4561 | 0 | pSrc[5] * padfWeightsXShifted[iMin + 5]; |
4562 | 0 | dfAccumulatorReal += |
4563 | 0 | (dfRowAcc + dfRowAccEnd) * padfWeightsYShifted[j]; |
4564 | 0 | } |
4565 | 0 | } |
4566 | 0 | else |
4567 | 0 | #endif |
4568 | 0 | { |
4569 | 0 | for (int j = jMin; j <= jMax; ++j) |
4570 | 0 | { |
4571 | 0 | int i = iMin; |
4572 | 0 | double dfRowAcc1 = 0.0; |
4573 | 0 | double dfRowAcc2 = 0.0; |
4574 | | // A bit of loop unrolling |
4575 | 0 | for (; i < iMax; i += 2) |
4576 | 0 | { |
4577 | 0 | dfRowAcc1 += pSrc[i] * padfWeightsXShifted[i]; |
4578 | 0 | dfRowAcc2 += pSrc[i + 1] * padfWeightsXShifted[i + 1]; |
4579 | 0 | } |
4580 | 0 | if (i == iMax) |
4581 | 0 | { |
4582 | | // Process last column if there's an odd number of them. |
4583 | 0 | dfRowAcc1 += pSrc[i] * padfWeightsXShifted[i]; |
4584 | 0 | } |
4585 | |
|
4586 | 0 | dfAccumulatorReal += |
4587 | 0 | (dfRowAcc1 + dfRowAcc2) * padfWeightsYShifted[j]; |
4588 | 0 | pSrc += nSrcXSize; |
4589 | 0 | } |
4590 | 0 | } |
4591 | | |
4592 | | // Calculate the output taking into account weighting. |
4593 | 0 | if (dfAccumulatorWeight < 0.99999 || dfAccumulatorWeight > 1.00001) |
4594 | 0 | { |
4595 | 0 | const double dfInvAcc = 1.0 / dfAccumulatorWeight; |
4596 | 0 | *pdfReal = dfAccumulatorReal * dfInvAcc; |
4597 | 0 | *pdfDensity = 1.0; |
4598 | 0 | } |
4599 | 0 | else |
4600 | 0 | { |
4601 | 0 | *pdfReal = dfAccumulatorReal; |
4602 | 0 | *pdfDensity = 1.0; |
4603 | 0 | } |
4604 | |
|
4605 | 0 | return true; |
4606 | 0 | } |
4607 | | |
4608 | 0 | GPtrDiff_t iRowOffset = |
4609 | 0 | iSrcOffset + static_cast<GPtrDiff_t>(jMin - 1) * nSrcXSize + iMin; |
4610 | |
|
4611 | 0 | int nCountValid = 0; |
4612 | 0 | const bool bIsNonComplex = !GDALDataTypeIsComplex(poWK->eWorkingDataType); |
4613 | |
|
4614 | 0 | for (int j = jMin; j <= jMax; ++j) |
4615 | 0 | { |
4616 | 0 | iRowOffset += nSrcXSize; |
4617 | | |
4618 | | // Get pixel values. |
4619 | | // We can potentially read extra elements after the "normal" end of the |
4620 | | // source arrays, but the contract of papabySrcImage[iBand], |
4621 | | // papanBandSrcValid[iBand], panUnifiedSrcValid and pafUnifiedSrcDensity |
4622 | | // is to have WARP_EXTRA_ELTS reserved at their end. |
4623 | 0 | if (!GWKGetPixelRow(poWK, iBand, iRowOffset, (iMax - iMin + 2) / 2, |
4624 | 0 | padfRowDensity, padfRowReal, padfRowImag)) |
4625 | 0 | continue; |
4626 | | |
4627 | 0 | const double dfWeight1 = padfWeightsYShifted[j]; |
4628 | | |
4629 | | // Iterate over pixels in row. |
4630 | 0 | if (padfRowDensity != nullptr) |
4631 | 0 | { |
4632 | 0 | for (int i = iMin; i <= iMax; ++i) |
4633 | 0 | { |
4634 | | // Skip sampling if pixel has zero density. |
4635 | 0 | if (padfRowDensity[i - iMin] < SRC_DENSITY_THRESHOLD_DOUBLE) |
4636 | 0 | continue; |
4637 | | |
4638 | 0 | nCountValid++; |
4639 | | |
4640 | | // Use a cached set of weights for this row. |
4641 | 0 | const double dfWeight2 = dfWeight1 * padfWeightsXShifted[i]; |
4642 | | |
4643 | | // Accumulate! |
4644 | 0 | dfAccumulatorReal += padfRowReal[i - iMin] * dfWeight2; |
4645 | 0 | dfAccumulatorImag += padfRowImag[i - iMin] * dfWeight2; |
4646 | 0 | dfAccumulatorDensity += padfRowDensity[i - iMin] * dfWeight2; |
4647 | 0 | dfAccumulatorWeight += dfWeight2; |
4648 | 0 | } |
4649 | 0 | } |
4650 | 0 | else if (bIsNonComplex) |
4651 | 0 | { |
4652 | 0 | double dfRowAccReal = 0.0; |
4653 | 0 | for (int i = iMin; i <= iMax; ++i) |
4654 | 0 | { |
4655 | 0 | const double dfWeight2 = padfWeightsXShifted[i]; |
4656 | | |
4657 | | // Accumulate! |
4658 | 0 | dfRowAccReal += padfRowReal[i - iMin] * dfWeight2; |
4659 | 0 | } |
4660 | |
|
4661 | 0 | dfAccumulatorReal += dfRowAccReal * dfWeight1; |
4662 | 0 | } |
4663 | 0 | else |
4664 | 0 | { |
4665 | 0 | double dfRowAccReal = 0.0; |
4666 | 0 | double dfRowAccImag = 0.0; |
4667 | 0 | for (int i = iMin; i <= iMax; ++i) |
4668 | 0 | { |
4669 | 0 | const double dfWeight2 = padfWeightsXShifted[i]; |
4670 | | |
4671 | | // Accumulate! |
4672 | 0 | dfRowAccReal += padfRowReal[i - iMin] * dfWeight2; |
4673 | 0 | dfRowAccImag += padfRowImag[i - iMin] * dfWeight2; |
4674 | 0 | } |
4675 | |
|
4676 | 0 | dfAccumulatorReal += dfRowAccReal * dfWeight1; |
4677 | 0 | dfAccumulatorImag += dfRowAccImag * dfWeight1; |
4678 | 0 | } |
4679 | 0 | } |
4680 | |
|
4681 | 0 | if (dfAccumulatorWeight < 0.000001 || |
4682 | 0 | (padfRowDensity != nullptr && |
4683 | 0 | (dfAccumulatorDensity < 0.000001 || |
4684 | 0 | nCountValid < (jMax - jMin + 1) * (iMax - iMin + 1) / 2))) |
4685 | 0 | { |
4686 | 0 | *pdfDensity = 0.0; |
4687 | 0 | return false; |
4688 | 0 | } |
4689 | | |
4690 | | // Calculate the output taking into account weighting. |
4691 | 0 | if (dfAccumulatorWeight < 0.99999 || dfAccumulatorWeight > 1.00001) |
4692 | 0 | { |
4693 | 0 | const double dfInvAcc = 1.0 / dfAccumulatorWeight; |
4694 | 0 | *pdfReal = dfAccumulatorReal * dfInvAcc; |
4695 | 0 | *pdfImag = dfAccumulatorImag * dfInvAcc; |
4696 | 0 | if (padfRowDensity != nullptr) |
4697 | 0 | *pdfDensity = dfAccumulatorDensity * dfInvAcc; |
4698 | 0 | else |
4699 | 0 | *pdfDensity = 1.0; |
4700 | 0 | } |
4701 | 0 | else |
4702 | 0 | { |
4703 | 0 | *pdfReal = dfAccumulatorReal; |
4704 | 0 | *pdfImag = dfAccumulatorImag; |
4705 | 0 | if (padfRowDensity != nullptr) |
4706 | 0 | *pdfDensity = dfAccumulatorDensity; |
4707 | 0 | else |
4708 | 0 | *pdfDensity = 1.0; |
4709 | 0 | } |
4710 | |
|
4711 | 0 | return true; |
4712 | 0 | } |
4713 | | |
4714 | | /************************************************************************/ |
4715 | | /* GWKComputeWeights() */ |
4716 | | /************************************************************************/ |
4717 | | |
4718 | | static void GWKComputeWeights(GDALResampleAlg eResample, int iMin, int iMax, |
4719 | | double dfDeltaX, double dfXScale, int jMin, |
4720 | | int jMax, double dfDeltaY, double dfYScale, |
4721 | | double *padfWeightsHorizontal, |
4722 | | double *padfWeightsVertical, double &dfInvWeights) |
4723 | 0 | { |
4724 | |
|
4725 | 0 | const FilterFuncType pfnGetWeight = apfGWKFilter[eResample]; |
4726 | 0 | CPLAssert(pfnGetWeight); |
4727 | 0 | const FilterFunc4ValuesType pfnGetWeight4Values = |
4728 | 0 | apfGWKFilter4Values[eResample]; |
4729 | 0 | CPLAssert(pfnGetWeight4Values); |
4730 | | |
4731 | 0 | int i = iMin; // Used after for. |
4732 | 0 | int iC = 0; // Used after for. |
4733 | | // Not zero, but as close as possible to it, to avoid potential division by |
4734 | | // zero at end of function |
4735 | 0 | double dfAccumulatorWeightHorizontal = cpl::NumericLimits<double>::min(); |
4736 | 0 | for (; i + 2 < iMax; i += 4, iC += 4) |
4737 | 0 | { |
4738 | 0 | padfWeightsHorizontal[iC] = (i - dfDeltaX) * dfXScale; |
4739 | 0 | padfWeightsHorizontal[iC + 1] = padfWeightsHorizontal[iC] + dfXScale; |
4740 | 0 | padfWeightsHorizontal[iC + 2] = |
4741 | 0 | padfWeightsHorizontal[iC + 1] + dfXScale; |
4742 | 0 | padfWeightsHorizontal[iC + 3] = |
4743 | 0 | padfWeightsHorizontal[iC + 2] + dfXScale; |
4744 | 0 | dfAccumulatorWeightHorizontal += |
4745 | 0 | pfnGetWeight4Values(padfWeightsHorizontal + iC); |
4746 | 0 | } |
4747 | 0 | for (; i <= iMax; ++i, ++iC) |
4748 | 0 | { |
4749 | 0 | const double dfWeight = pfnGetWeight((i - dfDeltaX) * dfXScale); |
4750 | 0 | padfWeightsHorizontal[iC] = dfWeight; |
4751 | 0 | dfAccumulatorWeightHorizontal += dfWeight; |
4752 | 0 | } |
4753 | |
|
4754 | 0 | int j = jMin; // Used after for. |
4755 | 0 | int jC = 0; // Used after for. |
4756 | | // Not zero, but as close as possible to it, to avoid potential division by |
4757 | | // zero at end of function |
4758 | 0 | double dfAccumulatorWeightVertical = cpl::NumericLimits<double>::min(); |
4759 | 0 | for (; j + 2 < jMax; j += 4, jC += 4) |
4760 | 0 | { |
4761 | 0 | padfWeightsVertical[jC] = (j - dfDeltaY) * dfYScale; |
4762 | 0 | padfWeightsVertical[jC + 1] = padfWeightsVertical[jC] + dfYScale; |
4763 | 0 | padfWeightsVertical[jC + 2] = padfWeightsVertical[jC + 1] + dfYScale; |
4764 | 0 | padfWeightsVertical[jC + 3] = padfWeightsVertical[jC + 2] + dfYScale; |
4765 | 0 | dfAccumulatorWeightVertical += |
4766 | 0 | pfnGetWeight4Values(padfWeightsVertical + jC); |
4767 | 0 | } |
4768 | 0 | for (; j <= jMax; ++j, ++jC) |
4769 | 0 | { |
4770 | 0 | const double dfWeight = pfnGetWeight((j - dfDeltaY) * dfYScale); |
4771 | 0 | padfWeightsVertical[jC] = dfWeight; |
4772 | 0 | dfAccumulatorWeightVertical += dfWeight; |
4773 | 0 | } |
4774 | |
|
4775 | 0 | dfInvWeights = |
4776 | 0 | 1. / (dfAccumulatorWeightHorizontal * dfAccumulatorWeightVertical); |
4777 | 0 | } |
4778 | | |
4779 | | /************************************************************************/ |
4780 | | /* GWKResampleNoMasksT() */ |
4781 | | /************************************************************************/ |
4782 | | |
4783 | | template <class T> |
4784 | | static bool |
4785 | | GWKResampleNoMasksT(const GDALWarpKernel *poWK, int iBand, double dfSrcX, |
4786 | | double dfSrcY, T *pValue, double *padfWeightsHorizontal, |
4787 | | double *padfWeightsVertical, double &dfInvWeights) |
4788 | | |
4789 | | { |
4790 | | // Commonly used; save locally. |
4791 | | const int nSrcXSize = poWK->nSrcXSize; |
4792 | | const int nSrcYSize = poWK->nSrcYSize; |
4793 | | |
4794 | | const int iSrcX = static_cast<int>(floor(dfSrcX - 0.5)); |
4795 | | const int iSrcY = static_cast<int>(floor(dfSrcY - 0.5)); |
4796 | | const GPtrDiff_t iSrcOffset = |
4797 | | iSrcX + static_cast<GPtrDiff_t>(iSrcY) * nSrcXSize; |
4798 | | |
4799 | | const int nXRadius = poWK->nXRadius; |
4800 | | const int nYRadius = poWK->nYRadius; |
4801 | | |
4802 | | // Politely refuse to process invalid coordinates or obscenely small image. |
4803 | | if (iSrcX >= nSrcXSize || iSrcY >= nSrcYSize || nXRadius > nSrcXSize || |
4804 | | nYRadius > nSrcYSize) |
4805 | | return GWKBilinearResampleNoMasks4SampleT(poWK, iBand, dfSrcX, dfSrcY, |
4806 | | pValue); |
4807 | | |
4808 | | T *pSrcBand = reinterpret_cast<T *>(poWK->papabySrcImage[iBand]); |
4809 | | const double dfDeltaX = dfSrcX - 0.5 - iSrcX; |
4810 | | const double dfDeltaY = dfSrcY - 0.5 - iSrcY; |
4811 | | |
4812 | | const double dfXScale = std::min(poWK->dfXScale, 1.0); |
4813 | | const double dfYScale = std::min(poWK->dfYScale, 1.0); |
4814 | | |
4815 | | int iMin = 1 - nXRadius; |
4816 | | if (iSrcX + iMin < 0) |
4817 | | iMin = -iSrcX; |
4818 | | int iMax = nXRadius; |
4819 | | if (iSrcX + iMax >= nSrcXSize - 1) |
4820 | | iMax = nSrcXSize - 1 - iSrcX; |
4821 | | |
4822 | | int jMin = 1 - nYRadius; |
4823 | | if (iSrcY + jMin < 0) |
4824 | | jMin = -iSrcY; |
4825 | | int jMax = nYRadius; |
4826 | | if (iSrcY + jMax >= nSrcYSize - 1) |
4827 | | jMax = nSrcYSize - 1 - iSrcY; |
4828 | | |
4829 | | if (iBand == 0) |
4830 | | { |
4831 | | GWKComputeWeights(poWK->eResample, iMin, iMax, dfDeltaX, dfXScale, jMin, |
4832 | | jMax, dfDeltaY, dfYScale, padfWeightsHorizontal, |
4833 | | padfWeightsVertical, dfInvWeights); |
4834 | | } |
4835 | | |
4836 | | // Loop over all rows in the kernel. |
4837 | | double dfAccumulator = 0.0; |
4838 | | for (int jC = 0, j = jMin; j <= jMax; ++j, ++jC) |
4839 | | { |
4840 | | const GPtrDiff_t iSampJ = |
4841 | | iSrcOffset + static_cast<GPtrDiff_t>(j) * nSrcXSize; |
4842 | | |
4843 | | // Loop over all pixels in the row. |
4844 | | double dfAccumulatorLocal = 0.0; |
4845 | | double dfAccumulatorLocal2 = 0.0; |
4846 | | int iC = 0; |
4847 | | int i = iMin; |
4848 | | // Process by chunk of 4 cols. |
4849 | | for (; i + 2 < iMax; i += 4, iC += 4) |
4850 | | { |
4851 | | // Retrieve the pixel & accumulate. |
4852 | | dfAccumulatorLocal += |
4853 | | double(pSrcBand[i + iSampJ]) * padfWeightsHorizontal[iC]; |
4854 | | dfAccumulatorLocal += double(pSrcBand[i + 1 + iSampJ]) * |
4855 | | padfWeightsHorizontal[iC + 1]; |
4856 | | dfAccumulatorLocal2 += double(pSrcBand[i + 2 + iSampJ]) * |
4857 | | padfWeightsHorizontal[iC + 2]; |
4858 | | dfAccumulatorLocal2 += double(pSrcBand[i + 3 + iSampJ]) * |
4859 | | padfWeightsHorizontal[iC + 3]; |
4860 | | } |
4861 | | dfAccumulatorLocal += dfAccumulatorLocal2; |
4862 | | if (i < iMax) |
4863 | | { |
4864 | | dfAccumulatorLocal += |
4865 | | double(pSrcBand[i + iSampJ]) * padfWeightsHorizontal[iC]; |
4866 | | dfAccumulatorLocal += double(pSrcBand[i + 1 + iSampJ]) * |
4867 | | padfWeightsHorizontal[iC + 1]; |
4868 | | i += 2; |
4869 | | iC += 2; |
4870 | | } |
4871 | | if (i == iMax) |
4872 | | { |
4873 | | dfAccumulatorLocal += |
4874 | | double(pSrcBand[i + iSampJ]) * padfWeightsHorizontal[iC]; |
4875 | | } |
4876 | | |
4877 | | dfAccumulator += padfWeightsVertical[jC] * dfAccumulatorLocal; |
4878 | | } |
4879 | | |
4880 | | *pValue = GWKClampValueT<T>(dfAccumulator * dfInvWeights); |
4881 | | |
4882 | | return true; |
4883 | | } |
4884 | | |
4885 | | /* We restrict to 64bit processors because they are guaranteed to have SSE2 */ |
4886 | | /* Could possibly be used too on 32bit, but we would need to check at runtime */ |
4887 | | #if defined(USE_SSE2) |
4888 | | |
4889 | | /************************************************************************/ |
4890 | | /* GWKResampleNoMasks_SSE2_T() */ |
4891 | | /************************************************************************/ |
4892 | | |
4893 | | template <class T> |
4894 | | static bool GWKResampleNoMasks_SSE2_T(const GDALWarpKernel *poWK, int iBand, |
4895 | | double dfSrcX, double dfSrcY, T *pValue, |
4896 | | double *padfWeightsHorizontal, |
4897 | | double *padfWeightsVertical, |
4898 | | double &dfInvWeights) |
4899 | 0 | { |
4900 | | // Commonly used; save locally. |
4901 | 0 | const int nSrcXSize = poWK->nSrcXSize; |
4902 | 0 | const int nSrcYSize = poWK->nSrcYSize; |
4903 | |
|
4904 | 0 | const int iSrcX = static_cast<int>(floor(dfSrcX - 0.5)); |
4905 | 0 | const int iSrcY = static_cast<int>(floor(dfSrcY - 0.5)); |
4906 | 0 | const GPtrDiff_t iSrcOffset = |
4907 | 0 | iSrcX + static_cast<GPtrDiff_t>(iSrcY) * nSrcXSize; |
4908 | 0 | const int nXRadius = poWK->nXRadius; |
4909 | 0 | const int nYRadius = poWK->nYRadius; |
4910 | | |
4911 | | // Politely refuse to process invalid coordinates or obscenely small image. |
4912 | 0 | if (iSrcX >= nSrcXSize || iSrcY >= nSrcYSize || nXRadius > nSrcXSize || |
4913 | 0 | nYRadius > nSrcYSize) |
4914 | 0 | return GWKBilinearResampleNoMasks4SampleT(poWK, iBand, dfSrcX, dfSrcY, |
4915 | 0 | pValue); |
4916 | | |
4917 | 0 | const T *pSrcBand = |
4918 | 0 | reinterpret_cast<const T *>(poWK->papabySrcImage[iBand]); |
4919 | |
|
4920 | 0 | const double dfDeltaX = dfSrcX - 0.5 - iSrcX; |
4921 | 0 | const double dfDeltaY = dfSrcY - 0.5 - iSrcY; |
4922 | 0 | const double dfXScale = std::min(poWK->dfXScale, 1.0); |
4923 | 0 | const double dfYScale = std::min(poWK->dfYScale, 1.0); |
4924 | |
|
4925 | 0 | int iMin = 1 - nXRadius; |
4926 | 0 | if (iSrcX + iMin < 0) |
4927 | 0 | iMin = -iSrcX; |
4928 | 0 | int iMax = nXRadius; |
4929 | 0 | if (iSrcX + iMax >= nSrcXSize - 1) |
4930 | 0 | iMax = nSrcXSize - 1 - iSrcX; |
4931 | |
|
4932 | 0 | int jMin = 1 - nYRadius; |
4933 | 0 | if (iSrcY + jMin < 0) |
4934 | 0 | jMin = -iSrcY; |
4935 | 0 | int jMax = nYRadius; |
4936 | 0 | if (iSrcY + jMax >= nSrcYSize - 1) |
4937 | 0 | jMax = nSrcYSize - 1 - iSrcY; |
4938 | |
|
4939 | 0 | if (iBand == 0) |
4940 | 0 | { |
4941 | 0 | GWKComputeWeights(poWK->eResample, iMin, iMax, dfDeltaX, dfXScale, jMin, |
4942 | 0 | jMax, dfDeltaY, dfYScale, padfWeightsHorizontal, |
4943 | 0 | padfWeightsVertical, dfInvWeights); |
4944 | 0 | } |
4945 | |
|
4946 | 0 | GPtrDiff_t iSampJ = iSrcOffset + static_cast<GPtrDiff_t>(jMin) * nSrcXSize; |
4947 | | // Process by chunk of 4 rows. |
4948 | 0 | int jC = 0; |
4949 | 0 | int j = jMin; |
4950 | 0 | double dfAccumulator = 0.0; |
4951 | 0 | for (; j + 2 < jMax; j += 4, iSampJ += 4 * nSrcXSize, jC += 4) |
4952 | 0 | { |
4953 | | // Loop over all pixels in the row. |
4954 | 0 | int iC = 0; |
4955 | 0 | int i = iMin; |
4956 | | // Process by chunk of 4 cols. |
4957 | 0 | XMMReg4Double v_acc_1 = XMMReg4Double::Zero(); |
4958 | 0 | XMMReg4Double v_acc_2 = XMMReg4Double::Zero(); |
4959 | 0 | XMMReg4Double v_acc_3 = XMMReg4Double::Zero(); |
4960 | 0 | XMMReg4Double v_acc_4 = XMMReg4Double::Zero(); |
4961 | 0 | for (; i + 2 < iMax; i += 4, iC += 4) |
4962 | 0 | { |
4963 | | // Retrieve the pixel & accumulate. |
4964 | 0 | XMMReg4Double v_pixels_1 = |
4965 | 0 | XMMReg4Double::Load4Val(pSrcBand + i + iSampJ); |
4966 | 0 | XMMReg4Double v_pixels_2 = |
4967 | 0 | XMMReg4Double::Load4Val(pSrcBand + i + iSampJ + nSrcXSize); |
4968 | 0 | XMMReg4Double v_pixels_3 = |
4969 | 0 | XMMReg4Double::Load4Val(pSrcBand + i + iSampJ + 2 * nSrcXSize); |
4970 | 0 | XMMReg4Double v_pixels_4 = |
4971 | 0 | XMMReg4Double::Load4Val(pSrcBand + i + iSampJ + 3 * nSrcXSize); |
4972 | |
|
4973 | 0 | XMMReg4Double v_padfWeight = |
4974 | 0 | XMMReg4Double::Load4Val(padfWeightsHorizontal + iC); |
4975 | |
|
4976 | 0 | v_acc_1 += v_pixels_1 * v_padfWeight; |
4977 | 0 | v_acc_2 += v_pixels_2 * v_padfWeight; |
4978 | 0 | v_acc_3 += v_pixels_3 * v_padfWeight; |
4979 | 0 | v_acc_4 += v_pixels_4 * v_padfWeight; |
4980 | 0 | } |
4981 | |
|
4982 | 0 | if (i < iMax) |
4983 | 0 | { |
4984 | 0 | XMMReg2Double v_pixels_1 = |
4985 | 0 | XMMReg2Double::Load2Val(pSrcBand + i + iSampJ); |
4986 | 0 | XMMReg2Double v_pixels_2 = |
4987 | 0 | XMMReg2Double::Load2Val(pSrcBand + i + iSampJ + nSrcXSize); |
4988 | 0 | XMMReg2Double v_pixels_3 = |
4989 | 0 | XMMReg2Double::Load2Val(pSrcBand + i + iSampJ + 2 * nSrcXSize); |
4990 | 0 | XMMReg2Double v_pixels_4 = |
4991 | 0 | XMMReg2Double::Load2Val(pSrcBand + i + iSampJ + 3 * nSrcXSize); |
4992 | |
|
4993 | 0 | XMMReg2Double v_padfWeight = |
4994 | 0 | XMMReg2Double::Load2Val(padfWeightsHorizontal + iC); |
4995 | |
|
4996 | 0 | v_acc_1.AddToLow(v_pixels_1 * v_padfWeight); |
4997 | 0 | v_acc_2.AddToLow(v_pixels_2 * v_padfWeight); |
4998 | 0 | v_acc_3.AddToLow(v_pixels_3 * v_padfWeight); |
4999 | 0 | v_acc_4.AddToLow(v_pixels_4 * v_padfWeight); |
5000 | |
|
5001 | 0 | i += 2; |
5002 | 0 | iC += 2; |
5003 | 0 | } |
5004 | |
|
5005 | 0 | double dfAccumulatorLocal_1 = v_acc_1.GetHorizSum(); |
5006 | 0 | double dfAccumulatorLocal_2 = v_acc_2.GetHorizSum(); |
5007 | 0 | double dfAccumulatorLocal_3 = v_acc_3.GetHorizSum(); |
5008 | 0 | double dfAccumulatorLocal_4 = v_acc_4.GetHorizSum(); |
5009 | |
|
5010 | 0 | if (i == iMax) |
5011 | 0 | { |
5012 | 0 | dfAccumulatorLocal_1 += static_cast<double>(pSrcBand[i + iSampJ]) * |
5013 | 0 | padfWeightsHorizontal[iC]; |
5014 | 0 | dfAccumulatorLocal_2 += |
5015 | 0 | static_cast<double>(pSrcBand[i + iSampJ + nSrcXSize]) * |
5016 | 0 | padfWeightsHorizontal[iC]; |
5017 | 0 | dfAccumulatorLocal_3 += |
5018 | 0 | static_cast<double>(pSrcBand[i + iSampJ + 2 * nSrcXSize]) * |
5019 | 0 | padfWeightsHorizontal[iC]; |
5020 | 0 | dfAccumulatorLocal_4 += |
5021 | 0 | static_cast<double>(pSrcBand[i + iSampJ + 3 * nSrcXSize]) * |
5022 | 0 | padfWeightsHorizontal[iC]; |
5023 | 0 | } |
5024 | |
|
5025 | 0 | dfAccumulator += padfWeightsVertical[jC] * dfAccumulatorLocal_1; |
5026 | 0 | dfAccumulator += padfWeightsVertical[jC + 1] * dfAccumulatorLocal_2; |
5027 | 0 | dfAccumulator += padfWeightsVertical[jC + 2] * dfAccumulatorLocal_3; |
5028 | 0 | dfAccumulator += padfWeightsVertical[jC + 3] * dfAccumulatorLocal_4; |
5029 | 0 | } |
5030 | 0 | for (; j <= jMax; ++j, iSampJ += nSrcXSize, ++jC) |
5031 | 0 | { |
5032 | | // Loop over all pixels in the row. |
5033 | 0 | int iC = 0; |
5034 | 0 | int i = iMin; |
5035 | | // Process by chunk of 4 cols. |
5036 | 0 | XMMReg4Double v_acc = XMMReg4Double::Zero(); |
5037 | 0 | for (; i + 2 < iMax; i += 4, iC += 4) |
5038 | 0 | { |
5039 | | // Retrieve the pixel & accumulate. |
5040 | 0 | XMMReg4Double v_pixels = |
5041 | 0 | XMMReg4Double::Load4Val(pSrcBand + i + iSampJ); |
5042 | 0 | XMMReg4Double v_padfWeight = |
5043 | 0 | XMMReg4Double::Load4Val(padfWeightsHorizontal + iC); |
5044 | |
|
5045 | 0 | v_acc += v_pixels * v_padfWeight; |
5046 | 0 | } |
5047 | |
|
5048 | 0 | double dfAccumulatorLocal = v_acc.GetHorizSum(); |
5049 | |
|
5050 | 0 | if (i < iMax) |
5051 | 0 | { |
5052 | 0 | dfAccumulatorLocal += |
5053 | 0 | double(pSrcBand[i + iSampJ]) * padfWeightsHorizontal[iC]; |
5054 | 0 | dfAccumulatorLocal += double(pSrcBand[i + 1 + iSampJ]) * |
5055 | 0 | padfWeightsHorizontal[iC + 1]; |
5056 | 0 | i += 2; |
5057 | 0 | iC += 2; |
5058 | 0 | } |
5059 | 0 | if (i == iMax) |
5060 | 0 | { |
5061 | 0 | dfAccumulatorLocal += static_cast<double>(pSrcBand[i + iSampJ]) * |
5062 | 0 | padfWeightsHorizontal[iC]; |
5063 | 0 | } |
5064 | |
|
5065 | 0 | dfAccumulator += padfWeightsVertical[jC] * dfAccumulatorLocal; |
5066 | 0 | } |
5067 | |
|
5068 | 0 | *pValue = GWKClampValueT<T>(dfAccumulator * dfInvWeights); |
5069 | |
|
5070 | 0 | return true; |
5071 | 0 | } Unexecuted instantiation: gdalwarpkernel.cpp:bool GWKResampleNoMasks_SSE2_T<unsigned char>(GDALWarpKernel const*, int, double, double, unsigned char*, double*, double*, double&) Unexecuted instantiation: gdalwarpkernel.cpp:bool GWKResampleNoMasks_SSE2_T<float>(GDALWarpKernel const*, int, double, double, float*, double*, double*, double&) Unexecuted instantiation: gdalwarpkernel.cpp:bool GWKResampleNoMasks_SSE2_T<short>(GDALWarpKernel const*, int, double, double, short*, double*, double*, double&) Unexecuted instantiation: gdalwarpkernel.cpp:bool GWKResampleNoMasks_SSE2_T<unsigned short>(GDALWarpKernel const*, int, double, double, unsigned short*, double*, double*, double&) |
5072 | | |
5073 | | /************************************************************************/ |
5074 | | /* GWKResampleNoMasksT<GByte>() */ |
5075 | | /************************************************************************/ |
5076 | | |
5077 | | template <> |
5078 | | bool GWKResampleNoMasksT<GByte>(const GDALWarpKernel *poWK, int iBand, |
5079 | | double dfSrcX, double dfSrcY, GByte *pValue, |
5080 | | double *padfWeightsHorizontal, |
5081 | | double *padfWeightsVertical, |
5082 | | double &dfInvWeights) |
5083 | 0 | { |
5084 | 0 | return GWKResampleNoMasks_SSE2_T(poWK, iBand, dfSrcX, dfSrcY, pValue, |
5085 | 0 | padfWeightsHorizontal, padfWeightsVertical, |
5086 | 0 | dfInvWeights); |
5087 | 0 | } |
5088 | | |
5089 | | /************************************************************************/ |
5090 | | /* GWKResampleNoMasksT<GInt16>() */ |
5091 | | /************************************************************************/ |
5092 | | |
5093 | | template <> |
5094 | | bool GWKResampleNoMasksT<GInt16>(const GDALWarpKernel *poWK, int iBand, |
5095 | | double dfSrcX, double dfSrcY, GInt16 *pValue, |
5096 | | double *padfWeightsHorizontal, |
5097 | | double *padfWeightsVertical, |
5098 | | double &dfInvWeights) |
5099 | 0 | { |
5100 | 0 | return GWKResampleNoMasks_SSE2_T(poWK, iBand, dfSrcX, dfSrcY, pValue, |
5101 | 0 | padfWeightsHorizontal, padfWeightsVertical, |
5102 | 0 | dfInvWeights); |
5103 | 0 | } |
5104 | | |
5105 | | /************************************************************************/ |
5106 | | /* GWKResampleNoMasksT<GUInt16>() */ |
5107 | | /************************************************************************/ |
5108 | | |
5109 | | template <> |
5110 | | bool GWKResampleNoMasksT<GUInt16>(const GDALWarpKernel *poWK, int iBand, |
5111 | | double dfSrcX, double dfSrcY, GUInt16 *pValue, |
5112 | | double *padfWeightsHorizontal, |
5113 | | double *padfWeightsVertical, |
5114 | | double &dfInvWeights) |
5115 | 0 | { |
5116 | 0 | return GWKResampleNoMasks_SSE2_T(poWK, iBand, dfSrcX, dfSrcY, pValue, |
5117 | 0 | padfWeightsHorizontal, padfWeightsVertical, |
5118 | 0 | dfInvWeights); |
5119 | 0 | } |
5120 | | |
5121 | | /************************************************************************/ |
5122 | | /* GWKResampleNoMasksT<float>() */ |
5123 | | /************************************************************************/ |
5124 | | |
5125 | | template <> |
5126 | | bool GWKResampleNoMasksT<float>(const GDALWarpKernel *poWK, int iBand, |
5127 | | double dfSrcX, double dfSrcY, float *pValue, |
5128 | | double *padfWeightsHorizontal, |
5129 | | double *padfWeightsVertical, |
5130 | | double &dfInvWeights) |
5131 | 0 | { |
5132 | 0 | return GWKResampleNoMasks_SSE2_T(poWK, iBand, dfSrcX, dfSrcY, pValue, |
5133 | 0 | padfWeightsHorizontal, padfWeightsVertical, |
5134 | 0 | dfInvWeights); |
5135 | 0 | } |
5136 | | |
5137 | | #ifdef INSTANTIATE_FLOAT64_SSE2_IMPL |
5138 | | |
5139 | | /************************************************************************/ |
5140 | | /* GWKResampleNoMasksT<double>() */ |
