/src/gdal/apps/gdaldem_lib.cpp
Line | Count | Source |
1 | | /****************************************************************************** |
2 | | * |
3 | | * Project: GDAL DEM Utilities |
4 | | * Purpose: |
5 | | * Authors: Matthew Perry, perrygeo at gmail.com |
6 | | * Even Rouault, even dot rouault at spatialys.com |
7 | | * Howard Butler, hobu.inc at gmail.com |
8 | | * Chris Yesson, chris dot yesson at ioz dot ac dot uk |
9 | | * |
10 | | ****************************************************************************** |
11 | | * Copyright (c) 2006, 2009 Matthew Perry |
12 | | * Copyright (c) 2009-2013, Even Rouault <even dot rouault at spatialys.com> |
13 | | * Portions derived from GRASS 4.1 (public domain) See |
14 | | * http://trac.osgeo.org/gdal/ticket/2975 for more information regarding |
15 | | * history of this code |
16 | | * |
17 | | * SPDX-License-Identifier: MIT |
18 | | **************************************************************************** |
19 | | * |
20 | | * Slope and aspect calculations based on original method for GRASS GIS 4.1 |
21 | | * by Michael Shapiro, U.S.Army Construction Engineering Research Laboratory |
22 | | * Olga Waupotitsch, U.S.Army Construction Engineering Research Laboratory |
23 | | * Marjorie Larson, U.S.Army Construction Engineering Research Laboratory |
24 | | * as found in GRASS's r.slope.aspect module. |
25 | | * |
26 | | * Horn's formula is used to find the first order derivatives in x and y |
27 | | *directions for slope and aspect calculations: Horn, B. K. P. (1981). "Hill |
28 | | *Shading and the Reflectance Map", Proceedings of the IEEE, 69(1):14-47. |
29 | | * |
30 | | * Other reference : |
31 | | * Burrough, P.A. and McDonell, R.A., 1998. Principles of Geographical |
32 | | *Information Systems. p. 190. |
33 | | * |
34 | | * Shaded relief based on original method for GRASS GIS 4.1 by Jim Westervelt, |
35 | | * U.S. Army Construction Engineering Research Laboratory |
36 | | * as found in GRASS's r.shaded.relief (formerly shade.rel.sh) module. |
37 | | * ref: "r.mapcalc: An Algebra for GIS and Image Processing", |
38 | | * by Michael Shapiro and Jim Westervelt, U.S. Army Construction Engineering |
39 | | * Research Laboratory (March/1991) |
40 | | * |
41 | | * Color table of named colors and lookup code derived from |
42 | | *src/libes/gis/named_colr.c of GRASS 4.1 |
43 | | * |
44 | | * TRI - |
45 | | * For bathymetric use cases, implements |
46 | | * Terrain Ruggedness Index is as described in Wilson et al. (2007) |
47 | | * this is based on the method of Valentine et al. (2004) |
48 | | * |
49 | | * For terrestrial use cases, implements |
50 | | * Riley, S.J., De Gloria, S.D., Elliot, R. (1999): A Terrain Ruggedness |
51 | | * that Quantifies Topographic Heterogeneity. Intermountain Journal of Science, |
52 | | *Vol.5, No.1-4, pp.23-27 |
53 | | * |
54 | | * |
55 | | * TPI - Topographic Position Index follows the description in |
56 | | * Wilson et al. (2007), following Weiss (2001). The radius is fixed |
57 | | * at 1 cell width/height |
58 | | * |
59 | | * Roughness - follows the definition in Wilson et al. (2007), which follows |
60 | | * Dartnell (2000). |
61 | | * |
62 | | * References for TRI/TPI/Roughness: |
63 | | * Dartnell, P. 2000. Applying Remote Sensing Techniques to map Seafloor |
64 | | * Geology/Habitat Relationships. Masters Thesis, San Francisco State |
65 | | * University, pp. 108. |
66 | | * Valentine, P. C., S. J. Fuller, L. A. Scully. 2004. Terrain Ruggedness |
67 | | * Analysis and Distribution of Boulder Ridges in the Stellwagen Bank National |
68 | | * Marine Sanctuary Region (poster). Galway, Ireland: 5th International |
69 | | * Symposium on Marine Geological and Biological Habitat Mapping (GeoHAB), |
70 | | * May 2004. |
71 | | * Weiss, A. D. 2001. Topographic Positions and Landforms Analysis (poster), |
72 | | * ESRI International User Conference, July 2001. San Diego, CA: ESRI. |
73 | | * Wilson, M. F. J.; O'Connell, B.; Brown, C.; Guinan, J. C. & Grehan, A. J. |
74 | | * Multiscale terrain analysis of multibeam bathymetry data for habitat mapping |
75 | | * on the continental slope Marine Geodesy, 2007, 30, 3-35 |
76 | | ****************************************************************************/ |
77 | | |
78 | | // Include before others for mingw for VSIStatBufL |
79 | | #include "cpl_conv.h" |
80 | | |
81 | | #include "cpl_port.h" |
82 | | #include "gdal_utils.h" |
83 | | #include "gdal_utils_priv.h" |
84 | | #include "commonutils.h" |
85 | | #include "gdalargumentparser.h" |
86 | | |
87 | | #include <cassert> |
88 | | #include <cfloat> |
89 | | #include <cmath> |
90 | | #include <cstdio> |
91 | | #include <cstdlib> |
92 | | #include <cstring> |
93 | | |
94 | | #include <algorithm> |
95 | | #include <array> |
96 | | #include <cmath> |
97 | | #include <limits> |
98 | | |
99 | | #include "cpl_error.h" |
100 | | #include "cpl_float.h" |
101 | | #include "cpl_progress.h" |
102 | | #include "cpl_string.h" |
103 | | #include "cpl_vsi.h" |
104 | | #include "cpl_vsi_virtual.h" |
105 | | #include "gdal.h" |
106 | | #include "gdal_priv.h" |
107 | | #include "vrtdataset.h" |
108 | | |
109 | | #if defined(__x86_64__) || defined(_M_X64) |
110 | | #define HAVE_16_SSE_REG |
111 | | #include "emmintrin.h" |
112 | | #include "gdalsse_priv.h" |
113 | | #elif defined(USE_NEON_OPTIMIZATIONS) |
114 | | #define HAVE_16_SSE_REG |
115 | | #define USE_SSE2 |
116 | | #include "include_sse2neon.h" |
117 | | #include "gdalsse_priv.h" |
118 | | #endif |
119 | | |
120 | | constexpr float kfDegToRad = static_cast<float>(M_PI / 180.0); |
121 | | constexpr float kfRadToDeg = static_cast<float>(180.0 / M_PI); |
122 | | |
123 | | typedef enum |
124 | | { |
125 | | COLOR_SELECTION_INTERPOLATE, |
126 | | COLOR_SELECTION_NEAREST_ENTRY, |
127 | | COLOR_SELECTION_EXACT_ENTRY |
128 | | } ColorSelectionMode; |
129 | | |
130 | | namespace gdal::GDALDEM |
131 | | { |
132 | | enum class GradientAlg |
133 | | { |
134 | | HORN, |
135 | | ZEVENBERGEN_THORNE, |
136 | | }; |
137 | | |
138 | | enum class TRIAlg |
139 | | { |
140 | | WILSON, |
141 | | RILEY, |
142 | | }; |
143 | | } // namespace gdal::GDALDEM |
144 | | |
145 | | using namespace gdal::GDALDEM; |
146 | | |
147 | | struct GDALDEMProcessingOptions |
148 | | { |
149 | | /*! output format. Use the short format name. */ |
150 | | std::string osFormat{}; |
151 | | |
152 | | /*! the progress function to use */ |
153 | | GDALProgressFunc pfnProgress = nullptr; |
154 | | |
155 | | /*! pointer to the progress data variable */ |
156 | | void *pProgressData = nullptr; |
157 | | |
158 | | double z = 1.0; |
159 | | double globalScale = std::numeric_limits< |
160 | | double>::quiet_NaN(); // when set, copied to xscale and yscale |
161 | | double xscale = std::numeric_limits<double>::quiet_NaN(); |
162 | | double yscale = std::numeric_limits<double>::quiet_NaN(); |
163 | | double az = 315.0; |
164 | | double alt = 45.0; |
165 | | bool bSlopeFormatUseDegrees = |
166 | | true; // false = 'percent' or true = 'degrees' |
167 | | bool bAddAlpha = false; |
168 | | bool bZeroForFlat = false; |
169 | | bool bAngleAsAzimuth = true; |
170 | | ColorSelectionMode eColorSelectionMode = COLOR_SELECTION_INTERPOLATE; |
171 | | bool bComputeAtEdges = false; |
172 | | bool bGradientAlgSpecified = false; |
173 | | GradientAlg eGradientAlg = GradientAlg::HORN; |
174 | | bool bTRIAlgSpecified = false; |
175 | | TRIAlg eTRIAlg = TRIAlg::RILEY; |
176 | | bool bCombined = false; |
177 | | bool bIgor = false; |
178 | | bool bMultiDirectional = false; |
179 | | CPLStringList aosCreationOptions{}; |
180 | | int nBand = 1; |
181 | | }; |
182 | | |
183 | | /************************************************************************/ |
184 | | /* AlgorithmParameters */ |
185 | | /************************************************************************/ |
186 | | |
187 | | struct AlgorithmParameters |
188 | | { |
189 | 0 | AlgorithmParameters() = default; |
190 | | virtual ~AlgorithmParameters(); |
191 | 0 | AlgorithmParameters(const AlgorithmParameters &) = default; |
192 | | AlgorithmParameters &operator=(const AlgorithmParameters &) = delete; |
193 | | AlgorithmParameters(AlgorithmParameters &&) = delete; |
194 | | AlgorithmParameters &operator=(AlgorithmParameters &&) = delete; |
195 | | |
196 | | virtual std::unique_ptr<AlgorithmParameters> |
197 | | CreateScaledParameters(double dfXRatio, double dfYRatio) = 0; |
198 | | }; |
199 | | |
200 | 0 | AlgorithmParameters::~AlgorithmParameters() = default; |
201 | | |
202 | | /************************************************************************/ |
203 | | /* ComputeVal() */ |
204 | | /************************************************************************/ |
205 | | |
206 | | template <class T> struct GDALGeneric3x3ProcessingAlg |
207 | | { |
208 | | typedef float (*type)(const T *pafWindow, float fDstNoDataValue, |
209 | | const AlgorithmParameters *pData); |
210 | | }; |
211 | | |
212 | | template <class T> struct GDALGeneric3x3ProcessingAlg_multisample |
213 | | { |
214 | | typedef int (*type)(const T *pafFirstLine, const T *pafSecondLine, |
215 | | const T *pafThirdLine, int nXSize, |
216 | | const AlgorithmParameters *pData, float *pafOutputBuf); |
217 | | }; |
218 | | |
219 | | template <class T> |
220 | | static float ComputeVal(bool bSrcHasNoData, T fSrcNoDataValue, |
221 | | bool bIsSrcNoDataNan, T *afWin, float fDstNoDataValue, |
222 | | typename GDALGeneric3x3ProcessingAlg<T>::type pfnAlg, |
223 | | const AlgorithmParameters *pData, bool bComputeAtEdges); |
224 | | |
225 | | template <> |
226 | | float ComputeVal(bool bSrcHasNoData, float fSrcNoDataValue, |
227 | | bool bIsSrcNoDataNan, float *afWin, float fDstNoDataValue, |
228 | | GDALGeneric3x3ProcessingAlg<float>::type pfnAlg, |
229 | | const AlgorithmParameters *pData, bool bComputeAtEdges) |
230 | 0 | { |
231 | 0 | if (bSrcHasNoData && |
232 | 0 | ((!bIsSrcNoDataNan && ARE_REAL_EQUAL(afWin[4], fSrcNoDataValue)) || |
233 | 0 | (bIsSrcNoDataNan && std::isnan(afWin[4])))) |
234 | 0 | { |
235 | 0 | return fDstNoDataValue; |
236 | 0 | } |
237 | 0 | else if (bSrcHasNoData) |
238 | 0 | { |
239 | 0 | for (int k = 0; k < 9; k++) |
240 | 0 | { |
241 | 0 | if ((!bIsSrcNoDataNan && |
242 | 0 | ARE_REAL_EQUAL(afWin[k], fSrcNoDataValue)) || |
243 | 0 | (bIsSrcNoDataNan && std::isnan(afWin[k]))) |
244 | 0 | { |
245 | 0 | if (bComputeAtEdges) |
246 | 0 | afWin[k] = afWin[4]; |
247 | 0 | else |
248 | 0 | return fDstNoDataValue; |
249 | 0 | } |
250 | 0 | } |
251 | 0 | } |
252 | | |
253 | 0 | return pfnAlg(afWin, fDstNoDataValue, pData); |
254 | 0 | } |
255 | | |
256 | | template <> |
257 | | float ComputeVal(bool bSrcHasNoData, GInt32 fSrcNoDataValue, |
258 | | bool /* bIsSrcNoDataNan */, GInt32 *afWin, |
259 | | float fDstNoDataValue, |
260 | | GDALGeneric3x3ProcessingAlg<GInt32>::type pfnAlg, |
261 | | const AlgorithmParameters *pData, bool bComputeAtEdges) |
262 | 0 | { |
263 | 0 | if (bSrcHasNoData && afWin[4] == fSrcNoDataValue) |
264 | 0 | { |
265 | 0 | return fDstNoDataValue; |
266 | 0 | } |
267 | 0 | else if (bSrcHasNoData) |
268 | 0 | { |
269 | 0 | for (int k = 0; k < 9; k++) |
270 | 0 | { |
271 | 0 | if (afWin[k] == fSrcNoDataValue) |
272 | 0 | { |
273 | 0 | if (bComputeAtEdges) |
274 | 0 | afWin[k] = afWin[4]; |
275 | 0 | else |
276 | 0 | return fDstNoDataValue; |
277 | 0 | } |
278 | 0 | } |
279 | 0 | } |
280 | | |
281 | 0 | return pfnAlg(afWin, fDstNoDataValue, pData); |
282 | 0 | } |
283 | | |
284 | | /************************************************************************/ |
285 | | /* INTERPOL() */ |
286 | | /************************************************************************/ |
287 | | |
288 | | template <class T> |
289 | | static T INTERPOL(T a, T b, int bSrcHasNodata, T fSrcNoDataValue); |
290 | | |
291 | | template <> |
292 | | float INTERPOL(float a, float b, int bSrcHasNoData, float fSrcNoDataValue) |
293 | 0 | { |
294 | 0 | if (bSrcHasNoData && (ARE_REAL_EQUAL(a, fSrcNoDataValue) || |
295 | 0 | ARE_REAL_EQUAL(b, fSrcNoDataValue))) |
296 | 0 | return fSrcNoDataValue; |
297 | 0 | const float fVal = 2 * a - b; |
298 | 0 | if (bSrcHasNoData && ARE_REAL_EQUAL(fVal, fSrcNoDataValue)) |
299 | 0 | return fSrcNoDataValue * |
300 | 0 | (1 + 3 * std::numeric_limits<float>::epsilon()); |
301 | 0 | return fVal; |
302 | 0 | } |
303 | | |
304 | | template <> |
305 | | GInt32 INTERPOL(GInt32 a, GInt32 b, int bSrcHasNoData, GInt32 fSrcNoDataValue) |
306 | 0 | { |
307 | 0 | if (bSrcHasNoData && ((a == fSrcNoDataValue) || (b == fSrcNoDataValue))) |
308 | 0 | return fSrcNoDataValue; |
309 | 0 | const int nVal = static_cast<int>( |
310 | 0 | std::clamp<int64_t>(2 * static_cast<int64_t>(a) - b, INT_MIN, INT_MAX)); |
311 | 0 | if (bSrcHasNoData && fSrcNoDataValue == nVal) |
312 | 0 | return nVal == INT_MAX ? INT_MAX - 1 : nVal + 1; |
313 | 0 | return nVal; |
314 | 0 | } |
315 | | |
316 | | /************************************************************************/ |
317 | | /* GDALGeneric3x3Processing() */ |
318 | | /************************************************************************/ |
319 | | |
320 | | template <class T> |
321 | | static CPLErr GDALGeneric3x3Processing( |
322 | | GDALRasterBandH hSrcBand, GDALRasterBandH hDstBand, |
323 | | typename GDALGeneric3x3ProcessingAlg<T>::type pfnAlg, |
324 | | typename GDALGeneric3x3ProcessingAlg_multisample<T>::type |
325 | | pfnAlg_multisample, |
326 | | std::unique_ptr<AlgorithmParameters> pData, bool bComputeAtEdges, |
327 | | GDALProgressFunc pfnProgress, void *pProgressData) |
328 | 0 | { |
329 | 0 | if (pfnProgress == nullptr) |
330 | 0 | pfnProgress = GDALDummyProgress; |
331 | | |
332 | | /* -------------------------------------------------------------------- */ |
333 | | /* Initialize progress counter. */ |
334 | | /* -------------------------------------------------------------------- */ |
335 | 0 | if (!pfnProgress(0.0, nullptr, pProgressData)) |
336 | 0 | { |
337 | 0 | CPLError(CE_Failure, CPLE_UserInterrupt, "User terminated"); |
338 | 0 | return CE_Failure; |
339 | 0 | } |
340 | | |
341 | 0 | const int nXSize = GDALGetRasterBandXSize(hSrcBand); |
342 | 0 | const int nYSize = GDALGetRasterBandYSize(hSrcBand); |
343 | | |
344 | | // 1 line destination buffer. |
345 | 0 | float *pafOutputBuf = |
346 | 0 | static_cast<float *>(VSI_MALLOC2_VERBOSE(sizeof(float), nXSize)); |
347 | | // 3 line rotating source buffer. |
348 | 0 | T *pafThreeLineWin = |
349 | 0 | static_cast<T *>(VSI_MALLOC2_VERBOSE(3 * sizeof(T), nXSize)); |
350 | 0 | if (pafOutputBuf == nullptr || pafThreeLineWin == nullptr) |
351 | 0 | { |
352 | 0 | VSIFree(pafOutputBuf); |
353 | 0 | VSIFree(pafThreeLineWin); |
354 | 0 | return CE_Failure; |
355 | 0 | } |
356 | | |
357 | 0 | GDALDataType eReadDT; |
358 | 0 | int bSrcHasNoData = FALSE; |
359 | 0 | const double dfNoDataValue = |
360 | 0 | GDALGetRasterNoDataValue(hSrcBand, &bSrcHasNoData); |
361 | |
|
362 | 0 | bool bIsSrcNoDataNan = false; |
363 | 0 | T fSrcNoDataValue = 0; |
364 | | if constexpr (std::numeric_limits<T>::is_integer) |
365 | 0 | { |
366 | 0 | eReadDT = GDT_Int32; |
367 | 0 | if (bSrcHasNoData) |
368 | 0 | { |
369 | 0 | GDALDataType eSrcDT = GDALGetRasterDataType(hSrcBand); |
370 | 0 | CPLAssert(eSrcDT == GDT_UInt8 || eSrcDT == GDT_UInt16 || |
371 | 0 | eSrcDT == GDT_Int16); |
372 | 0 | const int nMinVal = (eSrcDT == GDT_UInt8) ? 0 |
373 | 0 | : (eSrcDT == GDT_UInt16) ? 0 |
374 | 0 | : -32768; |
375 | 0 | const int nMaxVal = (eSrcDT == GDT_UInt8) ? 255 |
376 | 0 | : (eSrcDT == GDT_UInt16) ? 65535 |
377 | 0 | : 32767; |
378 | |
|
379 | 0 | if (fabs(dfNoDataValue - floor(dfNoDataValue + 0.5)) < 1e-2 && |
380 | 0 | dfNoDataValue >= nMinVal && dfNoDataValue <= nMaxVal) |
381 | 0 | { |
382 | 0 | fSrcNoDataValue = static_cast<T>(floor(dfNoDataValue + 0.5)); |
383 | 0 | } |
384 | 0 | else |
385 | 0 | { |
386 | 0 | bSrcHasNoData = FALSE; |
387 | 0 | } |
388 | 0 | } |
389 | | } |
390 | | else |
391 | 0 | { |
392 | 0 | eReadDT = GDT_Float32; |
393 | 0 | fSrcNoDataValue = static_cast<T>(dfNoDataValue); |
394 | 0 | bIsSrcNoDataNan = bSrcHasNoData && std::isnan(dfNoDataValue); |
395 | 0 | } |
396 | | |
397 | 0 | int bDstHasNoData = FALSE; |
398 | 0 | float fDstNoDataValue = |
399 | 0 | static_cast<float>(GDALGetRasterNoDataValue(hDstBand, &bDstHasNoData)); |
400 | 0 | if (!bDstHasNoData) |
401 | 0 | fDstNoDataValue = 0.0; |
402 | |
|
403 | 0 | int nLine1Off = 0; |
404 | 0 | int nLine2Off = nXSize; |
405 | 0 | int nLine3Off = 2 * nXSize; |
406 | | |
407 | | // Move a 3x3 pafWindow over each cell |
408 | | // (where the cell in question is #4) |
409 | | // |
410 | | // 0 1 2 |
411 | | // 3 4 5 |
412 | | // 6 7 8 |
413 | | |
414 | | /* Preload the first 2 lines */ |
415 | |
|
416 | 0 | bool abLineHasNoDataValue[3] = {CPL_TO_BOOL(bSrcHasNoData), |
417 | 0 | CPL_TO_BOOL(bSrcHasNoData), |
418 | 0 | CPL_TO_BOOL(bSrcHasNoData)}; |
419 | |
|
420 | 0 | for (int i = 0; i < 2 && i < nYSize; i++) |
421 | 0 | { |
422 | 0 | if (GDALRasterIO(hSrcBand, GF_Read, 0, i, nXSize, 1, |
423 | 0 | pafThreeLineWin + i * nXSize, nXSize, 1, eReadDT, 0, |
424 | 0 | 0) != CE_None) |
425 | 0 | { |
426 | 0 | CPLFree(pafOutputBuf); |
427 | 0 | CPLFree(pafThreeLineWin); |
428 | |
|
429 | 0 | return CE_Failure; |
430 | 0 | } |
431 | 0 | if (bSrcHasNoData) |
432 | 0 | { |
433 | 0 | abLineHasNoDataValue[i] = false; |
434 | | if constexpr (std::numeric_limits<T>::is_integer) |
435 | 0 | { |
436 | 0 | for (int iX = 0; iX < nXSize; iX++) |
437 | 0 | { |
438 | 0 | if (pafThreeLineWin[i * nXSize + iX] == fSrcNoDataValue) |
439 | 0 | { |
440 | 0 | abLineHasNoDataValue[i] = true; |
441 | 0 | break; |
442 | 0 | } |
443 | 0 | } |
444 | | } |
445 | | else |
446 | 0 | { |
447 | 0 | for (int iX = 0; iX < nXSize; iX++) |
448 | 0 | { |
449 | 0 | if (pafThreeLineWin[i * nXSize + iX] == fSrcNoDataValue || |
450 | 0 | std::isnan(pafThreeLineWin[i * nXSize + iX])) |
451 | 0 | { |
452 | 0 | abLineHasNoDataValue[i] = true; |
453 | 0 | break; |
454 | 0 | } |
455 | 0 | } |
456 | 0 | } |
457 | 0 | } |
458 | 0 | } |
459 | | |
460 | 0 | CPLErr eErr = CE_None; |
461 | 0 | if (bComputeAtEdges && nXSize >= 2 && nYSize >= 2) |
462 | 0 | { |
463 | 0 | for (int j = 0; j < nXSize; j++) |
464 | 0 | { |
465 | 0 | int jmin = (j == 0) ? j : j - 1; |
466 | 0 | int jmax = (j == nXSize - 1) ? j : j + 1; |
467 | |
|
468 | 0 | T afWin[9] = { |
469 | 0 | INTERPOL(pafThreeLineWin[jmin], pafThreeLineWin[nXSize + jmin], |
470 | 0 | bSrcHasNoData, fSrcNoDataValue), |
471 | 0 | INTERPOL(pafThreeLineWin[j], pafThreeLineWin[nXSize + j], |
472 | 0 | bSrcHasNoData, fSrcNoDataValue), |
473 | 0 | INTERPOL(pafThreeLineWin[jmax], pafThreeLineWin[nXSize + jmax], |
474 | 0 | bSrcHasNoData, fSrcNoDataValue), |
475 | 0 | pafThreeLineWin[jmin], |
476 | 0 | pafThreeLineWin[j], |
477 | 0 | pafThreeLineWin[jmax], |
478 | 0 | pafThreeLineWin[nXSize + jmin], |
479 | 0 | pafThreeLineWin[nXSize + j], |
480 | 0 | pafThreeLineWin[nXSize + jmax]}; |
481 | 0 | pafOutputBuf[j] = ComputeVal( |
482 | 0 | CPL_TO_BOOL(bSrcHasNoData), fSrcNoDataValue, bIsSrcNoDataNan, |
483 | 0 | afWin, fDstNoDataValue, pfnAlg, pData.get(), bComputeAtEdges); |
484 | 0 | } |
485 | 0 | eErr = GDALRasterIO(hDstBand, GF_Write, 0, 0, nXSize, 1, pafOutputBuf, |
486 | 0 | nXSize, 1, GDT_Float32, 0, 0); |
487 | 0 | } |
488 | 0 | else |
489 | 0 | { |
490 | | // Exclude the edges |
491 | 0 | for (int j = 0; j < nXSize; j++) |
492 | 0 | { |
493 | 0 | pafOutputBuf[j] = fDstNoDataValue; |
494 | 0 | } |
495 | 0 | eErr = GDALRasterIO(hDstBand, GF_Write, 0, 0, nXSize, 1, pafOutputBuf, |
496 | 0 | nXSize, 1, GDT_Float32, 0, 0); |
497 | |
|
498 | 0 | if (eErr == CE_None && nYSize > 1) |
499 | 0 | { |
500 | 0 | eErr = GDALRasterIO(hDstBand, GF_Write, 0, nYSize - 1, nXSize, 1, |
501 | 0 | pafOutputBuf, nXSize, 1, GDT_Float32, 0, 0); |
502 | 0 | } |
503 | 0 | } |
504 | 0 | if (eErr != CE_None) |
505 | 0 | { |
506 | 0 | CPLFree(pafOutputBuf); |
507 | 0 | CPLFree(pafThreeLineWin); |
508 | |
|
509 | 0 | return eErr; |
510 | 0 | } |
511 | | |
512 | 0 | int i = 1; // Used after for. |
513 | 0 | for (; i < nYSize - 1; i++) |
514 | 0 | { |
515 | | /* Read third line of the line buffer */ |
516 | 0 | eErr = |
517 | 0 | GDALRasterIO(hSrcBand, GF_Read, 0, i + 1, nXSize, 1, |
518 | 0 | pafThreeLineWin + nLine3Off, nXSize, 1, eReadDT, 0, 0); |
519 | 0 | if (eErr != CE_None) |
520 | 0 | { |
521 | 0 | CPLFree(pafOutputBuf); |
522 | 0 | CPLFree(pafThreeLineWin); |
523 | |
|
524 | 0 | return eErr; |
525 | 0 | } |
526 | | |
527 | | // In case none of the 3 lines have nodata values, then no need to |
528 | | // check it in ComputeVal() |
529 | 0 | bool bOneOfThreeLinesHasNoData = CPL_TO_BOOL(bSrcHasNoData); |
530 | 0 | if (bSrcHasNoData) |
531 | 0 | { |
532 | | if constexpr (std::numeric_limits<T>::is_integer) |
533 | 0 | { |
534 | 0 | bool bLastLineHasNoDataValue = false; |
535 | 0 | int iX = 0; |
536 | 0 | for (; iX + 3 < nXSize; iX += 4) |
537 | 0 | { |
538 | 0 | if (pafThreeLineWin[nLine3Off + iX] == fSrcNoDataValue || |
539 | 0 | pafThreeLineWin[nLine3Off + iX + 1] == |
540 | 0 | fSrcNoDataValue || |
541 | 0 | pafThreeLineWin[nLine3Off + iX + 2] == |
542 | 0 | fSrcNoDataValue || |
543 | 0 | pafThreeLineWin[nLine3Off + iX + 3] == fSrcNoDataValue) |
544 | 0 | { |
545 | 0 | bLastLineHasNoDataValue = true; |
546 | 0 | break; |
547 | 0 | } |
548 | 0 | } |
549 | 0 | if (!bLastLineHasNoDataValue) |
550 | 0 | { |
551 | 0 | for (; iX < nXSize; iX++) |
552 | 0 | { |
553 | 0 | if (pafThreeLineWin[nLine3Off + iX] == fSrcNoDataValue) |
554 | 0 | { |
555 | 0 | bLastLineHasNoDataValue = true; |
556 | 0 | } |
557 | 0 | } |
558 | 0 | } |
559 | 0 | abLineHasNoDataValue[nLine3Off / nXSize] = |
560 | 0 | bLastLineHasNoDataValue; |
561 | |
|
562 | 0 | bOneOfThreeLinesHasNoData = abLineHasNoDataValue[0] || |
563 | 0 | abLineHasNoDataValue[1] || |
564 | 0 | abLineHasNoDataValue[2]; |
565 | | } |
566 | | else |
567 | 0 | { |
568 | 0 | bool bLastLineHasNoDataValue = false; |
569 | 0 | int iX = 0; |
570 | 0 | for (; iX + 3 < nXSize; iX += 4) |
571 | 0 | { |
572 | 0 | if (pafThreeLineWin[nLine3Off + iX] == fSrcNoDataValue || |
573 | 0 | std::isnan(pafThreeLineWin[nLine3Off + iX]) || |
574 | 0 | pafThreeLineWin[nLine3Off + iX + 1] == |
575 | 0 | fSrcNoDataValue || |
576 | 0 | std::isnan(pafThreeLineWin[nLine3Off + iX + 1]) || |
577 | 0 | pafThreeLineWin[nLine3Off + iX + 2] == |
578 | 0 | fSrcNoDataValue || |
579 | 0 | std::isnan(pafThreeLineWin[nLine3Off + iX + 2]) || |
580 | 0 | pafThreeLineWin[nLine3Off + iX + 3] == |
581 | 0 | fSrcNoDataValue || |
582 | 0 | std::isnan(pafThreeLineWin[nLine3Off + iX + 3])) |
583 | 0 | { |
584 | 0 | bLastLineHasNoDataValue = true; |
585 | 0 | break; |
586 | 0 | } |
587 | 0 | } |
