/src/mbedtls/library/ecp.c
Line  | Count  | Source (jump to first uncovered line)  | 
1  |  | /*  | 
2  |  |  *  Elliptic curves over GF(p): generic functions  | 
3  |  |  *  | 
4  |  |  *  Copyright The Mbed TLS Contributors  | 
5  |  |  *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later  | 
6  |  |  */  | 
7  |  |  | 
8  |  | /*  | 
9  |  |  * References:  | 
10  |  |  *  | 
11  |  |  * SEC1 https://www.secg.org/sec1-v2.pdf  | 
12  |  |  * GECC = Guide to Elliptic Curve Cryptography - Hankerson, Menezes, Vanstone  | 
13  |  |  * FIPS 186-3 http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf  | 
14  |  |  * RFC 4492 for the related TLS structures and constants  | 
15  |  |  * - https://www.rfc-editor.org/rfc/rfc4492  | 
16  |  |  * RFC 7748 for the Curve448 and Curve25519 curve definitions  | 
17  |  |  * - https://www.rfc-editor.org/rfc/rfc7748  | 
18  |  |  *  | 
19  |  |  * [Curve25519] https://cr.yp.to/ecdh/curve25519-20060209.pdf  | 
20  |  |  *  | 
21  |  |  * [2] CORON, Jean-S'ebastien. Resistance against differential power analysis  | 
22  |  |  *     for elliptic curve cryptosystems. In : Cryptographic Hardware and  | 
23  |  |  *     Embedded Systems. Springer Berlin Heidelberg, 1999. p. 292-302.  | 
24  |  |  *     <http://link.springer.com/chapter/10.1007/3-540-48059-5_25>  | 
25  |  |  *  | 
26  |  |  * [3] HEDABOU, Mustapha, PINEL, Pierre, et B'EN'ETEAU, Lucien. A comb method to  | 
27  |  |  *     render ECC resistant against Side Channel Attacks. IACR Cryptology  | 
28  |  |  *     ePrint Archive, 2004, vol. 2004, p. 342.  | 
29  |  |  *     <http://eprint.iacr.org/2004/342.pdf>  | 
30  |  |  */  | 
31  |  |  | 
32  |  | #include "common.h"  | 
33  |  |  | 
34  |  | /**  | 
35  |  |  * \brief Function level alternative implementation.  | 
36  |  |  *  | 
37  |  |  * The MBEDTLS_ECP_INTERNAL_ALT macro enables alternative implementations to  | 
38  |  |  * replace certain functions in this module. The alternative implementations are  | 
39  |  |  * typically hardware accelerators and need to activate the hardware before the  | 
40  |  |  * computation starts and deactivate it after it finishes. The  | 
41  |  |  * mbedtls_internal_ecp_init() and mbedtls_internal_ecp_free() functions serve  | 
42  |  |  * this purpose.  | 
43  |  |  *  | 
44  |  |  * To preserve the correct functionality the following conditions must hold:  | 
45  |  |  *  | 
46  |  |  * - The alternative implementation must be activated by  | 
47  |  |  *   mbedtls_internal_ecp_init() before any of the replaceable functions is  | 
48  |  |  *   called.  | 
49  |  |  * - mbedtls_internal_ecp_free() must \b only be called when the alternative  | 
50  |  |  *   implementation is activated.  | 
51  |  |  * - mbedtls_internal_ecp_init() must \b not be called when the alternative  | 
52  |  |  *   implementation is activated.  | 
53  |  |  * - Public functions must not return while the alternative implementation is  | 
54  |  |  *   activated.  | 
55  |  |  * - Replaceable functions are guarded by \c MBEDTLS_ECP_XXX_ALT macros and  | 
56  |  |  *   before calling them an \code if( mbedtls_internal_ecp_grp_capable( grp ) )  | 
57  |  |  *   \endcode ensures that the alternative implementation supports the current  | 
58  |  |  *   group.  | 
59  |  |  */  | 
60  |  | #if defined(MBEDTLS_ECP_INTERNAL_ALT)  | 
61  |  | #endif  | 
62  |  |  | 
63  |  | #if defined(MBEDTLS_ECP_LIGHT)  | 
64  |  |  | 
65  |  | #include "mbedtls/ecp.h"  | 
66  |  | #include "mbedtls/threading.h"  | 
67  |  | #include "mbedtls/platform_util.h"  | 
68  |  | #include "mbedtls/error.h"  | 
69  |  |  | 
70  |  | #include "bn_mul.h"  | 
71  |  | #include "ecp_invasive.h"  | 
72  |  |  | 
73  |  | #include <string.h>  | 
74  |  |  | 
75  |  | #if !defined(MBEDTLS_ECP_ALT)  | 
76  |  |  | 
77  |  | #include "mbedtls/platform.h"  | 
78  |  |  | 
79  |  | #include "ecp_internal_alt.h"  | 
80  |  |  | 
81  |  | #if defined(MBEDTLS_SELF_TEST)  | 
82  |  | /*  | 
83  |  |  * Counts of point addition and doubling, and field multiplications.  | 
84  |  |  * Used to test resistance of point multiplication to simple timing attacks.  | 
85  |  |  */  | 
86  |  | #if defined(MBEDTLS_ECP_C)  | 
87  |  | static unsigned long add_count, dbl_count;  | 
88  |  | #endif /* MBEDTLS_ECP_C */  | 
89  |  | static unsigned long mul_count;  | 
90  |  | #endif  | 
91  |  |  | 
92  |  | #if defined(MBEDTLS_ECP_RESTARTABLE)  | 
93  |  | /*  | 
94  |  |  * Maximum number of "basic operations" to be done in a row.  | 
95  |  |  *  | 
96  |  |  * Default value 0 means that ECC operations will not yield.  | 
97  |  |  * Note that regardless of the value of ecp_max_ops, always at  | 
98  |  |  * least one step is performed before yielding.  | 
99  |  |  *  | 
100  |  |  * Setting ecp_max_ops=1 can be suitable for testing purposes  | 
101  |  |  * as it will interrupt computation at all possible points.  | 
102  |  |  */  | 
103  |  | static unsigned ecp_max_ops = 0;  | 
104  |  |  | 
105  |  | /*  | 
106  |  |  * Set ecp_max_ops  | 
107  |  |  */  | 
108  |  | void mbedtls_ecp_set_max_ops(unsigned max_ops)  | 
109  | 0  | { | 
110  | 0  |     ecp_max_ops = max_ops;  | 
111  | 0  | }  | 
112  |  |  | 
113  |  | /*  | 
114  |  |  * Check if restart is enabled  | 
115  |  |  */  | 
116  |  | int mbedtls_ecp_restart_is_enabled(void)  | 
117  | 0  | { | 
118  | 0  |     return ecp_max_ops != 0;  | 
119  | 0  | }  | 
120  |  |  | 
121  |  | /*  | 
122  |  |  * Restart sub-context for ecp_mul_comb()  | 
123  |  |  */  | 
124  |  | struct mbedtls_ecp_restart_mul { | 
125  |  |     mbedtls_ecp_point R;    /* current intermediate result                  */  | 
126  |  |     size_t i;               /* current index in various loops, 0 outside    */  | 
127  |  |     mbedtls_ecp_point *T;   /* table for precomputed points                 */  | 
128  |  |     unsigned char T_size;   /* number of points in table T                  */  | 
129  |  |     enum {                  /* what were we doing last time we returned?    */ | 
130  |  |         ecp_rsm_init = 0,       /* nothing so far, dummy initial state      */  | 
131  |  |         ecp_rsm_pre_dbl,        /* precompute 2^n multiples                 */  | 
132  |  |         ecp_rsm_pre_norm_dbl,   /* normalize precomputed 2^n multiples      */  | 
133  |  |         ecp_rsm_pre_add,        /* precompute remaining points by adding    */  | 
134  |  |         ecp_rsm_pre_norm_add,   /* normalize all precomputed points         */  | 
135  |  |         ecp_rsm_comb_core,      /* ecp_mul_comb_core()                      */  | 
136  |  |         ecp_rsm_final_norm,     /* do the final normalization               */  | 
137  |  |     } state;  | 
138  |  | };  | 
139  |  |  | 
140  |  | /*  | 
141  |  |  * Init restart_mul sub-context  | 
142  |  |  */  | 
143  |  | static void ecp_restart_rsm_init(mbedtls_ecp_restart_mul_ctx *ctx)  | 
144  | 0  | { | 
145  | 0  |     mbedtls_ecp_point_init(&ctx->R);  | 
146  | 0  |     ctx->i = 0;  | 
147  | 0  |     ctx->T = NULL;  | 
148  | 0  |     ctx->T_size = 0;  | 
149  | 0  |     ctx->state = ecp_rsm_init;  | 
150  | 0  | }  | 
151  |  |  | 
152  |  | /*  | 
153  |  |  * Free the components of a restart_mul sub-context  | 
154  |  |  */  | 
155  |  | static void ecp_restart_rsm_free(mbedtls_ecp_restart_mul_ctx *ctx)  | 
156  | 16  | { | 
157  | 16  |     unsigned char i;  | 
158  |  |  | 
159  | 16  |     if (ctx == NULL) { | 
160  | 16  |         return;  | 
161  | 16  |     }  | 
162  |  |  | 
163  | 0  |     mbedtls_ecp_point_free(&ctx->R);  | 
164  |  | 
  | 
165  | 0  |     if (ctx->T != NULL) { | 
166  | 0  |         for (i = 0; i < ctx->T_size; i++) { | 
167  | 0  |             mbedtls_ecp_point_free(ctx->T + i);  | 
168  | 0  |         }  | 
169  | 0  |         mbedtls_free(ctx->T);  | 
170  | 0  |     }  | 
171  |  | 
  | 
172  | 0  |     ecp_restart_rsm_init(ctx);  | 
173  | 0  | }  | 
174  |  |  | 
175  |  | /*  | 
176  |  |  * Restart context for ecp_muladd()  | 
177  |  |  */  | 
178  |  | struct mbedtls_ecp_restart_muladd { | 
179  |  |     mbedtls_ecp_point mP;       /* mP value                             */  | 
180  |  |     mbedtls_ecp_point R;        /* R intermediate result                */  | 
181  |  |     enum {                      /* what should we do next?              */ | 
182  |  |         ecp_rsma_mul1 = 0,      /* first multiplication                 */  | 
183  |  |         ecp_rsma_mul2,          /* second multiplication                */  | 
184  |  |         ecp_rsma_add,           /* addition                             */  | 
185  |  |         ecp_rsma_norm,          /* normalization                        */  | 
186  |  |     } state;  | 
187  |  | };  | 
188  |  |  | 
189  |  | /*  | 
190  |  |  * Init restart_muladd sub-context  | 
191  |  |  */  | 
192  |  | static void ecp_restart_ma_init(mbedtls_ecp_restart_muladd_ctx *ctx)  | 
193  | 0  | { | 
194  | 0  |     mbedtls_ecp_point_init(&ctx->mP);  | 
195  | 0  |     mbedtls_ecp_point_init(&ctx->R);  | 
196  | 0  |     ctx->state = ecp_rsma_mul1;  | 
197  | 0  | }  | 
198  |  |  | 
199  |  | /*  | 
200  |  |  * Free the components of a restart_muladd sub-context  | 
201  |  |  */  | 
202  |  | static void ecp_restart_ma_free(mbedtls_ecp_restart_muladd_ctx *ctx)  | 
203  | 16  | { | 
204  | 16  |     if (ctx == NULL) { | 
205  | 16  |         return;  | 
206  | 16  |     }  | 
207  |  |  | 
208  | 0  |     mbedtls_ecp_point_free(&ctx->mP);  | 
209  | 0  |     mbedtls_ecp_point_free(&ctx->R);  | 
210  |  | 
  | 
211  | 0  |     ecp_restart_ma_init(ctx);  | 
212  | 0  | }  | 
213  |  |  | 
214  |  | /*  | 
215  |  |  * Initialize a restart context  | 
216  |  |  */  | 
217  |  | void mbedtls_ecp_restart_init(mbedtls_ecp_restart_ctx *ctx)  | 
218  | 32  | { | 
219  | 32  |     ctx->ops_done = 0;  | 
220  | 32  |     ctx->depth = 0;  | 
221  | 32  |     ctx->rsm = NULL;  | 
222  | 32  |     ctx->ma = NULL;  | 
223  | 32  | }  | 
224  |  |  | 
225  |  | /*  | 
226  |  |  * Free the components of a restart context  | 
227  |  |  */  | 
228  |  | void mbedtls_ecp_restart_free(mbedtls_ecp_restart_ctx *ctx)  | 
229  | 16  | { | 
230  | 16  |     if (ctx == NULL) { | 
231  | 0  |         return;  | 
232  | 0  |     }  | 
233  |  |  | 
234  | 16  |     ecp_restart_rsm_free(ctx->rsm);  | 
235  | 16  |     mbedtls_free(ctx->rsm);  | 
236  |  |  | 
237  | 16  |     ecp_restart_ma_free(ctx->ma);  | 
238  | 16  |     mbedtls_free(ctx->ma);  | 
239  |  |  | 
240  | 16  |     mbedtls_ecp_restart_init(ctx);  | 
241  | 16  | }  | 
242  |  |  | 
243  |  | /*  | 
244  |  |  * Check if we can do the next step  | 
245  |  |  */  | 
246  |  | int mbedtls_ecp_check_budget(const mbedtls_ecp_group *grp,  | 
247  |  |                              mbedtls_ecp_restart_ctx *rs_ctx,  | 
248  |  |                              unsigned ops)  | 
249  | 0  | { | 
250  | 0  |     if (rs_ctx != NULL && ecp_max_ops != 0) { | 
251  |  |         /* scale depending on curve size: the chosen reference is 256-bit,  | 
252  |  |          * and multiplication is quadratic. Round to the closest integer. */  | 
253  | 0  |         if (grp->pbits >= 512) { | 
254  | 0  |             ops *= 4;  | 
255  | 0  |         } else if (grp->pbits >= 384) { | 
256  | 0  |             ops *= 2;  | 
257  | 0  |         }  | 
258  |  |  | 
259  |  |         /* Avoid infinite loops: always allow first step.  | 
260  |  |          * Because of that, however, it's not generally true  | 
261  |  |          * that ops_done <= ecp_max_ops, so the check  | 
262  |  |          * ops_done > ecp_max_ops below is mandatory. */  | 
263  | 0  |         if ((rs_ctx->ops_done != 0) &&  | 
264  | 0  |             (rs_ctx->ops_done > ecp_max_ops ||  | 
265  | 0  |              ops > ecp_max_ops - rs_ctx->ops_done)) { | 
266  | 0  |             return MBEDTLS_ERR_ECP_IN_PROGRESS;  | 
267  | 0  |         }  | 
268  |  |  | 
269  |  |         /* update running count */  | 
270  | 0  |         rs_ctx->ops_done += ops;  | 
271  | 0  |     }  | 
272  |  |  | 
273  | 0  |     return 0;  | 
274  | 0  | }  | 
275  |  |  | 
276  |  | /* Call this when entering a function that needs its own sub-context */  | 
277  | 0  | #define ECP_RS_ENTER(SUB)   do {                                      \ | 
278  | 0  |         /* reset ops count for this call if top-level */                    \  | 
279  | 0  |         if (rs_ctx != NULL && rs_ctx->depth++ == 0)                        \  | 
280  | 0  |         rs_ctx->ops_done = 0;                                           \  | 
281  | 0  |                                                                         \  | 
282  | 0  |         /* set up our own sub-context if needed */                          \  | 
283  | 0  |         if (mbedtls_ecp_restart_is_enabled() &&                             \  | 
284  | 0  |             rs_ctx != NULL && rs_ctx->SUB == NULL)                         \  | 
285  | 0  |         {                                                                   \ | 
286  | 0  |             rs_ctx->SUB = mbedtls_calloc(1, sizeof(*rs_ctx->SUB));      \  | 
287  | 0  |             if (rs_ctx->SUB == NULL)                                       \  | 
288  | 0  |             return MBEDTLS_ERR_ECP_ALLOC_FAILED;                     \  | 
289  | 0  |                                                                       \  | 
290  | 0  |             ecp_restart_## SUB ##_init(rs_ctx->SUB);                      \  | 
291  | 0  |         }                                                                   \  | 
292  | 0  | } while (0)  | 
293  |  |  | 
294  |  | /* Call this when leaving a function that needs its own sub-context */  | 
295  | 0  | #define ECP_RS_LEAVE(SUB)   do {                                      \ | 
296  | 0  |         /* clear our sub-context when not in progress (done or error) */    \  | 
297  | 0  |         if (rs_ctx != NULL && rs_ctx->SUB != NULL &&                        \  | 
298  | 0  |             ret != MBEDTLS_ERR_ECP_IN_PROGRESS)                            \  | 
299  | 0  |         {                                                                   \ | 
300  | 0  |             ecp_restart_## SUB ##_free(rs_ctx->SUB);                      \  | 
301  | 0  |             mbedtls_free(rs_ctx->SUB);                                    \  | 
302  | 0  |             rs_ctx->SUB = NULL;                                             \  | 
303  | 0  |         }                                                                   \  | 
304  | 0  |                                                                         \  | 
305  | 0  |         if (rs_ctx != NULL)                                                \  | 
306  | 0  |         rs_ctx->depth--;                                                \  | 
307  | 0  | } while (0)  | 
308  |  |  | 
309  |  | #else /* MBEDTLS_ECP_RESTARTABLE */  | 
310  |  |  | 
311  |  | #define ECP_RS_ENTER(sub)     (void) rs_ctx;  | 
312  |  | #define ECP_RS_LEAVE(sub)     (void) rs_ctx;  | 
313  |  |  | 
314  |  | #endif /* MBEDTLS_ECP_RESTARTABLE */  | 
315  |  |  | 
316  |  | #if defined(MBEDTLS_ECP_C)  | 
317  |  | static void mpi_init_many(mbedtls_mpi *arr, size_t size)  | 
318  | 0  | { | 
319  | 0  |     while (size--) { | 
320  | 0  |         mbedtls_mpi_init(arr++);  | 
321  | 0  |     }  | 
322  | 0  | }  | 
323  |  |  | 
324  |  | static void mpi_free_many(mbedtls_mpi *arr, size_t size)  | 
325  | 0  | { | 
326  | 0  |     while (size--) { | 
327  | 0  |         mbedtls_mpi_free(arr++);  | 
328  | 0  |     }  | 
329  | 0  | }  | 
330  |  | #endif /* MBEDTLS_ECP_C */  | 
331  |  |  | 
332  |  | /*  | 
333  |  |  * List of supported curves:  | 
334  |  |  *  - internal ID  | 
335  |  |  *  - TLS NamedCurve ID (RFC 4492 sec. 5.1.1, RFC 7071 sec. 2, RFC 8446 sec. 4.2.7)  | 
336  |  |  *  - size in bits  | 
337  |  |  *  - readable name  | 
338  |  |  *  | 
339  |  |  * Curves are listed in order: largest curves first, and for a given size,  | 
340  |  |  * fastest curves first.  | 
341  |  |  *  | 
342  |  |  * Reminder: update profiles in x509_crt.c and ssl_tls.c when adding a new curve!  | 
343  |  |  */  | 
344  |  | static const mbedtls_ecp_curve_info ecp_supported_curves[] =  | 
345  |  | { | 
346  |  | #if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)  | 
347  |  |     { MBEDTLS_ECP_DP_SECP521R1,    25,     521,    "secp521r1"         }, | 
348  |  | #endif  | 
349  |  | #if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)  | 
350  |  |     { MBEDTLS_ECP_DP_BP512R1,      28,     512,    "brainpoolP512r1"   }, | 
351  |  | #endif  | 
352  |  | #if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)  | 
353  |  |     { MBEDTLS_ECP_DP_SECP384R1,    24,     384,    "secp384r1"         }, | 
354  |  | #endif  | 
355  |  | #if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)  | 
356  |  |     { MBEDTLS_ECP_DP_BP384R1,      27,     384,    "brainpoolP384r1"   }, | 
357  |  | #endif  | 
358  |  | #if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)  | 
359  |  |     { MBEDTLS_ECP_DP_SECP256R1,    23,     256,    "secp256r1"         }, | 
360  |  | #endif  | 
361  |  | #if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)  | 
362  |  |     { MBEDTLS_ECP_DP_SECP256K1,    22,     256,    "secp256k1"         }, | 
363  |  | #endif  | 
364  |  | #if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)  | 
365  |  |     { MBEDTLS_ECP_DP_BP256R1,      26,     256,    "brainpoolP256r1"   }, | 
366  |  | #endif  | 
367  |  | #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)  | 
368  |  |     { MBEDTLS_ECP_DP_SECP224R1,    21,     224,    "secp224r1"         }, | 
369  |  | #endif  | 
370  |  | #if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)  | 
371  |  |     { MBEDTLS_ECP_DP_SECP224K1,    20,     224,    "secp224k1"         }, | 
372  |  | #endif  | 
373  |  | #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)  | 
374  |  |     { MBEDTLS_ECP_DP_SECP192R1,    19,     192,    "secp192r1"         }, | 
375  |  | #endif  | 
376  |  | #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)  | 
377  |  |     { MBEDTLS_ECP_DP_SECP192K1,    18,     192,    "secp192k1"         }, | 
378  |  | #endif  | 
379  |  | #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)  | 
380  |  |     { MBEDTLS_ECP_DP_CURVE25519,   29,     256,    "x25519"            }, | 
381  |  | #endif  | 
382  |  | #if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)  | 
383  |  |     { MBEDTLS_ECP_DP_CURVE448,     30,     448,    "x448"              }, | 
384  |  | #endif  | 
385  |  |     { MBEDTLS_ECP_DP_NONE,          0,     0,      NULL                }, | 
386  |  | };  | 
387  |  |  | 
388  |  | #define ECP_NB_CURVES   sizeof(ecp_supported_curves) /    \  | 
389  |  |     sizeof(ecp_supported_curves[0])  | 
390  |  |  | 
391  |  | static mbedtls_ecp_group_id ecp_supported_grp_id[ECP_NB_CURVES];  | 
392  |  |  | 
393  |  | /*  | 
394  |  |  * List of supported curves and associated info  | 
395  |  |  */  | 
396  |  | const mbedtls_ecp_curve_info *mbedtls_ecp_curve_list(void)  | 
397  | 0  | { | 
398  | 0  |     return ecp_supported_curves;  | 
399  | 0  | }  | 
400  |  |  | 
401  |  | /*  | 
402  |  |  * List of supported curves, group ID only  | 
403  |  |  */  | 
404  |  | const mbedtls_ecp_group_id *mbedtls_ecp_grp_id_list(void)  | 
405  | 0  | { | 
406  | 0  |     static int init_done = 0;  | 
407  |  | 
  | 
408  | 0  |     if (!init_done) { | 
409  | 0  |         size_t i = 0;  | 
410  | 0  |         const mbedtls_ecp_curve_info *curve_info;  | 
411  |  | 
  | 
412  | 0  |         for (curve_info = mbedtls_ecp_curve_list();  | 
413  | 0  |              curve_info->grp_id != MBEDTLS_ECP_DP_NONE;  | 
414  | 0  |              curve_info++) { | 
415  | 0  |             ecp_supported_grp_id[i++] = curve_info->grp_id;  | 
416  | 0  |         }  | 
417  | 0  |         ecp_supported_grp_id[i] = MBEDTLS_ECP_DP_NONE;  | 
418  |  | 
  | 
419  | 0  |         init_done = 1;  | 
420  | 0  |     }  | 
421  |  | 
  | 
422  | 0  |     return ecp_supported_grp_id;  | 
423  | 0  | }  | 
424  |  |  | 
425  |  | /*  | 
426  |  |  * Get the curve info for the internal identifier  | 
427  |  |  */  | 
428  |  | const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_grp_id(mbedtls_ecp_group_id grp_id)  | 
429  | 0  | { | 
430  | 0  |     const mbedtls_ecp_curve_info *curve_info;  | 
431  |  | 
  | 
432  | 0  |     for (curve_info = mbedtls_ecp_curve_list();  | 