5141 | | /************************************************************************/ |
5142 | | |
5143 | | template <> |
5144 | | bool GWKResampleNoMasksT<double>(const GDALWarpKernel *poWK, int iBand, |
5145 | | double dfSrcX, double dfSrcY, double *pValue, |
5146 | | double *padfWeightsHorizontal, |
5147 | | double *padfWeightsVertical, |
5148 | | double &dfInvWeights) |
5149 | | { |
5150 | | return GWKResampleNoMasks_SSE2_T(poWK, iBand, dfSrcX, dfSrcY, pValue, |
5151 | | padfWeightsHorizontal, padfWeightsVertical, |
5152 | | dfInvWeights); |
5153 | | } |
5154 | | |
5155 | | #endif /* INSTANTIATE_FLOAT64_SSE2_IMPL */ |
5156 | | |
5157 | | #endif /* defined(USE_SSE2) */ |
5158 | | |
5159 | | /************************************************************************/ |
5160 | | /* GWKRoundSourceCoordinates() */ |
5161 | | /************************************************************************/ |
5162 | | |
5163 | | static void GWKRoundSourceCoordinates( |
5164 | | int nDstXSize, double *padfX, double *padfY, double *padfZ, int *pabSuccess, |
5165 | | double dfSrcCoordPrecision, double dfErrorThreshold, |
5166 | | GDALTransformerFunc pfnTransformer, void *pTransformerArg, double dfDstXOff, |
5167 | | double dfDstY) |
5168 | 0 | { |
5169 | 0 | double dfPct = 0.8; |
5170 | 0 | if (dfErrorThreshold > 0 && dfSrcCoordPrecision / dfErrorThreshold >= 10.0) |
5171 | 0 | { |
5172 | 0 | dfPct = 1.0 - 2 * 1.0 / (dfSrcCoordPrecision / dfErrorThreshold); |
5173 | 0 | } |
5174 | 0 | const double dfExactTransformThreshold = 0.5 * dfPct * dfSrcCoordPrecision; |
5175 | |
|
5176 | 0 | for (int iDstX = 0; iDstX < nDstXSize; iDstX++) |
5177 | 0 | { |
5178 | 0 | const double dfXBefore = padfX[iDstX]; |
5179 | 0 | const double dfYBefore = padfY[iDstX]; |
5180 | 0 | padfX[iDstX] = floor(padfX[iDstX] / dfSrcCoordPrecision + 0.5) * |
5181 | 0 | dfSrcCoordPrecision; |
5182 | 0 | padfY[iDstX] = floor(padfY[iDstX] / dfSrcCoordPrecision + 0.5) * |
5183 | 0 | dfSrcCoordPrecision; |
5184 | | |
5185 | | // If we are in an uncertainty zone, go to non-approximated |
5186 | | // transformation. |
5187 | | // Due to the 80% of half-precision threshold, dfSrcCoordPrecision must |
5188 | | // be at least 10 times greater than the approximation error. |
5189 | 0 | if (fabs(dfXBefore - padfX[iDstX]) > dfExactTransformThreshold || |
5190 | 0 | fabs(dfYBefore - padfY[iDstX]) > dfExactTransformThreshold) |
5191 | 0 | { |
5192 | 0 | padfX[iDstX] = iDstX + dfDstXOff; |
5193 | 0 | padfY[iDstX] = dfDstY; |
5194 | 0 | padfZ[iDstX] = 0.0; |
5195 | 0 | pfnTransformer(pTransformerArg, TRUE, 1, padfX + iDstX, |
5196 | 0 | padfY + iDstX, padfZ + iDstX, pabSuccess + iDstX); |
5197 | 0 | padfX[iDstX] = floor(padfX[iDstX] / dfSrcCoordPrecision + 0.5) * |
5198 | 0 | dfSrcCoordPrecision; |
5199 | 0 | padfY[iDstX] = floor(padfY[iDstX] / dfSrcCoordPrecision + 0.5) * |
5200 | 0 | dfSrcCoordPrecision; |
5201 | 0 | } |
5202 | 0 | } |
5203 | 0 | } |
5204 | | |
5205 | | /************************************************************************/ |
5206 | | /* GWKCheckAndComputeSrcOffsets() */ |
5207 | | /************************************************************************/ |
5208 | | static CPL_INLINE bool |
5209 | | GWKCheckAndComputeSrcOffsets(GWKJobStruct *psJob, int *_pabSuccess, int _iDstX, |
5210 | | int _iDstY, double *_padfX, double *_padfY, |
5211 | | int _nSrcXSize, int _nSrcYSize, |
5212 | | GPtrDiff_t &iSrcOffset) |
5213 | 0 | { |
5214 | 0 | const GDALWarpKernel *_poWK = psJob->poWK; |
5215 | 0 | for (int iTry = 0; iTry < 2; ++iTry) |
5216 | 0 | { |
5217 | 0 | if (iTry == 1) |
5218 | 0 | { |
5219 | | // If the source coordinate is slightly outside of the source raster |
5220 | | // retry to transform it alone, so that the exact coordinate |
5221 | | // transformer is used. |
5222 | |
|
5223 | 0 | _padfX[_iDstX] = _iDstX + 0.5 + _poWK->nDstXOff; |
5224 | 0 | _padfY[_iDstX] = _iDstY + 0.5 + _poWK->nDstYOff; |
5225 | 0 | double dfZ = 0; |
5226 | 0 | _poWK->pfnTransformer(psJob->pTransformerArg, TRUE, 1, |
5227 | 0 | _padfX + _iDstX, _padfY + _iDstX, &dfZ, |
5228 | 0 | _pabSuccess + _iDstX); |
5229 | 0 | } |
5230 | 0 | if (!_pabSuccess[_iDstX]) |
5231 | 0 | return false; |
5232 | | |
5233 | | // If this happens this is likely the symptom of a bug somewhere. |
5234 | 0 | if (std::isnan(_padfX[_iDstX]) || std::isnan(_padfY[_iDstX])) |
5235 | 0 | { |
5236 | 0 | static bool bNanCoordFound = false; |
5237 | 0 | if (!bNanCoordFound) |
5238 | 0 | { |
5239 | 0 | CPLDebug("WARP", |
5240 | 0 | "GWKCheckAndComputeSrcOffsets(): " |
5241 | 0 | "NaN coordinate found on point %d.", |
5242 | 0 | _iDstX); |
5243 | 0 | bNanCoordFound = true; |
5244 | 0 | } |
5245 | 0 | return false; |
5246 | 0 | } |
5247 | | |
5248 | | /* -------------------------------------------------------------------- |
5249 | | */ |
5250 | | /* Figure out what pixel we want in our source raster, and skip */ |
5251 | | /* further processing if it is well off the source image. */ |
5252 | | /* -------------------------------------------------------------------- |
5253 | | */ |
5254 | | /* We test against the value before casting to avoid the */ |
5255 | | /* problem of asymmetric truncation effects around zero. That is */ |
5256 | | /* -0.5 will be 0 when cast to an int. */ |
5257 | 0 | if (_padfX[_iDstX] < _poWK->nSrcXOff) |
5258 | 0 | { |
5259 | | // If the source coordinate is slightly outside of the source raster |
5260 | | // retry to transform it alone, so that the exact coordinate |
5261 | | // transformer is used. |
5262 | 0 | if (iTry == 0 && _padfX[_iDstX] > _poWK->nSrcXOff - 1) |
5263 | 0 | continue; |
5264 | 0 | return false; |
5265 | 0 | } |
5266 | | |
5267 | 0 | if (_padfY[_iDstX] < _poWK->nSrcYOff) |
5268 | 0 | { |
5269 | | // If the source coordinate is slightly outside of the source raster |
5270 | | // retry to transform it alone, so that the exact coordinate |
5271 | | // transformer is used. |
5272 | 0 | if (iTry == 0 && _padfY[_iDstX] > _poWK->nSrcYOff - 1) |
5273 | 0 | continue; |
5274 | 0 | return false; |
5275 | 0 | } |
5276 | | |
5277 | | // Check for potential overflow when casting from float to int, (if |
5278 | | // operating outside natural projection area, padfX/Y can be a very huge |
5279 | | // positive number before doing the actual conversion), as such cast is |
5280 | | // undefined behavior that can trigger exception with some compilers |
5281 | | // (see #6753) |
5282 | 0 | if (_padfX[_iDstX] + 1e-10 > _nSrcXSize + _poWK->nSrcXOff) |
5283 | 0 | { |
5284 | | // If the source coordinate is slightly outside of the source raster |
5285 | | // retry to transform it alone, so that the exact coordinate |
5286 | | // transformer is used. |
5287 | 0 | if (iTry == 0 && _padfX[_iDstX] < _nSrcXSize + _poWK->nSrcXOff + 1) |
5288 | 0 | continue; |
5289 | 0 | return false; |
5290 | 0 | } |
5291 | 0 | if (_padfY[_iDstX] + 1e-10 > _nSrcYSize + _poWK->nSrcYOff) |
5292 | 0 | { |
5293 | | // If the source coordinate is slightly outside of the source raster |
5294 | | // retry to transform it alone, so that the exact coordinate |
5295 | | // transformer is used. |
5296 | 0 | if (iTry == 0 && _padfY[_iDstX] < _nSrcYSize + _poWK->nSrcYOff + 1) |
5297 | 0 | continue; |
5298 | 0 | return false; |
5299 | 0 | } |
5300 | | |
5301 | 0 | break; |
5302 | 0 | } |
5303 | | |
5304 | 0 | int iSrcX = static_cast<int>(_padfX[_iDstX] + 1.0e-10) - _poWK->nSrcXOff; |
5305 | 0 | int iSrcY = static_cast<int>(_padfY[_iDstX] + 1.0e-10) - _poWK->nSrcYOff; |
5306 | 0 | if (iSrcX == _nSrcXSize) |
5307 | 0 | iSrcX--; |
5308 | 0 | if (iSrcY == _nSrcYSize) |
5309 | 0 | iSrcY--; |
5310 | | |
5311 | | // Those checks should normally be OK given the previous ones. |
5312 | 0 | CPLAssert(iSrcX >= 0); |
5313 | 0 | CPLAssert(iSrcY >= 0); |
5314 | 0 | CPLAssert(iSrcX < _nSrcXSize); |
5315 | 0 | CPLAssert(iSrcY < _nSrcYSize); |
5316 | | |
5317 | 0 | iSrcOffset = iSrcX + static_cast<GPtrDiff_t>(iSrcY) * _nSrcXSize; |
5318 | |
|
5319 | 0 | return true; |
5320 | 0 | } |
5321 | | |
5322 | | /************************************************************************/ |
5323 | | /* GWKOneSourceCornerFailsToReproject() */ |
5324 | | /************************************************************************/ |
5325 | | |
5326 | | static bool GWKOneSourceCornerFailsToReproject(GWKJobStruct *psJob) |
5327 | 0 | { |
5328 | 0 | GDALWarpKernel *poWK = psJob->poWK; |
5329 | 0 | for (int iY = 0; iY <= 1; ++iY) |
5330 | 0 | { |
5331 | 0 | for (int iX = 0; iX <= 1; ++iX) |
5332 | 0 | { |
5333 | 0 | double dfXTmp = poWK->nSrcXOff + iX * poWK->nSrcXSize; |
5334 | 0 | double dfYTmp = poWK->nSrcYOff + iY * poWK->nSrcYSize; |
5335 | 0 | double dfZTmp = 0; |
5336 | 0 | int nSuccess = FALSE; |
5337 | 0 | poWK->pfnTransformer(psJob->pTransformerArg, FALSE, 1, &dfXTmp, |
5338 | 0 | &dfYTmp, &dfZTmp, &nSuccess); |
5339 | 0 | if (!nSuccess) |
5340 | 0 | return true; |
5341 | 0 | } |
5342 | 0 | } |
5343 | 0 | return false; |
5344 | 0 | } |
5345 | | |
5346 | | /************************************************************************/ |
5347 | | /* GWKAdjustSrcOffsetOnEdge() */ |
5348 | | /************************************************************************/ |
5349 | | |
5350 | | static bool GWKAdjustSrcOffsetOnEdge(GWKJobStruct *psJob, |
5351 | | GPtrDiff_t &iSrcOffset) |
5352 | 0 | { |
5353 | 0 | GDALWarpKernel *poWK = psJob->poWK; |
5354 | 0 | const int nSrcXSize = poWK->nSrcXSize; |
5355 | 0 | const int nSrcYSize = poWK->nSrcYSize; |
5356 | | |
5357 | | // Check if the computed source position slightly altered |
5358 | | // fails to reproject. If so, then we are at the edge of |
5359 | | // the validity area, and it is worth checking neighbour |
5360 | | // source pixels for validity. |
5361 | 0 | int nSuccess = FALSE; |
5362 | 0 | { |
5363 | 0 | double dfXTmp = |
5364 | 0 | poWK->nSrcXOff + static_cast<int>(iSrcOffset % nSrcXSize); |
5365 | 0 | double dfYTmp = |
5366 | 0 | poWK->nSrcYOff + static_cast<int>(iSrcOffset / nSrcXSize); |
5367 | 0 | double dfZTmp = 0; |
5368 | 0 | poWK->pfnTransformer(psJob->pTransformerArg, FALSE, 1, &dfXTmp, &dfYTmp, |
5369 | 0 | &dfZTmp, &nSuccess); |
5370 | 0 | } |
5371 | 0 | if (nSuccess) |
5372 | 0 | { |
5373 | 0 | double dfXTmp = |
5374 | 0 | poWK->nSrcXOff + static_cast<int>(iSrcOffset % nSrcXSize); |
5375 | 0 | double dfYTmp = |
5376 | 0 | poWK->nSrcYOff + static_cast<int>(iSrcOffset / nSrcXSize) + 1; |
5377 | 0 | double dfZTmp = 0; |
5378 | 0 | nSuccess = FALSE; |
5379 | 0 | poWK->pfnTransformer(psJob->pTransformerArg, FALSE, 1, &dfXTmp, &dfYTmp, |
5380 | 0 | &dfZTmp, &nSuccess); |
5381 | 0 | } |
5382 | 0 | if (nSuccess) |
5383 | 0 | { |
5384 | 0 | double dfXTmp = |
5385 | 0 | poWK->nSrcXOff + static_cast<int>(iSrcOffset % nSrcXSize) + 1; |
5386 | 0 | double dfYTmp = |
5387 | 0 | poWK->nSrcYOff + static_cast<int>(iSrcOffset / nSrcXSize); |
5388 | 0 | double dfZTmp = 0; |
5389 | 0 | nSuccess = FALSE; |
5390 | 0 | poWK->pfnTransformer(psJob->pTransformerArg, FALSE, 1, &dfXTmp, &dfYTmp, |
5391 | 0 | &dfZTmp, &nSuccess); |
5392 | 0 | } |
5393 | |
|
5394 | 0 | if (!nSuccess && (iSrcOffset % nSrcXSize) + 1 < nSrcXSize && |
5395 | 0 | CPLMaskGet(poWK->panUnifiedSrcValid, iSrcOffset + 1)) |
5396 | 0 | { |
5397 | 0 | iSrcOffset++; |
5398 | 0 | return true; |
5399 | 0 | } |
5400 | 0 | else if (!nSuccess && (iSrcOffset / nSrcXSize) + 1 < nSrcYSize && |
5401 | 0 | CPLMaskGet(poWK->panUnifiedSrcValid, iSrcOffset + nSrcXSize)) |
5402 | 0 | { |
5403 | 0 | iSrcOffset += nSrcXSize; |
5404 | 0 | return true; |
5405 | 0 | } |
5406 | 0 | else if (!nSuccess && (iSrcOffset % nSrcXSize) > 0 && |
5407 | 0 | CPLMaskGet(poWK->panUnifiedSrcValid, iSrcOffset - 1)) |
5408 | 0 | { |
5409 | 0 | iSrcOffset--; |
5410 | 0 | return true; |
5411 | 0 | } |
5412 | 0 | else if (!nSuccess && (iSrcOffset / nSrcXSize) > 0 && |
5413 | 0 | CPLMaskGet(poWK->panUnifiedSrcValid, iSrcOffset - nSrcXSize)) |
5414 | 0 | { |
5415 | 0 | iSrcOffset -= nSrcXSize; |
5416 | 0 | return true; |
5417 | 0 | } |
5418 | | |
5419 | 0 | return false; |
5420 | 0 | } |
5421 | | |
5422 | | /************************************************************************/ |
5423 | | /* GWKAdjustSrcOffsetOnEdgeUnifiedSrcDensity() */ |
5424 | | /************************************************************************/ |
5425 | | |
5426 | | static bool GWKAdjustSrcOffsetOnEdgeUnifiedSrcDensity(GWKJobStruct *psJob, |
5427 | | GPtrDiff_t &iSrcOffset) |
5428 | 0 | { |
5429 | 0 | GDALWarpKernel *poWK = psJob->poWK; |
5430 | 0 | const int nSrcXSize = poWK->nSrcXSize; |
5431 | 0 | const int nSrcYSize = poWK->nSrcYSize; |
5432 | | |
5433 | | // Check if the computed source position slightly altered |
5434 | | // fails to reproject. If so, then we are at the edge of |
5435 | | // the validity area, and it is worth checking neighbour |
5436 | | // source pixels for validity. |
5437 | 0 | int nSuccess = FALSE; |
5438 | 0 | { |
5439 | 0 | double dfXTmp = |
5440 | 0 | poWK->nSrcXOff + static_cast<int>(iSrcOffset % nSrcXSize); |
5441 | 0 | double dfYTmp = |
5442 | 0 | poWK->nSrcYOff + static_cast<int>(iSrcOffset / nSrcXSize); |
5443 | 0 | double dfZTmp = 0; |
5444 | 0 | poWK->pfnTransformer(psJob->pTransformerArg, FALSE, 1, &dfXTmp, &dfYTmp, |
5445 | 0 | &dfZTmp, &nSuccess); |
5446 | 0 | } |
5447 | 0 | if (nSuccess) |
5448 | 0 | { |
5449 | 0 | double dfXTmp = |
5450 | 0 | poWK->nSrcXOff + static_cast<int>(iSrcOffset % nSrcXSize); |
5451 | 0 | double dfYTmp = |
5452 | 0 | poWK->nSrcYOff + static_cast<int>(iSrcOffset / nSrcXSize) + 1; |
5453 | 0 | double dfZTmp = 0; |
5454 | 0 | nSuccess = FALSE; |
5455 | 0 | poWK->pfnTransformer(psJob->pTransformerArg, FALSE, 1, &dfXTmp, &dfYTmp, |
5456 | 0 | &dfZTmp, &nSuccess); |
5457 | 0 | } |
5458 | 0 | if (nSuccess) |
5459 | 0 | { |
5460 | 0 | double dfXTmp = |
5461 | 0 | poWK->nSrcXOff + static_cast<int>(iSrcOffset % nSrcXSize) + 1; |
5462 | 0 | double dfYTmp = |
5463 | 0 | poWK->nSrcYOff + static_cast<int>(iSrcOffset / nSrcXSize); |
5464 | 0 | double dfZTmp = 0; |
5465 | 0 | nSuccess = FALSE; |
5466 | 0 | poWK->pfnTransformer(psJob->pTransformerArg, FALSE, 1, &dfXTmp, &dfYTmp, |
5467 | 0 | &dfZTmp, &nSuccess); |
5468 | 0 | } |
5469 | |
|
5470 | 0 | if (!nSuccess && (iSrcOffset % nSrcXSize) + 1 < nSrcXSize && |
5471 | 0 | poWK->pafUnifiedSrcDensity[iSrcOffset + 1] >= |
5472 | 0 | SRC_DENSITY_THRESHOLD_FLOAT) |
5473 | 0 | { |
5474 | 0 | iSrcOffset++; |
5475 | 0 | return true; |
5476 | 0 | } |
5477 | 0 | else if (!nSuccess && (iSrcOffset / nSrcXSize) + 1 < nSrcYSize && |
5478 | 0 | poWK->pafUnifiedSrcDensity[iSrcOffset + nSrcXSize] >= |
5479 | 0 | SRC_DENSITY_THRESHOLD_FLOAT) |
5480 | 0 | { |
5481 | 0 | iSrcOffset += nSrcXSize; |
5482 | 0 | return true; |
5483 | 0 | } |
5484 | 0 | else if (!nSuccess && (iSrcOffset % nSrcXSize) > 0 && |
5485 | 0 | poWK->pafUnifiedSrcDensity[iSrcOffset - 1] >= |
5486 | 0 | SRC_DENSITY_THRESHOLD_FLOAT) |
5487 | 0 | { |
5488 | 0 | iSrcOffset--; |
5489 | 0 | return true; |
5490 | 0 | } |
5491 | 0 | else if (!nSuccess && (iSrcOffset / nSrcXSize) > 0 && |
5492 | 0 | poWK->pafUnifiedSrcDensity[iSrcOffset - nSrcXSize] >= |
5493 | 0 | SRC_DENSITY_THRESHOLD_FLOAT) |
5494 | 0 | { |
5495 | 0 | iSrcOffset -= nSrcXSize; |
5496 | 0 | return true; |
5497 | 0 | } |
5498 | | |
5499 | 0 | return false; |
5500 | 0 | } |
5501 | | |
5502 | | /************************************************************************/ |
5503 | | /* GWKGeneralCase() */ |
5504 | | /* */ |
5505 | | /* This is the most general case. It attempts to handle all */ |
5506 | | /* possible features with relatively little concern for */ |
5507 | | /* efficiency. */ |
5508 | | /************************************************************************/ |
5509 | | |
5510 | | static void GWKGeneralCaseThread(void *pData) |
5511 | 0 | { |
5512 | 0 | GWKJobStruct *psJob = reinterpret_cast<GWKJobStruct *>(pData); |
5513 | 0 | GDALWarpKernel *poWK = psJob->poWK; |
5514 | 0 | const int iYMin = psJob->iYMin; |
5515 | 0 | const int iYMax = psJob->iYMax; |
5516 | 0 | const double dfMultFactorVerticalShiftPipeline = |
5517 | 0 | poWK->bApplyVerticalShift |
5518 | 0 | ? CPLAtof(CSLFetchNameValueDef( |
5519 | 0 | poWK->papszWarpOptions, "MULT_FACTOR_VERTICAL_SHIFT_PIPELINE", |
5520 | 0 | "1.0")) |
5521 | 0 | : 0.0; |
5522 | 0 | const bool bAvoidNoDataSingleBand = |
5523 | 0 | poWK->nBands == 1 || |
5524 | 0 | !CPLTestBool(CSLFetchNameValueDef(poWK->papszWarpOptions, |
5525 | 0 | "UNIFIED_SRC_NODATA", "FALSE")); |
5526 | |
|
5527 | 0 | int nDstXSize = poWK->nDstXSize; |
5528 | 0 | int nSrcXSize = poWK->nSrcXSize; |
5529 | 0 | int nSrcYSize = poWK->nSrcYSize; |
5530 | | |
5531 | | /* -------------------------------------------------------------------- */ |
5532 | | /* Allocate x,y,z coordinate arrays for transformation ... one */ |
5533 | | /* scanlines worth of positions. */ |
5534 | | /* -------------------------------------------------------------------- */ |
5535 | | // For x, 2 *, because we cache the precomputed values at the end. |
5536 | 0 | double *padfX = |
5537 | 0 | static_cast<double *>(CPLMalloc(2 * sizeof(double) * nDstXSize)); |
5538 | 0 | double *padfY = |
5539 | 0 | static_cast<double *>(CPLMalloc(sizeof(double) * nDstXSize)); |
5540 | 0 | double *padfZ = |
5541 | 0 | static_cast<double *>(CPLMalloc(sizeof(double) * nDstXSize)); |
5542 | 0 | int *pabSuccess = static_cast<int *>(CPLMalloc(sizeof(int) * nDstXSize)); |
5543 | |
|
5544 | 0 | const bool bUse4SamplesFormula = CanUse4SamplesFormula(poWK); |
5545 | |
|
5546 | 0 | GWKResampleWrkStruct *psWrkStruct = nullptr; |
5547 | 0 | if (poWK->eResample != GRA_NearestNeighbour) |
5548 | 0 | { |
5549 | 0 | psWrkStruct = GWKResampleCreateWrkStruct(poWK); |
5550 | 0 | } |
5551 | 0 | const double dfSrcCoordPrecision = CPLAtof(CSLFetchNameValueDef( |
5552 | 0 | poWK->papszWarpOptions, "SRC_COORD_PRECISION", "0")); |
5553 | 0 | const double dfErrorThreshold = CPLAtof( |
5554 | 0 | CSLFetchNameValueDef(poWK->papszWarpOptions, "ERROR_THRESHOLD", "0")); |
5555 | |
|
5556 | 0 | const bool bOneSourceCornerFailsToReproject = |
5557 | 0 | GWKOneSourceCornerFailsToReproject(psJob); |
5558 | | |
5559 | | // Precompute values. |
5560 | 0 | for (int iDstX = 0; iDstX < nDstXSize; iDstX++) |
5561 | 0 | padfX[nDstXSize + iDstX] = iDstX + 0.5 + poWK->nDstXOff; |
5562 | | |
5563 | | /* ==================================================================== */ |
5564 | | /* Loop over output lines. */ |
5565 | | /* ==================================================================== */ |
5566 | 0 | for (int iDstY = iYMin; iDstY < iYMax; iDstY++) |
5567 | 0 | { |
5568 | | /* -------------------------------------------------------------------- |
5569 | | */ |
5570 | | /* Setup points to transform to source image space. */ |
5571 | | /* -------------------------------------------------------------------- |
5572 | | */ |
5573 | 0 | memcpy(padfX, padfX + nDstXSize, sizeof(double) * nDstXSize); |
5574 | 0 | const double dfY = iDstY + 0.5 + poWK->nDstYOff; |
5575 | 0 | for (int iDstX = 0; iDstX < nDstXSize; iDstX++) |
5576 | 0 | padfY[iDstX] = dfY; |
5577 | 0 | memset(padfZ, 0, sizeof(double) * nDstXSize); |
5578 | | |
5579 | | /* -------------------------------------------------------------------- |
5580 | | */ |
5581 | | /* Transform the points from destination pixel/line coordinates */ |
5582 | | /* to source pixel/line coordinates. */ |
5583 | | /* -------------------------------------------------------------------- |
5584 | | */ |
5585 | 0 | poWK->pfnTransformer(psJob->pTransformerArg, TRUE, nDstXSize, padfX, |
5586 | 0 | padfY, padfZ, pabSuccess); |
5587 | 0 | if (dfSrcCoordPrecision > 0.0) |
5588 | 0 | { |
5589 | 0 | GWKRoundSourceCoordinates( |
5590 | 0 | nDstXSize, padfX, padfY, padfZ, pabSuccess, dfSrcCoordPrecision, |
5591 | 0 | dfErrorThreshold, poWK->pfnTransformer, psJob->pTransformerArg, |
5592 | 0 | 0.5 + poWK->nDstXOff, iDstY + 0.5 + poWK->nDstYOff); |
5593 | 0 | } |
5594 | | |
5595 | | /* ==================================================================== |
5596 | | */ |
5597 | | /* Loop over pixels in output scanline. */ |
5598 | | /* ==================================================================== |
5599 | | */ |
5600 | 0 | for (int iDstX = 0; iDstX < nDstXSize; iDstX++) |
5601 | 0 | { |
5602 | 0 | GPtrDiff_t iSrcOffset = 0; |
5603 | 0 | if (!GWKCheckAndComputeSrcOffsets(psJob, pabSuccess, iDstX, iDstY, |
5604 | 0 | padfX, padfY, nSrcXSize, |
5605 | 0 | nSrcYSize, iSrcOffset)) |
5606 | 0 | continue; |
5607 | | |
5608 | | /* -------------------------------------------------------------------- |
5609 | | */ |
5610 | | /* Do not try to apply transparent/invalid source pixels to the |
5611 | | */ |
5612 | | /* destination. This currently ignores the multi-pixel input |
5613 | | */ |
5614 | | /* of bilinear and cubic resamples. */ |
5615 | | /* -------------------------------------------------------------------- |
5616 | | */ |
5617 | 0 | double dfDensity = 1.0; |
5618 | |
|
5619 | 0 | if (poWK->pafUnifiedSrcDensity != nullptr) |
5620 | 0 | { |
5621 | 0 | dfDensity = double(poWK->pafUnifiedSrcDensity[iSrcOffset]); |
5622 | 0 | if (dfDensity < SRC_DENSITY_THRESHOLD_DOUBLE) |
5623 | 0 | { |
5624 | 0 | if (!bOneSourceCornerFailsToReproject) |
5625 | 0 | { |
5626 | 0 | continue; |
5627 | 0 | } |
5628 | 0 | else if (GWKAdjustSrcOffsetOnEdgeUnifiedSrcDensity( |
5629 | 0 | psJob, iSrcOffset)) |
5630 | 0 | { |
5631 | 0 | dfDensity = |
5632 | 0 | double(poWK->pafUnifiedSrcDensity[iSrcOffset]); |
5633 | 0 | } |
5634 | 0 | else |
5635 | 0 | { |
5636 | 0 | continue; |
5637 | 0 | } |
5638 | 0 | } |
5639 | 0 | } |
5640 | | |
5641 | 0 | if (poWK->panUnifiedSrcValid != nullptr && |
5642 | 0 | !CPLMaskGet(poWK->panUnifiedSrcValid, iSrcOffset)) |
5643 | 0 | { |
5644 | 0 | if (!bOneSourceCornerFailsToReproject) |
5645 | 0 | { |
5646 | 0 | continue; |
5647 | 0 | } |
5648 | 0 | else if (!GWKAdjustSrcOffsetOnEdge(psJob, iSrcOffset)) |
5649 | 0 | { |
5650 | 0 | continue; |
5651 | 0 | } |
5652 | 0 | } |
5653 | | |
5654 | | /* ==================================================================== |
5655 | | */ |
5656 | | /* Loop processing each band. */ |
5657 | | /* ==================================================================== |
5658 | | */ |
5659 | 0 | bool bHasFoundDensity = false; |
5660 | |
|
5661 | 0 | const GPtrDiff_t iDstOffset = |
5662 | 0 | iDstX + static_cast<GPtrDiff_t>(iDstY) * nDstXSize; |
5663 | 0 | for (int iBand = 0; iBand < poWK->nBands; iBand++) |
5664 | 0 | { |
5665 | 0 | double dfBandDensity = 0.0; |
5666 | 0 | double dfValueReal = 0.0; |
5667 | 0 | double dfValueImag = 0.0; |
5668 | | |
5669 | | /* -------------------------------------------------------------------- |
5670 | | */ |
5671 | | /* Collect the source value. */ |
5672 | | /* -------------------------------------------------------------------- |
5673 | | */ |
5674 | 0 | if (poWK->eResample == GRA_NearestNeighbour || nSrcXSize == 1 || |
5675 | 0 | nSrcYSize == 1) |
5676 | 0 | { |
5677 | | // FALSE is returned if dfBandDensity == 0, which is |
5678 | | // checked below. |
5679 | 0 | CPL_IGNORE_RET_VAL(GWKGetPixelValue( |
5680 | 0 | poWK, iBand, iSrcOffset, &dfBandDensity, &dfValueReal, |
5681 | 0 | &dfValueImag)); |
5682 | 0 | } |
5683 | 0 | else if (poWK->eResample == GRA_Bilinear && bUse4SamplesFormula) |
5684 | 0 | { |
5685 | 0 | GWKBilinearResample4Sample( |
5686 | 0 | poWK, iBand, padfX[iDstX] - poWK->nSrcXOff, |
5687 | 0 | padfY[iDstX] - poWK->nSrcYOff, &dfBandDensity, |
5688 | 0 | &dfValueReal, &dfValueImag); |
5689 | 0 | } |
5690 | 0 | else if (poWK->eResample == GRA_Cubic && bUse4SamplesFormula) |
5691 | 0 | { |
5692 | 0 | GWKCubicResample4Sample( |
5693 | 0 | poWK, iBand, padfX[iDstX] - poWK->nSrcXOff, |
5694 | 0 | padfY[iDstX] - poWK->nSrcYOff, &dfBandDensity, |
5695 | 0 | &dfValueReal, &dfValueImag); |
5696 | 0 | } |
5697 | 0 | else |
5698 | 0 | #ifdef DEBUG |
5699 | | // Only useful for clang static analyzer. |
5700 | 0 | if (psWrkStruct != nullptr) |
5701 | 0 | #endif |
5702 | 0 | { |
5703 | 0 | psWrkStruct->pfnGWKResample( |
5704 | 0 | poWK, iBand, padfX[iDstX] - poWK->nSrcXOff, |
5705 | 0 | padfY[iDstX] - poWK->nSrcYOff, &dfBandDensity, |
5706 | 0 | &dfValueReal, &dfValueImag, psWrkStruct); |
5707 | 0 | } |
5708 | | |
5709 | | // If we didn't find any valid inputs skip to next band. |
5710 | 0 | if (dfBandDensity < BAND_DENSITY_THRESHOLD) |
5711 | 0 | continue; |
5712 | | |
5713 | 0 | if (poWK->bApplyVerticalShift) |
5714 | 0 | { |
5715 | 0 | if (!std::isfinite(padfZ[iDstX])) |
5716 | 0 | continue; |
5717 | | // Subtract padfZ[] since the coordinate transformation is |