588 | 0 | if (!bLastLineHasNoDataValue) |
589 | 0 | { |
590 | 0 | for (; iX < nXSize; iX++) |
591 | 0 | { |
592 | 0 | if (pafThreeLineWin[nLine3Off + iX] == |
593 | 0 | fSrcNoDataValue || |
594 | 0 | std::isnan(pafThreeLineWin[nLine3Off + iX])) |
595 | 0 | { |
596 | 0 | bLastLineHasNoDataValue = true; |
597 | 0 | } |
598 | 0 | } |
599 | 0 | } |
600 | 0 | abLineHasNoDataValue[nLine3Off / nXSize] = |
601 | 0 | bLastLineHasNoDataValue; |
602 | |
|
603 | 0 | bOneOfThreeLinesHasNoData = abLineHasNoDataValue[0] || |
604 | 0 | abLineHasNoDataValue[1] || |
605 | 0 | abLineHasNoDataValue[2]; |
606 | 0 | } |
607 | 0 | } |
608 | |
|
609 | 0 | if (bComputeAtEdges && nXSize >= 2) |
610 | 0 | { |
611 | 0 | int j = 0; |
612 | 0 | T afWin[9] = {INTERPOL(pafThreeLineWin[nLine1Off + j], |
613 | 0 | pafThreeLineWin[nLine1Off + j + 1], |
614 | 0 | bSrcHasNoData, fSrcNoDataValue), |
615 | 0 | pafThreeLineWin[nLine1Off + j], |
616 | 0 | pafThreeLineWin[nLine1Off + j + 1], |
617 | 0 | INTERPOL(pafThreeLineWin[nLine2Off + j], |
618 | 0 | pafThreeLineWin[nLine2Off + j + 1], |
619 | 0 | bSrcHasNoData, fSrcNoDataValue), |
620 | 0 | pafThreeLineWin[nLine2Off + j], |
621 | 0 | pafThreeLineWin[nLine2Off + j + 1], |
622 | 0 | INTERPOL(pafThreeLineWin[nLine3Off + j], |
623 | 0 | pafThreeLineWin[nLine3Off + j + 1], |
624 | 0 | bSrcHasNoData, fSrcNoDataValue), |
625 | 0 | pafThreeLineWin[nLine3Off + j], |
626 | 0 | pafThreeLineWin[nLine3Off + j + 1]}; |
627 | |
|
628 | 0 | pafOutputBuf[j] = ComputeVal( |
629 | 0 | bOneOfThreeLinesHasNoData, fSrcNoDataValue, bIsSrcNoDataNan, |
630 | 0 | afWin, fDstNoDataValue, pfnAlg, pData.get(), bComputeAtEdges); |
631 | 0 | } |
632 | 0 | else |
633 | 0 | { |
634 | | // Exclude the edges |
635 | 0 | pafOutputBuf[0] = fDstNoDataValue; |
636 | 0 | } |
637 | |
|
638 | 0 | int j = 1; |
639 | 0 | if (pfnAlg_multisample && !bOneOfThreeLinesHasNoData) |
640 | 0 | { |
641 | 0 | j = pfnAlg_multisample( |
642 | 0 | pafThreeLineWin + nLine1Off, pafThreeLineWin + nLine2Off, |
643 | 0 | pafThreeLineWin + nLine3Off, nXSize, pData.get(), pafOutputBuf); |
644 | 0 | } |
645 | |
|
646 | 0 | for (; j < nXSize - 1; j++) |
647 | 0 | { |
648 | 0 | T afWin[9] = {pafThreeLineWin[nLine1Off + j - 1], |
649 | 0 | pafThreeLineWin[nLine1Off + j], |
650 | 0 | pafThreeLineWin[nLine1Off + j + 1], |
651 | 0 | pafThreeLineWin[nLine2Off + j - 1], |
652 | 0 | pafThreeLineWin[nLine2Off + j], |
653 | 0 | pafThreeLineWin[nLine2Off + j + 1], |
654 | 0 | pafThreeLineWin[nLine3Off + j - 1], |
655 | 0 | pafThreeLineWin[nLine3Off + j], |
656 | 0 | pafThreeLineWin[nLine3Off + j + 1]}; |
657 | |
|
658 | 0 | pafOutputBuf[j] = ComputeVal( |
659 | 0 | bOneOfThreeLinesHasNoData, fSrcNoDataValue, bIsSrcNoDataNan, |
660 | 0 | afWin, fDstNoDataValue, pfnAlg, pData.get(), bComputeAtEdges); |
661 | 0 | } |
662 | |
|
663 | 0 | if (bComputeAtEdges && nXSize >= 2) |
664 | 0 | { |
665 | 0 | j = nXSize - 1; |
666 | |
|
667 | 0 | T afWin[9] = {pafThreeLineWin[nLine1Off + j - 1], |
668 | 0 | pafThreeLineWin[nLine1Off + j], |
669 | 0 | INTERPOL(pafThreeLineWin[nLine1Off + j], |
670 | 0 | pafThreeLineWin[nLine1Off + j - 1], |
671 | 0 | bSrcHasNoData, fSrcNoDataValue), |
672 | 0 | pafThreeLineWin[nLine2Off + j - 1], |
673 | 0 | pafThreeLineWin[nLine2Off + j], |
674 | 0 | INTERPOL(pafThreeLineWin[nLine2Off + j], |
675 | 0 | pafThreeLineWin[nLine2Off + j - 1], |
676 | 0 | bSrcHasNoData, fSrcNoDataValue), |
677 | 0 | pafThreeLineWin[nLine3Off + j - 1], |
678 | 0 | pafThreeLineWin[nLine3Off + j], |
679 | 0 | INTERPOL(pafThreeLineWin[nLine3Off + j], |
680 | 0 | pafThreeLineWin[nLine3Off + j - 1], |
681 | 0 | bSrcHasNoData, fSrcNoDataValue)}; |
682 | |
|
683 | 0 | pafOutputBuf[j] = ComputeVal( |
684 | 0 | bOneOfThreeLinesHasNoData, fSrcNoDataValue, bIsSrcNoDataNan, |
685 | 0 | afWin, fDstNoDataValue, pfnAlg, pData.get(), bComputeAtEdges); |
686 | 0 | } |
687 | 0 | else |
688 | 0 | { |
689 | | // Exclude the edges |
690 | 0 | if (nXSize > 1) |
691 | 0 | pafOutputBuf[nXSize - 1] = fDstNoDataValue; |
692 | 0 | } |
693 | | |
694 | | /* ----------------------------------------- |
695 | | * Write Line to Raster |
696 | | */ |
697 | 0 | eErr = GDALRasterIO(hDstBand, GF_Write, 0, i, nXSize, 1, pafOutputBuf, |
698 | 0 | nXSize, 1, GDT_Float32, 0, 0); |
699 | 0 | if (eErr != CE_None) |
700 | 0 | { |
701 | 0 | CPLFree(pafOutputBuf); |
702 | 0 | CPLFree(pafThreeLineWin); |
703 | |
|
704 | 0 | return eErr; |
705 | 0 | } |
706 | | |
707 | 0 | if (!pfnProgress(1.0 * (i + 1) / nYSize, nullptr, pProgressData)) |
708 | 0 | { |
709 | 0 | CPLError(CE_Failure, CPLE_UserInterrupt, "User terminated"); |
710 | 0 | eErr = CE_Failure; |
711 | |
|
712 | 0 | CPLFree(pafOutputBuf); |
713 | 0 | CPLFree(pafThreeLineWin); |
714 | |
|
715 | 0 | return eErr; |
716 | 0 | } |
717 | | |
718 | 0 | const int nTemp = nLine1Off; |
719 | 0 | nLine1Off = nLine2Off; |
720 | 0 | nLine2Off = nLine3Off; |
721 | 0 | nLine3Off = nTemp; |
722 | 0 | } |
723 | | |
724 | 0 | if (bComputeAtEdges && nXSize >= 2 && nYSize >= 2) |
725 | 0 | { |
726 | 0 | for (int j = 0; j < nXSize; j++) |
727 | 0 | { |
728 | 0 | int jmin = (j == 0) ? j : j - 1; |
729 | 0 | int jmax = (j == nXSize - 1) ? j : j + 1; |
730 | |
|
731 | 0 | T afWin[9] = { |
732 | 0 | pafThreeLineWin[nLine1Off + jmin], |
733 | 0 | pafThreeLineWin[nLine1Off + j], |
734 | 0 | pafThreeLineWin[nLine1Off + jmax], |
735 | 0 | pafThreeLineWin[nLine2Off + jmin], |
736 | 0 | pafThreeLineWin[nLine2Off + j], |
737 | 0 | pafThreeLineWin[nLine2Off + jmax], |
738 | 0 | INTERPOL(pafThreeLineWin[nLine2Off + jmin], |
739 | 0 | pafThreeLineWin[nLine1Off + jmin], bSrcHasNoData, |
740 | 0 | fSrcNoDataValue), |
741 | 0 | INTERPOL(pafThreeLineWin[nLine2Off + j], |
742 | 0 | pafThreeLineWin[nLine1Off + j], bSrcHasNoData, |
743 | 0 | fSrcNoDataValue), |
744 | 0 | INTERPOL(pafThreeLineWin[nLine2Off + jmax], |
745 | 0 | pafThreeLineWin[nLine1Off + jmax], bSrcHasNoData, |
746 | 0 | fSrcNoDataValue), |
747 | 0 | }; |
748 | |
|
749 | 0 | pafOutputBuf[j] = ComputeVal( |
750 | 0 | CPL_TO_BOOL(bSrcHasNoData), fSrcNoDataValue, bIsSrcNoDataNan, |
751 | 0 | afWin, fDstNoDataValue, pfnAlg, pData.get(), bComputeAtEdges); |
752 | 0 | } |
753 | 0 | eErr = GDALRasterIO(hDstBand, GF_Write, 0, i, nXSize, 1, pafOutputBuf, |
754 | 0 | nXSize, 1, GDT_Float32, 0, 0); |
755 | 0 | if (eErr != CE_None) |
756 | 0 | { |
757 | 0 | CPLFree(pafOutputBuf); |
758 | 0 | CPLFree(pafThreeLineWin); |
759 | |
|
760 | 0 | return eErr; |
761 | 0 | } |
762 | 0 | } |
763 | | |
764 | 0 | pfnProgress(1.0, nullptr, pProgressData); |
765 | 0 | eErr = CE_None; |
766 | |
|
767 | 0 | CPLFree(pafOutputBuf); |
768 | 0 | CPLFree(pafThreeLineWin); |
769 | |
|
770 | 0 | return eErr; |
771 | 0 | } Unexecuted instantiation: gdaldem_lib.cpp:CPLErr GDALGeneric3x3Processing<int>(void*, void*, GDALGeneric3x3ProcessingAlg<int>::type, GDALGeneric3x3ProcessingAlg_multisample<int>::type, std::__1::unique_ptr<AlgorithmParameters, std::__1::default_delete<AlgorithmParameters> >, bool, int (*)(double, char const*, void*), void*) Unexecuted instantiation: gdaldem_lib.cpp:CPLErr GDALGeneric3x3Processing<float>(void*, void*, GDALGeneric3x3ProcessingAlg<float>::type, GDALGeneric3x3ProcessingAlg_multisample<float>::type, std::__1::unique_ptr<AlgorithmParameters, std::__1::default_delete<AlgorithmParameters> >, bool, int (*)(double, char const*, void*), void*) |
772 | | |
773 | | /************************************************************************/ |
774 | | /* GradientAlg */ |
775 | | /************************************************************************/ |
776 | | |
777 | | template <class T, GradientAlg alg> struct Gradient |
778 | | { |
779 | | static void inline calc(const T *afWin, float inv_ewres, float inv_nsres, |
780 | | float &x, float &y); |
781 | | }; |
782 | | |
783 | | template <class T> struct Gradient<T, GradientAlg::HORN> |
784 | | { |
785 | | static void calc(const T *afWin, float inv_ewres, float inv_nsres, float &x, |
786 | | float &y) |
787 | 0 | { |
788 | 0 | x = float((afWin[0] + afWin[3] + afWin[3] + afWin[6]) - |
789 | 0 | (afWin[2] + afWin[5] + afWin[5] + afWin[8])) * |
790 | 0 | inv_ewres; |
791 | |
|
792 | 0 | y = float((afWin[6] + afWin[7] + afWin[7] + afWin[8]) - |
793 | 0 | (afWin[0] + afWin[1] + afWin[1] + afWin[2])) * |
794 | 0 | inv_nsres; |
795 | 0 | } Unexecuted instantiation: Gradient<float, (gdal::GDALDEM::GradientAlg)0>::calc(float const*, float, float, float&, float&) Unexecuted instantiation: Gradient<int, (gdal::GDALDEM::GradientAlg)0>::calc(int const*, float, float, float&, float&) |
796 | | }; |
797 | | |
798 | | template <class T> struct Gradient<T, GradientAlg::ZEVENBERGEN_THORNE> |
799 | | { |
800 | | static void calc(const T *afWin, float inv_ewres, float inv_nsres, float &x, |
801 | | float &y) |
802 | 0 | { |
803 | 0 | x = float(afWin[3] - afWin[5]) * inv_ewres; |
804 | 0 | y = float(afWin[7] - afWin[1]) * inv_nsres; |
805 | 0 | } Unexecuted instantiation: Gradient<float, (gdal::GDALDEM::GradientAlg)1>::calc(float const*, float, float, float&, float&) Unexecuted instantiation: Gradient<int, (gdal::GDALDEM::GradientAlg)1>::calc(int const*, float, float, float&, float&) |
806 | | }; |
807 | | |
808 | | /************************************************************************/ |
809 | | /* GDALHillshade() */ |
810 | | /************************************************************************/ |
811 | | |
812 | | struct GDALHillshadeAlgData final : public AlgorithmParameters |
813 | | { |
814 | | float inv_nsres_yscale = 0; |
815 | | float inv_ewres_xscale = 0; |
816 | | float sin_altRadians = 0; |
817 | | float cos_alt_mul_z = 0; |
818 | | float azRadians = 0; |
819 | | float cos_az_mul_cos_alt_mul_z = 0; |
820 | | float sin_az_mul_cos_alt_mul_z = 0; |
821 | | float square_z = 0; |
822 | | float sin_altRadians_mul_254 = 0; |
823 | | float cos_az_mul_cos_alt_mul_z_mul_254 = 0; |
824 | | float sin_az_mul_cos_alt_mul_z_mul_254 = 0; |
825 | | |
826 | | float square_z_mul_square_inv_res = 0; |
827 | | float cos_az_mul_cos_alt_mul_z_mul_254_mul_inv_res = 0; |
828 | | float sin_az_mul_cos_alt_mul_z_mul_254_mul_inv_res = 0; |
829 | | float z_factor = 0; |
830 | | |
831 | | std::unique_ptr<AlgorithmParameters> |
832 | | CreateScaledParameters(double dfXRatio, double dfYRatio) override; |
833 | | }; |
834 | | |
835 | | std::unique_ptr<AlgorithmParameters> |
836 | | GDALHillshadeAlgData::CreateScaledParameters(double dfXRatio, double dfYRatio) |
837 | 0 | { |
838 | 0 | auto newData = std::make_unique<GDALHillshadeAlgData>(*this); |
839 | 0 | const float fXRatio = static_cast<float>(dfXRatio); |
840 | 0 | const float fYRatio = static_cast<float>(dfYRatio); |
841 | 0 | newData->inv_ewres_xscale /= fXRatio; |
842 | 0 | newData->inv_nsres_yscale /= fYRatio; |
843 | |
|
844 | 0 | newData->square_z_mul_square_inv_res /= fXRatio * fXRatio; |
845 | 0 | newData->cos_az_mul_cos_alt_mul_z_mul_254_mul_inv_res /= fXRatio; |
846 | 0 | newData->sin_az_mul_cos_alt_mul_z_mul_254_mul_inv_res /= fXRatio; |
847 | |
|
848 | 0 | return newData; |
849 | 0 | } |
850 | | |
851 | | /* Unoptimized formulas are : |
852 | | x = psData->z*((afWin[0] + afWin[3] + afWin[3] + afWin[6]) - |
853 | | (afWin[2] + afWin[5] + afWin[5] + afWin[8])) / |
854 | | (8.0 * psData->ewres * psData->xscale); |
855 | | |
856 | | y = psData->z*((afWin[6] + afWin[7] + afWin[7] + afWin[8]) - |
857 | | (afWin[0] + afWin[1] + afWin[1] + afWin[2])) / |
858 | | (8.0 * psData->nsres * psData->yscale); |
859 | | |
860 | | slope = atan(sqrt(x*x + y*y)); |
861 | | |
862 | | aspect = atan2(y,x); |
863 | | |
864 | | cang = sin(alt) * cos(slope) + |
865 | | cos(alt) * sin(slope) * |
866 | | cos(az - M_PI/2 - aspect); |
867 | | |
868 | | We can avoid a lot of trigonometric computations: |
869 | | |
870 | | since cos(atan(x)) = 1 / sqrt(1+x^2) |
871 | | ==> cos(slope) = 1 / sqrt(1+ x*x+y*y) |
872 | | |
873 | | and sin(atan(x)) = x / sqrt(1+x^2) |
874 | | ==> sin(slope) = sqrt(x*x + y*y) / sqrt(1+ x*x+y*y) |
875 | | |
876 | | and cos(az - M_PI/2 - aspect) |
877 | | = cos(-az + M_PI/2 + aspect) |
878 | | = cos(M_PI/2 - (az - aspect)) |
879 | | = sin(az - aspect) |
880 | | = -sin(aspect-az) |
881 | | |
882 | | ==> cang = (sin(alt) - cos(alt) * sqrt(x*x + y*y) * sin(aspect-az)) / |
883 | | sqrt(1+ x*x+y*y) |
884 | | |
885 | | But: |
886 | | sin(aspect - az) = sin(aspect)*cos(az) - cos(aspect)*sin(az)) |
887 | | |
888 | | and as sin(aspect)=sin(atan2(y,x)) = y / sqrt(xx_plus_yy) |
889 | | and cos(aspect)=cos(atan2(y,x)) = x / sqrt(xx_plus_yy) |
890 | | |
891 | | sin(aspect - az) = (y * cos(az) - x * sin(az)) / sqrt(xx_plus_yy) |
892 | | |
893 | | so we get a final formula with just one transcendental function |
894 | | (reciprocal of square root): |
895 | | |
896 | | cang = (psData->sin_altRadians - |
897 | | (y * psData->cos_az_mul_cos_alt_mul_z - |
898 | | x * psData->sin_az_mul_cos_alt_mul_z)) / |
899 | | sqrt(1 + psData->square_z * xx_plus_yy); |
900 | | */ |
901 | | |
902 | | #ifdef HAVE_SSE2 |
903 | | inline float ApproxADivByInvSqrtB(float a, float b) |
904 | | { |
905 | | __m128 regB = _mm_load_ss(&b); |
906 | | __m128 regB_half = _mm_mul_ss(regB, _mm_set1_ps(0.5f)); |
907 | | // Compute rough approximation of 1 / sqrt(b) with _mm_rsqrt_ss |
908 | | regB = _mm_rsqrt_ss(regB); |
909 | | // And perform one step of Newton-Raphson approximation to improve it |
910 | | // approx_inv_sqrt_x = approx_inv_sqrt_x*(1.5 - |
911 | | // 0.5*x*approx_inv_sqrt_x*approx_inv_sqrt_x); |
912 | | regB = _mm_mul_ss( |
913 | | regB, _mm_sub_ss(_mm_set1_ps(1.5f), |
914 | | _mm_mul_ss(regB_half, _mm_mul_ss(regB, regB)))); |
915 | | float fOut; |
916 | | _mm_store_ss(&fOut, regB); |
917 | | return a * fOut; |
918 | | } |
919 | | #else |
920 | | inline float ApproxADivByInvSqrtB(float a, float b) |
921 | 0 | { |
922 | 0 | return a / std::sqrt(b); |
923 | 0 | } |
924 | | #endif |
925 | | |
926 | | static float NormalizeAngle(float angle, float normalizer) |
927 | 0 | { |
928 | 0 | angle = std::fmod(angle, normalizer); |
929 | 0 | if (angle < 0) |
930 | 0 | angle = normalizer + angle; |
931 | |
|
932 | 0 | return angle; |
933 | 0 | } |
934 | | |
935 | | static float DifferenceBetweenAngles(float angle1, float angle2, |
936 | | float normalizer) |
937 | 0 | { |
938 | 0 | float diff = |
939 | 0 | NormalizeAngle(angle1, normalizer) - NormalizeAngle(angle2, normalizer); |
940 | 0 | diff = std::abs(diff); |
941 | 0 | if (diff > normalizer * 0.5f) |
942 | 0 | diff = normalizer - diff; |
943 | 0 | return diff; |
944 | 0 | } |
945 | | |
946 | | template <class T, GradientAlg alg> |
947 | | static float GDALHillshadeIgorAlg(const T *afWin, float /*fDstNoDataValue*/, |
948 | | const AlgorithmParameters *pData) |
949 | 0 | { |
950 | 0 | const GDALHillshadeAlgData *psData = |
951 | 0 | static_cast<const GDALHillshadeAlgData *>(pData); |
952 | |
|
953 | 0 | float slopeDegrees; |
954 | 0 | if (alg == GradientAlg::HORN) |
955 | 0 | { |
956 | 0 | const auto dx = |
957 | 0 | static_cast<float>((afWin[0] + afWin[3] + afWin[3] + afWin[6]) - |
958 | 0 | (afWin[2] + afWin[5] + afWin[5] + afWin[8])) * |
959 | 0 | psData->inv_ewres_xscale; |
960 | |
|
961 | 0 | const auto dy = |
962 | 0 | static_cast<float>((afWin[6] + afWin[7] + afWin[7] + afWin[8]) - |
963 | 0 | (afWin[0] + afWin[1] + afWin[1] + afWin[2])) * |
964 | 0 | psData->inv_nsres_yscale; |
965 | |
|
966 | 0 | const auto key = (dx * dx + dy * dy); |
967 | 0 | slopeDegrees = |
968 | 0 | std::atan(std::sqrt(key) * psData->z_factor) * kfRadToDeg; |
969 | 0 | } |
970 | 0 | else // ZEVENBERGEN_THORNE |
971 | 0 | { |
972 | 0 | const auto dx = |
973 | 0 | static_cast<float>(afWin[3] - afWin[5]) * psData->inv_ewres_xscale; |
974 | 0 | const auto dy = |
975 | 0 | static_cast<float>(afWin[7] - afWin[1]) * psData->inv_nsres_yscale; |
976 | 0 | const auto key = dx * dx + dy * dy; |
977 | |
|
978 | 0 | slopeDegrees = |
979 | 0 | std::atan(std::sqrt(key) * psData->z_factor) * kfRadToDeg; |
980 | 0 | } |
981 | |
|
982 | 0 | float aspect; |
983 | 0 | if (alg == GradientAlg::HORN) |
984 | 0 | { |
985 | 0 | const auto dx = |
986 | 0 | static_cast<float>((afWin[2] + afWin[5] + afWin[5] + afWin[8]) - |
987 | 0 | (afWin[0] + afWin[3] + afWin[3] + afWin[6])); |
988 | |
|
989 | 0 | const auto dy2 = |
990 | 0 | static_cast<float>((afWin[6] + afWin[7] + afWin[7] + afWin[8]) - |
991 | 0 | (afWin[0] + afWin[1] + afWin[1] + afWin[2])); |
992 | |
|
993 | 0 | aspect = std::atan2(dy2, -dx); |
994 | 0 | } |
995 | 0 | else // ZEVENBERGEN_THORNE |
996 | 0 | { |
997 | 0 | const auto dx = static_cast<float>(afWin[5] - afWin[3]); |
998 | 0 | const auto dy = static_cast<float>(afWin[7] - afWin[1]); |
999 | 0 | aspect = std::atan2(dy, -dx); |
1000 | 0 | } |
1001 | |
|
1002 | 0 | const auto slopeStrength = slopeDegrees * (1.0f / 90.0f); |
1003 | |
|
1004 | 0 | constexpr float PIf = static_cast<float>(M_PI); |
1005 | 0 | const auto aspectDiff = DifferenceBetweenAngles( |
1006 | 0 | aspect, PIf * (3.0f / 2.0f) - psData->azRadians, PIf * 2.0f); |
1007 | |
|
1008 | 0 | const auto aspectStrength = 1.0f - aspectDiff * (1.0f / PIf); |
1009 | |
|
1010 | 0 | const auto shadowness = 1.0f - slopeStrength * aspectStrength; |
1011 | |
|
1012 | 0 | return 255.0f * shadowness; |
1013 | 0 | } Unexecuted instantiation: gdaldem_lib.cpp:float GDALHillshadeIgorAlg<float, (gdal::GDALDEM::GradientAlg)1>(float const*, float, AlgorithmParameters const*) Unexecuted instantiation: gdaldem_lib.cpp:float GDALHillshadeIgorAlg<int, (gdal::GDALDEM::GradientAlg)1>(int const*, float, AlgorithmParameters const*) Unexecuted instantiation: gdaldem_lib.cpp:float GDALHillshadeIgorAlg<float, (gdal::GDALDEM::GradientAlg)0>(float const*, float, AlgorithmParameters const*) Unexecuted instantiation: gdaldem_lib.cpp:float GDALHillshadeIgorAlg<int, (gdal::GDALDEM::GradientAlg)0>(int const*, float, AlgorithmParameters const*) |
1014 | | |
1015 | | template <class T, GradientAlg alg> |
1016 | | static float GDALHillshadeAlg(const T *afWin, float /*fDstNoDataValue*/, |
1017 | | const AlgorithmParameters *pData) |
1018 | 0 | { |
1019 | 0 | const GDALHillshadeAlgData *psData = |
1020 | 0 | static_cast<const GDALHillshadeAlgData *>(pData); |
1021 | | |
1022 | | // First Slope ... |
1023 | 0 | float x, y; |
1024 | 0 | Gradient<T, alg>::calc(afWin, psData->inv_ewres_xscale, |
1025 | 0 | psData->inv_nsres_yscale, x, y); |
1026 | |
|
1027 | 0 | const auto xx_plus_yy = x * x + y * y; |
1028 | | |
1029 | | // ... then the shade value |
1030 | 0 | const auto cang_mul_254 = |
1031 | 0 | ApproxADivByInvSqrtB(psData->sin_altRadians_mul_254 - |
1032 | 0 | (y * psData->cos_az_mul_cos_alt_mul_z_mul_254 - |
1033 | 0 | x * psData->sin_az_mul_cos_alt_mul_z_mul_254), |
1034 | 0 | 1.0f + psData->square_z * xx_plus_yy); |
1035 | |
|
1036 | 0 | const auto cang = cang_mul_254 <= 0.0f ? 1.0f : 1.0f + cang_mul_254; |
1037 | |
|
1038 | 0 | return cang; |
1039 | 0 | } Unexecuted instantiation: gdaldem_lib.cpp:float GDALHillshadeAlg<float, (gdal::GDALDEM::GradientAlg)1>(float const*, float, AlgorithmParameters const*) Unexecuted instantiation: gdaldem_lib.cpp:float GDALHillshadeAlg<int, (gdal::GDALDEM::GradientAlg)1>(int const*, float, AlgorithmParameters const*) Unexecuted instantiation: gdaldem_lib.cpp:float GDALHillshadeAlg<float, (gdal::GDALDEM::GradientAlg)0>(float const*, float, AlgorithmParameters const*) Unexecuted instantiation: gdaldem_lib.cpp:float GDALHillshadeAlg<int, (gdal::GDALDEM::GradientAlg)0>(int const*, float, AlgorithmParameters const*) |
1040 | | |
1041 | | template <class T> |
1042 | | static float GDALHillshadeAlg_same_res(const T *afWin, |
1043 | | float /*fDstNoDataValue*/, |
1044 | | const AlgorithmParameters *pData) |
1045 | 0 | { |
1046 | 0 | const GDALHillshadeAlgData *psData = |
1047 | 0 | static_cast<const GDALHillshadeAlgData *>(pData); |
1048 | | |
1049 | | // First Slope ... |
1050 | | /*x = (afWin[0] + afWin[3] + afWin[3] + afWin[6]) - |
1051 | | (afWin[2] + afWin[5] + afWin[5] + afWin[8]); |
1052 | | |
1053 | | y = (afWin[0] + afWin[1] + afWin[1] + afWin[2]) - |
1054 | | (afWin[6] + afWin[7] + afWin[7] + afWin[8]);*/ |
1055 | |
|
1056 | 0 | T accX = afWin[0] - afWin[8]; |
1057 | 0 | const T six_minus_two = afWin[6] - afWin[2]; |
1058 | 0 | T accY = accX; |
1059 | 0 | const T three_minus_five = afWin[3] - afWin[5]; |
1060 | 0 | const T one_minus_seven = afWin[1] - afWin[7]; |
1061 | 0 | accX += three_minus_five; |
1062 | 0 | accY += one_minus_seven; |
1063 | 0 | accX += three_minus_five; |
1064 | 0 | accY += one_minus_seven; |
1065 | 0 | accX += six_minus_two; |
1066 | 0 | accY -= six_minus_two; |
1067 | 0 | const auto x = static_cast<float>(accX); |
1068 | 0 | const auto y = static_cast<float>(accY); |
1069 | |
|
1070 | 0 | const auto xx_plus_yy = x * x + y * y; |
1071 | | |
1072 | | // ... then the shade value |
1073 | 0 | const auto cang_mul_254 = ApproxADivByInvSqrtB( |
1074 | 0 | psData->sin_altRadians_mul_254 + |
1075 | 0 | (x * psData->sin_az_mul_cos_alt_mul_z_mul_254_mul_inv_res + |
1076 | 0 | y * psData->cos_az_mul_cos_alt_mul_z_mul_254_mul_inv_res), |
1077 | 0 | 1.0f + psData->square_z_mul_square_inv_res * xx_plus_yy); |
1078 | |
|
1079 | 0 | const auto cang = cang_mul_254 <= 0.0f ? 1.0f : 1.0f + cang_mul_254; |
1080 | |
|
1081 | 0 | return cang; |
1082 | 0 | } Unexecuted instantiation: gdaldem_lib.cpp:float GDALHillshadeAlg_same_res<float>(float const*, float, AlgorithmParameters const*) Unexecuted instantiation: gdaldem_lib.cpp:float GDALHillshadeAlg_same_res<int>(int const*, float, AlgorithmParameters const*) |
1083 | | |
1084 | | #if defined(HAVE_16_SSE_REG) |
1085 | | template <class T, class REG_T, class REG_FLOAT> |
1086 | | static int GDALHillshadeAlg_same_res_multisample( |
1087 | | const T *pafFirstLine, const T *pafSecondLine, const T *pafThirdLine, |
1088 | | int nXSize, const AlgorithmParameters *pData, float *pafOutputBuf) |
1089 | 0 | { |
1090 | 0 | const GDALHillshadeAlgData *psData = |
1091 | 0 | static_cast<const GDALHillshadeAlgData *>(pData); |
1092 | 0 | const auto reg_fact_x = |
1093 | 0 | REG_FLOAT::Set1(psData->sin_az_mul_cos_alt_mul_z_mul_254_mul_inv_res); |
1094 | 0 | const auto reg_fact_y = |
1095 | 0 | REG_FLOAT::Set1(psData->cos_az_mul_cos_alt_mul_z_mul_254_mul_inv_res); |
1096 | 0 | const auto reg_constant_num = |
1097 | 0 | REG_FLOAT::Set1(psData->sin_altRadians_mul_254); |
1098 | 0 | const auto reg_constant_denom = |
1099 | 0 | REG_FLOAT::Set1(psData->square_z_mul_square_inv_res); |
1100 | 0 | const auto reg_half = REG_FLOAT::Set1(0.5f); |
1101 | 0 | const auto reg_one = reg_half + reg_half; |
1102 | 0 | const auto reg_one_float = REG_FLOAT::Set1(1.0f); |
1103 | |
|
1104 | 0 | int j = 1; // Used after for. |
1105 | 0 | constexpr int N_VAL_PER_REG = |
1106 | 0 | static_cast<int>(sizeof(REG_FLOAT) / sizeof(float)); |
