Coverage Report

Created: 2024-06-18 07:03

/src/server/mysys/mf_qsort.c
Line
Count
Source (jump to first uncovered line)
1
/* Copyright (c) 2000-2002, 2007 MySQL AB
2
   Use is subject to license terms
3
4
   This program is free software; you can redistribute it and/or modify
5
   it under the terms of the GNU General Public License as published by
6
   the Free Software Foundation; version 2 of the License.
7
8
   This program is distributed in the hope that it will be useful,
9
   but WITHOUT ANY WARRANTY; without even the implied warranty of
10
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11
   GNU General Public License for more details.
12
13
   You should have received a copy of the GNU General Public License
14
   along with this program; if not, write to the Free Software
15
   Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1335  USA */
16
17
/*
18
  qsort implementation optimized for comparison of pointers
19
  Inspired by the qsort implementations by Douglas C. Schmidt,
20
  and Bentley & McIlroy's "Engineering a Sort Function".
21
*/
22
23
24
#include "mysys_priv.h"
25
#ifndef SCO
26
#include <m_string.h>
27
#endif
28
29
/* We need to use qsort with 2 different compare functions */
30
#ifdef QSORT_EXTRA_CMP_ARGUMENT
31
#define CMP(A,B) ((*cmp)(cmp_argument,(A),(B)))
32
#else
33
0
#define CMP(A,B) ((*cmp)((A),(B)))
34
#endif
35
36
0
#define SWAP(A, B, size,swap_ptrs)      \
37
0
do {             \
38
0
   if (swap_ptrs)         \
39
0
   {             \
40
0
     reg1 char **a = (char**) (A), **b = (char**) (B);  \
41
0
     char *tmp = *a; *a++ = *b; *b++ = tmp;   \
42
0
   }              \
43
0
   else             \
44
0
   {             \
45
0
     reg1 char *a = (A), *b = (B);     \
46
0
     reg3 char *end= a+size;       \
47
0
     do             \
48
0
     {             \
49
0
       char tmp = *a; *a++ = *b; *b++ = tmp;    \
50
0
     } while (a < end);          \
51
0
   }              \
52
0
} while (0)
53
54
/* Put the median in the middle argument */
55
0
#define MEDIAN(low, mid, high)        \
56
0
{             \
57
0
    if (CMP(high,low) < 0)       \
58
0
      SWAP(high, low, size, ptr_cmp);     \
59
0
    if (CMP(mid, low) < 0)       \
60
0
      SWAP(mid, low, size, ptr_cmp);      \
61
0
    else if (CMP(high, mid) < 0)     \
62
0
      SWAP(mid, high, size, ptr_cmp);     \
63
0
}
64
65
/* The following node is used to store ranges to avoid recursive calls */
66
67
typedef struct st_stack
68
{
69
  char *low,*high;
70
} stack_node;
71
72
0
#define PUSH(LOW,HIGH)  {stack_ptr->low = LOW; stack_ptr++->high = HIGH;}
73
0
#define POP(LOW,HIGH)   {LOW = (--stack_ptr)->low; HIGH = stack_ptr->high;}
74
75
/* The following stack size is enough for ulong ~0 elements */
76
#define STACK_SIZE  (8 * sizeof(unsigned long int))
77
0
#define THRESHOLD_FOR_INSERT_SORT 10
78
#if defined(QSORT_TYPE_IS_VOID)
79
0
#define SORT_RETURN return
80
#else
81
#define SORT_RETURN return 0
82
#endif
83
84
/****************************************************************************
85
** 'standard' quicksort with the following extensions:
86
**
87
** Can be compiled with the qsort2_cmp compare function
88
** Store ranges on stack to avoid recursion
89
** Use insert sort on small ranges
90
** Optimize for sorting of pointers (used often by MySQL)
91
** Use median comparison to find partition element
92
*****************************************************************************/
93
94
#ifdef QSORT_EXTRA_CMP_ARGUMENT
95
qsort_t my_qsort2(void *base_ptr, size_t count, size_t size, qsort2_cmp cmp,
96
         void *cmp_argument)
97
#else
98
qsort_t my_qsort(void *base_ptr, size_t count, size_t size, qsort_cmp cmp)