5718 | | // from target to source |
5719 | 0 | dfValueReal = |
5720 | 0 | dfValueReal * poWK->dfMultFactorVerticalShift - |
5721 | 0 | padfZ[iDstX] * dfMultFactorVerticalShiftPipeline; |
5722 | 0 | } |
5723 | | |
5724 | 0 | bHasFoundDensity = true; |
5725 | | |
5726 | | /* -------------------------------------------------------------------- |
5727 | | */ |
5728 | | /* We have a computed value from the source. Now apply it |
5729 | | * to */ |
5730 | | /* the destination pixel. */ |
5731 | | /* -------------------------------------------------------------------- |
5732 | | */ |
5733 | 0 | GWKSetPixelValue(poWK, iBand, iDstOffset, dfBandDensity, |
5734 | 0 | dfValueReal, dfValueImag, |
5735 | 0 | bAvoidNoDataSingleBand); |
5736 | 0 | } |
5737 | |
|
5738 | 0 | if (!bHasFoundDensity) |
5739 | 0 | continue; |
5740 | | |
5741 | 0 | if (!bAvoidNoDataSingleBand) |
5742 | 0 | { |
5743 | 0 | GWKAvoidNoDataMultiBand(poWK, iDstOffset); |
5744 | 0 | } |
5745 | | |
5746 | | /* -------------------------------------------------------------------- |
5747 | | */ |
5748 | | /* Update destination density/validity masks. */ |
5749 | | /* -------------------------------------------------------------------- |
5750 | | */ |
5751 | 0 | GWKOverlayDensity(poWK, iDstOffset, dfDensity); |
5752 | |
|
5753 | 0 | if (poWK->panDstValid != nullptr) |
5754 | 0 | { |
5755 | 0 | CPLMaskSet(poWK->panDstValid, iDstOffset); |
5756 | 0 | } |
5757 | 0 | } /* Next iDstX */ |
5758 | | |
5759 | | /* -------------------------------------------------------------------- |
5760 | | */ |
5761 | | /* Report progress to the user, and optionally cancel out. */ |
5762 | | /* -------------------------------------------------------------------- |
5763 | | */ |
5764 | 0 | if (psJob->pfnProgress && psJob->pfnProgress(psJob)) |
5765 | 0 | break; |
5766 | 0 | } |
5767 | | |
5768 | | /* -------------------------------------------------------------------- */ |
5769 | | /* Cleanup and return. */ |
5770 | | /* -------------------------------------------------------------------- */ |
5771 | 0 | CPLFree(padfX); |
5772 | 0 | CPLFree(padfY); |
5773 | 0 | CPLFree(padfZ); |
5774 | 0 | CPLFree(pabSuccess); |
5775 | 0 | if (psWrkStruct) |
5776 | 0 | GWKResampleDeleteWrkStruct(psWrkStruct); |
5777 | 0 | } |
5778 | | |
5779 | | static CPLErr GWKGeneralCase(GDALWarpKernel *poWK) |
5780 | 0 | { |
5781 | 0 | return GWKRun(poWK, "GWKGeneralCase", GWKGeneralCaseThread); |
5782 | 0 | } |
5783 | | |
5784 | | /************************************************************************/ |
5785 | | /* GWKRealCase() */ |
5786 | | /* */ |
5787 | | /* General case for non-complex data types. */ |
5788 | | /************************************************************************/ |
5789 | | |
5790 | | static void GWKRealCaseThread(void *pData) |
5791 | | |
5792 | 0 | { |
5793 | 0 | GWKJobStruct *psJob = static_cast<GWKJobStruct *>(pData); |
5794 | 0 | GDALWarpKernel *poWK = psJob->poWK; |
5795 | 0 | const int iYMin = psJob->iYMin; |
5796 | 0 | const int iYMax = psJob->iYMax; |
5797 | |
|
5798 | 0 | const int nDstXSize = poWK->nDstXSize; |
5799 | 0 | const int nSrcXSize = poWK->nSrcXSize; |
5800 | 0 | const int nSrcYSize = poWK->nSrcYSize; |
5801 | 0 | const double dfMultFactorVerticalShiftPipeline = |
5802 | 0 | poWK->bApplyVerticalShift |
5803 | 0 | ? CPLAtof(CSLFetchNameValueDef( |
5804 | 0 | poWK->papszWarpOptions, "MULT_FACTOR_VERTICAL_SHIFT_PIPELINE", |
5805 | 0 | "1.0")) |
5806 | 0 | : 0.0; |
5807 | 0 | const bool bAvoidNoDataSingleBand = |
5808 | 0 | poWK->nBands == 1 || |
5809 | 0 | !CPLTestBool(CSLFetchNameValueDef(poWK->papszWarpOptions, |
5810 | 0 | "UNIFIED_SRC_NODATA", "FALSE")); |
5811 | | |
5812 | | /* -------------------------------------------------------------------- */ |
5813 | | /* Allocate x,y,z coordinate arrays for transformation ... one */ |
5814 | | /* scanlines worth of positions. */ |
5815 | | /* -------------------------------------------------------------------- */ |
5816 | | |
5817 | | // For x, 2 *, because we cache the precomputed values at the end. |
5818 | 0 | double *padfX = |
5819 | 0 | static_cast<double *>(CPLMalloc(2 * sizeof(double) * nDstXSize)); |
5820 | 0 | double *padfY = |
5821 | 0 | static_cast<double *>(CPLMalloc(sizeof(double) * nDstXSize)); |
5822 | 0 | double *padfZ = |
5823 | 0 | static_cast<double *>(CPLMalloc(sizeof(double) * nDstXSize)); |
5824 | 0 | int *pabSuccess = static_cast<int *>(CPLMalloc(sizeof(int) * nDstXSize)); |
5825 | |
|
5826 | 0 | const bool bUse4SamplesFormula = CanUse4SamplesFormula(poWK); |
5827 | |
|
5828 | 0 | GWKResampleWrkStruct *psWrkStruct = nullptr; |
5829 | 0 | if (poWK->eResample != GRA_NearestNeighbour) |
5830 | 0 | { |
5831 | 0 | psWrkStruct = GWKResampleCreateWrkStruct(poWK); |
5832 | 0 | } |
5833 | 0 | const double dfSrcCoordPrecision = CPLAtof(CSLFetchNameValueDef( |
5834 | 0 | poWK->papszWarpOptions, "SRC_COORD_PRECISION", "0")); |
5835 | 0 | const double dfErrorThreshold = CPLAtof( |
5836 | 0 | CSLFetchNameValueDef(poWK->papszWarpOptions, "ERROR_THRESHOLD", "0")); |
5837 | |
|
5838 | 0 | const bool bSrcMaskIsDensity = poWK->panUnifiedSrcValid == nullptr && |
5839 | 0 | poWK->papanBandSrcValid == nullptr && |
5840 | 0 | poWK->pafUnifiedSrcDensity != nullptr; |
5841 | |
|
5842 | 0 | const bool bOneSourceCornerFailsToReproject = |
5843 | 0 | GWKOneSourceCornerFailsToReproject(psJob); |
5844 | | |
5845 | | // Precompute values. |
5846 | 0 | for (int iDstX = 0; iDstX < nDstXSize; iDstX++) |
5847 | 0 | padfX[nDstXSize + iDstX] = iDstX + 0.5 + poWK->nDstXOff; |
5848 | | |
5849 | | /* ==================================================================== */ |
5850 | | /* Loop over output lines. */ |
5851 | | /* ==================================================================== */ |
5852 | 0 | for (int iDstY = iYMin; iDstY < iYMax; iDstY++) |
5853 | 0 | { |
5854 | | /* -------------------------------------------------------------------- |
5855 | | */ |
5856 | | /* Setup points to transform to source image space. */ |
5857 | | /* -------------------------------------------------------------------- |
5858 | | */ |
5859 | 0 | memcpy(padfX, padfX + nDstXSize, sizeof(double) * nDstXSize); |
5860 | 0 | const double dfY = iDstY + 0.5 + poWK->nDstYOff; |
5861 | 0 | for (int iDstX = 0; iDstX < nDstXSize; iDstX++) |
5862 | 0 | padfY[iDstX] = dfY; |
5863 | 0 | memset(padfZ, 0, sizeof(double) * nDstXSize); |
5864 | | |
5865 | | /* -------------------------------------------------------------------- |
5866 | | */ |
5867 | | /* Transform the points from destination pixel/line coordinates */ |
5868 | | /* to source pixel/line coordinates. */ |
5869 | | /* -------------------------------------------------------------------- |
5870 | | */ |
5871 | 0 | poWK->pfnTransformer(psJob->pTransformerArg, TRUE, nDstXSize, padfX, |
5872 | 0 | padfY, padfZ, pabSuccess); |
5873 | 0 | if (dfSrcCoordPrecision > 0.0) |
5874 | 0 | { |
5875 | 0 | GWKRoundSourceCoordinates( |
5876 | 0 | nDstXSize, padfX, padfY, padfZ, pabSuccess, dfSrcCoordPrecision, |
5877 | 0 | dfErrorThreshold, poWK->pfnTransformer, psJob->pTransformerArg, |
5878 | 0 | 0.5 + poWK->nDstXOff, iDstY + 0.5 + poWK->nDstYOff); |
5879 | 0 | } |
5880 | | |
5881 | | /* ==================================================================== |
5882 | | */ |
5883 | | /* Loop over pixels in output scanline. */ |
5884 | | /* ==================================================================== |
5885 | | */ |
5886 | 0 | for (int iDstX = 0; iDstX < nDstXSize; iDstX++) |
5887 | 0 | { |
5888 | 0 | GPtrDiff_t iSrcOffset = 0; |
5889 | 0 | if (!GWKCheckAndComputeSrcOffsets(psJob, pabSuccess, iDstX, iDstY, |
5890 | 0 | padfX, padfY, nSrcXSize, |
5891 | 0 | nSrcYSize, iSrcOffset)) |
5892 | 0 | continue; |
5893 | | |
5894 | | /* -------------------------------------------------------------------- |
5895 | | */ |
5896 | | /* Do not try to apply transparent/invalid source pixels to the |
5897 | | */ |
5898 | | /* destination. This currently ignores the multi-pixel input |
5899 | | */ |
5900 | | /* of bilinear and cubic resamples. */ |
5901 | | /* -------------------------------------------------------------------- |
5902 | | */ |
5903 | 0 | double dfDensity = 1.0; |
5904 | |
|
5905 | 0 | if (poWK->pafUnifiedSrcDensity != nullptr) |
5906 | 0 | { |
5907 | 0 | dfDensity = double(poWK->pafUnifiedSrcDensity[iSrcOffset]); |
5908 | 0 | if (dfDensity < SRC_DENSITY_THRESHOLD_DOUBLE) |
5909 | 0 | { |
5910 | 0 | if (!bOneSourceCornerFailsToReproject) |
5911 | 0 | { |
5912 | 0 | continue; |
5913 | 0 | } |
5914 | 0 | else if (GWKAdjustSrcOffsetOnEdgeUnifiedSrcDensity( |
5915 | 0 | psJob, iSrcOffset)) |
5916 | 0 | { |
5917 | 0 | dfDensity = |
5918 | 0 | double(poWK->pafUnifiedSrcDensity[iSrcOffset]); |
5919 | 0 | } |
5920 | 0 | else |
5921 | 0 | { |
5922 | 0 | continue; |
5923 | 0 | } |
5924 | 0 | } |
5925 | 0 | } |
5926 | | |
5927 | 0 | if (poWK->panUnifiedSrcValid != nullptr && |
5928 | 0 | !CPLMaskGet(poWK->panUnifiedSrcValid, iSrcOffset)) |
5929 | 0 | { |
5930 | 0 | if (!bOneSourceCornerFailsToReproject) |
5931 | 0 | { |
5932 | 0 | continue; |
5933 | 0 | } |
5934 | 0 | else if (!GWKAdjustSrcOffsetOnEdge(psJob, iSrcOffset)) |
5935 | 0 | { |
5936 | 0 | continue; |
5937 | 0 | } |
5938 | 0 | } |
5939 | | |
5940 | | /* ==================================================================== |
5941 | | */ |
5942 | | /* Loop processing each band. */ |
5943 | | /* ==================================================================== |
5944 | | */ |
5945 | 0 | bool bHasFoundDensity = false; |
5946 | |
|
5947 | 0 | const GPtrDiff_t iDstOffset = |
5948 | 0 | iDstX + static_cast<GPtrDiff_t>(iDstY) * nDstXSize; |
5949 | 0 | for (int iBand = 0; iBand < poWK->nBands; iBand++) |
5950 | 0 | { |
5951 | 0 | double dfBandDensity = 0.0; |
5952 | 0 | double dfValueReal = 0.0; |
5953 | | |
5954 | | /* -------------------------------------------------------------------- |
5955 | | */ |
5956 | | /* Collect the source value. */ |
5957 | | /* -------------------------------------------------------------------- |
5958 | | */ |
5959 | 0 | if (poWK->eResample == GRA_NearestNeighbour || nSrcXSize == 1 || |
5960 | 0 | nSrcYSize == 1) |
5961 | 0 | { |
5962 | | // FALSE is returned if dfBandDensity == 0, which is |
5963 | | // checked below. |
5964 | 0 | CPL_IGNORE_RET_VAL(GWKGetPixelValueReal( |
5965 | 0 | poWK, iBand, iSrcOffset, &dfBandDensity, &dfValueReal)); |
5966 | 0 | } |
5967 | 0 | else if (poWK->eResample == GRA_Bilinear && bUse4SamplesFormula) |
5968 | 0 | { |
5969 | 0 | double dfValueImagIgnored = 0.0; |
5970 | 0 | GWKBilinearResample4Sample( |
5971 | 0 | poWK, iBand, padfX[iDstX] - poWK->nSrcXOff, |
5972 | 0 | padfY[iDstX] - poWK->nSrcYOff, &dfBandDensity, |
5973 | 0 | &dfValueReal, &dfValueImagIgnored); |
5974 | 0 | } |
5975 | 0 | else if (poWK->eResample == GRA_Cubic && bUse4SamplesFormula) |
5976 | 0 | { |
5977 | 0 | if (bSrcMaskIsDensity) |
5978 | 0 | { |
5979 | 0 | if (poWK->eWorkingDataType == GDT_UInt8) |
5980 | 0 | { |
5981 | 0 | GWKCubicResampleSrcMaskIsDensity4SampleRealT<GByte>( |
5982 | 0 | poWK, iBand, padfX[iDstX] - poWK->nSrcXOff, |
5983 | 0 | padfY[iDstX] - poWK->nSrcYOff, &dfBandDensity, |
5984 | 0 | &dfValueReal); |
5985 | 0 | } |
5986 | 0 | else if (poWK->eWorkingDataType == GDT_UInt16) |
5987 | 0 | { |
5988 | 0 | GWKCubicResampleSrcMaskIsDensity4SampleRealT< |
5989 | 0 | GUInt16>(poWK, iBand, |
5990 | 0 | padfX[iDstX] - poWK->nSrcXOff, |
5991 | 0 | padfY[iDstX] - poWK->nSrcYOff, |
5992 | 0 | &dfBandDensity, &dfValueReal); |
5993 | 0 | } |
5994 | 0 | else |
5995 | 0 | { |
5996 | 0 | GWKCubicResampleSrcMaskIsDensity4SampleReal( |
5997 | 0 | poWK, iBand, padfX[iDstX] - poWK->nSrcXOff, |
5998 | 0 | padfY[iDstX] - poWK->nSrcYOff, &dfBandDensity, |
5999 | 0 | &dfValueReal); |
6000 | 0 | } |
6001 | 0 | } |
6002 | 0 | else |
6003 | 0 | { |
6004 | 0 | double dfValueImagIgnored = 0.0; |
6005 | 0 | GWKCubicResample4Sample( |
6006 | 0 | poWK, iBand, padfX[iDstX] - poWK->nSrcXOff, |
6007 | 0 | padfY[iDstX] - poWK->nSrcYOff, &dfBandDensity, |
6008 | 0 | &dfValueReal, &dfValueImagIgnored); |
6009 | 0 | } |
6010 | 0 | } |
6011 | 0 | else |
6012 | 0 | #ifdef DEBUG |
6013 | | // Only useful for clang static analyzer. |
6014 | 0 | if (psWrkStruct != nullptr) |
6015 | 0 | #endif |
6016 | 0 | { |
6017 | 0 | double dfValueImagIgnored = 0.0; |
6018 | 0 | psWrkStruct->pfnGWKResample( |
6019 | 0 | poWK, iBand, padfX[iDstX] - poWK->nSrcXOff, |
6020 | 0 | padfY[iDstX] - poWK->nSrcYOff, &dfBandDensity, |
6021 | 0 | &dfValueReal, &dfValueImagIgnored, psWrkStruct); |
6022 | 0 | } |
6023 | | |
6024 | | // If we didn't find any valid inputs skip to next band. |
6025 | 0 | if (dfBandDensity < BAND_DENSITY_THRESHOLD) |
6026 | 0 | continue; |
6027 | | |
6028 | 0 | if (poWK->bApplyVerticalShift) |
6029 | 0 | { |
6030 | 0 | if (!std::isfinite(padfZ[iDstX])) |
6031 | 0 | continue; |
6032 | | // Subtract padfZ[] since the coordinate transformation is |
6033 | | // from target to source |
6034 | 0 | dfValueReal = |
6035 | 0 | dfValueReal * poWK->dfMultFactorVerticalShift - |
6036 | 0 | padfZ[iDstX] * dfMultFactorVerticalShiftPipeline; |
6037 | 0 | } |
6038 | | |
6039 | 0 | bHasFoundDensity = true; |
6040 | | |
6041 | | /* -------------------------------------------------------------------- |
6042 | | */ |
6043 | | /* We have a computed value from the source. Now apply it |
6044 | | * to */ |
6045 | | /* the destination pixel. */ |
6046 | | /* -------------------------------------------------------------------- |
6047 | | */ |
6048 | 0 | GWKSetPixelValueReal(poWK, iBand, iDstOffset, dfBandDensity, |
6049 | 0 | dfValueReal, bAvoidNoDataSingleBand); |
6050 | 0 | } |
6051 | |
|
6052 | 0 | if (!bHasFoundDensity) |
6053 | 0 | continue; |
6054 | | |
6055 | 0 | if (!bAvoidNoDataSingleBand) |
6056 | 0 | { |
6057 | 0 | GWKAvoidNoDataMultiBand(poWK, iDstOffset); |
6058 | 0 | } |
6059 | | |
6060 | | /* -------------------------------------------------------------------- |
6061 | | */ |
6062 | | /* Update destination density/validity masks. */ |
6063 | | /* -------------------------------------------------------------------- |
6064 | | */ |
6065 | 0 | GWKOverlayDensity(poWK, iDstOffset, dfDensity); |
6066 | |
|
6067 | 0 | if (poWK->panDstValid != nullptr) |
6068 | 0 | { |
6069 | 0 | CPLMaskSet(poWK->panDstValid, iDstOffset); |
6070 | 0 | } |
6071 | 0 | } // Next iDstX. |
6072 | | |
6073 | | /* -------------------------------------------------------------------- |
6074 | | */ |
6075 | | /* Report progress to the user, and optionally cancel out. */ |
6076 | | /* -------------------------------------------------------------------- |
6077 | | */ |
6078 | 0 | if (psJob->pfnProgress && psJob->pfnProgress(psJob)) |
6079 | 0 | break; |
6080 | 0 | } |
6081 | | |
6082 | | /* -------------------------------------------------------------------- */ |
6083 | | /* Cleanup and return. */ |
6084 | | /* -------------------------------------------------------------------- */ |
6085 | 0 | CPLFree(padfX); |
6086 | 0 | CPLFree(padfY); |
6087 | 0 | CPLFree(padfZ); |
6088 | 0 | CPLFree(pabSuccess); |
6089 | 0 | if (psWrkStruct) |
6090 | 0 | GWKResampleDeleteWrkStruct(psWrkStruct); |
6091 | 0 | } |
6092 | | |
6093 | | static CPLErr GWKRealCase(GDALWarpKernel *poWK) |
6094 | 0 | { |
6095 | 0 | return GWKRun(poWK, "GWKRealCase", GWKRealCaseThread); |
6096 | 0 | } |
6097 | | |
6098 | | /************************************************************************/ |
6099 | | /* GWKCubicResampleNoMasks4MultiBandT() */ |
6100 | | /************************************************************************/ |
6101 | | |
6102 | | /* We restrict to 64bit processors because they are guaranteed to have SSE2 */ |
6103 | | /* and enough SSE registries */ |
6104 | | #if defined(USE_SSE2) |
6105 | | |
6106 | | static inline float Convolute4x4(const __m128 row0, const __m128 row1, |
6107 | | const __m128 row2, const __m128 row3, |
6108 | | const __m128 weightsXY0, |
6109 | | const __m128 weightsXY1, |
6110 | | const __m128 weightsXY2, |
6111 | | const __m128 weightsXY3) |
6112 | 0 | { |
6113 | 0 | return XMMHorizontalAdd(_mm_add_ps( |
6114 | 0 | _mm_add_ps(_mm_mul_ps(row0, weightsXY0), _mm_mul_ps(row1, weightsXY1)), |
6115 | 0 | _mm_add_ps(_mm_mul_ps(row2, weightsXY2), |
6116 | 0 | _mm_mul_ps(row3, weightsXY3)))); |
6117 | 0 | } |
6118 | | |
6119 | | template <class T> |
6120 | | static void GWKCubicResampleNoMasks4MultiBandT(const GDALWarpKernel *poWK, |
6121 | | double dfSrcX, double dfSrcY, |
6122 | | const GPtrDiff_t iDstOffset) |
6123 | 0 | { |
6124 | 0 | const double dfSrcXShifted = dfSrcX - 0.5; |
6125 | 0 | const int iSrcX = static_cast<int>(dfSrcXShifted); |
6126 | 0 | const double dfSrcYShifted = dfSrcY - 0.5; |
6127 | 0 | const int iSrcY = static_cast<int>(dfSrcYShifted); |
6128 | 0 | const GPtrDiff_t iSrcOffset = |
6129 | 0 | iSrcX + static_cast<GPtrDiff_t>(iSrcY) * poWK->nSrcXSize; |
6130 | | |
6131 | | // Get the bilinear interpolation at the image borders. |
6132 | 0 | if (iSrcX - 1 < 0 || iSrcX + 2 >= poWK->nSrcXSize || iSrcY - 1 < 0 || |
6133 | 0 | iSrcY + 2 >= poWK->nSrcYSize) |
6134 | 0 | { |
6135 | 0 | for (int iBand = 0; iBand < poWK->nBands; iBand++) |
6136 | 0 | { |
6137 | 0 | T value; |
6138 | 0 | GWKBilinearResampleNoMasks4SampleT(poWK, iBand, dfSrcX, dfSrcY, |
6139 | 0 | &value); |
6140 | 0 | reinterpret_cast<T *>(poWK->papabyDstImage[iBand])[iDstOffset] = |
6141 | 0 | value; |
6142 | 0 | } |
6143 | 0 | } |
6144 | 0 | else |
6145 | 0 | { |
6146 | 0 | const float fDeltaX = static_cast<float>(dfSrcXShifted) - iSrcX; |
6147 | 0 | const float fDeltaY = static_cast<float>(dfSrcYShifted) - iSrcY; |
6148 | |
|
6149 | 0 | float afCoeffsX[4]; |
6150 | 0 | float afCoeffsY[4]; |
6151 | 0 | GWKCubicComputeWeights(fDeltaX, afCoeffsX); |
6152 | 0 | GWKCubicComputeWeights(fDeltaY, afCoeffsY); |
6153 | 0 | const auto weightsX = _mm_loadu_ps(afCoeffsX); |
6154 | 0 | const auto weightsXY0 = |
6155 | 0 | _mm_mul_ps(_mm_load1_ps(&afCoeffsY[0]), weightsX); |
6156 | 0 | const auto weightsXY1 = |
6157 | 0 | _mm_mul_ps(_mm_load1_ps(&afCoeffsY[1]), weightsX); |
6158 | 0 | const auto weightsXY2 = |
6159 | 0 | _mm_mul_ps(_mm_load1_ps(&afCoeffsY[2]), weightsX); |
6160 | 0 | const auto weightsXY3 = |
6161 | 0 | _mm_mul_ps(_mm_load1_ps(&afCoeffsY[3]), weightsX); |
6162 | |
|
6163 | 0 | const GPtrDiff_t iOffset = iSrcOffset - poWK->nSrcXSize - 1; |
6164 | |
|
6165 | 0 | int iBand = 0; |
6166 | | // Process 2 bands at a time |
6167 | 0 | for (; iBand + 1 < poWK->nBands; iBand += 2) |
6168 | 0 | { |
6169 | 0 | const T *CPL_RESTRICT pBand0 = |
6170 | 0 | reinterpret_cast<const T *>(poWK->papabySrcImage[iBand]); |
6171 | 0 | const auto row0_0 = XMMLoad4Values(pBand0 + iOffset); |
6172 | 0 | const auto row1_0 = |
6173 | 0 | XMMLoad4Values(pBand0 + iOffset + poWK->nSrcXSize); |
6174 | 0 | const auto row2_0 = |
6175 | 0 | XMMLoad4Values(pBand0 + iOffset + 2 * poWK->nSrcXSize); |
6176 | 0 | const auto row3_0 = |
6177 | 0 | XMMLoad4Values(pBand0 + iOffset + 3 * poWK->nSrcXSize); |
6178 | |
|
6179 | 0 | const T *CPL_RESTRICT pBand1 = |
6180 | 0 | reinterpret_cast<const T *>(poWK->papabySrcImage[iBand + 1]); |
6181 | 0 | const auto row0_1 = XMMLoad4Values(pBand1 + iOffset); |
6182 | 0 | const auto row1_1 = |
6183 | 0 | XMMLoad4Values(pBand1 + iOffset + poWK->nSrcXSize); |
6184 | 0 | const auto row2_1 = |
6185 | 0 | XMMLoad4Values(pBand1 + iOffset + 2 * poWK->nSrcXSize); |
6186 | 0 | const auto row3_1 = |
6187 | 0 | XMMLoad4Values(pBand1 + iOffset + 3 * poWK->nSrcXSize); |
6188 | |
|
6189 | 0 | const float fValue_0 = |
6190 | 0 | Convolute4x4(row0_0, row1_0, row2_0, row3_0, weightsXY0, |
6191 | 0 | weightsXY1, weightsXY2, weightsXY3); |
6192 | |
|
6193 | 0 | const float fValue_1 = |
6194 | 0 | Convolute4x4(row0_1, row1_1, row2_1, row3_1, weightsXY0, |
6195 | 0 | weightsXY1, weightsXY2, weightsXY3); |
6196 | |
|
6197 | 0 | T *CPL_RESTRICT pDstBand0 = |
6198 | 0 | reinterpret_cast<T *>(poWK->papabyDstImage[iBand]); |
6199 | 0 | pDstBand0[iDstOffset] = GWKClampValueT<T>(fValue_0); |
6200 | |
|
6201 | 0 | T *CPL_RESTRICT pDstBand1 = |
6202 | 0 | reinterpret_cast<T *>(poWK->papabyDstImage[iBand + 1]); |
6203 | 0 | pDstBand1[iDstOffset] = GWKClampValueT<T>(fValue_1); |
6204 | 0 | } |
6205 | 0 | if (iBand < poWK->nBands) |
6206 | 0 | { |
6207 | 0 | const T *CPL_RESTRICT pBand0 = |
6208 | 0 | reinterpret_cast<const T *>(poWK->papabySrcImage[iBand]); |
6209 | 0 | const auto row0 = XMMLoad4Values(pBand0 + iOffset); |
6210 | 0 | const auto row1 = |
6211 | 0 | XMMLoad4Values(pBand0 + iOffset + poWK->nSrcXSize); |
6212 | 0 | const auto row2 = |
6213 | 0 | XMMLoad4Values(pBand0 + iOffset + 2 * poWK->nSrcXSize); |
6214 | 0 | const auto row3 = |
6215 | 0 | XMMLoad4Values(pBand0 + iOffset + 3 * poWK->nSrcXSize); |
6216 | |
|
6217 | 0 | const float fValue = |
6218 | 0 | Convolute4x4(row0, row1, row2, row3, weightsXY0, weightsXY1, |
6219 | 0 | weightsXY2, weightsXY3); |
6220 | |
|
6221 | 0 | T *CPL_RESTRICT pDstBand = |
6222 | 0 | reinterpret_cast<T *>(poWK->papabyDstImage[iBand]); |
6223 | 0 | pDstBand[iDstOffset] = GWKClampValueT<T>(fValue); |
6224 | 0 | } |
6225 | 0 | } |
6226 | |
|
6227 | 0 | if (poWK->pafDstDensity) |
6228 | 0 | poWK->pafDstDensity[iDstOffset] = 1.0f; |
6229 | 0 | } Unexecuted instantiation: gdalwarpkernel.cpp:void GWKCubicResampleNoMasks4MultiBandT<unsigned char>(GDALWarpKernel const*, double, double, long long) Unexecuted instantiation: gdalwarpkernel.cpp:void GWKCubicResampleNoMasks4MultiBandT<unsigned short>(GDALWarpKernel const*, double, double, long long) |
6230 | | |
6231 | | #endif // defined(USE_SSE2) |
6232 | | |
6233 | | /************************************************************************/ |
6234 | | /* GWKResampleNoMasksOrDstDensityOnlyThreadInternal() */ |
6235 | | /************************************************************************/ |
6236 | | |
6237 | | template <class T, GDALResampleAlg eResample, int bUse4SamplesFormula> |
6238 | | static void GWKResampleNoMasksOrDstDensityOnlyThreadInternal(void *pData) |
6239 | | |
6240 | 0 | { |
6241 | 0 | GWKJobStruct *psJob = static_cast<GWKJobStruct *>(pData); |
6242 | 0 | GDALWarpKernel *poWK = psJob->poWK; |
6243 | 0 | const int iYMin = psJob->iYMin; |
6244 | 0 | const int iYMax = psJob->iYMax; |
6245 | 0 | const double dfMultFactorVerticalShiftPipeline = |
6246 | 0 | poWK->bApplyVerticalShift |
6247 | 0 | ? CPLAtof(CSLFetchNameValueDef( |
6248 | 0 | poWK->papszWarpOptions, "MULT_FACTOR_VERTICAL_SHIFT_PIPELINE", |
6249 | 0 | "1.0")) |
6250 | 0 | : 0.0; |
6251 | |
|
6252 | 0 | const int nDstXSize = poWK->nDstXSize; |
6253 | 0 | const int nSrcXSize = poWK->nSrcXSize; |
6254 | 0 | const int nSrcYSize = poWK->nSrcYSize; |
6255 | | |
6256 | | /* -------------------------------------------------------------------- */ |
6257 | | /* Allocate x,y,z coordinate arrays for transformation ... one */ |
6258 | | /* scanlines worth of positions. */ |
6259 | | /* -------------------------------------------------------------------- */ |
6260 | | |
6261 | | // For x, 2 *, because we cache the precomputed values at the end. |
6262 | 0 | double *padfX = |
6263 | 0 | static_cast<double *>(CPLMalloc(2 * sizeof(double) * nDstXSize)); |
6264 | 0 | double *padfY = |
6265 | 0 | static_cast<double *>(CPLMalloc(sizeof(double) * nDstXSize)); |
6266 | 0 | double *padfZ = |
6267 | 0 | static_cast<double *>(CPLMalloc(sizeof(double) * nDstXSize)); |
6268 | 0 | int *pabSuccess = static_cast<int *>(CPLMalloc(sizeof(int) * nDstXSize)); |
6269 | |
|
6270 | 0 | const int nXRadius = poWK->nXRadius; |
6271 | 0 | double *padfWeightsX = |
6272 | 0 | static_cast<double *>(CPLCalloc(1 + nXRadius * 2, sizeof(double))); |
6273 | 0 | double *padfWeightsY = static_cast<double *>( |
6274 | 0 | CPLCalloc(1 + poWK->nYRadius * 2, sizeof(double))); |
6275 | 0 | const double dfSrcCoordPrecision = CPLAtof(CSLFetchNameValueDef( |
6276 | 0 | poWK->papszWarpOptions, "SRC_COORD_PRECISION", "0")); |
6277 | 0 | const double dfErrorThreshold = CPLAtof( |
6278 | 0 | CSLFetchNameValueDef(poWK->papszWarpOptions, "ERROR_THRESHOLD", "0")); |
6279 | | |
6280 | | // Precompute values. |
6281 | 0 | for (int iDstX = 0; iDstX < nDstXSize; iDstX++) |
6282 | 0 | padfX[nDstXSize + iDstX] = iDstX + 0.5 + poWK->nDstXOff; |
6283 | | |
6284 | | /* ==================================================================== */ |
6285 | | /* Loop over output lines. */ |
6286 | | /* ==================================================================== */ |
6287 | 0 | for (int iDstY = iYMin; iDstY < iYMax; iDstY++) |