1107 | 0 | for (; j < nXSize - N_VAL_PER_REG; j += N_VAL_PER_REG) |
1108 | 0 | { |
1109 | 0 | const T *firstLine = pafFirstLine + j - 1; |
1110 | 0 | const T *secondLine = pafSecondLine + j - 1; |
1111 | 0 | const T *thirdLine = pafThirdLine + j - 1; |
1112 | |
|
1113 | 0 | const auto firstLine0 = REG_T::LoadAllVal(firstLine); |
1114 | 0 | const auto firstLine1 = REG_T::LoadAllVal(firstLine + 1); |
1115 | 0 | const auto firstLine2 = REG_T::LoadAllVal(firstLine + 2); |
1116 | 0 | const auto thirdLine0 = REG_T::LoadAllVal(thirdLine); |
1117 | 0 | const auto thirdLine1 = REG_T::LoadAllVal(thirdLine + 1); |
1118 | 0 | const auto thirdLine2 = REG_T::LoadAllVal(thirdLine + 2); |
1119 | 0 | auto accX = firstLine0 - thirdLine2; |
1120 | 0 | const auto six_minus_two = thirdLine0 - firstLine2; |
1121 | 0 | auto accY = accX; |
1122 | 0 | const auto three_minus_five = |
1123 | 0 | REG_T::LoadAllVal(secondLine) - REG_T::LoadAllVal(secondLine + 2); |
1124 | 0 | const auto one_minus_seven = firstLine1 - thirdLine1; |
1125 | 0 | accX += three_minus_five; |
1126 | 0 | accY += one_minus_seven; |
1127 | 0 | accX += three_minus_five; |
1128 | 0 | accY += one_minus_seven; |
1129 | 0 | accX += six_minus_two; |
1130 | 0 | accY -= six_minus_two; |
1131 | |
|
1132 | 0 | const auto reg_x = accX.cast_to_float(); |
1133 | 0 | const auto reg_y = accY.cast_to_float(); |
1134 | 0 | const auto reg_xx_plus_yy = reg_x * reg_x + reg_y * reg_y; |
1135 | 0 | const auto reg_numerator = |
1136 | 0 | reg_constant_num + reg_fact_x * reg_x + reg_fact_y * reg_y; |
1137 | 0 | const auto reg_denominator = |
1138 | 0 | reg_one + reg_constant_denom * reg_xx_plus_yy; |
1139 | 0 | const auto num_div_sqrt_denom = |
1140 | 0 | reg_numerator * reg_denominator.approx_inv_sqrt(reg_one, reg_half); |
1141 | |
|
1142 | 0 | auto res = |
1143 | 0 | REG_FLOAT::Max(reg_one_float, num_div_sqrt_denom + reg_one_float); |
1144 | 0 | res.StoreAllVal(pafOutputBuf + j); |
1145 | 0 | } |
1146 | 0 | return j; |
1147 | 0 | } Unexecuted instantiation: gdaldem_lib.cpp:int GDALHillshadeAlg_same_res_multisample<float, XMMReg4Float, XMMReg4Float>(float const*, float const*, float const*, int, AlgorithmParameters const*, float*) Unexecuted instantiation: gdaldem_lib.cpp:int GDALHillshadeAlg_same_res_multisample<int, XMMReg4Int, XMMReg4Float>(int const*, int const*, int const*, int, AlgorithmParameters const*, float*) |
1148 | | #endif |
1149 | | |
1150 | | template <class T, GradientAlg alg> |
1151 | | static float GDALHillshadeCombinedAlg(const T *afWin, float /*fDstNoDataValue*/, |
1152 | | const AlgorithmParameters *pData) |
1153 | 0 | { |
1154 | 0 | const GDALHillshadeAlgData *psData = |
1155 | 0 | static_cast<const GDALHillshadeAlgData *>(pData); |
1156 | | |
1157 | | // First Slope ... |
1158 | 0 | float x, y; |
1159 | 0 | Gradient<T, alg>::calc(afWin, psData->inv_ewres_xscale, |
1160 | 0 | psData->inv_nsres_yscale, x, y); |
1161 | |
|
1162 | 0 | const auto xx_plus_yy = x * x + y * y; |
1163 | |
|
1164 | 0 | const auto slope = xx_plus_yy * psData->square_z; |
1165 | | |
1166 | | // ... then the shade value |
1167 | 0 | auto cang = std::acos(ApproxADivByInvSqrtB( |
1168 | 0 | psData->sin_altRadians - (y * psData->cos_az_mul_cos_alt_mul_z - |
1169 | 0 | x * psData->sin_az_mul_cos_alt_mul_z), |
1170 | 0 | 1.0f + slope)); |
1171 | | |
1172 | | // combined shading |
1173 | 0 | constexpr float INV_SQUARE_OF_HALF_PI = |
1174 | 0 | static_cast<float>(1.0 / ((M_PI * M_PI) / 4)); |
1175 | |
|
1176 | 0 | cang = 1.0f - cang * std::atan(std::sqrt(slope)) * INV_SQUARE_OF_HALF_PI; |
1177 | |
|
1178 | 0 | const float fcang = cang <= 0.0f ? 1.0f : 1.0f + 254.0f * cang; |
1179 | |
|
1180 | 0 | return fcang; |
1181 | 0 | } Unexecuted instantiation: gdaldem_lib.cpp:float GDALHillshadeCombinedAlg<float, (gdal::GDALDEM::GradientAlg)1>(float const*, float, AlgorithmParameters const*) Unexecuted instantiation: gdaldem_lib.cpp:float GDALHillshadeCombinedAlg<int, (gdal::GDALDEM::GradientAlg)1>(int const*, float, AlgorithmParameters const*) Unexecuted instantiation: gdaldem_lib.cpp:float GDALHillshadeCombinedAlg<float, (gdal::GDALDEM::GradientAlg)0>(float const*, float, AlgorithmParameters const*) Unexecuted instantiation: gdaldem_lib.cpp:float GDALHillshadeCombinedAlg<int, (gdal::GDALDEM::GradientAlg)0>(int const*, float, AlgorithmParameters const*) |
1182 | | |
1183 | | static std::unique_ptr<AlgorithmParameters> |
1184 | | GDALCreateHillshadeData(const double *adfGeoTransform, double z, double xscale, |
1185 | | double yscale, double alt, double az, GradientAlg eAlg) |
1186 | 0 | { |
1187 | 0 | auto pData = std::make_unique<GDALHillshadeAlgData>(); |
1188 | |
|
1189 | 0 | pData->inv_nsres_yscale = |
1190 | 0 | static_cast<float>(1.0 / (adfGeoTransform[5] * yscale)); |
1191 | 0 | pData->inv_ewres_xscale = |
1192 | 0 | static_cast<float>(1.0 / (adfGeoTransform[1] * xscale)); |
1193 | 0 | pData->sin_altRadians = std::sin(static_cast<float>(alt) * kfDegToRad); |
1194 | 0 | pData->azRadians = static_cast<float>(az) * kfDegToRad; |
1195 | 0 | pData->z_factor = static_cast<float>( |
1196 | 0 | z / (eAlg == GradientAlg::ZEVENBERGEN_THORNE ? 2 : 8)); |
1197 | 0 | pData->cos_alt_mul_z = |
1198 | 0 | std::cos(static_cast<float>(alt) * kfDegToRad) * pData->z_factor; |
1199 | 0 | pData->cos_az_mul_cos_alt_mul_z = |
1200 | 0 | std::cos(pData->azRadians) * pData->cos_alt_mul_z; |
1201 | 0 | pData->sin_az_mul_cos_alt_mul_z = |
1202 | 0 | std::sin(pData->azRadians) * pData->cos_alt_mul_z; |
1203 | 0 | pData->square_z = pData->z_factor * pData->z_factor; |
1204 | |
|
1205 | 0 | pData->sin_altRadians_mul_254 = 254.0f * pData->sin_altRadians; |
1206 | 0 | pData->cos_az_mul_cos_alt_mul_z_mul_254 = |
1207 | 0 | 254.0f * pData->cos_az_mul_cos_alt_mul_z; |
1208 | 0 | pData->sin_az_mul_cos_alt_mul_z_mul_254 = |
1209 | 0 | 254.0f * pData->sin_az_mul_cos_alt_mul_z; |
1210 | |
|
1211 | 0 | if (adfGeoTransform[1] == -adfGeoTransform[5] && xscale == yscale) |
1212 | 0 | { |
1213 | 0 | pData->square_z_mul_square_inv_res = |
1214 | 0 | pData->square_z * pData->inv_ewres_xscale * pData->inv_ewres_xscale; |
1215 | 0 | pData->cos_az_mul_cos_alt_mul_z_mul_254_mul_inv_res = |
1216 | 0 | pData->cos_az_mul_cos_alt_mul_z_mul_254 * -pData->inv_ewres_xscale; |
1217 | 0 | pData->sin_az_mul_cos_alt_mul_z_mul_254_mul_inv_res = |
1218 | 0 | pData->sin_az_mul_cos_alt_mul_z_mul_254 * pData->inv_ewres_xscale; |
1219 | 0 | } |
1220 | |
|
1221 | 0 | return pData; |
1222 | 0 | } |
1223 | | |
1224 | | /************************************************************************/ |
1225 | | /* GDALHillshadeMultiDirectional() */ |
1226 | | /************************************************************************/ |
1227 | | |
1228 | | struct GDALHillshadeMultiDirectionalAlgData final : public AlgorithmParameters |
1229 | | { |
1230 | | float inv_nsres_yscale = 0; |
1231 | | float inv_ewres_xscale = 0; |
1232 | | float square_z = 0; |
1233 | | float sin_altRadians_mul_127 = 0; |
1234 | | float sin_altRadians_mul_254 = 0; |
1235 | | |
1236 | | float cos_alt_mul_z_mul_127 = 0; |
1237 | | float cos225_az_mul_cos_alt_mul_z_mul_127 = 0; |
1238 | | |
1239 | | std::unique_ptr<AlgorithmParameters> |
1240 | | CreateScaledParameters(double dfXRatio, double dfYRatio) override; |
1241 | | }; |
1242 | | |
1243 | | std::unique_ptr<AlgorithmParameters> |
1244 | | GDALHillshadeMultiDirectionalAlgData::CreateScaledParameters(double dfXRatio, |
1245 | | double dfYRatio) |
1246 | 0 | { |
1247 | 0 | auto newData = |
1248 | 0 | std::make_unique<GDALHillshadeMultiDirectionalAlgData>(*this); |
1249 | 0 | newData->inv_ewres_xscale /= static_cast<float>(dfXRatio); |
1250 | 0 | newData->inv_nsres_yscale /= static_cast<float>(dfYRatio); |
1251 | 0 | return newData; |
1252 | 0 | } |
1253 | | |
1254 | | template <class T, GradientAlg alg> |
1255 | | static float GDALHillshadeMultiDirectionalAlg(const T *afWin, |
1256 | | float /*fDstNoDataValue*/, |
1257 | | const AlgorithmParameters *pData) |
1258 | 0 | { |
1259 | 0 | const GDALHillshadeMultiDirectionalAlgData *psData = |
1260 | 0 | static_cast<const GDALHillshadeMultiDirectionalAlgData *>(pData); |
1261 | | |
1262 | | // First Slope ... |
1263 | 0 | float x, y; |
1264 | 0 | Gradient<T, alg>::calc(afWin, psData->inv_ewres_xscale, |
1265 | 0 | psData->inv_nsres_yscale, x, y); |
1266 | | |
1267 | | // See http://pubs.usgs.gov/of/1992/of92-422/of92-422.pdf |
1268 | | // W225 = sin^2(aspect - 225) = 0.5 * (1 - 2 * sin(aspect) * cos(aspect)) |
1269 | | // W270 = sin^2(aspect - 270) = cos^2(aspect) |
1270 | | // W315 = sin^2(aspect - 315) = 0.5 * (1 + 2 * sin(aspect) * cos(aspect)) |
1271 | | // W360 = sin^2(aspect - 360) = sin^2(aspect) |
1272 | | // hillshade= 0.5 * (W225 * hillshade(az=225) + |
1273 | | // W270 * hillshade(az=270) + |
1274 | | // W315 * hillshade(az=315) + |
1275 | | // W360 * hillshade(az=360)) |
1276 | |
|
1277 | 0 | const auto xx = x * x; |
1278 | 0 | const auto yy = y * y; |
1279 | 0 | const auto xx_plus_yy = xx + yy; |
1280 | 0 | if (xx_plus_yy == 0.0f) |
1281 | 0 | return 1.0f + psData->sin_altRadians_mul_254; |
1282 | | |
1283 | | // ... then the shade value from different azimuth |
1284 | 0 | auto val225_mul_127 = psData->sin_altRadians_mul_127 + |
1285 | 0 | (x - y) * psData->cos225_az_mul_cos_alt_mul_z_mul_127; |
1286 | 0 | val225_mul_127 = (val225_mul_127 <= 0.0f) ? 0.0f : val225_mul_127; |
1287 | 0 | auto val270_mul_127 = |
1288 | 0 | psData->sin_altRadians_mul_127 - x * psData->cos_alt_mul_z_mul_127; |
1289 | 0 | val270_mul_127 = (val270_mul_127 <= 0.0f) ? 0.0f : val270_mul_127; |
1290 | 0 | auto val315_mul_127 = psData->sin_altRadians_mul_127 + |
1291 | 0 | (x + y) * psData->cos225_az_mul_cos_alt_mul_z_mul_127; |
1292 | 0 | val315_mul_127 = (val315_mul_127 <= 0.0f) ? 0.0f : val315_mul_127; |
1293 | 0 | auto val360_mul_127 = |
1294 | 0 | psData->sin_altRadians_mul_127 - y * psData->cos_alt_mul_z_mul_127; |
1295 | 0 | val360_mul_127 = (val360_mul_127 <= 0.0f) ? 0.0f : val360_mul_127; |
1296 | | |
1297 | | // ... then the weighted shading |
1298 | 0 | const auto weight_225 = 0.5f * xx_plus_yy - x * y; |
1299 | 0 | const auto weight_270 = xx; |
1300 | 0 | const auto weight_315 = xx_plus_yy - weight_225; |
1301 | 0 | const auto weight_360 = yy; |
1302 | 0 | const auto cang_mul_127 = ApproxADivByInvSqrtB( |
1303 | 0 | (weight_225 * val225_mul_127 + weight_270 * val270_mul_127 + |
1304 | 0 | weight_315 * val315_mul_127 + weight_360 * val360_mul_127) / |
1305 | 0 | xx_plus_yy, |
1306 | 0 | 1.0f + psData->square_z * xx_plus_yy); |
1307 | |
|
1308 | 0 | const auto cang = 1.0f + cang_mul_127; |
1309 | |
|
1310 | 0 | return cang; |
1311 | 0 | } Unexecuted instantiation: gdaldem_lib.cpp:float GDALHillshadeMultiDirectionalAlg<float, (gdal::GDALDEM::GradientAlg)1>(float const*, float, AlgorithmParameters const*) Unexecuted instantiation: gdaldem_lib.cpp:float GDALHillshadeMultiDirectionalAlg<int, (gdal::GDALDEM::GradientAlg)1>(int const*, float, AlgorithmParameters const*) Unexecuted instantiation: gdaldem_lib.cpp:float GDALHillshadeMultiDirectionalAlg<float, (gdal::GDALDEM::GradientAlg)0>(float const*, float, AlgorithmParameters const*) Unexecuted instantiation: gdaldem_lib.cpp:float GDALHillshadeMultiDirectionalAlg<int, (gdal::GDALDEM::GradientAlg)0>(int const*, float, AlgorithmParameters const*) |
1312 | | |
1313 | | static std::unique_ptr<AlgorithmParameters> |
1314 | | GDALCreateHillshadeMultiDirectionalData(const double *adfGeoTransform, double z, |
1315 | | double xscale, double yscale, |
1316 | | double alt, GradientAlg eAlg) |
1317 | 0 | { |
1318 | 0 | auto pData = std::make_unique<GDALHillshadeMultiDirectionalAlgData>(); |
1319 | |
|
1320 | 0 | pData->inv_nsres_yscale = |
1321 | 0 | static_cast<float>(1.0 / (adfGeoTransform[5] * yscale)); |
1322 | 0 | pData->inv_ewres_xscale = |
1323 | 0 | static_cast<float>(1.0 / (adfGeoTransform[1] * xscale)); |
1324 | 0 | const float z_factor = static_cast<float>( |
1325 | 0 | z / (eAlg == GradientAlg::ZEVENBERGEN_THORNE ? 2 : 8)); |
1326 | 0 | const float cos_alt_mul_z = |
1327 | 0 | std::cos(static_cast<float>(alt) * kfDegToRad) * z_factor; |
1328 | 0 | pData->square_z = z_factor * z_factor; |
1329 | |
|
1330 | 0 | pData->sin_altRadians_mul_127 = |
1331 | 0 | 127.0f * std::sin(static_cast<float>(alt) * kfDegToRad); |
1332 | 0 | pData->sin_altRadians_mul_254 = |
1333 | 0 | 254.0f * std::sin(static_cast<float>(alt) * kfDegToRad); |
1334 | 0 | pData->cos_alt_mul_z_mul_127 = 127.0f * cos_alt_mul_z; |
1335 | 0 | pData->cos225_az_mul_cos_alt_mul_z_mul_127 = |
1336 | 0 | 127.0f * std::cos(225.0f * kfDegToRad) * cos_alt_mul_z; |
1337 | |
|
1338 | 0 | return pData; |
1339 | 0 | } |
1340 | | |
1341 | | /************************************************************************/ |
1342 | | /* GDALSlope() */ |
1343 | | /************************************************************************/ |
1344 | | |
1345 | | struct GDALSlopeAlgData final : public AlgorithmParameters |
1346 | | { |
1347 | | float inv_nsres_yscale = 0; |
1348 | | float inv_ewres_xscale = 0; |
1349 | | int slopeFormat = 0; |
1350 | | |
1351 | | std::unique_ptr<AlgorithmParameters> |
1352 | | CreateScaledParameters(double dfXRatio, double dfYRatio) override; |
1353 | | }; |
1354 | | |
1355 | | std::unique_ptr<AlgorithmParameters> |
1356 | | GDALSlopeAlgData::CreateScaledParameters(double dfXRatio, double dfYRatio) |
1357 | 0 | { |
1358 | 0 | auto newData = std::make_unique<GDALSlopeAlgData>(*this); |
1359 | 0 | newData->inv_nsres_yscale /= static_cast<float>(dfXRatio); |
1360 | 0 | newData->inv_ewres_xscale /= static_cast<float>(dfYRatio); |
1361 | 0 | return newData; |
1362 | 0 | } |
1363 | | |
1364 | | template <class T> |
1365 | | static float GDALSlopeHornAlg(const T *afWin, float /*fDstNoDataValue*/, |
1366 | | const AlgorithmParameters *pData) |
1367 | 0 | { |
1368 | 0 | const GDALSlopeAlgData *psData = |
1369 | 0 | static_cast<const GDALSlopeAlgData *>(pData); |
1370 | |
|
1371 | 0 | const auto dx = |
1372 | 0 | static_cast<float>((afWin[0] + afWin[3] + afWin[3] + afWin[6]) - |
1373 | 0 | (afWin[2] + afWin[5] + afWin[5] + afWin[8])) * |
1374 | 0 | psData->inv_ewres_xscale; |
1375 | |
|
1376 | 0 | const auto dy = |
1377 | 0 | static_cast<float>((afWin[6] + afWin[7] + afWin[7] + afWin[8]) - |
1378 | 0 | (afWin[0] + afWin[1] + afWin[1] + afWin[2])) * |
1379 | 0 | psData->inv_nsres_yscale; |
1380 | |
|
1381 | 0 | const auto key = dx * dx + dy * dy; |
1382 | |
|
1383 | 0 | if (psData->slopeFormat == 1) |
1384 | 0 | return std::atan(std::sqrt(key) * (1.0f / 8.0f)) * kfRadToDeg; |
1385 | | |
1386 | 0 | return (100.0f / 8.0f) * std::sqrt(key); |
1387 | 0 | } Unexecuted instantiation: gdaldem_lib.cpp:float GDALSlopeHornAlg<float>(float const*, float, AlgorithmParameters const*) Unexecuted instantiation: gdaldem_lib.cpp:float GDALSlopeHornAlg<int>(int const*, float, AlgorithmParameters const*) |
1388 | | |
1389 | | template <class T> |
1390 | | static float GDALSlopeZevenbergenThorneAlg(const T *afWin, |
1391 | | float /*fDstNoDataValue*/, |
1392 | | const AlgorithmParameters *pData) |
1393 | 0 | { |
1394 | 0 | const GDALSlopeAlgData *psData = |
1395 | 0 | static_cast<const GDALSlopeAlgData *>(pData); |
1396 | |
|
1397 | 0 | const auto dx = |
1398 | 0 | static_cast<float>(afWin[3] - afWin[5]) * psData->inv_ewres_xscale; |
1399 | 0 | const auto dy = |
1400 | 0 | static_cast<float>(afWin[7] - afWin[1]) * psData->inv_nsres_yscale; |
1401 | 0 | const auto key = dx * dx + dy * dy; |
1402 | |
|
1403 | 0 | if (psData->slopeFormat == 1) |
1404 | 0 | return std::atan(std::sqrt(key) * 0.5f) * kfRadToDeg; |
1405 | | |
1406 | 0 | return (100.0f / 2.0f) * std::sqrt(key); |
1407 | 0 | } Unexecuted instantiation: gdaldem_lib.cpp:float GDALSlopeZevenbergenThorneAlg<float>(float const*, float, AlgorithmParameters const*) Unexecuted instantiation: gdaldem_lib.cpp:float GDALSlopeZevenbergenThorneAlg<int>(int const*, float, AlgorithmParameters const*) |
1408 | | |
1409 | | static std::unique_ptr<AlgorithmParameters> |
1410 | | GDALCreateSlopeData(double *adfGeoTransform, double xscale, double yscale, |
1411 | | int slopeFormat) |
1412 | 0 | { |
1413 | 0 | auto pData = std::make_unique<GDALSlopeAlgData>(); |
1414 | 0 | pData->inv_nsres_yscale = |
1415 | 0 | 1.0f / static_cast<float>(adfGeoTransform[5] * yscale); |
1416 | 0 | pData->inv_ewres_xscale = |
1417 | 0 | 1.0f / static_cast<float>(adfGeoTransform[1] * xscale); |
1418 | 0 | pData->slopeFormat = slopeFormat; |
1419 | 0 | return pData; |
1420 | 0 | } |
1421 | | |
1422 | | /************************************************************************/ |
1423 | | /* GDALAspect() */ |
1424 | | /************************************************************************/ |
1425 | | |
1426 | | struct GDALAspectAlgData final : public AlgorithmParameters |
1427 | | { |
1428 | | bool bAngleAsAzimuth = false; |
1429 | | |
1430 | | std::unique_ptr<AlgorithmParameters> |
1431 | | CreateScaledParameters(double, double) override; |
1432 | | }; |
1433 | | |
1434 | | std::unique_ptr<AlgorithmParameters> |
1435 | | GDALAspectAlgData::CreateScaledParameters(double, double) |
1436 | 0 | { |
1437 | 0 | return std::make_unique<GDALAspectAlgData>(*this); |
1438 | 0 | } |
1439 | | |
1440 | | template <class T> |
1441 | | static float GDALAspectAlg(const T *afWin, float fDstNoDataValue, |
1442 | | const AlgorithmParameters *pData) |
1443 | 0 | { |
1444 | 0 | const GDALAspectAlgData *psData = |
1445 | 0 | static_cast<const GDALAspectAlgData *>(pData); |
1446 | |
|
1447 | 0 | const auto dx = |
1448 | 0 | static_cast<float>((afWin[2] + afWin[5] + afWin[5] + afWin[8]) - |
1449 | 0 | (afWin[0] + afWin[3] + afWin[3] + afWin[6])); |
1450 | |
|
1451 | 0 | const auto dy = |
1452 | 0 | static_cast<float>((afWin[6] + afWin[7] + afWin[7] + afWin[8]) - |
1453 | 0 | (afWin[0] + afWin[1] + afWin[1] + afWin[2])); |
1454 | |
|
1455 | 0 | auto aspect = std::atan2(dy, -dx) * kfRadToDeg; |
1456 | |
|
1457 | 0 | if (dx == 0 && dy == 0) |
1458 | 0 | { |
1459 | | /* Flat area */ |
1460 | 0 | aspect = fDstNoDataValue; |
1461 | 0 | } |
1462 | 0 | else if (psData->bAngleAsAzimuth) |
1463 | 0 | { |
1464 | 0 | if (aspect > 90.0f) |
1465 | 0 | aspect = 450.0f - aspect; |
1466 | 0 | else |
1467 | 0 | aspect = 90.0f - aspect; |
1468 | 0 | } |
1469 | 0 | else |
1470 | 0 | { |
1471 | 0 | if (aspect < 0) |
1472 | 0 | aspect += 360.0f; |
1473 | 0 | } |
1474 | |
|
1475 | 0 | if (aspect == 360.0f) |
1476 | 0 | aspect = 0.0; |
1477 | |
|
1478 | 0 | return aspect; |
1479 | 0 | } Unexecuted instantiation: gdaldem_lib.cpp:float GDALAspectAlg<float>(float const*, float, AlgorithmParameters const*) Unexecuted instantiation: gdaldem_lib.cpp:float GDALAspectAlg<int>(int const*, float, AlgorithmParameters const*) |
1480 | | |
1481 | | template <class T> |
1482 | | static float GDALAspectZevenbergenThorneAlg(const T *afWin, |
1483 | | float fDstNoDataValue, |
1484 | | const AlgorithmParameters *pData) |
1485 | 0 | { |
1486 | 0 | const GDALAspectAlgData *psData = |
1487 | 0 | static_cast<const GDALAspectAlgData *>(pData); |
1488 | |
|
1489 | 0 | const auto dx = static_cast<float>(afWin[5] - afWin[3]); |
1490 | 0 | const auto dy = static_cast<float>(afWin[7] - afWin[1]); |
1491 | 0 | float aspect = std::atan2(dy, -dx) * kfRadToDeg; |
1492 | 0 | if (dx == 0 && dy == 0) |
1493 | 0 | { |
1494 | | /* Flat area */ |
1495 | 0 | aspect = fDstNoDataValue; |
1496 | 0 | } |
1497 | 0 | else if (psData->bAngleAsAzimuth) |
1498 | 0 | { |
1499 | 0 | if (aspect > 90.0f) |
1500 | 0 | aspect = 450.0f - aspect; |
1501 | 0 | else |
1502 | 0 | aspect = 90.0f - aspect; |
1503 | 0 | } |
1504 | 0 | else |
1505 | 0 | { |
1506 | 0 | if (aspect < 0) |
1507 | 0 | aspect += 360.0f; |
1508 | 0 | } |
1509 | |
|
1510 | 0 | if (aspect == 360.0f) |
1511 | 0 | aspect = 0.0; |
1512 | |
|
1513 | 0 | return aspect; |
1514 | 0 | } Unexecuted instantiation: gdaldem_lib.cpp:float GDALAspectZevenbergenThorneAlg<float>(float const*, float, AlgorithmParameters const*) Unexecuted instantiation: gdaldem_lib.cpp:float GDALAspectZevenbergenThorneAlg<int>(int const*, float, AlgorithmParameters const*) |
1515 | | |
1516 | | static std::unique_ptr<AlgorithmParameters> |
1517 | | GDALCreateAspectData(bool bAngleAsAzimuth) |
1518 | 0 | { |
1519 | 0 | auto pData = std::make_unique<GDALAspectAlgData>(); |
1520 | 0 | pData->bAngleAsAzimuth = bAngleAsAzimuth; |
1521 | 0 | return pData; |
1522 | 0 | } |
1523 | | |
1524 | | /************************************************************************/ |
1525 | | /* GDALColorRelief() */ |
1526 | | /************************************************************************/ |
1527 | | |
1528 | | static int GDALColorReliefSortColors(const GDALColorAssociation &pA, |
1529 | | const GDALColorAssociation &pB) |
1530 | 0 | { |
1531 | | /* Sort NaN in first position */ |
1532 | 0 | return (std::isnan(pA.dfVal) && !std::isnan(pB.dfVal)) || |
1533 | 0 | pA.dfVal < pB.dfVal; |
1534 | 0 | } |
1535 | | |
1536 | | static void GDALColorReliefProcessColors( |
1537 | | std::vector<GDALColorAssociation> &asColorAssociation, int bSrcHasNoData, |
1538 | | double dfSrcNoDataValue, ColorSelectionMode eColorSelectionMode) |
1539 | 0 | { |
1540 | 0 | std::stable_sort(asColorAssociation.begin(), asColorAssociation.end(), |
1541 | 0 | GDALColorReliefSortColors); |
1542 | |
|
1543 | 0 | size_t nRepeatedEntryIndex = 0; |
1544 | 0 | const size_t nInitialSize = asColorAssociation.size(); |
1545 | 0 | for (size_t i = 1; i < nInitialSize; ++i) |
1546 | 0 | { |
1547 | 0 | const GDALColorAssociation *pPrevious = &asColorAssociation[i - 1]; |
1548 | 0 | const GDALColorAssociation *pCurrent = &asColorAssociation[i]; |
1549 | | |
1550 | | // NaN comparison is always false, so it handles itself |
1551 | 0 | if (eColorSelectionMode != COLOR_SELECTION_EXACT_ENTRY && |
1552 | 0 | bSrcHasNoData && pCurrent->dfVal == dfSrcNoDataValue) |
1553 | 0 | { |
1554 | | // Check if there is enough distance between the nodata value and |
1555 | | // its predecessor. |
1556 | 0 | const double dfNewValue = std::nextafter( |
1557 | 0 | pCurrent->dfVal, -std::numeric_limits<double>::infinity()); |
1558 | 0 | if (dfNewValue > pPrevious->dfVal) |
1559 | 0 | { |
1560 | | // add one just below the nodata value |
1561 | 0 | GDALColorAssociation sNew = *pPrevious; |
1562 | 0 | sNew.dfVal = dfNewValue; |
1563 | 0 | asColorAssociation.push_back(std::move(sNew)); |
1564 | 0 | } |
1565 | 0 | } |
1566 | 0 | else if (eColorSelectionMode != COLOR_SELECTION_EXACT_ENTRY && |
1567 | 0 | bSrcHasNoData && pPrevious->dfVal == dfSrcNoDataValue) |
1568 | 0 | { |
1569 | | // Check if there is enough distance between the nodata value and |
1570 | | // its successor. |
1571 | 0 | const double dfNewValue = std::nextafter( |