433  | 0  |          curve_info->grp_id != MBEDTLS_ECP_DP_NONE;  | 
434  | 0  |          curve_info++) { | 
435  | 0  |         if (curve_info->grp_id == grp_id) { | 
436  | 0  |             return curve_info;  | 
437  | 0  |         }  | 
438  | 0  |     }  | 
439  |  |  | 
440  | 0  |     return NULL;  | 
441  | 0  | }  | 
442  |  |  | 
443  |  | /*  | 
444  |  |  * Get the curve info from the TLS identifier  | 
445  |  |  */  | 
446  |  | const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_tls_id(uint16_t tls_id)  | 
447  | 0  | { | 
448  | 0  |     const mbedtls_ecp_curve_info *curve_info;  | 
449  |  | 
  | 
450  | 0  |     for (curve_info = mbedtls_ecp_curve_list();  | 
451  | 0  |          curve_info->grp_id != MBEDTLS_ECP_DP_NONE;  | 
452  | 0  |          curve_info++) { | 
453  | 0  |         if (curve_info->tls_id == tls_id) { | 
454  | 0  |             return curve_info;  | 
455  | 0  |         }  | 
456  | 0  |     }  | 
457  |  |  | 
458  | 0  |     return NULL;  | 
459  | 0  | }  | 
460  |  |  | 
461  |  | /*  | 
462  |  |  * Get the curve info from the name  | 
463  |  |  */  | 
464  |  | const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_name(const char *name)  | 
465  | 0  | { | 
466  | 0  |     const mbedtls_ecp_curve_info *curve_info;  | 
467  |  | 
  | 
468  | 0  |     if (name == NULL) { | 
469  | 0  |         return NULL;  | 
470  | 0  |     }  | 
471  |  |  | 
472  | 0  |     for (curve_info = mbedtls_ecp_curve_list();  | 
473  | 0  |          curve_info->grp_id != MBEDTLS_ECP_DP_NONE;  | 
474  | 0  |          curve_info++) { | 
475  | 0  |         if (strcmp(curve_info->name, name) == 0) { | 
476  | 0  |             return curve_info;  | 
477  | 0  |         }  | 
478  | 0  |     }  | 
479  |  |  | 
480  | 0  |     return NULL;  | 
481  | 0  | }  | 
482  |  |  | 
483  |  | /*  | 
484  |  |  * Get the type of a curve  | 
485  |  |  */  | 
486  |  | mbedtls_ecp_curve_type mbedtls_ecp_get_type(const mbedtls_ecp_group *grp)  | 
487  | 4  | { | 
488  | 4  |     if (grp->G.X.p == NULL) { | 
489  | 0  |         return MBEDTLS_ECP_TYPE_NONE;  | 
490  | 0  |     }  | 
491  |  |  | 
492  | 4  |     if (grp->G.Y.p == NULL) { | 
493  | 0  |         return MBEDTLS_ECP_TYPE_MONTGOMERY;  | 
494  | 4  |     } else { | 
495  | 4  |         return MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS;  | 
496  | 4  |     }  | 
497  | 4  | }  | 
498  |  |  | 
499  |  | /*  | 
500  |  |  * Initialize (the components of) a point  | 
501  |  |  */  | 
502  |  | void mbedtls_ecp_point_init(mbedtls_ecp_point *pt)  | 
503  | 179  | { | 
504  | 179  |     mbedtls_mpi_init(&pt->X);  | 
505  | 179  |     mbedtls_mpi_init(&pt->Y);  | 
506  | 179  |     mbedtls_mpi_init(&pt->Z);  | 
507  | 179  | }  | 
508  |  |  | 
509  |  | /*  | 
510  |  |  * Initialize (the components of) a group  | 
511  |  |  */  | 
512  |  | void mbedtls_ecp_group_init(mbedtls_ecp_group *grp)  | 
513  | 34  | { | 
514  | 34  |     grp->id = MBEDTLS_ECP_DP_NONE;  | 
515  | 34  |     mbedtls_mpi_init(&grp->P);  | 
516  | 34  |     mbedtls_mpi_init(&grp->A);  | 
517  | 34  |     mbedtls_mpi_init(&grp->B);  | 
518  | 34  |     mbedtls_ecp_point_init(&grp->G);  | 
519  | 34  |     mbedtls_mpi_init(&grp->N);  | 
520  | 34  |     grp->pbits = 0;  | 
521  | 34  |     grp->nbits = 0;  | 
522  | 34  |     grp->h = 0;  | 
523  | 34  |     grp->modp = NULL;  | 
524  | 34  |     grp->t_pre = NULL;  | 
525  | 34  |     grp->t_post = NULL;  | 
526  | 34  |     grp->t_data = NULL;  | 
527  | 34  |     grp->T = NULL;  | 
528  | 34  |     grp->T_size = 0;  | 
529  | 34  | }  | 
530  |  |  | 
531  |  | /*  | 
532  |  |  * Initialize (the components of) a key pair  | 
533  |  |  */  | 
534  |  | void mbedtls_ecp_keypair_init(mbedtls_ecp_keypair *key)  | 
535  | 1  | { | 
536  | 1  |     mbedtls_ecp_group_init(&key->grp);  | 
537  | 1  |     mbedtls_mpi_init(&key->d);  | 
538  | 1  |     mbedtls_ecp_point_init(&key->Q);  | 
539  | 1  | }  | 
540  |  |  | 
541  |  | /*  | 
542  |  |  * Unallocate (the components of) a point  | 
543  |  |  */  | 
544  |  | void mbedtls_ecp_point_free(mbedtls_ecp_point *pt)  | 
545  | 177  | { | 
546  | 177  |     if (pt == NULL) { | 
547  | 0  |         return;  | 
548  | 0  |     }  | 
549  |  |  | 
550  | 177  |     mbedtls_mpi_free(&(pt->X));  | 
551  | 177  |     mbedtls_mpi_free(&(pt->Y));  | 
552  | 177  |     mbedtls_mpi_free(&(pt->Z));  | 
553  | 177  | }  | 
554  |  |  | 
555  |  | /*  | 
556  |  |  * Check that the comb table (grp->T) is static initialized.  | 
557  |  |  */  | 
558  |  | static int ecp_group_is_static_comb_table(const mbedtls_ecp_group *grp)  | 
559  | 33  | { | 
560  | 33  | #if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1  | 
561  | 33  |     return grp->T != NULL && grp->T_size == 0;  | 
562  |  | #else  | 
563  |  |     (void) grp;  | 
564  |  |     return 0;  | 
565  |  | #endif  | 
566  | 33  | }  | 
567  |  |  | 
568  |  | /*  | 
569  |  |  * Unallocate (the components of) a group  | 
570  |  |  */  | 
571  |  | void mbedtls_ecp_group_free(mbedtls_ecp_group *grp)  | 
572  | 33  | { | 
573  | 33  |     size_t i;  | 
574  |  |  | 
575  | 33  |     if (grp == NULL) { | 
576  | 0  |         return;  | 
577  | 0  |     }  | 
578  |  |  | 
579  | 33  |     if (grp->h != 1) { | 
580  | 33  |         mbedtls_mpi_free(&grp->A);  | 
581  | 33  |         mbedtls_mpi_free(&grp->B);  | 
582  | 33  |         mbedtls_ecp_point_free(&grp->G);  | 
583  |  |  | 
584  | 33  | #if !defined(MBEDTLS_ECP_WITH_MPI_UINT)  | 
585  | 33  |         mbedtls_mpi_free(&grp->N);  | 
586  | 33  |         mbedtls_mpi_free(&grp->P);  | 
587  | 33  | #endif  | 
588  | 33  |     }  | 
589  |  |  | 
590  | 33  |     if (!ecp_group_is_static_comb_table(grp) && grp->T != NULL) { | 
591  | 0  |         for (i = 0; i < grp->T_size; i++) { | 
592  | 0  |             mbedtls_ecp_point_free(&grp->T[i]);  | 
593  | 0  |         }  | 
594  | 0  |         mbedtls_free(grp->T);  | 
595  | 0  |     }  | 
596  |  |  | 
597  | 33  |     mbedtls_platform_zeroize(grp, sizeof(mbedtls_ecp_group));  | 
598  | 33  | }  | 
599  |  |  | 
600  |  | /*  | 
601  |  |  * Unallocate (the components of) a key pair  | 
602  |  |  */  | 
603  |  | void mbedtls_ecp_keypair_free(mbedtls_ecp_keypair *key)  | 
604  | 0  | { | 
605  | 0  |     if (key == NULL) { | 
606  | 0  |         return;  | 
607  | 0  |     }  | 
608  |  |  | 
609  | 0  |     mbedtls_ecp_group_free(&key->grp);  | 
610  | 0  |     mbedtls_mpi_free(&key->d);  | 
611  | 0  |     mbedtls_ecp_point_free(&key->Q);  | 
612  | 0  | }  | 
613  |  |  | 
614  |  | /*  | 
615  |  |  * Copy the contents of a point  | 
616  |  |  */  | 
617  |  | int mbedtls_ecp_copy(mbedtls_ecp_point *P, const mbedtls_ecp_point *Q)  | 
618  | 0  | { | 
619  | 0  |     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;  | 
620  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&P->X, &Q->X));  | 
621  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&P->Y, &Q->Y));  | 
622  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&P->Z, &Q->Z));  | 
623  |  |  | 
624  | 0  | cleanup:  | 
625  | 0  |     return ret;  | 
626  | 0  | }  | 
627  |  |  | 
628  |  | /*  | 
629  |  |  * Copy the contents of a group object  | 
630  |  |  */  | 
631  |  | int mbedtls_ecp_group_copy(mbedtls_ecp_group *dst, const mbedtls_ecp_group *src)  | 
632  | 0  | { | 
633  | 0  |     return mbedtls_ecp_group_load(dst, src->id);  | 
634  | 0  | }  | 
635  |  |  | 
636  |  | /*  | 
637  |  |  * Set point to zero  | 
638  |  |  */  | 
639  |  | int mbedtls_ecp_set_zero(mbedtls_ecp_point *pt)  | 
640  | 0  | { | 
641  | 0  |     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;  | 
642  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->X, 1));  | 
643  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->Y, 1));  | 
644  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->Z, 0));  | 
645  |  |  | 
646  | 0  | cleanup:  | 
647  | 0  |     return ret;  | 
648  | 0  | }  | 
649  |  |  | 
650  |  | /*  | 
651  |  |  * Tell if a point is zero  | 
652  |  |  */  | 
653  |  | int mbedtls_ecp_is_zero(mbedtls_ecp_point *pt)  | 
654  | 0  | { | 
655  | 0  |     return mbedtls_mpi_cmp_int(&pt->Z, 0) == 0;  | 
656  | 0  | }  | 
657  |  |  | 
658  |  | /*  | 
659  |  |  * Compare two points lazily  | 
660  |  |  */  | 
661  |  | int mbedtls_ecp_point_cmp(const mbedtls_ecp_point *P,  | 
662  |  |                           const mbedtls_ecp_point *Q)  | 
663  | 0  | { | 
664  | 0  |     if (mbedtls_mpi_cmp_mpi(&P->X, &Q->X) == 0 &&  | 
665  | 0  |         mbedtls_mpi_cmp_mpi(&P->Y, &Q->Y) == 0 &&  | 
666  | 0  |         mbedtls_mpi_cmp_mpi(&P->Z, &Q->Z) == 0) { | 
667  | 0  |         return 0;  | 
668  | 0  |     }  | 
669  |  |  | 
670  | 0  |     return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;  | 
671  | 0  | }  | 
672  |  |  | 
673  |  | /*  | 
674  |  |  * Import a non-zero point from ASCII strings  | 
675  |  |  */  | 
676  |  | int mbedtls_ecp_point_read_string(mbedtls_ecp_point *P, int radix,  | 
677  |  |                                   const char *x, const char *y)  | 
678  | 0  | { | 
679  | 0  |     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;  | 
680  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&P->X, radix, x));  | 
681  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&P->Y, radix, y));  | 
682  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&P->Z, 1));  | 
683  |  |  | 
684  | 0  | cleanup:  | 
685  | 0  |     return ret;  | 
686  | 0  | }  | 
687  |  |  | 
688  |  | /*  | 
689  |  |  * Export a point into unsigned binary data (SEC1 2.3.3 and RFC7748)  | 
690  |  |  */  | 
691  |  | int mbedtls_ecp_point_write_binary(const mbedtls_ecp_group *grp,  | 
692  |  |                                    const mbedtls_ecp_point *P,  | 
693  |  |                                    int format, size_t *olen,  | 
694  |  |                                    unsigned char *buf, size_t buflen)  | 
695  | 0  | { | 
696  | 0  |     int ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;  | 
697  | 0  |     size_t plen;  | 
698  | 0  |     if (format != MBEDTLS_ECP_PF_UNCOMPRESSED &&  | 
699  | 0  |         format != MBEDTLS_ECP_PF_COMPRESSED) { | 
700  | 0  |         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;  | 
701  | 0  |     }  | 
702  |  |  | 
703  | 0  |     plen = mbedtls_mpi_size(&grp->P);  | 
704  |  | 
  | 
705  | 0  | #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)  | 
706  | 0  |     (void) format; /* Montgomery curves always use the same point format */  | 
707  | 0  |     if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) { | 
708  | 0  |         *olen = plen;  | 
709  | 0  |         if (buflen < *olen) { | 
710  | 0  |             return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;  | 
711  | 0  |         }  | 
712  |  |  | 
713  | 0  |         MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary_le(&P->X, buf, plen));  | 
714  | 0  |     }  | 
715  | 0  | #endif  | 
716  | 0  | #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)  | 
717  | 0  |     if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) { | 
718  |  |         /*  | 
719  |  |          * Common case: P == 0  | 
720  |  |          */  | 
721  | 0  |         if (mbedtls_mpi_cmp_int(&P->Z, 0) == 0) { | 
722  | 0  |             if (buflen < 1) { | 
723  | 0  |                 return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;  | 
724  | 0  |             }  | 
725  |  |  | 
726  | 0  |             buf[0] = 0x00;  | 
727  | 0  |             *olen = 1;  | 
728  |  | 
  | 
729  | 0  |             return 0;  | 
730  | 0  |         }  | 
731  |  |  | 
732  | 0  |         if (format == MBEDTLS_ECP_PF_UNCOMPRESSED) { | 
733  | 0  |             *olen = 2 * plen + 1;  | 
734  |  | 
  | 
735  | 0  |             if (buflen < *olen) { | 
736  | 0  |                 return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;  | 
737  | 0  |             }  | 
738  |  |  | 
739  | 0  |             buf[0] = 0x04;  | 
740  | 0  |             MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&P->X, buf + 1, plen));  | 
741  | 0  |             MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&P->Y, buf + 1 + plen, plen));  | 
742  | 0  |         } else if (format == MBEDTLS_ECP_PF_COMPRESSED) { | 
743  | 0  |             *olen = plen + 1;  | 
744  |  | 
  | 
745  | 0  |             if (buflen < *olen) { | 
746  | 0  |                 return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;  | 
747  | 0  |             }  | 
748  |  |  | 
749  | 0  |             buf[0] = 0x02 + mbedtls_mpi_get_bit(&P->Y, 0);  | 
750  | 0  |             MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&P->X, buf + 1, plen));  | 
751  | 0  |         }  | 
752  | 0  |     }  | 
753  | 0  | #endif  | 
754  |  |  | 
755  | 0  | cleanup:  | 
756  | 0  |     return ret;  | 
757  | 0  | }  | 
758  |  |  | 
759  |  | #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)  | 
760  |  | static int mbedtls_ecp_sw_derive_y(const mbedtls_ecp_group *grp,  | 
761  |  |                                    const mbedtls_mpi *X,  | 
762  |  |                                    mbedtls_mpi *Y,  | 
763  |  |                                    int parity_bit);  | 
764  |  | #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */  | 
765  |  |  | 
766  |  | /*  | 
767  |  |  * Import a point from unsigned binary data (SEC1 2.3.4 and RFC7748)  | 
768  |  |  */  | 
769  |  | int mbedtls_ecp_point_read_binary(const mbedtls_ecp_group *grp,  | 
770  |  |                                   mbedtls_ecp_point *pt,  | 
771  |  |                                   const unsigned char *buf, size_t ilen)  | 
772  | 1  | { | 
773  | 1  |     int ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;  | 
774  | 1  |     size_t plen;  | 
775  | 1  |     if (ilen < 1) { | 
776  | 0  |         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;  | 
777  | 0  |     }  | 
778  |  |  | 
779  | 1  |     plen = mbedtls_mpi_size(&grp->P);  | 
780  |  |  | 
781  | 1  | #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)  | 
782  | 1  |     if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) { | 
783  | 0  |         if (plen != ilen) { | 
784  | 0  |             return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;  | 
785  | 0  |         }  | 
786  |  |  | 
787  | 0  |         MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary_le(&pt->X, buf, plen));  | 
788  | 0  |         mbedtls_mpi_free(&pt->Y);  | 
789  |  | 
  | 
790  | 0  |         if (grp->id == MBEDTLS_ECP_DP_CURVE25519) { | 
791  |  |             /* Set most significant bit to 0 as prescribed in RFC7748 §5 */  | 
792  | 0  |             MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&pt->X, plen * 8 - 1, 0));  | 
793  | 0  |         }  | 
794  |  |  | 
795  | 0  |         MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->Z, 1));  | 
796  | 0  |     }  | 
797  | 1  | #endif  | 
798  | 1  | #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)  | 
799  | 1  |     if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) { | 
800  | 1  |         if (buf[0] == 0x00) { | 
801  | 0  |             if (ilen == 1) { | 
802  | 0  |                 return mbedtls_ecp_set_zero(pt);  | 
803  | 0  |             } else { | 
804  | 0  |                 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;  | 
805  | 0  |             }  | 
806  | 0  |         }  | 
807  |  |  | 
808  | 1  |         if (ilen < 1 + plen) { | 
809  | 0  |             return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;  | 
810  | 0  |         }  | 
811  |  |  | 
812  | 1  |         MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&pt->X, buf + 1, plen));  | 
813  | 1  |         MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->Z, 1));  | 
814  |  |  | 
815  | 1  |         if (buf[0] == 0x04) { | 
816  |  |             /* format == MBEDTLS_ECP_PF_UNCOMPRESSED */  | 
817  | 1  |             if (ilen != 1 + plen * 2) { | 
818  | 0  |                 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;  | 
819  | 0  |             }  | 
820  | 1  |             return mbedtls_mpi_read_binary(&pt->Y, buf + 1 + plen, plen);  | 
821  | 1  |         } else if (buf[0] == 0x02 || buf[0] == 0x03) { | 
822  |  |             /* format == MBEDTLS_ECP_PF_COMPRESSED */  | 
823  | 0  |             if (ilen != 1 + plen) { | 
824  | 0  |                 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;  | 
825  | 0  |             }  | 
826  | 0  |             return mbedtls_ecp_sw_derive_y(grp, &pt->X, &pt->Y,  | 
827  | 0  |                                            (buf[0] & 1));  | 
828  | 0  |         } else { | 
829  | 0  |             return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;  | 
830  | 0  |         }  | 
831  | 1  |     }  | 
832  | 0  | #endif  | 
833  |  |  | 
834  | 0  | cleanup:  | 
835  | 0  |     return ret;  | 
836  | 1  | }  | 
837  |  |  | 
838  |  | /*  | 
839  |  |  * Import a point from a TLS ECPoint record (RFC 4492)  | 
840  |  |  *      struct { | 
841  |  |  *          opaque point <1..2^8-1>;  | 
842  |  |  *      } ECPoint;  | 
843  |  |  */  | 
844  |  | int mbedtls_ecp_tls_read_point(const mbedtls_ecp_group *grp,  | 
845  |  |                                mbedtls_ecp_point *pt,  | 
846  |  |                                const unsigned char **buf, size_t buf_len)  | 
847  | 0  | { | 
848  | 0  |     unsigned char data_len;  | 
849  | 0  |     const unsigned char *buf_start;  | 
850  |  |     /*  | 
851  |  |      * We must have at least two bytes (1 for length, at least one for data)  | 
852  |  |      */  | 
853  | 0  |     if (buf_len < 2) { | 
854  | 0  |         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;  | 
855  | 0  |     }  | 
856  |  |  | 
857  | 0  |     data_len = *(*buf)++;  | 
858  | 0  |     if (data_len < 1 || data_len > buf_len - 1) { | 
859  | 0  |         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;  | 
860  | 0  |     }  | 
861  |  |  | 
862  |  |     /*  | 
863  |  |      * Save buffer start for read_binary and update buf  | 
864  |  |      */  | 
865  | 0  |     buf_start = *buf;  | 
866  | 0  |     *buf += data_len;  | 
867  |  | 
  | 
868  | 0  |     return mbedtls_ecp_point_read_binary(grp, pt, buf_start, data_len);  | 
869  | 0  | }  | 
870  |  |  | 
871  |  | /*  | 
872  |  |  * Export a point as a TLS ECPoint record (RFC 4492)  | 
873  |  |  *      struct { | 
874  |  |  *          opaque point <1..2^8-1>;  | 
875  |  |  *      } ECPoint;  | 
876  |  |  */  | 
877  |  | int mbedtls_ecp_tls_write_point(const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt,  | 
878  |  |                                 int format, size_t *olen,  | 
879  |  |                                 unsigned char *buf, size_t blen)  | 
880  | 0  | { | 
881  | 0  |     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;  | 
882  | 0  |     if (format != MBEDTLS_ECP_PF_UNCOMPRESSED &&  | 
883  | 0  |         format != MBEDTLS_ECP_PF_COMPRESSED) { | 
884  | 0  |         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;  | 
885  | 0  |     }  | 
886  |  |  | 
887  |  |     /*  | 
888  |  |      * buffer length must be at least one, for our length byte  | 
889  |  |      */  | 
890  | 0  |     if (blen < 1) { | 
891  | 0  |         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;  | 
892  | 0  |     }  | 
893  |  |  | 
894  | 0  |     if ((ret = mbedtls_ecp_point_write_binary(grp, pt, format,  | 
895  | 0  |                                               olen, buf + 1, blen - 1)) != 0) { | 
896  | 0  |         return ret;  | 
897  | 0  |     }  | 
898  |  |  | 
899  |  |     /*  | 
900  |  |      * write length to the first byte and update total length  | 
901  |  |      */  | 
902  | 0  |     buf[0] = (unsigned char) *olen;  | 
903  | 0  |     ++*olen;  | 
904  |  | 
  | 
905  | 0  |     return 0;  | 
906  | 0  | }  | 
907  |  |  | 
908  |  | /*  | 
909  |  |  * Set a group from an ECParameters record (RFC 4492)  | 
910  |  |  */  | 
911  |  | int mbedtls_ecp_tls_read_group(mbedtls_ecp_group *grp,  | 
912  |  |                                const unsigned char **buf, size_t len)  | 
913  | 0  | { | 
914  | 0  |     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;  | 
915  | 0  |     mbedtls_ecp_group_id grp_id;  | 
916  | 0  |     if ((ret = mbedtls_ecp_tls_read_group_id(&grp_id, buf, len)) != 0) { | 