6288 | 0 | { |
6289 | | /* -------------------------------------------------------------------- |
6290 | | */ |
6291 | | /* Setup points to transform to source image space. */ |
6292 | | /* -------------------------------------------------------------------- |
6293 | | */ |
6294 | 0 | memcpy(padfX, padfX + nDstXSize, sizeof(double) * nDstXSize); |
6295 | 0 | const double dfY = iDstY + 0.5 + poWK->nDstYOff; |
6296 | 0 | for (int iDstX = 0; iDstX < nDstXSize; iDstX++) |
6297 | 0 | padfY[iDstX] = dfY; |
6298 | 0 | memset(padfZ, 0, sizeof(double) * nDstXSize); |
6299 | | |
6300 | | /* -------------------------------------------------------------------- |
6301 | | */ |
6302 | | /* Transform the points from destination pixel/line coordinates */ |
6303 | | /* to source pixel/line coordinates. */ |
6304 | | /* -------------------------------------------------------------------- |
6305 | | */ |
6306 | 0 | poWK->pfnTransformer(psJob->pTransformerArg, TRUE, nDstXSize, padfX, |
6307 | 0 | padfY, padfZ, pabSuccess); |
6308 | 0 | if (dfSrcCoordPrecision > 0.0) |
6309 | 0 | { |
6310 | 0 | GWKRoundSourceCoordinates( |
6311 | 0 | nDstXSize, padfX, padfY, padfZ, pabSuccess, dfSrcCoordPrecision, |
6312 | 0 | dfErrorThreshold, poWK->pfnTransformer, psJob->pTransformerArg, |
6313 | 0 | 0.5 + poWK->nDstXOff, iDstY + 0.5 + poWK->nDstYOff); |
6314 | 0 | } |
6315 | | |
6316 | | /* ==================================================================== |
6317 | | */ |
6318 | | /* Loop over pixels in output scanline. */ |
6319 | | /* ==================================================================== |
6320 | | */ |
6321 | 0 | for (int iDstX = 0; iDstX < nDstXSize; iDstX++) |
6322 | 0 | { |
6323 | 0 | GPtrDiff_t iSrcOffset = 0; |
6324 | 0 | if (!GWKCheckAndComputeSrcOffsets(psJob, pabSuccess, iDstX, iDstY, |
6325 | 0 | padfX, padfY, nSrcXSize, |
6326 | 0 | nSrcYSize, iSrcOffset)) |
6327 | 0 | continue; |
6328 | | |
6329 | | /* ==================================================================== |
6330 | | */ |
6331 | | /* Loop processing each band. */ |
6332 | | /* ==================================================================== |
6333 | | */ |
6334 | 0 | const GPtrDiff_t iDstOffset = |
6335 | 0 | iDstX + static_cast<GPtrDiff_t>(iDstY) * nDstXSize; |
6336 | |
|
6337 | 0 | #if defined(USE_SSE2) |
6338 | | if constexpr (bUse4SamplesFormula && eResample == GRA_Cubic && |
6339 | | (std::is_same<T, GByte>::value || |
6340 | | std::is_same<T, GUInt16>::value)) |
6341 | 0 | { |
6342 | 0 | if (poWK->nBands > 1 && !poWK->bApplyVerticalShift) |
6343 | 0 | { |
6344 | 0 | GWKCubicResampleNoMasks4MultiBandT<T>( |
6345 | 0 | poWK, padfX[iDstX] - poWK->nSrcXOff, |
6346 | 0 | padfY[iDstX] - poWK->nSrcYOff, iDstOffset); |
6347 | |
|
6348 | 0 | continue; |
6349 | 0 | } |
6350 | 0 | } |
6351 | 0 | #endif // defined(USE_SSE2) |
6352 | | |
6353 | 0 | [[maybe_unused]] double dfInvWeights = 0; |
6354 | 0 | for (int iBand = 0; iBand < poWK->nBands; iBand++) |
6355 | 0 | { |
6356 | 0 | T value = 0; |
6357 | | if constexpr (eResample == GRA_NearestNeighbour) |
6358 | 0 | { |
6359 | 0 | value = reinterpret_cast<T *>( |
6360 | 0 | poWK->papabySrcImage[iBand])[iSrcOffset]; |
6361 | | } |
6362 | | else if constexpr (bUse4SamplesFormula) |
6363 | 0 | { |
6364 | | if constexpr (eResample == GRA_Bilinear) |
6365 | 0 | GWKBilinearResampleNoMasks4SampleT( |
6366 | 0 | poWK, iBand, padfX[iDstX] - poWK->nSrcXOff, |
6367 | | padfY[iDstX] - poWK->nSrcYOff, &value); |
6368 | | else |
6369 | 0 | GWKCubicResampleNoMasks4SampleT( |
6370 | 0 | poWK, iBand, padfX[iDstX] - poWK->nSrcXOff, |
6371 | 0 | padfY[iDstX] - poWK->nSrcYOff, &value); |
6372 | | } |
6373 | | else |
6374 | 0 | { |
6375 | 0 | GWKResampleNoMasksT( |
6376 | 0 | poWK, iBand, padfX[iDstX] - poWK->nSrcXOff, |
6377 | 0 | padfY[iDstX] - poWK->nSrcYOff, &value, padfWeightsX, |
6378 | 0 | padfWeightsY, dfInvWeights); |
6379 | 0 | } |
6380 | |
|
6381 | 0 | if (poWK->bApplyVerticalShift) |
6382 | 0 | { |
6383 | 0 | if (!std::isfinite(padfZ[iDstX])) |
6384 | 0 | continue; |
6385 | | // Subtract padfZ[] since the coordinate transformation is |
6386 | | // from target to source |
6387 | 0 | value = GWKClampValueT<T>( |
6388 | 0 | double(value) * poWK->dfMultFactorVerticalShift - |
6389 | 0 | padfZ[iDstX] * dfMultFactorVerticalShiftPipeline); |
6390 | 0 | } |
6391 | | |
6392 | 0 | if (poWK->pafDstDensity) |
6393 | 0 | poWK->pafDstDensity[iDstOffset] = 1.0f; |
6394 | |
|
6395 | 0 | reinterpret_cast<T *>(poWK->papabyDstImage[iBand])[iDstOffset] = |
6396 | 0 | value; |
6397 | 0 | } |
6398 | 0 | } |
6399 | | |
6400 | | /* -------------------------------------------------------------------- |
6401 | | */ |
6402 | | /* Report progress to the user, and optionally cancel out. */ |
6403 | | /* -------------------------------------------------------------------- |
6404 | | */ |
6405 | 0 | if (psJob->pfnProgress && psJob->pfnProgress(psJob)) |
6406 | 0 | break; |
6407 | 0 | } |
6408 | | |
6409 | | /* -------------------------------------------------------------------- */ |
6410 | | /* Cleanup and return. */ |
6411 | | /* -------------------------------------------------------------------- */ |
6412 | 0 | CPLFree(padfX); |
6413 | 0 | CPLFree(padfY); |
6414 | 0 | CPLFree(padfZ); |
6415 | 0 | CPLFree(pabSuccess); |
6416 | 0 | CPLFree(padfWeightsX); |
6417 | 0 | CPLFree(padfWeightsY); |
6418 | 0 | } Unexecuted instantiation: gdalwarpkernel.cpp:void GWKResampleNoMasksOrDstDensityOnlyThreadInternal<unsigned char, (GDALResampleAlg)0, 0>(void*) Unexecuted instantiation: gdalwarpkernel.cpp:void GWKResampleNoMasksOrDstDensityOnlyThreadInternal<unsigned char, (GDALResampleAlg)1, 1>(void*) Unexecuted instantiation: gdalwarpkernel.cpp:void GWKResampleNoMasksOrDstDensityOnlyThreadInternal<unsigned char, (GDALResampleAlg)1, 0>(void*) Unexecuted instantiation: gdalwarpkernel.cpp:void GWKResampleNoMasksOrDstDensityOnlyThreadInternal<unsigned char, (GDALResampleAlg)2, 1>(void*) Unexecuted instantiation: gdalwarpkernel.cpp:void GWKResampleNoMasksOrDstDensityOnlyThreadInternal<unsigned char, (GDALResampleAlg)2, 0>(void*) Unexecuted instantiation: gdalwarpkernel.cpp:void GWKResampleNoMasksOrDstDensityOnlyThreadInternal<float, (GDALResampleAlg)2, 1>(void*) Unexecuted instantiation: gdalwarpkernel.cpp:void GWKResampleNoMasksOrDstDensityOnlyThreadInternal<float, (GDALResampleAlg)2, 0>(void*) Unexecuted instantiation: gdalwarpkernel.cpp:void GWKResampleNoMasksOrDstDensityOnlyThreadInternal<unsigned char, (GDALResampleAlg)3, 0>(void*) Unexecuted instantiation: gdalwarpkernel.cpp:void GWKResampleNoMasksOrDstDensityOnlyThreadInternal<short, (GDALResampleAlg)0, 0>(void*) Unexecuted instantiation: gdalwarpkernel.cpp:void GWKResampleNoMasksOrDstDensityOnlyThreadInternal<short, (GDALResampleAlg)1, 1>(void*) Unexecuted instantiation: gdalwarpkernel.cpp:void GWKResampleNoMasksOrDstDensityOnlyThreadInternal<short, (GDALResampleAlg)1, 0>(void*) Unexecuted instantiation: gdalwarpkernel.cpp:void GWKResampleNoMasksOrDstDensityOnlyThreadInternal<unsigned short, (GDALResampleAlg)1, 1>(void*) Unexecuted instantiation: gdalwarpkernel.cpp:void GWKResampleNoMasksOrDstDensityOnlyThreadInternal<unsigned short, (GDALResampleAlg)1, 0>(void*) Unexecuted instantiation: gdalwarpkernel.cpp:void GWKResampleNoMasksOrDstDensityOnlyThreadInternal<float, (GDALResampleAlg)1, 1>(void*) Unexecuted instantiation: gdalwarpkernel.cpp:void GWKResampleNoMasksOrDstDensityOnlyThreadInternal<float, (GDALResampleAlg)1, 0>(void*) Unexecuted instantiation: gdalwarpkernel.cpp:void GWKResampleNoMasksOrDstDensityOnlyThreadInternal<short, (GDALResampleAlg)2, 1>(void*) Unexecuted instantiation: gdalwarpkernel.cpp:void GWKResampleNoMasksOrDstDensityOnlyThreadInternal<short, (GDALResampleAlg)2, 0>(void*) Unexecuted instantiation: gdalwarpkernel.cpp:void GWKResampleNoMasksOrDstDensityOnlyThreadInternal<unsigned short, (GDALResampleAlg)2, 1>(void*) Unexecuted instantiation: gdalwarpkernel.cpp:void GWKResampleNoMasksOrDstDensityOnlyThreadInternal<unsigned short, (GDALResampleAlg)2, 0>(void*) Unexecuted instantiation: gdalwarpkernel.cpp:void GWKResampleNoMasksOrDstDensityOnlyThreadInternal<short, (GDALResampleAlg)3, 0>(void*) Unexecuted instantiation: gdalwarpkernel.cpp:void GWKResampleNoMasksOrDstDensityOnlyThreadInternal<unsigned short, (GDALResampleAlg)3, 0>(void*) Unexecuted instantiation: gdalwarpkernel.cpp:void GWKResampleNoMasksOrDstDensityOnlyThreadInternal<float, (GDALResampleAlg)0, 0>(void*) |
6419 | | |
6420 | | template <class T, GDALResampleAlg eResample> |
6421 | | static void GWKResampleNoMasksOrDstDensityOnlyThread(void *pData) |
6422 | 0 | { |
6423 | 0 | GWKResampleNoMasksOrDstDensityOnlyThreadInternal<T, eResample, FALSE>( |
6424 | 0 | pData); |
6425 | 0 | } Unexecuted instantiation: gdalwarpkernel.cpp:void GWKResampleNoMasksOrDstDensityOnlyThread<unsigned char, (GDALResampleAlg)0>(void*) Unexecuted instantiation: gdalwarpkernel.cpp:void GWKResampleNoMasksOrDstDensityOnlyThread<unsigned char, (GDALResampleAlg)3>(void*) Unexecuted instantiation: gdalwarpkernel.cpp:void GWKResampleNoMasksOrDstDensityOnlyThread<short, (GDALResampleAlg)0>(void*) Unexecuted instantiation: gdalwarpkernel.cpp:void GWKResampleNoMasksOrDstDensityOnlyThread<short, (GDALResampleAlg)3>(void*) Unexecuted instantiation: gdalwarpkernel.cpp:void GWKResampleNoMasksOrDstDensityOnlyThread<unsigned short, (GDALResampleAlg)3>(void*) Unexecuted instantiation: gdalwarpkernel.cpp:void GWKResampleNoMasksOrDstDensityOnlyThread<float, (GDALResampleAlg)0>(void*) |
6426 | | |
6427 | | template <class T, GDALResampleAlg eResample> |
6428 | | static void GWKResampleNoMasksOrDstDensityOnlyHas4SampleThread(void *pData) |
6429 | | |
6430 | 0 | { |
6431 | 0 | GWKJobStruct *psJob = static_cast<GWKJobStruct *>(pData); |
6432 | 0 | GDALWarpKernel *poWK = psJob->poWK; |
6433 | 0 | static_assert(eResample == GRA_Bilinear || eResample == GRA_Cubic); |
6434 | 0 | const bool bUse4SamplesFormula = CanUse4SamplesFormula(poWK); |
6435 | 0 | if (bUse4SamplesFormula) |
6436 | 0 | GWKResampleNoMasksOrDstDensityOnlyThreadInternal<T, eResample, TRUE>( |
6437 | 0 | pData); |
6438 | 0 | else |
6439 | 0 | GWKResampleNoMasksOrDstDensityOnlyThreadInternal<T, eResample, FALSE>( |
6440 | 0 | pData); |
6441 | 0 | } Unexecuted instantiation: gdalwarpkernel.cpp:void GWKResampleNoMasksOrDstDensityOnlyHas4SampleThread<unsigned char, (GDALResampleAlg)1>(void*) Unexecuted instantiation: gdalwarpkernel.cpp:void GWKResampleNoMasksOrDstDensityOnlyHas4SampleThread<unsigned char, (GDALResampleAlg)2>(void*) Unexecuted instantiation: gdalwarpkernel.cpp:void GWKResampleNoMasksOrDstDensityOnlyHas4SampleThread<float, (GDALResampleAlg)2>(void*) Unexecuted instantiation: gdalwarpkernel.cpp:void GWKResampleNoMasksOrDstDensityOnlyHas4SampleThread<short, (GDALResampleAlg)1>(void*) Unexecuted instantiation: gdalwarpkernel.cpp:void GWKResampleNoMasksOrDstDensityOnlyHas4SampleThread<unsigned short, (GDALResampleAlg)1>(void*) Unexecuted instantiation: gdalwarpkernel.cpp:void GWKResampleNoMasksOrDstDensityOnlyHas4SampleThread<float, (GDALResampleAlg)1>(void*) Unexecuted instantiation: gdalwarpkernel.cpp:void GWKResampleNoMasksOrDstDensityOnlyHas4SampleThread<short, (GDALResampleAlg)2>(void*) Unexecuted instantiation: gdalwarpkernel.cpp:void GWKResampleNoMasksOrDstDensityOnlyHas4SampleThread<unsigned short, (GDALResampleAlg)2>(void*) |
6442 | | |
6443 | | static CPLErr GWKNearestNoMasksOrDstDensityOnlyByte(GDALWarpKernel *poWK) |
6444 | 0 | { |
6445 | 0 | return GWKRun( |
6446 | 0 | poWK, "GWKNearestNoMasksOrDstDensityOnlyByte", |
6447 | 0 | GWKResampleNoMasksOrDstDensityOnlyThread<GByte, GRA_NearestNeighbour>); |
6448 | 0 | } |
6449 | | |
6450 | | static CPLErr GWKBilinearNoMasksOrDstDensityOnlyByte(GDALWarpKernel *poWK) |
6451 | 0 | { |
6452 | 0 | return GWKRun( |
6453 | 0 | poWK, "GWKBilinearNoMasksOrDstDensityOnlyByte", |
6454 | 0 | GWKResampleNoMasksOrDstDensityOnlyHas4SampleThread<GByte, |
6455 | 0 | GRA_Bilinear>); |
6456 | 0 | } |
6457 | | |
6458 | | static CPLErr GWKCubicNoMasksOrDstDensityOnlyByte(GDALWarpKernel *poWK) |
6459 | 0 | { |
6460 | 0 | return GWKRun( |
6461 | 0 | poWK, "GWKCubicNoMasksOrDstDensityOnlyByte", |
6462 | 0 | GWKResampleNoMasksOrDstDensityOnlyHas4SampleThread<GByte, GRA_Cubic>); |
6463 | 0 | } |
6464 | | |
6465 | | static CPLErr GWKCubicNoMasksOrDstDensityOnlyFloat(GDALWarpKernel *poWK) |
6466 | 0 | { |
6467 | 0 | return GWKRun( |
6468 | 0 | poWK, "GWKCubicNoMasksOrDstDensityOnlyFloat", |
6469 | 0 | GWKResampleNoMasksOrDstDensityOnlyHas4SampleThread<float, GRA_Cubic>); |
6470 | 0 | } |
6471 | | |
6472 | | #ifdef INSTANTIATE_FLOAT64_SSE2_IMPL |
6473 | | |
6474 | | static CPLErr GWKCubicNoMasksOrDstDensityOnlyDouble(GDALWarpKernel *poWK) |
6475 | | { |
6476 | | return GWKRun( |
6477 | | poWK, "GWKCubicNoMasksOrDstDensityOnlyDouble", |
6478 | | GWKResampleNoMasksOrDstDensityOnlyHas4SampleThread<double, GRA_Cubic>); |
6479 | | } |
6480 | | #endif |
6481 | | |
6482 | | static CPLErr GWKCubicSplineNoMasksOrDstDensityOnlyByte(GDALWarpKernel *poWK) |
6483 | 0 | { |
6484 | 0 | return GWKRun( |
6485 | 0 | poWK, "GWKCubicSplineNoMasksOrDstDensityOnlyByte", |
6486 | 0 | GWKResampleNoMasksOrDstDensityOnlyThread<GByte, GRA_CubicSpline>); |
6487 | 0 | } |
6488 | | |
6489 | | /************************************************************************/ |
6490 | | /* GWKNearestByte() */ |
6491 | | /* */ |
6492 | | /* Case for 8bit input data with nearest neighbour resampling */ |
6493 | | /* using valid flags. Should be as fast as possible for this */ |
6494 | | /* particular transformation type. */ |
6495 | | /************************************************************************/ |
6496 | | |
6497 | | template <class T> static void GWKNearestThread(void *pData) |
6498 | | |
6499 | 0 | { |
6500 | 0 | GWKJobStruct *psJob = static_cast<GWKJobStruct *>(pData); |
6501 | 0 | GDALWarpKernel *poWK = psJob->poWK; |
6502 | 0 | const int iYMin = psJob->iYMin; |
6503 | 0 | const int iYMax = psJob->iYMax; |
6504 | 0 | const double dfMultFactorVerticalShiftPipeline = |
6505 | 0 | poWK->bApplyVerticalShift |
6506 | 0 | ? CPLAtof(CSLFetchNameValueDef( |
6507 | 0 | poWK->papszWarpOptions, "MULT_FACTOR_VERTICAL_SHIFT_PIPELINE", |
6508 | 0 | "1.0")) |
6509 | 0 | : 0.0; |
6510 | 0 | const bool bAvoidNoDataSingleBand = |
6511 | 0 | poWK->nBands == 1 || |
6512 | 0 | !CPLTestBool(CSLFetchNameValueDef(poWK->papszWarpOptions, |
6513 | 0 | "UNIFIED_SRC_NODATA", "FALSE")); |
6514 | |
|
6515 | 0 | const int nDstXSize = poWK->nDstXSize; |
6516 | 0 | const int nSrcXSize = poWK->nSrcXSize; |
6517 | 0 | const int nSrcYSize = poWK->nSrcYSize; |
6518 | | |
6519 | | /* -------------------------------------------------------------------- */ |
6520 | | /* Allocate x,y,z coordinate arrays for transformation ... one */ |
6521 | | /* scanlines worth of positions. */ |
6522 | | /* -------------------------------------------------------------------- */ |
6523 | | |
6524 | | // For x, 2 *, because we cache the precomputed values at the end. |
6525 | 0 | double *padfX = |
6526 | 0 | static_cast<double *>(CPLMalloc(2 * sizeof(double) * nDstXSize)); |
6527 | 0 | double *padfY = |
6528 | 0 | static_cast<double *>(CPLMalloc(sizeof(double) * nDstXSize)); |
6529 | 0 | double *padfZ = |
6530 | 0 | static_cast<double *>(CPLMalloc(sizeof(double) * nDstXSize)); |
6531 | 0 | int *pabSuccess = static_cast<int *>(CPLMalloc(sizeof(int) * nDstXSize)); |
6532 | |
|
6533 | 0 | const double dfSrcCoordPrecision = CPLAtof(CSLFetchNameValueDef( |
6534 | 0 | poWK->papszWarpOptions, "SRC_COORD_PRECISION", "0")); |
6535 | 0 | const double dfErrorThreshold = CPLAtof( |
6536 | 0 | CSLFetchNameValueDef(poWK->papszWarpOptions, "ERROR_THRESHOLD", "0")); |
6537 | |
|
6538 | 0 | const bool bOneSourceCornerFailsToReproject = |
6539 | 0 | GWKOneSourceCornerFailsToReproject(psJob); |
6540 | | |
6541 | | // Precompute values. |
6542 | 0 | for (int iDstX = 0; iDstX < nDstXSize; iDstX++) |
6543 | 0 | padfX[nDstXSize + iDstX] = iDstX + 0.5 + poWK->nDstXOff; |
6544 | | |
6545 | | /* ==================================================================== */ |
6546 | | /* Loop over output lines. */ |
6547 | | /* ==================================================================== */ |
6548 | 0 | for (int iDstY = iYMin; iDstY < iYMax; iDstY++) |
6549 | 0 | { |
6550 | | |
6551 | | /* -------------------------------------------------------------------- |
6552 | | */ |
6553 | | /* Setup points to transform to source image space. */ |
6554 | | /* -------------------------------------------------------------------- |
6555 | | */ |
6556 | 0 | memcpy(padfX, padfX + nDstXSize, sizeof(double) * nDstXSize); |
6557 | 0 | const double dfY = iDstY + 0.5 + poWK->nDstYOff; |
6558 | 0 | for (int iDstX = 0; iDstX < nDstXSize; iDstX++) |
6559 | 0 | padfY[iDstX] = dfY; |
6560 | 0 | memset(padfZ, 0, sizeof(double) * nDstXSize); |
6561 | | |
6562 | | /* -------------------------------------------------------------------- |
6563 | | */ |
6564 | | /* Transform the points from destination pixel/line coordinates */ |
6565 | | /* to source pixel/line coordinates. */ |
6566 | | /* -------------------------------------------------------------------- |
6567 | | */ |
6568 | 0 | poWK->pfnTransformer(psJob->pTransformerArg, TRUE, nDstXSize, padfX, |
6569 | 0 | padfY, padfZ, pabSuccess); |
6570 | 0 | if (dfSrcCoordPrecision > 0.0) |
6571 | 0 | { |
6572 | 0 | GWKRoundSourceCoordinates( |
6573 | 0 | nDstXSize, padfX, padfY, padfZ, pabSuccess, dfSrcCoordPrecision, |
6574 | 0 | dfErrorThreshold, poWK->pfnTransformer, psJob->pTransformerArg, |
6575 | 0 | 0.5 + poWK->nDstXOff, iDstY + 0.5 + poWK->nDstYOff); |
6576 | 0 | } |
6577 | | /* ==================================================================== |
6578 | | */ |
6579 | | /* Loop over pixels in output scanline. */ |
6580 | | /* ==================================================================== |
6581 | | */ |
6582 | 0 | for (int iDstX = 0; iDstX < nDstXSize; iDstX++) |
6583 | 0 | { |
6584 | 0 | GPtrDiff_t iSrcOffset = 0; |
6585 | 0 | if (!GWKCheckAndComputeSrcOffsets(psJob, pabSuccess, iDstX, iDstY, |
6586 | 0 | padfX, padfY, nSrcXSize, |
6587 | 0 | nSrcYSize, iSrcOffset)) |
6588 | 0 | continue; |
6589 | | |
6590 | | /* -------------------------------------------------------------------- |
6591 | | */ |
6592 | | /* Do not try to apply invalid source pixels to the dest. */ |
6593 | | /* -------------------------------------------------------------------- |
6594 | | */ |
6595 | 0 | if (poWK->panUnifiedSrcValid != nullptr && |
6596 | 0 | !CPLMaskGet(poWK->panUnifiedSrcValid, iSrcOffset)) |
6597 | 0 | { |
6598 | 0 | if (!bOneSourceCornerFailsToReproject) |
6599 | 0 | { |
6600 | 0 | continue; |
6601 | 0 | } |
6602 | 0 | else if (!GWKAdjustSrcOffsetOnEdge(psJob, iSrcOffset)) |
6603 | 0 | { |
6604 | 0 | continue; |
6605 | 0 | } |
6606 | 0 | } |
6607 | | |
6608 | | /* -------------------------------------------------------------------- |
6609 | | */ |
6610 | | /* Do not try to apply transparent source pixels to the |
6611 | | * destination.*/ |
6612 | | /* -------------------------------------------------------------------- |
6613 | | */ |
6614 | 0 | double dfDensity = 1.0; |
6615 | |
|
6616 | 0 | if (poWK->pafUnifiedSrcDensity != nullptr) |
6617 | 0 | { |
6618 | 0 | dfDensity = double(poWK->pafUnifiedSrcDensity[iSrcOffset]); |
6619 | 0 | if (dfDensity < SRC_DENSITY_THRESHOLD_DOUBLE) |
6620 | 0 | continue; |
6621 | 0 | } |
6622 | | |
6623 | | /* ==================================================================== |
6624 | | */ |
6625 | | /* Loop processing each band. */ |
6626 | | /* ==================================================================== |
6627 | | */ |
6628 | | |
6629 | 0 | const GPtrDiff_t iDstOffset = |
6630 | 0 | iDstX + static_cast<GPtrDiff_t>(iDstY) * nDstXSize; |
6631 | |
|
6632 | 0 | for (int iBand = 0; iBand < poWK->nBands; iBand++) |
6633 | 0 | { |
6634 | 0 | T value = 0; |
6635 | 0 | double dfBandDensity = 0.0; |
6636 | | |
6637 | | /* -------------------------------------------------------------------- |
6638 | | */ |
6639 | | /* Collect the source value. */ |
6640 | | /* -------------------------------------------------------------------- |
6641 | | */ |
6642 | 0 | if (GWKGetPixelT(poWK, iBand, iSrcOffset, &dfBandDensity, |
6643 | 0 | &value)) |
6644 | 0 | { |
6645 | |
|
6646 | 0 | if (poWK->bApplyVerticalShift) |
6647 | 0 | { |
6648 | 0 | if (!std::isfinite(padfZ[iDstX])) |
6649 | 0 | continue; |
6650 | | // Subtract padfZ[] since the coordinate transformation |
6651 | | // is from target to source |
6652 | 0 | value = GWKClampValueT<T>( |
6653 | 0 | double(value) * poWK->dfMultFactorVerticalShift - |
6654 | 0 | padfZ[iDstX] * dfMultFactorVerticalShiftPipeline); |
6655 | 0 | } |
6656 | | |
6657 | 0 | GWKSetPixelValueRealT(poWK, iBand, iDstOffset, |
6658 | 0 | dfBandDensity, value, |
6659 | 0 | bAvoidNoDataSingleBand); |
6660 | 0 | } |
6661 | 0 | } |
6662 | | |
6663 | | /* -------------------------------------------------------------------- |
6664 | | */ |
6665 | | /* Mark this pixel valid/opaque in the output. */ |
6666 | | /* -------------------------------------------------------------------- |
6667 | | */ |
6668 | |
|
6669 | 0 | if (!bAvoidNoDataSingleBand) |
6670 | 0 | { |
6671 | 0 | GWKAvoidNoDataMultiBand(poWK, iDstOffset); |
6672 | 0 | } |
6673 | |
|
6674 | 0 | GWKOverlayDensity(poWK, iDstOffset, dfDensity); |
6675 | |
|
6676 | 0 | if (poWK->panDstValid != nullptr) |
6677 | 0 | { |
6678 | 0 | CPLMaskSet(poWK->panDstValid, iDstOffset); |
6679 | 0 | } |
6680 | 0 | } /* Next iDstX */ |
6681 | | |
6682 | | /* -------------------------------------------------------------------- |
6683 | | */ |
6684 | | /* Report progress to the user, and optionally cancel out. */ |
6685 | | /* -------------------------------------------------------------------- |
6686 | | */ |
6687 | 0 | if (psJob->pfnProgress && psJob->pfnProgress(psJob)) |
6688 | 0 | break; |
6689 | 0 | } |
6690 | | |
6691 | | /* -------------------------------------------------------------------- */ |
6692 | | /* Cleanup and return. */ |
6693 | | /* -------------------------------------------------------------------- */ |
6694 | 0 | CPLFree(padfX); |
6695 | 0 | CPLFree(padfY); |
6696 | 0 | CPLFree(padfZ); |
6697 | 0 | CPLFree(pabSuccess); |
6698 | 0 | } Unexecuted instantiation: gdalwarpkernel.cpp:void GWKNearestThread<unsigned char>(void*) Unexecuted instantiation: gdalwarpkernel.cpp:void GWKNearestThread<short>(void*) Unexecuted instantiation: gdalwarpkernel.cpp:void GWKNearestThread<unsigned short>(void*) Unexecuted instantiation: gdalwarpkernel.cpp:void GWKNearestThread<float>(void*) |
6699 | | |
6700 | | static CPLErr GWKNearestByte(GDALWarpKernel *poWK) |
6701 | 0 | { |
6702 | 0 | return GWKRun(poWK, "GWKNearestByte", GWKNearestThread<GByte>); |
6703 | 0 | } |
6704 | | |
6705 | | static CPLErr GWKNearestNoMasksOrDstDensityOnlyShort(GDALWarpKernel *poWK) |
6706 | 0 | { |
6707 | 0 | return GWKRun( |
6708 | 0 | poWK, "GWKNearestNoMasksOrDstDensityOnlyShort", |
6709 | 0 | GWKResampleNoMasksOrDstDensityOnlyThread<GInt16, GRA_NearestNeighbour>); |
6710 | 0 | } |
6711 | | |
6712 | | static CPLErr GWKBilinearNoMasksOrDstDensityOnlyShort(GDALWarpKernel *poWK) |
6713 | 0 | { |
6714 | 0 | return GWKRun( |
6715 | 0 | poWK, "GWKBilinearNoMasksOrDstDensityOnlyShort", |
6716 | 0 | GWKResampleNoMasksOrDstDensityOnlyHas4SampleThread<GInt16, |
6717 | 0 | GRA_Bilinear>); |
6718 | 0 | } |
6719 | | |
6720 | | static CPLErr GWKBilinearNoMasksOrDstDensityOnlyUShort(GDALWarpKernel *poWK) |
6721 | 0 | { |
6722 | 0 | return GWKRun( |
6723 | 0 | poWK, "GWKBilinearNoMasksOrDstDensityOnlyUShort", |
6724 | 0 | GWKResampleNoMasksOrDstDensityOnlyHas4SampleThread<GUInt16, |
6725 | 0 | GRA_Bilinear>); |
6726 | 0 | } |
6727 | | |
6728 | | static CPLErr GWKBilinearNoMasksOrDstDensityOnlyFloat(GDALWarpKernel *poWK) |
6729 | 0 | { |
6730 | 0 | return GWKRun( |
6731 | 0 | poWK, "GWKBilinearNoMasksOrDstDensityOnlyFloat", |
6732 | 0 | GWKResampleNoMasksOrDstDensityOnlyHas4SampleThread<float, |
6733 | 0 | GRA_Bilinear>); |
6734 | 0 | } |
6735 | | |
6736 | | #ifdef INSTANTIATE_FLOAT64_SSE2_IMPL |
6737 | | |
6738 | | static CPLErr GWKBilinearNoMasksOrDstDensityOnlyDouble(GDALWarpKernel *poWK) |
6739 | | { |
6740 | | return GWKRun( |
6741 | | poWK, "GWKBilinearNoMasksOrDstDensityOnlyDouble", |
6742 | | GWKResampleNoMasksOrDstDensityOnlyHas4SampleThread<double, |
6743 | | GRA_Bilinear>); |
6744 | | } |
6745 | | #endif |
6746 | | |
6747 | | static CPLErr GWKCubicNoMasksOrDstDensityOnlyShort(GDALWarpKernel *poWK) |