1572 | 0 | pPrevious->dfVal, std::numeric_limits<double>::infinity()); |
1573 | 0 | if (dfNewValue < pCurrent->dfVal) |
1574 | 0 | { |
1575 | | // add one just above the nodata value |
1576 | 0 | GDALColorAssociation sNew = *pCurrent; |
1577 | 0 | sNew.dfVal = dfNewValue; |
1578 | 0 | asColorAssociation.push_back(std::move(sNew)); |
1579 | 0 | } |
1580 | 0 | } |
1581 | 0 | else if (nRepeatedEntryIndex == 0 && |
1582 | 0 | pCurrent->dfVal == pPrevious->dfVal) |
1583 | 0 | { |
1584 | | // second of a series of equivalent entries |
1585 | 0 | nRepeatedEntryIndex = i; |
1586 | 0 | } |
1587 | 0 | else if (nRepeatedEntryIndex != 0 && |
1588 | 0 | pCurrent->dfVal != pPrevious->dfVal) |
1589 | 0 | { |
1590 | | // Get the distance between the predecessor and successor of the |
1591 | | // equivalent entries. |
1592 | 0 | double dfTotalDist = 0.0; |
1593 | 0 | double dfLeftDist = 0.0; |
1594 | 0 | if (nRepeatedEntryIndex >= 2) |
1595 | 0 | { |
1596 | 0 | const GDALColorAssociation *pLower = |
1597 | 0 | &asColorAssociation[nRepeatedEntryIndex - 2]; |
1598 | 0 | dfTotalDist = pCurrent->dfVal - pLower->dfVal; |
1599 | 0 | dfLeftDist = pPrevious->dfVal - pLower->dfVal; |
1600 | 0 | } |
1601 | 0 | else |
1602 | 0 | { |
1603 | 0 | dfTotalDist = pCurrent->dfVal - pPrevious->dfVal; |
1604 | 0 | } |
1605 | | |
1606 | | // check if this distance is enough |
1607 | 0 | const size_t nEquivalentCount = i - nRepeatedEntryIndex + 1; |
1608 | 0 | if (dfTotalDist > |
1609 | 0 | std::abs(pPrevious->dfVal) * nEquivalentCount * DBL_EPSILON) |
1610 | 0 | { |
1611 | | // balance the alterations |
1612 | 0 | double dfMultiplier = |
1613 | 0 | 0.5 - double(nEquivalentCount) * dfLeftDist / dfTotalDist; |
1614 | 0 | for (auto j = nRepeatedEntryIndex - 1; j < i; ++j) |
1615 | 0 | { |
1616 | 0 | asColorAssociation[j].dfVal += |
1617 | 0 | (std::abs(pPrevious->dfVal) * dfMultiplier) * |
1618 | 0 | DBL_EPSILON; |
1619 | 0 | dfMultiplier += 1.0; |
1620 | 0 | } |
1621 | 0 | } |
1622 | 0 | else |
1623 | 0 | { |
1624 | | // Fallback to the old behavior: keep equivalent entries as |
1625 | | // they are. |
1626 | 0 | } |
1627 | |
|
1628 | 0 | nRepeatedEntryIndex = 0; |
1629 | 0 | } |
1630 | 0 | } |
1631 | |
|
1632 | 0 | if (nInitialSize != asColorAssociation.size()) |
1633 | 0 | { |
1634 | 0 | std::stable_sort(asColorAssociation.begin(), asColorAssociation.end(), |
1635 | 0 | GDALColorReliefSortColors); |
1636 | 0 | } |
1637 | 0 | } |
1638 | | |
1639 | | static bool GDALColorReliefGetRGBA( |
1640 | | const std::vector<GDALColorAssociation> &asColorAssociation, double dfVal, |
1641 | | ColorSelectionMode eColorSelectionMode, int *pnR, int *pnG, int *pnB, |
1642 | | int *pnA) |
1643 | 0 | { |
1644 | 0 | CPLAssert(!asColorAssociation.empty()); |
1645 | | |
1646 | 0 | size_t lower = 0; |
1647 | | |
1648 | | // Special case for NaN |
1649 | 0 | if (std::isnan(asColorAssociation[0].dfVal)) |
1650 | 0 | { |
1651 | 0 | if (std::isnan(dfVal)) |
1652 | 0 | { |
1653 | 0 | *pnR = asColorAssociation[0].nR; |
1654 | 0 | *pnG = asColorAssociation[0].nG; |
1655 | 0 | *pnB = asColorAssociation[0].nB; |
1656 | 0 | *pnA = asColorAssociation[0].nA; |
1657 | 0 | return true; |
1658 | 0 | } |
1659 | 0 | else |
1660 | 0 | { |
1661 | 0 | lower = 1; |
1662 | 0 | } |
1663 | 0 | } |
1664 | | |
1665 | | // Find the index of the first element in the LUT input array that |
1666 | | // is not smaller than the dfVal value. |
1667 | 0 | size_t i = 0; |
1668 | 0 | size_t upper = asColorAssociation.size() - 1; |
1669 | 0 | while (true) |
1670 | 0 | { |
1671 | 0 | const size_t mid = (lower + upper) / 2; |
1672 | 0 | if (upper - lower <= 1) |
1673 | 0 | { |
1674 | 0 | if (dfVal <= asColorAssociation[lower].dfVal) |
1675 | 0 | i = lower; |
1676 | 0 | else if (dfVal <= asColorAssociation[upper].dfVal) |
1677 | 0 | i = upper; |
1678 | 0 | else |
1679 | 0 | i = upper + 1; |
1680 | 0 | break; |
1681 | 0 | } |
1682 | 0 | else if (asColorAssociation[mid].dfVal >= dfVal) |
1683 | 0 | { |
1684 | 0 | upper = mid; |
1685 | 0 | } |
1686 | 0 | else |
1687 | 0 | { |
1688 | 0 | lower = mid; |
1689 | 0 | } |
1690 | 0 | } |
1691 | |
|
1692 | 0 | if (i == 0) |
1693 | 0 | { |
1694 | 0 | if (eColorSelectionMode == COLOR_SELECTION_EXACT_ENTRY && |
1695 | 0 | asColorAssociation[0].dfVal != dfVal) |
1696 | 0 | { |
1697 | 0 | *pnR = 0; |
1698 | 0 | *pnG = 0; |
1699 | 0 | *pnB = 0; |
1700 | 0 | *pnA = 0; |
1701 | 0 | return false; |
1702 | 0 | } |
1703 | 0 | else |
1704 | 0 | { |
1705 | 0 | *pnR = asColorAssociation[0].nR; |
1706 | 0 | *pnG = asColorAssociation[0].nG; |
1707 | 0 | *pnB = asColorAssociation[0].nB; |
1708 | 0 | *pnA = asColorAssociation[0].nA; |
1709 | 0 | return true; |
1710 | 0 | } |
1711 | 0 | } |
1712 | 0 | else if (i == asColorAssociation.size()) |
1713 | 0 | { |
1714 | 0 | if (eColorSelectionMode == COLOR_SELECTION_EXACT_ENTRY && |
1715 | 0 | asColorAssociation[i - 1].dfVal != dfVal) |
1716 | 0 | { |
1717 | 0 | *pnR = 0; |
1718 | 0 | *pnG = 0; |
1719 | 0 | *pnB = 0; |
1720 | 0 | *pnA = 0; |
1721 | 0 | return false; |
1722 | 0 | } |
1723 | 0 | else |
1724 | 0 | { |
1725 | 0 | *pnR = asColorAssociation[i - 1].nR; |
1726 | 0 | *pnG = asColorAssociation[i - 1].nG; |
1727 | 0 | *pnB = asColorAssociation[i - 1].nB; |
1728 | 0 | *pnA = asColorAssociation[i - 1].nA; |
1729 | 0 | return true; |
1730 | 0 | } |
1731 | 0 | } |
1732 | 0 | else |
1733 | 0 | { |
1734 | 0 | if (asColorAssociation[i - 1].dfVal == dfVal) |
1735 | 0 | { |
1736 | 0 | *pnR = asColorAssociation[i - 1].nR; |
1737 | 0 | *pnG = asColorAssociation[i - 1].nG; |
1738 | 0 | *pnB = asColorAssociation[i - 1].nB; |
1739 | 0 | *pnA = asColorAssociation[i - 1].nA; |
1740 | 0 | return true; |
1741 | 0 | } |
1742 | | |
1743 | 0 | if (asColorAssociation[i].dfVal == dfVal) |
1744 | 0 | { |
1745 | 0 | *pnR = asColorAssociation[i].nR; |
1746 | 0 | *pnG = asColorAssociation[i].nG; |
1747 | 0 | *pnB = asColorAssociation[i].nB; |
1748 | 0 | *pnA = asColorAssociation[i].nA; |
1749 | 0 | return true; |
1750 | 0 | } |
1751 | | |
1752 | 0 | if (eColorSelectionMode == COLOR_SELECTION_EXACT_ENTRY) |
1753 | 0 | { |
1754 | 0 | *pnR = 0; |
1755 | 0 | *pnG = 0; |
1756 | 0 | *pnB = 0; |
1757 | 0 | *pnA = 0; |
1758 | 0 | return false; |
1759 | 0 | } |
1760 | | |
1761 | 0 | if (eColorSelectionMode == COLOR_SELECTION_NEAREST_ENTRY && |
1762 | 0 | asColorAssociation[i - 1].dfVal != dfVal) |
1763 | 0 | { |
1764 | 0 | const size_t index = (dfVal - asColorAssociation[i - 1].dfVal < |
1765 | 0 | asColorAssociation[i].dfVal - dfVal) |
1766 | 0 | ? i - 1 |
1767 | 0 | : i; |
1768 | 0 | *pnR = asColorAssociation[index].nR; |
1769 | 0 | *pnG = asColorAssociation[index].nG; |
1770 | 0 | *pnB = asColorAssociation[index].nB; |
1771 | 0 | *pnA = asColorAssociation[index].nA; |
1772 | 0 | return true; |
1773 | 0 | } |
1774 | | |
1775 | 0 | if (std::isnan(asColorAssociation[i - 1].dfVal)) |
1776 | 0 | { |
1777 | 0 | *pnR = asColorAssociation[i].nR; |
1778 | 0 | *pnG = asColorAssociation[i].nG; |
1779 | 0 | *pnB = asColorAssociation[i].nB; |
1780 | 0 | *pnA = asColorAssociation[i].nA; |
1781 | 0 | return true; |
1782 | 0 | } |
1783 | | |
1784 | 0 | const double dfRatio = |
1785 | 0 | (dfVal - asColorAssociation[i - 1].dfVal) / |
1786 | 0 | (asColorAssociation[i].dfVal - asColorAssociation[i - 1].dfVal); |
1787 | 0 | const auto LinearInterpolation = [dfRatio](int nValBefore, int nVal) |
1788 | 0 | { |
1789 | 0 | return std::clamp(static_cast<int>(0.5 + nValBefore + |
1790 | 0 | dfRatio * (nVal - nValBefore)), |
1791 | 0 | 0, 255); |
1792 | 0 | }; |
1793 | |
|
1794 | 0 | *pnR = LinearInterpolation(asColorAssociation[i - 1].nR, |
1795 | 0 | asColorAssociation[i].nR); |
1796 | 0 | *pnG = LinearInterpolation(asColorAssociation[i - 1].nG, |
1797 | 0 | asColorAssociation[i].nG); |
1798 | 0 | *pnB = LinearInterpolation(asColorAssociation[i - 1].nB, |
1799 | 0 | asColorAssociation[i].nB); |
1800 | 0 | *pnA = LinearInterpolation(asColorAssociation[i - 1].nA, |
1801 | 0 | asColorAssociation[i].nA); |
1802 | |
|
1803 | 0 | return true; |
1804 | 0 | } |
1805 | 0 | } |
1806 | | |
1807 | | static std::vector<GDALColorAssociation> |
1808 | | GDALColorReliefParseColorFile(GDALRasterBandH hSrcBand, |
1809 | | const char *pszColorFilename, |
1810 | | ColorSelectionMode eColorSelectionMode) |
1811 | 0 | { |
1812 | 0 | std::vector<GDALColorAssociation> asColorAssociation = GDALLoadTextColorMap( |
1813 | 0 | pszColorFilename, GDALRasterBand::FromHandle(hSrcBand)); |
1814 | 0 | if (asColorAssociation.empty()) |
1815 | 0 | { |
1816 | 0 | return {}; |
1817 | 0 | } |
1818 | | |
1819 | 0 | int bSrcHasNoData = FALSE; |
1820 | 0 | const double dfSrcNoDataValue = |
1821 | 0 | GDALGetRasterNoDataValue(hSrcBand, &bSrcHasNoData); |
1822 | |
|
1823 | 0 | GDALColorReliefProcessColors(asColorAssociation, bSrcHasNoData, |
1824 | 0 | dfSrcNoDataValue, eColorSelectionMode); |
1825 | |
|
1826 | 0 | return asColorAssociation; |
1827 | 0 | } |
1828 | | |
1829 | | static GByte *GDALColorReliefPrecompute( |
1830 | | GDALRasterBandH hSrcBand, |
1831 | | const std::vector<GDALColorAssociation> &asColorAssociation, |
1832 | | ColorSelectionMode eColorSelectionMode, int *pnIndexOffset) |
1833 | 0 | { |
1834 | 0 | const GDALDataType eDT = GDALGetRasterDataType(hSrcBand); |
1835 | 0 | GByte *pabyPrecomputed = nullptr; |
1836 | 0 | const int nIndexOffset = (eDT == GDT_Int16) ? 32768 : 0; |
1837 | 0 | *pnIndexOffset = nIndexOffset; |
1838 | 0 | const int nXSize = GDALGetRasterBandXSize(hSrcBand); |
1839 | 0 | const int nYSize = GDALGetRasterBandYSize(hSrcBand); |
1840 | 0 | if (eDT == GDT_UInt8 || ((eDT == GDT_Int16 || eDT == GDT_UInt16) && |
1841 | 0 | static_cast<GIntBig>(nXSize) * nYSize > 65536)) |
1842 | 0 | { |
1843 | 0 | const int iMax = (eDT == GDT_UInt8) ? 256 : 65536; |
1844 | 0 | pabyPrecomputed = static_cast<GByte *>(VSI_MALLOC2_VERBOSE(4, iMax)); |
1845 | 0 | if (pabyPrecomputed) |
1846 | 0 | { |
1847 | 0 | for (int i = 0; i < iMax; i++) |
1848 | 0 | { |
1849 | 0 | int nR = 0; |
1850 | 0 | int nG = 0; |
1851 | 0 | int nB = 0; |
1852 | 0 | int nA = 0; |
1853 | 0 | GDALColorReliefGetRGBA(asColorAssociation, i - nIndexOffset, |
1854 | 0 | eColorSelectionMode, &nR, &nG, &nB, &nA); |
1855 | 0 | pabyPrecomputed[4 * i] = static_cast<GByte>(nR); |
1856 | 0 | pabyPrecomputed[4 * i + 1] = static_cast<GByte>(nG); |
1857 | 0 | pabyPrecomputed[4 * i + 2] = static_cast<GByte>(nB); |
1858 | 0 | pabyPrecomputed[4 * i + 3] = static_cast<GByte>(nA); |
1859 | 0 | } |
1860 | 0 | } |
1861 | 0 | } |
1862 | 0 | return pabyPrecomputed; |
1863 | 0 | } |
1864 | | |
1865 | | /************************************************************************/ |
1866 | | /* ==================================================================== */ |
1867 | | /* GDALColorReliefDataset */ |
1868 | | /* ==================================================================== */ |
1869 | | /************************************************************************/ |
1870 | | |
1871 | | class GDALColorReliefRasterBand; |
1872 | | |
1873 | | class GDALColorReliefDataset final : public GDALDataset |
1874 | | { |
1875 | | friend class GDALColorReliefRasterBand; |
1876 | | |
1877 | | GDALDatasetH hSrcDS; |
1878 | | GDALRasterBandH hSrcBand; |
1879 | | std::vector<GDALColorAssociation> asColorAssociation{}; |
1880 | | ColorSelectionMode eColorSelectionMode; |
1881 | | GByte *pabyPrecomputed; |
1882 | | int nIndexOffset; |
1883 | | float *pafSourceBuf; |
1884 | | int *panSourceBuf; |
1885 | | int nCurBlockXOff; |
1886 | | int nCurBlockYOff; |
1887 | | |
1888 | | CPL_DISALLOW_COPY_ASSIGN(GDALColorReliefDataset) |
1889 | | |
1890 | | public: |
1891 | | GDALColorReliefDataset(GDALDatasetH hSrcDS, GDALRasterBandH hSrcBand, |
1892 | | const char *pszColorFilename, |
1893 | | ColorSelectionMode eColorSelectionMode, int bAlpha); |
1894 | | ~GDALColorReliefDataset() override; |
1895 | | |
1896 | | bool InitOK() const |
1897 | 0 | { |
1898 | 0 | return !asColorAssociation.empty() && |
1899 | 0 | (pafSourceBuf != nullptr || panSourceBuf != nullptr); |
1900 | 0 | } |
1901 | | |
1902 | | CPLErr GetGeoTransform(GDALGeoTransform >) const override; |
1903 | | const OGRSpatialReference *GetSpatialRef() const override; |
1904 | | }; |
1905 | | |
1906 | | /************************************************************************/ |
1907 | | /* ==================================================================== */ |
1908 | | /* GDALColorReliefRasterBand */ |
1909 | | /* ==================================================================== */ |
1910 | | /************************************************************************/ |
1911 | | |
1912 | | class GDALColorReliefRasterBand : public GDALRasterBand |
1913 | | { |
1914 | | friend class GDALColorReliefDataset; |
1915 | | |
1916 | | public: |
1917 | | GDALColorReliefRasterBand(GDALColorReliefDataset *, int); |
1918 | | |
1919 | | CPLErr IReadBlock(int, int, void *) override; |
1920 | | GDALColorInterp GetColorInterpretation() override; |
1921 | | }; |
1922 | | |
1923 | | GDALColorReliefDataset::GDALColorReliefDataset( |
1924 | | GDALDatasetH hSrcDSIn, GDALRasterBandH hSrcBandIn, |
1925 | | const char *pszColorFilename, ColorSelectionMode eColorSelectionModeIn, |
1926 | | int bAlpha) |
1927 | 0 | : hSrcDS(hSrcDSIn), hSrcBand(hSrcBandIn), |
1928 | 0 | eColorSelectionMode(eColorSelectionModeIn), pabyPrecomputed(nullptr), |
1929 | 0 | nIndexOffset(0), pafSourceBuf(nullptr), panSourceBuf(nullptr), |
1930 | 0 | nCurBlockXOff(-1), nCurBlockYOff(-1) |
1931 | 0 | { |
1932 | 0 | asColorAssociation = GDALColorReliefParseColorFile( |
1933 | 0 | hSrcBand, pszColorFilename, eColorSelectionMode); |
1934 | |
|
1935 | 0 | nRasterXSize = GDALGetRasterXSize(hSrcDS); |
1936 | 0 | nRasterYSize = GDALGetRasterYSize(hSrcDS); |
1937 | |
|
1938 | 0 | int nBlockXSize = 0; |
1939 | 0 | int nBlockYSize = 0; |
1940 | 0 | GDALGetBlockSize(hSrcBand, &nBlockXSize, &nBlockYSize); |
1941 | |
|
1942 | 0 | pabyPrecomputed = GDALColorReliefPrecompute( |
1943 | 0 | hSrcBand, asColorAssociation, eColorSelectionMode, &nIndexOffset); |
1944 | |
|
1945 | 0 | for (int i = 0; i < ((bAlpha) ? 4 : 3); i++) |
1946 | 0 | { |
1947 | 0 | SetBand(i + 1, new GDALColorReliefRasterBand(this, i + 1)); |
1948 | 0 | } |
1949 | |
|
1950 | 0 | if (pabyPrecomputed) |
1951 | 0 | panSourceBuf = static_cast<int *>( |
1952 | 0 | VSI_MALLOC3_VERBOSE(sizeof(int), nBlockXSize, nBlockYSize)); |
1953 | 0 | else |
1954 | 0 | pafSourceBuf = static_cast<float *>( |
1955 | 0 | VSI_MALLOC3_VERBOSE(sizeof(float), nBlockXSize, nBlockYSize)); |
1956 | 0 | } |
1957 | | |
1958 | | GDALColorReliefDataset::~GDALColorReliefDataset() |
1959 | 0 | { |
1960 | 0 | CPLFree(pabyPrecomputed); |
1961 | 0 | CPLFree(panSourceBuf); |
1962 | 0 | CPLFree(pafSourceBuf); |
1963 | 0 | } |
1964 | | |
1965 | | CPLErr GDALColorReliefDataset::GetGeoTransform(GDALGeoTransform >) const |
1966 | 0 | { |
1967 | 0 | return GDALDataset::FromHandle(hSrcDS)->GetGeoTransform(gt); |
1968 | 0 | } |
1969 | | |
1970 | | const OGRSpatialReference *GDALColorReliefDataset::GetSpatialRef() const |
1971 | 0 | { |
1972 | 0 | return GDALDataset::FromHandle(hSrcDS)->GetSpatialRef(); |
1973 | 0 | } |
1974 | | |
1975 | | GDALColorReliefRasterBand::GDALColorReliefRasterBand( |
1976 | | GDALColorReliefDataset *poDSIn, int nBandIn) |
1977 | 0 | { |
1978 | 0 | poDS = poDSIn; |
1979 | 0 | nBand = nBandIn; |
1980 | 0 | eDataType = GDT_UInt8; |
1981 | 0 | GDALGetBlockSize(poDSIn->hSrcBand, &nBlockXSize, &nBlockYSize); |
1982 | 0 | } |
1983 | | |
1984 | | CPLErr GDALColorReliefRasterBand::IReadBlock(int nBlockXOff, int nBlockYOff, |
1985 | | void *pImage) |
1986 | 0 | { |
1987 | 0 | GDALColorReliefDataset *poGDS = |
1988 | 0 | cpl::down_cast<GDALColorReliefDataset *>(poDS); |
1989 | 0 | const int nReqXSize = (nBlockXOff + 1) * nBlockXSize >= nRasterXSize |
1990 | 0 | ? nRasterXSize - nBlockXOff * nBlockXSize |
1991 | 0 | : nBlockXSize; |
1992 | |
|
1993 | 0 | const int nReqYSize = (nBlockYOff + 1) * nBlockYSize >= nRasterYSize |
1994 | 0 | ? nRasterYSize - nBlockYOff * nBlockYSize |
1995 | 0 | : nBlockYSize; |
1996 | |
|
1997 | 0 | if (poGDS->nCurBlockXOff != nBlockXOff || |
1998 | 0 | poGDS->nCurBlockYOff != nBlockYOff) |
1999 | 0 | { |
2000 | 0 | poGDS->nCurBlockXOff = nBlockXOff; |
2001 | 0 | poGDS->nCurBlockYOff = nBlockYOff; |
2002 | |
|
2003 | 0 | const CPLErr eErr = GDALRasterIO( |
2004 | 0 | poGDS->hSrcBand, GF_Read, nBlockXOff * nBlockXSize, |
2005 | 0 | nBlockYOff * nBlockYSize, nReqXSize, nReqYSize, |
2006 | 0 | (poGDS->panSourceBuf) ? static_cast<void *>(poGDS->panSourceBuf) |
2007 | 0 | : static_cast<void *>(poGDS->pafSourceBuf), |
2008 | 0 | nReqXSize, nReqYSize, |
2009 | 0 | (poGDS->panSourceBuf) ? GDT_Int32 : GDT_Float32, 0, 0); |
2010 | 0 | if (eErr != CE_None) |
2011 | 0 | { |
2012 | 0 | memset(pImage, 0, static_cast<size_t>(nBlockXSize) * nBlockYSize); |
2013 | 0 | return eErr; |
2014 | 0 | } |
2015 | 0 | } |
2016 | | |
2017 | 0 | int j = 0; |
2018 | 0 | if (poGDS->panSourceBuf) |
2019 | 0 | { |
2020 | 0 | for (int y = 0; y < nReqYSize; y++) |
2021 | 0 | { |
2022 | 0 | for (int x = 0; x < nReqXSize; x++) |
2023 | 0 | { |
2024 | 0 | const int nIndex = poGDS->panSourceBuf[j] + poGDS->nIndexOffset; |
2025 | 0 | static_cast<GByte *>(pImage)[y * nBlockXSize + x] = |
2026 | 0 | poGDS->pabyPrecomputed[4 * nIndex + nBand - 1]; |
2027 | 0 | j++; |
2028 | 0 | } |
2029 | 0 | } |
2030 | 0 | } |
2031 | 0 | else |
2032 | 0 | { |
2033 | 0 | int anComponents[4] = {0, 0, 0, 0}; |
2034 | 0 | for (int y = 0; y < nReqYSize; y++) |
2035 | 0 | { |
2036 | 0 | for (int x = 0; x < nReqXSize; x++) |
2037 | 0 | { |
2038 | 0 | GDALColorReliefGetRGBA( |
2039 | 0 | poGDS->asColorAssociation, double(poGDS->pafSourceBuf[j]), |
2040 | 0 | poGDS->eColorSelectionMode, &anComponents[0], |
2041 | 0 | &anComponents[1], &anComponents[2], &anComponents[3]); |
2042 | 0 | static_cast<GByte *>(pImage)[y * nBlockXSize + x] = |
2043 | 0 | static_cast<GByte>(anComponents[nBand - 1]); |
2044 | 0 | j++; |
2045 | 0 | } |
2046 | 0 | } |
2047 | 0 | } |
2048 | |
|
2049 | 0 | return CE_None; |
2050 | 0 | } |
2051 | | |
2052 | | GDALColorInterp GDALColorReliefRasterBand::GetColorInterpretation() |
2053 | 0 | { |
2054 | 0 | return static_cast<GDALColorInterp>(GCI_RedBand + nBand - 1); |
2055 | 0 | } |
2056 | | |
2057 | | static CPLErr |
2058 | | GDALColorRelief(GDALRasterBandH hSrcBand, GDALRasterBandH hDstBand1, |
2059 | | GDALRasterBandH hDstBand2, GDALRasterBandH hDstBand3, |
2060 | | GDALRasterBandH hDstBand4, const char *pszColorFilename, |
2061 | | ColorSelectionMode eColorSelectionMode, |
2062 | | GDALProgressFunc pfnProgress, void *pProgressData) |
2063 | 0 | { |
2064 | 0 | if (hSrcBand == nullptr || hDstBand1 == nullptr || hDstBand2 == nullptr || |
2065 | 0 | hDstBand3 == nullptr) |
2066 | 0 | return CE_Failure; |
2067 | | |
2068 | 0 | const auto asColorAssociation = GDALColorReliefParseColorFile( |
2069 | 0 | hSrcBand, pszColorFilename, eColorSelectionMode); |
2070 | 0 | if (asColorAssociation.empty()) |
2071 | 0 | return CE_Failure; |
2072 | | |
2073 | 0 | if (pfnProgress == nullptr) |
2074 | 0 | pfnProgress = GDALDummyProgress; |
2075 | | |
2076 | | /* -------------------------------------------------------------------- */ |
2077 | | /* Precompute the map from values to RGBA quadruplets */ |
2078 | | /* for GDT_UInt8, GDT_Int16 or GDT_UInt16 */ |
2079 | | /* -------------------------------------------------------------------- */ |
2080 | 0 | int nIndexOffset = 0; |
2081 | 0 | std::unique_ptr<GByte, VSIFreeReleaser> pabyPrecomputed( |
2082 | 0 | GDALColorReliefPrecompute(hSrcBand, asColorAssociation, |
2083 | 0 | eColorSelectionMode, &nIndexOffset)); |
2084 | | |
2085 | | /* -------------------------------------------------------------------- */ |
2086 | | /* Initialize progress counter. */ |
2087 | | /* -------------------------------------------------------------------- */ |
2088 | |
|
2089 | 0 | const int nXSize = GDALGetRasterBandXSize(hSrcBand); |
2090 | 0 | const int nYSize = GDALGetRasterBandYSize(hSrcBand); |
2091 | |
|
2092 | 0 | std::unique_ptr<float, VSIFreeReleaser> pafSourceBuf; |
2093 | 0 | std::unique_ptr<int, VSIFreeReleaser> panSourceBuf; |
2094 | 0 | if (pabyPrecomputed) |
2095 | 0 | panSourceBuf.reset( |
2096 | 0 | static_cast<int *>(VSI_MALLOC2_VERBOSE(sizeof(int), nXSize))); |
2097 | 0 | else |
2098 | 0 | pafSourceBuf.reset( |
2099 | 0 | static_cast<float *>(VSI_MALLOC2_VERBOSE(sizeof(float), nXSize))); |
2100 | 0 | std::unique_ptr<GByte, VSIFreeReleaser> pabyDestBuf( |
2101 | 0 | static_cast<GByte *>(VSI_MALLOC2_VERBOSE(4, nXSize))); |
2102 | 0 | GByte *pabyDestBuf1 = pabyDestBuf.get(); |
2103 | 0 | GByte *pabyDestBuf2 = pabyDestBuf1 ? pabyDestBuf1 + nXSize : nullptr; |
2104 | 0 | GByte *pabyDestBuf3 = pabyDestBuf2 ? pabyDestBuf2 + nXSize : nullptr; |
2105 | 0 | GByte *pabyDestBuf4 = pabyDestBuf3 ? pabyDestBuf3 + nXSize : nullptr; |
2106 | |
|
2107 | 0 | if ((pabyPrecomputed != nullptr && panSourceBuf == nullptr) || |
2108 | 0 | (pabyPrecomputed == nullptr && pafSourceBuf == nullptr) || |
2109 | 0 | pabyDestBuf1 == nullptr) |
2110 | 0 | { |
2111 | 0 | return CE_Failure; |
2112 | 0 | } |
2113 | | |
2114 | 0 | if (!pfnProgress(0.0, nullptr, pProgressData)) |
2115 | 0 | { |
2116 | 0 | CPLError(CE_Failure, CPLE_UserInterrupt, "User terminated"); |
2117 | 0 | return CE_Failure; |
2118 | 0 | } |
2119 | | |
2120 | 0 | int nR = 0; |
2121 | 0 | int nG = 0; |
2122 | 0 | int nB = 0; |
2123 | 0 | int nA = 0; |
2124 | |
|
2125 | 0 | for (int i = 0; i < nYSize; i++) |
2126 | 0 | { |
2127 | | /* Read source buffer */ |
2128 | 0 | CPLErr eErr = GDALRasterIO( |
2129 | 0 | hSrcBand, GF_Read, 0, i, nXSize, 1, |
2130 | 0 | panSourceBuf ? static_cast<void *>(panSourceBuf.get()) |
2131 | 0 | : static_cast<void *>(pafSourceBuf.get()), |
2132 | 0 | nXSize, 1, panSourceBuf ? GDT_Int32 : GDT_Float32, 0, 0); |
2133 | 0 | if (eErr != CE_None) |
2134 | 0 | { |
2135 | 0 | return eErr; |
2136 | 0 | } |
2137 | | |
2138 | 0 | if (pabyPrecomputed) |
2139 | 0 | { |
2140 | 0 | const auto pabyPrecomputedRaw = pabyPrecomputed.get(); |
2141 | 0 | const auto panSourceBufRaw = panSourceBuf.get(); |
2142 | 0 | for (int j = 0; j < nXSize; j++) |
2143 | 0 | { |
2144 | 0 | int nIndex = panSourceBufRaw[j] + nIndexOffset; |
2145 | 0 | pabyDestBuf1[j] = pabyPrecomputedRaw[4 * nIndex]; |
2146 | 0 | pabyDestBuf2[j] = pabyPrecomputedRaw[4 * nIndex + 1]; |
2147 | 0 | pabyDestBuf3[j] = pabyPrecomputedRaw[4 * nIndex + 2]; |
2148 | 0 | pabyDestBuf4[j] = pabyPrecomputedRaw[4 * nIndex + 3]; |
2149 | 0 | } |
2150 | 0 | } |
2151 | 0 | else |
2152 | 0 | { |
2153 | 0 | const auto pafSourceBufRaw = pafSourceBuf.get(); |
2154 | 0 | for (int j = 0; j < nXSize; j++) |
2155 | 0 | { |