917  | 0  |         return ret;  | 
918  | 0  |     }  | 
919  |  |  | 
920  | 0  |     return mbedtls_ecp_group_load(grp, grp_id);  | 
921  | 0  | }  | 
922  |  |  | 
923  |  | /*  | 
924  |  |  * Read a group id from an ECParameters record (RFC 4492) and convert it to  | 
925  |  |  * mbedtls_ecp_group_id.  | 
926  |  |  */  | 
927  |  | int mbedtls_ecp_tls_read_group_id(mbedtls_ecp_group_id *grp,  | 
928  |  |                                   const unsigned char **buf, size_t len)  | 
929  | 0  | { | 
930  | 0  |     uint16_t tls_id;  | 
931  | 0  |     const mbedtls_ecp_curve_info *curve_info;  | 
932  |  |     /*  | 
933  |  |      * We expect at least three bytes (see below)  | 
934  |  |      */  | 
935  | 0  |     if (len < 3) { | 
936  | 0  |         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;  | 
937  | 0  |     }  | 
938  |  |  | 
939  |  |     /*  | 
940  |  |      * First byte is curve_type; only named_curve is handled  | 
941  |  |      */  | 
942  | 0  |     if (*(*buf)++ != MBEDTLS_ECP_TLS_NAMED_CURVE) { | 
943  | 0  |         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;  | 
944  | 0  |     }  | 
945  |  |  | 
946  |  |     /*  | 
947  |  |      * Next two bytes are the namedcurve value  | 
948  |  |      */  | 
949  | 0  |     tls_id = MBEDTLS_GET_UINT16_BE(*buf, 0);  | 
950  | 0  |     *buf += 2;  | 
951  |  | 
  | 
952  | 0  |     if ((curve_info = mbedtls_ecp_curve_info_from_tls_id(tls_id)) == NULL) { | 
953  | 0  |         return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;  | 
954  | 0  |     }  | 
955  |  |  | 
956  | 0  |     *grp = curve_info->grp_id;  | 
957  |  | 
  | 
958  | 0  |     return 0;  | 
959  | 0  | }  | 
960  |  |  | 
961  |  | /*  | 
962  |  |  * Write the ECParameters record corresponding to a group (RFC 4492)  | 
963  |  |  */  | 
964  |  | int mbedtls_ecp_tls_write_group(const mbedtls_ecp_group *grp, size_t *olen,  | 
965  |  |                                 unsigned char *buf, size_t blen)  | 
966  | 0  | { | 
967  | 0  |     const mbedtls_ecp_curve_info *curve_info;  | 
968  | 0  |     if ((curve_info = mbedtls_ecp_curve_info_from_grp_id(grp->id)) == NULL) { | 
969  | 0  |         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;  | 
970  | 0  |     }  | 
971  |  |  | 
972  |  |     /*  | 
973  |  |      * We are going to write 3 bytes (see below)  | 
974  |  |      */  | 
975  | 0  |     *olen = 3;  | 
976  | 0  |     if (blen < *olen) { | 
977  | 0  |         return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;  | 
978  | 0  |     }  | 
979  |  |  | 
980  |  |     /*  | 
981  |  |      * First byte is curve_type, always named_curve  | 
982  |  |      */  | 
983  | 0  |     *buf++ = MBEDTLS_ECP_TLS_NAMED_CURVE;  | 
984  |  |  | 
985  |  |     /*  | 
986  |  |      * Next two bytes are the namedcurve value  | 
987  |  |      */  | 
988  | 0  |     MBEDTLS_PUT_UINT16_BE(curve_info->tls_id, buf, 0);  | 
989  |  | 
  | 
990  | 0  |     return 0;  | 
991  | 0  | }  | 
992  |  |  | 
993  |  | /*  | 
994  |  |  * Wrapper around fast quasi-modp functions, with fall-back to mbedtls_mpi_mod_mpi.  | 
995  |  |  * See the documentation of struct mbedtls_ecp_group.  | 
996  |  |  *  | 
997  |  |  * This function is in the critial loop for mbedtls_ecp_mul, so pay attention to perf.  | 
998  |  |  */  | 
999  |  | static int ecp_modp(mbedtls_mpi *N, const mbedtls_ecp_group *grp)  | 
1000  | 3  | { | 
1001  | 3  |     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;  | 
1002  |  |  | 
1003  | 3  |     if (grp->modp == NULL) { | 
1004  | 0  |         return mbedtls_mpi_mod_mpi(N, N, &grp->P);  | 
1005  | 0  |     }  | 
1006  |  |  | 
1007  |  |     /* N->s < 0 is a much faster test, which fails only if N is 0 */  | 
1008  | 3  |     if ((N->s < 0 && mbedtls_mpi_cmp_int(N, 0) != 0) ||  | 
1009  | 3  |         mbedtls_mpi_bitlen(N) > 2 * grp->pbits) { | 
1010  | 0  |         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;  | 
1011  | 0  |     }  | 
1012  |  |  | 
1013  | 3  |     MBEDTLS_MPI_CHK(grp->modp(N));  | 
1014  |  |  | 
1015  |  |     /* N->s < 0 is a much faster test, which fails only if N is 0 */  | 
1016  | 4  |     while (N->s < 0 && mbedtls_mpi_cmp_int(N, 0) != 0) { | 
1017  | 1  |         MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(N, N, &grp->P));  | 
1018  | 1  |     }  | 
1019  |  |  | 
1020  | 5  |     while (mbedtls_mpi_cmp_mpi(N, &grp->P) >= 0) { | 
1021  |  |         /* we known P, N and the result are positive */  | 
1022  | 2  |         MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(N, N, &grp->P));  | 
1023  | 2  |     }  | 
1024  |  |  | 
1025  | 3  | cleanup:  | 
1026  | 3  |     return ret;  | 
1027  | 3  | }  | 
1028  |  |  | 
1029  |  | /*  | 
1030  |  |  * Fast mod-p functions expect their argument to be in the 0..p^2 range.  | 
1031  |  |  *  | 
1032  |  |  * In order to guarantee that, we need to ensure that operands of  | 
1033  |  |  * mbedtls_mpi_mul_mpi are in the 0..p range. So, after each operation we will  | 
1034  |  |  * bring the result back to this range.  | 
1035  |  |  *  | 
1036  |  |  * The following macros are shortcuts for doing that.  | 
1037  |  |  */  | 
1038  |  |  | 
1039  |  | /*  | 
1040  |  |  * Reduce a mbedtls_mpi mod p in-place, general case, to use after mbedtls_mpi_mul_mpi  | 
1041  |  |  */  | 
1042  |  | #if defined(MBEDTLS_SELF_TEST)  | 
1043  | 3  | #define INC_MUL_COUNT   mul_count++;  | 
1044  |  | #else  | 
1045  |  | #define INC_MUL_COUNT  | 
1046  |  | #endif  | 
1047  |  |  | 
1048  |  | #define MOD_MUL(N)                                                    \  | 
1049  | 3  |     do                                                                  \  | 
1050  | 3  |     {                                                                   \ | 
1051  | 3  |         MBEDTLS_MPI_CHK(ecp_modp(&(N), grp));                       \  | 
1052  | 3  |         INC_MUL_COUNT                                                   \  | 
1053  | 3  |     } while (0)  | 
1054  |  |  | 
1055  |  | static inline int mbedtls_mpi_mul_mod(const mbedtls_ecp_group *grp,  | 
1056  |  |                                       mbedtls_mpi *X,  | 
1057  |  |                                       const mbedtls_mpi *A,  | 
1058  |  |                                       const mbedtls_mpi *B)  | 
1059  | 3  | { | 
1060  | 3  |     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;  | 
1061  | 3  |     MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(X, A, B));  | 
1062  | 3  |     MOD_MUL(*X);  | 
1063  | 3  | cleanup:  | 
1064  | 3  |     return ret;  | 
1065  | 3  | }  | 
1066  |  |  | 
1067  |  | /*  | 
1068  |  |  * Reduce a mbedtls_mpi mod p in-place, to use after mbedtls_mpi_sub_mpi  | 
1069  |  |  * N->s < 0 is a very fast test, which fails only if N is 0  | 
1070  |  |  */  | 
1071  |  | #define MOD_SUB(N)                                                          \  | 
1072  | 1  |     do {                                                                      \ | 
1073  | 1  |         while ((N)->s < 0 && mbedtls_mpi_cmp_int((N), 0) != 0)             \  | 
1074  | 1  |         MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi((N), (N), &grp->P));      \  | 
1075  | 1  |     } while (0)  | 
1076  |  |  | 
1077  |  | MBEDTLS_MAYBE_UNUSED  | 
1078  |  | static inline int mbedtls_mpi_sub_mod(const mbedtls_ecp_group *grp,  | 
1079  |  |                                       mbedtls_mpi *X,  | 
1080  |  |                                       const mbedtls_mpi *A,  | 
1081  |  |                                       const mbedtls_mpi *B)  | 
1082  | 0  | { | 
1083  | 0  |     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;  | 
1084  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(X, A, B));  | 
1085  | 0  |     MOD_SUB(X);  | 
1086  | 0  | cleanup:  | 
1087  | 0  |     return ret;  | 
1088  | 0  | }  | 
1089  |  |  | 
1090  |  | /*  | 
1091  |  |  * Reduce a mbedtls_mpi mod p in-place, to use after mbedtls_mpi_add_mpi and mbedtls_mpi_mul_int.  | 
1092  |  |  * We known P, N and the result are positive, so sub_abs is correct, and  | 
1093  |  |  * a bit faster.  | 
1094  |  |  */  | 
1095  |  | #define MOD_ADD(N)                                                   \  | 
1096  | 2  |     while (mbedtls_mpi_cmp_mpi((N), &grp->P) >= 0)                  \  | 
1097  | 1  |     MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs((N), (N), &grp->P))  | 
1098  |  |  | 
1099  |  | static inline int mbedtls_mpi_add_mod(const mbedtls_ecp_group *grp,  | 
1100  |  |                                       mbedtls_mpi *X,  | 
1101  |  |                                       const mbedtls_mpi *A,  | 
1102  |  |                                       const mbedtls_mpi *B)  | 
1103  | 1  | { | 
1104  | 1  |     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;  | 
1105  | 1  |     MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(X, A, B));  | 
1106  | 1  |     MOD_ADD(X);  | 
1107  | 1  | cleanup:  | 
1108  | 1  |     return ret;  | 
1109  | 1  | }  | 
1110  |  |  | 
1111  |  | MBEDTLS_MAYBE_UNUSED  | 
1112  |  | static inline int mbedtls_mpi_mul_int_mod(const mbedtls_ecp_group *grp,  | 
1113  |  |                                           mbedtls_mpi *X,  | 
1114  |  |                                           const mbedtls_mpi *A,  | 
1115  |  |                                           mbedtls_mpi_uint c)  | 
1116  | 0  | { | 
1117  | 0  |     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;  | 
1118  |  | 
  | 
1119  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(X, A, c));  | 
1120  | 0  |     MOD_ADD(X);  | 
1121  | 0  | cleanup:  | 
1122  | 0  |     return ret;  | 
1123  | 0  | }  | 
1124  |  |  | 
1125  |  | MBEDTLS_MAYBE_UNUSED  | 
1126  |  | static inline int mbedtls_mpi_sub_int_mod(const mbedtls_ecp_group *grp,  | 
1127  |  |                                           mbedtls_mpi *X,  | 
1128  |  |                                           const mbedtls_mpi *A,  | 
1129  |  |                                           mbedtls_mpi_uint c)  | 
1130  | 1  | { | 
1131  | 1  |     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;  | 
1132  |  |  | 
1133  | 1  |     MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(X, A, c));  | 
1134  | 1  |     MOD_SUB(X);  | 
1135  | 1  | cleanup:  | 
1136  | 1  |     return ret;  | 
1137  | 1  | }  | 
1138  |  |  | 
1139  |  | #define MPI_ECP_SUB_INT(X, A, c)             \  | 
1140  | 1  |     MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int_mod(grp, X, A, c))  | 
1141  |  |  | 
1142  |  | MBEDTLS_MAYBE_UNUSED  | 
1143  |  | static inline int mbedtls_mpi_shift_l_mod(const mbedtls_ecp_group *grp,  | 
1144  |  |                                           mbedtls_mpi *X,  | 
1145  |  |                                           size_t count)  | 
1146  | 0  | { | 
1147  | 0  |     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;  | 
1148  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(X, count));  | 
1149  | 0  |     MOD_ADD(X);  | 
1150  | 0  | cleanup:  | 
1151  | 0  |     return ret;  | 
1152  | 0  | }  | 
1153  |  |  | 
1154  |  | /*  | 
1155  |  |  * Macro wrappers around ECP modular arithmetic  | 
1156  |  |  *  | 
1157  |  |  * Currently, these wrappers are defined via the bignum module.  | 
1158  |  |  */  | 
1159  |  |  | 
1160  |  | #define MPI_ECP_ADD(X, A, B)                                                  \  | 
1161  | 1  |     MBEDTLS_MPI_CHK(mbedtls_mpi_add_mod(grp, X, A, B))  | 
1162  |  |  | 
1163  |  | #define MPI_ECP_SUB(X, A, B)                                                  \  | 
1164  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mod(grp, X, A, B))  | 
1165  |  |  | 
1166  |  | #define MPI_ECP_MUL(X, A, B)                                                  \  | 
1167  | 1  |     MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, X, A, B))  | 
1168  |  |  | 
1169  |  | #define MPI_ECP_SQR(X, A)                                                     \  | 
1170  | 2  |     MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, X, A, A))  | 
1171  |  |  | 
1172  |  | #define MPI_ECP_MUL_INT(X, A, c)                                              \  | 
1173  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int_mod(grp, X, A, c))  | 
1174  |  |  | 
1175  |  | #define MPI_ECP_INV(dst, src)                                                 \  | 
1176  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod((dst), (src), &grp->P))  | 
1177  |  |  | 
1178  |  | #define MPI_ECP_MOV(X, A)                                                     \  | 
1179  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, A))  | 
1180  |  |  | 
1181  |  | #define MPI_ECP_SHIFT_L(X, count)                                             \  | 
1182  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l_mod(grp, X, count))  | 
1183  |  |  | 
1184  |  | #define MPI_ECP_LSET(X, c)                                                    \  | 
1185  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, c))  | 
1186  |  |  | 
1187  |  | #define MPI_ECP_CMP_INT(X, c)                                                 \  | 
1188  | 0  |     mbedtls_mpi_cmp_int(X, c)  | 
1189  |  |  | 
1190  |  | #define MPI_ECP_CMP(X, Y)                                                     \  | 
1191  | 1  |     mbedtls_mpi_cmp_mpi(X, Y)  | 
1192  |  |  | 
1193  |  | /* Needs f_rng, p_rng to be defined. */  | 
1194  |  | #define MPI_ECP_RAND(X)                                                       \  | 
1195  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_random((X), 2, &grp->P, f_rng, p_rng))  | 
1196  |  |  | 
1197  |  | /* Conditional negation  | 
1198  |  |  * Needs grp and a temporary MPI tmp to be defined. */  | 
1199  |  | #define MPI_ECP_COND_NEG(X, cond)                                        \  | 
1200  | 0  |     do                                                                     \  | 
1201  | 0  |     {                                                                      \ | 
1202  | 0  |         unsigned char nonzero = mbedtls_mpi_cmp_int((X), 0) != 0;        \  | 
1203  | 0  |         MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&tmp, &grp->P, (X)));      \  | 
1204  | 0  |         MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_assign((X), &tmp,          \  | 
1205  | 0  |                                                      nonzero & cond)); \  | 
1206  | 0  |     } while (0)  | 
1207  |  |  | 
1208  | 0  | #define MPI_ECP_NEG(X) MPI_ECP_COND_NEG((X), 1)  | 
1209  |  |  | 
1210  |  | #define MPI_ECP_VALID(X)                      \  | 
1211  | 0  |     ((X)->p != NULL)  | 
1212  |  |  | 
1213  |  | #define MPI_ECP_COND_ASSIGN(X, Y, cond)       \  | 
1214  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_assign((X), (Y), (cond)))  | 
1215  |  |  | 
1216  |  | #define MPI_ECP_COND_SWAP(X, Y, cond)       \  | 
1217  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_swap((X), (Y), (cond)))  | 
1218  |  |  | 
1219  |  | #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)  | 
1220  |  |  | 
1221  |  | /*  | 
1222  |  |  * Computes the right-hand side of the Short Weierstrass equation  | 
1223  |  |  * RHS = X^3 + A X + B  | 
1224  |  |  */  | 
1225  |  | static int ecp_sw_rhs(const mbedtls_ecp_group *grp,  | 
1226  |  |                       mbedtls_mpi *rhs,  | 
1227  |  |                       const mbedtls_mpi *X)  | 
1228  | 1  | { | 
1229  | 1  |     int ret;  | 
1230  |  |  | 
1231  |  |     /* Compute X^3 + A X + B as X (X^2 + A) + B */  | 
1232  | 1  |     MPI_ECP_SQR(rhs, X);  | 
1233  |  |  | 
1234  |  |     /* Special case for A = -3 */  | 
1235  | 1  |     if (mbedtls_ecp_group_a_is_minus_3(grp)) { | 
1236  | 1  |         MPI_ECP_SUB_INT(rhs, rhs, 3);  | 
1237  | 1  |     } else { | 
1238  | 0  |         MPI_ECP_ADD(rhs, rhs, &grp->A);  | 
1239  | 0  |     }  | 
1240  |  |  | 
1241  | 1  |     MPI_ECP_MUL(rhs, rhs, X);  | 
1242  | 1  |     MPI_ECP_ADD(rhs, rhs, &grp->B);  | 
1243  |  |  | 
1244  | 1  | cleanup:  | 
1245  | 1  |     return ret;  | 
1246  | 1  | }  | 
1247  |  |  | 
1248  |  | /*  | 
1249  |  |  * Derive Y from X and a parity bit  | 
1250  |  |  */  | 
1251  |  | static int mbedtls_ecp_sw_derive_y(const mbedtls_ecp_group *grp,  | 
1252  |  |                                    const mbedtls_mpi *X,  | 
1253  |  |                                    mbedtls_mpi *Y,  | 
1254  |  |                                    int parity_bit)  | 
1255  | 0  | { | 
1256  |  |     /* w = y^2 = x^3 + ax + b  | 
1257  |  |      * y = sqrt(w) = w^((p+1)/4) mod p   (for prime p where p = 3 mod 4)  | 
1258  |  |      *  | 
1259  |  |      * Note: this method for extracting square root does not validate that w  | 
1260  |  |      * was indeed a square so this function will return garbage in Y if X  | 
1261  |  |      * does not correspond to a point on the curve.  | 
1262  |  |      */  | 
1263  |  |  | 
1264  |  |     /* Check prerequisite p = 3 mod 4 */  | 
1265  | 0  |     if (mbedtls_mpi_get_bit(&grp->P, 0) != 1 ||  | 
1266  | 0  |         mbedtls_mpi_get_bit(&grp->P, 1) != 1) { | 
1267  | 0  |         return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;  | 
1268  | 0  |     }  | 
1269  |  |  | 
1270  | 0  |     int ret;  | 
1271  | 0  |     mbedtls_mpi exp;  | 
1272  | 0  |     mbedtls_mpi_init(&exp);  | 
1273  |  |  | 
1274  |  |     /* use Y to store intermediate result, actually w above */  | 
1275  | 0  |     MBEDTLS_MPI_CHK(ecp_sw_rhs(grp, Y, X));  | 
1276  |  |  | 
1277  |  |     /* w = y^2 */ /* Y contains y^2 intermediate result */  | 
1278  |  |     /* exp = ((p+1)/4) */  | 
1279  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&exp, &grp->P, 1));  | 
1280  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&exp, 2));  | 
1281  |  |     /* sqrt(w) = w^((p+1)/4) mod p   (for prime p where p = 3 mod 4) */  | 
1282  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(Y, Y /*y^2*/, &exp, &grp->P, NULL));  | 
1283  |  |  | 
1284  |  |     /* check parity bit match or else invert Y */  | 
1285  |  |     /* This quick inversion implementation is valid because Y != 0 for all  | 
1286  |  |      * Short Weierstrass curves supported by mbedtls, as each supported curve  | 
1287  |  |      * has an order that is a large prime, so each supported curve does not  | 
1288  |  |      * have any point of order 2, and a point with Y == 0 would be of order 2 */  | 
1289  | 0  |     if (mbedtls_mpi_get_bit(Y, 0) != parity_bit) { | 
1290  | 0  |         MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(Y, &grp->P, Y));  | 
1291  | 0  |     }  | 
1292  |  |  | 
1293  | 0  | cleanup:  | 
1294  |  | 
  | 
1295  | 0  |     mbedtls_mpi_free(&exp);  | 
1296  | 0  |     return ret;  | 
1297  | 0  | }  | 
1298  |  | #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */  | 
1299  |  |  | 
1300  |  | #if defined(MBEDTLS_ECP_C)  | 
1301  |  | #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)  | 
1302  |  | /*  | 
1303  |  |  * For curves in short Weierstrass form, we do all the internal operations in  | 
1304  |  |  * Jacobian coordinates.  | 
1305  |  |  *  | 
1306  |  |  * For multiplication, we'll use a comb method with countermeasures against  | 
1307  |  |  * SPA, hence timing attacks.  | 
1308  |  |  */  | 
1309  |  |  | 
1310  |  | /*  | 
1311  |  |  * Normalize jacobian coordinates so that Z == 0 || Z == 1  (GECC 3.2.1)  | 
1312  |  |  * Cost: 1N := 1I + 3M + 1S  | 
1313  |  |  */  | 
1314  |  | static int ecp_normalize_jac(const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt)  | 
1315  | 0  | { | 
1316  | 0  |     if (MPI_ECP_CMP_INT(&pt->Z, 0) == 0) { | 
1317  | 0  |         return 0;  | 
1318  | 0  |     }  | 
1319  |  |  | 
1320  |  | #if defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT)  | 
1321  |  |     if (mbedtls_internal_ecp_grp_capable(grp)) { | 
1322  |  |         return mbedtls_internal_ecp_normalize_jac(grp, pt);  | 
1323  |  |     }  | 
1324  |  | #endif /* MBEDTLS_ECP_NORMALIZE_JAC_ALT */  | 
1325  |  |  | 
1326  |  | #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT)  | 
1327  |  |     return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;  | 
1328  |  | #else  | 
1329  | 0  |     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;  | 
1330  | 0  |     mbedtls_mpi T;  | 
1331  | 0  |     mbedtls_mpi_init(&T);  | 
1332  |  | 
  | 
1333  | 0  |     MPI_ECP_INV(&T,       &pt->Z);            /* T   <-          1 / Z   */  | 