6748 | 0 | { |
6749 | 0 | return GWKRun( |
6750 | 0 | poWK, "GWKCubicNoMasksOrDstDensityOnlyShort", |
6751 | 0 | GWKResampleNoMasksOrDstDensityOnlyHas4SampleThread<GInt16, GRA_Cubic>); |
6752 | 0 | } |
6753 | | |
6754 | | static CPLErr GWKCubicNoMasksOrDstDensityOnlyUShort(GDALWarpKernel *poWK) |
6755 | 0 | { |
6756 | 0 | return GWKRun( |
6757 | 0 | poWK, "GWKCubicNoMasksOrDstDensityOnlyUShort", |
6758 | 0 | GWKResampleNoMasksOrDstDensityOnlyHas4SampleThread<GUInt16, GRA_Cubic>); |
6759 | 0 | } |
6760 | | |
6761 | | static CPLErr GWKCubicSplineNoMasksOrDstDensityOnlyShort(GDALWarpKernel *poWK) |
6762 | 0 | { |
6763 | 0 | return GWKRun( |
6764 | 0 | poWK, "GWKCubicSplineNoMasksOrDstDensityOnlyShort", |
6765 | 0 | GWKResampleNoMasksOrDstDensityOnlyThread<GInt16, GRA_CubicSpline>); |
6766 | 0 | } |
6767 | | |
6768 | | static CPLErr GWKCubicSplineNoMasksOrDstDensityOnlyUShort(GDALWarpKernel *poWK) |
6769 | 0 | { |
6770 | 0 | return GWKRun( |
6771 | 0 | poWK, "GWKCubicSplineNoMasksOrDstDensityOnlyUShort", |
6772 | 0 | GWKResampleNoMasksOrDstDensityOnlyThread<GUInt16, GRA_CubicSpline>); |
6773 | 0 | } |
6774 | | |
6775 | | static CPLErr GWKNearestShort(GDALWarpKernel *poWK) |
6776 | 0 | { |
6777 | 0 | return GWKRun(poWK, "GWKNearestShort", GWKNearestThread<GInt16>); |
6778 | 0 | } |
6779 | | |
6780 | | static CPLErr GWKNearestUnsignedShort(GDALWarpKernel *poWK) |
6781 | 0 | { |
6782 | 0 | return GWKRun(poWK, "GWKNearestUnsignedShort", GWKNearestThread<GUInt16>); |
6783 | 0 | } |
6784 | | |
6785 | | static CPLErr GWKNearestNoMasksOrDstDensityOnlyFloat(GDALWarpKernel *poWK) |
6786 | 0 | { |
6787 | 0 | return GWKRun( |
6788 | 0 | poWK, "GWKNearestNoMasksOrDstDensityOnlyFloat", |
6789 | 0 | GWKResampleNoMasksOrDstDensityOnlyThread<float, GRA_NearestNeighbour>); |
6790 | 0 | } |
6791 | | |
6792 | | static CPLErr GWKNearestFloat(GDALWarpKernel *poWK) |
6793 | 0 | { |
6794 | 0 | return GWKRun(poWK, "GWKNearestFloat", GWKNearestThread<float>); |
6795 | 0 | } |
6796 | | |
6797 | | /************************************************************************/ |
6798 | | /* GWKAverageOrMode() */ |
6799 | | /* */ |
6800 | | /************************************************************************/ |
6801 | | |
6802 | | #define COMPUTE_WEIGHT_Y(iSrcY) \ |
6803 | 0 | ((iSrcY == iSrcYMin) \ |
6804 | 0 | ? ((iSrcYMin + 1 == iSrcYMax) ? 1.0 : 1 - (dfYMin - iSrcYMin)) \ |
6805 | 0 | : (iSrcY + 1 == iSrcYMax) ? 1 - (iSrcYMax - dfYMax) \ |
6806 | 0 | : 1.0) |
6807 | | |
6808 | | #define COMPUTE_WEIGHT(iSrcX, dfWeightY) \ |
6809 | 0 | ((iSrcX == iSrcXMin) ? ((iSrcXMin + 1 == iSrcXMax) \ |
6810 | 0 | ? dfWeightY \ |
6811 | 0 | : dfWeightY * (1 - (dfXMin - iSrcXMin))) \ |
6812 | 0 | : (iSrcX + 1 == iSrcXMax) ? dfWeightY * (1 - (iSrcXMax - dfXMax)) \ |
6813 | 0 | : dfWeightY) |
6814 | | |
6815 | | static void GWKAverageOrModeThread(void *pData); |
6816 | | |
6817 | | static CPLErr GWKAverageOrMode(GDALWarpKernel *poWK) |
6818 | 0 | { |
6819 | 0 | return GWKRun(poWK, "GWKAverageOrMode", GWKAverageOrModeThread); |
6820 | 0 | } |
6821 | | |
6822 | | /************************************************************************/ |
6823 | | /* GWKAverageOrModeComputeLineCoords() */ |
6824 | | /************************************************************************/ |
6825 | | |
6826 | | static void GWKAverageOrModeComputeLineCoords( |
6827 | | const GWKJobStruct *psJob, double *padfX, double *padfX2, double *padfY, |
6828 | | double *padfY2, double *padfZ, double *padfZ2, int *pabSuccess, |
6829 | | int *pabSuccess2, int iDstY, double dfSrcCoordPrecision, |
6830 | | double dfErrorThreshold) |
6831 | 0 | { |
6832 | 0 | const GDALWarpKernel *poWK = psJob->poWK; |
6833 | 0 | const int nDstXSize = poWK->nDstXSize; |
6834 | | |
6835 | | // Setup points to transform to source image space. |
6836 | 0 | for (int iDstX = 0; iDstX < nDstXSize; iDstX++) |
6837 | 0 | { |
6838 | 0 | padfX[iDstX] = iDstX + poWK->nDstXOff; |
6839 | 0 | padfY[iDstX] = iDstY + poWK->nDstYOff; |
6840 | 0 | padfZ[iDstX] = 0.0; |
6841 | 0 | padfX2[iDstX] = iDstX + 1.0 + poWK->nDstXOff; |
6842 | 0 | padfY2[iDstX] = iDstY + 1.0 + poWK->nDstYOff; |
6843 | 0 | padfZ2[iDstX] = 0.0; |
6844 | 0 | } |
6845 | | |
6846 | | /* ----------------------------------------------------------------- */ |
6847 | | /* Transform the points from destination pixel/line coordinates */ |
6848 | | /* to source pixel/line coordinates. */ |
6849 | | /* ----------------------------------------------------------------- */ |
6850 | 0 | poWK->pfnTransformer(psJob->pTransformerArg, TRUE, nDstXSize, padfX, padfY, |
6851 | 0 | padfZ, pabSuccess); |
6852 | 0 | poWK->pfnTransformer(psJob->pTransformerArg, TRUE, nDstXSize, padfX2, |
6853 | 0 | padfY2, padfZ2, pabSuccess2); |
6854 | |
|
6855 | 0 | if (dfSrcCoordPrecision > 0.0) |
6856 | 0 | { |
6857 | 0 | GWKRoundSourceCoordinates(nDstXSize, padfX, padfY, padfZ, pabSuccess, |
6858 | 0 | dfSrcCoordPrecision, dfErrorThreshold, |
6859 | 0 | poWK->pfnTransformer, psJob->pTransformerArg, |
6860 | 0 | poWK->nDstXOff, iDstY + poWK->nDstYOff); |
6861 | 0 | GWKRoundSourceCoordinates( |
6862 | 0 | nDstXSize, padfX2, padfY2, padfZ2, pabSuccess2, dfSrcCoordPrecision, |
6863 | 0 | dfErrorThreshold, poWK->pfnTransformer, psJob->pTransformerArg, |
6864 | 0 | 1.0 + poWK->nDstXOff, iDstY + 1.0 + poWK->nDstYOff); |
6865 | 0 | } |
6866 | 0 | } |
6867 | | |
6868 | | /************************************************************************/ |
6869 | | /* GWKAverageOrModeComputeSourceCoords() */ |
6870 | | /************************************************************************/ |
6871 | | |
6872 | | static bool GWKAverageOrModeComputeSourceCoords( |
6873 | | const GWKJobStruct *psJob, double *padfX, double *padfX2, double *padfY, |
6874 | | double *padfY2, int iDstX, int iDstY, int nXMargin, int nYMargin, |
6875 | | // Output: |
6876 | | bool &bWrapOverX, double &dfXMin, double &dfYMin, double &dfXMax, |
6877 | | double &dfYMax, int &iSrcXMin, int &iSrcYMin, int &iSrcXMax, int &iSrcYMax) |
6878 | 0 | { |
6879 | 0 | const GDALWarpKernel *poWK = psJob->poWK; |
6880 | 0 | const int nSrcXSize = poWK->nSrcXSize; |
6881 | 0 | const int nSrcYSize = poWK->nSrcYSize; |
6882 | | |
6883 | | // Add some checks so that padfX[iDstX] - poWK->nSrcXOff is in |
6884 | | // reasonable range (https://github.com/OSGeo/gdal/issues/2365) |
6885 | 0 | if (!(padfX[iDstX] - poWK->nSrcXOff >= -nXMargin && |
6886 | 0 | padfX2[iDstX] - poWK->nSrcXOff >= -nXMargin && |
6887 | 0 | padfY[iDstX] - poWK->nSrcYOff >= -nYMargin && |
6888 | 0 | padfY2[iDstX] - poWK->nSrcYOff >= -nYMargin && |
6889 | 0 | padfX[iDstX] - poWK->nSrcXOff - nSrcXSize <= nXMargin && |
6890 | 0 | padfX2[iDstX] - poWK->nSrcXOff - nSrcXSize <= nXMargin && |
6891 | 0 | padfY[iDstX] - poWK->nSrcYOff - nSrcYSize <= nYMargin && |
6892 | 0 | padfY2[iDstX] - poWK->nSrcYOff - nSrcYSize <= nYMargin)) |
6893 | 0 | { |
6894 | 0 | return false; |
6895 | 0 | } |
6896 | | |
6897 | | // Compute corners in source crs. |
6898 | | |
6899 | | // The transformation might not have preserved ordering of |
6900 | | // coordinates so do the necessary swapping (#5433). |
6901 | | // NOTE: this is really an approximative fix. To do something |
6902 | | // more precise we would for example need to compute the |
6903 | | // transformation of coordinates in the |
6904 | | // [iDstX,iDstY]x[iDstX+1,iDstY+1] square back to source |
6905 | | // coordinates, and take the bounding box of the got source |
6906 | | // coordinates. |
6907 | | |
6908 | 0 | if (padfX[iDstX] > padfX2[iDstX]) |
6909 | 0 | std::swap(padfX[iDstX], padfX2[iDstX]); |
6910 | | |
6911 | | // Detect situations where the target pixel is close to the |
6912 | | // antimeridian and when padfX[iDstX] and padfX2[iDstX] are very |
6913 | | // close to the left-most and right-most columns of the source |
6914 | | // raster. The 2 value below was experimentally determined to |
6915 | | // avoid false-positives and false-negatives. |
6916 | | // Addresses https://github.com/OSGeo/gdal/issues/6478 |
6917 | 0 | bWrapOverX = false; |
6918 | 0 | const int nThresholdWrapOverX = std::min(2, nSrcXSize / 10); |
6919 | 0 | if (poWK->nSrcXOff == 0 && iDstX + 1 < poWK->nDstXSize && |
6920 | 0 | 2 * padfX[iDstX] - padfX[iDstX + 1] < nThresholdWrapOverX && |
6921 | 0 | nSrcXSize - padfX2[iDstX] < nThresholdWrapOverX) |
6922 | 0 | { |
6923 | | // Check there is a discontinuity by checking at mid-pixel. |
6924 | | // NOTE: all this remains fragile. To confidently |
6925 | | // detect antimeridian warping we should probably try to access |
6926 | | // georeferenced coordinates, and not rely only on tests on |
6927 | | // image space coordinates. But accessing georeferenced |
6928 | | // coordinates from here is not trivial, and we would for example |
6929 | | // have to handle both geographic, Mercator, etc. |
6930 | | // Let's hope this heuristics is good enough for now. |
6931 | 0 | double x = iDstX + 0.5 + poWK->nDstXOff; |
6932 | 0 | double y = iDstY + poWK->nDstYOff; |
6933 | 0 | double z = 0; |
6934 | 0 | int bSuccess = FALSE; |
6935 | 0 | poWK->pfnTransformer(psJob->pTransformerArg, TRUE, 1, &x, &y, &z, |
6936 | 0 | &bSuccess); |
6937 | 0 | if (bSuccess && x < padfX[iDstX]) |
6938 | 0 | { |
6939 | 0 | bWrapOverX = true; |
6940 | 0 | std::swap(padfX[iDstX], padfX2[iDstX]); |
6941 | 0 | padfX2[iDstX] += nSrcXSize; |
6942 | 0 | } |
6943 | 0 | } |
6944 | |
|
6945 | 0 | dfXMin = padfX[iDstX] - poWK->nSrcXOff; |
6946 | 0 | dfXMax = padfX2[iDstX] - poWK->nSrcXOff; |
6947 | 0 | constexpr double EPSILON = 1e-10; |
6948 | | // Check that [dfXMin, dfXMax] intersect with [0,nSrcXSize] with a tolerance |
6949 | 0 | if (!(dfXMax > -EPSILON && dfXMin < nSrcXSize + EPSILON)) |
6950 | 0 | return false; |
6951 | 0 | iSrcXMin = static_cast<int>(std::max(floor(dfXMin + EPSILON), 0.0)); |
6952 | 0 | iSrcXMax = static_cast<int>( |
6953 | 0 | std::min(ceil(dfXMax - EPSILON), static_cast<double>(INT_MAX))); |
6954 | 0 | if (!bWrapOverX) |
6955 | 0 | iSrcXMax = std::min(iSrcXMax, nSrcXSize); |
6956 | 0 | if (iSrcXMin == iSrcXMax && iSrcXMax < nSrcXSize) |
6957 | 0 | iSrcXMax++; |
6958 | |
|
6959 | 0 | if (padfY[iDstX] > padfY2[iDstX]) |
6960 | 0 | std::swap(padfY[iDstX], padfY2[iDstX]); |
6961 | 0 | dfYMin = padfY[iDstX] - poWK->nSrcYOff; |
6962 | 0 | dfYMax = padfY2[iDstX] - poWK->nSrcYOff; |
6963 | | // Check that [dfYMin, dfYMax] intersect with [0,nSrcYSize] with a tolerance |
6964 | 0 | if (!(dfYMax > -EPSILON && dfYMin < nSrcYSize + EPSILON)) |
6965 | 0 | return false; |
6966 | 0 | iSrcYMin = static_cast<int>(std::max(floor(dfYMin + EPSILON), 0.0)); |
6967 | 0 | iSrcYMax = std::min(static_cast<int>(ceil(dfYMax - EPSILON)), nSrcYSize); |
6968 | 0 | if (iSrcYMin == iSrcYMax && iSrcYMax < nSrcYSize) |
6969 | 0 | iSrcYMax++; |
6970 | |
|
6971 | 0 | return true; |
6972 | 0 | } |
6973 | | |
6974 | | /************************************************************************/ |
6975 | | /* GWKModeRealType() */ |
6976 | | /************************************************************************/ |
6977 | | |
6978 | | template <class T> static inline bool IsSame(T a, T b) |
6979 | 0 | { |
6980 | 0 | return a == b; |
6981 | 0 | } Unexecuted instantiation: gdalwarpkernel.cpp:bool IsSame<int>(int, int) Unexecuted instantiation: gdalwarpkernel.cpp:bool IsSame<unsigned int>(unsigned int, unsigned int) Unexecuted instantiation: gdalwarpkernel.cpp:bool IsSame<long>(long, long) Unexecuted instantiation: gdalwarpkernel.cpp:bool IsSame<unsigned long>(unsigned long, unsigned long) |
6982 | | |
6983 | | template <> bool IsSame<GFloat16>(GFloat16 a, GFloat16 b) |
6984 | 0 | { |
6985 | 0 | return a == b || (CPLIsNan(a) && CPLIsNan(b)); |
6986 | 0 | } |
6987 | | |
6988 | | template <> bool IsSame<float>(float a, float b) |
6989 | 0 | { |
6990 | 0 | return a == b || (std::isnan(a) && std::isnan(b)); |
6991 | 0 | } |
6992 | | |
6993 | | template <> bool IsSame<double>(double a, double b) |
6994 | 0 | { |
6995 | 0 | return a == b || (std::isnan(a) && std::isnan(b)); |
6996 | 0 | } |
6997 | | |
6998 | | template <class T> static void GWKModeRealType(GWKJobStruct *psJob) |
6999 | 0 | { |
7000 | 0 | const GDALWarpKernel *poWK = psJob->poWK; |
7001 | 0 | const int iYMin = psJob->iYMin; |
7002 | 0 | const int iYMax = psJob->iYMax; |
7003 | 0 | const int nDstXSize = poWK->nDstXSize; |
7004 | 0 | const int nSrcXSize = poWK->nSrcXSize; |
7005 | 0 | const int nSrcYSize = poWK->nSrcYSize; |
7006 | 0 | const GWKTieStrategy eTieStrategy = poWK->eTieStrategy; |
7007 | |
|
7008 | 0 | T *pVals = nullptr; |
7009 | 0 | float *pafCounts = nullptr; |
7010 | |
|
7011 | 0 | if (nSrcXSize > 0 && nSrcYSize > 0) |
7012 | 0 | { |
7013 | 0 | pVals = static_cast<T *>( |
7014 | 0 | VSI_MALLOC3_VERBOSE(nSrcXSize, nSrcYSize, sizeof(T))); |
7015 | 0 | pafCounts = static_cast<float *>( |
7016 | 0 | VSI_MALLOC3_VERBOSE(nSrcXSize, nSrcYSize, sizeof(float))); |
7017 | 0 | if (pVals == nullptr || pafCounts == nullptr) |
7018 | 0 | { |
7019 | 0 | VSIFree(pVals); |
7020 | 0 | VSIFree(pafCounts); |
7021 | 0 | return; |
7022 | 0 | } |
7023 | 0 | } |
7024 | | |
7025 | | /* -------------------------------------------------------------------- */ |
7026 | | /* Allocate x,y,z coordinate arrays for transformation ... two */ |
7027 | | /* scanlines worth of positions. */ |
7028 | | /* -------------------------------------------------------------------- */ |
7029 | | |
7030 | 0 | double *padfX = |
7031 | 0 | static_cast<double *>(CPLMalloc(sizeof(double) * nDstXSize)); |
7032 | 0 | double *padfY = |
7033 | 0 | static_cast<double *>(CPLMalloc(sizeof(double) * nDstXSize)); |
7034 | 0 | double *padfZ = |
7035 | 0 | static_cast<double *>(CPLMalloc(sizeof(double) * nDstXSize)); |
7036 | 0 | double *padfX2 = |
7037 | 0 | static_cast<double *>(CPLMalloc(sizeof(double) * nDstXSize)); |
7038 | 0 | double *padfY2 = |
7039 | 0 | static_cast<double *>(CPLMalloc(sizeof(double) * nDstXSize)); |
7040 | 0 | double *padfZ2 = |
7041 | 0 | static_cast<double *>(CPLMalloc(sizeof(double) * nDstXSize)); |
7042 | 0 | int *pabSuccess = static_cast<int *>(CPLMalloc(sizeof(int) * nDstXSize)); |
7043 | 0 | int *pabSuccess2 = static_cast<int *>(CPLMalloc(sizeof(int) * nDstXSize)); |
7044 | |
|
7045 | 0 | const double dfSrcCoordPrecision = CPLAtof(CSLFetchNameValueDef( |
7046 | 0 | poWK->papszWarpOptions, "SRC_COORD_PRECISION", "0")); |
7047 | 0 | const double dfErrorThreshold = CPLAtof( |
7048 | 0 | CSLFetchNameValueDef(poWK->papszWarpOptions, "ERROR_THRESHOLD", "0")); |
7049 | 0 | const bool bAvoidNoDataSingleBand = |
7050 | 0 | poWK->nBands == 1 || |
7051 | 0 | !CPLTestBool(CSLFetchNameValueDef(poWK->papszWarpOptions, |
7052 | 0 | "UNIFIED_SRC_NODATA", "FALSE")); |
7053 | |
|
7054 | 0 | const int nXMargin = |
7055 | 0 | 2 * std::max(1, static_cast<int>(std::ceil(1. / poWK->dfXScale))); |
7056 | 0 | const int nYMargin = |
7057 | 0 | 2 * std::max(1, static_cast<int>(std::ceil(1. / poWK->dfYScale))); |
7058 | | |
7059 | | /* ==================================================================== */ |
7060 | | /* Loop over output lines. */ |
7061 | | /* ==================================================================== */ |
7062 | 0 | for (int iDstY = iYMin; iDstY < iYMax; iDstY++) |
7063 | 0 | { |
7064 | 0 | GWKAverageOrModeComputeLineCoords( |
7065 | 0 | psJob, padfX, padfX2, padfY, padfY2, padfZ, padfZ2, pabSuccess, |
7066 | 0 | pabSuccess2, iDstY, dfSrcCoordPrecision, dfErrorThreshold); |
7067 | | |
7068 | | // Loop over pixels in output scanline. |
7069 | 0 | for (int iDstX = 0; iDstX < nDstXSize; iDstX++) |
7070 | 0 | { |
7071 | 0 | GPtrDiff_t iSrcOffset = 0; |
7072 | 0 | double dfDensity = 1.0; |
7073 | 0 | bool bHasFoundDensity = false; |
7074 | |
|
7075 | 0 | bool bWrapOverX = false; |
7076 | 0 | double dfXMin = 0; |
7077 | 0 | double dfYMin = 0; |
7078 | 0 | double dfXMax = 0; |
7079 | 0 | double dfYMax = 0; |
7080 | 0 | int iSrcXMin = 0; |
7081 | 0 | int iSrcYMin = 0; |
7082 | 0 | int iSrcXMax = 0; |
7083 | 0 | int iSrcYMax = 0; |
7084 | 0 | if (!GWKAverageOrModeComputeSourceCoords( |
7085 | 0 | psJob, padfX, padfX2, padfY, padfY2, iDstX, iDstY, nXMargin, |
7086 | 0 | nYMargin, bWrapOverX, dfXMin, dfYMin, dfXMax, dfYMax, |
7087 | 0 | iSrcXMin, iSrcYMin, iSrcXMax, iSrcYMax)) |
7088 | 0 | { |
7089 | 0 | continue; |
7090 | 0 | } |
7091 | | |
7092 | 0 | const GPtrDiff_t iDstOffset = |
7093 | 0 | iDstX + static_cast<GPtrDiff_t>(iDstY) * nDstXSize; |
7094 | | |
7095 | | // Loop processing each band. |
7096 | 0 | for (int iBand = 0; iBand < poWK->nBands; iBand++) |
7097 | 0 | { |
7098 | 0 | double dfBandDensity = 0.0; |
7099 | |
|
7100 | 0 | int nBins = 0; |
7101 | 0 | int iModeIndex = -1; |
7102 | 0 | T nVal{}; |
7103 | |
|
7104 | 0 | for (int iSrcY = iSrcYMin; iSrcY < iSrcYMax; iSrcY++) |
7105 | 0 | { |
7106 | 0 | const double dfWeightY = COMPUTE_WEIGHT_Y(iSrcY); |
7107 | 0 | iSrcOffset = |
7108 | 0 | iSrcXMin + static_cast<GPtrDiff_t>(iSrcY) * nSrcXSize; |
7109 | 0 | for (int iSrcX = iSrcXMin; iSrcX < iSrcXMax; |
7110 | 0 | iSrcX++, iSrcOffset++) |
7111 | 0 | { |
7112 | 0 | if (bWrapOverX) |
7113 | 0 | iSrcOffset = |
7114 | 0 | (iSrcX % nSrcXSize) + |
7115 | 0 | static_cast<GPtrDiff_t>(iSrcY) * nSrcXSize; |
7116 | |
|
7117 | 0 | if (poWK->panUnifiedSrcValid != nullptr && |
7118 | 0 | !CPLMaskGet(poWK->panUnifiedSrcValid, iSrcOffset)) |
7119 | 0 | continue; |
7120 | | |
7121 | 0 | if (GWKGetPixelT(poWK, iBand, iSrcOffset, |
7122 | 0 | &dfBandDensity, &nVal) && |
7123 | 0 | dfBandDensity > BAND_DENSITY_THRESHOLD) |
7124 | 0 | { |
7125 | 0 | const double dfWeight = |
7126 | 0 | COMPUTE_WEIGHT(iSrcX, dfWeightY); |
7127 | | |
7128 | | // Check array for existing entry. |
7129 | 0 | int i = 0; |
7130 | 0 | for (i = 0; i < nBins; ++i) |
7131 | 0 | { |
7132 | 0 | if (IsSame(pVals[i], nVal)) |
7133 | 0 | { |
7134 | |
|
7135 | 0 | pafCounts[i] += |
7136 | 0 | static_cast<float>(dfWeight); |
7137 | 0 | bool bValIsMaxCount = |
7138 | 0 | (pafCounts[i] > pafCounts[iModeIndex]); |
7139 | |
|
7140 | 0 | if (!bValIsMaxCount && |
7141 | 0 | pafCounts[i] == pafCounts[iModeIndex]) |
7142 | 0 | { |
7143 | 0 | switch (eTieStrategy) |
7144 | 0 | { |
7145 | 0 | case GWKTS_First: |
7146 | 0 | break; |
7147 | 0 | case GWKTS_Min: |
7148 | 0 | bValIsMaxCount = |
7149 | 0 | nVal < pVals[iModeIndex]; |
7150 | 0 | break; |
7151 | 0 | case GWKTS_Max: |
7152 | 0 | bValIsMaxCount = |
7153 | 0 | nVal > pVals[iModeIndex]; |
7154 | 0 | break; |
7155 | 0 | } |
7156 | 0 | } |
7157 | | |
7158 | 0 | if (bValIsMaxCount) |
7159 | 0 | { |
7160 | 0 | iModeIndex = i; |
7161 | 0 | } |
7162 | |
|
7163 | 0 | break; |
7164 | 0 | } |
7165 | 0 | } |
7166 | | |
7167 | | // Add to arr if entry not already there. |
7168 | 0 | if (i == nBins) |
7169 | 0 | { |
7170 | 0 | pVals[i] = nVal; |
7171 | 0 | pafCounts[i] = static_cast<float>(dfWeight); |
7172 | |
|
7173 | 0 | if (iModeIndex < 0) |
7174 | 0 | iModeIndex = i; |
7175 | |
|
7176 | 0 | ++nBins; |
7177 | 0 | } |
7178 | 0 | } |
7179 | 0 | } |
7180 | 0 | } |
7181 | | |
7182 | 0 | if (iModeIndex != -1) |
7183 | 0 | { |
7184 | 0 | nVal = pVals[iModeIndex]; |
7185 | 0 | dfBandDensity = 1; |
7186 | 0 | bHasFoundDensity = true; |
7187 | 0 | } |
7188 | | |
7189 | | // We have a computed value from the source. Now apply it |
7190 | | // to the destination pixel |
7191 | 0 | if (bHasFoundDensity) |
7192 | 0 | { |
7193 | 0 | GWKSetPixelValueRealT(poWK, iBand, iDstOffset, |
7194 | 0 | dfBandDensity, nVal, |
7195 | 0 | bAvoidNoDataSingleBand); |
7196 | 0 | } |
7197 | 0 | } |
7198 | | |
7199 | 0 | if (!bHasFoundDensity) |
7200 | 0 | continue; |
7201 | | |
7202 | 0 | if (!bAvoidNoDataSingleBand) |
7203 | 0 | { |
7204 | 0 | GWKAvoidNoDataMultiBand(poWK, iDstOffset); |
7205 | 0 | } |
7206 | | |
7207 | | /* -------------------------------------------------------------------- |
7208 | | */ |
7209 | | /* Update destination density/validity masks. */ |
7210 | | /* -------------------------------------------------------------------- |
7211 | | */ |
7212 | 0 | GWKOverlayDensity(poWK, iDstOffset, dfDensity); |
7213 | |
|
7214 | 0 | if (poWK->panDstValid != nullptr) |
7215 | 0 | { |
7216 | 0 | CPLMaskSet(poWK->panDstValid, iDstOffset); |
7217 | 0 | } |
7218 | 0 | } /* Next iDstX */ |
7219 | | |
7220 | | /* -------------------------------------------------------------------- |
7221 | | */ |
7222 | | /* Report progress to the user, and optionally cancel out. */ |
7223 | | /* -------------------------------------------------------------------- |
7224 | | */ |
7225 | 0 | if (psJob->pfnProgress && psJob->pfnProgress(psJob)) |
7226 | 0 | break; |
7227 | 0 | } |
7228 | | |
7229 | | /* -------------------------------------------------------------------- */ |
7230 | | /* Cleanup and return. */ |
7231 | | /* -------------------------------------------------------------------- */ |
7232 | 0 | CPLFree(padfX); |
7233 | 0 | CPLFree(padfY); |
7234 | 0 | CPLFree(padfZ); |
7235 | 0 | CPLFree(padfX2); |
7236 | 0 | CPLFree(padfY2); |
7237 | 0 | CPLFree(padfZ2); |
7238 | 0 | CPLFree(pabSuccess); |
7239 | 0 | CPLFree(pabSuccess2); |
7240 | 0 | VSIFree(pVals); |
7241 | 0 | VSIFree(pafCounts); |
7242 | 0 | } Unexecuted instantiation: gdalwarpkernel.cpp:void GWKModeRealType<int>(GWKJobStruct*) Unexecuted instantiation: gdalwarpkernel.cpp:void GWKModeRealType<unsigned int>(GWKJobStruct*) Unexecuted instantiation: gdalwarpkernel.cpp:void GWKModeRealType<long>(GWKJobStruct*) Unexecuted instantiation: gdalwarpkernel.cpp:void GWKModeRealType<unsigned long>(GWKJobStruct*) Unexecuted instantiation: gdalwarpkernel.cpp:void GWKModeRealType<cpl::Float16>(GWKJobStruct*) Unexecuted instantiation: gdalwarpkernel.cpp:void GWKModeRealType<float>(GWKJobStruct*) Unexecuted instantiation: gdalwarpkernel.cpp:void GWKModeRealType<double>(GWKJobStruct*) |
7243 | | |
7244 | | /************************************************************************/ |
7245 | | /* GWKModeComplexType() */ |
7246 | | /************************************************************************/ |
7247 | | |
7248 | | static void GWKModeComplexType(GWKJobStruct *psJob) |
7249 | 0 | { |
7250 | 0 | const GDALWarpKernel *poWK = psJob->poWK; |
7251 | 0 | const int iYMin = psJob->iYMin; |
7252 | 0 | const int iYMax = psJob->iYMax; |
7253 | 0 | const int nDstXSize = poWK->nDstXSize; |
7254 | 0 | const int nSrcXSize = poWK->nSrcXSize; |
7255 | 0 | const int nSrcYSize = poWK->nSrcYSize; |
7256 | 0 | const GWKTieStrategy eTieStrategy = poWK->eTieStrategy; |
7257 | 0 | const double dfMultFactorVerticalShiftPipeline = |
7258 | 0 | poWK->bApplyVerticalShift |
7259 | 0 | ? CPLAtof(CSLFetchNameValueDef( |
7260 | 0 | poWK->papszWarpOptions, "MULT_FACTOR_VERTICAL_SHIFT_PIPELINE", |
7261 | 0 | "1.0")) |
7262 | 0 | : 0.0; |
7263 | 0 | const bool bAvoidNoDataSingleBand = |
7264 | 0 | poWK->nBands == 1 || |
7265 | 0 | !CPLTestBool(CSLFetchNameValueDef(poWK->papszWarpOptions, |
7266 | 0 | "UNIFIED_SRC_NODATA", "FALSE")); |
7267 | |
|
7268 | 0 | double *padfRealVals = nullptr; |
7269 | 0 | double *padfImagVals = nullptr; |
7270 | 0 | float *pafCounts = nullptr; |
7271 | |
|
7272 | 0 | if (nSrcXSize > 0 && nSrcYSize > 0) |
7273 | 0 | { |
7274 | 0 | padfRealVals = static_cast<double *>( |
7275 | 0 | VSI_MALLOC3_VERBOSE(nSrcXSize, nSrcYSize, sizeof(double))); |
7276 | 0 | padfImagVals = static_cast<double *>( |
7277 | 0 | VSI_MALLOC3_VERBOSE(nSrcXSize, nSrcYSize, sizeof(double))); |
7278 | 0 | pafCounts = static_cast<float *>( |
7279 | 0 | VSI_MALLOC3_VERBOSE(nSrcXSize, nSrcYSize, sizeof(float))); |
7280 | 0 | if (padfRealVals == nullptr || padfImagVals == nullptr || |
7281 | 0 | pafCounts == nullptr) |
7282 | 0 | { |
7283 | 0 | VSIFree(padfRealVals); |
7284 | 0 | VSIFree(padfImagVals); |
7285 | 0 | VSIFree(pafCounts); |
7286 | 0 | return; |
7287 | 0 | } |
7288 | 0 | } |
7289 | | |
7290 | | /* -------------------------------------------------------------------- */ |
7291 | | /* Allocate x,y,z coordinate arrays for transformation ... two */ |
7292 | | /* scanlines worth of positions. */ |
7293 | | /* -------------------------------------------------------------------- */ |
7294 | | |
7295 | 0 | double *padfX = |
7296 | 0 | static_cast<double *>(CPLMalloc(sizeof(double) * nDstXSize)); |
7297 | 0 | double *padfY = |
7298 | 0 | static_cast<double *>(CPLMalloc(sizeof(double) * nDstXSize)); |
7299 | 0 | double *padfZ = |
7300 | 0 | static_cast<double *>(CPLMalloc(sizeof(double) * nDstXSize)); |
7301 | 0 | double *padfX2 = |
7302 | 0 | static_cast<double *>(CPLMalloc(sizeof(double) * nDstXSize)); |
7303 | 0 | double *padfY2 = |