2156 | 0 | GDALColorReliefGetRGBA(asColorAssociation, |
2157 | 0 | double(pafSourceBufRaw[j]), |
2158 | 0 | eColorSelectionMode, &nR, &nG, &nB, &nA); |
2159 | 0 | pabyDestBuf1[j] = static_cast<GByte>(nR); |
2160 | 0 | pabyDestBuf2[j] = static_cast<GByte>(nG); |
2161 | 0 | pabyDestBuf3[j] = static_cast<GByte>(nB); |
2162 | 0 | pabyDestBuf4[j] = static_cast<GByte>(nA); |
2163 | 0 | } |
2164 | 0 | } |
2165 | | |
2166 | | /* ----------------------------------------- |
2167 | | * Write Line to Raster |
2168 | | */ |
2169 | 0 | eErr = GDALRasterIO(hDstBand1, GF_Write, 0, i, nXSize, 1, pabyDestBuf1, |
2170 | 0 | nXSize, 1, GDT_UInt8, 0, 0); |
2171 | 0 | if (eErr == CE_None) |
2172 | 0 | { |
2173 | 0 | eErr = GDALRasterIO(hDstBand2, GF_Write, 0, i, nXSize, 1, |
2174 | 0 | pabyDestBuf2, nXSize, 1, GDT_UInt8, 0, 0); |
2175 | 0 | } |
2176 | 0 | if (eErr == CE_None) |
2177 | 0 | { |
2178 | 0 | eErr = GDALRasterIO(hDstBand3, GF_Write, 0, i, nXSize, 1, |
2179 | 0 | pabyDestBuf3, nXSize, 1, GDT_UInt8, 0, 0); |
2180 | 0 | } |
2181 | 0 | if (eErr == CE_None && hDstBand4) |
2182 | 0 | { |
2183 | 0 | eErr = GDALRasterIO(hDstBand4, GF_Write, 0, i, nXSize, 1, |
2184 | 0 | pabyDestBuf4, nXSize, 1, GDT_UInt8, 0, 0); |
2185 | 0 | } |
2186 | |
|
2187 | 0 | if (eErr == CE_None && |
2188 | 0 | !pfnProgress(1.0 * (i + 1) / nYSize, nullptr, pProgressData)) |
2189 | 0 | { |
2190 | 0 | CPLError(CE_Failure, CPLE_UserInterrupt, "User terminated"); |
2191 | 0 | eErr = CE_Failure; |
2192 | 0 | } |
2193 | 0 | if (eErr != CE_None) |
2194 | 0 | { |
2195 | 0 | return eErr; |
2196 | 0 | } |
2197 | 0 | } |
2198 | | |
2199 | 0 | pfnProgress(1.0, nullptr, pProgressData); |
2200 | |
|
2201 | 0 | return CE_None; |
2202 | 0 | } |
2203 | | |
2204 | | /************************************************************************/ |
2205 | | /* GDALGenerateVRTColorRelief() */ |
2206 | | /************************************************************************/ |
2207 | | |
2208 | | static std::unique_ptr<GDALDataset> GDALGenerateVRTColorRelief( |
2209 | | const char *pszDest, GDALDatasetH hSrcDataset, GDALRasterBandH hSrcBand, |
2210 | | const char *pszColorFilename, ColorSelectionMode eColorSelectionMode, |
2211 | | bool bAddAlpha) |
2212 | 0 | { |
2213 | 0 | const auto asColorAssociation = GDALColorReliefParseColorFile( |
2214 | 0 | hSrcBand, pszColorFilename, eColorSelectionMode); |
2215 | 0 | if (asColorAssociation.empty()) |
2216 | 0 | return nullptr; |
2217 | | |
2218 | 0 | GDALDataset *poSrcDS = GDALDataset::FromHandle(hSrcDataset); |
2219 | 0 | const int nXSize = GDALGetRasterBandXSize(hSrcBand); |
2220 | 0 | const int nYSize = GDALGetRasterBandYSize(hSrcBand); |
2221 | |
|
2222 | 0 | int nBlockXSize = 0; |
2223 | 0 | int nBlockYSize = 0; |
2224 | 0 | GDALGetBlockSize(hSrcBand, &nBlockXSize, &nBlockYSize); |
2225 | |
|
2226 | 0 | auto poVRTDS = |
2227 | 0 | std::make_unique<VRTDataset>(nXSize, nYSize, nBlockXSize, nBlockYSize); |
2228 | 0 | poVRTDS->SetDescription(pszDest); |
2229 | 0 | poVRTDS->SetSpatialRef(poSrcDS->GetSpatialRef()); |
2230 | 0 | GDALGeoTransform gt; |
2231 | 0 | if (poSrcDS->GetGeoTransform(gt) == CE_None) |
2232 | 0 | { |
2233 | 0 | poVRTDS->SetGeoTransform(gt); |
2234 | 0 | } |
2235 | |
|
2236 | 0 | const int nBands = 3 + (bAddAlpha ? 1 : 0); |
2237 | |
|
2238 | 0 | for (int iBand = 0; iBand < nBands; iBand++) |
2239 | 0 | { |
2240 | 0 | poVRTDS->AddBand(GDT_Byte, nullptr); |
2241 | 0 | auto poVRTBand = cpl::down_cast<VRTSourcedRasterBand *>( |
2242 | 0 | poVRTDS->GetRasterBand(iBand + 1)); |
2243 | 0 | poVRTBand->SetColorInterpretation( |
2244 | 0 | static_cast<GDALColorInterp>(GCI_RedBand + iBand)); |
2245 | |
|
2246 | 0 | auto poComplexSource = std::make_unique<VRTComplexSource>(); |
2247 | 0 | poVRTBand->ConfigureSource(poComplexSource.get(), |
2248 | 0 | GDALRasterBand::FromHandle(hSrcBand), FALSE, |
2249 | 0 | 0, 0, nXSize, nYSize, 0, 0, nXSize, nYSize); |
2250 | |
|
2251 | 0 | std::vector<double> adfInputLUT; |
2252 | 0 | std::vector<double> adfOutputLUT; |
2253 | |
|
2254 | 0 | for (size_t iColor = 0; iColor < asColorAssociation.size(); iColor++) |
2255 | 0 | { |
2256 | 0 | const double dfVal = asColorAssociation[iColor].dfVal; |
2257 | 0 | if (iColor > 0 && |
2258 | 0 | eColorSelectionMode == COLOR_SELECTION_NEAREST_ENTRY && |
2259 | 0 | dfVal != |
2260 | 0 | std::nextafter(asColorAssociation[iColor - 1].dfVal, |
2261 | 0 | std::numeric_limits<double>::infinity())) |
2262 | 0 | { |
2263 | 0 | const double dfMidVal = |
2264 | 0 | (dfVal + asColorAssociation[iColor - 1].dfVal) / 2.0; |
2265 | 0 | adfInputLUT.push_back(std::nextafter( |
2266 | 0 | dfMidVal, -std::numeric_limits<double>::infinity())); |
2267 | 0 | adfOutputLUT.push_back( |
2268 | 0 | (iBand == 0) ? asColorAssociation[iColor - 1].nR |
2269 | 0 | : (iBand == 1) ? asColorAssociation[iColor - 1].nG |
2270 | 0 | : (iBand == 2) ? asColorAssociation[iColor - 1].nB |
2271 | 0 | : asColorAssociation[iColor - 1].nA); |
2272 | 0 | adfInputLUT.push_back(dfMidVal); |
2273 | 0 | adfOutputLUT.push_back( |
2274 | 0 | (iBand == 0) ? asColorAssociation[iColor].nR |
2275 | 0 | : (iBand == 1) ? asColorAssociation[iColor].nG |
2276 | 0 | : (iBand == 2) ? asColorAssociation[iColor].nB |
2277 | 0 | : asColorAssociation[iColor].nA); |
2278 | 0 | } |
2279 | 0 | else |
2280 | 0 | { |
2281 | 0 | if (eColorSelectionMode == COLOR_SELECTION_EXACT_ENTRY) |
2282 | 0 | { |
2283 | 0 | adfInputLUT.push_back(std::nextafter( |
2284 | 0 | dfVal, -std::numeric_limits<double>::infinity())); |
2285 | 0 | adfOutputLUT.push_back(0); |
2286 | 0 | } |
2287 | 0 | adfInputLUT.push_back(dfVal); |
2288 | 0 | adfOutputLUT.push_back( |
2289 | 0 | (iBand == 0) ? asColorAssociation[iColor].nR |
2290 | 0 | : (iBand == 1) ? asColorAssociation[iColor].nG |
2291 | 0 | : (iBand == 2) ? asColorAssociation[iColor].nB |
2292 | 0 | : asColorAssociation[iColor].nA); |
2293 | 0 | } |
2294 | |
|
2295 | 0 | if (eColorSelectionMode == COLOR_SELECTION_EXACT_ENTRY) |
2296 | 0 | { |
2297 | 0 | adfInputLUT.push_back(std::nextafter( |
2298 | 0 | dfVal, std::numeric_limits<double>::infinity())); |
2299 | 0 | adfOutputLUT.push_back(0); |
2300 | 0 | } |
2301 | 0 | } |
2302 | |
|
2303 | 0 | poComplexSource->SetLUT(adfInputLUT, adfOutputLUT); |
2304 | |
|
2305 | 0 | poVRTBand->AddSource(std::move(poComplexSource)); |
2306 | 0 | } |
2307 | |
|
2308 | 0 | return poVRTDS; |
2309 | 0 | } |
2310 | | |
2311 | | /************************************************************************/ |
2312 | | /* GDALTRIAlg() */ |
2313 | | /************************************************************************/ |
2314 | | |
2315 | | // Implements Wilson et al. (2007), for bathymetric use cases |
2316 | | template <class T> |
2317 | | static float GDALTRIAlgWilson(const T *afWin, float /*fDstNoDataValue*/, |
2318 | | const AlgorithmParameters * /*pData*/) |
2319 | 0 | { |
2320 | | // Terrain Ruggedness is average difference in height |
2321 | 0 | return (std::abs(afWin[0] - afWin[4]) + std::abs(afWin[1] - afWin[4]) + |
2322 | 0 | std::abs(afWin[2] - afWin[4]) + std::abs(afWin[3] - afWin[4]) + |
2323 | 0 | std::abs(afWin[5] - afWin[4]) + std::abs(afWin[6] - afWin[4]) + |
2324 | 0 | std::abs(afWin[7] - afWin[4]) + std::abs(afWin[8] - afWin[4])) * |
2325 | 0 | 0.125f; |
2326 | 0 | } Unexecuted instantiation: gdaldem_lib.cpp:float GDALTRIAlgWilson<float>(float const*, float, AlgorithmParameters const*) Unexecuted instantiation: gdaldem_lib.cpp:float GDALTRIAlgWilson<int>(int const*, float, AlgorithmParameters const*) |
2327 | | |
2328 | | // Implements Riley, S.J., De Gloria, S.D., Elliot, R. (1999): A Terrain |
2329 | | // Ruggedness that Quantifies Topographic Heterogeneity. Intermountain Journal |
2330 | | // of Science, Vol.5, No.1-4, pp.23-27 for terrestrial use cases |
2331 | | template <class T> |
2332 | | static float GDALTRIAlgRiley(const T *afWin, float /*fDstNoDataValue*/, |
2333 | | const AlgorithmParameters * /*pData*/) |
2334 | 0 | { |
2335 | 0 | const auto square = [](double x) { return x * x; };Unexecuted instantiation: gdaldem_lib.cpp:GDALTRIAlgRiley<float>(float const*, float, AlgorithmParameters const*)::{lambda(double)#1}::operator()(double) constUnexecuted instantiation: gdaldem_lib.cpp:GDALTRIAlgRiley<int>(int const*, float, AlgorithmParameters const*)::{lambda(double)#1}::operator()(double) const |
2336 | |
|
2337 | 0 | return static_cast<float>(std::sqrt(square(double(afWin[0] - afWin[4])) + |
2338 | 0 | square(double(afWin[1] - afWin[4])) + |
2339 | 0 | square(double(afWin[2] - afWin[4])) + |
2340 | 0 | square(double(afWin[3] - afWin[4])) + |
2341 | 0 | square(double(afWin[5] - afWin[4])) + |
2342 | 0 | square(double(afWin[6] - afWin[4])) + |
2343 | 0 | square(double(afWin[7] - afWin[4])) + |
2344 | 0 | square(double(afWin[8] - afWin[4])))); |
2345 | 0 | } Unexecuted instantiation: gdaldem_lib.cpp:float GDALTRIAlgRiley<float>(float const*, float, AlgorithmParameters const*) Unexecuted instantiation: gdaldem_lib.cpp:float GDALTRIAlgRiley<int>(int const*, float, AlgorithmParameters const*) |
2346 | | |
2347 | | /************************************************************************/ |
2348 | | /* GDALTPIAlg() */ |
2349 | | /************************************************************************/ |
2350 | | |
2351 | | template <class T> |
2352 | | static float GDALTPIAlg(const T *afWin, float /*fDstNoDataValue*/, |
2353 | | const AlgorithmParameters * /*pData*/) |
2354 | 0 | { |
2355 | | // Terrain Position is the difference between |
2356 | | // The central cell and the mean of the surrounding cells |
2357 | 0 | return afWin[4] - ((afWin[0] + afWin[1] + afWin[2] + afWin[3] + afWin[5] + |
2358 | 0 | afWin[6] + afWin[7] + afWin[8]) * |
2359 | 0 | 0.125f); |
2360 | 0 | } Unexecuted instantiation: gdaldem_lib.cpp:float GDALTPIAlg<float>(float const*, float, AlgorithmParameters const*) Unexecuted instantiation: gdaldem_lib.cpp:float GDALTPIAlg<int>(int const*, float, AlgorithmParameters const*) |
2361 | | |
2362 | | /************************************************************************/ |
2363 | | /* GDALRoughnessAlg() */ |
2364 | | /************************************************************************/ |
2365 | | |
2366 | | template <class T> |
2367 | | static float GDALRoughnessAlg(const T *afWin, float /*fDstNoDataValue*/, |
2368 | | const AlgorithmParameters * /*pData*/) |
2369 | 0 | { |
2370 | | // Roughness is the largest difference between any two cells |
2371 | |
|
2372 | 0 | T fRoughnessMin = afWin[0]; |
2373 | 0 | T fRoughnessMax = afWin[0]; |
2374 | |
|
2375 | 0 | for (int k = 1; k < 9; k++) |
2376 | 0 | { |
2377 | 0 | if (afWin[k] > fRoughnessMax) |
2378 | 0 | { |
2379 | 0 | fRoughnessMax = afWin[k]; |
2380 | 0 | } |
2381 | 0 | if (afWin[k] < fRoughnessMin) |
2382 | 0 | { |
2383 | 0 | fRoughnessMin = afWin[k]; |
2384 | 0 | } |
2385 | 0 | } |
2386 | 0 | return static_cast<float>(fRoughnessMax - fRoughnessMin); |
2387 | 0 | } Unexecuted instantiation: gdaldem_lib.cpp:float GDALRoughnessAlg<float>(float const*, float, AlgorithmParameters const*) Unexecuted instantiation: gdaldem_lib.cpp:float GDALRoughnessAlg<int>(int const*, float, AlgorithmParameters const*) |
2388 | | |
2389 | | /************************************************************************/ |
2390 | | /* ==================================================================== */ |
2391 | | /* GDALGeneric3x3Dataset */ |
2392 | | /* ==================================================================== */ |
2393 | | /************************************************************************/ |
2394 | | |
2395 | | template <class T> class GDALGeneric3x3RasterBand; |
2396 | | |
2397 | | template <class T> class GDALGeneric3x3Dataset final : public GDALDataset |
2398 | | { |
2399 | | friend class GDALGeneric3x3RasterBand<T>; |
2400 | | |
2401 | | const typename GDALGeneric3x3ProcessingAlg<T>::type pfnAlg; |
2402 | | const typename GDALGeneric3x3ProcessingAlg_multisample<T>::type |
2403 | | pfnAlg_multisample; |
2404 | | std::unique_ptr<AlgorithmParameters> pAlgData; |
2405 | | GDALDatasetH hSrcDS = nullptr; |
2406 | | GDALRasterBandH hSrcBand = nullptr; |
2407 | | std::array<T *, 3> apafSourceBuf = {nullptr, nullptr, nullptr}; |
2408 | | std::array<bool, 3> abLineHasNoDataValue = {false, false, false}; |
2409 | | std::unique_ptr<float, VSIFreeReleaser> pafOutputBuf{}; |
2410 | | int bDstHasNoData = false; |
2411 | | double dfDstNoDataValue = 0; |
2412 | | int nCurLine = -1; |
2413 | | const bool bComputeAtEdges; |
2414 | | const bool bTakeReference; |
2415 | | |
2416 | | using GDALDatasetRefCountedPtr = |
2417 | | std::unique_ptr<GDALDataset, GDALDatasetUniquePtrReleaser>; |
2418 | | |
2419 | | std::vector<GDALDatasetRefCountedPtr> m_apoOverviewDS{}; |
2420 | | |
2421 | | CPL_DISALLOW_COPY_ASSIGN(GDALGeneric3x3Dataset) |
2422 | | |
2423 | | public: |
2424 | | GDALGeneric3x3Dataset( |
2425 | | GDALDatasetH hSrcDS, GDALRasterBandH hSrcBand, |
2426 | | GDALDataType eDstDataType, int bDstHasNoData, double dfDstNoDataValue, |
2427 | | typename GDALGeneric3x3ProcessingAlg<T>::type pfnAlg, |
2428 | | typename GDALGeneric3x3ProcessingAlg_multisample<T>::type |
2429 | | pfnAlg_multisample, |
2430 | | std::unique_ptr<AlgorithmParameters> pAlgData, bool bComputeAtEdges, |
2431 | | bool bTakeReferenceIn); |
2432 | | ~GDALGeneric3x3Dataset() override; |
2433 | | |
2434 | | bool InitOK() const |
2435 | 0 | { |
2436 | 0 | return apafSourceBuf[0] != nullptr && apafSourceBuf[1] != nullptr && |
2437 | 0 | apafSourceBuf[2] != nullptr; |
2438 | 0 | } Unexecuted instantiation: GDALGeneric3x3Dataset<int>::InitOK() const Unexecuted instantiation: GDALGeneric3x3Dataset<float>::InitOK() const |
2439 | | |
2440 | | CPLErr GetGeoTransform(GDALGeoTransform >) const override; |
2441 | | const OGRSpatialReference *GetSpatialRef() const override; |
2442 | | }; |
2443 | | |
2444 | | /************************************************************************/ |
2445 | | /* ==================================================================== */ |
2446 | | /* GDALGeneric3x3RasterBand */ |
2447 | | /* ==================================================================== */ |
2448 | | /************************************************************************/ |
2449 | | |
2450 | | template <class T> class GDALGeneric3x3RasterBand final : public GDALRasterBand |
2451 | | { |
2452 | | friend class GDALGeneric3x3Dataset<T>; |
2453 | | int bSrcHasNoData = false; |
2454 | | T fSrcNoDataValue = 0; |
2455 | | bool bIsSrcNoDataNan = false; |
2456 | | GDALDataType eReadDT = GDT_Unknown; |
2457 | | |
2458 | | void InitWithNoData(void *pImage); |
2459 | | |
2460 | | public: |
2461 | | GDALGeneric3x3RasterBand(GDALGeneric3x3Dataset<T> *poDSIn, |
2462 | | GDALDataType eDstDataType); |
2463 | | |
2464 | | CPLErr IReadBlock(int, int, void *) override; |
2465 | | double GetNoDataValue(int *pbHasNoData) override; |
2466 | | |
2467 | | int GetOverviewCount() override |
2468 | 0 | { |
2469 | 0 | auto poGDS = cpl::down_cast<GDALGeneric3x3Dataset<T> *>(poDS); |
2470 | 0 | return static_cast<int>(poGDS->m_apoOverviewDS.size()); |
2471 | 0 | } Unexecuted instantiation: GDALGeneric3x3RasterBand<int>::GetOverviewCount() Unexecuted instantiation: GDALGeneric3x3RasterBand<float>::GetOverviewCount() |
2472 | | |
2473 | | GDALRasterBand *GetOverview(int idx) override |
2474 | 0 | { |
2475 | 0 | auto poGDS = cpl::down_cast<GDALGeneric3x3Dataset<T> *>(poDS); |
2476 | 0 | return idx >= 0 && idx < GetOverviewCount() |
2477 | 0 | ? poGDS->m_apoOverviewDS[idx]->GetRasterBand(1) |
2478 | 0 | : nullptr; |
2479 | 0 | } Unexecuted instantiation: GDALGeneric3x3RasterBand<int>::GetOverview(int) Unexecuted instantiation: GDALGeneric3x3RasterBand<float>::GetOverview(int) |
2480 | | }; |
2481 | | |
2482 | | template <class T> |
2483 | | GDALGeneric3x3Dataset<T>::GDALGeneric3x3Dataset( |
2484 | | GDALDatasetH hSrcDSIn, GDALRasterBandH hSrcBandIn, |
2485 | | GDALDataType eDstDataType, int bDstHasNoDataIn, double dfDstNoDataValueIn, |
2486 | | typename GDALGeneric3x3ProcessingAlg<T>::type pfnAlgIn, |
2487 | | typename GDALGeneric3x3ProcessingAlg_multisample<T>::type |
2488 | | pfnAlg_multisampleIn, |
2489 | | std::unique_ptr<AlgorithmParameters> pAlgDataIn, bool bComputeAtEdgesIn, |
2490 | | bool bTakeReferenceIn) |
2491 | 0 | : pfnAlg(pfnAlgIn), pfnAlg_multisample(pfnAlg_multisampleIn), |
2492 | 0 | pAlgData(std::move(pAlgDataIn)), hSrcDS(hSrcDSIn), hSrcBand(hSrcBandIn), |
2493 | 0 | bDstHasNoData(bDstHasNoDataIn), dfDstNoDataValue(dfDstNoDataValueIn), |
2494 | 0 | bComputeAtEdges(bComputeAtEdgesIn), bTakeReference(bTakeReferenceIn) |
2495 | 0 | { |
2496 | 0 | CPLAssert(eDstDataType == GDT_UInt8 || eDstDataType == GDT_Float32); |
2497 | | |
2498 | 0 | if (bTakeReference) |
2499 | 0 | GDALReferenceDataset(hSrcDS); |
2500 | |
|
2501 | 0 | nRasterXSize = GDALGetRasterXSize(hSrcDS); |
2502 | 0 | nRasterYSize = GDALGetRasterYSize(hSrcDS); |
2503 | |
|
2504 | 0 | SetBand(1, new GDALGeneric3x3RasterBand<T>(this, eDstDataType)); |
2505 | |
|
2506 | 0 | apafSourceBuf[0] = |
2507 | 0 | static_cast<T *>(VSI_MALLOC2_VERBOSE(sizeof(T), nRasterXSize)); |
2508 | 0 | apafSourceBuf[1] = |
2509 | 0 | static_cast<T *>(VSI_MALLOC2_VERBOSE(sizeof(T), nRasterXSize)); |
2510 | 0 | apafSourceBuf[2] = |
2511 | 0 | static_cast<T *>(VSI_MALLOC2_VERBOSE(sizeof(T), nRasterXSize)); |
2512 | 0 | if (pfnAlg_multisample && eDstDataType == GDT_UInt8) |
2513 | 0 | { |
2514 | 0 | pafOutputBuf.reset(static_cast<float *>( |
2515 | 0 | VSI_MALLOC2_VERBOSE(sizeof(float), nRasterXSize))); |
2516 | 0 | } |
2517 | |
|
2518 | 0 | const int nOvrCount = GDALGetOverviewCount(hSrcBandIn); |
2519 | 0 | for (int i = 0; |
2520 | 0 | i < nOvrCount && m_apoOverviewDS.size() == static_cast<size_t>(i); ++i) |
2521 | 0 | { |
2522 | 0 | auto hOvrBand = GDALGetOverview(hSrcBandIn, i); |
2523 | 0 | auto hOvrDS = GDALGetBandDataset(hOvrBand); |
2524 | 0 | if (hOvrDS && hOvrDS != hSrcDSIn) |
2525 | 0 | { |
2526 | 0 | auto poOvrDS = std::make_unique<GDALGeneric3x3Dataset>( |
2527 | 0 | hOvrDS, hOvrBand, eDstDataType, bDstHasNoData, dfDstNoDataValue, |
2528 | 0 | pfnAlg, pfnAlg_multisampleIn, |
2529 | 0 | pAlgData ? pAlgData->CreateScaledParameters( |
2530 | 0 | static_cast<double>(nRasterXSize) / |
2531 | 0 | GDALGetRasterXSize(hOvrDS), |
2532 | 0 | static_cast<double>(nRasterYSize) / |
2533 | 0 | GDALGetRasterYSize(hOvrDS)) |
2534 | 0 | : nullptr, |
2535 | 0 | bComputeAtEdges, false); |
2536 | 0 | if (poOvrDS->InitOK()) |
2537 | 0 | { |
2538 | 0 | m_apoOverviewDS.emplace_back(poOvrDS.release()); |
2539 | 0 | } |
2540 | 0 | } |
2541 | 0 | } |
2542 | 0 | } Unexecuted instantiation: GDALGeneric3x3Dataset<int>::GDALGeneric3x3Dataset(void*, void*, GDALDataType, int, double, float (*)(int const*, float, AlgorithmParameters const*), int (*)(int const*, int const*, int const*, int, AlgorithmParameters const*, float*), std::__1::unique_ptr<AlgorithmParameters, std::__1::default_delete<AlgorithmParameters> >, bool, bool) Unexecuted instantiation: GDALGeneric3x3Dataset<float>::GDALGeneric3x3Dataset(void*, void*, GDALDataType, int, double, float (*)(float const*, float, AlgorithmParameters const*), int (*)(float const*, float const*, float const*, int, AlgorithmParameters const*, float*), std::__1::unique_ptr<AlgorithmParameters, std::__1::default_delete<AlgorithmParameters> >, bool, bool) |
2543 | | |
2544 | | template <class T> GDALGeneric3x3Dataset<T>::~GDALGeneric3x3Dataset() |
2545 | 0 | { |
2546 | 0 | if (bTakeReference) |
2547 | 0 | GDALReleaseDataset(hSrcDS); |
2548 | |
|
2549 | 0 | CPLFree(apafSourceBuf[0]); |
2550 | 0 | CPLFree(apafSourceBuf[1]); |
2551 | 0 | CPLFree(apafSourceBuf[2]); |
2552 | 0 | } Unexecuted instantiation: GDALGeneric3x3Dataset<int>::~GDALGeneric3x3Dataset() Unexecuted instantiation: GDALGeneric3x3Dataset<float>::~GDALGeneric3x3Dataset() |
2553 | | |
2554 | | template <class T> |
2555 | | CPLErr GDALGeneric3x3Dataset<T>::GetGeoTransform(GDALGeoTransform >) const |
2556 | 0 | { |
2557 | 0 | return GDALDataset::FromHandle(hSrcDS)->GetGeoTransform(gt); |
2558 | 0 | } Unexecuted instantiation: GDALGeneric3x3Dataset<int>::GetGeoTransform(GDALGeoTransform&) const Unexecuted instantiation: GDALGeneric3x3Dataset<float>::GetGeoTransform(GDALGeoTransform&) const |
2559 | | |
2560 | | template <class T> |
2561 | | const OGRSpatialReference *GDALGeneric3x3Dataset<T>::GetSpatialRef() const |
2562 | 0 | { |
2563 | 0 | return GDALDataset::FromHandle(hSrcDS)->GetSpatialRef(); |
2564 | 0 | } Unexecuted instantiation: GDALGeneric3x3Dataset<int>::GetSpatialRef() const Unexecuted instantiation: GDALGeneric3x3Dataset<float>::GetSpatialRef() const |
2565 | | |
2566 | | template <class T> |
2567 | | GDALGeneric3x3RasterBand<T>::GDALGeneric3x3RasterBand( |
2568 | | GDALGeneric3x3Dataset<T> *poDSIn, GDALDataType eDstDataType) |
2569 | 0 | { |
2570 | 0 | poDS = poDSIn; |
2571 | 0 | nBand = 1; |
2572 | 0 | eDataType = eDstDataType; |
2573 | 0 | nBlockXSize = poDS->GetRasterXSize(); |
2574 | 0 | nBlockYSize = 1; |
2575 | |
|
2576 | 0 | const double dfNoDataValue = |
2577 | 0 | GDALGetRasterNoDataValue(poDSIn->hSrcBand, &bSrcHasNoData); |
2578 | 0 | if (std::numeric_limits<T>::is_integer) |
2579 | 0 | { |
2580 | 0 | eReadDT = GDT_Int32; |
2581 | 0 | if (bSrcHasNoData) |
2582 | 0 | { |
2583 | 0 | GDALDataType eSrcDT = GDALGetRasterDataType(poDSIn->hSrcBand); |
2584 | 0 | CPLAssert(eSrcDT == GDT_UInt8 || eSrcDT == GDT_UInt16 || |
2585 | 0 | eSrcDT == GDT_Int16); |
2586 | 0 | const int nMinVal = (eSrcDT == GDT_UInt8) ? 0 |
2587 | 0 | : (eSrcDT == GDT_UInt16) ? 0 |
2588 | 0 | : -32768; |
2589 | 0 | const int nMaxVal = (eSrcDT == GDT_UInt8) ? 255 |
2590 | 0 | : (eSrcDT == GDT_UInt16) ? 65535 |
2591 | 0 | : 32767; |
2592 | |
|
2593 | 0 | if (fabs(dfNoDataValue - floor(dfNoDataValue + 0.5)) < 1e-2 && |
2594 | 0 | dfNoDataValue >= nMinVal && dfNoDataValue <= nMaxVal) |
2595 | 0 | { |
2596 | 0 | fSrcNoDataValue = static_cast<T>(floor(dfNoDataValue + 0.5)); |
2597 | 0 | } |
2598 | 0 | else |
2599 | 0 | { |
2600 | 0 | bSrcHasNoData = FALSE; |
2601 | 0 | } |
2602 | 0 | } |
2603 | 0 | } |
2604 | 0 | else |
2605 | 0 | { |
2606 | 0 | eReadDT = GDT_Float32; |
2607 | 0 | fSrcNoDataValue = static_cast<T>(dfNoDataValue); |
2608 | 0 | bIsSrcNoDataNan = bSrcHasNoData && std::isnan(dfNoDataValue); |
2609 | 0 | } |
2610 | 0 | } Unexecuted instantiation: GDALGeneric3x3RasterBand<int>::GDALGeneric3x3RasterBand(GDALGeneric3x3Dataset<int>*, GDALDataType) Unexecuted instantiation: GDALGeneric3x3RasterBand<float>::GDALGeneric3x3RasterBand(GDALGeneric3x3Dataset<float>*, GDALDataType) |
2611 | | |
2612 | | template <class T> |
2613 | | void GDALGeneric3x3RasterBand<T>::InitWithNoData(void *pImage) |
2614 | 0 | { |