1334  | 0  |     MPI_ECP_MUL(&pt->Y,   &pt->Y,     &T);    /* Y'  <- Y*T    = Y / Z   */  | 
1335  | 0  |     MPI_ECP_SQR(&T,       &T);                /* T   <- T^2    = 1 / Z^2 */  | 
1336  | 0  |     MPI_ECP_MUL(&pt->X,   &pt->X,     &T);    /* X   <- X  * T = X / Z^2 */  | 
1337  | 0  |     MPI_ECP_MUL(&pt->Y,   &pt->Y,     &T);    /* Y'' <- Y' * T = Y / Z^3 */  | 
1338  |  |  | 
1339  | 0  |     MPI_ECP_LSET(&pt->Z, 1);  | 
1340  |  |  | 
1341  | 0  | cleanup:  | 
1342  |  | 
  | 
1343  | 0  |     mbedtls_mpi_free(&T);  | 
1344  |  | 
  | 
1345  | 0  |     return ret;  | 
1346  | 0  | #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT) */  | 
1347  | 0  | }  | 
1348  |  |  | 
1349  |  | /*  | 
1350  |  |  * Normalize jacobian coordinates of an array of (pointers to) points,  | 
1351  |  |  * using Montgomery's trick to perform only one inversion mod P.  | 
1352  |  |  * (See for example Cohen's "A Course in Computational Algebraic Number  | 
1353  |  |  * Theory", Algorithm 10.3.4.)  | 
1354  |  |  *  | 
1355  |  |  * Warning: fails (returning an error) if one of the points is zero!  | 
1356  |  |  * This should never happen, see choice of w in ecp_mul_comb().  | 
1357  |  |  *  | 
1358  |  |  * Cost: 1N(t) := 1I + (6t - 3)M + 1S  | 
1359  |  |  */  | 
1360  |  | static int ecp_normalize_jac_many(const mbedtls_ecp_group *grp,  | 
1361  |  |                                   mbedtls_ecp_point *T[], size_t T_size)  | 
1362  | 0  | { | 
1363  | 0  |     if (T_size < 2) { | 
1364  | 0  |         return ecp_normalize_jac(grp, *T);  | 
1365  | 0  |     }  | 
1366  |  |  | 
1367  |  | #if defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT)  | 
1368  |  |     if (mbedtls_internal_ecp_grp_capable(grp)) { | 
1369  |  |         return mbedtls_internal_ecp_normalize_jac_many(grp, T, T_size);  | 
1370  |  |     }  | 
1371  |  | #endif  | 
1372  |  |  | 
1373  |  | #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT)  | 
1374  |  |     return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;  | 
1375  |  | #else  | 
1376  | 0  |     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;  | 
1377  | 0  |     size_t i;  | 
1378  | 0  |     mbedtls_mpi *c, t;  | 
1379  |  | 
  | 
1380  | 0  |     if ((c = mbedtls_calloc(T_size, sizeof(mbedtls_mpi))) == NULL) { | 
1381  | 0  |         return MBEDTLS_ERR_ECP_ALLOC_FAILED;  | 
1382  | 0  |     }  | 
1383  |  |  | 
1384  | 0  |     mbedtls_mpi_init(&t);  | 
1385  |  | 
  | 
1386  | 0  |     mpi_init_many(c, T_size);  | 
1387  |  |     /*  | 
1388  |  |      * c[i] = Z_0 * ... * Z_i,   i = 0,..,n := T_size-1  | 
1389  |  |      */  | 
1390  | 0  |     MPI_ECP_MOV(&c[0], &T[0]->Z);  | 
1391  | 0  |     for (i = 1; i < T_size; i++) { | 
1392  | 0  |         MPI_ECP_MUL(&c[i], &c[i-1], &T[i]->Z);  | 
1393  | 0  |     }  | 
1394  |  |  | 
1395  |  |     /*  | 
1396  |  |      * c[n] = 1 / (Z_0 * ... * Z_n) mod P  | 
1397  |  |      */  | 
1398  | 0  |     MPI_ECP_INV(&c[T_size-1], &c[T_size-1]);  | 
1399  |  |  | 
1400  | 0  |     for (i = T_size - 1;; i--) { | 
1401  |  |         /* At the start of iteration i (note that i decrements), we have  | 
1402  |  |          * - c[j] = Z_0 * .... * Z_j        for j  < i,  | 
1403  |  |          * - c[j] = 1 / (Z_0 * .... * Z_j)  for j == i,  | 
1404  |  |          *  | 
1405  |  |          * This is maintained via  | 
1406  |  |          * - c[i-1] <- c[i] * Z_i  | 
1407  |  |          *  | 
1408  |  |          * We also derive 1/Z_i = c[i] * c[i-1] for i>0 and use that  | 
1409  |  |          * to do the actual normalization. For i==0, we already have  | 
1410  |  |          * c[0] = 1 / Z_0.  | 
1411  |  |          */  | 
1412  |  | 
  | 
1413  | 0  |         if (i > 0) { | 
1414  |  |             /* Compute 1/Z_i and establish invariant for the next iteration. */  | 
1415  | 0  |             MPI_ECP_MUL(&t,      &c[i], &c[i-1]);  | 
1416  | 0  |             MPI_ECP_MUL(&c[i-1], &c[i], &T[i]->Z);  | 
1417  | 0  |         } else { | 
1418  | 0  |             MPI_ECP_MOV(&t, &c[0]);  | 
1419  | 0  |         }  | 
1420  |  |  | 
1421  |  |         /* Now t holds 1 / Z_i; normalize as in ecp_normalize_jac() */  | 
1422  | 0  |         MPI_ECP_MUL(&T[i]->Y, &T[i]->Y, &t);  | 
1423  | 0  |         MPI_ECP_SQR(&t,       &t);  | 
1424  | 0  |         MPI_ECP_MUL(&T[i]->X, &T[i]->X, &t);  | 
1425  | 0  |         MPI_ECP_MUL(&T[i]->Y, &T[i]->Y, &t);  | 
1426  |  |  | 
1427  |  |         /*  | 
1428  |  |          * Post-precessing: reclaim some memory by shrinking coordinates  | 
1429  |  |          * - not storing Z (always 1)  | 
1430  |  |          * - shrinking other coordinates, but still keeping the same number of  | 
1431  |  |          *   limbs as P, as otherwise it will too likely be regrown too fast.  | 
1432  |  |          */  | 
1433  | 0  |         MBEDTLS_MPI_CHK(mbedtls_mpi_shrink(&T[i]->X, grp->P.n));  | 
1434  | 0  |         MBEDTLS_MPI_CHK(mbedtls_mpi_shrink(&T[i]->Y, grp->P.n));  | 
1435  |  |  | 
1436  | 0  |         MPI_ECP_LSET(&T[i]->Z, 1);  | 
1437  |  |  | 
1438  | 0  |         if (i == 0) { | 
1439  | 0  |             break;  | 
1440  | 0  |         }  | 
1441  | 0  |     }  | 
1442  |  |  | 
1443  | 0  | cleanup:  | 
1444  |  | 
  | 
1445  | 0  |     mbedtls_mpi_free(&t);  | 
1446  | 0  |     mpi_free_many(c, T_size);  | 
1447  | 0  |     mbedtls_free(c);  | 
1448  |  | 
  | 
1449  | 0  |     return ret;  | 
1450  | 0  | #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT) */  | 
1451  | 0  | }  | 
1452  |  |  | 
1453  |  | /*  | 
1454  |  |  * Conditional point inversion: Q -> -Q = (Q.X, -Q.Y, Q.Z) without leak.  | 
1455  |  |  * "inv" must be 0 (don't invert) or 1 (invert) or the result will be invalid  | 
1456  |  |  */  | 
1457  |  | static int ecp_safe_invert_jac(const mbedtls_ecp_group *grp,  | 
1458  |  |                                mbedtls_ecp_point *Q,  | 
1459  |  |                                unsigned char inv)  | 
1460  | 0  | { | 
1461  | 0  |     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;  | 
1462  | 0  |     mbedtls_mpi tmp;  | 
1463  | 0  |     mbedtls_mpi_init(&tmp);  | 
1464  |  | 
  | 
1465  | 0  |     MPI_ECP_COND_NEG(&Q->Y, inv);  | 
1466  |  |  | 
1467  | 0  | cleanup:  | 
1468  | 0  |     mbedtls_mpi_free(&tmp);  | 
1469  | 0  |     return ret;  | 
1470  | 0  | }  | 
1471  |  |  | 
1472  |  | /*  | 
1473  |  |  * Point doubling R = 2 P, Jacobian coordinates  | 
1474  |  |  *  | 
1475  |  |  * Based on http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#doubling-dbl-1998-cmo-2 .  | 
1476  |  |  *  | 
1477  |  |  * We follow the variable naming fairly closely. The formula variations that trade a MUL for a SQR  | 
1478  |  |  * (plus a few ADDs) aren't useful as our bignum implementation doesn't distinguish squaring.  | 
1479  |  |  *  | 
1480  |  |  * Standard optimizations are applied when curve parameter A is one of { 0, -3 }. | 
1481  |  |  *  | 
1482  |  |  * Cost: 1D := 3M + 4S          (A ==  0)  | 
1483  |  |  *             4M + 4S          (A == -3)  | 
1484  |  |  *             3M + 6S + 1a     otherwise  | 
1485  |  |  */  | 
1486  |  | static int ecp_double_jac(const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,  | 
1487  |  |                           const mbedtls_ecp_point *P,  | 
1488  |  |                           mbedtls_mpi tmp[4])  | 
1489  | 0  | { | 
1490  | 0  | #if defined(MBEDTLS_SELF_TEST)  | 
1491  | 0  |     dbl_count++;  | 
1492  | 0  | #endif  | 
1493  |  | 
  | 
1494  |  | #if defined(MBEDTLS_ECP_DOUBLE_JAC_ALT)  | 
1495  |  |     if (mbedtls_internal_ecp_grp_capable(grp)) { | 
1496  |  |         return mbedtls_internal_ecp_double_jac(grp, R, P);  | 
1497  |  |     }  | 
1498  |  | #endif /* MBEDTLS_ECP_DOUBLE_JAC_ALT */  | 
1499  |  | 
  | 
1500  |  | #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_DOUBLE_JAC_ALT)  | 
1501  |  |     return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;  | 
1502  |  | #else  | 
1503  | 0  |     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;  | 
1504  |  |  | 
1505  |  |     /* Special case for A = -3 */  | 
1506  | 0  |     if (mbedtls_ecp_group_a_is_minus_3(grp)) { | 
1507  |  |         /* tmp[0] <- M = 3(X + Z^2)(X - Z^2) */  | 
1508  | 0  |         MPI_ECP_SQR(&tmp[1],  &P->Z);  | 
1509  | 0  |         MPI_ECP_ADD(&tmp[2],  &P->X,  &tmp[1]);  | 
1510  | 0  |         MPI_ECP_SUB(&tmp[3],  &P->X,  &tmp[1]);  | 
1511  | 0  |         MPI_ECP_MUL(&tmp[1],  &tmp[2],     &tmp[3]);  | 
1512  | 0  |         MPI_ECP_MUL_INT(&tmp[0],  &tmp[1],     3);  | 
1513  | 0  |     } else { | 
1514  |  |         /* tmp[0] <- M = 3.X^2 + A.Z^4 */  | 
1515  | 0  |         MPI_ECP_SQR(&tmp[1],  &P->X);  | 
1516  | 0  |         MPI_ECP_MUL_INT(&tmp[0],  &tmp[1],  3);  | 
1517  |  |  | 
1518  |  |         /* Optimize away for "koblitz" curves with A = 0 */  | 
1519  | 0  |         if (MPI_ECP_CMP_INT(&grp->A, 0) != 0) { | 
1520  |  |             /* M += A.Z^4 */  | 
1521  | 0  |             MPI_ECP_SQR(&tmp[1],  &P->Z);  | 
1522  | 0  |             MPI_ECP_SQR(&tmp[2],  &tmp[1]);  | 
1523  | 0  |             MPI_ECP_MUL(&tmp[1],  &tmp[2],     &grp->A);  | 
1524  | 0  |             MPI_ECP_ADD(&tmp[0],  &tmp[0],     &tmp[1]);  | 
1525  | 0  |         }  | 
1526  | 0  |     }  | 
1527  |  |  | 
1528  |  |     /* tmp[1] <- S = 4.X.Y^2 */  | 
1529  | 0  |     MPI_ECP_SQR(&tmp[2],  &P->Y);  | 
1530  | 0  |     MPI_ECP_SHIFT_L(&tmp[2],  1);  | 
1531  | 0  |     MPI_ECP_MUL(&tmp[1],  &P->X, &tmp[2]);  | 
1532  | 0  |     MPI_ECP_SHIFT_L(&tmp[1],  1);  | 
1533  |  |  | 
1534  |  |     /* tmp[3] <- U = 8.Y^4 */  | 
1535  | 0  |     MPI_ECP_SQR(&tmp[3],  &tmp[2]);  | 
1536  | 0  |     MPI_ECP_SHIFT_L(&tmp[3],  1);  | 
1537  |  |  | 
1538  |  |     /* tmp[2] <- T = M^2 - 2.S */  | 
1539  | 0  |     MPI_ECP_SQR(&tmp[2],  &tmp[0]);  | 
1540  | 0  |     MPI_ECP_SUB(&tmp[2],  &tmp[2], &tmp[1]);  | 
1541  | 0  |     MPI_ECP_SUB(&tmp[2],  &tmp[2], &tmp[1]);  | 
1542  |  |  | 
1543  |  |     /* tmp[1] <- S = M(S - T) - U */  | 
1544  | 0  |     MPI_ECP_SUB(&tmp[1],  &tmp[1],     &tmp[2]);  | 
1545  | 0  |     MPI_ECP_MUL(&tmp[1],  &tmp[1],     &tmp[0]);  | 
1546  | 0  |     MPI_ECP_SUB(&tmp[1],  &tmp[1],     &tmp[3]);  | 
1547  |  |  | 
1548  |  |     /* tmp[3] <- U = 2.Y.Z */  | 
1549  | 0  |     MPI_ECP_MUL(&tmp[3],  &P->Y,  &P->Z);  | 
1550  | 0  |     MPI_ECP_SHIFT_L(&tmp[3],  1);  | 
1551  |  |  | 
1552  |  |     /* Store results */  | 
1553  | 0  |     MPI_ECP_MOV(&R->X, &tmp[2]);  | 
1554  | 0  |     MPI_ECP_MOV(&R->Y, &tmp[1]);  | 
1555  | 0  |     MPI_ECP_MOV(&R->Z, &tmp[3]);  | 
1556  |  |  | 
1557  | 0  | cleanup:  | 
1558  |  | 
  | 
1559  | 0  |     return ret;  | 
1560  | 0  | #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_DOUBLE_JAC_ALT) */  | 
1561  | 0  | }  | 
1562  |  |  | 
1563  |  | /*  | 
1564  |  |  * Addition: R = P + Q, mixed affine-Jacobian coordinates (GECC 3.22)  | 
1565  |  |  *  | 
1566  |  |  * The coordinates of Q must be normalized (= affine),  | 
1567  |  |  * but those of P don't need to. R is not normalized.  | 
1568  |  |  *  | 
1569  |  |  * P,Q,R may alias, but only at the level of EC points: they must be either  | 
1570  |  |  * equal as pointers, or disjoint (including the coordinate data buffers).  | 
1571  |  |  * Fine-grained aliasing at the level of coordinates is not supported.  | 
1572  |  |  *  | 
1573  |  |  * Special cases: (1) P or Q is zero, (2) R is zero, (3) P == Q.  | 
1574  |  |  * None of these cases can happen as intermediate step in ecp_mul_comb():  | 
1575  |  |  * - at each step, P, Q and R are multiples of the base point, the factor  | 
1576  |  |  *   being less than its order, so none of them is zero;  | 
1577  |  |  * - Q is an odd multiple of the base point, P an even multiple,  | 
1578  |  |  *   due to the choice of precomputed points in the modified comb method.  | 
1579  |  |  * So branches for these cases do not leak secret information.  | 
1580  |  |  *  | 
1581  |  |  * Cost: 1A := 8M + 3S  | 
1582  |  |  */  | 
1583  |  | static int ecp_add_mixed(const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,  | 
1584  |  |                          const mbedtls_ecp_point *P, const mbedtls_ecp_point *Q,  | 
1585  |  |                          mbedtls_mpi tmp[4])  | 
1586  | 0  | { | 
1587  | 0  | #if defined(MBEDTLS_SELF_TEST)  | 
1588  | 0  |     add_count++;  | 
1589  | 0  | #endif  | 
1590  |  | 
  | 
1591  |  | #if defined(MBEDTLS_ECP_ADD_MIXED_ALT)  | 
1592  |  |     if (mbedtls_internal_ecp_grp_capable(grp)) { | 
1593  |  |         return mbedtls_internal_ecp_add_mixed(grp, R, P, Q);  | 
1594  |  |     }  | 
1595  |  | #endif /* MBEDTLS_ECP_ADD_MIXED_ALT */  | 
1596  |  | 
  | 
1597  |  | #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_ADD_MIXED_ALT)  | 
1598  |  |     return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;  | 
1599  |  | #else  | 
1600  | 0  |     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;  | 
1601  |  |  | 
1602  |  |     /* NOTE: Aliasing between input and output is allowed, so one has to make  | 
1603  |  |      *       sure that at the point X,Y,Z are written, {P,Q}->{X,Y,Z} are no | 
1604  |  |      *       longer read from. */  | 
1605  | 0  |     mbedtls_mpi * const X = &R->X;  | 
1606  | 0  |     mbedtls_mpi * const Y = &R->Y;  | 
1607  | 0  |     mbedtls_mpi * const Z = &R->Z;  | 
1608  |  | 
  | 
1609  | 0  |     if (!MPI_ECP_VALID(&Q->Z)) { | 
1610  | 0  |         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;  | 
1611  | 0  |     }  | 
1612  |  |  | 
1613  |  |     /*  | 
1614  |  |      * Trivial cases: P == 0 or Q == 0 (case 1)  | 
1615  |  |      */  | 
1616  | 0  |     if (MPI_ECP_CMP_INT(&P->Z, 0) == 0) { | 
1617  | 0  |         return mbedtls_ecp_copy(R, Q);  | 
1618  | 0  |     }  | 
1619  |  |  | 
1620  | 0  |     if (MPI_ECP_CMP_INT(&Q->Z, 0) == 0) { | 
1621  | 0  |         return mbedtls_ecp_copy(R, P);  | 
1622  | 0  |     }  | 
1623  |  |  | 
1624  |  |     /*  | 
1625  |  |      * Make sure Q coordinates are normalized  | 
1626  |  |      */  | 
1627  | 0  |     if (MPI_ECP_CMP_INT(&Q->Z, 1) != 0) { | 
1628  | 0  |         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;  | 
1629  | 0  |     }  | 
1630  |  |  | 
1631  | 0  |     MPI_ECP_SQR(&tmp[0], &P->Z);  | 
1632  | 0  |     MPI_ECP_MUL(&tmp[1], &tmp[0], &P->Z);  | 
1633  | 0  |     MPI_ECP_MUL(&tmp[0], &tmp[0], &Q->X);  | 
1634  | 0  |     MPI_ECP_MUL(&tmp[1], &tmp[1], &Q->Y);  | 
1635  | 0  |     MPI_ECP_SUB(&tmp[0], &tmp[0], &P->X);  | 
1636  | 0  |     MPI_ECP_SUB(&tmp[1], &tmp[1], &P->Y);  | 
1637  |  |  | 
1638  |  |     /* Special cases (2) and (3) */  | 
1639  | 0  |     if (MPI_ECP_CMP_INT(&tmp[0], 0) == 0) { | 
1640  | 0  |         if (MPI_ECP_CMP_INT(&tmp[1], 0) == 0) { | 
1641  | 0  |             ret = ecp_double_jac(grp, R, P, tmp);  | 
1642  | 0  |             goto cleanup;  | 
1643  | 0  |         } else { | 
1644  | 0  |             ret = mbedtls_ecp_set_zero(R);  | 
1645  | 0  |             goto cleanup;  | 
1646  | 0  |         }  | 
1647  | 0  |     }  | 
1648  |  |  | 
1649  |  |     /* {P,Q}->Z no longer used, so OK to write to Z even if there's aliasing. */ | 
1650  | 0  |     MPI_ECP_MUL(Z,        &P->Z,    &tmp[0]);  | 
1651  | 0  |     MPI_ECP_SQR(&tmp[2],  &tmp[0]);  | 
1652  | 0  |     MPI_ECP_MUL(&tmp[3],  &tmp[2],  &tmp[0]);  | 
1653  | 0  |     MPI_ECP_MUL(&tmp[2],  &tmp[2],  &P->X);  | 
1654  |  |  | 
1655  | 0  |     MPI_ECP_MOV(&tmp[0], &tmp[2]);  | 
1656  | 0  |     MPI_ECP_SHIFT_L(&tmp[0], 1);  | 
1657  |  |  | 
1658  |  |     /* {P,Q}->X no longer used, so OK to write to X even if there's aliasing. */ | 
1659  | 0  |     MPI_ECP_SQR(X,        &tmp[1]);  | 
1660  | 0  |     MPI_ECP_SUB(X,        X,        &tmp[0]);  | 
1661  | 0  |     MPI_ECP_SUB(X,        X,        &tmp[3]);  | 
1662  | 0  |     MPI_ECP_SUB(&tmp[2],  &tmp[2],  X);  | 
1663  | 0  |     MPI_ECP_MUL(&tmp[2],  &tmp[2],  &tmp[1]);  | 
1664  | 0  |     MPI_ECP_MUL(&tmp[3],  &tmp[3],  &P->Y);  | 
1665  |  |     /* {P,Q}->Y no longer used, so OK to write to Y even if there's aliasing. */ | 
1666  | 0  |     MPI_ECP_SUB(Y,     &tmp[2],     &tmp[3]);  | 
1667  |  |  | 
1668  | 0  | cleanup:  | 
1669  |  | 
  | 
1670  | 0  |     return ret;  | 
1671  | 0  | #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_ADD_MIXED_ALT) */  | 
1672  | 0  | }  | 
1673  |  |  | 
1674  |  | /*  | 
1675  |  |  * Randomize jacobian coordinates:  | 
1676  |  |  * (X, Y, Z) -> (l^2 X, l^3 Y, l Z) for random l  | 
1677  |  |  * This is sort of the reverse operation of ecp_normalize_jac().  | 
1678  |  |  *  | 
1679  |  |  * This countermeasure was first suggested in [2].  | 
1680  |  |  */  | 
1681  |  | static int ecp_randomize_jac(const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt,  | 
1682  |  |                              int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)  | 
1683  | 0  | { | 
1684  |  | #if defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT)  | 
1685  |  |     if (mbedtls_internal_ecp_grp_capable(grp)) { | 
1686  |  |         return mbedtls_internal_ecp_randomize_jac(grp, pt, f_rng, p_rng);  | 
1687  |  |     }  | 
1688  |  | #endif /* MBEDTLS_ECP_RANDOMIZE_JAC_ALT */  | 
1689  |  | 
  | 
1690  |  | #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT)  | 
1691  |  |     return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;  | 
1692  |  | #else  | 
1693  | 0  |     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;  | 
1694  | 0  |     mbedtls_mpi l;  | 
1695  |  | 
  | 
1696  | 0  |     mbedtls_mpi_init(&l);  | 
1697  |  |  | 
1698  |  |     /* Generate l such that 1 < l < p */  | 
1699  | 0  |     MPI_ECP_RAND(&l);  | 
1700  |  |  | 
1701  |  |     /* Z' = l * Z */  | 
1702  | 0  |     MPI_ECP_MUL(&pt->Z,   &pt->Z,     &l);  | 
1703  |  |  | 
1704  |  |     /* Y' = l * Y */  | 
1705  | 0  |     MPI_ECP_MUL(&pt->Y,   &pt->Y,     &l);  | 
1706  |  |  | 
1707  |  |     /* X' = l^2 * X */  | 
1708  | 0  |     MPI_ECP_SQR(&l,       &l);  | 
1709  | 0  |     MPI_ECP_MUL(&pt->X,   &pt->X,     &l);  | 
1710  |  |  | 
1711  |  |     /* Y'' = l^2 * Y' = l^3 * Y */  | 
1712  | 0  |     MPI_ECP_MUL(&pt->Y,   &pt->Y,     &l);  | 
1713  |  |  | 
1714  | 0  | cleanup:  | 
1715  | 0  |     mbedtls_mpi_free(&l);  | 
1716  |  | 
  | 
1717  | 0  |     if (ret == MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) { | 
1718  | 0  |         ret = MBEDTLS_ERR_ECP_RANDOM_FAILED;  | 
1719  | 0  |     }  | 
1720  | 0  |     return ret;  | 
1721  | 0  | #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT) */  | 
1722  | 0  | }  | 
1723  |  |  | 
1724  |  | /*  | 
1725  |  |  * Check and define parameters used by the comb method (see below for details)  | 
1726  |  |  */  | 
1727  |  | #if MBEDTLS_ECP_WINDOW_SIZE < 2 || MBEDTLS_ECP_WINDOW_SIZE > 7  | 
1728  |  | #error "MBEDTLS_ECP_WINDOW_SIZE out of bounds"  | 
1729  |  | #endif  | 
1730  |  |  | 
1731  |  | /* d = ceil( n / w ) */  | 
1732  |  | #define COMB_MAX_D      (MBEDTLS_ECP_MAX_BITS + 1) / 2  | 
1733  |  |  | 
1734  |  | /* number of precomputed points */  | 
1735  |  | #define COMB_MAX_PRE    (1 << (MBEDTLS_ECP_WINDOW_SIZE - 1))  | 
1736  |  |  | 
1737  |  | /*  | 
1738  |  |  * Compute the representation of m that will be used with our comb method.  | 
1739  |  |  *  | 
1740  |  |  * The basic comb method is described in GECC 3.44 for example. We use a  | 
1741  |  |  * modified version that provides resistance to SPA by avoiding zero  | 
1742  |  |  * digits in the representation as in [3]. We modify the method further by  | 
1743  |  |  * requiring that all K_i be odd, which has the small cost that our  | 
1744  |  |  * representation uses one more K_i, due to carries, but saves on the size of  | 
1745  |  |  * the precomputed table.  | 
1746  |  |  *  | 
1747  |  |  * Summary of the comb method and its modifications:  | 
1748  |  |  *  | 
1749  |  |  * - The goal is to compute m*P for some w*d-bit integer m.  | 
1750  |  |  *  | 
1751  |  |  * - The basic comb method splits m into the w-bit integers  | 
1752  |  |  *   x[0] .. x[d-1] where x[i] consists of the bits in m whose  | 
1753  |  |  *   index has residue i modulo d, and computes m * P as  | 
1754  |  |  *   S[x[0]] + 2 * S[x[1]] + .. + 2^(d-1) S[x[d-1]], where  | 
1755  |  |  *   S[i_{w-1} .. i_0] := i_{w-1} 2^{(w-1)d} P + ... + i_1 2^d P + i_0 P. | 
1756  |  |  *  | 
1757  |  |  * - If it happens that, say, x[i+1]=0 (=> S[x[i+1]]=0), one can replace the sum by  | 