7304 | 0 | static_cast<double *>(CPLMalloc(sizeof(double) * nDstXSize)); |
7305 | 0 | double *padfZ2 = |
7306 | 0 | static_cast<double *>(CPLMalloc(sizeof(double) * nDstXSize)); |
7307 | 0 | int *pabSuccess = static_cast<int *>(CPLMalloc(sizeof(int) * nDstXSize)); |
7308 | 0 | int *pabSuccess2 = static_cast<int *>(CPLMalloc(sizeof(int) * nDstXSize)); |
7309 | |
|
7310 | 0 | const double dfSrcCoordPrecision = CPLAtof(CSLFetchNameValueDef( |
7311 | 0 | poWK->papszWarpOptions, "SRC_COORD_PRECISION", "0")); |
7312 | 0 | const double dfErrorThreshold = CPLAtof( |
7313 | 0 | CSLFetchNameValueDef(poWK->papszWarpOptions, "ERROR_THRESHOLD", "0")); |
7314 | |
|
7315 | 0 | const int nXMargin = |
7316 | 0 | 2 * std::max(1, static_cast<int>(std::ceil(1. / poWK->dfXScale))); |
7317 | 0 | const int nYMargin = |
7318 | 0 | 2 * std::max(1, static_cast<int>(std::ceil(1. / poWK->dfYScale))); |
7319 | | |
7320 | | /* ==================================================================== */ |
7321 | | /* Loop over output lines. */ |
7322 | | /* ==================================================================== */ |
7323 | 0 | for (int iDstY = iYMin; iDstY < iYMax; iDstY++) |
7324 | 0 | { |
7325 | 0 | GWKAverageOrModeComputeLineCoords( |
7326 | 0 | psJob, padfX, padfX2, padfY, padfY2, padfZ, padfZ2, pabSuccess, |
7327 | 0 | pabSuccess2, iDstY, dfSrcCoordPrecision, dfErrorThreshold); |
7328 | | |
7329 | | // Loop over pixels in output scanline. |
7330 | 0 | for (int iDstX = 0; iDstX < nDstXSize; iDstX++) |
7331 | 0 | { |
7332 | 0 | GPtrDiff_t iSrcOffset = 0; |
7333 | 0 | double dfDensity = 1.0; |
7334 | 0 | bool bHasFoundDensity = false; |
7335 | |
|
7336 | 0 | bool bWrapOverX = false; |
7337 | 0 | double dfXMin = 0; |
7338 | 0 | double dfYMin = 0; |
7339 | 0 | double dfXMax = 0; |
7340 | 0 | double dfYMax = 0; |
7341 | 0 | int iSrcXMin = 0; |
7342 | 0 | int iSrcYMin = 0; |
7343 | 0 | int iSrcXMax = 0; |
7344 | 0 | int iSrcYMax = 0; |
7345 | 0 | if (!GWKAverageOrModeComputeSourceCoords( |
7346 | 0 | psJob, padfX, padfX2, padfY, padfY2, iDstX, iDstY, nXMargin, |
7347 | 0 | nYMargin, bWrapOverX, dfXMin, dfYMin, dfXMax, dfYMax, |
7348 | 0 | iSrcXMin, iSrcYMin, iSrcXMax, iSrcYMax)) |
7349 | 0 | { |
7350 | 0 | continue; |
7351 | 0 | } |
7352 | | |
7353 | 0 | const GPtrDiff_t iDstOffset = |
7354 | 0 | iDstX + static_cast<GPtrDiff_t>(iDstY) * nDstXSize; |
7355 | | |
7356 | | // Loop processing each band. |
7357 | 0 | for (int iBand = 0; iBand < poWK->nBands; iBand++) |
7358 | 0 | { |
7359 | 0 | double dfBandDensity = 0.0; |
7360 | |
|
7361 | 0 | int nBins = 0; |
7362 | 0 | int iModeIndex = -1; |
7363 | 0 | double dfValueReal = 0; |
7364 | 0 | double dfValueImag = 0; |
7365 | |
|
7366 | 0 | for (int iSrcY = iSrcYMin; iSrcY < iSrcYMax; iSrcY++) |
7367 | 0 | { |
7368 | 0 | const double dfWeightY = COMPUTE_WEIGHT_Y(iSrcY); |
7369 | 0 | iSrcOffset = |
7370 | 0 | iSrcXMin + static_cast<GPtrDiff_t>(iSrcY) * nSrcXSize; |
7371 | 0 | for (int iSrcX = iSrcXMin; iSrcX < iSrcXMax; |
7372 | 0 | iSrcX++, iSrcOffset++) |
7373 | 0 | { |
7374 | 0 | if (bWrapOverX) |
7375 | 0 | iSrcOffset = |
7376 | 0 | (iSrcX % nSrcXSize) + |
7377 | 0 | static_cast<GPtrDiff_t>(iSrcY) * nSrcXSize; |
7378 | |
|
7379 | 0 | if (poWK->panUnifiedSrcValid != nullptr && |
7380 | 0 | !CPLMaskGet(poWK->panUnifiedSrcValid, iSrcOffset)) |
7381 | 0 | continue; |
7382 | | |
7383 | 0 | if (GWKGetPixelValue(poWK, iBand, iSrcOffset, |
7384 | 0 | &dfBandDensity, &dfValueReal, |
7385 | 0 | &dfValueImag) && |
7386 | 0 | dfBandDensity > BAND_DENSITY_THRESHOLD) |
7387 | 0 | { |
7388 | 0 | const double dfWeight = |
7389 | 0 | COMPUTE_WEIGHT(iSrcX, dfWeightY); |
7390 | | |
7391 | | // Check array for existing entry. |
7392 | 0 | int i = 0; |
7393 | 0 | for (i = 0; i < nBins; ++i) |
7394 | 0 | { |
7395 | 0 | if (IsSame(padfRealVals[i], dfValueReal) && |
7396 | 0 | IsSame(padfImagVals[i], dfValueImag)) |
7397 | 0 | { |
7398 | |
|
7399 | 0 | pafCounts[i] += |
7400 | 0 | static_cast<float>(dfWeight); |
7401 | 0 | bool bValIsMaxCount = |
7402 | 0 | (pafCounts[i] > pafCounts[iModeIndex]); |
7403 | |
|
7404 | 0 | if (!bValIsMaxCount && |
7405 | 0 | pafCounts[i] == pafCounts[iModeIndex]) |
7406 | 0 | { |
7407 | 0 | switch (eTieStrategy) |
7408 | 0 | { |
7409 | 0 | case GWKTS_First: |
7410 | 0 | break; |
7411 | 0 | case GWKTS_Min: |
7412 | 0 | bValIsMaxCount = |
7413 | 0 | dfValueReal < |
7414 | 0 | padfRealVals[iModeIndex]; |
7415 | 0 | break; |
7416 | 0 | case GWKTS_Max: |
7417 | 0 | bValIsMaxCount = |
7418 | 0 | dfValueReal > |
7419 | 0 | padfRealVals[iModeIndex]; |
7420 | 0 | break; |
7421 | 0 | } |
7422 | 0 | } |
7423 | | |
7424 | 0 | if (bValIsMaxCount) |
7425 | 0 | { |
7426 | 0 | iModeIndex = i; |
7427 | 0 | } |
7428 | |
|
7429 | 0 | break; |
7430 | 0 | } |
7431 | 0 | } |
7432 | | |
7433 | | // Add to arr if entry not already there. |
7434 | 0 | if (i == nBins) |
7435 | 0 | { |
7436 | 0 | padfRealVals[i] = dfValueReal; |
7437 | 0 | padfImagVals[i] = dfValueImag; |
7438 | 0 | pafCounts[i] = static_cast<float>(dfWeight); |
7439 | |
|
7440 | 0 | if (iModeIndex < 0) |
7441 | 0 | iModeIndex = i; |
7442 | |
|
7443 | 0 | ++nBins; |
7444 | 0 | } |
7445 | 0 | } |
7446 | 0 | } |
7447 | 0 | } |
7448 | | |
7449 | 0 | if (iModeIndex != -1) |
7450 | 0 | { |
7451 | 0 | dfValueReal = padfRealVals[iModeIndex]; |
7452 | 0 | dfValueImag = padfImagVals[iModeIndex]; |
7453 | 0 | dfBandDensity = 1; |
7454 | |
|
7455 | 0 | if (poWK->bApplyVerticalShift) |
7456 | 0 | { |
7457 | 0 | if (!std::isfinite(padfZ[iDstX])) |
7458 | 0 | continue; |
7459 | | // Subtract padfZ[] since the coordinate |
7460 | | // transformation is from target to source |
7461 | 0 | dfValueReal = |
7462 | 0 | dfValueReal * poWK->dfMultFactorVerticalShift - |
7463 | 0 | padfZ[iDstX] * dfMultFactorVerticalShiftPipeline; |
7464 | 0 | } |
7465 | | |
7466 | 0 | bHasFoundDensity = true; |
7467 | 0 | } |
7468 | | |
7469 | | // We have a computed value from the source. Now apply it |
7470 | | // to the destination pixel |
7471 | 0 | if (bHasFoundDensity) |
7472 | 0 | { |
7473 | 0 | GWKSetPixelValue(poWK, iBand, iDstOffset, dfBandDensity, |
7474 | 0 | dfValueReal, dfValueImag, |
7475 | 0 | bAvoidNoDataSingleBand); |
7476 | 0 | } |
7477 | 0 | } |
7478 | | |
7479 | 0 | if (!bHasFoundDensity) |
7480 | 0 | continue; |
7481 | | |
7482 | 0 | if (!bAvoidNoDataSingleBand) |
7483 | 0 | { |
7484 | 0 | GWKAvoidNoDataMultiBand(poWK, iDstOffset); |
7485 | 0 | } |
7486 | | |
7487 | | /* -------------------------------------------------------------------- |
7488 | | */ |
7489 | | /* Update destination density/validity masks. */ |
7490 | | /* -------------------------------------------------------------------- |
7491 | | */ |
7492 | 0 | GWKOverlayDensity(poWK, iDstOffset, dfDensity); |
7493 | |
|
7494 | 0 | if (poWK->panDstValid != nullptr) |
7495 | 0 | { |
7496 | 0 | CPLMaskSet(poWK->panDstValid, iDstOffset); |
7497 | 0 | } |
7498 | 0 | } /* Next iDstX */ |
7499 | | |
7500 | | /* -------------------------------------------------------------------- |
7501 | | */ |
7502 | | /* Report progress to the user, and optionally cancel out. */ |
7503 | | /* -------------------------------------------------------------------- |
7504 | | */ |
7505 | 0 | if (psJob->pfnProgress && psJob->pfnProgress(psJob)) |
7506 | 0 | break; |
7507 | 0 | } |
7508 | | |
7509 | | /* -------------------------------------------------------------------- */ |
7510 | | /* Cleanup and return. */ |
7511 | | /* -------------------------------------------------------------------- */ |
7512 | 0 | CPLFree(padfX); |
7513 | 0 | CPLFree(padfY); |
7514 | 0 | CPLFree(padfZ); |
7515 | 0 | CPLFree(padfX2); |
7516 | 0 | CPLFree(padfY2); |
7517 | 0 | CPLFree(padfZ2); |
7518 | 0 | CPLFree(pabSuccess); |
7519 | 0 | CPLFree(pabSuccess2); |
7520 | 0 | VSIFree(padfRealVals); |
7521 | 0 | VSIFree(padfImagVals); |
7522 | 0 | VSIFree(pafCounts); |
7523 | 0 | } |
7524 | | |
7525 | | /************************************************************************/ |
7526 | | /* GWKAverageOrModeThread() */ |
7527 | | /************************************************************************/ |
7528 | | |
7529 | | // Overall logic based on GWKGeneralCaseThread(). |
7530 | | static void GWKAverageOrModeThread(void *pData) |
7531 | 0 | { |
7532 | 0 | GWKJobStruct *psJob = static_cast<GWKJobStruct *>(pData); |
7533 | 0 | const GDALWarpKernel *poWK = psJob->poWK; |
7534 | 0 | const int iYMin = psJob->iYMin; |
7535 | 0 | const int iYMax = psJob->iYMax; |
7536 | 0 | const double dfMultFactorVerticalShiftPipeline = |
7537 | 0 | poWK->bApplyVerticalShift |
7538 | 0 | ? CPLAtof(CSLFetchNameValueDef( |
7539 | 0 | poWK->papszWarpOptions, "MULT_FACTOR_VERTICAL_SHIFT_PIPELINE", |
7540 | 0 | "1.0")) |
7541 | 0 | : 0.0; |
7542 | 0 | const bool bAvoidNoDataSingleBand = |
7543 | 0 | poWK->nBands == 1 || |
7544 | 0 | !CPLTestBool(CSLFetchNameValueDef(poWK->papszWarpOptions, |
7545 | 0 | "UNIFIED_SRC_NODATA", "FALSE")); |
7546 | |
|
7547 | 0 | const int nDstXSize = poWK->nDstXSize; |
7548 | 0 | const int nSrcXSize = poWK->nSrcXSize; |
7549 | | |
7550 | | /* -------------------------------------------------------------------- */ |
7551 | | /* Find out which algorithm to use (small optim.) */ |
7552 | | /* -------------------------------------------------------------------- */ |
7553 | | |
7554 | | // Only used for GRA_Mode |
7555 | 0 | float *pafCounts = nullptr; |
7556 | 0 | int nBins = 0; |
7557 | 0 | int nBinsOffset = 0; |
7558 | 0 | const GWKTieStrategy eTieStrategy = poWK->eTieStrategy; |
7559 | | |
7560 | | // Only used with Q1, Med and Q3 |
7561 | 0 | float quant = 0.0f; |
7562 | | |
7563 | | // To control array allocation only when data type is complex |
7564 | 0 | const bool bIsComplex = GDALDataTypeIsComplex(poWK->eWorkingDataType) != 0; |
7565 | |
|
7566 | 0 | if (poWK->eResample == GRA_Mode) |
7567 | 0 | { |
7568 | 0 | if (poWK->bApplyVerticalShift) |
7569 | 0 | { |
7570 | 0 | return GWKModeComplexType(psJob); |
7571 | 0 | } |
7572 | | |
7573 | 0 | switch (poWK->eWorkingDataType) |
7574 | 0 | { |
7575 | 0 | case GDT_UInt8: |
7576 | 0 | nBins = 256; |
7577 | 0 | break; |
7578 | | |
7579 | 0 | case GDT_Int8: |
7580 | 0 | nBins = 256; |
7581 | 0 | nBinsOffset = nBins / 2; |
7582 | 0 | break; |
7583 | | |
7584 | 0 | case GDT_UInt16: |
7585 | 0 | nBins = 65536; |
7586 | 0 | break; |
7587 | | |
7588 | 0 | case GDT_Int16: |
7589 | 0 | nBins = 65536; |
7590 | 0 | nBinsOffset = nBins / 2; |
7591 | 0 | break; |
7592 | | |
7593 | 0 | case GDT_Int32: |
7594 | 0 | return GWKModeRealType<int32_t>(psJob); |
7595 | | |
7596 | 0 | case GDT_UInt32: |
7597 | 0 | return GWKModeRealType<uint32_t>(psJob); |
7598 | | |
7599 | 0 | case GDT_Int64: |
7600 | 0 | return GWKModeRealType<int64_t>(psJob); |
7601 | | |
7602 | 0 | case GDT_UInt64: |
7603 | 0 | return GWKModeRealType<uint64_t>(psJob); |
7604 | | |
7605 | 0 | case GDT_Float16: |
7606 | 0 | return GWKModeRealType<GFloat16>(psJob); |
7607 | | |
7608 | 0 | case GDT_Float32: |
7609 | 0 | return GWKModeRealType<float>(psJob); |
7610 | | |
7611 | 0 | case GDT_Float64: |
7612 | 0 | return GWKModeRealType<double>(psJob); |
7613 | | |
7614 | 0 | case GDT_CInt16: |
7615 | 0 | case GDT_CInt32: |
7616 | 0 | case GDT_CFloat16: |
7617 | 0 | case GDT_CFloat32: |
7618 | 0 | case GDT_CFloat64: |
7619 | 0 | return GWKModeComplexType(psJob); |
7620 | | |
7621 | 0 | case GDT_Unknown: |
7622 | 0 | case GDT_TypeCount: |
7623 | 0 | CPLAssert(false); |
7624 | 0 | return; |
7625 | 0 | } |
7626 | | |
7627 | 0 | if (nBins) |
7628 | 0 | { |
7629 | 0 | pafCounts = |
7630 | 0 | static_cast<float *>(VSI_MALLOC_VERBOSE(nBins * sizeof(float))); |
7631 | 0 | if (pafCounts == nullptr) |
7632 | 0 | return; |
7633 | 0 | } |
7634 | 0 | } |
7635 | 0 | else if (poWK->eResample == GRA_Med) |
7636 | 0 | { |
7637 | 0 | quant = 0.5f; |
7638 | 0 | } |
7639 | 0 | else if (poWK->eResample == GRA_Q1) |
7640 | 0 | { |
7641 | 0 | quant = 0.25f; |
7642 | 0 | } |
7643 | 0 | else if (poWK->eResample == GRA_Q3) |
7644 | 0 | { |
7645 | 0 | quant = 0.75f; |
7646 | 0 | } |
7647 | 0 | else if (poWK->eResample != GRA_Average && poWK->eResample != GRA_RMS && |
7648 | 0 | poWK->eResample != GRA_Min && poWK->eResample != GRA_Max) |
7649 | 0 | { |
7650 | | // Other resample algorithms not permitted here. |
7651 | 0 | CPLError(CE_Fatal, CPLE_AppDefined, |
7652 | 0 | "GDALWarpKernel():GWKAverageOrModeThread() ERROR, " |
7653 | 0 | "illegal resample"); |
7654 | 0 | } |
7655 | | |
7656 | 0 | CPLDebug("GDAL", "GDALWarpKernel():GWKAverageOrModeThread()"); |
7657 | | |
7658 | | /* -------------------------------------------------------------------- */ |
7659 | | /* Allocate x,y,z coordinate arrays for transformation ... two */ |
7660 | | /* scanlines worth of positions. */ |
7661 | | /* -------------------------------------------------------------------- */ |
7662 | |
|
7663 | 0 | double *padfX = |
7664 | 0 | static_cast<double *>(CPLMalloc(sizeof(double) * nDstXSize)); |
7665 | 0 | double *padfY = |
7666 | 0 | static_cast<double *>(CPLMalloc(sizeof(double) * nDstXSize)); |
7667 | 0 | double *padfZ = |
7668 | 0 | static_cast<double *>(CPLMalloc(sizeof(double) * nDstXSize)); |
7669 | 0 | double *padfX2 = |
7670 | 0 | static_cast<double *>(CPLMalloc(sizeof(double) * nDstXSize)); |
7671 | 0 | double *padfY2 = |
7672 | 0 | static_cast<double *>(CPLMalloc(sizeof(double) * nDstXSize)); |
7673 | 0 | double *padfZ2 = |
7674 | 0 | static_cast<double *>(CPLMalloc(sizeof(double) * nDstXSize)); |
7675 | 0 | int *pabSuccess = static_cast<int *>(CPLMalloc(sizeof(int) * nDstXSize)); |
7676 | 0 | int *pabSuccess2 = static_cast<int *>(CPLMalloc(sizeof(int) * nDstXSize)); |
7677 | |
|
7678 | 0 | const double dfSrcCoordPrecision = CPLAtof(CSLFetchNameValueDef( |
7679 | 0 | poWK->papszWarpOptions, "SRC_COORD_PRECISION", "0")); |
7680 | 0 | const double dfErrorThreshold = CPLAtof( |
7681 | 0 | CSLFetchNameValueDef(poWK->papszWarpOptions, "ERROR_THRESHOLD", "0")); |
7682 | |
|
7683 | 0 | const double dfExcludedValuesThreshold = |
7684 | 0 | CPLAtof(CSLFetchNameValueDef(poWK->papszWarpOptions, |
7685 | 0 | "EXCLUDED_VALUES_PCT_THRESHOLD", "50")) / |
7686 | 0 | 100.0; |
7687 | 0 | const double dfNodataValuesThreshold = |
7688 | 0 | CPLAtof(CSLFetchNameValueDef(poWK->papszWarpOptions, |
7689 | 0 | "NODATA_VALUES_PCT_THRESHOLD", "100")) / |
7690 | 0 | 100.0; |
7691 | |
|
7692 | 0 | const int nXMargin = |
7693 | 0 | 2 * std::max(1, static_cast<int>(std::ceil(1. / poWK->dfXScale))); |
7694 | 0 | const int nYMargin = |
7695 | 0 | 2 * std::max(1, static_cast<int>(std::ceil(1. / poWK->dfYScale))); |
7696 | | |
7697 | | /* ==================================================================== */ |
7698 | | /* Loop over output lines. */ |
7699 | | /* ==================================================================== */ |
7700 | 0 | for (int iDstY = iYMin; iDstY < iYMax; iDstY++) |
7701 | 0 | { |
7702 | 0 | GWKAverageOrModeComputeLineCoords( |
7703 | 0 | psJob, padfX, padfX2, padfY, padfY2, padfZ, padfZ2, pabSuccess, |
7704 | 0 | pabSuccess2, iDstY, dfSrcCoordPrecision, dfErrorThreshold); |
7705 | | |
7706 | | /* ==================================================================== |
7707 | | */ |
7708 | | /* Loop over pixels in output scanline. */ |
7709 | | /* ==================================================================== |
7710 | | */ |
7711 | 0 | for (int iDstX = 0; iDstX < nDstXSize; iDstX++) |
7712 | 0 | { |
7713 | 0 | GPtrDiff_t iSrcOffset = 0; |
7714 | 0 | double dfDensity = 1.0; |
7715 | 0 | bool bHasFoundDensity = false; |
7716 | |
|
7717 | 0 | bool bWrapOverX = false; |
7718 | 0 | double dfXMin = 0; |
7719 | 0 | double dfYMin = 0; |
7720 | 0 | double dfXMax = 0; |
7721 | 0 | double dfYMax = 0; |
7722 | 0 | int iSrcXMin = 0; |
7723 | 0 | int iSrcYMin = 0; |
7724 | 0 | int iSrcXMax = 0; |
7725 | 0 | int iSrcYMax = 0; |
7726 | 0 | if (!GWKAverageOrModeComputeSourceCoords( |
7727 | 0 | psJob, padfX, padfX2, padfY, padfY2, iDstX, iDstY, nXMargin, |
7728 | 0 | nYMargin, bWrapOverX, dfXMin, dfYMin, dfXMax, dfYMax, |
7729 | 0 | iSrcXMin, iSrcYMin, iSrcXMax, iSrcYMax)) |
7730 | 0 | { |
7731 | 0 | continue; |
7732 | 0 | } |
7733 | | |
7734 | 0 | const GPtrDiff_t iDstOffset = |
7735 | 0 | iDstX + static_cast<GPtrDiff_t>(iDstY) * nDstXSize; |
7736 | |
|
7737 | 0 | bool bDone = false; |
7738 | | |
7739 | | // Special Average mode where we process all bands together, |
7740 | | // to avoid averaging tuples that match an entry of m_aadfExcludedValues |
7741 | 0 | constexpr double EPSILON = 1e-10; |
7742 | 0 | if (poWK->eResample == GRA_Average && |
7743 | 0 | (!poWK->m_aadfExcludedValues.empty() || |
7744 | 0 | dfNodataValuesThreshold < 1 - EPSILON) && |
7745 | 0 | !poWK->bApplyVerticalShift && !bIsComplex) |
7746 | 0 | { |
7747 | 0 | double dfTotalWeightInvalid = 0.0; |
7748 | 0 | double dfTotalWeightExcluded = 0.0; |
7749 | 0 | double dfTotalWeightRegular = 0.0; |
7750 | 0 | std::vector<double> adfValueReal(poWK->nBands, 0); |
7751 | 0 | std::vector<double> adfValueAveraged(poWK->nBands, 0); |
7752 | 0 | std::vector<int> anCountExcludedValues( |
7753 | 0 | poWK->m_aadfExcludedValues.size(), 0); |
7754 | |
|
7755 | 0 | for (int iSrcY = iSrcYMin; iSrcY < iSrcYMax; iSrcY++) |
7756 | 0 | { |
7757 | 0 | const double dfWeightY = COMPUTE_WEIGHT_Y(iSrcY); |
7758 | 0 | iSrcOffset = |
7759 | 0 | iSrcXMin + static_cast<GPtrDiff_t>(iSrcY) * nSrcXSize; |
7760 | 0 | for (int iSrcX = iSrcXMin; iSrcX < iSrcXMax; |
7761 | 0 | iSrcX++, iSrcOffset++) |
7762 | 0 | { |
7763 | 0 | if (bWrapOverX) |
7764 | 0 | iSrcOffset = |
7765 | 0 | (iSrcX % nSrcXSize) + |
7766 | 0 | static_cast<GPtrDiff_t>(iSrcY) * nSrcXSize; |
7767 | |
|
7768 | 0 | const double dfWeight = |
7769 | 0 | COMPUTE_WEIGHT(iSrcX, dfWeightY); |
7770 | 0 | if (dfWeight <= 0) |
7771 | 0 | continue; |
7772 | | |
7773 | 0 | if (poWK->panUnifiedSrcValid != nullptr && |
7774 | 0 | !CPLMaskGet(poWK->panUnifiedSrcValid, iSrcOffset)) |
7775 | 0 | { |
7776 | 0 | dfTotalWeightInvalid += dfWeight; |
7777 | 0 | continue; |
7778 | 0 | } |
7779 | | |
7780 | 0 | bool bAllValid = true; |
7781 | 0 | for (int iBand = 0; iBand < poWK->nBands; iBand++) |
7782 | 0 | { |
7783 | 0 | double dfBandDensity = 0; |
7784 | 0 | double dfValueImagTmp = 0; |
7785 | 0 | if (!(GWKGetPixelValue( |
7786 | 0 | poWK, iBand, iSrcOffset, &dfBandDensity, |
7787 | 0 | &adfValueReal[iBand], &dfValueImagTmp) && |
7788 | 0 | dfBandDensity > BAND_DENSITY_THRESHOLD)) |
7789 | 0 | { |
7790 | 0 | bAllValid = false; |
7791 | 0 | break; |
7792 | 0 | } |
7793 | 0 | } |
7794 | |
|
7795 | 0 | if (!bAllValid) |
7796 | 0 | { |
7797 | 0 | dfTotalWeightInvalid += dfWeight; |
7798 | 0 | continue; |
7799 | 0 | } |
7800 | | |
7801 | 0 | bool bExcludedValueFound = false; |
7802 | 0 | for (size_t i = 0; |
7803 | 0 | i < poWK->m_aadfExcludedValues.size(); ++i) |
7804 | 0 | { |
7805 | 0 | if (poWK->m_aadfExcludedValues[i] == adfValueReal) |
7806 | 0 | { |
7807 | 0 | bExcludedValueFound = true; |
7808 | 0 | ++anCountExcludedValues[i]; |
7809 | 0 | dfTotalWeightExcluded += dfWeight; |
7810 | 0 | break; |
7811 | 0 | } |
7812 | 0 | } |
7813 | 0 | if (!bExcludedValueFound) |
7814 | 0 | { |
7815 | | // Weighted incremental algorithm mean |
7816 | | // Cf https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Weighted_incremental_algorithm |
7817 | 0 | dfTotalWeightRegular += dfWeight; |
7818 | 0 | for (int iBand = 0; iBand < poWK->nBands; iBand++) |
7819 | 0 | { |
7820 | 0 | adfValueAveraged[iBand] += |
7821 | 0 | (dfWeight / dfTotalWeightRegular) * |
7822 | 0 | (adfValueReal[iBand] - |
7823 | 0 | adfValueAveraged[iBand]); |
7824 | 0 | } |
7825 | 0 | } |
7826 | 0 | } |
7827 | 0 | } |
7828 | |
|
7829 | 0 | const double dfTotalWeight = dfTotalWeightInvalid + |
7830 | 0 | dfTotalWeightExcluded + |
7831 | 0 | dfTotalWeightRegular; |
7832 | 0 | if (dfTotalWeightInvalid > 0 && |
7833 | 0 | dfTotalWeightInvalid >= |
7834 | 0 | dfNodataValuesThreshold * dfTotalWeight) |
7835 | 0 | { |
7836 | | // Do nothing. Let bHasFoundDensity to false. |
7837 | 0 | } |
7838 | 0 | else if (dfTotalWeightExcluded > 0 && |
7839 | 0 | dfTotalWeightExcluded >= |
7840 | 0 | dfExcludedValuesThreshold * dfTotalWeight) |
7841 | 0 | { |
7842 | | // Find the most represented excluded value tuple |
7843 | 0 | size_t iExcludedValue = 0; |
7844 | 0 | int nExcludedValueCount = 0; |
7845 | 0 | for (size_t i = 0; i < poWK->m_aadfExcludedValues.size(); |
7846 | 0 | ++i) |
7847 | 0 | { |
7848 | 0 | if (anCountExcludedValues[i] > nExcludedValueCount) |
7849 | 0 | { |
7850 | 0 | iExcludedValue = i; |
7851 | 0 | nExcludedValueCount = anCountExcludedValues[i]; |
7852 | 0 | } |
7853 | 0 | } |
7854 | |
|
7855 | 0 | bHasFoundDensity = true; |
7856 | |
|
7857 | 0 | for (int iBand = 0; iBand < poWK->nBands; iBand++) |
7858 | 0 | { |
7859 | 0 | GWKSetPixelValue( |
7860 | 0 | poWK, iBand, iDstOffset, /* dfBandDensity = */ 1.0, |
7861 | 0 | poWK->m_aadfExcludedValues[iExcludedValue][iBand], |
7862 | 0 | 0, bAvoidNoDataSingleBand); |
7863 | 0 | } |
7864 | |
|
7865 | 0 | if (!bAvoidNoDataSingleBand) |
7866 | 0 | { |
7867 | 0 | GWKAvoidNoDataMultiBand(poWK, iDstOffset); |
7868 | 0 | } |
7869 | 0 | } |
7870 | 0 | else if (dfTotalWeightRegular > 0) |
7871 | 0 | { |
7872 | 0 | bHasFoundDensity = true; |
7873 | |
|
7874 | 0 | for (int iBand = 0; iBand < poWK->nBands; iBand++) |
7875 | 0 | { |
7876 | 0 | GWKSetPixelValue(poWK, iBand, iDstOffset, |
7877 | 0 | /* dfBandDensity = */ 1.0, |
7878 | 0 | adfValueAveraged[iBand], 0, |
7879 | 0 | bAvoidNoDataSingleBand); |
7880 | 0 | } |
7881 | |
|
7882 | 0 | if (!bAvoidNoDataSingleBand) |
7883 | 0 | { |
7884 | 0 | GWKAvoidNoDataMultiBand(poWK, iDstOffset); |
7885 | 0 | } |
7886 | 0 | } |
7887 | | |
7888 | | // Skip below loop on bands |
7889 | 0 | bDone = true; |
7890 | 0 | } |
7891 | | |
7892 | | /* ==================================================================== |
7893 | | */ |
7894 | | /* Loop processing each band. */ |
7895 | | /* ==================================================================== |
7896 | | */ |
7897 | |
|
7898 | 0 | for (int iBand = 0; !bDone && iBand < poWK->nBands; iBand++) |
7899 | 0 | { |
7900 | 0 | double dfBandDensity = 0.0; |
7901 | 0 | double dfValueReal = 0.0; |
7902 | 0 | double dfValueImag = 0.0; |
7903 | 0 | double dfValueRealTmp = 0.0; |
7904 | 0 | double dfValueImagTmp = 0.0; |
7905 | | |
7906 | | /* -------------------------------------------------------------------- |
7907 | | */ |
7908 | | /* Collect the source value. */ |
7909 | | /* -------------------------------------------------------------------- |
7910 | | */ |
7911 | | |
7912 | | // Loop over source lines and pixels - 3 possible algorithms. |
7913 | |
|
7914 | 0 | if (poWK->eResample == GRA_Average) |
7915 | 0 | { |
7916 | 0 | double dfTotalWeight = 0.0; |
7917 | | |
7918 | | // This code adapted from GDALDownsampleChunk32R_AverageT() |
7919 | | // in gcore/overview.cpp. |
7920 | 0 | for (int iSrcY = iSrcYMin; iSrcY < iSrcYMax; iSrcY++) |
7921 | 0 | { |
7922 | 0 | const double dfWeightY = COMPUTE_WEIGHT_Y(iSrcY); |
7923 | 0 | iSrcOffset = iSrcXMin + |
7924 | 0 | static_cast<GPtrDiff_t>(iSrcY) * nSrcXSize; |
7925 | 0 | for (int iSrcX = iSrcXMin; iSrcX < iSrcXMax; |
7926 | 0 | iSrcX++, iSrcOffset++) |
7927 | 0 | { |
7928 | 0 | if (bWrapOverX) |
7929 | 0 | iSrcOffset = |
7930 | 0 | (iSrcX % nSrcXSize) + |
7931 | 0 | static_cast<GPtrDiff_t>(iSrcY) * nSrcXSize; |
7932 | |
|
7933 | 0 | if (poWK->panUnifiedSrcValid != nullptr && |
7934 | 0 | !CPLMaskGet(poWK->panUnifiedSrcValid, |
7935 | 0 | iSrcOffset)) |
7936 | 0 | { |
7937 | 0 | continue; |
7938 | 0 | } |
7939 | | |
7940 | 0 | if (GWKGetPixelValue( |
7941 | 0 | poWK, iBand, iSrcOffset, &dfBandDensity, |
7942 | 0 | &dfValueRealTmp, &dfValueImagTmp) && |
7943 | 0 | dfBandDensity > BAND_DENSITY_THRESHOLD) |
7944 | 0 | { |
7945 | 0 | const double dfWeight = |
7946 | 0 | COMPUTE_WEIGHT(iSrcX, dfWeightY); |
7947 | 0 | if (dfWeight > 0) |
7948 | 0 | { |
7949 | | // Weighted incremental algorithm mean |
7950 | | // Cf https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Weighted_incremental_algorithm |
7951 | 0 | dfTotalWeight += dfWeight; |
7952 | 0 | dfValueReal += |
7953 | 0 | (dfWeight / dfTotalWeight) * |
7954 | 0 | (dfValueRealTmp - dfValueReal); |
7955 | 0 | if (bIsComplex) |
7956 | 0 | { |
7957 | 0 | dfValueImag += |
7958 | 0 | (dfWeight / dfTotalWeight) * |
7959 | 0 | (dfValueImagTmp - dfValueImag); |
7960 | 0 | } |
7961 | 0 | } |
7962 | 0 | } |
7963 | 0 | } |
7964 | 0 | } |
7965 | |
|
7966 | 0 | if (dfTotalWeight > 0) |
7967 | 0 | { |
7968 | 0 | if (poWK->bApplyVerticalShift) |