99
#endif
100
0
{
101
0
  char *low, *high, *pivot;
102
0
  stack_node stack[STACK_SIZE], *stack_ptr;
103
0
  my_bool ptr_cmp;
104
  /* Handle the simple case first */
105
  /* This will also make the rest of the code simpler */
106
0
  if (count <= 1)
107
0
    SORT_RETURN;
108
109
0
  low  = (char*) base_ptr;
110
0
  high = low+ size * (count - 1);
111
0
  stack_ptr = stack + 1;
112
#ifdef HAVE_valgrind
113
  /* The first element in the stack will be accessed for the last POP */
114
  stack[0].low=stack[0].high=0;
115
#endif
116
0
  pivot = (char *) my_alloca((int) size);
117
0
  ptr_cmp= size == sizeof(char*) && (intptr_t)low % sizeof(char*) == 0;
118
119
  /* The following loop sorts elements between high and low */
120
0
  do
121
0
  {
122
0
    char *low_ptr, *high_ptr, *mid;
123
124
0
    count=((size_t) (high - low) / size)+1;
125
    /* If count is small, then an insert sort is faster than qsort */
126
0
    if (count < THRESHOLD_FOR_INSERT_SORT)
127
0
    {
128
0
      for (low_ptr = low + size; low_ptr <= high; low_ptr += size)
129
0
      {
130
0
  char *ptr;
131
0
  for (ptr = low_ptr; ptr > low && CMP(ptr - size, ptr) > 0;
132
0
       ptr -= size)
133
0
    SWAP(ptr, ptr - size, size, ptr_cmp);
134
0
      }
135
0
      POP(low, high);
136
0
      continue;
137
0
    }
138
139
    /* Try to find a good middle element */
140
0
    mid= low + size * (count >> 1);
141
0
    if (count > 40)       /* Must be bigger than 24 */
142
0
    {
143
0
      size_t step = size* (count / 8);
144
0
      MEDIAN(low, low + step, low+step*2);
145
0
      MEDIAN(mid - step, mid, mid+step);
146
0
      MEDIAN(high - 2 * step, high-step, high);
147
      /* Put best median in 'mid' */
148
0
      MEDIAN(low+step, mid, high-step);
149
0
      low_ptr  = low;
150
0
      high_ptr = high;
151
0
    }
152
0
    else
153
0
    {
154
0
      MEDIAN(low, mid, high);
155
      /* The low and high argument are already in sorted against 'pivot' */
156
0
      low_ptr  = low + size;
157
0
      high_ptr = high - size;
158
0
    }
159
0
    memcpy(pivot, mid, size);
160
161
0
    do
162
0
    {
163
0
      while (CMP(low_ptr, pivot) < 0)
164
0
  low_ptr += size;
165
0
      while (CMP(pivot, high_ptr) < 0)
166
0
  high_ptr -= size;
167
168
0
      if (low_ptr < high_ptr)
169
0
      {
170
0
  SWAP(low_ptr, high_ptr, size, ptr_cmp);
171
0
  low_ptr += size;
172
0
  high_ptr -= size;
173
0
      }
174
0
      else 
175
0
      {
176
0
  if (low_ptr == high_ptr)
177
0
  {
178
0
    low_ptr += size;
179
0
    high_ptr -= size;
180
0
  }
181
0
  break;
182
0
      }
183
0
    }
184
0
    while (low_ptr <= high_ptr);
185
186
    /*
187
      Prepare for next iteration.
188
       Skip partitions of size 1 as these doesn't have to be sorted
189
       Push the larger partition and sort the smaller one first.
190
       This ensures that the stack is keept small.
191
    */
192
193
0
    if ((int) (high_ptr - low) <= 0)
194
0
    {
195
0
      if ((int) (high - low_ptr) <= 0)
196
0
      {
197
0
  POP(low, high);      /* Nothing more to sort */
198
0
      }
199
0
      else
200
0
  low = low_ptr;     /* Ignore small left part. */
201
0
    }
202
0
    else if ((int) (high - low_ptr) <= 0)
203
0
      high = high_ptr;     /* Ignore small right part. */
204
0
    else if ((high_ptr - low) > (high - low_ptr))
205
0
    {
206
0
      PUSH(low, high_ptr);    /* Push larger left part */
207
0
      low = low_ptr;
208
0
    }
209
0
    else
210
0
    {
211
0
      PUSH(low_ptr, high);    /* Push larger right part */
212
0
      high = high_ptr;
213
0
    }
214
0
  } while (stack_ptr > stack);
215
0
  my_afree(pivot);
216
0
  SORT_RETURN;
217
0
}