1758  |  |  *    .. + 2^{i-1} S[x[i-1]] - 2^i S[x[i]] + 2^{i+1} S[x[i]] + 2^{i+2} S[x[i+2]] .., | 
1759  |  |  *   thereby successively converting it into a form where all summands  | 
1760  |  |  *   are nonzero, at the cost of negative summands. This is the basic idea of [3].  | 
1761  |  |  *  | 
1762  |  |  * - More generally, even if x[i+1] != 0, we can first transform the sum as  | 
1763  |  |  *   .. - 2^i S[x[i]] + 2^{i+1} ( S[x[i]] + S[x[i+1]] ) + 2^{i+2} S[x[i+2]] .., | 
1764  |  |  *   and then replace S[x[i]] + S[x[i+1]] = S[x[i] ^ x[i+1]] + 2 S[x[i] & x[i+1]].  | 
1765  |  |  *   Performing and iterating this procedure for those x[i] that are even  | 
1766  |  |  *   (keeping track of carry), we can transform the original sum into one of the form  | 
1767  |  |  *   S[x'[0]] +- 2 S[x'[1]] +- .. +- 2^{d-1} S[x'[d-1]] + 2^d S[x'[d]] | 
1768  |  |  *   with all x'[i] odd. It is therefore only necessary to know S at odd indices,  | 
1769  |  |  *   which is why we are only computing half of it in the first place in  | 
1770  |  |  *   ecp_precompute_comb and accessing it with index abs(i) / 2 in ecp_select_comb.  | 
1771  |  |  *  | 
1772  |  |  * - For the sake of compactness, only the seven low-order bits of x[i]  | 
1773  |  |  *   are used to represent its absolute value (K_i in the paper), and the msb  | 
1774  |  |  *   of x[i] encodes the sign (s_i in the paper): it is set if and only if  | 
1775  |  |  *   if s_i == -1;  | 
1776  |  |  *  | 
1777  |  |  * Calling conventions:  | 
1778  |  |  * - x is an array of size d + 1  | 
1779  |  |  * - w is the size, ie number of teeth, of the comb, and must be between  | 
1780  |  |  *   2 and 7 (in practice, between 2 and MBEDTLS_ECP_WINDOW_SIZE)  | 
1781  |  |  * - m is the MPI, expected to be odd and such that bitlength(m) <= w * d  | 
1782  |  |  *   (the result will be incorrect if these assumptions are not satisfied)  | 
1783  |  |  */  | 
1784  |  | static void ecp_comb_recode_core(unsigned char x[], size_t d,  | 
1785  |  |                                  unsigned char w, const mbedtls_mpi *m)  | 
1786  | 0  | { | 
1787  | 0  |     size_t i, j;  | 
1788  | 0  |     unsigned char c, cc, adjust;  | 
1789  |  | 
  | 
1790  | 0  |     memset(x, 0, d+1);  | 
1791  |  |  | 
1792  |  |     /* First get the classical comb values (except for x_d = 0) */  | 
1793  | 0  |     for (i = 0; i < d; i++) { | 
1794  | 0  |         for (j = 0; j < w; j++) { | 
1795  | 0  |             x[i] |= mbedtls_mpi_get_bit(m, i + d * j) << j;  | 
1796  | 0  |         }  | 
1797  | 0  |     }  | 
1798  |  |  | 
1799  |  |     /* Now make sure x_1 .. x_d are odd */  | 
1800  | 0  |     c = 0;  | 
1801  | 0  |     for (i = 1; i <= d; i++) { | 
1802  |  |         /* Add carry and update it */  | 
1803  | 0  |         cc   = x[i] & c;  | 
1804  | 0  |         x[i] = x[i] ^ c;  | 
1805  | 0  |         c = cc;  | 
1806  |  |  | 
1807  |  |         /* Adjust if needed, avoiding branches */  | 
1808  | 0  |         adjust = 1 - (x[i] & 0x01);  | 
1809  | 0  |         c   |= x[i] & (x[i-1] * adjust);  | 
1810  | 0  |         x[i] = x[i] ^ (x[i-1] * adjust);  | 
1811  | 0  |         x[i-1] |= adjust << 7;  | 
1812  | 0  |     }  | 
1813  | 0  | }  | 
1814  |  |  | 
1815  |  | /*  | 
1816  |  |  * Precompute points for the adapted comb method  | 
1817  |  |  *  | 
1818  |  |  * Assumption: T must be able to hold 2^{w - 1} elements. | 
1819  |  |  *  | 
1820  |  |  * Operation: If i = i_{w-1} ... i_1 is the binary representation of i, | 
1821  |  |  *            sets T[i] = i_{w-1} 2^{(w-1)d} P + ... + i_1 2^d P + P. | 
1822  |  |  *  | 
1823  |  |  * Cost: d(w-1) D + (2^{w-1} - 1) A + 1 N(w-1) + 1 N(2^{w-1} - 1) | 
1824  |  |  *  | 
1825  |  |  * Note: Even comb values (those where P would be omitted from the  | 
1826  |  |  *       sum defining T[i] above) are not needed in our adaption  | 
1827  |  |  *       the comb method. See ecp_comb_recode_core().  | 
1828  |  |  *  | 
1829  |  |  * This function currently works in four steps:  | 
1830  |  |  * (1) [dbl]      Computation of intermediate T[i] for 2-power values of i  | 
1831  |  |  * (2) [norm_dbl] Normalization of coordinates of these T[i]  | 
1832  |  |  * (3) [add]      Computation of all T[i]  | 
1833  |  |  * (4) [norm_add] Normalization of all T[i]  | 
1834  |  |  *  | 
1835  |  |  * Step 1 can be interrupted but not the others; together with the final  | 
1836  |  |  * coordinate normalization they are the largest steps done at once, depending  | 
1837  |  |  * on the window size. Here are operation counts for P-256:  | 
1838  |  |  *  | 
1839  |  |  * step     (2)     (3)     (4)  | 
1840  |  |  * w = 5    142     165     208  | 
1841  |  |  * w = 4    136      77     160  | 
1842  |  |  * w = 3    130      33     136  | 
1843  |  |  * w = 2    124      11     124  | 
1844  |  |  *  | 
1845  |  |  * So if ECC operations are blocking for too long even with a low max_ops  | 
1846  |  |  * value, it's useful to set MBEDTLS_ECP_WINDOW_SIZE to a lower value in order  | 
1847  |  |  * to minimize maximum blocking time.  | 
1848  |  |  */  | 
1849  |  | static int ecp_precompute_comb(const mbedtls_ecp_group *grp,  | 
1850  |  |                                mbedtls_ecp_point T[], const mbedtls_ecp_point *P,  | 
1851  |  |                                unsigned char w, size_t d,  | 
1852  |  |                                mbedtls_ecp_restart_ctx *rs_ctx)  | 
1853  | 0  | { | 
1854  | 0  |     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;  | 
1855  | 0  |     unsigned char i;  | 
1856  | 0  |     size_t j = 0;  | 
1857  | 0  |     const unsigned char T_size = 1U << (w - 1);  | 
1858  | 0  |     mbedtls_ecp_point *cur, *TT[COMB_MAX_PRE - 1] = { NULL }; | 
1859  |  | 
  | 
1860  | 0  |     mbedtls_mpi tmp[4];  | 
1861  |  | 
  | 
1862  | 0  |     mpi_init_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));  | 
1863  |  | 
  | 
1864  | 0  | #if defined(MBEDTLS_ECP_RESTARTABLE)  | 
1865  | 0  |     if (rs_ctx != NULL && rs_ctx->rsm != NULL) { | 
1866  | 0  |         if (rs_ctx->rsm->state == ecp_rsm_pre_dbl) { | 
1867  | 0  |             goto dbl;  | 
1868  | 0  |         }  | 
1869  | 0  |         if (rs_ctx->rsm->state == ecp_rsm_pre_norm_dbl) { | 
1870  | 0  |             goto norm_dbl;  | 
1871  | 0  |         }  | 
1872  | 0  |         if (rs_ctx->rsm->state == ecp_rsm_pre_add) { | 
1873  | 0  |             goto add;  | 
1874  | 0  |         }  | 
1875  | 0  |         if (rs_ctx->rsm->state == ecp_rsm_pre_norm_add) { | 
1876  | 0  |             goto norm_add;  | 
1877  | 0  |         }  | 
1878  | 0  |     }  | 
1879  |  | #else  | 
1880  |  |     (void) rs_ctx;  | 
1881  |  | #endif  | 
1882  |  |  | 
1883  | 0  | #if defined(MBEDTLS_ECP_RESTARTABLE)  | 
1884  | 0  |     if (rs_ctx != NULL && rs_ctx->rsm != NULL) { | 
1885  | 0  |         rs_ctx->rsm->state = ecp_rsm_pre_dbl;  | 
1886  |  |  | 
1887  |  |         /* initial state for the loop */  | 
1888  | 0  |         rs_ctx->rsm->i = 0;  | 
1889  | 0  |     }  | 
1890  |  | 
  | 
1891  | 0  | dbl:  | 
1892  | 0  | #endif  | 
1893  |  |     /*  | 
1894  |  |      * Set T[0] = P and  | 
1895  |  |      * T[2^{l-1}] = 2^{dl} P for l = 1 .. w-1 (this is not the final value) | 
1896  |  |      */  | 
1897  | 0  |     MBEDTLS_MPI_CHK(mbedtls_ecp_copy(&T[0], P));  | 
1898  |  |  | 
1899  | 0  | #if defined(MBEDTLS_ECP_RESTARTABLE)  | 
1900  | 0  |     if (rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->i != 0) { | 
1901  | 0  |         j = rs_ctx->rsm->i;  | 
1902  | 0  |     } else  | 
1903  | 0  | #endif  | 
1904  | 0  |     j = 0;  | 
1905  |  | 
  | 
1906  | 0  |     for (; j < d * (w - 1); j++) { | 
1907  | 0  |         MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_DBL);  | 
1908  |  | 
  | 
1909  | 0  |         i = 1U << (j / d);  | 
1910  | 0  |         cur = T + i;  | 
1911  |  | 
  | 
1912  | 0  |         if (j % d == 0) { | 
1913  | 0  |             MBEDTLS_MPI_CHK(mbedtls_ecp_copy(cur, T + (i >> 1)));  | 
1914  | 0  |         }  | 
1915  |  |  | 
1916  | 0  |         MBEDTLS_MPI_CHK(ecp_double_jac(grp, cur, cur, tmp));  | 
1917  | 0  |     }  | 
1918  |  |  | 
1919  | 0  | #if defined(MBEDTLS_ECP_RESTARTABLE)  | 
1920  | 0  |     if (rs_ctx != NULL && rs_ctx->rsm != NULL) { | 
1921  | 0  |         rs_ctx->rsm->state = ecp_rsm_pre_norm_dbl;  | 
1922  | 0  |     }  | 
1923  |  | 
  | 
1924  | 0  | norm_dbl:  | 
1925  | 0  | #endif  | 
1926  |  |     /*  | 
1927  |  |      * Normalize current elements in T to allow them to be used in  | 
1928  |  |      * ecp_add_mixed() below, which requires one normalized input.  | 
1929  |  |      *  | 
1930  |  |      * As T has holes, use an auxiliary array of pointers to elements in T.  | 
1931  |  |      *  | 
1932  |  |      */  | 
1933  | 0  |     j = 0;  | 
1934  | 0  |     for (i = 1; i < T_size; i <<= 1) { | 
1935  | 0  |         TT[j++] = T + i;  | 
1936  | 0  |     }  | 
1937  |  | 
  | 
1938  | 0  |     MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_INV + 6 * j - 2);  | 
1939  |  | 
  | 
1940  | 0  |     MBEDTLS_MPI_CHK(ecp_normalize_jac_many(grp, TT, j));  | 
1941  |  |  | 
1942  | 0  | #if defined(MBEDTLS_ECP_RESTARTABLE)  | 
1943  | 0  |     if (rs_ctx != NULL && rs_ctx->rsm != NULL) { | 
1944  | 0  |         rs_ctx->rsm->state = ecp_rsm_pre_add;  | 
1945  | 0  |     }  | 
1946  |  | 
  | 
1947  | 0  | add:  | 
1948  | 0  | #endif  | 
1949  |  |     /*  | 
1950  |  |      * Compute the remaining ones using the minimal number of additions  | 
1951  |  |      * Be careful to update T[2^l] only after using it!  | 
1952  |  |      */  | 
1953  | 0  |     MBEDTLS_ECP_BUDGET((T_size - 1) * MBEDTLS_ECP_OPS_ADD);  | 
1954  |  | 
  | 
1955  | 0  |     for (i = 1; i < T_size; i <<= 1) { | 
1956  | 0  |         j = i;  | 
1957  | 0  |         while (j--) { | 
1958  | 0  |             MBEDTLS_MPI_CHK(ecp_add_mixed(grp, &T[i + j], &T[j], &T[i], tmp));  | 
1959  | 0  |         }  | 
1960  | 0  |     }  | 
1961  |  |  | 
1962  | 0  | #if defined(MBEDTLS_ECP_RESTARTABLE)  | 
1963  | 0  |     if (rs_ctx != NULL && rs_ctx->rsm != NULL) { | 
1964  | 0  |         rs_ctx->rsm->state = ecp_rsm_pre_norm_add;  | 
1965  | 0  |     }  | 
1966  |  | 
  | 
1967  | 0  | norm_add:  | 
1968  | 0  | #endif  | 
1969  |  |     /*  | 
1970  |  |      * Normalize final elements in T. Even though there are no holes now, we  | 
1971  |  |      * still need the auxiliary array for homogeneity with the previous  | 
1972  |  |      * call. Also, skip T[0] which is already normalised, being a copy of P.  | 
1973  |  |      */  | 
1974  | 0  |     for (j = 0; j + 1 < T_size; j++) { | 
1975  | 0  |         TT[j] = T + j + 1;  | 
1976  | 0  |     }  | 
1977  |  | 
  | 
1978  | 0  |     MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_INV + 6 * j - 2);  | 
1979  |  | 
  | 
1980  | 0  |     MBEDTLS_MPI_CHK(ecp_normalize_jac_many(grp, TT, j));  | 
1981  |  |  | 
1982  |  |     /* Free Z coordinate (=1 after normalization) to save RAM.  | 
1983  |  |      * This makes T[i] invalid as mbedtls_ecp_points, but this is OK  | 
1984  |  |      * since from this point onwards, they are only accessed indirectly  | 
1985  |  |      * via the getter function ecp_select_comb() which does set the  | 
1986  |  |      * target's Z coordinate to 1. */  | 
1987  | 0  |     for (i = 0; i < T_size; i++) { | 
1988  | 0  |         mbedtls_mpi_free(&T[i].Z);  | 
1989  | 0  |     }  | 
1990  |  | 
  | 
1991  | 0  | cleanup:  | 
1992  |  | 
  | 
1993  | 0  |     mpi_free_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));  | 
1994  |  | 
  | 
1995  | 0  | #if defined(MBEDTLS_ECP_RESTARTABLE)  | 
1996  | 0  |     if (rs_ctx != NULL && rs_ctx->rsm != NULL &&  | 
1997  | 0  |         ret == MBEDTLS_ERR_ECP_IN_PROGRESS) { | 
1998  | 0  |         if (rs_ctx->rsm->state == ecp_rsm_pre_dbl) { | 
1999  | 0  |             rs_ctx->rsm->i = j;  | 
2000  | 0  |         }  | 
2001  | 0  |     }  | 
2002  | 0  | #endif  | 
2003  |  | 
  | 
2004  | 0  |     return ret;  | 
2005  | 0  | }  | 
2006  |  |  | 
2007  |  | /*  | 
2008  |  |  * Select precomputed point: R = sign(i) * T[ abs(i) / 2 ]  | 
2009  |  |  *  | 
2010  |  |  * See ecp_comb_recode_core() for background  | 
2011  |  |  */  | 
2012  |  | static int ecp_select_comb(const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,  | 
2013  |  |                            const mbedtls_ecp_point T[], unsigned char T_size,  | 
2014  |  |                            unsigned char i)  | 
2015  | 0  | { | 
2016  | 0  |     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;  | 
2017  | 0  |     unsigned char ii, j;  | 
2018  |  |  | 
2019  |  |     /* Ignore the "sign" bit and scale down */  | 
2020  | 0  |     ii =  (i & 0x7Fu) >> 1;  | 
2021  |  |  | 
2022  |  |     /* Read the whole table to thwart cache-based timing attacks */  | 
2023  | 0  |     for (j = 0; j < T_size; j++) { | 
2024  | 0  |         MPI_ECP_COND_ASSIGN(&R->X, &T[j].X, j == ii);  | 
2025  | 0  |         MPI_ECP_COND_ASSIGN(&R->Y, &T[j].Y, j == ii);  | 
2026  | 0  |     }  | 
2027  |  |  | 
2028  |  |     /* Safely invert result if i is "negative" */  | 
2029  | 0  |     MBEDTLS_MPI_CHK(ecp_safe_invert_jac(grp, R, i >> 7));  | 
2030  |  |  | 
2031  | 0  |     MPI_ECP_LSET(&R->Z, 1);  | 
2032  |  |  | 
2033  | 0  | cleanup:  | 
2034  | 0  |     return ret;  | 
2035  | 0  | }  | 
2036  |  |  | 
2037  |  | /*  | 
2038  |  |  * Core multiplication algorithm for the (modified) comb method.  | 
2039  |  |  * This part is actually common with the basic comb method (GECC 3.44)  | 
2040  |  |  *  | 
2041  |  |  * Cost: d A + d D + 1 R  | 
2042  |  |  */  | 
2043  |  | static int ecp_mul_comb_core(const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,  | 
2044  |  |                              const mbedtls_ecp_point T[], unsigned char T_size,  | 
2045  |  |                              const unsigned char x[], size_t d,  | 
2046  |  |                              int (*f_rng)(void *, unsigned char *, size_t),  | 
2047  |  |                              void *p_rng,  | 
2048  |  |                              mbedtls_ecp_restart_ctx *rs_ctx)  | 
2049  | 0  | { | 
2050  | 0  |     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;  | 
2051  | 0  |     mbedtls_ecp_point Txi;  | 
2052  | 0  |     mbedtls_mpi tmp[4];  | 
2053  | 0  |     size_t i;  | 
2054  |  | 
  | 
2055  | 0  |     mbedtls_ecp_point_init(&Txi);  | 
2056  | 0  |     mpi_init_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));  | 
2057  |  | 
  | 
2058  |  | #if !defined(MBEDTLS_ECP_RESTARTABLE)  | 
2059  |  |     (void) rs_ctx;  | 
2060  |  | #endif  | 
2061  |  | 
  | 
2062  | 0  | #if defined(MBEDTLS_ECP_RESTARTABLE)  | 
2063  | 0  |     if (rs_ctx != NULL && rs_ctx->rsm != NULL &&  | 
2064  | 0  |         rs_ctx->rsm->state != ecp_rsm_comb_core) { | 
2065  | 0  |         rs_ctx->rsm->i = 0;  | 
2066  | 0  |         rs_ctx->rsm->state = ecp_rsm_comb_core;  | 
2067  | 0  |     }  | 
2068  |  |  | 
2069  |  |     /* new 'if' instead of nested for the sake of the 'else' branch */  | 
2070  | 0  |     if (rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->i != 0) { | 
2071  |  |         /* restore current index (R already pointing to rs_ctx->rsm->R) */  | 
2072  | 0  |         i = rs_ctx->rsm->i;  | 
2073  | 0  |     } else  | 
2074  | 0  | #endif  | 
2075  | 0  |     { | 
2076  |  |         /* Start with a non-zero point and randomize its coordinates */  | 
2077  | 0  |         i = d;  | 
2078  | 0  |         MBEDTLS_MPI_CHK(ecp_select_comb(grp, R, T, T_size, x[i]));  | 
2079  | 0  |         if (f_rng != 0) { | 
2080  | 0  |             MBEDTLS_MPI_CHK(ecp_randomize_jac(grp, R, f_rng, p_rng));  | 
2081  | 0  |         }  | 
2082  | 0  |     }  | 
2083  |  |  | 
2084  | 0  |     while (i != 0) { | 
2085  | 0  |         MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_DBL + MBEDTLS_ECP_OPS_ADD);  | 
2086  | 0  |         --i;  | 
2087  |  | 
  | 
2088  | 0  |         MBEDTLS_MPI_CHK(ecp_double_jac(grp, R, R, tmp));  | 
2089  | 0  |         MBEDTLS_MPI_CHK(ecp_select_comb(grp, &Txi, T, T_size, x[i]));  | 
2090  | 0  |         MBEDTLS_MPI_CHK(ecp_add_mixed(grp, R, R, &Txi, tmp));  | 
2091  | 0  |     }  | 
2092  |  |  | 
2093  | 0  | cleanup:  | 
2094  |  | 
  | 
2095  | 0  |     mbedtls_ecp_point_free(&Txi);  | 
2096  | 0  |     mpi_free_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));  | 
2097  |  | 
  | 
2098  | 0  | #if defined(MBEDTLS_ECP_RESTARTABLE)  | 
2099  | 0  |     if (rs_ctx != NULL && rs_ctx->rsm != NULL &&  | 
2100  | 0  |         ret == MBEDTLS_ERR_ECP_IN_PROGRESS) { | 
2101  | 0  |         rs_ctx->rsm->i = i;  | 
2102  |  |         /* no need to save R, already pointing to rs_ctx->rsm->R */  | 
2103  | 0  |     }  | 
2104  | 0  | #endif  | 
2105  |  | 
  | 
2106  | 0  |     return ret;  | 
2107  | 0  | }  | 
2108  |  |  | 
2109  |  | /*  | 
2110  |  |  * Recode the scalar to get constant-time comb multiplication  | 
2111  |  |  *  | 
2112  |  |  * As the actual scalar recoding needs an odd scalar as a starting point,  | 
2113  |  |  * this wrapper ensures that by replacing m by N - m if necessary, and  | 
2114  |  |  * informs the caller that the result of multiplication will be negated.  | 
2115  |  |  *  | 
2116  |  |  * This works because we only support large prime order for Short Weierstrass  | 
2117  |  |  * curves, so N is always odd hence either m or N - m is.  | 
2118  |  |  *  | 
2119  |  |  * See ecp_comb_recode_core() for background.  | 
2120  |  |  */  | 
2121  |  | static int ecp_comb_recode_scalar(const mbedtls_ecp_group *grp,  | 
2122  |  |                                   const mbedtls_mpi *m,  | 
2123  |  |                                   unsigned char k[COMB_MAX_D + 1],  | 
2124  |  |                                   size_t d,  | 
2125  |  |                                   unsigned char w,  | 
2126  |  |                                   unsigned char *parity_trick)  | 
2127  | 0  | { | 
2128  | 0  |     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;  | 
2129  | 0  |     mbedtls_mpi M, mm;  | 
2130  |  | 
  | 
2131  | 0  |     mbedtls_mpi_init(&M);  | 
2132  | 0  |     mbedtls_mpi_init(&mm);  | 
2133  |  |  | 
2134  |  |     /* N is always odd (see above), just make extra sure */  | 
2135  | 0  |     if (mbedtls_mpi_get_bit(&grp->N, 0) != 1) { | 
2136  | 0  |         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;  | 
2137  | 0  |     }  | 
2138  |  |  | 
2139  |  |     /* do we need the parity trick? */  | 
2140  | 0  |     *parity_trick = (mbedtls_mpi_get_bit(m, 0) == 0);  | 
2141  |  |  | 
2142  |  |     /* execute parity fix in constant time */  | 
2143  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&M, m));  | 
2144  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&mm, &grp->N, m));  | 
2145  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_assign(&M, &mm, *parity_trick));  | 
2146  |  |  | 
2147  |  |     /* actual scalar recoding */  | 
2148  | 0  |     ecp_comb_recode_core(k, d, w, &M);  | 
2149  |  | 
  | 
2150  | 0  | cleanup:  | 
2151  | 0  |     mbedtls_mpi_free(&mm);  | 
2152  | 0  |     mbedtls_mpi_free(&M);  | 
2153  |  | 
  | 
2154  | 0  |     return ret;  | 
2155  | 0  | }  | 
2156  |  |  | 
2157  |  | /*  | 
2158  |  |  * Perform comb multiplication (for short Weierstrass curves)  | 
2159  |  |  * once the auxiliary table has been pre-computed.  | 
2160  |  |  *  | 
2161  |  |  * Scalar recoding may use a parity trick that makes us compute -m * P,  | 
2162  |  |  * if that is the case we'll need to recover m * P at the end.  | 
2163  |  |  */  | 
2164  |  | static int ecp_mul_comb_after_precomp(const mbedtls_ecp_group *grp,  | 
2165  |  |                                       mbedtls_ecp_point *R,  | 
2166  |  |                                       const mbedtls_mpi *m,  | 
2167  |  |                                       const mbedtls_ecp_point *T,  | 
2168  |  |                                       unsigned char T_size,  | 
2169  |  |                                       unsigned char w,  | 
2170  |  |                                       size_t d,  | 
2171  |  |                                       int (*f_rng)(void *, unsigned char *, size_t),  | 
2172  |  |                                       void *p_rng,  | 
2173  |  |                                       mbedtls_ecp_restart_ctx *rs_ctx)  | 
2174  | 0  | { | 
2175  | 0  |     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;  | 