7969 | 0 | { |
7970 | 0 | if (!std::isfinite(padfZ[iDstX])) |
7971 | 0 | continue; |
7972 | | // Subtract padfZ[] since the coordinate |
7973 | | // transformation is from target to source |
7974 | 0 | dfValueReal = |
7975 | 0 | dfValueReal * poWK->dfMultFactorVerticalShift - |
7976 | 0 | padfZ[iDstX] * |
7977 | 0 | dfMultFactorVerticalShiftPipeline; |
7978 | 0 | } |
7979 | | |
7980 | 0 | dfBandDensity = 1; |
7981 | 0 | bHasFoundDensity = true; |
7982 | 0 | } |
7983 | 0 | } // GRA_Average. |
7984 | | |
7985 | 0 | else if (poWK->eResample == GRA_RMS) |
7986 | 0 | { |
7987 | 0 | double dfTotalReal = 0.0; |
7988 | 0 | double dfTotalImag = 0.0; |
7989 | 0 | double dfTotalWeight = 0.0; |
7990 | | // This code adapted from GDALDownsampleChunk32R_AverageT() |
7991 | | // in gcore/overview.cpp. |
7992 | 0 | for (int iSrcY = iSrcYMin; iSrcY < iSrcYMax; iSrcY++) |
7993 | 0 | { |
7994 | 0 | const double dfWeightY = COMPUTE_WEIGHT_Y(iSrcY); |
7995 | 0 | iSrcOffset = iSrcXMin + |
7996 | 0 | static_cast<GPtrDiff_t>(iSrcY) * nSrcXSize; |
7997 | 0 | for (int iSrcX = iSrcXMin; iSrcX < iSrcXMax; |
7998 | 0 | iSrcX++, iSrcOffset++) |
7999 | 0 | { |
8000 | 0 | if (bWrapOverX) |
8001 | 0 | iSrcOffset = |
8002 | 0 | (iSrcX % nSrcXSize) + |
8003 | 0 | static_cast<GPtrDiff_t>(iSrcY) * nSrcXSize; |
8004 | |
|
8005 | 0 | if (poWK->panUnifiedSrcValid != nullptr && |
8006 | 0 | !CPLMaskGet(poWK->panUnifiedSrcValid, |
8007 | 0 | iSrcOffset)) |
8008 | 0 | { |
8009 | 0 | continue; |
8010 | 0 | } |
8011 | | |
8012 | 0 | if (GWKGetPixelValue( |
8013 | 0 | poWK, iBand, iSrcOffset, &dfBandDensity, |
8014 | 0 | &dfValueRealTmp, &dfValueImagTmp) && |
8015 | 0 | dfBandDensity > BAND_DENSITY_THRESHOLD) |
8016 | 0 | { |
8017 | 0 | const double dfWeight = |
8018 | 0 | COMPUTE_WEIGHT(iSrcX, dfWeightY); |
8019 | 0 | dfTotalWeight += dfWeight; |
8020 | 0 | dfTotalReal += |
8021 | 0 | dfValueRealTmp * dfValueRealTmp * dfWeight; |
8022 | 0 | if (bIsComplex) |
8023 | 0 | dfTotalImag += dfValueImagTmp * |
8024 | 0 | dfValueImagTmp * dfWeight; |
8025 | 0 | } |
8026 | 0 | } |
8027 | 0 | } |
8028 | |
|
8029 | 0 | if (dfTotalWeight > 0) |
8030 | 0 | { |
8031 | 0 | dfValueReal = sqrt(dfTotalReal / dfTotalWeight); |
8032 | |
|
8033 | 0 | if (poWK->bApplyVerticalShift) |
8034 | 0 | { |
8035 | 0 | if (!std::isfinite(padfZ[iDstX])) |
8036 | 0 | continue; |
8037 | | // Subtract padfZ[] since the coordinate |
8038 | | // transformation is from target to source |
8039 | 0 | dfValueReal = |
8040 | 0 | dfValueReal * poWK->dfMultFactorVerticalShift - |
8041 | 0 | padfZ[iDstX] * |
8042 | 0 | dfMultFactorVerticalShiftPipeline; |
8043 | 0 | } |
8044 | | |
8045 | 0 | if (bIsComplex) |
8046 | 0 | dfValueImag = sqrt(dfTotalImag / dfTotalWeight); |
8047 | |
|
8048 | 0 | dfBandDensity = 1; |
8049 | 0 | bHasFoundDensity = true; |
8050 | 0 | } |
8051 | 0 | } // GRA_RMS. |
8052 | | |
8053 | 0 | else if (poWK->eResample == GRA_Mode) |
8054 | 0 | { |
8055 | 0 | float fMaxCount = 0.0f; |
8056 | 0 | int nMode = -1; |
8057 | 0 | bool bHasSourceValues = false; |
8058 | |
|
8059 | 0 | memset(pafCounts, 0, nBins * sizeof(float)); |
8060 | |
|
8061 | 0 | for (int iSrcY = iSrcYMin; iSrcY < iSrcYMax; iSrcY++) |
8062 | 0 | { |
8063 | 0 | const double dfWeightY = COMPUTE_WEIGHT_Y(iSrcY); |
8064 | 0 | iSrcOffset = iSrcXMin + |
8065 | 0 | static_cast<GPtrDiff_t>(iSrcY) * nSrcXSize; |
8066 | 0 | for (int iSrcX = iSrcXMin; iSrcX < iSrcXMax; |
8067 | 0 | iSrcX++, iSrcOffset++) |
8068 | 0 | { |
8069 | 0 | if (bWrapOverX) |
8070 | 0 | iSrcOffset = |
8071 | 0 | (iSrcX % nSrcXSize) + |
8072 | 0 | static_cast<GPtrDiff_t>(iSrcY) * nSrcXSize; |
8073 | |
|
8074 | 0 | if (poWK->panUnifiedSrcValid != nullptr && |
8075 | 0 | !CPLMaskGet(poWK->panUnifiedSrcValid, |
8076 | 0 | iSrcOffset)) |
8077 | 0 | continue; |
8078 | | |
8079 | 0 | if (GWKGetPixelValue( |
8080 | 0 | poWK, iBand, iSrcOffset, &dfBandDensity, |
8081 | 0 | &dfValueRealTmp, &dfValueImagTmp) && |
8082 | 0 | dfBandDensity > BAND_DENSITY_THRESHOLD) |
8083 | 0 | { |
8084 | 0 | bHasSourceValues = true; |
8085 | 0 | const int nVal = |
8086 | 0 | static_cast<int>(dfValueRealTmp); |
8087 | 0 | const int iBin = nVal + nBinsOffset; |
8088 | 0 | const double dfWeight = |
8089 | 0 | COMPUTE_WEIGHT(iSrcX, dfWeightY); |
8090 | | |
8091 | | // Sum the density. |
8092 | 0 | pafCounts[iBin] += static_cast<float>(dfWeight); |
8093 | | // Is it the most common value so far? |
8094 | 0 | bool bUpdateMode = pafCounts[iBin] > fMaxCount; |
8095 | 0 | if (!bUpdateMode && |
8096 | 0 | pafCounts[iBin] == fMaxCount) |
8097 | 0 | { |
8098 | 0 | switch (eTieStrategy) |
8099 | 0 | { |
8100 | 0 | case GWKTS_First: |
8101 | 0 | break; |
8102 | 0 | case GWKTS_Min: |
8103 | 0 | bUpdateMode = nVal < nMode; |
8104 | 0 | break; |
8105 | 0 | case GWKTS_Max: |
8106 | 0 | bUpdateMode = nVal > nMode; |
8107 | 0 | break; |
8108 | 0 | } |
8109 | 0 | } |
8110 | 0 | if (bUpdateMode) |
8111 | 0 | { |
8112 | 0 | nMode = nVal; |
8113 | 0 | fMaxCount = pafCounts[iBin]; |
8114 | 0 | } |
8115 | 0 | } |
8116 | 0 | } |
8117 | 0 | } |
8118 | | |
8119 | 0 | if (bHasSourceValues) |
8120 | 0 | { |
8121 | 0 | dfValueReal = nMode; |
8122 | 0 | dfBandDensity = 1; |
8123 | 0 | bHasFoundDensity = true; |
8124 | 0 | } |
8125 | 0 | } // GRA_Mode. |
8126 | | |
8127 | 0 | else if (poWK->eResample == GRA_Max) |
8128 | 0 | { |
8129 | 0 | bool bFoundValid = false; |
8130 | 0 | double dfTotalReal = cpl::NumericLimits<double>::lowest(); |
8131 | | // This code adapted from nAlgo 1 method, GRA_Average. |
8132 | 0 | for (int iSrcY = iSrcYMin; iSrcY < iSrcYMax; iSrcY++) |
8133 | 0 | { |
8134 | 0 | iSrcOffset = iSrcXMin + |
8135 | 0 | static_cast<GPtrDiff_t>(iSrcY) * nSrcXSize; |
8136 | 0 | for (int iSrcX = iSrcXMin; iSrcX < iSrcXMax; |
8137 | 0 | iSrcX++, iSrcOffset++) |
8138 | 0 | { |
8139 | 0 | if (bWrapOverX) |
8140 | 0 | iSrcOffset = |
8141 | 0 | (iSrcX % nSrcXSize) + |
8142 | 0 | static_cast<GPtrDiff_t>(iSrcY) * nSrcXSize; |
8143 | |
|
8144 | 0 | if (poWK->panUnifiedSrcValid != nullptr && |
8145 | 0 | !CPLMaskGet(poWK->panUnifiedSrcValid, |
8146 | 0 | iSrcOffset)) |
8147 | 0 | { |
8148 | 0 | continue; |
8149 | 0 | } |
8150 | | |
8151 | | // Returns pixel value if it is not no data. |
8152 | 0 | if (GWKGetPixelValue( |
8153 | 0 | poWK, iBand, iSrcOffset, &dfBandDensity, |
8154 | 0 | &dfValueRealTmp, &dfValueImagTmp) && |
8155 | 0 | dfBandDensity > BAND_DENSITY_THRESHOLD) |
8156 | 0 | { |
8157 | 0 | bFoundValid = true; |
8158 | 0 | if (dfTotalReal < dfValueRealTmp) |
8159 | 0 | { |
8160 | 0 | dfTotalReal = dfValueRealTmp; |
8161 | 0 | } |
8162 | 0 | } |
8163 | 0 | } |
8164 | 0 | } |
8165 | |
|
8166 | 0 | if (bFoundValid) |
8167 | 0 | { |
8168 | 0 | dfValueReal = dfTotalReal; |
8169 | |
|
8170 | 0 | if (poWK->bApplyVerticalShift) |
8171 | 0 | { |
8172 | 0 | if (!std::isfinite(padfZ[iDstX])) |
8173 | 0 | continue; |
8174 | | // Subtract padfZ[] since the coordinate |
8175 | | // transformation is from target to source |
8176 | 0 | dfValueReal = |
8177 | 0 | dfValueReal * poWK->dfMultFactorVerticalShift - |
8178 | 0 | padfZ[iDstX] * |
8179 | 0 | dfMultFactorVerticalShiftPipeline; |
8180 | 0 | } |
8181 | | |
8182 | 0 | dfBandDensity = 1; |
8183 | 0 | bHasFoundDensity = true; |
8184 | 0 | } |
8185 | 0 | } |
8186 | | |
8187 | 0 | else if (poWK->eResample == GRA_Min) |
8188 | 0 | { |
8189 | 0 | bool bFoundValid = false; |
8190 | 0 | double dfTotalReal = cpl::NumericLimits<double>::max(); |
8191 | | // This code adapted from nAlgo 1 method, GRA_Average. |
8192 | 0 | for (int iSrcY = iSrcYMin; iSrcY < iSrcYMax; iSrcY++) |
8193 | 0 | { |
8194 | 0 | iSrcOffset = iSrcXMin + |
8195 | 0 | static_cast<GPtrDiff_t>(iSrcY) * nSrcXSize; |
8196 | 0 | for (int iSrcX = iSrcXMin; iSrcX < iSrcXMax; |
8197 | 0 | iSrcX++, iSrcOffset++) |
8198 | 0 | { |
8199 | 0 | if (bWrapOverX) |
8200 | 0 | iSrcOffset = |
8201 | 0 | (iSrcX % nSrcXSize) + |
8202 | 0 | static_cast<GPtrDiff_t>(iSrcY) * nSrcXSize; |
8203 | |
|
8204 | 0 | if (poWK->panUnifiedSrcValid != nullptr && |
8205 | 0 | !CPLMaskGet(poWK->panUnifiedSrcValid, |
8206 | 0 | iSrcOffset)) |
8207 | 0 | { |
8208 | 0 | continue; |
8209 | 0 | } |
8210 | | |
8211 | | // Returns pixel value if it is not no data. |
8212 | 0 | if (GWKGetPixelValue( |
8213 | 0 | poWK, iBand, iSrcOffset, &dfBandDensity, |
8214 | 0 | &dfValueRealTmp, &dfValueImagTmp) && |
8215 | 0 | dfBandDensity > BAND_DENSITY_THRESHOLD) |
8216 | 0 | { |
8217 | 0 | bFoundValid = true; |
8218 | 0 | if (dfTotalReal > dfValueRealTmp) |
8219 | 0 | { |
8220 | 0 | dfTotalReal = dfValueRealTmp; |
8221 | 0 | } |
8222 | 0 | } |
8223 | 0 | } |
8224 | 0 | } |
8225 | |
|
8226 | 0 | if (bFoundValid) |
8227 | 0 | { |
8228 | 0 | dfValueReal = dfTotalReal; |
8229 | |
|
8230 | 0 | if (poWK->bApplyVerticalShift) |
8231 | 0 | { |
8232 | 0 | if (!std::isfinite(padfZ[iDstX])) |
8233 | 0 | continue; |
8234 | | // Subtract padfZ[] since the coordinate |
8235 | | // transformation is from target to source |
8236 | 0 | dfValueReal = |
8237 | 0 | dfValueReal * poWK->dfMultFactorVerticalShift - |
8238 | 0 | padfZ[iDstX] * |
8239 | 0 | dfMultFactorVerticalShiftPipeline; |
8240 | 0 | } |
8241 | | |
8242 | 0 | dfBandDensity = 1; |
8243 | 0 | bHasFoundDensity = true; |
8244 | 0 | } |
8245 | 0 | } // GRA_Min. |
8246 | | |
8247 | 0 | else |
8248 | | // poWK->eResample == GRA_Med | GRA_Q1 | GRA_Q3. |
8249 | 0 | { |
8250 | 0 | CPLAssert(quant > 0.0f); |
8251 | | |
8252 | 0 | bool bFoundValid = false; |
8253 | 0 | std::vector<double> dfRealValuesTmp; |
8254 | | |
8255 | | // This code adapted from nAlgo 1 method, GRA_Average. |
8256 | 0 | for (int iSrcY = iSrcYMin; iSrcY < iSrcYMax; iSrcY++) |
8257 | 0 | { |
8258 | 0 | iSrcOffset = iSrcXMin + |
8259 | 0 | static_cast<GPtrDiff_t>(iSrcY) * nSrcXSize; |
8260 | 0 | for (int iSrcX = iSrcXMin; iSrcX < iSrcXMax; |
8261 | 0 | iSrcX++, iSrcOffset++) |
8262 | 0 | { |
8263 | 0 | if (bWrapOverX) |
8264 | 0 | iSrcOffset = |
8265 | 0 | (iSrcX % nSrcXSize) + |
8266 | 0 | static_cast<GPtrDiff_t>(iSrcY) * nSrcXSize; |
8267 | |
|
8268 | 0 | if (poWK->panUnifiedSrcValid != nullptr && |
8269 | 0 | !CPLMaskGet(poWK->panUnifiedSrcValid, |
8270 | 0 | iSrcOffset)) |
8271 | 0 | { |
8272 | 0 | continue; |
8273 | 0 | } |
8274 | | |
8275 | | // Returns pixel value if it is not no data. |
8276 | 0 | if (GWKGetPixelValue( |
8277 | 0 | poWK, iBand, iSrcOffset, &dfBandDensity, |
8278 | 0 | &dfValueRealTmp, &dfValueImagTmp) && |
8279 | 0 | dfBandDensity > BAND_DENSITY_THRESHOLD) |
8280 | 0 | { |
8281 | 0 | bFoundValid = true; |
8282 | 0 | dfRealValuesTmp.push_back(dfValueRealTmp); |
8283 | 0 | } |
8284 | 0 | } |
8285 | 0 | } |
8286 | |
|
8287 | 0 | if (bFoundValid) |
8288 | 0 | { |
8289 | 0 | std::sort(dfRealValuesTmp.begin(), |
8290 | 0 | dfRealValuesTmp.end()); |
8291 | 0 | int quantIdx = static_cast<int>( |
8292 | 0 | std::ceil(quant * dfRealValuesTmp.size() - 1)); |
8293 | 0 | dfValueReal = dfRealValuesTmp[quantIdx]; |
8294 | |
|
8295 | 0 | if (poWK->bApplyVerticalShift) |
8296 | 0 | { |
8297 | 0 | if (!std::isfinite(padfZ[iDstX])) |
8298 | 0 | continue; |
8299 | | // Subtract padfZ[] since the coordinate |
8300 | | // transformation is from target to source |
8301 | 0 | dfValueReal = |
8302 | 0 | dfValueReal * poWK->dfMultFactorVerticalShift - |
8303 | 0 | padfZ[iDstX] * |
8304 | 0 | dfMultFactorVerticalShiftPipeline; |
8305 | 0 | } |
8306 | | |
8307 | 0 | dfBandDensity = 1; |
8308 | 0 | bHasFoundDensity = true; |
8309 | 0 | dfRealValuesTmp.clear(); |
8310 | 0 | } |
8311 | 0 | } // Quantile. |
8312 | | |
8313 | | /* -------------------------------------------------------------------- |
8314 | | */ |
8315 | | /* We have a computed value from the source. Now apply it |
8316 | | * to */ |
8317 | | /* the destination pixel. */ |
8318 | | /* -------------------------------------------------------------------- |
8319 | | */ |
8320 | 0 | if (bHasFoundDensity) |
8321 | 0 | { |
8322 | | // TODO: Should we compute dfBandDensity in fct of |
8323 | | // nCount/nCount2, or use as a threshold to set the dest |
8324 | | // value? |
8325 | | // dfBandDensity = (float) nCount / nCount2; |
8326 | | // if( (float) nCount / nCount2 > 0.1 ) |
8327 | | // or fix gdalwarp crop_to_cutline to crop partially |
8328 | | // overlapping pixels. |
8329 | 0 | GWKSetPixelValue(poWK, iBand, iDstOffset, dfBandDensity, |
8330 | 0 | dfValueReal, dfValueImag, |
8331 | 0 | bAvoidNoDataSingleBand); |
8332 | 0 | } |
8333 | 0 | } |
8334 | | |
8335 | 0 | if (!bHasFoundDensity) |
8336 | 0 | continue; |
8337 | | |
8338 | 0 | if (!bAvoidNoDataSingleBand) |
8339 | 0 | { |
8340 | 0 | GWKAvoidNoDataMultiBand(poWK, iDstOffset); |
8341 | 0 | } |
8342 | | |
8343 | | /* -------------------------------------------------------------------- |
8344 | | */ |
8345 | | /* Update destination density/validity masks. */ |
8346 | | /* -------------------------------------------------------------------- |
8347 | | */ |
8348 | 0 | GWKOverlayDensity(poWK, iDstOffset, dfDensity); |
8349 | |
|
8350 | 0 | if (poWK->panDstValid != nullptr) |
8351 | 0 | { |
8352 | 0 | CPLMaskSet(poWK->panDstValid, iDstOffset); |
8353 | 0 | } |
8354 | 0 | } /* Next iDstX */ |
8355 | | |
8356 | | /* -------------------------------------------------------------------- |
8357 | | */ |
8358 | | /* Report progress to the user, and optionally cancel out. */ |
8359 | | /* -------------------------------------------------------------------- |
8360 | | */ |
8361 | 0 | if (psJob->pfnProgress && psJob->pfnProgress(psJob)) |
8362 | 0 | break; |
8363 | 0 | } |
8364 | | |
8365 | | /* -------------------------------------------------------------------- */ |
8366 | | /* Cleanup and return. */ |
8367 | | /* -------------------------------------------------------------------- */ |
8368 | 0 | CPLFree(padfX); |
8369 | 0 | CPLFree(padfY); |
8370 | 0 | CPLFree(padfZ); |
8371 | 0 | CPLFree(padfX2); |
8372 | 0 | CPLFree(padfY2); |
8373 | 0 | CPLFree(padfZ2); |
8374 | 0 | CPLFree(pabSuccess); |
8375 | 0 | CPLFree(pabSuccess2); |
8376 | 0 | VSIFree(pafCounts); |
8377 | 0 | } |
8378 | | |
8379 | | /************************************************************************/ |
8380 | | /* getOrientation() */ |
8381 | | /************************************************************************/ |
8382 | | |
8383 | | // Returns 1 whether (p1,p2,p3) is clockwise oriented, |
8384 | | // -1 if it is counter-clockwise oriented, |
8385 | | // or 0 if it is colinear. |
8386 | | static int getOrientation(const XYPair &p1, const XYPair &p2, const XYPair &p3) |
8387 | 0 | { |
8388 | 0 | const double p1x = p1.first; |
8389 | 0 | const double p1y = p1.second; |
8390 | 0 | const double p2x = p2.first; |
8391 | 0 | const double p2y = p2.second; |
8392 | 0 | const double p3x = p3.first; |
8393 | 0 | const double p3y = p3.second; |
8394 | 0 | const double val = (p2y - p1y) * (p3x - p2x) - (p2x - p1x) * (p3y - p2y); |
8395 | 0 | if (std::abs(val) < 1e-20) |
8396 | 0 | return 0; |
8397 | 0 | else if (val > 0) |
8398 | 0 | return 1; |
8399 | 0 | else |
8400 | 0 | return -1; |
8401 | 0 | } |
8402 | | |
8403 | | /************************************************************************/ |
8404 | | /* isConvex() */ |
8405 | | /************************************************************************/ |
8406 | | |
8407 | | // poly must be closed |
8408 | | static bool isConvex(const XYPoly &poly) |
8409 | 0 | { |
8410 | 0 | const size_t n = poly.size(); |
8411 | 0 | size_t i = 0; |
8412 | 0 | int last_orientation = getOrientation(poly[i], poly[i + 1], poly[i + 2]); |
8413 | 0 | ++i; |
8414 | 0 | for (; i < n - 2; ++i) |
8415 | 0 | { |
8416 | 0 | const int orientation = |
8417 | 0 | getOrientation(poly[i], poly[i + 1], poly[i + 2]); |
8418 | 0 | if (orientation != 0) |
8419 | 0 | { |
8420 | 0 | if (last_orientation == 0) |
8421 | 0 | last_orientation = orientation; |
8422 | 0 | else if (orientation != last_orientation) |
8423 | 0 | return false; |
8424 | 0 | } |
8425 | 0 | } |
8426 | 0 | return true; |
8427 | 0 | } |
8428 | | |
8429 | | /************************************************************************/ |
8430 | | /* pointIntersectsConvexPoly() */ |
8431 | | /************************************************************************/ |
8432 | | |
8433 | | // Returns whether xy intersects poly, that must be closed and convex. |
8434 | | static bool pointIntersectsConvexPoly(const XYPair &xy, const XYPoly &poly) |
8435 | 0 | { |
8436 | 0 | const size_t n = poly.size(); |
8437 | 0 | double dx1 = xy.first - poly[0].first; |
8438 | 0 | double dy1 = xy.second - poly[0].second; |
8439 | 0 | double dx2 = poly[1].first - poly[0].first; |
8440 | 0 | double dy2 = poly[1].second - poly[0].second; |
8441 | 0 | double prevCrossProduct = dx1 * dy2 - dx2 * dy1; |
8442 | | |
8443 | | // Check if the point remains on the same side (left/right) of all edges |
8444 | 0 | for (size_t i = 2; i < n; i++) |
8445 | 0 | { |
8446 | 0 | dx1 = xy.first - poly[i - 1].first; |
8447 | 0 | dy1 = xy.second - poly[i - 1].second; |
8448 | |
|
8449 | 0 | dx2 = poly[i].first - poly[i - 1].first; |
8450 | 0 | dy2 = poly[i].second - poly[i - 1].second; |
8451 | |
|
8452 | 0 | double crossProduct = dx1 * dy2 - dx2 * dy1; |
8453 | 0 | if (std::abs(prevCrossProduct) < 1e-20) |
8454 | 0 | prevCrossProduct = crossProduct; |
8455 | 0 | else if (prevCrossProduct * crossProduct < 0) |
8456 | 0 | return false; |
8457 | 0 | } |
8458 | | |
8459 | 0 | return true; |
8460 | 0 | } |
8461 | | |
8462 | | /************************************************************************/ |
8463 | | /* getIntersection() */ |
8464 | | /************************************************************************/ |
8465 | | |
8466 | | /* Returns intersection of [p1,p2] with [p3,p4], if |
8467 | | * it is a single point, and the 2 segments are not colinear. |
8468 | | */ |
8469 | | static bool getIntersection(const XYPair &p1, const XYPair &p2, |
8470 | | const XYPair &p3, const XYPair &p4, XYPair &xy) |
8471 | 0 | { |
8472 | 0 | const double x1 = p1.first; |
8473 | 0 | const double y1 = p1.second; |
8474 | 0 | const double x2 = p2.first; |
8475 | 0 | const double y2 = p2.second; |
8476 | 0 | const double x3 = p3.first; |
8477 | 0 | const double y3 = p3.second; |
8478 | 0 | const double x4 = p4.first; |
8479 | 0 | const double y4 = p4.second; |
8480 | 0 | const double t_num = (x1 - x3) * (y3 - y4) - (y1 - y3) * (x3 - x4); |
8481 | 0 | const double denom = (x1 - x2) * (y3 - y4) - (y1 - y2) * (x3 - x4); |
8482 | 0 | if (t_num * denom < 0 || std::abs(t_num) > std::abs(denom) || denom == 0) |
8483 | 0 | return false; |
8484 | | |
8485 | 0 | const double u_num = (x1 - x3) * (y1 - y2) - (y1 - y3) * (x1 - x2); |
8486 | 0 | if (u_num * denom < 0 || std::abs(u_num) > std::abs(denom)) |
8487 | 0 | return false; |
8488 | | |
8489 | 0 | const double t = t_num / denom; |
8490 | 0 | xy.first = x1 + t * (x2 - x1); |
8491 | 0 | xy.second = y1 + t * (y2 - y1); |
8492 | 0 | return true; |
8493 | 0 | } |
8494 | | |
8495 | | /************************************************************************/ |
8496 | | /* getConvexPolyIntersection() */ |
8497 | | /************************************************************************/ |
8498 | | |
8499 | | // poly1 and poly2 must be closed and convex. |
8500 | | // The returned intersection will not necessary be closed. |
8501 | | static void getConvexPolyIntersection(const XYPoly &poly1, const XYPoly &poly2, |
8502 | | XYPoly &intersection) |
8503 | 0 | { |
8504 | 0 | intersection.clear(); |
8505 | | |
8506 | | // Add all points of poly1 inside poly2 |
8507 | 0 | for (size_t i = 0; i < poly1.size() - 1; ++i) |
8508 | 0 | { |
8509 | 0 | if (pointIntersectsConvexPoly(poly1[i], poly2)) |
8510 | 0 | intersection.push_back(poly1[i]); |
8511 | 0 | } |
8512 | 0 | if (intersection.size() == poly1.size() - 1) |
8513 | 0 | { |
8514 | | // poly1 is inside poly2 |
8515 | 0 | return; |
8516 | 0 | } |
8517 | | |
8518 | | // Add all points of poly2 inside poly1 |
8519 | 0 | for (size_t i = 0; i < poly2.size() - 1; ++i) |
8520 | 0 | { |
8521 | 0 | if (pointIntersectsConvexPoly(poly2[i], poly1)) |
8522 | 0 | intersection.push_back(poly2[i]); |
8523 | 0 | } |
8524 | | |
8525 | | // Compute the intersection of all edges of both polygons |
8526 | 0 | XYPair xy; |
8527 | 0 | for (size_t i1 = 0; i1 < poly1.size() - 1; ++i1) |
8528 | 0 | { |
8529 | 0 | for (size_t i2 = 0; i2 < poly2.size() - 1; ++i2) |
8530 | 0 | { |
8531 | 0 | if (getIntersection(poly1[i1], poly1[i1 + 1], poly2[i2], |
8532 | 0 | poly2[i2 + 1], xy)) |
8533 | 0 | { |
8534 | 0 | intersection.push_back(xy); |
8535 | 0 | } |
8536 | 0 | } |
8537 | 0 | } |
8538 | |
|
8539 | 0 | if (intersection.empty()) |
8540 | 0 | return; |
8541 | | |
8542 | | // Find lowest-left point in intersection set |
8543 | 0 | double lowest_x = cpl::NumericLimits<double>::max(); |
8544 | 0 | double lowest_y = cpl::NumericLimits<double>::max(); |
8545 | 0 | for (const auto &pair : intersection) |
8546 | 0 | { |
8547 | 0 | const double x = pair.first; |
8548 | 0 | const double y = pair.second; |
8549 | 0 | if (y < lowest_y || (y == lowest_y && x < lowest_x)) |
8550 | 0 | { |
8551 | 0 | lowest_x = x; |
8552 | 0 | lowest_y = y; |
8553 | 0 | } |
8554 | 0 | } |
8555 | |
|
8556 | 0 | const auto sortFunc = [&](const XYPair &p1, const XYPair &p2) |
8557 | 0 | { |
8558 | 0 | const double p1x_diff = p1.first - lowest_x; |
8559 | 0 | const double p1y_diff = p1.second - lowest_y; |
8560 | 0 | const double p2x_diff = p2.first - lowest_x; |
8561 | 0 | const double p2y_diff = p2.second - lowest_y; |
8562 | 0 | if (p2y_diff == 0.0 && p1y_diff == 0.0) |
8563 | 0 | { |
8564 | 0 | if (p1x_diff >= 0) |
8565 | 0 | { |
8566 | 0 | if (p2x_diff >= 0) |
8567 | 0 | return p1.first < p2.first; |
8568 | 0 | return true; |
8569 | 0 | } |
8570 | 0 | else |
8571 | 0 | { |
8572 | 0 | if (p2x_diff >= 0) |
8573 | 0 | return false; |
8574 | 0 | return p1.first < p2.first; |
8575 | 0 | } |
8576 | 0 | } |
8577 | | |
8578 | 0 | if (p2x_diff == 0.0 && p1x_diff == 0.0) |
8579 | 0 | return p1.second < p2.second; |
8580 | | |
8581 | 0 | double tan_p1; |
8582 | 0 | if (p1x_diff == 0.0) |
8583 | 0 | tan_p1 = p1y_diff == 0.0 ? 0.0 : cpl::NumericLimits<double>::max(); |
8584 | 0 | else |
8585 | 0 | tan_p1 = p1y_diff / p1x_diff; |
8586 | |
|
8587 | 0 | double tan_p2; |
8588 | 0 | if (p2x_diff == 0.0) |
8589 | 0 | tan_p2 = p2y_diff == 0.0 ? 0.0 : cpl::NumericLimits<double>::max(); |
8590 | 0 | else |
8591 | 0 | tan_p2 = p2y_diff / p2x_diff; |
8592 | |
|
8593 | 0 | if (tan_p1 >= 0) |
8594 | 0 | { |
8595 | 0 | if (tan_p2 >= 0) |
8596 | 0 | return tan_p1 < tan_p2; |
8597 | 0 | else |
8598 | 0 | return true; |
8599 | 0 | } |
8600 | 0 | else |
8601 | 0 | { |
8602 | 0 | if (tan_p2 >= 0) |
8603 | 0 | return false; |
8604 | 0 | else |
8605 | 0 | return tan_p1 < tan_p2; |
8606 | 0 | } |
8607 | 0 | }; |
8608 | | |
8609 | | // Sort points by increasing atan2(y-lowest_y, x-lowest_x) to form a convex |
8610 | | // hull |
8611 | 0 | std::sort(intersection.begin(), intersection.end(), sortFunc); |
8612 | | |
8613 | | // Remove duplicated points |
8614 | 0 | size_t j = 1; |
8615 | 0 | for (size_t i = 1; i < intersection.size(); ++i) |
8616 | 0 | { |
8617 | 0 | if (intersection[i] != intersection[i - 1]) |
8618 | 0 | { |
8619 | 0 | if (j < i) |
8620 | 0 | intersection[j] = intersection[i]; |
8621 | 0 | ++j; |
8622 | 0 | } |
8623 | 0 | } |
8624 | 0 | intersection.resize(j); |
8625 | 0 | } |
8626 | | |
8627 | | /************************************************************************/ |
8628 | | /* GWKSumPreserving() */ |
8629 | | /************************************************************************/ |
8630 | | |
8631 | | static void GWKSumPreservingThread(void *pData); |
8632 | | |
8633 | | static CPLErr GWKSumPreserving(GDALWarpKernel *poWK) |
8634 | 0 | { |
8635 | 0 | return GWKRun(poWK, "GWKSumPreserving", GWKSumPreservingThread); |
8636 | 0 | } |
8637 | | |
8638 | | static void GWKSumPreservingThread(void *pData) |
8639 | 0 | { |
8640 | 0 | GWKJobStruct *psJob = static_cast<GWKJobStruct *>(pData); |
8641 | 0 | GDALWarpKernel *poWK = psJob->poWK; |
8642 | 0 | const int iYMin = psJob->iYMin; |
8643 | 0 | const int iYMax = psJob->iYMax; |
8644 | 0 | const bool bIsAffineNoRotation = |
8645 | 0 | GDALTransformIsAffineNoRotation(poWK->pfnTransformer, |
8646 | 0 | poWK->pTransformerArg) && |
8647 | | // for debug/testing purposes |
8648 | 0 | CPLTestBool( |
8649 | 0 | CPLGetConfigOption("GDAL_WARP_USE_AFFINE_OPTIMIZATION", "YES")); |
8650 | 0 | const bool bAvoidNoDataSingleBand = |
8651 | 0 | poWK->nBands == 1 || |