2615 | 0 | auto poGDS = cpl::down_cast<GDALGeneric3x3Dataset<T> *>(poDS); |
2616 | 0 | if (eDataType == GDT_UInt8) |
2617 | 0 | { |
2618 | 0 | for (int j = 0; j < nBlockXSize; j++) |
2619 | 0 | static_cast<GByte *>(pImage)[j] = |
2620 | 0 | static_cast<GByte>(poGDS->dfDstNoDataValue); |
2621 | 0 | } |
2622 | 0 | else |
2623 | 0 | { |
2624 | 0 | for (int j = 0; j < nBlockXSize; j++) |
2625 | 0 | static_cast<float *>(pImage)[j] = |
2626 | 0 | static_cast<float>(poGDS->dfDstNoDataValue); |
2627 | 0 | } |
2628 | 0 | } Unexecuted instantiation: GDALGeneric3x3RasterBand<int>::InitWithNoData(void*) Unexecuted instantiation: GDALGeneric3x3RasterBand<float>::InitWithNoData(void*) |
2629 | | |
2630 | | template <class T> |
2631 | | CPLErr GDALGeneric3x3RasterBand<T>::IReadBlock(int /*nBlockXOff*/, |
2632 | | int nBlockYOff, void *pImage) |
2633 | 0 | { |
2634 | 0 | auto poGDS = cpl::down_cast<GDALGeneric3x3Dataset<T> *>(poDS); |
2635 | |
|
2636 | 0 | const auto UpdateLineNoDataFlag = [this, poGDS](int iLine) |
2637 | 0 | { |
2638 | 0 | if (bSrcHasNoData) |
2639 | 0 | { |
2640 | 0 | poGDS->abLineHasNoDataValue[iLine] = false; |
2641 | 0 | for (int i = 0; i < nRasterXSize; ++i) |
2642 | 0 | { |
2643 | | if constexpr (std::numeric_limits<T>::is_integer) |
2644 | 0 | { |
2645 | 0 | if (poGDS->apafSourceBuf[iLine][i] == fSrcNoDataValue) |
2646 | 0 | { |
2647 | 0 | poGDS->abLineHasNoDataValue[iLine] = true; |
2648 | 0 | break; |
2649 | 0 | } |
2650 | | } |
2651 | | else |
2652 | 0 | { |
2653 | 0 | if (poGDS->apafSourceBuf[iLine][i] == fSrcNoDataValue || |
2654 | 0 | std::isnan(poGDS->apafSourceBuf[iLine][i])) |
2655 | 0 | { |
2656 | 0 | poGDS->abLineHasNoDataValue[iLine] = true; |
2657 | 0 | break; |
2658 | 0 | } |
2659 | 0 | } |
2660 | 0 | } |
2661 | 0 | } |
2662 | 0 | }; Unexecuted instantiation: GDALGeneric3x3RasterBand<int>::IReadBlock(int, int, void*)::{lambda(int)#1}::operator()(int) constUnexecuted instantiation: GDALGeneric3x3RasterBand<float>::IReadBlock(int, int, void*)::{lambda(int)#1}::operator()(int) const |
2663 | |
|
2664 | 0 | if (poGDS->bComputeAtEdges && nRasterXSize >= 2 && nRasterYSize >= 2) |
2665 | 0 | { |
2666 | 0 | if (nBlockYOff == 0) |
2667 | 0 | { |
2668 | 0 | for (int i = 0; i < 2; i++) |
2669 | 0 | { |
2670 | 0 | CPLErr eErr = GDALRasterIO( |
2671 | 0 | poGDS->hSrcBand, GF_Read, 0, i, nBlockXSize, 1, |
2672 | 0 | poGDS->apafSourceBuf[i + 1], nBlockXSize, 1, eReadDT, 0, 0); |
2673 | 0 | if (eErr != CE_None) |
2674 | 0 | { |
2675 | 0 | InitWithNoData(pImage); |
2676 | 0 | return eErr; |
2677 | 0 | } |
2678 | 0 | UpdateLineNoDataFlag(i + 1); |
2679 | 0 | } |
2680 | 0 | poGDS->nCurLine = 0; |
2681 | |
|
2682 | 0 | for (int j = 0; j < nRasterXSize; j++) |
2683 | 0 | { |
2684 | 0 | int jmin = (j == 0) ? j : j - 1; |
2685 | 0 | int jmax = (j == nRasterXSize - 1) ? j : j + 1; |
2686 | |
|
2687 | 0 | T afWin[9] = {INTERPOL(poGDS->apafSourceBuf[1][jmin], |
2688 | 0 | poGDS->apafSourceBuf[2][jmin], |
2689 | 0 | bSrcHasNoData, fSrcNoDataValue), |
2690 | 0 | INTERPOL(poGDS->apafSourceBuf[1][j], |
2691 | 0 | poGDS->apafSourceBuf[2][j], |
2692 | 0 | bSrcHasNoData, fSrcNoDataValue), |
2693 | 0 | INTERPOL(poGDS->apafSourceBuf[1][jmax], |
2694 | 0 | poGDS->apafSourceBuf[2][jmax], |
2695 | 0 | bSrcHasNoData, fSrcNoDataValue), |
2696 | 0 | poGDS->apafSourceBuf[1][jmin], |
2697 | 0 | poGDS->apafSourceBuf[1][j], |
2698 | 0 | poGDS->apafSourceBuf[1][jmax], |
2699 | 0 | poGDS->apafSourceBuf[2][jmin], |
2700 | 0 | poGDS->apafSourceBuf[2][j], |
2701 | 0 | poGDS->apafSourceBuf[2][jmax]}; |
2702 | |
|
2703 | 0 | const float fVal = ComputeVal( |
2704 | 0 | CPL_TO_BOOL(bSrcHasNoData), fSrcNoDataValue, |
2705 | 0 | bIsSrcNoDataNan, afWin, |
2706 | 0 | static_cast<float>(poGDS->dfDstNoDataValue), poGDS->pfnAlg, |
2707 | 0 | poGDS->pAlgData.get(), poGDS->bComputeAtEdges); |
2708 | |
|
2709 | 0 | if (eDataType == GDT_UInt8) |
2710 | 0 | static_cast<GByte *>(pImage)[j] = |
2711 | 0 | static_cast<GByte>(fVal + 0.5f); |
2712 | 0 | else |
2713 | 0 | static_cast<float *>(pImage)[j] = fVal; |
2714 | 0 | } |
2715 | |
|
2716 | 0 | return CE_None; |
2717 | 0 | } |
2718 | 0 | else if (nBlockYOff == nRasterYSize - 1) |
2719 | 0 | { |
2720 | 0 | if (poGDS->nCurLine != nRasterYSize - 2) |
2721 | 0 | { |
2722 | 0 | for (int i = 0; i < 2; i++) |
2723 | 0 | { |
2724 | 0 | CPLErr eErr = GDALRasterIO( |
2725 | 0 | poGDS->hSrcBand, GF_Read, 0, nRasterYSize - 2 + i, |
2726 | 0 | nBlockXSize, 1, poGDS->apafSourceBuf[i + 1], |
2727 | 0 | nBlockXSize, 1, eReadDT, 0, 0); |
2728 | 0 | if (eErr != CE_None) |
2729 | 0 | { |
2730 | 0 | InitWithNoData(pImage); |
2731 | 0 | return eErr; |
2732 | 0 | } |
2733 | 0 | UpdateLineNoDataFlag(i + 1); |
2734 | 0 | } |
2735 | 0 | } |
2736 | | |
2737 | 0 | for (int j = 0; j < nRasterXSize; j++) |
2738 | 0 | { |
2739 | 0 | int jmin = (j == 0) ? j : j - 1; |
2740 | 0 | int jmax = (j == nRasterXSize - 1) ? j : j + 1; |
2741 | |
|
2742 | 0 | T afWin[9] = {poGDS->apafSourceBuf[1][jmin], |
2743 | 0 | poGDS->apafSourceBuf[1][j], |
2744 | 0 | poGDS->apafSourceBuf[1][jmax], |
2745 | 0 | poGDS->apafSourceBuf[2][jmin], |
2746 | 0 | poGDS->apafSourceBuf[2][j], |
2747 | 0 | poGDS->apafSourceBuf[2][jmax], |
2748 | 0 | INTERPOL(poGDS->apafSourceBuf[2][jmin], |
2749 | 0 | poGDS->apafSourceBuf[1][jmin], |
2750 | 0 | bSrcHasNoData, fSrcNoDataValue), |
2751 | 0 | INTERPOL(poGDS->apafSourceBuf[2][j], |
2752 | 0 | poGDS->apafSourceBuf[1][j], |
2753 | 0 | bSrcHasNoData, fSrcNoDataValue), |
2754 | 0 | INTERPOL(poGDS->apafSourceBuf[2][jmax], |
2755 | 0 | poGDS->apafSourceBuf[1][jmax], |
2756 | 0 | bSrcHasNoData, fSrcNoDataValue)}; |
2757 | |
|
2758 | 0 | const float fVal = ComputeVal( |
2759 | 0 | CPL_TO_BOOL(bSrcHasNoData), fSrcNoDataValue, |
2760 | 0 | bIsSrcNoDataNan, afWin, |
2761 | 0 | static_cast<float>(poGDS->dfDstNoDataValue), poGDS->pfnAlg, |
2762 | 0 | poGDS->pAlgData.get(), poGDS->bComputeAtEdges); |
2763 | |
|
2764 | 0 | if (eDataType == GDT_UInt8) |
2765 | 0 | static_cast<GByte *>(pImage)[j] = |
2766 | 0 | static_cast<GByte>(fVal + 0.5f); |
2767 | 0 | else |
2768 | 0 | static_cast<float *>(pImage)[j] = fVal; |
2769 | 0 | } |
2770 | |
|
2771 | 0 | return CE_None; |
2772 | 0 | } |
2773 | 0 | } |
2774 | 0 | else if (nBlockYOff == 0 || nBlockYOff == nRasterYSize - 1) |
2775 | 0 | { |
2776 | 0 | InitWithNoData(pImage); |
2777 | 0 | return CE_None; |
2778 | 0 | } |
2779 | | |
2780 | 0 | if (poGDS->nCurLine != nBlockYOff) |
2781 | 0 | { |
2782 | 0 | if (poGDS->nCurLine + 1 == nBlockYOff) |
2783 | 0 | { |
2784 | 0 | T *pafTmp = poGDS->apafSourceBuf[0]; |
2785 | 0 | poGDS->apafSourceBuf[0] = poGDS->apafSourceBuf[1]; |
2786 | 0 | poGDS->apafSourceBuf[1] = poGDS->apafSourceBuf[2]; |
2787 | 0 | poGDS->apafSourceBuf[2] = pafTmp; |
2788 | |
|
2789 | 0 | CPLErr eErr = GDALRasterIO( |
2790 | 0 | poGDS->hSrcBand, GF_Read, 0, nBlockYOff + 1, nBlockXSize, 1, |
2791 | 0 | poGDS->apafSourceBuf[2], nBlockXSize, 1, eReadDT, 0, 0); |
2792 | |
|
2793 | 0 | if (eErr != CE_None) |
2794 | 0 | { |
2795 | 0 | InitWithNoData(pImage); |
2796 | 0 | return eErr; |
2797 | 0 | } |
2798 | | |
2799 | 0 | UpdateLineNoDataFlag(2); |
2800 | 0 | } |
2801 | 0 | else |
2802 | 0 | { |
2803 | 0 | for (int i = 0; i < 3; i++) |
2804 | 0 | { |
2805 | 0 | const CPLErr eErr = GDALRasterIO( |
2806 | 0 | poGDS->hSrcBand, GF_Read, 0, nBlockYOff + i - 1, |
2807 | 0 | nBlockXSize, 1, poGDS->apafSourceBuf[i], nBlockXSize, 1, |
2808 | 0 | eReadDT, 0, 0); |
2809 | 0 | if (eErr != CE_None) |
2810 | 0 | { |
2811 | 0 | InitWithNoData(pImage); |
2812 | 0 | return eErr; |
2813 | 0 | } |
2814 | | |
2815 | 0 | UpdateLineNoDataFlag(i); |
2816 | 0 | } |
2817 | 0 | } |
2818 | | |
2819 | 0 | poGDS->nCurLine = nBlockYOff; |
2820 | 0 | } |
2821 | | |
2822 | 0 | if (poGDS->bComputeAtEdges && nRasterXSize >= 2) |
2823 | 0 | { |
2824 | 0 | int j = 0; |
2825 | 0 | T afWin[9] = { |
2826 | 0 | INTERPOL(poGDS->apafSourceBuf[0][j], poGDS->apafSourceBuf[0][j + 1], |
2827 | 0 | bSrcHasNoData, fSrcNoDataValue), |
2828 | 0 | poGDS->apafSourceBuf[0][j], |
2829 | 0 | poGDS->apafSourceBuf[0][j + 1], |
2830 | 0 | INTERPOL(poGDS->apafSourceBuf[1][j], poGDS->apafSourceBuf[1][j + 1], |
2831 | 0 | bSrcHasNoData, fSrcNoDataValue), |
2832 | 0 | poGDS->apafSourceBuf[1][j], |
2833 | 0 | poGDS->apafSourceBuf[1][j + 1], |
2834 | 0 | INTERPOL(poGDS->apafSourceBuf[2][j], poGDS->apafSourceBuf[2][j + 1], |
2835 | 0 | bSrcHasNoData, fSrcNoDataValue), |
2836 | 0 | poGDS->apafSourceBuf[2][j], |
2837 | 0 | poGDS->apafSourceBuf[2][j + 1]}; |
2838 | |
|
2839 | 0 | { |
2840 | 0 | const float fVal = ComputeVal( |
2841 | 0 | CPL_TO_BOOL(bSrcHasNoData), fSrcNoDataValue, bIsSrcNoDataNan, |
2842 | 0 | afWin, static_cast<float>(poGDS->dfDstNoDataValue), |
2843 | 0 | poGDS->pfnAlg, poGDS->pAlgData.get(), poGDS->bComputeAtEdges); |
2844 | |
|
2845 | 0 | if (eDataType == GDT_UInt8) |
2846 | 0 | static_cast<GByte *>(pImage)[j] = |
2847 | 0 | static_cast<GByte>(fVal + 0.5f); |
2848 | 0 | else |
2849 | 0 | static_cast<float *>(pImage)[j] = fVal; |
2850 | 0 | } |
2851 | |
|
2852 | 0 | j = nRasterXSize - 1; |
2853 | |
|
2854 | 0 | afWin[0] = poGDS->apafSourceBuf[0][j - 1]; |
2855 | 0 | afWin[1] = poGDS->apafSourceBuf[0][j]; |
2856 | 0 | afWin[2] = |
2857 | 0 | INTERPOL(poGDS->apafSourceBuf[0][j], poGDS->apafSourceBuf[0][j - 1], |
2858 | 0 | bSrcHasNoData, fSrcNoDataValue); |
2859 | 0 | afWin[3] = poGDS->apafSourceBuf[1][j - 1]; |
2860 | 0 | afWin[4] = poGDS->apafSourceBuf[1][j]; |
2861 | 0 | afWin[5] = |
2862 | 0 | INTERPOL(poGDS->apafSourceBuf[1][j], poGDS->apafSourceBuf[1][j - 1], |
2863 | 0 | bSrcHasNoData, fSrcNoDataValue); |
2864 | 0 | afWin[6] = poGDS->apafSourceBuf[2][j - 1]; |
2865 | 0 | afWin[7] = poGDS->apafSourceBuf[2][j]; |
2866 | 0 | afWin[8] = |
2867 | 0 | INTERPOL(poGDS->apafSourceBuf[2][j], poGDS->apafSourceBuf[2][j - 1], |
2868 | 0 | bSrcHasNoData, fSrcNoDataValue); |
2869 | |
|
2870 | 0 | const float fVal = ComputeVal( |
2871 | 0 | CPL_TO_BOOL(bSrcHasNoData), fSrcNoDataValue, bIsSrcNoDataNan, afWin, |
2872 | 0 | static_cast<float>(poGDS->dfDstNoDataValue), poGDS->pfnAlg, |
2873 | 0 | poGDS->pAlgData.get(), poGDS->bComputeAtEdges); |
2874 | |
|
2875 | 0 | if (eDataType == GDT_UInt8) |
2876 | 0 | static_cast<GByte *>(pImage)[j] = static_cast<GByte>(fVal + 0.5f); |
2877 | 0 | else |
2878 | 0 | static_cast<float *>(pImage)[j] = fVal; |
2879 | 0 | } |
2880 | 0 | else |
2881 | 0 | { |
2882 | 0 | if (eDataType == GDT_UInt8) |
2883 | 0 | { |
2884 | 0 | static_cast<GByte *>(pImage)[0] = |
2885 | 0 | static_cast<GByte>(poGDS->dfDstNoDataValue); |
2886 | 0 | if (nBlockXSize > 1) |
2887 | 0 | static_cast<GByte *>(pImage)[nBlockXSize - 1] = |
2888 | 0 | static_cast<GByte>(poGDS->dfDstNoDataValue); |
2889 | 0 | } |
2890 | 0 | else |
2891 | 0 | { |
2892 | 0 | static_cast<float *>(pImage)[0] = |
2893 | 0 | static_cast<float>(poGDS->dfDstNoDataValue); |
2894 | 0 | if (nBlockXSize > 1) |
2895 | 0 | static_cast<float *>(pImage)[nBlockXSize - 1] = |
2896 | 0 | static_cast<float>(poGDS->dfDstNoDataValue); |
2897 | 0 | } |
2898 | 0 | } |
2899 | |
|
2900 | 0 | int j = 1; |
2901 | 0 | if (poGDS->pfnAlg_multisample && |
2902 | 0 | (eDataType == GDT_Float32 || poGDS->pafOutputBuf) && |
2903 | 0 | !poGDS->abLineHasNoDataValue[0] && !poGDS->abLineHasNoDataValue[1] && |
2904 | 0 | !poGDS->abLineHasNoDataValue[2]) |
2905 | 0 | { |
2906 | 0 | j = poGDS->pfnAlg_multisample( |
2907 | 0 | poGDS->apafSourceBuf[0], poGDS->apafSourceBuf[1], |
2908 | 0 | poGDS->apafSourceBuf[2], nRasterXSize, poGDS->pAlgData.get(), |
2909 | 0 | poGDS->pafOutputBuf ? poGDS->pafOutputBuf.get() |
2910 | 0 | : static_cast<float *>(pImage)); |
2911 | |
|
2912 | 0 | if (poGDS->pafOutputBuf) |
2913 | 0 | { |
2914 | 0 | GDALCopyWords64(poGDS->pafOutputBuf.get() + 1, GDT_Float32, |
2915 | 0 | static_cast<int>(sizeof(float)), |
2916 | 0 | static_cast<GByte *>(pImage) + 1, GDT_UInt8, 1, |
2917 | 0 | j - 1); |
2918 | 0 | } |
2919 | 0 | } |
2920 | |
|
2921 | 0 | for (; j < nBlockXSize - 1; j++) |
2922 | 0 | { |
2923 | 0 | T afWin[9] = { |
2924 | 0 | poGDS->apafSourceBuf[0][j - 1], poGDS->apafSourceBuf[0][j], |
2925 | 0 | poGDS->apafSourceBuf[0][j + 1], poGDS->apafSourceBuf[1][j - 1], |
2926 | 0 | poGDS->apafSourceBuf[1][j], poGDS->apafSourceBuf[1][j + 1], |
2927 | 0 | poGDS->apafSourceBuf[2][j - 1], poGDS->apafSourceBuf[2][j], |
2928 | 0 | poGDS->apafSourceBuf[2][j + 1]}; |
2929 | |
|
2930 | 0 | const float fVal = ComputeVal( |
2931 | 0 | CPL_TO_BOOL(bSrcHasNoData), fSrcNoDataValue, bIsSrcNoDataNan, afWin, |
2932 | 0 | static_cast<float>(poGDS->dfDstNoDataValue), poGDS->pfnAlg, |
2933 | 0 | poGDS->pAlgData.get(), poGDS->bComputeAtEdges); |
2934 | |
|
2935 | 0 | if (eDataType == GDT_UInt8) |
2936 | 0 | static_cast<GByte *>(pImage)[j] = static_cast<GByte>(fVal + 0.5f); |
2937 | 0 | else |
2938 | 0 | static_cast<float *>(pImage)[j] = fVal; |
2939 | 0 | } |
2940 | |
|
2941 | 0 | return CE_None; |
2942 | 0 | } Unexecuted instantiation: GDALGeneric3x3RasterBand<int>::IReadBlock(int, int, void*) Unexecuted instantiation: GDALGeneric3x3RasterBand<float>::IReadBlock(int, int, void*) |
2943 | | |
2944 | | template <class T> |
2945 | | double GDALGeneric3x3RasterBand<T>::GetNoDataValue(int *pbHasNoData) |
2946 | 0 | { |
2947 | 0 | auto poGDS = cpl::down_cast<GDALGeneric3x3Dataset<T> *>(poDS); |
2948 | 0 | if (pbHasNoData) |
2949 | 0 | *pbHasNoData = poGDS->bDstHasNoData; |
2950 | 0 | return poGDS->dfDstNoDataValue; |
2951 | 0 | } Unexecuted instantiation: GDALGeneric3x3RasterBand<int>::GetNoDataValue(int*) Unexecuted instantiation: GDALGeneric3x3RasterBand<float>::GetNoDataValue(int*) |
2952 | | |
2953 | | /************************************************************************/ |
2954 | | /* GetAlgorithm() */ |
2955 | | /************************************************************************/ |
2956 | | |
2957 | | typedef enum |
2958 | | { |
2959 | | INVALID, |
2960 | | HILL_SHADE, |
2961 | | SLOPE, |
2962 | | ASPECT, |
2963 | | COLOR_RELIEF, |
2964 | | TRI, |
2965 | | TPI, |
2966 | | ROUGHNESS |
2967 | | } Algorithm; |
2968 | | |
2969 | | static Algorithm GetAlgorithm(const char *pszProcessing) |
2970 | 0 | { |
2971 | 0 | if (EQUAL(pszProcessing, "shade") || EQUAL(pszProcessing, "hillshade")) |
2972 | 0 | { |
2973 | 0 | return HILL_SHADE; |
2974 | 0 | } |
2975 | 0 | else if (EQUAL(pszProcessing, "slope")) |
2976 | 0 | { |
2977 | 0 | return SLOPE; |
2978 | 0 | } |
2979 | 0 | else if (EQUAL(pszProcessing, "aspect")) |
2980 | 0 | { |
2981 | 0 | return ASPECT; |
2982 | 0 | } |
2983 | 0 | else if (EQUAL(pszProcessing, "color-relief")) |
2984 | 0 | { |
2985 | 0 | return COLOR_RELIEF; |
2986 | 0 | } |
2987 | 0 | else if (EQUAL(pszProcessing, "TRI")) |
2988 | 0 | { |
2989 | 0 | return TRI; |
2990 | 0 | } |
2991 | 0 | else if (EQUAL(pszProcessing, "TPI")) |
2992 | 0 | { |
2993 | 0 | return TPI; |
2994 | 0 | } |
2995 | 0 | else if (EQUAL(pszProcessing, "roughness")) |
2996 | 0 | { |
2997 | 0 | return ROUGHNESS; |
2998 | 0 | } |
2999 | 0 | else |
3000 | 0 | { |
3001 | 0 | return INVALID; |
3002 | 0 | } |
3003 | 0 | } |
3004 | | |
3005 | | /************************************************************************/ |
3006 | | /* GDALDEMAppOptionsGetParser() */ |
3007 | | /************************************************************************/ |
3008 | | |
3009 | | static std::unique_ptr<GDALArgumentParser> GDALDEMAppOptionsGetParser( |
3010 | | GDALDEMProcessingOptions *psOptions, |
3011 | | GDALDEMProcessingOptionsForBinary *psOptionsForBinary) |
3012 | 0 | { |
3013 | 0 | auto argParser = std::make_unique<GDALArgumentParser>( |
3014 | 0 | "gdaldem", /* bForBinary=*/psOptionsForBinary != nullptr); |
3015 | |
|
3016 | 0 | argParser->add_description(_("Tools to analyze and visualize DEMs.")); |
3017 | |
|
3018 | 0 | argParser->add_epilog(_("For more details, consult " |
3019 | 0 | "https://gdal.org/programs/gdaldem.html")); |
3020 | | |
3021 | | // Common options (for all modes) |
3022 | 0 | auto addCommonOptions = |
3023 | 0 | [psOptions, psOptionsForBinary](GDALArgumentParser *subParser) |
3024 | 0 | { |
3025 | 0 | subParser->add_output_format_argument(psOptions->osFormat); |
3026 | |
|
3027 | 0 | subParser->add_argument("-compute_edges") |
3028 | 0 | .flag() |
3029 | 0 | .store_into(psOptions->bComputeAtEdges) |
3030 | 0 | .help(_( |
3031 | 0 | "Do the computation at raster edges and near nodata values.")); |
3032 | |
|
3033 | 0 | auto &bandArg = subParser->add_argument("-b") |
3034 | 0 | .metavar("<value>") |
3035 | 0 | .scan<'i', int>() |
3036 | 0 | .store_into(psOptions->nBand) |
3037 | 0 | .help(_("Select an input band.")); |
3038 | |
|
3039 | 0 | subParser->add_hidden_alias_for(bandArg, "--b"); |
3040 | |
|
3041 | 0 | subParser->add_creation_options_argument(psOptions->aosCreationOptions); |
3042 | |
|
3043 | 0 | if (psOptionsForBinary) |
3044 | 0 | { |
3045 | 0 | subParser->add_quiet_argument(&psOptionsForBinary->bQuiet); |
3046 | 0 | } |
3047 | 0 | }; |
3048 | | |
3049 | | // Hillshade |
3050 | |
|
3051 | 0 | auto subCommandHillshade = argParser->add_subparser( |
3052 | 0 | "hillshade", /* bForBinary=*/psOptionsForBinary != nullptr); |
3053 | 0 | subCommandHillshade->add_description(_("Compute hillshade.")); |
3054 | |
|
3055 | 0 | if (psOptionsForBinary) |
3056 | 0 | { |
3057 | 0 | subCommandHillshade->add_argument("input_dem") |
3058 | 0 | .store_into(psOptionsForBinary->osSrcFilename) |
3059 | 0 | .help(_("The input DEM raster to be processed.")); |
3060 | |
|
3061 | 0 | subCommandHillshade->add_argument("output_hillshade") |
3062 | 0 | .store_into(psOptionsForBinary->osDstFilename) |
3063 | 0 | .help(_("The output raster to be produced.")); |
3064 | 0 | } |
3065 | |
|
3066 | 0 | subCommandHillshade->add_argument("-alg") |
3067 | 0 | .metavar("<Horn|ZevenbergenThorne>") |
3068 | 0 | .action( |
3069 | 0 | [psOptions](const std::string &s) |
3070 | 0 | { |
3071 | 0 | if (EQUAL(s.c_str(), "ZevenbergenThorne")) |
3072 | 0 | { |
3073 | 0 | psOptions->bGradientAlgSpecified = true; |
3074 | 0 | psOptions->eGradientAlg = GradientAlg::ZEVENBERGEN_THORNE; |
3075 | 0 | } |
3076 | 0 | else if (EQUAL(s.c_str(), "Horn")) |
3077 | 0 | { |
3078 | 0 | psOptions->bGradientAlgSpecified = true; |
3079 | 0 | psOptions->eGradientAlg = GradientAlg::HORN; |
3080 | 0 | } |
3081 | 0 | else |
3082 | 0 | { |
3083 | 0 | throw std::invalid_argument( |
3084 | 0 | CPLSPrintf("Invalid value for -alg: %s.", s.c_str())); |
3085 | 0 | } |
3086 | 0 | }) |
3087 | 0 | .help(_("Choose between ZevenbergenThorne or Horn algorithms.")); |
3088 | |
|
3089 | 0 | subCommandHillshade->add_argument("-z") |
3090 | 0 | .metavar("<factor>") |
3091 | 0 | .scan<'g', double>() |
3092 | 0 | .store_into(psOptions->z) |
3093 | 0 | .help(_("Vertical exaggeration.")); |
3094 | |
|
3095 | 0 | auto &scaleHillshadeArg = |
3096 | 0 | subCommandHillshade->add_argument("-s") |
3097 | 0 | .metavar("<scale>") |
3098 | 0 | .scan<'g', double>() |
3099 | 0 | .store_into(psOptions->globalScale) |
3100 | 0 | .help(_("Ratio of vertical units to horizontal units.")); |
3101 | |
|
3102 | 0 | subCommandHillshade->add_hidden_alias_for(scaleHillshadeArg, "--s"); |
3103 | 0 | subCommandHillshade->add_hidden_alias_for(scaleHillshadeArg, "-scale"); |
3104 | 0 | subCommandHillshade->add_hidden_alias_for(scaleHillshadeArg, "--scale"); |
3105 | |
|
3106 | 0 | auto &xscaleHillshadeArg = |
3107 | 0 | subCommandHillshade->add_argument("-xscale") |
3108 | 0 | .metavar("<scale>") |
3109 | 0 | .scan<'g', double>() |
3110 | 0 | .store_into(psOptions->xscale) |
3111 | 0 | .help(_("Ratio of vertical units to horizontal X axis units.")); |
3112 | 0 | subCommandHillshade->add_hidden_alias_for(xscaleHillshadeArg, "--xscale"); |
3113 | |
|
3114 | 0 | auto &yscaleHillshadeArg = |
3115 | 0 | subCommandHillshade->add_argument("-yscale") |
3116 | 0 | .metavar("<scale>") |
3117 | 0 | .scan<'g', double>() |
3118 | 0 | .store_into(psOptions->yscale) |
3119 | 0 | .help(_("Ratio of vertical units to horizontal Y axis units.")); |
3120 | 0 | subCommandHillshade->add_hidden_alias_for(yscaleHillshadeArg, "--yscale"); |
3121 | |
|
3122 | 0 | auto &azimuthHillshadeArg = |
3123 | 0 | subCommandHillshade->add_argument("-az") |
3124 | 0 | .metavar("<azimuth>") |
3125 | 0 | .scan<'g', double>() |
3126 | 0 | .store_into(psOptions->az) |
3127 | 0 | .help(_("Azimuth of the light, in degrees.")); |
3128 | |
|
3129 | 0 | subCommandHillshade->add_hidden_alias_for(azimuthHillshadeArg, "--az"); |
3130 | 0 | subCommandHillshade->add_hidden_alias_for(azimuthHillshadeArg, "-azimuth"); |
3131 | 0 | subCommandHillshade->add_hidden_alias_for(azimuthHillshadeArg, "--azimuth"); |
3132 | |
|
3133 | 0 | auto &altitudeHillshadeArg = |
3134 | 0 | subCommandHillshade->add_argument("-alt") |
3135 | 0 | .metavar("<altitude>") |
3136 | 0 | .scan<'g', double>() |
3137 | 0 | .store_into(psOptions->alt) |
3138 | 0 | .help(_("Altitude of the light, in degrees.")); |
3139 | |
|
3140 | 0 | subCommandHillshade->add_hidden_alias_for(altitudeHillshadeArg, "--alt"); |
3141 | 0 | subCommandHillshade->add_hidden_alias_for(altitudeHillshadeArg, |
3142 | 0 | "--altitude"); |
3143 | 0 | subCommandHillshade->add_hidden_alias_for(altitudeHillshadeArg, |
3144 | 0 | "-altitude"); |
3145 | |
|
3146 | 0 | auto &shadingGroup = subCommandHillshade->add_mutually_exclusive_group(); |
3147 | |
|
3148 | 0 | auto &combinedHillshadeArg = shadingGroup.add_argument("-combined") |
3149 | 0 | .flag() |
3150 | 0 | .store_into(psOptions->bCombined) |
3151 | 0 | .help(_("Use combined shading.")); |
3152 | |
|
3153 | 0 | subCommandHillshade->add_hidden_alias_for(combinedHillshadeArg, |
3154 | 0 | "--combined"); |
3155 | |
|
3156 | 0 | auto &multidirectionalHillshadeArg = |
3157 | 0 | shadingGroup.add_argument("-multidirectional") |
3158 | 0 | .flag() |
3159 | 0 | .store_into(psOptions->bMultiDirectional) |
3160 | 0 | .help(_("Use multidirectional shading.")); |
3161 | |
|
3162 | 0 | subCommandHillshade->add_hidden_alias_for(multidirectionalHillshadeArg, |
3163 | 0 | "--multidirectional"); |
3164 | |
|
3165 | 0 | auto &igorHillshadeArg = |
3166 | 0 | shadingGroup.add_argument("-igor") |
3167 | 0 | .flag() |
3168 | 0 | .store_into(psOptions->bIgor) |
3169 | 0 | .help(_("Shading which tries to minimize effects on other map " |
3170 | 0 | "features beneath.")); |
3171 | |
|
3172 | 0 | subCommandHillshade->add_hidden_alias_for(igorHillshadeArg, "--igor"); |
3173 | |
|
3174 | 0 | addCommonOptions(subCommandHillshade); |
3175 | | |
3176 | | // Slope |
3177 | |
|
3178 | 0 | auto subCommandSlope = argParser->add_subparser( |
3179 | 0 | "slope", /* bForBinary=*/psOptionsForBinary != nullptr); |
3180 | |
|
3181 | 0 | subCommandSlope->add_description(_("Compute slope.")); |
3182 | |
|
3183 | 0 | if (psOptionsForBinary) |
3184 | 0 | { |
3185 | 0 | subCommandSlope->add_argument("input_dem") |