2176  | 0  |     unsigned char parity_trick;  | 
2177  | 0  |     unsigned char k[COMB_MAX_D + 1];  | 
2178  | 0  |     mbedtls_ecp_point *RR = R;  | 
2179  |  | 
  | 
2180  | 0  | #if defined(MBEDTLS_ECP_RESTARTABLE)  | 
2181  | 0  |     if (rs_ctx != NULL && rs_ctx->rsm != NULL) { | 
2182  | 0  |         RR = &rs_ctx->rsm->R;  | 
2183  |  | 
  | 
2184  | 0  |         if (rs_ctx->rsm->state == ecp_rsm_final_norm) { | 
2185  | 0  |             goto final_norm;  | 
2186  | 0  |         }  | 
2187  | 0  |     }  | 
2188  | 0  | #endif  | 
2189  |  |  | 
2190  | 0  |     MBEDTLS_MPI_CHK(ecp_comb_recode_scalar(grp, m, k, d, w,  | 
2191  | 0  |                                            &parity_trick));  | 
2192  | 0  |     MBEDTLS_MPI_CHK(ecp_mul_comb_core(grp, RR, T, T_size, k, d,  | 
2193  | 0  |                                       f_rng, p_rng, rs_ctx));  | 
2194  | 0  |     MBEDTLS_MPI_CHK(ecp_safe_invert_jac(grp, RR, parity_trick));  | 
2195  |  |  | 
2196  | 0  | #if defined(MBEDTLS_ECP_RESTARTABLE)  | 
2197  | 0  |     if (rs_ctx != NULL && rs_ctx->rsm != NULL) { | 
2198  | 0  |         rs_ctx->rsm->state = ecp_rsm_final_norm;  | 
2199  | 0  |     }  | 
2200  |  | 
  | 
2201  | 0  | final_norm:  | 
2202  | 0  |     MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_INV);  | 
2203  | 0  | #endif  | 
2204  |  |     /*  | 
2205  |  |      * Knowledge of the jacobian coordinates may leak the last few bits of the  | 
2206  |  |      * scalar [1], and since our MPI implementation isn't constant-flow,  | 
2207  |  |      * inversion (used for coordinate normalization) may leak the full value  | 
2208  |  |      * of its input via side-channels [2].  | 
2209  |  |      *  | 
2210  |  |      * [1] https://eprint.iacr.org/2003/191  | 
2211  |  |      * [2] https://eprint.iacr.org/2020/055  | 
2212  |  |      *  | 
2213  |  |      * Avoid the leak by randomizing coordinates before we normalize them.  | 
2214  |  |      */  | 
2215  | 0  |     if (f_rng != 0) { | 
2216  | 0  |         MBEDTLS_MPI_CHK(ecp_randomize_jac(grp, RR, f_rng, p_rng));  | 
2217  | 0  |     }  | 
2218  |  |  | 
2219  | 0  |     MBEDTLS_MPI_CHK(ecp_normalize_jac(grp, RR));  | 
2220  |  |  | 
2221  | 0  | #if defined(MBEDTLS_ECP_RESTARTABLE)  | 
2222  | 0  |     if (rs_ctx != NULL && rs_ctx->rsm != NULL) { | 
2223  | 0  |         MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, RR));  | 
2224  | 0  |     }  | 
2225  | 0  | #endif  | 
2226  |  |  | 
2227  | 0  | cleanup:  | 
2228  | 0  |     return ret;  | 
2229  | 0  | }  | 
2230  |  |  | 
2231  |  | /*  | 
2232  |  |  * Pick window size based on curve size and whether we optimize for base point  | 
2233  |  |  */  | 
2234  |  | static unsigned char ecp_pick_window_size(const mbedtls_ecp_group *grp,  | 
2235  |  |                                           unsigned char p_eq_g)  | 
2236  | 0  | { | 
2237  | 0  |     unsigned char w;  | 
2238  |  |  | 
2239  |  |     /*  | 
2240  |  |      * Minimize the number of multiplications, that is minimize  | 
2241  |  |      * 10 * d * w + 18 * 2^(w-1) + 11 * d + 7 * w, with d = ceil( nbits / w )  | 
2242  |  |      * (see costs of the various parts, with 1S = 1M)  | 
2243  |  |      */  | 
2244  | 0  |     w = grp->nbits >= 384 ? 5 : 4;  | 
2245  |  |  | 
2246  |  |     /*  | 
2247  |  |      * If P == G, pre-compute a bit more, since this may be re-used later.  | 
2248  |  |      * Just adding one avoids upping the cost of the first mul too much,  | 
2249  |  |      * and the memory cost too.  | 
2250  |  |      */  | 
2251  | 0  |     if (p_eq_g) { | 
2252  | 0  |         w++;  | 
2253  | 0  |     }  | 
2254  |  |  | 
2255  |  |     /*  | 
2256  |  |      * If static comb table may not be used (!p_eq_g) or static comb table does  | 
2257  |  |      * not exists, make sure w is within bounds.  | 
2258  |  |      * (The last test is useful only for very small curves in the test suite.)  | 
2259  |  |      *  | 
2260  |  |      * The user reduces MBEDTLS_ECP_WINDOW_SIZE does not changes the size of  | 
2261  |  |      * static comb table, because the size of static comb table is fixed when  | 
2262  |  |      * it is generated.  | 
2263  |  |      */  | 
2264  | 0  | #if (MBEDTLS_ECP_WINDOW_SIZE < 6)  | 
2265  | 0  |     if ((!p_eq_g || !ecp_group_is_static_comb_table(grp)) && w > MBEDTLS_ECP_WINDOW_SIZE) { | 
2266  | 0  |         w = MBEDTLS_ECP_WINDOW_SIZE;  | 
2267  | 0  |     }  | 
2268  | 0  | #endif  | 
2269  | 0  |     if (w >= grp->nbits) { | 
2270  | 0  |         w = 2;  | 
2271  | 0  |     }  | 
2272  |  | 
  | 
2273  | 0  |     return w;  | 
2274  | 0  | }  | 
2275  |  |  | 
2276  |  | /*  | 
2277  |  |  * Multiplication using the comb method - for curves in short Weierstrass form  | 
2278  |  |  *  | 
2279  |  |  * This function is mainly responsible for administrative work:  | 
2280  |  |  * - managing the restart context if enabled  | 
2281  |  |  * - managing the table of precomputed points (passed between the below two  | 
2282  |  |  *   functions): allocation, computation, ownership transfer, freeing.  | 
2283  |  |  *  | 
2284  |  |  * It delegates the actual arithmetic work to:  | 
2285  |  |  *      ecp_precompute_comb() and ecp_mul_comb_with_precomp()  | 
2286  |  |  *  | 
2287  |  |  * See comments on ecp_comb_recode_core() regarding the computation strategy.  | 
2288  |  |  */  | 
2289  |  | static int ecp_mul_comb(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,  | 
2290  |  |                         const mbedtls_mpi *m, const mbedtls_ecp_point *P,  | 
2291  |  |                         int (*f_rng)(void *, unsigned char *, size_t),  | 
2292  |  |                         void *p_rng,  | 
2293  |  |                         mbedtls_ecp_restart_ctx *rs_ctx)  | 
2294  | 0  | { | 
2295  | 0  |     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;  | 
2296  | 0  |     unsigned char w, p_eq_g, i;  | 
2297  | 0  |     size_t d;  | 
2298  | 0  |     unsigned char T_size = 0, T_ok = 0;  | 
2299  | 0  |     mbedtls_ecp_point *T = NULL;  | 
2300  |  | 
  | 
2301  | 0  |     ECP_RS_ENTER(rsm);  | 
2302  |  |  | 
2303  |  |     /* Is P the base point ? */  | 
2304  | 0  | #if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1  | 
2305  | 0  |     p_eq_g = (MPI_ECP_CMP(&P->Y, &grp->G.Y) == 0 &&  | 
2306  | 0  |               MPI_ECP_CMP(&P->X, &grp->G.X) == 0);  | 
2307  |  | #else  | 
2308  |  |     p_eq_g = 0;  | 
2309  |  | #endif  | 
2310  |  |  | 
2311  |  |     /* Pick window size and deduce related sizes */  | 
2312  | 0  |     w = ecp_pick_window_size(grp, p_eq_g);  | 
2313  | 0  |     T_size = 1U << (w - 1);  | 
2314  | 0  |     d = (grp->nbits + w - 1) / w;  | 
2315  |  |  | 
2316  |  |     /* Pre-computed table: do we have it already for the base point? */  | 
2317  | 0  |     if (p_eq_g && grp->T != NULL) { | 
2318  |  |         /* second pointer to the same table, will be deleted on exit */  | 
2319  | 0  |         T = grp->T;  | 
2320  | 0  |         T_ok = 1;  | 
2321  | 0  |     } else  | 
2322  | 0  | #if defined(MBEDTLS_ECP_RESTARTABLE)  | 
2323  |  |     /* Pre-computed table: do we have one in progress? complete? */  | 
2324  | 0  |     if (rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->T != NULL) { | 
2325  |  |         /* transfer ownership of T from rsm to local function */  | 
2326  | 0  |         T = rs_ctx->rsm->T;  | 
2327  | 0  |         rs_ctx->rsm->T = NULL;  | 
2328  | 0  |         rs_ctx->rsm->T_size = 0;  | 
2329  |  |  | 
2330  |  |         /* This effectively jumps to the call to mul_comb_after_precomp() */  | 
2331  | 0  |         T_ok = rs_ctx->rsm->state >= ecp_rsm_comb_core;  | 
2332  | 0  |     } else  | 
2333  | 0  | #endif  | 
2334  |  |     /* Allocate table if we didn't have any */  | 
2335  | 0  |     { | 
2336  | 0  |         T = mbedtls_calloc(T_size, sizeof(mbedtls_ecp_point));  | 
2337  | 0  |         if (T == NULL) { | 
2338  | 0  |             ret = MBEDTLS_ERR_ECP_ALLOC_FAILED;  | 
2339  | 0  |             goto cleanup;  | 
2340  | 0  |         }  | 
2341  |  |  | 
2342  | 0  |         for (i = 0; i < T_size; i++) { | 
2343  | 0  |             mbedtls_ecp_point_init(&T[i]);  | 
2344  | 0  |         }  | 
2345  |  | 
  | 
2346  | 0  |         T_ok = 0;  | 
2347  | 0  |     }  | 
2348  |  |  | 
2349  |  |     /* Compute table (or finish computing it) if not done already */  | 
2350  | 0  |     if (!T_ok) { | 
2351  | 0  |         MBEDTLS_MPI_CHK(ecp_precompute_comb(grp, T, P, w, d, rs_ctx));  | 
2352  |  |  | 
2353  | 0  |         if (p_eq_g) { | 
2354  |  |             /* almost transfer ownership of T to the group, but keep a copy of  | 
2355  |  |              * the pointer to use for calling the next function more easily */  | 
2356  | 0  |             grp->T = T;  | 
2357  | 0  |             grp->T_size = T_size;  | 
2358  | 0  |         }  | 
2359  | 0  |     }  | 
2360  |  |  | 
2361  |  |     /* Actual comb multiplication using precomputed points */  | 
2362  | 0  |     MBEDTLS_MPI_CHK(ecp_mul_comb_after_precomp(grp, R, m,  | 
2363  | 0  |                                                T, T_size, w, d,  | 
2364  | 0  |                                                f_rng, p_rng, rs_ctx));  | 
2365  |  |  | 
2366  | 0  | cleanup:  | 
2367  |  |  | 
2368  |  |     /* does T belong to the group? */  | 
2369  | 0  |     if (T == grp->T) { | 
2370  | 0  |         T = NULL;  | 
2371  | 0  |     }  | 
2372  |  |  | 
2373  |  |     /* does T belong to the restart context? */  | 
2374  | 0  | #if defined(MBEDTLS_ECP_RESTARTABLE)  | 
2375  | 0  |     if (rs_ctx != NULL && rs_ctx->rsm != NULL && ret == MBEDTLS_ERR_ECP_IN_PROGRESS && T != NULL) { | 
2376  |  |         /* transfer ownership of T from local function to rsm */  | 
2377  | 0  |         rs_ctx->rsm->T_size = T_size;  | 
2378  | 0  |         rs_ctx->rsm->T = T;  | 
2379  | 0  |         T = NULL;  | 
2380  | 0  |     }  | 
2381  | 0  | #endif  | 
2382  |  |  | 
2383  |  |     /* did T belong to us? then let's destroy it! */  | 
2384  | 0  |     if (T != NULL) { | 
2385  | 0  |         for (i = 0; i < T_size; i++) { | 
2386  | 0  |             mbedtls_ecp_point_free(&T[i]);  | 
2387  | 0  |         }  | 
2388  | 0  |         mbedtls_free(T);  | 
2389  | 0  |     }  | 
2390  |  |  | 
2391  |  |     /* prevent caller from using invalid value */  | 
2392  | 0  |     int should_free_R = (ret != 0);  | 
2393  | 0  | #if defined(MBEDTLS_ECP_RESTARTABLE)  | 
2394  |  |     /* don't free R while in progress in case R == P */  | 
2395  | 0  |     if (ret == MBEDTLS_ERR_ECP_IN_PROGRESS) { | 
2396  | 0  |         should_free_R = 0;  | 
2397  | 0  |     }  | 
2398  | 0  | #endif  | 
2399  | 0  |     if (should_free_R) { | 
2400  | 0  |         mbedtls_ecp_point_free(R);  | 
2401  | 0  |     }  | 
2402  |  | 
  | 
2403  | 0  |     ECP_RS_LEAVE(rsm);  | 
2404  |  | 
  | 
2405  | 0  |     return ret;  | 
2406  | 0  | }  | 
2407  |  |  | 
2408  |  | #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */  | 
2409  |  |  | 
2410  |  | #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)  | 
2411  |  | /*  | 
2412  |  |  * For Montgomery curves, we do all the internal arithmetic in projective  | 
2413  |  |  * coordinates. Import/export of points uses only the x coordinates, which is  | 
2414  |  |  * internally represented as X / Z.  | 
2415  |  |  *  | 
2416  |  |  * For scalar multiplication, we'll use a Montgomery ladder.  | 
2417  |  |  */  | 
2418  |  |  | 
2419  |  | /*  | 
2420  |  |  * Normalize Montgomery x/z coordinates: X = X/Z, Z = 1  | 
2421  |  |  * Cost: 1M + 1I  | 
2422  |  |  */  | 
2423  |  | static int ecp_normalize_mxz(const mbedtls_ecp_group *grp, mbedtls_ecp_point *P)  | 
2424  | 0  | { | 
2425  |  | #if defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT)  | 
2426  |  |     if (mbedtls_internal_ecp_grp_capable(grp)) { | 
2427  |  |         return mbedtls_internal_ecp_normalize_mxz(grp, P);  | 
2428  |  |     }  | 
2429  |  | #endif /* MBEDTLS_ECP_NORMALIZE_MXZ_ALT */  | 
2430  |  | 
  | 
2431  |  | #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT)  | 
2432  |  |     return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;  | 
2433  |  | #else  | 
2434  | 0  |     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;  | 
2435  | 0  |     MPI_ECP_INV(&P->Z, &P->Z);  | 
2436  | 0  |     MPI_ECP_MUL(&P->X, &P->X, &P->Z);  | 
2437  | 0  |     MPI_ECP_LSET(&P->Z, 1);  | 
2438  |  |  | 
2439  | 0  | cleanup:  | 
2440  | 0  |     return ret;  | 
2441  | 0  | #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT) */  | 
2442  | 0  | }  | 
2443  |  |  | 
2444  |  | /*  | 
2445  |  |  * Randomize projective x/z coordinates:  | 
2446  |  |  * (X, Z) -> (l X, l Z) for random l  | 
2447  |  |  * This is sort of the reverse operation of ecp_normalize_mxz().  | 
2448  |  |  *  | 
2449  |  |  * This countermeasure was first suggested in [2].  | 
2450  |  |  * Cost: 2M  | 
2451  |  |  */  | 
2452  |  | static int ecp_randomize_mxz(const mbedtls_ecp_group *grp, mbedtls_ecp_point *P,  | 
2453  |  |                              int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)  | 
2454  | 0  | { | 
2455  |  | #if defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT)  | 
2456  |  |     if (mbedtls_internal_ecp_grp_capable(grp)) { | 
2457  |  |         return mbedtls_internal_ecp_randomize_mxz(grp, P, f_rng, p_rng);  | 
2458  |  |     }  | 
2459  |  | #endif /* MBEDTLS_ECP_RANDOMIZE_MXZ_ALT */  | 
2460  |  | 
  | 
2461  |  | #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT)  | 
2462  |  |     return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;  | 
2463  |  | #else  | 
2464  | 0  |     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;  | 
2465  | 0  |     mbedtls_mpi l;  | 
2466  | 0  |     mbedtls_mpi_init(&l);  | 
2467  |  |  | 
2468  |  |     /* Generate l such that 1 < l < p */  | 
2469  | 0  |     MPI_ECP_RAND(&l);  | 
2470  |  |  | 
2471  | 0  |     MPI_ECP_MUL(&P->X, &P->X, &l);  | 
2472  | 0  |     MPI_ECP_MUL(&P->Z, &P->Z, &l);  | 
2473  |  |  | 
2474  | 0  | cleanup:  | 
2475  | 0  |     mbedtls_mpi_free(&l);  | 
2476  |  | 
  | 
2477  | 0  |     if (ret == MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) { | 
2478  | 0  |         ret = MBEDTLS_ERR_ECP_RANDOM_FAILED;  | 
2479  | 0  |     }  | 
2480  | 0  |     return ret;  | 
2481  | 0  | #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT) */  | 
2482  | 0  | }  | 
2483  |  |  | 
2484  |  | /*  | 
2485  |  |  * Double-and-add: R = 2P, S = P + Q, with d = X(P - Q),  | 
2486  |  |  * for Montgomery curves in x/z coordinates.  | 
2487  |  |  *  | 
2488  |  |  * http://www.hyperelliptic.org/EFD/g1p/auto-code/montgom/xz/ladder/mladd-1987-m.op3  | 
2489  |  |  * with  | 
2490  |  |  * d =  X1  | 
2491  |  |  * P = (X2, Z2)  | 
2492  |  |  * Q = (X3, Z3)  | 
2493  |  |  * R = (X4, Z4)  | 
2494  |  |  * S = (X5, Z5)  | 
2495  |  |  * and eliminating temporary variables tO, ..., t4.  | 
2496  |  |  *  | 
2497  |  |  * Cost: 5M + 4S  | 
2498  |  |  */  | 
2499  |  | static int ecp_double_add_mxz(const mbedtls_ecp_group *grp,  | 
2500  |  |                               mbedtls_ecp_point *R, mbedtls_ecp_point *S,  | 
2501  |  |                               const mbedtls_ecp_point *P, const mbedtls_ecp_point *Q,  | 
2502  |  |                               const mbedtls_mpi *d,  | 
2503  |  |                               mbedtls_mpi T[4])  | 
2504  | 0  | { | 
2505  |  | #if defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT)  | 
2506  |  |     if (mbedtls_internal_ecp_grp_capable(grp)) { | 
2507  |  |         return mbedtls_internal_ecp_double_add_mxz(grp, R, S, P, Q, d);  | 
2508  |  |     }  | 
2509  |  | #endif /* MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT */  | 
2510  |  | 
  | 
2511  |  | #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT)  | 
2512  |  |     return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;  | 
2513  |  | #else  | 
2514  | 0  |     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;  | 
2515  |  | 
  | 
2516  | 0  |     MPI_ECP_ADD(&T[0], &P->X,   &P->Z);   /* Pp := PX + PZ                    */  | 
2517  | 0  |     MPI_ECP_SUB(&T[1], &P->X,   &P->Z);   /* Pm := PX - PZ                    */  | 
2518  | 0  |     MPI_ECP_ADD(&T[2], &Q->X,   &Q->Z);   /* Qp := QX + XZ                    */  | 
2519  | 0  |     MPI_ECP_SUB(&T[3], &Q->X,   &Q->Z);   /* Qm := QX - QZ                    */  | 
2520  | 0  |     MPI_ECP_MUL(&T[3], &T[3],   &T[0]);   /* Qm * Pp                          */  | 
2521  | 0  |     MPI_ECP_MUL(&T[2], &T[2],   &T[1]);   /* Qp * Pm                          */  | 
2522  | 0  |     MPI_ECP_SQR(&T[0], &T[0]);            /* Pp^2                             */  | 
2523  | 0  |     MPI_ECP_SQR(&T[1], &T[1]);            /* Pm^2                             */  | 
2524  | 0  |     MPI_ECP_MUL(&R->X, &T[0],   &T[1]);   /* Pp^2 * Pm^2                      */  | 
2525  | 0  |     MPI_ECP_SUB(&T[0], &T[0],   &T[1]);   /* Pp^2 - Pm^2                      */  | 
2526  | 0  |     MPI_ECP_MUL(&R->Z, &grp->A, &T[0]);   /* A * (Pp^2 - Pm^2)                */  | 
2527  | 0  |     MPI_ECP_ADD(&R->Z, &T[1],   &R->Z);   /* [ A * (Pp^2-Pm^2) ] + Pm^2       */  | 
2528  | 0  |     MPI_ECP_ADD(&S->X, &T[3],   &T[2]);   /* Qm*Pp + Qp*Pm                    */  | 
2529  | 0  |     MPI_ECP_SQR(&S->X, &S->X);            /* (Qm*Pp + Qp*Pm)^2                */  | 
2530  | 0  |     MPI_ECP_SUB(&S->Z, &T[3],   &T[2]);   /* Qm*Pp - Qp*Pm                    */  | 
2531  | 0  |     MPI_ECP_SQR(&S->Z, &S->Z);            /* (Qm*Pp - Qp*Pm)^2                */  | 
2532  | 0  |     MPI_ECP_MUL(&S->Z, d,       &S->Z);   /* d * ( Qm*Pp - Qp*Pm )^2          */  | 
2533  | 0  |     MPI_ECP_MUL(&R->Z, &T[0],   &R->Z);   /* [A*(Pp^2-Pm^2)+Pm^2]*(Pp^2-Pm^2) */  | 
2534  |  |  | 
2535  | 0  | cleanup:  | 
2536  |  | 
  | 
2537  | 0  |     return ret;  | 
2538  | 0  | #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT) */  | 
2539  | 0  | }  | 
2540  |  |  | 
2541  |  | /*  | 
2542  |  |  * Multiplication with Montgomery ladder in x/z coordinates,  | 
2543  |  |  * for curves in Montgomery form  | 
2544  |  |  */  | 
2545  |  | static int ecp_mul_mxz(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,  | 
2546  |  |                        const mbedtls_mpi *m, const mbedtls_ecp_point *P,  | 
2547  |  |                        int (*f_rng)(void *, unsigned char *, size_t),  | 
2548  |  |                        void *p_rng)  | 
2549  | 0  | { | 
2550  | 0  |     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;  | 
2551  | 0  |     size_t i;  | 
2552  | 0  |     unsigned char b;  | 
2553  | 0  |     mbedtls_ecp_point RP;  | 
2554  | 0  |     mbedtls_mpi PX;  | 
2555  | 0  |     mbedtls_mpi tmp[4];  | 
2556  | 0  |     mbedtls_ecp_point_init(&RP); mbedtls_mpi_init(&PX);  | 
2557  |  | 
  | 
2558  | 0  |     mpi_init_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));  | 
2559  |  | 
  | 
2560  | 0  |     if (f_rng == NULL) { | 
2561  | 0  |         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;  | 
2562  | 0  |     }  | 
2563  |  |  | 
2564  |  |     /* Save PX and read from P before writing to R, in case P == R */  | 
2565  | 0  |     MPI_ECP_MOV(&PX, &P->X);  | 
2566  | 0  |     MBEDTLS_MPI_CHK(mbedtls_ecp_copy(&RP, P));  | 
2567  |  |  | 
2568  |  |     /* Set R to zero in modified x/z coordinates */  | 
2569  | 0  |     MPI_ECP_LSET(&R->X, 1);  | 
2570  | 0  |     MPI_ECP_LSET(&R->Z, 0);  | 
2571  | 0  |     mbedtls_mpi_free(&R->Y);  | 
2572  |  |  | 
2573  |  |     /* RP.X might be slightly larger than P, so reduce it */  | 
2574  | 0  |     MOD_ADD(&RP.X);  | 
2575  |  |  | 
2576  |  |     /* Randomize coordinates of the starting point */  | 
2577  | 0  |     MBEDTLS_MPI_CHK(ecp_randomize_mxz(grp, &RP, f_rng, p_rng));  | 
2578  |  |  | 
2579  |  |     /* Loop invariant: R = result so far, RP = R + P */  | 
2580  | 0  |     i = grp->nbits + 1; /* one past the (zero-based) required msb for private keys */  | 
2581  | 0  |     while (i-- > 0) { | 
2582  | 0  |         b = mbedtls_mpi_get_bit(m, i);  | 
2583  |  |         /*  | 
2584  |  |          *  if (b) R = 2R + P else R = 2R,  | 
2585  |  |          * which is:  | 
2586  |  |          *  if (b) double_add( RP, R, RP, R )  | 
2587  |  |          *  else   double_add( R, RP, R, RP )  | 
2588  |  |          * but using safe conditional swaps to avoid leaks  | 
2589  |  |          */  | 
2590  | 0  |         MPI_ECP_COND_SWAP(&R->X, &RP.X, b);  | 