8652 | 0 | !CPLTestBool(CSLFetchNameValueDef(poWK->papszWarpOptions, |
8653 | 0 | "UNIFIED_SRC_NODATA", "FALSE")); |
8654 | |
|
8655 | 0 | const int nDstXSize = poWK->nDstXSize; |
8656 | 0 | const int nSrcXSize = poWK->nSrcXSize; |
8657 | 0 | const int nSrcYSize = poWK->nSrcYSize; |
8658 | |
|
8659 | 0 | std::vector<double> adfX0(nSrcXSize + 1); |
8660 | 0 | std::vector<double> adfY0(nSrcXSize + 1); |
8661 | 0 | std::vector<double> adfZ0(nSrcXSize + 1); |
8662 | 0 | std::vector<double> adfX1(nSrcXSize + 1); |
8663 | 0 | std::vector<double> adfY1(nSrcXSize + 1); |
8664 | 0 | std::vector<double> adfZ1(nSrcXSize + 1); |
8665 | 0 | std::vector<int> abSuccess0(nSrcXSize + 1); |
8666 | 0 | std::vector<int> abSuccess1(nSrcXSize + 1); |
8667 | |
|
8668 | 0 | CPLRectObj sGlobalBounds; |
8669 | 0 | sGlobalBounds.minx = -2 * poWK->dfXScale; |
8670 | 0 | sGlobalBounds.miny = iYMin - 2 * poWK->dfYScale; |
8671 | 0 | sGlobalBounds.maxx = nDstXSize + 2 * poWK->dfXScale; |
8672 | 0 | sGlobalBounds.maxy = iYMax + 2 * poWK->dfYScale; |
8673 | 0 | CPLQuadTree *hQuadTree = CPLQuadTreeCreate(&sGlobalBounds, nullptr); |
8674 | |
|
8675 | 0 | struct SourcePixel |
8676 | 0 | { |
8677 | 0 | int iSrcX; |
8678 | 0 | int iSrcY; |
8679 | | |
8680 | | // Coordinates of source pixel in target pixel coordinates |
8681 | 0 | double dfDstX0; |
8682 | 0 | double dfDstY0; |
8683 | 0 | double dfDstX1; |
8684 | 0 | double dfDstY1; |
8685 | 0 | double dfDstX2; |
8686 | 0 | double dfDstY2; |
8687 | 0 | double dfDstX3; |
8688 | 0 | double dfDstY3; |
8689 | | |
8690 | | // Source pixel total area (might be larger than the one described |
8691 | | // by above coordinates, if the pixel was crossing the antimeridian |
8692 | | // and split) |
8693 | 0 | double dfArea; |
8694 | 0 | }; |
8695 | |
|
8696 | 0 | std::vector<SourcePixel> sourcePixels; |
8697 | |
|
8698 | 0 | XYPoly discontinuityLeft(5); |
8699 | 0 | XYPoly discontinuityRight(5); |
8700 | | |
8701 | | /* ==================================================================== */ |
8702 | | /* First pass: transform the 4 corners of each potential */ |
8703 | | /* contributing source pixel to target pixel coordinates. */ |
8704 | | /* ==================================================================== */ |
8705 | | |
8706 | | // Special case for top line |
8707 | 0 | { |
8708 | 0 | int iY = 0; |
8709 | 0 | for (int iX = 0; iX <= nSrcXSize; ++iX) |
8710 | 0 | { |
8711 | 0 | adfX1[iX] = iX + poWK->nSrcXOff; |
8712 | 0 | adfY1[iX] = iY + poWK->nSrcYOff; |
8713 | 0 | adfZ1[iX] = 0; |
8714 | 0 | } |
8715 | |
|
8716 | 0 | poWK->pfnTransformer(psJob->pTransformerArg, FALSE, nSrcXSize + 1, |
8717 | 0 | adfX1.data(), adfY1.data(), adfZ1.data(), |
8718 | 0 | abSuccess1.data()); |
8719 | |
|
8720 | 0 | for (int iX = 0; iX <= nSrcXSize; ++iX) |
8721 | 0 | { |
8722 | 0 | if (abSuccess1[iX] && !std::isfinite(adfX1[iX])) |
8723 | 0 | abSuccess1[iX] = FALSE; |
8724 | 0 | else |
8725 | 0 | { |
8726 | 0 | adfX1[iX] -= poWK->nDstXOff; |
8727 | 0 | adfY1[iX] -= poWK->nDstYOff; |
8728 | 0 | } |
8729 | 0 | } |
8730 | 0 | } |
8731 | |
|
8732 | 0 | const auto getInsideXSign = [poWK, nDstXSize](double dfX) |
8733 | 0 | { |
8734 | 0 | return dfX - poWK->nDstXOff >= -2 * poWK->dfXScale && |
8735 | 0 | dfX - poWK->nDstXOff <= nDstXSize + 2 * poWK->dfXScale |
8736 | 0 | ? 1 |
8737 | 0 | : -1; |
8738 | 0 | }; |
8739 | |
|
8740 | 0 | const auto FindDiscontinuity = |
8741 | 0 | [poWK, psJob, getInsideXSign]( |
8742 | 0 | double dfXLeft, double dfXRight, double dfY, |
8743 | 0 | int XLeftReprojectedInsideSign, double &dfXMidReprojectedLeft, |
8744 | 0 | double &dfXMidReprojectedRight, double &dfYMidReprojected) |
8745 | 0 | { |
8746 | 0 | for (int i = 0; i < 10 && dfXRight - dfXLeft > 1e-8; ++i) |
8747 | 0 | { |
8748 | 0 | double dfXMid = (dfXLeft + dfXRight) / 2; |
8749 | 0 | double dfXMidReprojected = dfXMid; |
8750 | 0 | dfYMidReprojected = dfY; |
8751 | 0 | double dfZ = 0; |
8752 | 0 | int nSuccess = 0; |
8753 | 0 | poWK->pfnTransformer(psJob->pTransformerArg, FALSE, 1, |
8754 | 0 | &dfXMidReprojected, &dfYMidReprojected, &dfZ, |
8755 | 0 | &nSuccess); |
8756 | 0 | if (XLeftReprojectedInsideSign != getInsideXSign(dfXMidReprojected)) |
8757 | 0 | { |
8758 | 0 | dfXRight = dfXMid; |
8759 | 0 | dfXMidReprojectedRight = dfXMidReprojected; |
8760 | 0 | } |
8761 | 0 | else |
8762 | 0 | { |
8763 | 0 | dfXLeft = dfXMid; |
8764 | 0 | dfXMidReprojectedLeft = dfXMidReprojected; |
8765 | 0 | } |
8766 | 0 | } |
8767 | 0 | }; |
8768 | |
|
8769 | 0 | for (int iY = 0; iY < nSrcYSize; ++iY) |
8770 | 0 | { |
8771 | 0 | std::swap(adfX0, adfX1); |
8772 | 0 | std::swap(adfY0, adfY1); |
8773 | 0 | std::swap(adfZ0, adfZ1); |
8774 | 0 | std::swap(abSuccess0, abSuccess1); |
8775 | |
|
8776 | 0 | for (int iX = 0; iX <= nSrcXSize; ++iX) |
8777 | 0 | { |
8778 | 0 | adfX1[iX] = iX + poWK->nSrcXOff; |
8779 | 0 | adfY1[iX] = iY + 1 + poWK->nSrcYOff; |
8780 | 0 | adfZ1[iX] = 0; |
8781 | 0 | } |
8782 | |
|
8783 | 0 | poWK->pfnTransformer(psJob->pTransformerArg, FALSE, nSrcXSize + 1, |
8784 | 0 | adfX1.data(), adfY1.data(), adfZ1.data(), |
8785 | 0 | abSuccess1.data()); |
8786 | |
|
8787 | 0 | for (int iX = 0; iX <= nSrcXSize; ++iX) |
8788 | 0 | { |
8789 | 0 | if (abSuccess1[iX] && !std::isfinite(adfX1[iX])) |
8790 | 0 | abSuccess1[iX] = FALSE; |
8791 | 0 | else |
8792 | 0 | { |
8793 | 0 | adfX1[iX] -= poWK->nDstXOff; |
8794 | 0 | adfY1[iX] -= poWK->nDstYOff; |
8795 | 0 | } |
8796 | 0 | } |
8797 | |
|
8798 | 0 | for (int iX = 0; iX < nSrcXSize; ++iX) |
8799 | 0 | { |
8800 | 0 | if (abSuccess0[iX] && abSuccess0[iX + 1] && abSuccess1[iX] && |
8801 | 0 | abSuccess1[iX + 1]) |
8802 | 0 | { |
8803 | | /* -------------------------------------------------------------------- |
8804 | | */ |
8805 | | /* Do not try to apply transparent source pixels to the |
8806 | | * destination.*/ |
8807 | | /* -------------------------------------------------------------------- |
8808 | | */ |
8809 | 0 | const auto iSrcOffset = |
8810 | 0 | iX + static_cast<GPtrDiff_t>(iY) * nSrcXSize; |
8811 | 0 | if (poWK->panUnifiedSrcValid != nullptr && |
8812 | 0 | !CPLMaskGet(poWK->panUnifiedSrcValid, iSrcOffset)) |
8813 | 0 | { |
8814 | 0 | continue; |
8815 | 0 | } |
8816 | | |
8817 | 0 | if (poWK->pafUnifiedSrcDensity != nullptr) |
8818 | 0 | { |
8819 | 0 | if (poWK->pafUnifiedSrcDensity[iSrcOffset] < |
8820 | 0 | SRC_DENSITY_THRESHOLD_FLOAT) |
8821 | 0 | continue; |
8822 | 0 | } |
8823 | | |
8824 | 0 | SourcePixel sp; |
8825 | 0 | sp.dfArea = 0; |
8826 | 0 | sp.dfDstX0 = adfX0[iX]; |
8827 | 0 | sp.dfDstY0 = adfY0[iX]; |
8828 | 0 | sp.dfDstX1 = adfX0[iX + 1]; |
8829 | 0 | sp.dfDstY1 = adfY0[iX + 1]; |
8830 | 0 | sp.dfDstX2 = adfX1[iX + 1]; |
8831 | 0 | sp.dfDstY2 = adfY1[iX + 1]; |
8832 | 0 | sp.dfDstX3 = adfX1[iX]; |
8833 | 0 | sp.dfDstY3 = adfY1[iX]; |
8834 | | |
8835 | | // Detect pixel that likely cross the anti-meridian and |
8836 | | // introduce a discontinuity when reprojected. |
8837 | |
|
8838 | 0 | if (std::fabs(adfX0[iX] - adfX0[iX + 1]) > 2 * poWK->dfXScale && |
8839 | 0 | std::fabs(adfX1[iX] - adfX1[iX + 1]) > 2 * poWK->dfXScale && |
8840 | 0 | getInsideXSign(adfX0[iX]) != |
8841 | 0 | getInsideXSign(adfX0[iX + 1]) && |
8842 | 0 | getInsideXSign(adfX0[iX]) == getInsideXSign(adfX1[iX]) && |
8843 | 0 | getInsideXSign(adfX0[iX + 1]) == |
8844 | 0 | getInsideXSign(adfX1[iX + 1]) && |
8845 | 0 | (adfY1[iX] - adfY0[iX]) * (adfY1[iX + 1] - adfY0[iX + 1]) > |
8846 | 0 | 0) |
8847 | 0 | { |
8848 | | #ifdef DEBUG_VERBOSE |
8849 | | CPLDebug( |
8850 | | "WARP", |
8851 | | "Discontinuity for iSrcX=%d, iSrcY=%d, dest corners:" |
8852 | | "X0[iX]=%f X0[iX+1]=%f X1[iX]=%f X1[iX+1]=%f," |
8853 | | "Y0[iX]=%f Y0[iX+1]=%f Y1[iX]=%f Y1[iX+1]=%f", |
8854 | | iX + poWK->nSrcXOff, iY + poWK->nSrcYOff, adfX0[iX], |
8855 | | adfX0[iX + 1], adfX1[iX], adfX1[iX + 1], adfY0[iX], |
8856 | | adfY0[iX + 1], adfY1[iX], adfY1[iX + 1]); |
8857 | | #endif |
8858 | 0 | double dfXMidReprojectedLeftTop = 0; |
8859 | 0 | double dfXMidReprojectedRightTop = 0; |
8860 | 0 | double dfYMidReprojectedTop = 0; |
8861 | 0 | FindDiscontinuity( |
8862 | 0 | iX + poWK->nSrcXOff, iX + poWK->nSrcXOff + 1, |
8863 | 0 | iY + poWK->nSrcYOff, getInsideXSign(adfX0[iX]), |
8864 | 0 | dfXMidReprojectedLeftTop, dfXMidReprojectedRightTop, |
8865 | 0 | dfYMidReprojectedTop); |
8866 | 0 | double dfXMidReprojectedLeftBottom = 0; |
8867 | 0 | double dfXMidReprojectedRightBottom = 0; |
8868 | 0 | double dfYMidReprojectedBottom = 0; |
8869 | 0 | FindDiscontinuity( |
8870 | 0 | iX + poWK->nSrcXOff, iX + poWK->nSrcXOff + 1, |
8871 | 0 | iY + poWK->nSrcYOff + 1, getInsideXSign(adfX1[iX]), |
8872 | 0 | dfXMidReprojectedLeftBottom, |
8873 | 0 | dfXMidReprojectedRightBottom, dfYMidReprojectedBottom); |
8874 | |
|
8875 | 0 | discontinuityLeft[0] = XYPair(adfX0[iX], adfY0[iX]); |
8876 | 0 | discontinuityLeft[1] = |
8877 | 0 | XYPair(dfXMidReprojectedLeftTop, dfYMidReprojectedTop); |
8878 | 0 | discontinuityLeft[2] = XYPair(dfXMidReprojectedLeftBottom, |
8879 | 0 | dfYMidReprojectedBottom); |
8880 | 0 | discontinuityLeft[3] = XYPair(adfX1[iX], adfY1[iX]); |
8881 | 0 | discontinuityLeft[4] = XYPair(adfX0[iX], adfY0[iX]); |
8882 | |
|
8883 | 0 | discontinuityRight[0] = |
8884 | 0 | XYPair(adfX0[iX + 1], adfY0[iX + 1]); |
8885 | 0 | discontinuityRight[1] = |
8886 | 0 | XYPair(dfXMidReprojectedRightTop, dfYMidReprojectedTop); |
8887 | 0 | discontinuityRight[2] = XYPair(dfXMidReprojectedRightBottom, |
8888 | 0 | dfYMidReprojectedBottom); |
8889 | 0 | discontinuityRight[3] = |
8890 | 0 | XYPair(adfX1[iX + 1], adfY1[iX + 1]); |
8891 | 0 | discontinuityRight[4] = |
8892 | 0 | XYPair(adfX0[iX + 1], adfY0[iX + 1]); |
8893 | |
|
8894 | 0 | sp.dfArea = getArea(discontinuityLeft) + |
8895 | 0 | getArea(discontinuityRight); |
8896 | 0 | if (getInsideXSign(adfX0[iX]) >= 1) |
8897 | 0 | { |
8898 | 0 | sp.dfDstX1 = dfXMidReprojectedLeftTop; |
8899 | 0 | sp.dfDstY1 = dfYMidReprojectedTop; |
8900 | 0 | sp.dfDstX2 = dfXMidReprojectedLeftBottom; |
8901 | 0 | sp.dfDstY2 = dfYMidReprojectedBottom; |
8902 | 0 | } |
8903 | 0 | else |
8904 | 0 | { |
8905 | 0 | sp.dfDstX0 = dfXMidReprojectedRightTop; |
8906 | 0 | sp.dfDstY0 = dfYMidReprojectedTop; |
8907 | 0 | sp.dfDstX3 = dfXMidReprojectedRightBottom; |
8908 | 0 | sp.dfDstY3 = dfYMidReprojectedBottom; |
8909 | 0 | } |
8910 | 0 | } |
8911 | | |
8912 | | // Bounding box of source pixel (expressed in target pixel |
8913 | | // coordinates) |
8914 | 0 | CPLRectObj sRect; |
8915 | 0 | sRect.minx = std::min(std::min(sp.dfDstX0, sp.dfDstX1), |
8916 | 0 | std::min(sp.dfDstX2, sp.dfDstX3)); |
8917 | 0 | sRect.miny = std::min(std::min(sp.dfDstY0, sp.dfDstY1), |
8918 | 0 | std::min(sp.dfDstY2, sp.dfDstY3)); |
8919 | 0 | sRect.maxx = std::max(std::max(sp.dfDstX0, sp.dfDstX1), |
8920 | 0 | std::max(sp.dfDstX2, sp.dfDstX3)); |
8921 | 0 | sRect.maxy = std::max(std::max(sp.dfDstY0, sp.dfDstY1), |
8922 | 0 | std::max(sp.dfDstY2, sp.dfDstY3)); |
8923 | 0 | if (!(sRect.minx < nDstXSize && sRect.maxx > 0 && |
8924 | 0 | sRect.miny < iYMax && sRect.maxy > iYMin)) |
8925 | 0 | { |
8926 | 0 | continue; |
8927 | 0 | } |
8928 | | |
8929 | 0 | sp.iSrcX = iX; |
8930 | 0 | sp.iSrcY = iY; |
8931 | |
|
8932 | 0 | if (!bIsAffineNoRotation) |
8933 | 0 | { |
8934 | | // Check polygon validity (no self-crossing) |
8935 | 0 | XYPair xy; |
8936 | 0 | if (getIntersection(XYPair(sp.dfDstX0, sp.dfDstY0), |
8937 | 0 | XYPair(sp.dfDstX1, sp.dfDstY1), |
8938 | 0 | XYPair(sp.dfDstX2, sp.dfDstY2), |
8939 | 0 | XYPair(sp.dfDstX3, sp.dfDstY3), xy) || |
8940 | 0 | getIntersection(XYPair(sp.dfDstX1, sp.dfDstY1), |
8941 | 0 | XYPair(sp.dfDstX2, sp.dfDstY2), |
8942 | 0 | XYPair(sp.dfDstX0, sp.dfDstY0), |
8943 | 0 | XYPair(sp.dfDstX3, sp.dfDstY3), xy)) |
8944 | 0 | { |
8945 | 0 | continue; |
8946 | 0 | } |
8947 | 0 | } |
8948 | | |
8949 | 0 | CPLQuadTreeInsertWithBounds( |
8950 | 0 | hQuadTree, |
8951 | 0 | reinterpret_cast<void *>( |
8952 | 0 | static_cast<uintptr_t>(sourcePixels.size())), |
8953 | 0 | &sRect); |
8954 | |
|
8955 | 0 | sourcePixels.push_back(sp); |
8956 | 0 | } |
8957 | 0 | } |
8958 | 0 | } |
8959 | |
|
8960 | 0 | std::vector<double> adfRealValue(poWK->nBands); |
8961 | 0 | std::vector<double> adfImagValue(poWK->nBands); |
8962 | 0 | std::vector<double> adfBandDensity(poWK->nBands); |
8963 | 0 | std::vector<double> adfWeight(poWK->nBands); |
8964 | |
|
8965 | | #ifdef CHECK_SUM_WITH_GEOS |
8966 | | auto hGEOSContext = OGRGeometry::createGEOSContext(); |
8967 | | auto seq1 = GEOSCoordSeq_create_r(hGEOSContext, 5, 2); |
8968 | | GEOSCoordSeq_setXY_r(hGEOSContext, seq1, 0, 0.0, 0.0); |
8969 | | GEOSCoordSeq_setXY_r(hGEOSContext, seq1, 1, 1.0, 0.0); |
8970 | | GEOSCoordSeq_setXY_r(hGEOSContext, seq1, 2, 1.0, 1.0); |
8971 | | GEOSCoordSeq_setXY_r(hGEOSContext, seq1, 3, 0.0, 1.0); |
8972 | | GEOSCoordSeq_setXY_r(hGEOSContext, seq1, 4, 0.0, 0.0); |
8973 | | auto hLR1 = GEOSGeom_createLinearRing_r(hGEOSContext, seq1); |
8974 | | auto hP1 = GEOSGeom_createPolygon_r(hGEOSContext, hLR1, nullptr, 0); |
8975 | | |
8976 | | auto seq2 = GEOSCoordSeq_create_r(hGEOSContext, 5, 2); |
8977 | | auto hLR2 = GEOSGeom_createLinearRing_r(hGEOSContext, seq2); |
8978 | | auto hP2 = GEOSGeom_createPolygon_r(hGEOSContext, hLR2, nullptr, 0); |
8979 | | #endif |
8980 | |
|
8981 | 0 | const XYPoly xy1{ |
8982 | 0 | {0.0, 0.0}, {1.0, 0.0}, {1.0, 1.0}, {0.0, 1.0}, {0.0, 0.0}}; |
8983 | 0 | XYPoly xy2(5); |
8984 | 0 | XYPoly xy2_triangle(4); |
8985 | 0 | XYPoly intersection; |
8986 | | |
8987 | | /* ==================================================================== */ |
8988 | | /* Loop over output lines. */ |
8989 | | /* ==================================================================== */ |
8990 | 0 | for (int iDstY = iYMin; iDstY < iYMax; iDstY++) |
8991 | 0 | { |
8992 | 0 | CPLRectObj sRect; |
8993 | 0 | sRect.miny = iDstY; |
8994 | 0 | sRect.maxy = iDstY + 1; |
8995 | | |
8996 | | /* ==================================================================== |
8997 | | */ |
8998 | | /* Loop over pixels in output scanline. */ |
8999 | | /* ==================================================================== |
9000 | | */ |
9001 | 0 | for (int iDstX = 0; iDstX < nDstXSize; iDstX++) |
9002 | 0 | { |
9003 | 0 | sRect.minx = iDstX; |
9004 | 0 | sRect.maxx = iDstX + 1; |
9005 | 0 | int nSourcePixels = 0; |
9006 | 0 | void **pahSourcePixel = |
9007 | 0 | CPLQuadTreeSearch(hQuadTree, &sRect, &nSourcePixels); |
9008 | 0 | if (nSourcePixels == 0) |
9009 | 0 | { |
9010 | 0 | CPLFree(pahSourcePixel); |
9011 | 0 | continue; |
9012 | 0 | } |
9013 | | |
9014 | 0 | std::fill(adfRealValue.begin(), adfRealValue.end(), 0); |
9015 | 0 | std::fill(adfImagValue.begin(), adfImagValue.end(), 0); |
9016 | 0 | std::fill(adfBandDensity.begin(), adfBandDensity.end(), 0); |
9017 | 0 | std::fill(adfWeight.begin(), adfWeight.end(), 0); |
9018 | 0 | double dfDensity = 0; |
9019 | | // Just above zero to please Coveriy Scan |
9020 | 0 | double dfTotalWeight = std::numeric_limits<double>::min(); |
9021 | | |
9022 | | /* ==================================================================== |
9023 | | */ |
9024 | | /* Iterate over each contributing source pixel to add its |
9025 | | */ |
9026 | | /* value weighed by the ratio of the area of its |
9027 | | * intersection */ |
9028 | | /* with the target pixel divided by the area of the source |
9029 | | */ |
9030 | | /* pixel. */ |
9031 | | /* ==================================================================== |
9032 | | */ |
9033 | 0 | for (int i = 0; i < nSourcePixels; ++i) |
9034 | 0 | { |
9035 | 0 | const int iSourcePixel = static_cast<int>( |
9036 | 0 | reinterpret_cast<uintptr_t>(pahSourcePixel[i])); |
9037 | 0 | auto &sp = sourcePixels[iSourcePixel]; |
9038 | |
|
9039 | 0 | double dfWeight = 0.0; |
9040 | 0 | if (bIsAffineNoRotation) |
9041 | 0 | { |
9042 | | // Optimization since the source pixel is a rectangle in |
9043 | | // target pixel coordinates |
9044 | 0 | double dfSrcMinX = std::min(sp.dfDstX0, sp.dfDstX2); |
9045 | 0 | double dfSrcMaxX = std::max(sp.dfDstX0, sp.dfDstX2); |
9046 | 0 | double dfSrcMinY = std::min(sp.dfDstY0, sp.dfDstY2); |
9047 | 0 | double dfSrcMaxY = std::max(sp.dfDstY0, sp.dfDstY2); |
9048 | 0 | double dfIntersMinX = std::max<double>(dfSrcMinX, iDstX); |
9049 | 0 | double dfIntersMaxX = std::min(dfSrcMaxX, iDstX + 1.0); |
9050 | 0 | double dfIntersMinY = std::max<double>(dfSrcMinY, iDstY); |
9051 | 0 | double dfIntersMaxY = std::min(dfSrcMaxY, iDstY + 1.0); |
9052 | 0 | dfWeight = |
9053 | 0 | ((dfIntersMaxX - dfIntersMinX) * |
9054 | 0 | (dfIntersMaxY - dfIntersMinY)) / |
9055 | 0 | ((dfSrcMaxX - dfSrcMinX) * (dfSrcMaxY - dfSrcMinY)); |
9056 | 0 | } |
9057 | 0 | else |
9058 | 0 | { |
9059 | | // Compute the polygon of the source pixel in target pixel |
9060 | | // coordinates, and shifted to the target pixel (unit square |
9061 | | // coordinates) |
9062 | |
|
9063 | 0 | xy2[0] = {sp.dfDstX0 - iDstX, sp.dfDstY0 - iDstY}; |
9064 | 0 | xy2[1] = {sp.dfDstX1 - iDstX, sp.dfDstY1 - iDstY}; |
9065 | 0 | xy2[2] = {sp.dfDstX2 - iDstX, sp.dfDstY2 - iDstY}; |
9066 | 0 | xy2[3] = {sp.dfDstX3 - iDstX, sp.dfDstY3 - iDstY}; |
9067 | 0 | xy2[4] = {sp.dfDstX0 - iDstX, sp.dfDstY0 - iDstY}; |
9068 | |
|
9069 | 0 | if (isConvex(xy2)) |
9070 | 0 | { |
9071 | 0 | getConvexPolyIntersection(xy1, xy2, intersection); |
9072 | 0 | if (intersection.size() >= 3) |
9073 | 0 | { |
9074 | 0 | dfWeight = getArea(intersection); |
9075 | 0 | } |
9076 | 0 | } |
9077 | 0 | else |
9078 | 0 | { |
9079 | | // Split xy2 into 2 triangles. |
9080 | 0 | xy2_triangle[0] = xy2[0]; |
9081 | 0 | xy2_triangle[1] = xy2[1]; |
9082 | 0 | xy2_triangle[2] = xy2[2]; |
9083 | 0 | xy2_triangle[3] = xy2[0]; |
9084 | 0 | getConvexPolyIntersection(xy1, xy2_triangle, |
9085 | 0 | intersection); |
9086 | 0 | if (intersection.size() >= 3) |
9087 | 0 | { |
9088 | 0 | dfWeight = getArea(intersection); |
9089 | 0 | } |
9090 | |
|
9091 | 0 | xy2_triangle[1] = xy2[2]; |
9092 | 0 | xy2_triangle[2] = xy2[3]; |
9093 | 0 | getConvexPolyIntersection(xy1, xy2_triangle, |
9094 | 0 | intersection); |
9095 | 0 | if (intersection.size() >= 3) |
9096 | 0 | { |
9097 | 0 | dfWeight += getArea(intersection); |
9098 | 0 | } |
9099 | 0 | } |
9100 | 0 | if (dfWeight > 0.0) |
9101 | 0 | { |
9102 | 0 | if (sp.dfArea == 0) |
9103 | 0 | sp.dfArea = getArea(xy2); |
9104 | 0 | dfWeight /= sp.dfArea; |
9105 | 0 | } |
9106 | |
|
9107 | | #ifdef CHECK_SUM_WITH_GEOS |
9108 | | GEOSCoordSeq_setXY_r(hGEOSContext, seq2, 0, |
9109 | | sp.dfDstX0 - iDstX, |
9110 | | sp.dfDstY0 - iDstY); |
9111 | | GEOSCoordSeq_setXY_r(hGEOSContext, seq2, 1, |
9112 | | sp.dfDstX1 - iDstX, |
9113 | | sp.dfDstY1 - iDstY); |
9114 | | GEOSCoordSeq_setXY_r(hGEOSContext, seq2, 2, |
9115 | | sp.dfDstX2 - iDstX, |
9116 | | sp.dfDstY2 - iDstY); |
9117 | | GEOSCoordSeq_setXY_r(hGEOSContext, seq2, 3, |
9118 | | sp.dfDstX3 - iDstX, |
9119 | | sp.dfDstY3 - iDstY); |
9120 | | GEOSCoordSeq_setXY_r(hGEOSContext, seq2, 4, |
9121 | | sp.dfDstX0 - iDstX, |
9122 | | sp.dfDstY0 - iDstY); |
9123 | | |
9124 | | double dfWeightGEOS = 0.0; |
9125 | | auto hIntersection = |
9126 | | GEOSIntersection_r(hGEOSContext, hP1, hP2); |
9127 | | if (hIntersection) |
9128 | | { |
9129 | | double dfIntersArea = 0.0; |
9130 | | if (GEOSArea_r(hGEOSContext, hIntersection, |
9131 | | &dfIntersArea) && |
9132 | | dfIntersArea > 0) |
9133 | | { |
9134 | | double dfSourceArea = 0.0; |
9135 | | if (GEOSArea_r(hGEOSContext, hP2, &dfSourceArea)) |
9136 | | { |
9137 | | dfWeightGEOS = dfIntersArea / dfSourceArea; |
9138 | | } |
9139 | | } |
9140 | | GEOSGeom_destroy_r(hGEOSContext, hIntersection); |
9141 | | } |
9142 | | if (fabs(dfWeight - dfWeightGEOS) > 1e-5 * dfWeightGEOS) |
9143 | | { |
9144 | | /* ok */ printf("dfWeight=%f dfWeightGEOS=%f\n", |
9145 | | dfWeight, dfWeightGEOS); |
9146 | | printf("xy2: "); // ok |
9147 | | for (const auto &xy : xy2) |
9148 | | printf("[%f, %f], ", xy.first, xy.second); // ok |
9149 | | printf("\n"); // ok |
9150 | | printf("intersection: "); // ok |
9151 | | for (const auto &xy : intersection) |
9152 | | printf("[%f, %f], ", xy.first, xy.second); // ok |
9153 | | printf("\n"); // ok |
9154 | | } |
9155 | | #endif |
9156 | 0 | } |
9157 | 0 | if (dfWeight > 0.0) |
9158 | 0 | { |
9159 | | #ifdef DEBUG_VERBOSE |
9160 | | #if defined(DST_X) && defined(DST_Y) |
9161 | | if (iDstX + poWK->nDstXOff == DST_X && |
9162 | | iDstY + poWK->nDstYOff == DST_Y) |
9163 | | { |
9164 | | CPLDebug("WARP", |
9165 | | "iSrcX = %d, iSrcY = %d, weight =%.17g", |
9166 | | sp.iSrcX + poWK->nSrcXOff, |
9167 | | sp.iSrcY + poWK->nSrcYOff, dfWeight); |
9168 | | } |
9169 | | #endif |
9170 | | #endif |
9171 | |
|
9172 | 0 | const GPtrDiff_t iSrcOffset = |
9173 | 0 | sp.iSrcX + |
9174 | 0 | static_cast<GPtrDiff_t>(sp.iSrcY) * nSrcXSize; |
9175 | 0 | dfTotalWeight += dfWeight; |
9176 | |
|
9177 | 0 | if (poWK->pafUnifiedSrcDensity != nullptr) |
9178 | 0 | { |
9179 | 0 | dfDensity += |
9180 | 0 | dfWeight * |
9181 | 0 | double(poWK->pafUnifiedSrcDensity[iSrcOffset]); |
9182 | 0 | } |
9183 | 0 | else |
9184 | 0 | { |
9185 | 0 | dfDensity += dfWeight; |
9186 | 0 | } |
9187 | |
|
9188 | 0 | for (int iBand = 0; iBand < poWK->nBands; ++iBand) |
9189 | 0 | { |
9190 | | // Returns pixel value if it is not no data. |
9191 | 0 | double dfBandDensity; |
9192 | 0 | double dfRealValue; |
9193 | 0 | double dfImagValue; |
9194 | 0 | if (!(GWKGetPixelValue(poWK, iBand, iSrcOffset, |
9195 | 0 | &dfBandDensity, &dfRealValue, |
9196 | 0 | &dfImagValue) && |
9197 | 0 | dfBandDensity > BAND_DENSITY_THRESHOLD)) |
9198 | 0 | { |
9199 | 0 | continue; |
9200 | 0 | } |
9201 | | #ifdef DEBUG_VERBOSE |
9202 | | #if defined(DST_X) && defined(DST_Y) |
9203 | | if (iDstX + poWK->nDstXOff == DST_X && |
9204 | | iDstY + poWK->nDstYOff == DST_Y) |
9205 | | { |
9206 | | CPLDebug("WARP", "value * weight = %.17g", |
9207 | | dfRealValue * dfWeight); |
9208 | | } |
9209 | | #endif |
9210 | | #endif |
9211 | | |
9212 | 0 | adfRealValue[iBand] += dfRealValue * dfWeight; |
9213 | 0 | adfImagValue[iBand] += dfImagValue * dfWeight; |
9214 | 0 | adfBandDensity[iBand] += dfBandDensity * dfWeight; |
9215 | 0 | adfWeight[iBand] += dfWeight; |
9216 | 0 | } |
9217 | 0 | } |
9218 | 0 | } |
9219 | |
|
9220 | 0 | CPLFree(pahSourcePixel); |
9221 | | |
9222 | | /* -------------------------------------------------------------------- |
9223 | | */ |
9224 | | /* Update destination pixel value. */ |
9225 | | /* -------------------------------------------------------------------- |
9226 | | */ |
9227 | 0 | bool bHasFoundDensity = false; |
9228 | 0 | const GPtrDiff_t iDstOffset = |
9229 | 0 | iDstX + static_cast<GPtrDiff_t>(iDstY) * nDstXSize; |
9230 | 0 | for (int iBand = 0; iBand < poWK->nBands; ++iBand) |
9231 | 0 | { |
9232 | 0 | if (adfWeight[iBand] > 0) |
9233 | 0 | { |
9234 | 0 | const double dfBandDensity = |
9235 | 0 | adfBandDensity[iBand] / adfWeight[iBand]; |
9236 | 0 | if (dfBandDensity > BAND_DENSITY_THRESHOLD) |
9237 | 0 | { |
9238 | 0 | bHasFoundDensity = true; |
9239 | 0 | GWKSetPixelValue(poWK, iBand, iDstOffset, dfBandDensity, |
9240 | 0 | adfRealValue[iBand], |
9241 | 0 | adfImagValue[iBand], |
9242 | 0 | bAvoidNoDataSingleBand); |
9243 | 0 | } |
9244 | 0 | } |
9245 | 0 | } |
9246 | |
|
9247 | 0 | if (!bHasFoundDensity) |
9248 | 0 | continue; |
9249 | | |
9250 | 0 | if (!bAvoidNoDataSingleBand) |
9251 | 0 | { |
9252 | 0 | GWKAvoidNoDataMultiBand(poWK, iDstOffset); |
9253 | 0 | } |
9254 | | |
9255 | | /* -------------------------------------------------------------------- |
9256 | | */ |
9257 | | /* Update destination density/validity masks. */ |
9258 | | /* -------------------------------------------------------------------- |
9259 | | */ |
9260 | 0 | GWKOverlayDensity(poWK, iDstOffset, dfDensity / dfTotalWeight); |
9261 | |
|
9262 | 0 | if (poWK->panDstValid != nullptr) |
9263 | 0 | { |
9264 | 0 | CPLMaskSet(poWK->panDstValid, iDstOffset); |
9265 | 0 | } |
9266 | 0 | } |
9267 | | |
9268 | | /* -------------------------------------------------------------------- |
9269 | | */ |
9270 | | /* Report progress to the user, and optionally cancel out. */ |
9271 | | /* -------------------------------------------------------------------- |
9272 | | */ |
9273 | 0 | if (psJob->pfnProgress && psJob->pfnProgress(psJob)) |
9274 | 0 | break; |
9275 | 0 | } |
9276 | |
|
9277 | | #ifdef CHECK_SUM_WITH_GEOS |
9278 | | GEOSGeom_destroy_r(hGEOSContext, hP1); |
9279 | | GEOSGeom_destroy_r(hGEOSContext, hP2); |
9280 | | OGRGeometry::freeGEOSContext(hGEOSContext); |
9281 | | #endif |
9282 | 0 | CPLQuadTreeDestroy(hQuadTree); |
9283 | 0 | } |