3186 | 0 | .store_into(psOptionsForBinary->osSrcFilename) |
3187 | 0 | .help(_("The input DEM raster to be processed.")); |
3188 | |
|
3189 | 0 | subCommandSlope->add_argument("output_slope_map") |
3190 | 0 | .store_into(psOptionsForBinary->osDstFilename) |
3191 | 0 | .help(_("The output raster to be produced.")); |
3192 | 0 | } |
3193 | |
|
3194 | 0 | subCommandSlope->add_argument("-alg") |
3195 | 0 | .metavar("Horn|ZevenbergenThorne") |
3196 | 0 | .action( |
3197 | 0 | [psOptions](const std::string &s) |
3198 | 0 | { |
3199 | 0 | if (EQUAL(s.c_str(), "ZevenbergenThorne")) |
3200 | 0 | { |
3201 | 0 | psOptions->bGradientAlgSpecified = true; |
3202 | 0 | psOptions->eGradientAlg = GradientAlg::ZEVENBERGEN_THORNE; |
3203 | 0 | } |
3204 | 0 | else if (EQUAL(s.c_str(), "Horn")) |
3205 | 0 | { |
3206 | 0 | psOptions->bGradientAlgSpecified = true; |
3207 | 0 | psOptions->eGradientAlg = GradientAlg::HORN; |
3208 | 0 | } |
3209 | 0 | else |
3210 | 0 | { |
3211 | 0 | throw std::invalid_argument( |
3212 | 0 | CPLSPrintf("Invalid value for -alg: %s.", s.c_str())); |
3213 | 0 | } |
3214 | 0 | }) |
3215 | 0 | .help(_("Choose between ZevenbergenThorne or Horn algorithms.")); |
3216 | |
|
3217 | 0 | subCommandSlope->add_inverted_logic_flag( |
3218 | 0 | "-p", &psOptions->bSlopeFormatUseDegrees, |
3219 | 0 | _("Express slope as a percentage.")); |
3220 | |
|
3221 | 0 | subCommandSlope->add_argument("-s") |
3222 | 0 | .metavar("<scale>") |
3223 | 0 | .scan<'g', double>() |
3224 | 0 | .store_into(psOptions->globalScale) |
3225 | 0 | .help(_("Ratio of vertical units to horizontal.")); |
3226 | |
|
3227 | 0 | auto &xscaleSlopeArg = |
3228 | 0 | subCommandSlope->add_argument("-xscale") |
3229 | 0 | .metavar("<scale>") |
3230 | 0 | .scan<'g', double>() |
3231 | 0 | .store_into(psOptions->xscale) |
3232 | 0 | .help(_("Ratio of vertical units to horizontal X axis units.")); |
3233 | 0 | subCommandSlope->add_hidden_alias_for(xscaleSlopeArg, "--xscale"); |
3234 | |
|
3235 | 0 | auto &yscaleSlopeArg = |
3236 | 0 | subCommandSlope->add_argument("-yscale") |
3237 | 0 | .metavar("<scale>") |
3238 | 0 | .scan<'g', double>() |
3239 | 0 | .store_into(psOptions->yscale) |
3240 | 0 | .help(_("Ratio of vertical units to horizontal Y axis units.")); |
3241 | 0 | subCommandSlope->add_hidden_alias_for(yscaleSlopeArg, "--yscale"); |
3242 | |
|
3243 | 0 | addCommonOptions(subCommandSlope); |
3244 | | |
3245 | | // Aspect |
3246 | |
|
3247 | 0 | auto subCommandAspect = argParser->add_subparser( |
3248 | 0 | "aspect", /* bForBinary=*/psOptionsForBinary != nullptr); |
3249 | |
|
3250 | 0 | subCommandAspect->add_description(_("Compute aspect.")); |
3251 | |
|
3252 | 0 | if (psOptionsForBinary) |
3253 | 0 | { |
3254 | 0 | subCommandAspect->add_argument("input_dem") |
3255 | 0 | .store_into(psOptionsForBinary->osSrcFilename) |
3256 | 0 | .help(_("The input DEM raster to be processed.")); |
3257 | |
|
3258 | 0 | subCommandAspect->add_argument("output_aspect_map") |
3259 | 0 | .store_into(psOptionsForBinary->osDstFilename) |
3260 | 0 | .help(_("The output raster to be produced.")); |
3261 | 0 | } |
3262 | |
|
3263 | 0 | subCommandAspect->add_argument("-alg") |
3264 | 0 | .metavar("Horn|ZevenbergenThorne") |
3265 | 0 | .action( |
3266 | 0 | [psOptions](const std::string &s) |
3267 | 0 | { |
3268 | 0 | if (EQUAL(s.c_str(), "ZevenbergenThorne")) |
3269 | 0 | { |
3270 | 0 | psOptions->bGradientAlgSpecified = true; |
3271 | 0 | psOptions->eGradientAlg = GradientAlg::ZEVENBERGEN_THORNE; |
3272 | 0 | } |
3273 | 0 | else if (EQUAL(s.c_str(), "Horn")) |
3274 | 0 | { |
3275 | 0 | psOptions->bGradientAlgSpecified = true; |
3276 | 0 | psOptions->eGradientAlg = GradientAlg::HORN; |
3277 | 0 | } |
3278 | 0 | else |
3279 | 0 | { |
3280 | 0 | throw std::invalid_argument( |
3281 | 0 | CPLSPrintf("Invalid value for -alg: %s.", s.c_str())); |
3282 | 0 | } |
3283 | 0 | }) |
3284 | 0 | .help(_("Choose between ZevenbergenThorne or Horn algorithms.")); |
3285 | |
|
3286 | 0 | subCommandAspect->add_inverted_logic_flag( |
3287 | 0 | "-trigonometric", &psOptions->bAngleAsAzimuth, |
3288 | 0 | _("Express aspect in trigonometric format.")); |
3289 | |
|
3290 | 0 | subCommandAspect->add_argument("-zero_for_flat") |
3291 | 0 | .flag() |
3292 | 0 | .store_into(psOptions->bZeroForFlat) |
3293 | 0 | .help(_("Return 0 for flat areas with slope=0, instead of -9999.")); |
3294 | |
|
3295 | 0 | addCommonOptions(subCommandAspect); |
3296 | | |
3297 | | // Color-relief |
3298 | |
|
3299 | 0 | auto subCommandColorRelief = argParser->add_subparser( |
3300 | 0 | "color-relief", /* bForBinary=*/psOptionsForBinary != nullptr); |
3301 | |
|
3302 | 0 | subCommandColorRelief->add_description( |
3303 | 0 | _("Color relief computed from the elevation and a text-based color " |
3304 | 0 | "configuration file.")); |
3305 | |
|
3306 | 0 | if (psOptionsForBinary) |
3307 | 0 | { |
3308 | 0 | subCommandColorRelief->add_argument("input_dem") |
3309 | 0 | .store_into(psOptionsForBinary->osSrcFilename) |
3310 | 0 | .help(_("The input DEM raster to be processed.")); |
3311 | |
|
3312 | 0 | subCommandColorRelief->add_argument("color_text_file") |
3313 | 0 | .store_into(psOptionsForBinary->osColorFilename) |
3314 | 0 | .help(_("Text-based color configuration file.")); |
3315 | |
|
3316 | 0 | subCommandColorRelief->add_argument("output_color_relief_map") |
3317 | 0 | .store_into(psOptionsForBinary->osDstFilename) |
3318 | 0 | .help(_("The output raster to be produced.")); |
3319 | 0 | } |
3320 | |
|
3321 | 0 | subCommandColorRelief->add_argument("-alpha") |
3322 | 0 | .flag() |
3323 | 0 | .store_into(psOptions->bAddAlpha) |
3324 | 0 | .help(_("Add an alpha channel to the output raster.")); |
3325 | |
|
3326 | 0 | subCommandColorRelief->add_argument("-exact_color_entry") |
3327 | 0 | .nargs(0) |
3328 | 0 | .action( |
3329 | 0 | [psOptions](const auto &) |
3330 | 0 | { psOptions->eColorSelectionMode = COLOR_SELECTION_EXACT_ENTRY; }) |
3331 | 0 | .help( |
3332 | 0 | _("Use strict matching when searching in the configuration file.")); |
3333 | |
|
3334 | 0 | subCommandColorRelief->add_argument("-nearest_color_entry") |
3335 | 0 | .nargs(0) |
3336 | 0 | .action( |
3337 | 0 | [psOptions](const auto &) |
3338 | 0 | { psOptions->eColorSelectionMode = COLOR_SELECTION_NEAREST_ENTRY; }) |
3339 | 0 | .help(_("Use the RGBA corresponding to the closest entry in the " |
3340 | 0 | "configuration file.")); |
3341 | |
|
3342 | 0 | addCommonOptions(subCommandColorRelief); |
3343 | | |
3344 | | // TRI |
3345 | |
|
3346 | 0 | auto subCommandTRI = argParser->add_subparser( |
3347 | 0 | "TRI", /* bForBinary=*/psOptionsForBinary != nullptr); |
3348 | |
|
3349 | 0 | subCommandTRI->add_description(_("Compute the Terrain Ruggedness Index.")); |
3350 | |
|
3351 | 0 | if (psOptionsForBinary) |
3352 | 0 | { |
3353 | |
|
3354 | 0 | subCommandTRI->add_argument("input_dem") |
3355 | 0 | .store_into(psOptionsForBinary->osSrcFilename) |
3356 | 0 | .help(_("The input DEM raster to be processed.")); |
3357 | |
|
3358 | 0 | subCommandTRI->add_argument("output_TRI_map") |
3359 | 0 | .store_into(psOptionsForBinary->osDstFilename) |
3360 | 0 | .help(_("The output raster to be produced.")); |
3361 | 0 | } |
3362 | |
|
3363 | 0 | subCommandTRI->add_argument("-alg") |
3364 | 0 | .metavar("Wilson|Riley") |
3365 | 0 | .action( |
3366 | 0 | [psOptions](const std::string &s) |
3367 | 0 | { |
3368 | 0 | if (EQUAL(s.c_str(), "Wilson")) |
3369 | 0 | { |
3370 | 0 | psOptions->bTRIAlgSpecified = true; |
3371 | 0 | psOptions->eTRIAlg = TRIAlg::WILSON; |
3372 | 0 | } |
3373 | 0 | else if (EQUAL(s.c_str(), "Riley")) |
3374 | 0 | { |
3375 | 0 | psOptions->bTRIAlgSpecified = true; |
3376 | 0 | psOptions->eTRIAlg = TRIAlg::RILEY; |
3377 | 0 | } |
3378 | 0 | else |
3379 | 0 | { |
3380 | 0 | throw std::invalid_argument( |
3381 | 0 | CPLSPrintf("Invalid value for -alg: %s.", s.c_str())); |
3382 | 0 | } |
3383 | 0 | }) |
3384 | 0 | .help(_("Choose between Wilson or Riley algorithms.")); |
3385 | |
|
3386 | 0 | addCommonOptions(subCommandTRI); |
3387 | | |
3388 | | // TPI |
3389 | |
|
3390 | 0 | auto subCommandTPI = argParser->add_subparser( |
3391 | 0 | "TPI", /* bForBinary=*/psOptionsForBinary != nullptr); |
3392 | |
|
3393 | 0 | subCommandTPI->add_description( |
3394 | 0 | _("Compute the Topographic Position Index.")); |
3395 | |
|
3396 | 0 | if (psOptionsForBinary) |
3397 | 0 | { |
3398 | 0 | subCommandTPI->add_argument("input_dem") |
3399 | 0 | .store_into(psOptionsForBinary->osSrcFilename) |
3400 | 0 | .help(_("The input DEM raster to be processed.")); |
3401 | |
|
3402 | 0 | subCommandTPI->add_argument("output_TPI_map") |
3403 | 0 | .store_into(psOptionsForBinary->osDstFilename) |
3404 | 0 | .help(_("The output raster to be produced.")); |
3405 | 0 | } |
3406 | |
|
3407 | 0 | addCommonOptions(subCommandTPI); |
3408 | | |
3409 | | // Roughness |
3410 | |
|
3411 | 0 | auto subCommandRoughness = argParser->add_subparser( |
3412 | 0 | "roughness", /* bForBinary=*/psOptionsForBinary != nullptr); |
3413 | |
|
3414 | 0 | subCommandRoughness->add_description( |
3415 | 0 | _("Compute the roughness of the DEM.")); |
3416 | |
|
3417 | 0 | if (psOptionsForBinary) |
3418 | 0 | { |
3419 | 0 | subCommandRoughness->add_argument("input_dem") |
3420 | 0 | .store_into(psOptionsForBinary->osSrcFilename) |
3421 | 0 | .help(_("The input DEM raster to be processed.")); |
3422 | |
|
3423 | 0 | subCommandRoughness->add_argument("output_roughness_map") |
3424 | 0 | .store_into(psOptionsForBinary->osDstFilename) |
3425 | 0 | .help(_("The output raster to be produced.")); |
3426 | 0 | } |
3427 | |
|
3428 | 0 | addCommonOptions(subCommandRoughness); |
3429 | |
|
3430 | 0 | return argParser; |
3431 | 0 | } |
3432 | | |
3433 | | /************************************************************************/ |
3434 | | /* GDALDEMAppGetParserUsage() */ |
3435 | | /************************************************************************/ |
3436 | | |
3437 | | std::string GDALDEMAppGetParserUsage(const std::string &osProcessingMode) |
3438 | 0 | { |
3439 | 0 | try |
3440 | 0 | { |
3441 | 0 | GDALDEMProcessingOptions sOptions; |
3442 | 0 | GDALDEMProcessingOptionsForBinary sOptionsForBinary; |
3443 | 0 | auto argParser = |
3444 | 0 | GDALDEMAppOptionsGetParser(&sOptions, &sOptionsForBinary); |
3445 | 0 | if (!osProcessingMode.empty()) |
3446 | 0 | { |
3447 | 0 | const auto subParser = argParser->get_subparser(osProcessingMode); |
3448 | 0 | if (subParser) |
3449 | 0 | { |
3450 | 0 | return subParser->usage(); |
3451 | 0 | } |
3452 | 0 | else |
3453 | 0 | { |
3454 | 0 | CPLError(CE_Failure, CPLE_AppDefined, |
3455 | 0 | "Invalid processing mode: %s", |
3456 | 0 | osProcessingMode.c_str()); |
3457 | 0 | } |
3458 | 0 | } |
3459 | 0 | return argParser->usage(); |
3460 | 0 | } |
3461 | 0 | catch (const std::exception &err) |
3462 | 0 | { |
3463 | 0 | CPLError(CE_Failure, CPLE_AppDefined, "Unexpected exception: %s", |
3464 | 0 | err.what()); |
3465 | 0 | return std::string(); |
3466 | 0 | } |
3467 | 0 | } |
3468 | | |
3469 | | /************************************************************************/ |
3470 | | /* GDALDEMProcessing() */ |
3471 | | /************************************************************************/ |
3472 | | |
3473 | | /** |
3474 | | * Apply a DEM processing. |
3475 | | * |
3476 | | * This is the equivalent of the <a href="/programs/gdaldem.html">gdaldem</a> |
3477 | | * utility. |
3478 | | * |
3479 | | * GDALDEMProcessingOptions* must be allocated and freed with |
3480 | | * GDALDEMProcessingOptionsNew() and GDALDEMProcessingOptionsFree() |
3481 | | * respectively. |
3482 | | * |
3483 | | * @param pszDest the destination dataset path. |
3484 | | * @param hSrcDataset the source dataset handle. |
3485 | | * @param pszProcessing the processing to apply (one of "hillshade", "slope", |
3486 | | * "aspect", "color-relief", "TRI", "TPI", "Roughness") |
3487 | | * @param pszColorFilename color file (mandatory for "color-relief" processing, |
3488 | | * should be NULL otherwise) |
3489 | | * @param psOptionsIn the options struct returned by |
3490 | | * GDALDEMProcessingOptionsNew() or NULL. |
3491 | | * @param pbUsageError pointer to a integer output variable to store if any |
3492 | | * usage error has occurred or NULL. |
3493 | | * @return the output dataset (new dataset that must be closed using |
3494 | | * GDALClose()) or NULL in case of error. |
3495 | | * |
3496 | | * @since GDAL 2.1 |
3497 | | */ |
3498 | | |
3499 | | GDALDatasetH GDALDEMProcessing(const char *pszDest, GDALDatasetH hSrcDataset, |
3500 | | const char *pszProcessing, |
3501 | | const char *pszColorFilename, |
3502 | | const GDALDEMProcessingOptions *psOptionsIn, |
3503 | | int *pbUsageError) |
3504 | 0 | { |
3505 | 0 | if (hSrcDataset == nullptr) |
3506 | 0 | { |
3507 | 0 | CPLError(CE_Failure, CPLE_AppDefined, "No source dataset specified."); |
3508 | |
|
3509 | 0 | if (pbUsageError) |
3510 | 0 | *pbUsageError = TRUE; |
3511 | 0 | return nullptr; |
3512 | 0 | } |
3513 | 0 | if (pszDest == nullptr) |
3514 | 0 | { |
3515 | 0 | CPLError(CE_Failure, CPLE_AppDefined, "No target dataset specified."); |
3516 | |
|
3517 | 0 | if (pbUsageError) |
3518 | 0 | *pbUsageError = TRUE; |
3519 | 0 | return nullptr; |
3520 | 0 | } |
3521 | 0 | if (pszProcessing == nullptr) |
3522 | 0 | { |
3523 | 0 | CPLError(CE_Failure, CPLE_AppDefined, "No target dataset specified."); |
3524 | |
|
3525 | 0 | if (pbUsageError) |
3526 | 0 | *pbUsageError = TRUE; |
3527 | 0 | return nullptr; |
3528 | 0 | } |
3529 | | |
3530 | 0 | Algorithm eUtilityMode = GetAlgorithm(pszProcessing); |
3531 | 0 | if (eUtilityMode == INVALID) |
3532 | 0 | { |
3533 | 0 | CPLError(CE_Failure, CPLE_IllegalArg, "Invalid processing mode: %s", |
3534 | 0 | pszProcessing); |
3535 | 0 | if (pbUsageError) |
3536 | 0 | *pbUsageError = TRUE; |
3537 | 0 | return nullptr; |
3538 | 0 | } |
3539 | | |
3540 | 0 | if (eUtilityMode == COLOR_RELIEF && |
3541 | 0 | (pszColorFilename == nullptr || strlen(pszColorFilename) == 0)) |
3542 | 0 | { |
3543 | 0 | CPLError(CE_Failure, CPLE_AppDefined, "pszColorFilename == NULL."); |
3544 | |
|
3545 | 0 | if (pbUsageError) |
3546 | 0 | *pbUsageError = TRUE; |
3547 | 0 | return nullptr; |
3548 | 0 | } |
3549 | 0 | else if (eUtilityMode != COLOR_RELIEF && pszColorFilename != nullptr && |
3550 | 0 | strlen(pszColorFilename) > 0) |
3551 | 0 | { |
3552 | 0 | CPLError(CE_Failure, CPLE_AppDefined, "pszColorFilename != NULL."); |
3553 | |
|
3554 | 0 | if (pbUsageError) |
3555 | 0 | *pbUsageError = TRUE; |
3556 | 0 | return nullptr; |
3557 | 0 | } |
3558 | | |
3559 | 0 | if (psOptionsIn && psOptionsIn->bCombined && eUtilityMode != HILL_SHADE) |
3560 | 0 | { |
3561 | 0 | CPLError(CE_Failure, CPLE_NotSupported, |
3562 | 0 | "-combined can only be used with hillshade"); |
3563 | |
|
3564 | 0 | if (pbUsageError) |
3565 | 0 | *pbUsageError = TRUE; |
3566 | 0 | return nullptr; |
3567 | 0 | } |
3568 | | |
3569 | 0 | if (psOptionsIn && psOptionsIn->bIgor && eUtilityMode != HILL_SHADE) |
3570 | 0 | { |
3571 | 0 | CPLError(CE_Failure, CPLE_NotSupported, |
3572 | 0 | "-igor can only be used with hillshade"); |
3573 | |
|
3574 | 0 | if (pbUsageError) |
3575 | 0 | *pbUsageError = TRUE; |
3576 | 0 | return nullptr; |
3577 | 0 | } |
3578 | | |
3579 | 0 | if (psOptionsIn && psOptionsIn->bMultiDirectional && |
3580 | 0 | eUtilityMode != HILL_SHADE) |
3581 | 0 | { |
3582 | 0 | CPLError(CE_Failure, CPLE_NotSupported, |
3583 | 0 | "-multidirectional can only be used with hillshade"); |
3584 | |
|
3585 | 0 | if (pbUsageError) |
3586 | 0 | *pbUsageError = TRUE; |
3587 | 0 | return nullptr; |
3588 | 0 | } |
3589 | | |
3590 | 0 | std::unique_ptr<GDALDEMProcessingOptions> psOptionsToFree; |
3591 | 0 | if (psOptionsIn) |
3592 | 0 | { |
3593 | 0 | psOptionsToFree = |
3594 | 0 | std::make_unique<GDALDEMProcessingOptions>(*psOptionsIn); |
3595 | 0 | } |
3596 | 0 | else |
3597 | 0 | { |
3598 | 0 | psOptionsToFree.reset(GDALDEMProcessingOptionsNew(nullptr, nullptr)); |
3599 | 0 | } |
3600 | |
|
3601 | 0 | GDALDEMProcessingOptions *psOptions = psOptionsToFree.get(); |
3602 | |
|
3603 | 0 | double adfGeoTransform[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; |
3604 | | |
3605 | | // Keep that variable in that scope. |
3606 | | // A reference on that dataset will be taken by GDALGeneric3x3Dataset |
3607 | | // (and released at its destruction) if we go to that code path, and |
3608 | | // GDALWarp() (actually the VRTWarpedDataset) will itself take a reference |
3609 | | // on hSrcDataset. |
3610 | 0 | std::unique_ptr<GDALDataset, GDALDatasetUniquePtrReleaser> poTmpSrcDS; |
3611 | |
|
3612 | 0 | if (GDALGetGeoTransform(hSrcDataset, adfGeoTransform) == CE_None && |
3613 | | // For following modes, detect non north-up datasets and autowarp |
3614 | | // them so they are north-up oriented. |
3615 | 0 | (((eUtilityMode == ASPECT || eUtilityMode == TRI || |
3616 | 0 | eUtilityMode == TPI) && |
3617 | 0 | (adfGeoTransform[2] != 0 || adfGeoTransform[4] != 0 || |
3618 | 0 | adfGeoTransform[5] > 0)) || |
3619 | | // For following modes, detect rotated datasets and autowarp |
3620 | | // them so they are north-up oriented. (south-up are fine for those) |
3621 | 0 | ((eUtilityMode == SLOPE || eUtilityMode == HILL_SHADE) && |
3622 | 0 | (adfGeoTransform[2] != 0 || adfGeoTransform[4] != 0)))) |
3623 | 0 | { |
3624 | 0 | const char *const apszWarpOptions[] = {"-of", "VRT", nullptr}; |
3625 | 0 | GDALWarpAppOptions *psWarpOptions = GDALWarpAppOptionsNew( |
3626 | 0 | const_cast<char **>(apszWarpOptions), nullptr); |
3627 | 0 | poTmpSrcDS.reset(GDALDataset::FromHandle( |
3628 | 0 | GDALWarp("", nullptr, 1, &hSrcDataset, psWarpOptions, nullptr))); |
3629 | 0 | GDALWarpAppOptionsFree(psWarpOptions); |
3630 | 0 | if (!poTmpSrcDS) |
3631 | 0 | return nullptr; |
3632 | 0 | hSrcDataset = GDALDataset::ToHandle(poTmpSrcDS.get()); |
3633 | 0 | GDALGetGeoTransform(hSrcDataset, adfGeoTransform); |
3634 | 0 | } |
3635 | | |
3636 | 0 | const int nXSize = GDALGetRasterXSize(hSrcDataset); |
3637 | 0 | const int nYSize = GDALGetRasterYSize(hSrcDataset); |
3638 | |
|
3639 | 0 | if (psOptions->nBand <= 0 || |
3640 | 0 | psOptions->nBand > GDALGetRasterCount(hSrcDataset)) |
3641 | 0 | { |
3642 | 0 | CPLError(CE_Failure, CPLE_IllegalArg, "Unable to fetch band #%d", |
3643 | 0 | psOptions->nBand); |
3644 | |
|
3645 | 0 | return nullptr; |
3646 | 0 | } |
3647 | | |
3648 | 0 | if (std::isnan(psOptions->xscale)) |
3649 | 0 | { |
3650 | 0 | psOptions->xscale = 1; |
3651 | 0 | psOptions->yscale = 1; |
3652 | |
|
3653 | 0 | double zunit = 1; |
3654 | |
|
3655 | 0 | auto poSrcDS = GDALDataset::FromHandle(hSrcDataset); |
3656 | |
|
3657 | 0 | const char *pszUnits = |
3658 | 0 | poSrcDS->GetRasterBand(psOptions->nBand)->GetUnitType(); |
3659 | 0 | if (EQUAL(pszUnits, "m") || EQUAL(pszUnits, "metre") || |
3660 | 0 | EQUAL(pszUnits, "meter")) |
3661 | 0 | { |
3662 | 0 | } |
3663 | 0 | else if (EQUAL(pszUnits, "ft") || EQUAL(pszUnits, "foot") || |
3664 | 0 | EQUAL(pszUnits, "foot (International)") || |
3665 | 0 | EQUAL(pszUnits, "feet")) |
3666 | 0 | { |
3667 | 0 | zunit = CPLAtof(SRS_UL_FOOT_CONV); |
3668 | 0 | } |
3669 | 0 | else if (EQUAL(pszUnits, "us-ft") || EQUAL(pszUnits, "Foot_US") || |
3670 | 0 | EQUAL(pszUnits, "US survey foot")) |
3671 | 0 | { |
3672 | 0 | zunit = CPLAtof(SRS_UL_US_FOOT_CONV); |
3673 | 0 | } |
3674 | 0 | else if (!EQUAL(pszUnits, "")) |
3675 | 0 | { |
3676 | 0 | CPLError(CE_Warning, CPLE_AppDefined, |
3677 | 0 | "Unknown band unit '%s'. Assuming metre", pszUnits); |
3678 | 0 | } |
3679 | |
|
3680 | 0 | const auto poSrcSRS = poSrcDS->GetSpatialRef(); |
3681 | 0 | if (poSrcSRS && poSrcSRS->IsGeographic()) |
3682 | 0 | { |
3683 | 0 | GDALGeoTransform gt; |
3684 | 0 | if (poSrcDS->GetGeoTransform(gt) == CE_None) |
3685 | 0 | { |
3686 | 0 | const double dfAngUnits = poSrcSRS->GetAngularUnits(); |
3687 | | // Rough conversion of angular units to linear units. |
3688 | 0 | psOptions->yscale = |
3689 | 0 | dfAngUnits * poSrcSRS->GetSemiMajor() / zunit; |
3690 | | // Take the center latitude to compute the xscale. |
3691 | 0 | const double dfMeanLat = |
3692 | 0 | (gt.yorig + nYSize * gt.yscale / 2) * dfAngUnits; |
3693 | 0 | if (std::fabs(dfMeanLat) / M_PI * 180 > 80) |
3694 | 0 | { |
3695 | 0 | CPLError( |
3696 | 0 | CE_Warning, CPLE_AppDefined, |
3697 | 0 | "Automatic computation of xscale at high latitudes may " |
3698 | 0 | "lead to incorrect results. The source dataset should " |
3699 | 0 | "likely be reprojected to a polar projection"); |
3700 | 0 | } |
3701 | 0 | psOptions->xscale = psOptions->yscale * cos(dfMeanLat); |
3702 | 0 | } |
3703 | 0 | } |
3704 | 0 | else if (poSrcSRS && poSrcSRS->IsProjected()) |
3705 | 0 | { |
3706 | 0 | psOptions->xscale = poSrcSRS->GetLinearUnits() / zunit; |
3707 | 0 | psOptions->yscale = psOptions->xscale; |
3708 | 0 | } |
3709 | 0 | CPLDebug("GDAL", "Using xscale=%f and yscale=%f", psOptions->xscale, |
3710 | 0 | psOptions->yscale); |
3711 | 0 | } |
3712 | |
|
3713 | 0 | if (psOptions->bGradientAlgSpecified && |
3714 | 0 | !(eUtilityMode == HILL_SHADE || eUtilityMode == SLOPE || |
3715 | 0 | eUtilityMode == ASPECT)) |
3716 | 0 | { |
3717 | 0 | CPLError(CE_Failure, CPLE_IllegalArg, |
3718 | 0 | "This value of -alg is only valid for hillshade, slope or " |
3719 | 0 | "aspect processing"); |
3720 | |
|
3721 | 0 | return nullptr; |
3722 | 0 | } |
3723 | | |
3724 | 0 | if (psOptions->bTRIAlgSpecified && !(eUtilityMode == TRI)) |
3725 | 0 | { |
3726 | 0 | CPLError(CE_Failure, CPLE_IllegalArg, |
3727 | 0 | "This value of -alg is only valid for TRI processing"); |
3728 | |
|
3729 | 0 | return nullptr; |
3730 | 0 | } |
3731 | | |
3732 | 0 | GDALRasterBandH hSrcBand = GDALGetRasterBand(hSrcDataset, psOptions->nBand); |
3733 | |
|
3734 | 0 | CPLString osFormat; |
3735 | 0 | if (psOptions->osFormat.empty()) |
3736 | 0 | { |
3737 | 0 | osFormat = GetOutputDriverForRaster(pszDest); |
3738 | 0 | if (osFormat.empty()) |
3739 | 0 | { |
3740 | 0 | CPLError(CE_Failure, CPLE_AppDefined, |
3741 | 0 | "Could not identify driver for output %s", pszDest); |
3742 | 0 | return nullptr; |
3743 | 0 | } |
3744 | 0 | } |
3745 | 0 | else |
3746 | 0 | { |
3747 | 0 | osFormat = psOptions->osFormat; |
3748 | 0 | } |
3749 | | |
3750 | 0 | GDALDriverH hDriver = nullptr; |
3751 | 0 | if (!EQUAL(osFormat.c_str(), "stream")) |
3752 | 0 | { |
3753 | 0 | hDriver = GDALGetDriverByName(osFormat); |
3754 | 0 | if (hDriver == nullptr || |
3755 | 0 | (GDALGetMetadataItem(hDriver, GDAL_DCAP_CREATE, nullptr) == |
3756 | 0 | nullptr && |
3757 | 0 | GDALGetMetadataItem(hDriver, GDAL_DCAP_CREATECOPY, nullptr) == |
3758 | 0 | nullptr)) |
3759 | 0 | { |
3760 | 0 | CPLError(CE_Failure, CPLE_AppDefined, |