2591  | 0  |         MPI_ECP_COND_SWAP(&R->Z, &RP.Z, b);  | 
2592  | 0  |         MBEDTLS_MPI_CHK(ecp_double_add_mxz(grp, R, &RP, R, &RP, &PX, tmp));  | 
2593  | 0  |         MPI_ECP_COND_SWAP(&R->X, &RP.X, b);  | 
2594  | 0  |         MPI_ECP_COND_SWAP(&R->Z, &RP.Z, b);  | 
2595  | 0  |     }  | 
2596  |  |  | 
2597  |  |     /*  | 
2598  |  |      * Knowledge of the projective coordinates may leak the last few bits of the  | 
2599  |  |      * scalar [1], and since our MPI implementation isn't constant-flow,  | 
2600  |  |      * inversion (used for coordinate normalization) may leak the full value  | 
2601  |  |      * of its input via side-channels [2].  | 
2602  |  |      *  | 
2603  |  |      * [1] https://eprint.iacr.org/2003/191  | 
2604  |  |      * [2] https://eprint.iacr.org/2020/055  | 
2605  |  |      *  | 
2606  |  |      * Avoid the leak by randomizing coordinates before we normalize them.  | 
2607  |  |      */  | 
2608  | 0  |     MBEDTLS_MPI_CHK(ecp_randomize_mxz(grp, R, f_rng, p_rng));  | 
2609  | 0  |     MBEDTLS_MPI_CHK(ecp_normalize_mxz(grp, R));  | 
2610  |  |  | 
2611  | 0  | cleanup:  | 
2612  | 0  |     mbedtls_ecp_point_free(&RP); mbedtls_mpi_free(&PX);  | 
2613  |  | 
  | 
2614  | 0  |     mpi_free_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));  | 
2615  | 0  |     return ret;  | 
2616  | 0  | }  | 
2617  |  |  | 
2618  |  | #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */  | 
2619  |  |  | 
2620  |  | /*  | 
2621  |  |  * Restartable multiplication R = m * P  | 
2622  |  |  *  | 
2623  |  |  * This internal function can be called without an RNG in case where we know  | 
2624  |  |  * the inputs are not sensitive.  | 
2625  |  |  */  | 
2626  |  | static int ecp_mul_restartable_internal(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,  | 
2627  |  |                                         const mbedtls_mpi *m, const mbedtls_ecp_point *P,  | 
2628  |  |                                         int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,  | 
2629  |  |                                         mbedtls_ecp_restart_ctx *rs_ctx)  | 
2630  | 0  | { | 
2631  | 0  |     int ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;  | 
2632  |  | #if defined(MBEDTLS_ECP_INTERNAL_ALT)  | 
2633  |  |     char is_grp_capable = 0;  | 
2634  |  | #endif  | 
2635  |  | 
  | 
2636  | 0  | #if defined(MBEDTLS_ECP_RESTARTABLE)  | 
2637  |  |     /* reset ops count for this call if top-level */  | 
2638  | 0  |     if (rs_ctx != NULL && rs_ctx->depth++ == 0) { | 
2639  | 0  |         rs_ctx->ops_done = 0;  | 
2640  | 0  |     }  | 
2641  |  | #else  | 
2642  |  |     (void) rs_ctx;  | 
2643  |  | #endif  | 
2644  |  | 
  | 
2645  |  | #if defined(MBEDTLS_ECP_INTERNAL_ALT)  | 
2646  |  |     if ((is_grp_capable = mbedtls_internal_ecp_grp_capable(grp))) { | 
2647  |  |         MBEDTLS_MPI_CHK(mbedtls_internal_ecp_init(grp));  | 
2648  |  |     }  | 
2649  |  | #endif /* MBEDTLS_ECP_INTERNAL_ALT */  | 
2650  |  | 
  | 
2651  | 0  |     int restarting = 0;  | 
2652  | 0  | #if defined(MBEDTLS_ECP_RESTARTABLE)  | 
2653  | 0  |     restarting = (rs_ctx != NULL && rs_ctx->rsm != NULL);  | 
2654  | 0  | #endif  | 
2655  |  |     /* skip argument check when restarting */  | 
2656  | 0  |     if (!restarting) { | 
2657  |  |         /* check_privkey is free */  | 
2658  | 0  |         MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_CHK);  | 
2659  |  |  | 
2660  |  |         /* Common sanity checks */  | 
2661  | 0  |         MBEDTLS_MPI_CHK(mbedtls_ecp_check_privkey(grp, m));  | 
2662  | 0  |         MBEDTLS_MPI_CHK(mbedtls_ecp_check_pubkey(grp, P));  | 
2663  | 0  |     }  | 
2664  |  |  | 
2665  | 0  |     ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;  | 
2666  | 0  | #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)  | 
2667  | 0  |     if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) { | 
2668  | 0  |         MBEDTLS_MPI_CHK(ecp_mul_mxz(grp, R, m, P, f_rng, p_rng));  | 
2669  | 0  |     }  | 
2670  | 0  | #endif  | 
2671  | 0  | #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)  | 
2672  | 0  |     if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) { | 
2673  | 0  |         MBEDTLS_MPI_CHK(ecp_mul_comb(grp, R, m, P, f_rng, p_rng, rs_ctx));  | 
2674  | 0  |     }  | 
2675  | 0  | #endif  | 
2676  |  |  | 
2677  | 0  | cleanup:  | 
2678  |  | 
  | 
2679  |  | #if defined(MBEDTLS_ECP_INTERNAL_ALT)  | 
2680  |  |     if (is_grp_capable) { | 
2681  |  |         mbedtls_internal_ecp_free(grp);  | 
2682  |  |     }  | 
2683  |  | #endif /* MBEDTLS_ECP_INTERNAL_ALT */  | 
2684  |  | 
  | 
2685  | 0  | #if defined(MBEDTLS_ECP_RESTARTABLE)  | 
2686  | 0  |     if (rs_ctx != NULL) { | 
2687  | 0  |         rs_ctx->depth--;  | 
2688  | 0  |     }  | 
2689  | 0  | #endif  | 
2690  |  | 
  | 
2691  | 0  |     return ret;  | 
2692  | 0  | }  | 
2693  |  |  | 
2694  |  | /*  | 
2695  |  |  * Restartable multiplication R = m * P  | 
2696  |  |  */  | 
2697  |  | int mbedtls_ecp_mul_restartable(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,  | 
2698  |  |                                 const mbedtls_mpi *m, const mbedtls_ecp_point *P,  | 
2699  |  |                                 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,  | 
2700  |  |                                 mbedtls_ecp_restart_ctx *rs_ctx)  | 
2701  | 0  | { | 
2702  | 0  |     if (f_rng == NULL) { | 
2703  | 0  |         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;  | 
2704  | 0  |     }  | 
2705  |  |  | 
2706  | 0  |     return ecp_mul_restartable_internal(grp, R, m, P, f_rng, p_rng, rs_ctx);  | 
2707  | 0  | }  | 
2708  |  |  | 
2709  |  | /*  | 
2710  |  |  * Multiplication R = m * P  | 
2711  |  |  */  | 
2712  |  | int mbedtls_ecp_mul(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,  | 
2713  |  |                     const mbedtls_mpi *m, const mbedtls_ecp_point *P,  | 
2714  |  |                     int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)  | 
2715  | 0  | { | 
2716  | 0  |     return mbedtls_ecp_mul_restartable(grp, R, m, P, f_rng, p_rng, NULL);  | 
2717  | 0  | }  | 
2718  |  | #endif /* MBEDTLS_ECP_C */  | 
2719  |  |  | 
2720  |  | #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)  | 
2721  |  | /*  | 
2722  |  |  * Check that an affine point is valid as a public key,  | 
2723  |  |  * short weierstrass curves (SEC1 3.2.3.1)  | 
2724  |  |  */  | 
2725  |  | static int ecp_check_pubkey_sw(const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt)  | 
2726  | 1  | { | 
2727  | 1  |     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;  | 
2728  | 1  |     mbedtls_mpi YY, RHS;  | 
2729  |  |  | 
2730  |  |     /* pt coordinates must be normalized for our checks */  | 
2731  | 1  |     if (mbedtls_mpi_cmp_int(&pt->X, 0) < 0 ||  | 
2732  | 1  |         mbedtls_mpi_cmp_int(&pt->Y, 0) < 0 ||  | 
2733  | 1  |         mbedtls_mpi_cmp_mpi(&pt->X, &grp->P) >= 0 ||  | 
2734  | 1  |         mbedtls_mpi_cmp_mpi(&pt->Y, &grp->P) >= 0) { | 
2735  | 0  |         return MBEDTLS_ERR_ECP_INVALID_KEY;  | 
2736  | 0  |     }  | 
2737  |  |  | 
2738  | 1  |     mbedtls_mpi_init(&YY); mbedtls_mpi_init(&RHS);  | 
2739  |  |  | 
2740  |  |     /*  | 
2741  |  |      * YY = Y^2  | 
2742  |  |      * RHS = X^3 + A X + B  | 
2743  |  |      */  | 
2744  | 1  |     MPI_ECP_SQR(&YY,  &pt->Y);  | 
2745  | 1  |     MBEDTLS_MPI_CHK(ecp_sw_rhs(grp, &RHS, &pt->X));  | 
2746  |  |  | 
2747  | 1  |     if (MPI_ECP_CMP(&YY, &RHS) != 0) { | 
2748  | 0  |         ret = MBEDTLS_ERR_ECP_INVALID_KEY;  | 
2749  | 0  |     }  | 
2750  |  |  | 
2751  | 1  | cleanup:  | 
2752  |  |  | 
2753  | 1  |     mbedtls_mpi_free(&YY); mbedtls_mpi_free(&RHS);  | 
2754  |  |  | 
2755  | 1  |     return ret;  | 
2756  | 1  | }  | 
2757  |  | #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */  | 
2758  |  |  | 
2759  |  | #if defined(MBEDTLS_ECP_C)  | 
2760  |  | #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)  | 
2761  |  | /*  | 
2762  |  |  * R = m * P with shortcuts for m == 0, m == 1 and m == -1  | 
2763  |  |  * NOT constant-time - ONLY for short Weierstrass!  | 
2764  |  |  */  | 
2765  |  | static int mbedtls_ecp_mul_shortcuts(mbedtls_ecp_group *grp,  | 
2766  |  |                                      mbedtls_ecp_point *R,  | 
2767  |  |                                      const mbedtls_mpi *m,  | 
2768  |  |                                      const mbedtls_ecp_point *P,  | 
2769  |  |                                      mbedtls_ecp_restart_ctx *rs_ctx)  | 
2770  | 0  | { | 
2771  | 0  |     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;  | 
2772  | 0  |     mbedtls_mpi tmp;  | 
2773  | 0  |     mbedtls_mpi_init(&tmp);  | 
2774  |  | 
  | 
2775  | 0  |     if (mbedtls_mpi_cmp_int(m, 0) == 0) { | 
2776  | 0  |         MBEDTLS_MPI_CHK(mbedtls_ecp_check_pubkey(grp, P));  | 
2777  | 0  |         MBEDTLS_MPI_CHK(mbedtls_ecp_set_zero(R));  | 
2778  | 0  |     } else if (mbedtls_mpi_cmp_int(m, 1) == 0) { | 
2779  | 0  |         MBEDTLS_MPI_CHK(mbedtls_ecp_check_pubkey(grp, P));  | 
2780  | 0  |         MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, P));  | 
2781  | 0  |     } else if (mbedtls_mpi_cmp_int(m, -1) == 0) { | 
2782  | 0  |         MBEDTLS_MPI_CHK(mbedtls_ecp_check_pubkey(grp, P));  | 
2783  | 0  |         MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, P));  | 
2784  | 0  |         MPI_ECP_NEG(&R->Y);  | 
2785  | 0  |     } else { | 
2786  | 0  |         MBEDTLS_MPI_CHK(ecp_mul_restartable_internal(grp, R, m, P,  | 
2787  | 0  |                                                      NULL, NULL, rs_ctx));  | 
2788  | 0  |     }  | 
2789  |  |  | 
2790  | 0  | cleanup:  | 
2791  | 0  |     mbedtls_mpi_free(&tmp);  | 
2792  |  | 
  | 
2793  | 0  |     return ret;  | 
2794  | 0  | }  | 
2795  |  |  | 
2796  |  | /*  | 
2797  |  |  * Restartable linear combination  | 
2798  |  |  * NOT constant-time  | 
2799  |  |  */  | 
2800  |  | int mbedtls_ecp_muladd_restartable(  | 
2801  |  |     mbedtls_ecp_group *grp, mbedtls_ecp_point *R,  | 
2802  |  |     const mbedtls_mpi *m, const mbedtls_ecp_point *P,  | 
2803  |  |     const mbedtls_mpi *n, const mbedtls_ecp_point *Q,  | 
2804  |  |     mbedtls_ecp_restart_ctx *rs_ctx)  | 
2805  | 0  | { | 
2806  | 0  |     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;  | 
2807  | 0  |     mbedtls_ecp_point mP;  | 
2808  | 0  |     mbedtls_ecp_point *pmP = &mP;  | 
2809  | 0  |     mbedtls_ecp_point *pR = R;  | 
2810  | 0  |     mbedtls_mpi tmp[4];  | 
2811  |  | #if defined(MBEDTLS_ECP_INTERNAL_ALT)  | 
2812  |  |     char is_grp_capable = 0;  | 
2813  |  | #endif  | 
2814  | 0  |     if (mbedtls_ecp_get_type(grp) != MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) { | 
2815  | 0  |         return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;  | 
2816  | 0  |     }  | 
2817  |  |  | 
2818  | 0  |     mbedtls_ecp_point_init(&mP);  | 
2819  | 0  |     mpi_init_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));  | 
2820  |  | 
  | 
2821  | 0  |     ECP_RS_ENTER(ma);  | 
2822  |  |  | 
2823  | 0  | #if defined(MBEDTLS_ECP_RESTARTABLE)  | 
2824  | 0  |     if (rs_ctx != NULL && rs_ctx->ma != NULL) { | 
2825  |  |         /* redirect intermediate results to restart context */  | 
2826  | 0  |         pmP = &rs_ctx->ma->mP;  | 
2827  | 0  |         pR  = &rs_ctx->ma->R;  | 
2828  |  |  | 
2829  |  |         /* jump to next operation */  | 
2830  | 0  |         if (rs_ctx->ma->state == ecp_rsma_mul2) { | 
2831  | 0  |             goto mul2;  | 
2832  | 0  |         }  | 
2833  | 0  |         if (rs_ctx->ma->state == ecp_rsma_add) { | 
2834  | 0  |             goto add;  | 
2835  | 0  |         }  | 
2836  | 0  |         if (rs_ctx->ma->state == ecp_rsma_norm) { | 
2837  | 0  |             goto norm;  | 
2838  | 0  |         }  | 
2839  | 0  |     }  | 
2840  | 0  | #endif /* MBEDTLS_ECP_RESTARTABLE */  | 
2841  |  |  | 
2842  | 0  |     MBEDTLS_MPI_CHK(mbedtls_ecp_mul_shortcuts(grp, pmP, m, P, rs_ctx));  | 
2843  | 0  | #if defined(MBEDTLS_ECP_RESTARTABLE)  | 
2844  | 0  |     if (rs_ctx != NULL && rs_ctx->ma != NULL) { | 
2845  | 0  |         rs_ctx->ma->state = ecp_rsma_mul2;  | 
2846  | 0  |     }  | 
2847  |  | 
  | 
2848  | 0  | mul2:  | 
2849  | 0  | #endif  | 
2850  | 0  |     MBEDTLS_MPI_CHK(mbedtls_ecp_mul_shortcuts(grp, pR,  n, Q, rs_ctx));  | 
2851  |  |  | 
2852  |  | #if defined(MBEDTLS_ECP_INTERNAL_ALT)  | 
2853  |  |     if ((is_grp_capable = mbedtls_internal_ecp_grp_capable(grp))) { | 
2854  |  |         MBEDTLS_MPI_CHK(mbedtls_internal_ecp_init(grp));  | 
2855  |  |     }  | 
2856  |  | #endif /* MBEDTLS_ECP_INTERNAL_ALT */  | 
2857  |  |  | 
2858  | 0  | #if defined(MBEDTLS_ECP_RESTARTABLE)  | 
2859  | 0  |     if (rs_ctx != NULL && rs_ctx->ma != NULL) { | 
2860  | 0  |         rs_ctx->ma->state = ecp_rsma_add;  | 
2861  | 0  |     }  | 
2862  |  | 
  | 
2863  | 0  | add:  | 
2864  | 0  | #endif  | 
2865  | 0  |     MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_ADD);  | 
2866  | 0  |     MBEDTLS_MPI_CHK(ecp_add_mixed(grp, pR, pmP, pR, tmp));  | 
2867  | 0  | #if defined(MBEDTLS_ECP_RESTARTABLE)  | 
2868  | 0  |     if (rs_ctx != NULL && rs_ctx->ma != NULL) { | 
2869  | 0  |         rs_ctx->ma->state = ecp_rsma_norm;  | 
2870  | 0  |     }  | 
2871  |  | 
  | 
2872  | 0  | norm:  | 
2873  | 0  | #endif  | 
2874  | 0  |     MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_INV);  | 
2875  | 0  |     MBEDTLS_MPI_CHK(ecp_normalize_jac(grp, pR));  | 
2876  |  |  | 
2877  | 0  | #if defined(MBEDTLS_ECP_RESTARTABLE)  | 
2878  | 0  |     if (rs_ctx != NULL && rs_ctx->ma != NULL) { | 
2879  | 0  |         MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, pR));  | 
2880  | 0  |     }  | 
2881  | 0  | #endif  | 
2882  |  |  | 
2883  | 0  | cleanup:  | 
2884  |  | 
  | 
2885  | 0  |     mpi_free_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));  | 
2886  |  | 
  | 
2887  |  | #if defined(MBEDTLS_ECP_INTERNAL_ALT)  | 
2888  |  |     if (is_grp_capable) { | 
2889  |  |         mbedtls_internal_ecp_free(grp);  | 
2890  |  |     }  | 
2891  |  | #endif /* MBEDTLS_ECP_INTERNAL_ALT */  | 
2892  |  | 
  | 
2893  | 0  |     mbedtls_ecp_point_free(&mP);  | 
2894  |  | 
  | 
2895  | 0  |     ECP_RS_LEAVE(ma);  | 
2896  |  | 
  | 
2897  | 0  |     return ret;  | 
2898  | 0  | }  | 
2899  |  |  | 
2900  |  | /*  | 
2901  |  |  * Linear combination  | 
2902  |  |  * NOT constant-time  | 
2903  |  |  */  | 
2904  |  | int mbedtls_ecp_muladd(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,  | 
2905  |  |                        const mbedtls_mpi *m, const mbedtls_ecp_point *P,  | 
2906  |  |                        const mbedtls_mpi *n, const mbedtls_ecp_point *Q)  | 
2907  | 0  | { | 
2908  | 0  |     return mbedtls_ecp_muladd_restartable(grp, R, m, P, n, Q, NULL);  | 
2909  | 0  | }  | 
2910  |  | #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */  | 
2911  |  | #endif /* MBEDTLS_ECP_C */  | 
2912  |  |  | 
2913  |  | #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)  | 
2914  |  | #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)  | 
2915  |  | #define ECP_MPI_INIT(_p, _n) { .p = (mbedtls_mpi_uint *) (_p), .s = 1, .n = (_n) } | 
2916  |  | #define ECP_MPI_INIT_ARRAY(x)   \  | 
2917  |  |     ECP_MPI_INIT(x, sizeof(x) / sizeof(mbedtls_mpi_uint))  | 
2918  |  | /*  | 
2919  |  |  * Constants for the two points other than 0, 1, -1 (mod p) in  | 
2920  |  |  * https://cr.yp.to/ecdh.html#validate  | 
2921  |  |  * See ecp_check_pubkey_x25519().  | 
2922  |  |  */  | 
2923  |  | static const mbedtls_mpi_uint x25519_bad_point_1[] = { | 
2924  |  |     MBEDTLS_BYTES_TO_T_UINT_8(0xe0, 0xeb, 0x7a, 0x7c, 0x3b, 0x41, 0xb8, 0xae),  | 
2925  |  |     MBEDTLS_BYTES_TO_T_UINT_8(0x16, 0x56, 0xe3, 0xfa, 0xf1, 0x9f, 0xc4, 0x6a),  | 
2926  |  |     MBEDTLS_BYTES_TO_T_UINT_8(0xda, 0x09, 0x8d, 0xeb, 0x9c, 0x32, 0xb1, 0xfd),  | 
2927  |  |     MBEDTLS_BYTES_TO_T_UINT_8(0x86, 0x62, 0x05, 0x16, 0x5f, 0x49, 0xb8, 0x00),  | 
2928  |  | };  | 
2929  |  | static const mbedtls_mpi_uint x25519_bad_point_2[] = { | 
2930  |  |     MBEDTLS_BYTES_TO_T_UINT_8(0x5f, 0x9c, 0x95, 0xbc, 0xa3, 0x50, 0x8c, 0x24),  | 
2931  |  |     MBEDTLS_BYTES_TO_T_UINT_8(0xb1, 0xd0, 0xb1, 0x55, 0x9c, 0x83, 0xef, 0x5b),  | 
2932  |  |     MBEDTLS_BYTES_TO_T_UINT_8(0x04, 0x44, 0x5c, 0xc4, 0x58, 0x1c, 0x8e, 0x86),  | 
2933  |  |     MBEDTLS_BYTES_TO_T_UINT_8(0xd8, 0x22, 0x4e, 0xdd, 0xd0, 0x9f, 0x11, 0x57),  | 
2934  |  | };  | 
2935  |  | static const mbedtls_mpi ecp_x25519_bad_point_1 = ECP_MPI_INIT_ARRAY(  | 
2936  |  |     x25519_bad_point_1);  | 
2937  |  | static const mbedtls_mpi ecp_x25519_bad_point_2 = ECP_MPI_INIT_ARRAY(  | 
2938  |  |     x25519_bad_point_2);  | 
2939  |  | #endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */  | 
2940  |  |  | 
2941  |  | /*  | 
2942  |  |  * Check that the input point is not one of the low-order points.  | 
2943  |  |  * This is recommended by the "May the Fourth" paper:  | 
2944  |  |  * https://eprint.iacr.org/2017/806.pdf  | 
2945  |  |  * Those points are never sent by an honest peer.  | 
2946  |  |  */  | 
2947  |  | static int ecp_check_bad_points_mx(const mbedtls_mpi *X, const mbedtls_mpi *P,  | 
2948  |  |                                    const mbedtls_ecp_group_id grp_id)  | 
2949  | 0  | { | 
2950  | 0  |     int ret;  | 
2951  | 0  |     mbedtls_mpi XmP;  | 
2952  |  | 
  | 
2953  | 0  |     mbedtls_mpi_init(&XmP);  | 
2954  |  |  | 
2955  |  |     /* Reduce X mod P so that we only need to check values less than P.  | 
2956  |  |      * We know X < 2^256 so we can proceed by subtraction. */  | 
2957  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&XmP, X));  | 
2958  | 0  |     while (mbedtls_mpi_cmp_mpi(&XmP, P) >= 0) { | 
2959  | 0  |         MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&XmP, &XmP, P));  | 
2960  | 0  |     }  | 
2961  |  |  | 
2962  |  |     /* Check against the known bad values that are less than P. For Curve448  | 
2963  |  |      * these are 0, 1 and -1. For Curve25519 we check the values less than P  | 
2964  |  |      * from the following list: https://cr.yp.to/ecdh.html#validate */  | 
2965  | 0  |     if (mbedtls_mpi_cmp_int(&XmP, 1) <= 0) {  /* takes care of 0 and 1 */ | 
2966  | 0  |         ret = MBEDTLS_ERR_ECP_INVALID_KEY;  | 
2967  | 0  |         goto cleanup;  | 
2968  | 0  |     }  | 
2969  |  |  | 
2970  | 0  | #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)  | 
2971  | 0  |     if (grp_id == MBEDTLS_ECP_DP_CURVE25519) { | 
2972  | 0  |         if (mbedtls_mpi_cmp_mpi(&XmP, &ecp_x25519_bad_point_1) == 0) { | 
2973  | 0  |             ret = MBEDTLS_ERR_ECP_INVALID_KEY;  | 
2974  | 0  |             goto cleanup;  | 
2975  | 0  |         }  | 
2976  |  |  | 
2977  | 0  |         if (mbedtls_mpi_cmp_mpi(&XmP, &ecp_x25519_bad_point_2) == 0) { | 
2978  | 0  |             ret = MBEDTLS_ERR_ECP_INVALID_KEY;  | 
2979  | 0  |             goto cleanup;  | 
2980  | 0  |         }  | 
2981  | 0  |     }  | 
2982  |  | #else  | 
2983  |  |     (void) grp_id;  | 
2984  |  | #endif  | 
2985  |  |  | 
2986  |  |     /* Final check: check if XmP + 1 is P (final because it changes XmP!) */  | 
2987  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&XmP, &XmP, 1));  | 
2988  | 0  |     if (mbedtls_mpi_cmp_mpi(&XmP, P) == 0) { | 
2989  | 0  |         ret = MBEDTLS_ERR_ECP_INVALID_KEY;  | 
2990  | 0  |         goto cleanup;  | 
2991  | 0  |     }  | 
2992  |  |  | 
2993  | 0  |     ret = 0;  | 
2994  |  | 
  | 
2995  | 0  | cleanup:  | 
2996  | 0  |     mbedtls_mpi_free(&XmP);  | 
2997  |  | 
  | 
2998  | 0  |     return ret;  | 
2999  | 0  | }  | 
3000  |  |  | 
3001  |  | /*  | 
3002  |  |  * Check validity of a public key for Montgomery curves with x-only schemes  | 
3003  |  |  */  | 
3004  |  | static int ecp_check_pubkey_mx(const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt)  | 
3005  | 0  | { | 
3006  |  |     /* [Curve25519 p. 5] Just check X is the correct number of bytes */  | 
3007  |  |     /* Allow any public value, if it's too big then we'll just reduce it mod p  | 
3008  |  |      * (RFC 7748 sec. 5 para. 3). */  | 
3009  | 0  |     if (mbedtls_mpi_size(&pt->X) > (grp->nbits + 7) / 8) { | 
3010  | 0  |         return MBEDTLS_ERR_ECP_INVALID_KEY;  | 
3011  | 0  |     }  | 
3012  |  |  | 
3013  |  |     /* Implicit in all standards (as they don't consider negative numbers):  | 