3761 | 0 | "Output driver `%s' does not support writing.", |
3762 | 0 | osFormat.c_str()); |
3763 | 0 | fprintf(stderr, "The following format drivers are enabled\n" |
3764 | 0 | "and support writing:\n"); |
3765 | |
|
3766 | 0 | for (int iDr = 0; iDr < GDALGetDriverCount(); iDr++) |
3767 | 0 | { |
3768 | 0 | hDriver = GDALGetDriver(iDr); |
3769 | |
|
3770 | 0 | if (GDALGetMetadataItem(hDriver, GDAL_DCAP_RASTER, nullptr) != |
3771 | 0 | nullptr && |
3772 | 0 | (GDALGetMetadataItem(hDriver, GDAL_DCAP_CREATE, nullptr) != |
3773 | 0 | nullptr || |
3774 | 0 | GDALGetMetadataItem(hDriver, GDAL_DCAP_CREATECOPY, |
3775 | 0 | nullptr) != nullptr)) |
3776 | 0 | { |
3777 | 0 | fprintf(stderr, " %s: %s\n", |
3778 | 0 | GDALGetDriverShortName(hDriver), |
3779 | 0 | GDALGetDriverLongName(hDriver)); |
3780 | 0 | } |
3781 | 0 | } |
3782 | |
|
3783 | 0 | return nullptr; |
3784 | 0 | } |
3785 | 0 | } |
3786 | | |
3787 | 0 | double dfDstNoDataValue = 0.0; |
3788 | 0 | bool bDstHasNoData = false; |
3789 | 0 | std::unique_ptr<AlgorithmParameters> pData; |
3790 | 0 | GDALGeneric3x3ProcessingAlg<float>::type pfnAlgFloat = nullptr; |
3791 | 0 | GDALGeneric3x3ProcessingAlg<GInt32>::type pfnAlgInt32 = nullptr; |
3792 | 0 | GDALGeneric3x3ProcessingAlg_multisample<float>::type |
3793 | 0 | pfnAlgFloat_multisample = nullptr; |
3794 | 0 | GDALGeneric3x3ProcessingAlg_multisample<GInt32>::type |
3795 | 0 | pfnAlgInt32_multisample = nullptr; |
3796 | |
|
3797 | 0 | if (eUtilityMode == HILL_SHADE && psOptions->bMultiDirectional) |
3798 | 0 | { |
3799 | 0 | dfDstNoDataValue = 0; |
3800 | 0 | bDstHasNoData = true; |
3801 | 0 | pData = GDALCreateHillshadeMultiDirectionalData( |
3802 | 0 | adfGeoTransform, psOptions->z, psOptions->xscale, psOptions->yscale, |
3803 | 0 | psOptions->alt, psOptions->eGradientAlg); |
3804 | 0 | if (psOptions->eGradientAlg == GradientAlg::ZEVENBERGEN_THORNE) |
3805 | 0 | { |
3806 | 0 | pfnAlgFloat = GDALHillshadeMultiDirectionalAlg< |
3807 | 0 | float, GradientAlg::ZEVENBERGEN_THORNE>; |
3808 | 0 | pfnAlgInt32 = GDALHillshadeMultiDirectionalAlg< |
3809 | 0 | GInt32, GradientAlg::ZEVENBERGEN_THORNE>; |
3810 | 0 | } |
3811 | 0 | else |
3812 | 0 | { |
3813 | 0 | pfnAlgFloat = |
3814 | 0 | GDALHillshadeMultiDirectionalAlg<float, GradientAlg::HORN>; |
3815 | 0 | pfnAlgInt32 = |
3816 | 0 | GDALHillshadeMultiDirectionalAlg<GInt32, GradientAlg::HORN>; |
3817 | 0 | } |
3818 | 0 | } |
3819 | 0 | else if (eUtilityMode == HILL_SHADE) |
3820 | 0 | { |
3821 | 0 | dfDstNoDataValue = 0; |
3822 | 0 | bDstHasNoData = true; |
3823 | 0 | pData = GDALCreateHillshadeData( |
3824 | 0 | adfGeoTransform, psOptions->z, psOptions->xscale, psOptions->yscale, |
3825 | 0 | psOptions->alt, psOptions->az, psOptions->eGradientAlg); |
3826 | 0 | if (psOptions->eGradientAlg == GradientAlg::ZEVENBERGEN_THORNE) |
3827 | 0 | { |
3828 | 0 | if (psOptions->bCombined) |
3829 | 0 | { |
3830 | 0 | pfnAlgFloat = |
3831 | 0 | GDALHillshadeCombinedAlg<float, |
3832 | 0 | GradientAlg::ZEVENBERGEN_THORNE>; |
3833 | 0 | pfnAlgInt32 = |
3834 | 0 | GDALHillshadeCombinedAlg<GInt32, |
3835 | 0 | GradientAlg::ZEVENBERGEN_THORNE>; |
3836 | 0 | } |
3837 | 0 | else if (psOptions->bIgor) |
3838 | 0 | { |
3839 | 0 | pfnAlgFloat = |
3840 | 0 | GDALHillshadeIgorAlg<float, |
3841 | 0 | GradientAlg::ZEVENBERGEN_THORNE>; |
3842 | 0 | pfnAlgInt32 = |
3843 | 0 | GDALHillshadeIgorAlg<GInt32, |
3844 | 0 | GradientAlg::ZEVENBERGEN_THORNE>; |
3845 | 0 | } |
3846 | 0 | else |
3847 | 0 | { |
3848 | 0 | pfnAlgFloat = |
3849 | 0 | GDALHillshadeAlg<float, GradientAlg::ZEVENBERGEN_THORNE>; |
3850 | 0 | pfnAlgInt32 = |
3851 | 0 | GDALHillshadeAlg<GInt32, GradientAlg::ZEVENBERGEN_THORNE>; |
3852 | 0 | } |
3853 | 0 | } |
3854 | 0 | else |
3855 | 0 | { |
3856 | 0 | if (psOptions->bCombined) |
3857 | 0 | { |
3858 | 0 | pfnAlgFloat = |
3859 | 0 | GDALHillshadeCombinedAlg<float, GradientAlg::HORN>; |
3860 | 0 | pfnAlgInt32 = |
3861 | 0 | GDALHillshadeCombinedAlg<GInt32, GradientAlg::HORN>; |
3862 | 0 | } |
3863 | 0 | else if (psOptions->bIgor) |
3864 | 0 | { |
3865 | 0 | pfnAlgFloat = GDALHillshadeIgorAlg<float, GradientAlg::HORN>; |
3866 | 0 | pfnAlgInt32 = GDALHillshadeIgorAlg<GInt32, GradientAlg::HORN>; |
3867 | 0 | } |
3868 | 0 | else |
3869 | 0 | { |
3870 | 0 | if (adfGeoTransform[1] == -adfGeoTransform[5] && |
3871 | 0 | psOptions->xscale == psOptions->yscale) |
3872 | 0 | { |
3873 | 0 | pfnAlgFloat = GDALHillshadeAlg_same_res<float>; |
3874 | 0 | pfnAlgInt32 = GDALHillshadeAlg_same_res<GInt32>; |
3875 | | #if defined(HAVE_16_SSE_REG) && defined(__AVX2__) |
3876 | | pfnAlgFloat_multisample = |
3877 | | GDALHillshadeAlg_same_res_multisample< |
3878 | | float, XMMReg8Float, XMMReg8Float>; |
3879 | | pfnAlgInt32_multisample = |
3880 | | GDALHillshadeAlg_same_res_multisample< |
3881 | | GInt32, XMMReg8Int, XMMReg8Float>; |
3882 | | #elif defined(HAVE_16_SSE_REG) |
3883 | | pfnAlgFloat_multisample = |
3884 | 0 | GDALHillshadeAlg_same_res_multisample< |
3885 | 0 | float, XMMReg4Float, XMMReg4Float>; |
3886 | 0 | pfnAlgInt32_multisample = |
3887 | 0 | GDALHillshadeAlg_same_res_multisample< |
3888 | 0 | GInt32, XMMReg4Int, XMMReg4Float>; |
3889 | 0 | #endif |
3890 | 0 | } |
3891 | 0 | else |
3892 | 0 | { |
3893 | 0 | pfnAlgFloat = GDALHillshadeAlg<float, GradientAlg::HORN>; |
3894 | 0 | pfnAlgInt32 = GDALHillshadeAlg<GInt32, GradientAlg::HORN>; |
3895 | 0 | } |
3896 | 0 | } |
3897 | 0 | } |
3898 | 0 | } |
3899 | 0 | else if (eUtilityMode == SLOPE) |
3900 | 0 | { |
3901 | 0 | dfDstNoDataValue = -9999; |
3902 | 0 | bDstHasNoData = true; |
3903 | |
|
3904 | 0 | pData = GDALCreateSlopeData(adfGeoTransform, psOptions->xscale, |
3905 | 0 | psOptions->yscale, |
3906 | 0 | psOptions->bSlopeFormatUseDegrees); |
3907 | 0 | if (psOptions->eGradientAlg == GradientAlg::ZEVENBERGEN_THORNE) |
3908 | 0 | { |
3909 | 0 | pfnAlgFloat = GDALSlopeZevenbergenThorneAlg<float>; |
3910 | 0 | pfnAlgInt32 = GDALSlopeZevenbergenThorneAlg<GInt32>; |
3911 | 0 | } |
3912 | 0 | else |
3913 | 0 | { |
3914 | 0 | pfnAlgFloat = GDALSlopeHornAlg<float>; |
3915 | 0 | pfnAlgInt32 = GDALSlopeHornAlg<GInt32>; |
3916 | 0 | } |
3917 | 0 | } |
3918 | | |
3919 | 0 | else if (eUtilityMode == ASPECT) |
3920 | 0 | { |
3921 | 0 | if (!psOptions->bZeroForFlat) |
3922 | 0 | { |
3923 | 0 | dfDstNoDataValue = -9999; |
3924 | 0 | bDstHasNoData = true; |
3925 | 0 | } |
3926 | |
|
3927 | 0 | pData = GDALCreateAspectData(psOptions->bAngleAsAzimuth); |
3928 | 0 | if (psOptions->eGradientAlg == GradientAlg::ZEVENBERGEN_THORNE) |
3929 | 0 | { |
3930 | 0 | pfnAlgFloat = GDALAspectZevenbergenThorneAlg<float>; |
3931 | 0 | pfnAlgInt32 = GDALAspectZevenbergenThorneAlg<GInt32>; |
3932 | 0 | } |
3933 | 0 | else |
3934 | 0 | { |
3935 | 0 | pfnAlgFloat = GDALAspectAlg<float>; |
3936 | 0 | pfnAlgInt32 = GDALAspectAlg<GInt32>; |
3937 | 0 | } |
3938 | 0 | } |
3939 | 0 | else if (eUtilityMode == TRI) |
3940 | 0 | { |
3941 | 0 | dfDstNoDataValue = -9999; |
3942 | 0 | bDstHasNoData = true; |
3943 | 0 | if (psOptions->eTRIAlg == TRIAlg::WILSON) |
3944 | 0 | { |
3945 | 0 | pfnAlgFloat = GDALTRIAlgWilson<float>; |
3946 | 0 | pfnAlgInt32 = GDALTRIAlgWilson<GInt32>; |
3947 | 0 | } |
3948 | 0 | else |
3949 | 0 | { |
3950 | 0 | pfnAlgFloat = GDALTRIAlgRiley<float>; |
3951 | 0 | pfnAlgInt32 = GDALTRIAlgRiley<GInt32>; |
3952 | 0 | } |
3953 | 0 | } |
3954 | 0 | else if (eUtilityMode == TPI) |
3955 | 0 | { |
3956 | 0 | dfDstNoDataValue = -9999; |
3957 | 0 | bDstHasNoData = true; |
3958 | 0 | pfnAlgFloat = GDALTPIAlg<float>; |
3959 | 0 | pfnAlgInt32 = GDALTPIAlg<GInt32>; |
3960 | 0 | } |
3961 | 0 | else if (eUtilityMode == ROUGHNESS) |
3962 | 0 | { |
3963 | 0 | dfDstNoDataValue = -9999; |
3964 | 0 | bDstHasNoData = true; |
3965 | 0 | pfnAlgFloat = GDALRoughnessAlg<float>; |
3966 | 0 | pfnAlgInt32 = GDALRoughnessAlg<GInt32>; |
3967 | 0 | } |
3968 | |
|
3969 | 0 | const GDALDataType eDstDataType = |
3970 | 0 | (eUtilityMode == HILL_SHADE || eUtilityMode == COLOR_RELIEF) |
3971 | 0 | ? GDT_UInt8 |
3972 | 0 | : GDT_Float32; |
3973 | |
|
3974 | 0 | if (EQUAL(osFormat, "VRT")) |
3975 | 0 | { |
3976 | 0 | if (eUtilityMode == COLOR_RELIEF) |
3977 | 0 | { |
3978 | 0 | auto poDS = GDALGenerateVRTColorRelief( |
3979 | 0 | pszDest, hSrcDataset, hSrcBand, pszColorFilename, |
3980 | 0 | psOptions->eColorSelectionMode, psOptions->bAddAlpha); |
3981 | 0 | if (poDS && pszDest[0] != 0) |
3982 | 0 | { |
3983 | 0 | poDS.reset(); |
3984 | 0 | poDS.reset(GDALDataset::Open( |
3985 | 0 | pszDest, |
3986 | 0 | GDAL_OF_UPDATE | GDAL_OF_VERBOSE_ERROR | GDAL_OF_RASTER)); |
3987 | 0 | } |
3988 | 0 | return GDALDataset::ToHandle(poDS.release()); |
3989 | 0 | } |
3990 | 0 | else |
3991 | 0 | { |
3992 | 0 | CPLError(CE_Failure, CPLE_NotSupported, |
3993 | 0 | "VRT driver can only be used with color-relief utility."); |
3994 | |
|
3995 | 0 | return nullptr; |
3996 | 0 | } |
3997 | 0 | } |
3998 | | |
3999 | | // We might actually want to always go through the intermediate dataset |
4000 | 0 | bool bForceUseIntermediateDataset = false; |
4001 | |
|
4002 | 0 | GDALProgressFunc pfnProgress = psOptions->pfnProgress; |
4003 | 0 | void *pProgressData = psOptions->pProgressData; |
4004 | |
|
4005 | 0 | if (EQUAL(osFormat, "GTiff")) |
4006 | 0 | { |
4007 | 0 | if (!EQUAL(psOptions->aosCreationOptions.FetchNameValueDef("COMPRESS", |
4008 | 0 | "NONE"), |
4009 | 0 | "NONE") && |
4010 | 0 | CPLTestBool( |
4011 | 0 | psOptions->aosCreationOptions.FetchNameValueDef("TILED", "NO"))) |
4012 | 0 | { |
4013 | 0 | bForceUseIntermediateDataset = true; |
4014 | 0 | } |
4015 | 0 | else if (strcmp(pszDest, "/vsistdout/") == 0) |
4016 | 0 | { |
4017 | 0 | bForceUseIntermediateDataset = true; |
4018 | 0 | pfnProgress = GDALDummyProgress; |
4019 | 0 | pProgressData = nullptr; |
4020 | 0 | } |
4021 | 0 | #ifdef S_ISFIFO |
4022 | 0 | else |
4023 | 0 | { |
4024 | 0 | VSIStatBufL sStat; |
4025 | 0 | if (VSIStatExL(pszDest, &sStat, |
4026 | 0 | VSI_STAT_EXISTS_FLAG | VSI_STAT_NATURE_FLAG) == 0 && |
4027 | 0 | S_ISFIFO(sStat.st_mode)) |
4028 | 0 | { |
4029 | 0 | bForceUseIntermediateDataset = true; |
4030 | 0 | } |
4031 | 0 | } |
4032 | 0 | #endif |
4033 | 0 | } |
4034 | |
|
4035 | 0 | const GDALDataType eSrcDT = GDALGetRasterDataType(hSrcBand); |
4036 | |
|
4037 | 0 | if (hDriver == nullptr || |
4038 | 0 | (GDALGetMetadataItem(hDriver, GDAL_DCAP_RASTER, nullptr) != nullptr && |
4039 | 0 | ((bForceUseIntermediateDataset || |
4040 | 0 | GDALGetMetadataItem(hDriver, GDAL_DCAP_CREATE, nullptr) == |
4041 | 0 | nullptr) && |
4042 | 0 | GDALGetMetadataItem(hDriver, GDAL_DCAP_CREATECOPY, nullptr) != |
4043 | 0 | nullptr))) |
4044 | 0 | { |
4045 | 0 | GDALDatasetH hIntermediateDataset = nullptr; |
4046 | |
|
4047 | 0 | if (eUtilityMode == COLOR_RELIEF) |
4048 | 0 | { |
4049 | 0 | auto poDS = std::make_unique<GDALColorReliefDataset>( |
4050 | 0 | hSrcDataset, hSrcBand, pszColorFilename, |
4051 | 0 | psOptions->eColorSelectionMode, psOptions->bAddAlpha); |
4052 | 0 | if (!(poDS->InitOK())) |
4053 | 0 | { |
4054 | 0 | return nullptr; |
4055 | 0 | } |
4056 | 0 | hIntermediateDataset = GDALDataset::ToHandle(poDS.release()); |
4057 | 0 | } |
4058 | 0 | else |
4059 | 0 | { |
4060 | 0 | if (eSrcDT == GDT_UInt8 || eSrcDT == GDT_Int16 || |
4061 | 0 | eSrcDT == GDT_UInt16) |
4062 | 0 | { |
4063 | 0 | auto poDS = std::make_unique<GDALGeneric3x3Dataset<GInt32>>( |
4064 | 0 | hSrcDataset, hSrcBand, eDstDataType, bDstHasNoData, |
4065 | 0 | dfDstNoDataValue, pfnAlgInt32, pfnAlgInt32_multisample, |
4066 | 0 | std::move(pData), psOptions->bComputeAtEdges, true); |
4067 | |
|
4068 | 0 | if (!(poDS->InitOK())) |
4069 | 0 | { |
4070 | 0 | return nullptr; |
4071 | 0 | } |
4072 | 0 | hIntermediateDataset = GDALDataset::ToHandle(poDS.release()); |
4073 | 0 | } |
4074 | 0 | else |
4075 | 0 | { |
4076 | 0 | auto poDS = std::make_unique<GDALGeneric3x3Dataset<float>>( |
4077 | 0 | hSrcDataset, hSrcBand, eDstDataType, bDstHasNoData, |
4078 | 0 | dfDstNoDataValue, pfnAlgFloat, pfnAlgFloat_multisample, |
4079 | 0 | std::move(pData), psOptions->bComputeAtEdges, true); |
4080 | |
|
4081 | 0 | if (!(poDS->InitOK())) |
4082 | 0 | { |
4083 | 0 | return nullptr; |
4084 | 0 | } |
4085 | 0 | hIntermediateDataset = GDALDataset::ToHandle(poDS.release()); |
4086 | 0 | } |
4087 | 0 | } |
4088 | | |
4089 | 0 | if (!hDriver) |
4090 | 0 | { |
4091 | 0 | return hIntermediateDataset; |
4092 | 0 | } |
4093 | | |
4094 | 0 | GDALDatasetH hOutDS = GDALCreateCopy( |
4095 | 0 | hDriver, pszDest, hIntermediateDataset, TRUE, |
4096 | 0 | psOptions->aosCreationOptions.List(), pfnProgress, pProgressData); |
4097 | |
|
4098 | 0 | GDALClose(hIntermediateDataset); |
4099 | |
|
4100 | 0 | return hOutDS; |
4101 | 0 | } |
4102 | | |
4103 | 0 | const int nDstBands = |
4104 | 0 | eUtilityMode == COLOR_RELIEF ? ((psOptions->bAddAlpha) ? 4 : 3) : 1; |
4105 | |
|
4106 | 0 | GDALDatasetH hDstDataset = |
4107 | 0 | GDALCreate(hDriver, pszDest, nXSize, nYSize, nDstBands, eDstDataType, |
4108 | 0 | psOptions->aosCreationOptions.List()); |
4109 | |
|
4110 | 0 | if (hDstDataset == nullptr) |
4111 | 0 | { |
4112 | 0 | CPLError(CE_Failure, CPLE_AppDefined, "Unable to create dataset %s", |
4113 | 0 | pszDest); |
4114 | 0 | return nullptr; |
4115 | 0 | } |
4116 | | |
4117 | 0 | GDALRasterBandH hDstBand = GDALGetRasterBand(hDstDataset, 1); |
4118 | |
|
4119 | 0 | GDALSetGeoTransform(hDstDataset, adfGeoTransform); |
4120 | 0 | GDALSetProjection(hDstDataset, GDALGetProjectionRef(hSrcDataset)); |
4121 | |
|
4122 | 0 | if (eUtilityMode == COLOR_RELIEF) |
4123 | 0 | { |
4124 | 0 | GDALColorRelief(hSrcBand, GDALGetRasterBand(hDstDataset, 1), |
4125 | 0 | GDALGetRasterBand(hDstDataset, 2), |
4126 | 0 | GDALGetRasterBand(hDstDataset, 3), |
4127 | 0 | psOptions->bAddAlpha ? GDALGetRasterBand(hDstDataset, 4) |
4128 | 0 | : nullptr, |
4129 | 0 | pszColorFilename, psOptions->eColorSelectionMode, |
4130 | 0 | pfnProgress, pProgressData); |
4131 | 0 | } |
4132 | 0 | else |
4133 | 0 | { |
4134 | 0 | if (bDstHasNoData) |
4135 | 0 | GDALSetRasterNoDataValue(hDstBand, dfDstNoDataValue); |
4136 | |
|
4137 | 0 | if (eSrcDT == GDT_UInt8 || eSrcDT == GDT_Int16 || eSrcDT == GDT_UInt16) |
4138 | 0 | { |
4139 | 0 | GDALGeneric3x3Processing<GInt32>( |
4140 | 0 | hSrcBand, hDstBand, pfnAlgInt32, pfnAlgInt32_multisample, |
4141 | 0 | std::move(pData), psOptions->bComputeAtEdges, pfnProgress, |
4142 | 0 | pProgressData); |
4143 | 0 | } |
4144 | 0 | else |
4145 | 0 | { |
4146 | 0 | GDALGeneric3x3Processing<float>( |
4147 | 0 | hSrcBand, hDstBand, pfnAlgFloat, pfnAlgFloat_multisample, |
4148 | 0 | std::move(pData), psOptions->bComputeAtEdges, pfnProgress, |
4149 | 0 | pProgressData); |
4150 | 0 | } |
4151 | 0 | } |
4152 | |
|
4153 | 0 | return hDstDataset; |
4154 | 0 | } |
4155 | | |
4156 | | /************************************************************************/ |
4157 | | /* GDALDEMProcessingOptionsNew() */ |
4158 | | /************************************************************************/ |
4159 | | |
4160 | | /** |
4161 | | * Allocates a GDALDEMProcessingOptions struct. |
4162 | | * |
4163 | | * @param papszArgv NULL terminated list of options (potentially including |
4164 | | * filename and open options too), or NULL. The accepted options are the ones of |
4165 | | * the <a href="/programs/gdaldem.html">gdaldem</a> utility. |
4166 | | * @param psOptionsForBinary (output) may be NULL (and should generally be |
4167 | | * NULL), otherwise (gdal_translate_bin.cpp use case) must be allocated with |
4168 | | * GDALDEMProcessingOptionsForBinaryNew() prior to |
4169 | | * this function. Will be filled with potentially present filename, open |
4170 | | * options,... |
4171 | | * @return pointer to the allocated GDALDEMProcessingOptions struct. Must be |
4172 | | * freed with GDALDEMProcessingOptionsFree(). |
4173 | | * |
4174 | | * @since GDAL 2.1 |
4175 | | */ |
4176 | | |
4177 | | GDALDEMProcessingOptions *GDALDEMProcessingOptionsNew( |
4178 | | char **papszArgv, GDALDEMProcessingOptionsForBinary *psOptionsForBinary) |
4179 | 0 | { |
4180 | |
|
4181 | 0 | auto psOptions = std::make_unique<GDALDEMProcessingOptions>(); |
4182 | | /* -------------------------------------------------------------------- */ |
4183 | | /* Handle command line arguments. */ |
4184 | | /* -------------------------------------------------------------------- */ |
4185 | 0 | CPLStringList aosArgv; |
4186 | |
|
4187 | 0 | if (papszArgv) |
4188 | 0 | { |
4189 | 0 | const int nArgc = CSLCount(papszArgv); |
4190 | 0 | for (int i = 0; i < nArgc; i++) |
4191 | 0 | aosArgv.AddString(papszArgv[i]); |
4192 | 0 | } |
4193 | | |
4194 | | // Ugly hack: papszArgv may not contain the processing mode if coming from SWIG |
4195 | 0 | const bool bNoProcessingMode(aosArgv.size() > 0 && aosArgv[0][0] == '-'); |
4196 | |
|
4197 | 0 | auto argParser = |
4198 | 0 | GDALDEMAppOptionsGetParser(psOptions.get(), psOptionsForBinary); |
4199 | |
|
4200 | 0 | auto tryHandleArgv = [&](const CPLStringList &args) |
4201 | 0 | { |
4202 | 0 | argParser->parse_args_without_binary_name(args); |
4203 | | // Validate the parsed options |
4204 | |
|
4205 | 0 | if (psOptions->nBand <= 0) |
4206 | 0 | { |
4207 | 0 | throw std::invalid_argument("Invalid value for -b"); |
4208 | 0 | } |
4209 | | |
4210 | 0 | if (psOptions->z <= 0) |
4211 | 0 | { |
4212 | 0 | throw std::invalid_argument("Invalid value for -z"); |
4213 | 0 | } |
4214 | | |
4215 | 0 | if (psOptions->globalScale <= 0) |
4216 | 0 | { |
4217 | 0 | throw std::invalid_argument("Invalid value for -s"); |
4218 | 0 | } |
4219 | | |
4220 | 0 | if (psOptions->xscale <= 0) |
4221 | 0 | { |
4222 | 0 | throw std::invalid_argument("Invalid value for -xscale"); |
4223 | 0 | } |
4224 | | |
4225 | 0 | if (psOptions->yscale <= 0) |
4226 | 0 | { |
4227 | 0 | throw std::invalid_argument("Invalid value for -yscale"); |
4228 | 0 | } |
4229 | | |
4230 | 0 | if (psOptions->alt <= 0) |
4231 | 0 | { |
4232 | 0 | throw std::invalid_argument("Invalid value for -alt"); |
4233 | 0 | } |
4234 | | |
4235 | 0 | if (psOptions->bMultiDirectional && argParser->is_used_globally("-az")) |
4236 | 0 | { |
4237 | 0 | throw std::invalid_argument( |
4238 | 0 | "-multidirectional and -az cannot be used together"); |
4239 | 0 | } |
4240 | | |
4241 | 0 | if (psOptions->bIgor && argParser->is_used_globally("-alt")) |
4242 | 0 | { |
4243 | 0 | throw std::invalid_argument( |
4244 | 0 | "-igor and -alt cannot be used together"); |
4245 | 0 | } |
4246 | | |
4247 | 0 | if (psOptionsForBinary && aosArgv.size() > 1) |
4248 | 0 | { |
4249 | 0 | psOptionsForBinary->osProcessing = aosArgv[0]; |
4250 | 0 | } |
4251 | 0 | }; |
4252 | |
|
4253 | 0 | try |
4254 | 0 | { |
4255 | | |
4256 | | // Ugly hack: papszArgv may not contain the processing mode if coming from |
4257 | | // SWIG we have not other option than to check them all |
4258 | 0 | const static std::list<std::string> processingModes{ |
4259 | 0 | {"hillshade", "slope", "aspect", "color-relief", "TRI", "TPI", |
4260 | 0 | "roughness"}}; |
4261 | |
|
4262 | 0 | if (bNoProcessingMode) |
4263 | 0 | { |
4264 | 0 | try |
4265 | 0 | { |
4266 | 0 | tryHandleArgv(aosArgv); |
4267 | 0 | } |
4268 | 0 | catch (std::exception &) |
4269 | 0 | { |
4270 | 0 | bool bSuccess = false; |
4271 | 0 | for (const auto &processingMode : processingModes) |
4272 | 0 | { |
4273 | 0 | CPLStringList aosArgvTmp{aosArgv}; |
4274 | 0 | CPL_IGNORE_RET_VAL(aosArgv); |
4275 | 0 | aosArgvTmp.InsertString(0, processingMode.c_str()); |
4276 | 0 | try |
4277 | 0 | { |
4278 | 0 | tryHandleArgv(aosArgvTmp); |
4279 | 0 | bSuccess = true; |
4280 | 0 | break; |
4281 | 0 | } |
4282 | 0 | catch (std::runtime_error &) |
4283 | 0 | { |
4284 | 0 | continue; |
4285 | 0 | } |
4286 | 0 | catch (std::invalid_argument &) |
4287 | 0 | { |
4288 | 0 | continue; |
4289 | 0 | } |
4290 | 0 | catch (std::logic_error &) |
4291 | 0 | { |
4292 | 0 | continue; |
4293 | 0 | } |
4294 | 0 | } |
4295 | | |
4296 | 0 | if (!bSuccess) |
4297 | 0 | { |
4298 | 0 | throw std::invalid_argument( |
4299 | 0 | "Argument(s) are not valid with any processing mode."); |
4300 | 0 | } |
4301 | 0 | } |
4302 | 0 | } |
4303 | 0 | else |
4304 | 0 | { |
4305 | 0 | tryHandleArgv(aosArgv); |
4306 | 0 | } |
4307 | 0 | } |
4308 | 0 | catch (const std::exception &err) |
4309 | 0 | { |
4310 | 0 | CPLError(CE_Failure, CPLE_AppDefined, "Unexpected exception: %s", |
4311 | 0 | err.what()); |
4312 | 0 | return nullptr; |
4313 | 0 | } |
4314 | | |
4315 | 0 | if (!std::isnan(psOptions->globalScale)) |
4316 | 0 | { |
4317 | 0 | if (!std::isnan(psOptions->xscale) || !std::isnan(psOptions->yscale)) |
4318 | 0 | { |
4319 | 0 | CPLError(CE_Failure, CPLE_AppDefined, |
4320 | 0 | "-scale and -xscale/-yscale are mutually exclusive."); |
4321 | 0 | return nullptr; |
4322 | 0 | } |
4323 | 0 | psOptions->xscale = psOptions->globalScale; |
4324 | 0 | psOptions->yscale = psOptions->globalScale; |
4325 | 0 | } |
4326 | 0 | else if ((!std::isnan(psOptions->xscale)) ^ |
4327 | 0 | (!std::isnan(psOptions->yscale))) |
4328 | 0 | { |
4329 | 0 | CPLError(CE_Failure, CPLE_AppDefined, |
4330 | 0 | "When one of -xscale or -yscale is specified, both must be " |
4331 | 0 | "specified."); |
4332 | 0 | return nullptr; |
4333 | 0 | } |
4334 | | |
4335 | 0 | return psOptions.release(); |
4336 | 0 | } |
4337 | | |
4338 | | /************************************************************************/ |
4339 | | /* GDALDEMProcessingOptionsFree() */ |
4340 | | /************************************************************************/ |
4341 | | |
4342 | | /** |
4343 | | * Frees the GDALDEMProcessingOptions struct. |
4344 | | * |
4345 | | * @param psOptions the options struct for GDALDEMProcessing(). |
4346 | | * |
4347 | | * @since GDAL 2.1 |
4348 | | */ |
4349 | | |
4350 | | void GDALDEMProcessingOptionsFree(GDALDEMProcessingOptions *psOptions) |
4351 | 0 | { |
4352 | 0 | delete psOptions; |
4353 | 0 | } |
4354 | | |
4355 | | /************************************************************************/ |
4356 | | /* GDALDEMProcessingOptionsSetProgress() */ |
4357 | | /************************************************************************/ |
4358 | | |
4359 | | /** |
4360 | | * Set a progress function. |
4361 | | * |
4362 | | * @param psOptions the options struct for GDALDEMProcessing(). |
4363 | | * @param pfnProgress the progress callback. |
4364 | | * @param pProgressData the user data for the progress callback. |
4365 | | * |
4366 | | * @since GDAL 2.1 |
4367 | | */ |
4368 | | |
4369 | | void GDALDEMProcessingOptionsSetProgress(GDALDEMProcessingOptions *psOptions, |
4370 | | GDALProgressFunc pfnProgress, |
4371 | | void *pProgressData) |
4372 | 0 | { |
4373 | 0 | psOptions->pfnProgress = pfnProgress; |
4374 | 0 | psOptions->pProgressData = pProgressData; |
4375 | 0 | } |