3014  |  |      * X must be non-negative. This is normally ensured by the way it's  | 
3015  |  |      * encoded for transmission, but let's be extra sure. */  | 
3016  | 0  |     if (mbedtls_mpi_cmp_int(&pt->X, 0) < 0) { | 
3017  | 0  |         return MBEDTLS_ERR_ECP_INVALID_KEY;  | 
3018  | 0  |     }  | 
3019  |  |  | 
3020  | 0  |     return ecp_check_bad_points_mx(&pt->X, &grp->P, grp->id);  | 
3021  | 0  | }  | 
3022  |  | #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */  | 
3023  |  |  | 
3024  |  | /*  | 
3025  |  |  * Check that a point is valid as a public key  | 
3026  |  |  */  | 
3027  |  | int mbedtls_ecp_check_pubkey(const mbedtls_ecp_group *grp,  | 
3028  |  |                              const mbedtls_ecp_point *pt)  | 
3029  | 1  | { | 
3030  |  |     /* Must use affine coordinates */  | 
3031  | 1  |     if (mbedtls_mpi_cmp_int(&pt->Z, 1) != 0) { | 
3032  | 0  |         return MBEDTLS_ERR_ECP_INVALID_KEY;  | 
3033  | 0  |     }  | 
3034  |  |  | 
3035  | 1  | #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)  | 
3036  | 1  |     if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) { | 
3037  | 0  |         return ecp_check_pubkey_mx(grp, pt);  | 
3038  | 0  |     }  | 
3039  | 1  | #endif  | 
3040  | 1  | #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)  | 
3041  | 1  |     if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) { | 
3042  | 1  |         return ecp_check_pubkey_sw(grp, pt);  | 
3043  | 1  |     }  | 
3044  | 0  | #endif  | 
3045  | 0  |     return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;  | 
3046  | 1  | }  | 
3047  |  |  | 
3048  |  | /*  | 
3049  |  |  * Check that an mbedtls_mpi is valid as a private key  | 
3050  |  |  */  | 
3051  |  | int mbedtls_ecp_check_privkey(const mbedtls_ecp_group *grp,  | 
3052  |  |                               const mbedtls_mpi *d)  | 
3053  | 0  | { | 
3054  | 0  | #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)  | 
3055  | 0  |     if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) { | 
3056  |  |         /* see RFC 7748 sec. 5 para. 5 */  | 
3057  | 0  |         if (mbedtls_mpi_get_bit(d, 0) != 0 ||  | 
3058  | 0  |             mbedtls_mpi_get_bit(d, 1) != 0 ||  | 
3059  | 0  |             mbedtls_mpi_bitlen(d) != grp->nbits + 1) {  /* mbedtls_mpi_bitlen is one-based! */ | 
3060  | 0  |             return MBEDTLS_ERR_ECP_INVALID_KEY;  | 
3061  | 0  |         }  | 
3062  |  |  | 
3063  |  |         /* see [Curve25519] page 5 */  | 
3064  | 0  |         if (grp->nbits == 254 && mbedtls_mpi_get_bit(d, 2) != 0) { | 
3065  | 0  |             return MBEDTLS_ERR_ECP_INVALID_KEY;  | 
3066  | 0  |         }  | 
3067  |  |  | 
3068  | 0  |         return 0;  | 
3069  | 0  |     }  | 
3070  | 0  | #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */  | 
3071  | 0  | #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)  | 
3072  | 0  |     if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) { | 
3073  |  |         /* see SEC1 3.2 */  | 
3074  | 0  |         if (mbedtls_mpi_cmp_int(d, 1) < 0 ||  | 
3075  | 0  |             mbedtls_mpi_cmp_mpi(d, &grp->N) >= 0) { | 
3076  | 0  |             return MBEDTLS_ERR_ECP_INVALID_KEY;  | 
3077  | 0  |         } else { | 
3078  | 0  |             return 0;  | 
3079  | 0  |         }  | 
3080  | 0  |     }  | 
3081  | 0  | #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */  | 
3082  |  |  | 
3083  | 0  |     return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;  | 
3084  | 0  | }  | 
3085  |  |  | 
3086  |  | #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)  | 
3087  |  | MBEDTLS_STATIC_TESTABLE  | 
3088  |  | int mbedtls_ecp_gen_privkey_mx(size_t high_bit,  | 
3089  |  |                                mbedtls_mpi *d,  | 
3090  |  |                                int (*f_rng)(void *, unsigned char *, size_t),  | 
3091  |  |                                void *p_rng)  | 
3092  | 0  | { | 
3093  | 0  |     int ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;  | 
3094  | 0  |     size_t n_random_bytes = high_bit / 8 + 1;  | 
3095  |  |  | 
3096  |  |     /* [Curve25519] page 5 */  | 
3097  |  |     /* Generate a (high_bit+1)-bit random number by generating just enough  | 
3098  |  |      * random bytes, then shifting out extra bits from the top (necessary  | 
3099  |  |      * when (high_bit+1) is not a multiple of 8). */  | 
3100  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(d, n_random_bytes,  | 
3101  | 0  |                                             f_rng, p_rng));  | 
3102  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(d, 8 * n_random_bytes - high_bit - 1));  | 
3103  |  |  | 
3104  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(d, high_bit, 1));  | 
3105  |  |  | 
3106  |  |     /* Make sure the last two bits are unset for Curve448, three bits for  | 
3107  |  |        Curve25519 */  | 
3108  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(d, 0, 0));  | 
3109  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(d, 1, 0));  | 
3110  | 0  |     if (high_bit == 254) { | 
3111  | 0  |         MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(d, 2, 0));  | 
3112  | 0  |     }  | 
3113  |  |  | 
3114  | 0  | cleanup:  | 
3115  | 0  |     return ret;  | 
3116  | 0  | }  | 
3117  |  | #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */  | 
3118  |  |  | 
3119  |  | #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)  | 
3120  |  | static int mbedtls_ecp_gen_privkey_sw(  | 
3121  |  |     const mbedtls_mpi *N, mbedtls_mpi *d,  | 
3122  |  |     int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)  | 
3123  | 0  | { | 
3124  | 0  |     int ret = mbedtls_mpi_random(d, 1, N, f_rng, p_rng);  | 
3125  | 0  |     switch (ret) { | 
3126  | 0  |         case MBEDTLS_ERR_MPI_NOT_ACCEPTABLE:  | 
3127  | 0  |             return MBEDTLS_ERR_ECP_RANDOM_FAILED;  | 
3128  | 0  |         default:  | 
3129  | 0  |             return ret;  | 
3130  | 0  |     }  | 
3131  | 0  | }  | 
3132  |  | #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */  | 
3133  |  |  | 
3134  |  | /*  | 
3135  |  |  * Generate a private key  | 
3136  |  |  */  | 
3137  |  | int mbedtls_ecp_gen_privkey(const mbedtls_ecp_group *grp,  | 
3138  |  |                             mbedtls_mpi *d,  | 
3139  |  |                             int (*f_rng)(void *, unsigned char *, size_t),  | 
3140  |  |                             void *p_rng)  | 
3141  | 0  | { | 
3142  | 0  | #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)  | 
3143  | 0  |     if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) { | 
3144  | 0  |         return mbedtls_ecp_gen_privkey_mx(grp->nbits, d, f_rng, p_rng);  | 
3145  | 0  |     }  | 
3146  | 0  | #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */  | 
3147  |  |  | 
3148  | 0  | #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)  | 
3149  | 0  |     if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) { | 
3150  | 0  |         return mbedtls_ecp_gen_privkey_sw(&grp->N, d, f_rng, p_rng);  | 
3151  | 0  |     }  | 
3152  | 0  | #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */  | 
3153  |  |  | 
3154  | 0  |     return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;  | 
3155  | 0  | }  | 
3156  |  |  | 
3157  |  | #if defined(MBEDTLS_ECP_C)  | 
3158  |  | /*  | 
3159  |  |  * Generate a keypair with configurable base point  | 
3160  |  |  */  | 
3161  |  | int mbedtls_ecp_gen_keypair_base(mbedtls_ecp_group *grp,  | 
3162  |  |                                  const mbedtls_ecp_point *G,  | 
3163  |  |                                  mbedtls_mpi *d, mbedtls_ecp_point *Q,  | 
3164  |  |                                  int (*f_rng)(void *, unsigned char *, size_t),  | 
3165  |  |                                  void *p_rng)  | 
3166  | 0  | { | 
3167  | 0  |     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;  | 
3168  | 0  |     MBEDTLS_MPI_CHK(mbedtls_ecp_gen_privkey(grp, d, f_rng, p_rng));  | 
3169  | 0  |     MBEDTLS_MPI_CHK(mbedtls_ecp_mul(grp, Q, d, G, f_rng, p_rng));  | 
3170  |  |  | 
3171  | 0  | cleanup:  | 
3172  | 0  |     return ret;  | 
3173  | 0  | }  | 
3174  |  |  | 
3175  |  | /*  | 
3176  |  |  * Generate key pair, wrapper for conventional base point  | 
3177  |  |  */  | 
3178  |  | int mbedtls_ecp_gen_keypair(mbedtls_ecp_group *grp,  | 
3179  |  |                             mbedtls_mpi *d, mbedtls_ecp_point *Q,  | 
3180  |  |                             int (*f_rng)(void *, unsigned char *, size_t),  | 
3181  |  |                             void *p_rng)  | 
3182  | 0  | { | 
3183  | 0  |     return mbedtls_ecp_gen_keypair_base(grp, &grp->G, d, Q, f_rng, p_rng);  | 
3184  | 0  | }  | 
3185  |  |  | 
3186  |  | /*  | 
3187  |  |  * Generate a keypair, prettier wrapper  | 
3188  |  |  */  | 
3189  |  | int mbedtls_ecp_gen_key(mbedtls_ecp_group_id grp_id, mbedtls_ecp_keypair *key,  | 
3190  |  |                         int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)  | 
3191  | 0  | { | 
3192  | 0  |     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;  | 
3193  | 0  |     if ((ret = mbedtls_ecp_group_load(&key->grp, grp_id)) != 0) { | 
3194  | 0  |         return ret;  | 
3195  | 0  |     }  | 
3196  |  |  | 
3197  | 0  |     return mbedtls_ecp_gen_keypair(&key->grp, &key->d, &key->Q, f_rng, p_rng);  | 
3198  | 0  | }  | 
3199  |  | #endif /* MBEDTLS_ECP_C */  | 
3200  |  |  | 
3201  |  | int mbedtls_ecp_set_public_key(mbedtls_ecp_group_id grp_id,  | 
3202  |  |                                mbedtls_ecp_keypair *key,  | 
3203  |  |                                const mbedtls_ecp_point *Q)  | 
3204  | 0  | { | 
3205  | 0  |     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;  | 
3206  |  | 
  | 
3207  | 0  |     if (key->grp.id == MBEDTLS_ECP_DP_NONE) { | 
3208  |  |         /* Group not set yet */  | 
3209  | 0  |         if ((ret = mbedtls_ecp_group_load(&key->grp, grp_id)) != 0) { | 
3210  | 0  |             return ret;  | 
3211  | 0  |         }  | 
3212  | 0  |     } else if (key->grp.id != grp_id) { | 
3213  |  |         /* Group mismatch */  | 
3214  | 0  |         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;  | 
3215  | 0  |     }  | 
3216  | 0  |     return mbedtls_ecp_copy(&key->Q, Q);  | 
3217  | 0  | }  | 
3218  |  |  | 
3219  |  |  | 
3220  | 0  | #define ECP_CURVE25519_KEY_SIZE 32  | 
3221  | 0  | #define ECP_CURVE448_KEY_SIZE   56  | 
3222  |  | /*  | 
3223  |  |  * Read a private key.  | 
3224  |  |  */  | 
3225  |  | int mbedtls_ecp_read_key(mbedtls_ecp_group_id grp_id, mbedtls_ecp_keypair *key,  | 
3226  |  |                          const unsigned char *buf, size_t buflen)  | 
3227  | 0  | { | 
3228  | 0  |     int ret = 0;  | 
3229  |  | 
  | 
3230  | 0  |     if ((ret = mbedtls_ecp_group_load(&key->grp, grp_id)) != 0) { | 
3231  | 0  |         return ret;  | 
3232  | 0  |     }  | 
3233  |  |  | 
3234  | 0  |     ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;  | 
3235  |  | 
  | 
3236  | 0  | #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)  | 
3237  | 0  |     if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) { | 
3238  |  |         /*  | 
3239  |  |          * Mask the key as mandated by RFC7748 for Curve25519 and Curve448.  | 
3240  |  |          */  | 
3241  | 0  |         if (grp_id == MBEDTLS_ECP_DP_CURVE25519) { | 
3242  | 0  |             if (buflen != ECP_CURVE25519_KEY_SIZE) { | 
3243  | 0  |                 return MBEDTLS_ERR_ECP_INVALID_KEY;  | 
3244  | 0  |             }  | 
3245  |  |  | 
3246  | 0  |             MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary_le(&key->d, buf, buflen));  | 
3247  |  |  | 
3248  |  |             /* Set the three least significant bits to 0 */  | 
3249  | 0  |             MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 0, 0));  | 
3250  | 0  |             MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 1, 0));  | 
3251  | 0  |             MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 2, 0));  | 
3252  |  |  | 
3253  |  |             /* Set the most significant bit to 0 */  | 
3254  | 0  |             MBEDTLS_MPI_CHK(  | 
3255  | 0  |                 mbedtls_mpi_set_bit(&key->d,  | 
3256  | 0  |                                     ECP_CURVE25519_KEY_SIZE * 8 - 1, 0)  | 
3257  | 0  |                 );  | 
3258  |  |  | 
3259  |  |             /* Set the second most significant bit to 1 */  | 
3260  | 0  |             MBEDTLS_MPI_CHK(  | 
3261  | 0  |                 mbedtls_mpi_set_bit(&key->d,  | 
3262  | 0  |                                     ECP_CURVE25519_KEY_SIZE * 8 - 2, 1)  | 
3263  | 0  |                 );  | 
3264  | 0  |         } else if (grp_id == MBEDTLS_ECP_DP_CURVE448) { | 
3265  | 0  |             if (buflen != ECP_CURVE448_KEY_SIZE) { | 
3266  | 0  |                 return MBEDTLS_ERR_ECP_INVALID_KEY;  | 
3267  | 0  |             }  | 
3268  |  |  | 
3269  | 0  |             MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary_le(&key->d, buf, buflen));  | 
3270  |  |  | 
3271  |  |             /* Set the two least significant bits to 0 */  | 
3272  | 0  |             MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 0, 0));  | 
3273  | 0  |             MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 1, 0));  | 
3274  |  |  | 
3275  |  |             /* Set the most significant bit to 1 */  | 
3276  | 0  |             MBEDTLS_MPI_CHK(  | 
3277  | 0  |                 mbedtls_mpi_set_bit(&key->d,  | 
3278  | 0  |                                     ECP_CURVE448_KEY_SIZE * 8 - 1, 1)  | 
3279  | 0  |                 );  | 
3280  | 0  |         }  | 
3281  | 0  |     }  | 
3282  | 0  | #endif  | 
3283  | 0  | #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)  | 
3284  | 0  |     if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) { | 
3285  | 0  |         MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&key->d, buf, buflen));  | 
3286  | 0  |     }  | 
3287  | 0  | #endif  | 
3288  |  |  | 
3289  | 0  |     if (ret == 0) { | 
3290  | 0  |         MBEDTLS_MPI_CHK(mbedtls_ecp_check_privkey(&key->grp, &key->d));  | 
3291  | 0  |     }  | 
3292  |  |  | 
3293  | 0  | cleanup:  | 
3294  |  | 
  | 
3295  | 0  |     if (ret != 0) { | 
3296  | 0  |         mbedtls_mpi_free(&key->d);  | 
3297  | 0  |     }  | 
3298  |  | 
  | 
3299  | 0  |     return ret;  | 
3300  | 0  | }  | 
3301  |  |  | 
3302  |  | /*  | 
3303  |  |  * Write a private key.  | 
3304  |  |  */  | 
3305  |  | #if !defined MBEDTLS_DEPRECATED_REMOVED  | 
3306  |  | int mbedtls_ecp_write_key(mbedtls_ecp_keypair *key,  | 
3307  |  |                           unsigned char *buf, size_t buflen)  | 
3308  | 0  | { | 
3309  | 0  |     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;  | 
3310  |  | 
  | 
3311  | 0  | #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)  | 
3312  | 0  |     if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) { | 
3313  | 0  |         if (key->grp.id == MBEDTLS_ECP_DP_CURVE25519) { | 
3314  | 0  |             if (buflen < ECP_CURVE25519_KEY_SIZE) { | 
3315  | 0  |                 return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;  | 
3316  | 0  |             }  | 
3317  |  | 
  | 
3318  | 0  |         } else if (key->grp.id == MBEDTLS_ECP_DP_CURVE448) { | 
3319  | 0  |             if (buflen < ECP_CURVE448_KEY_SIZE) { | 
3320  | 0  |                 return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;  | 
3321  | 0  |             }  | 
3322  | 0  |         }  | 
3323  | 0  |         MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary_le(&key->d, buf, buflen));  | 
3324  | 0  |     }  | 
3325  | 0  | #endif  | 
3326  | 0  | #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)  | 
3327  | 0  |     if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) { | 
3328  | 0  |         MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&key->d, buf, buflen));  | 
3329  | 0  |     }  | 
3330  |  |  | 
3331  | 0  | #endif  | 
3332  | 0  | cleanup:  | 
3333  |  | 
  | 
3334  | 0  |     return ret;  | 
3335  | 0  | }  | 
3336  |  | #endif /* MBEDTLS_DEPRECATED_REMOVED */  | 
3337  |  |  | 
3338  |  | int mbedtls_ecp_write_key_ext(const mbedtls_ecp_keypair *key,  | 
3339  |  |                               size_t *olen, unsigned char *buf, size_t buflen)  | 
3340  | 0  | { | 
3341  | 0  |     size_t len = (key->grp.nbits + 7) / 8;  | 
3342  | 0  |     if (len > buflen) { | 
3343  |  |         /* For robustness, ensure *olen <= buflen even on error. */  | 
3344  | 0  |         *olen = 0;  | 
3345  | 0  |         return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;  | 
3346  | 0  |     }  | 
3347  | 0  |     *olen = len;  | 
3348  |  |  | 
3349  |  |     /* Private key not set */  | 
3350  | 0  |     if (key->d.n == 0) { | 
3351  | 0  |         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;  | 
3352  | 0  |     }  | 
3353  |  |  | 
3354  | 0  | #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)  | 
3355  | 0  |     if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) { | 
3356  | 0  |         return mbedtls_mpi_write_binary_le(&key->d, buf, len);  | 
3357  | 0  |     }  | 
3358  | 0  | #endif  | 
3359  |  |  | 
3360  | 0  | #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)  | 
3361  | 0  |     if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) { | 
3362  | 0  |         return mbedtls_mpi_write_binary(&key->d, buf, len);  | 
3363  | 0  |     }  | 
3364  | 0  | #endif  | 
3365  |  |  | 
3366  |  |     /* Private key set but no recognized curve type? This shouldn't happen. */  | 
3367  | 0  |     return MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;  | 
3368  | 0  | }  | 
3369  |  |  | 
3370  |  | /*  | 
3371  |  |  * Write a public key.  | 
3372  |  |  */  | 
3373  |  | int mbedtls_ecp_write_public_key(const mbedtls_ecp_keypair *key,  | 
3374  |  |                                  int format, size_t *olen,  | 
3375  |  |                                  unsigned char *buf, size_t buflen)  | 
3376  | 0  | { | 
3377  | 0  |     return mbedtls_ecp_point_write_binary(&key->grp, &key->Q,  | 
3378  | 0  |                                           format, olen, buf, buflen);  | 
3379  | 0  | }  | 
3380  |  |  | 
3381  |  |  | 
3382  |  | #if defined(MBEDTLS_ECP_C)  | 
3383  |  | /*  | 
3384  |  |  * Check a public-private key pair  | 
3385  |  |  */  | 
3386  |  | int mbedtls_ecp_check_pub_priv(  | 
3387  |  |     const mbedtls_ecp_keypair *pub, const mbedtls_ecp_keypair *prv,  | 
3388  |  |     int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)  | 
3389  | 0  | { | 
3390  | 0  |     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;  | 
3391  | 0  |     mbedtls_ecp_point Q;  | 
3392  | 0  |     mbedtls_ecp_group grp;  | 
3393  | 0  |     if (pub->grp.id == MBEDTLS_ECP_DP_NONE ||  | 
3394  | 0  |         pub->grp.id != prv->grp.id ||  | 
3395  | 0  |         mbedtls_mpi_cmp_mpi(&pub->Q.X, &prv->Q.X) ||  | 
3396  | 0  |         mbedtls_mpi_cmp_mpi(&pub->Q.Y, &prv->Q.Y) ||  | 
3397  | 0  |         mbedtls_mpi_cmp_mpi(&pub->Q.Z, &prv->Q.Z)) { | 
3398  | 0  |         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;  | 
3399  | 0  |     }  | 
3400  |  |  | 
3401  | 0  |     mbedtls_ecp_point_init(&Q);  | 
3402  | 0  |     mbedtls_ecp_group_init(&grp);  | 
3403  |  |  | 
3404  |  |     /* mbedtls_ecp_mul() needs a non-const group... */  | 
3405  | 0  |     mbedtls_ecp_group_copy(&grp, &prv->grp);  | 
3406  |  |  | 
3407  |  |     /* Also checks d is valid */  | 
3408  | 0  |     MBEDTLS_MPI_CHK(mbedtls_ecp_mul(&grp, &Q, &prv->d, &prv->grp.G, f_rng, p_rng));  | 
3409  |  |  | 
3410  | 0  |     if (mbedtls_mpi_cmp_mpi(&Q.X, &prv->Q.X) ||  | 
3411  | 0  |         mbedtls_mpi_cmp_mpi(&Q.Y, &prv->Q.Y) ||  | 
3412  | 0  |         mbedtls_mpi_cmp_mpi(&Q.Z, &prv->Q.Z)) { | 
3413  | 0  |         ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;  | 
3414  | 0  |         goto cleanup;  | 
3415  | 0  |     }  | 
3416  |  |  | 
3417  | 0  | cleanup:  | 
3418  | 0  |     mbedtls_ecp_point_free(&Q);  | 
3419  | 0  |     mbedtls_ecp_group_free(&grp);  | 
3420  |  | 
  | 
3421  | 0  |     return ret;  | 
3422  | 0  | }  | 
3423  |  |  | 
3424  |  | int mbedtls_ecp_keypair_calc_public(mbedtls_ecp_keypair *key,  | 
3425  |  |                                     int (*f_rng)(void *, unsigned char *, size_t),  | 
3426  |  |                                     void *p_rng)  | 
3427  | 0  | { | 
3428  | 0  |     return mbedtls_ecp_mul(&key->grp, &key->Q, &key->d, &key->grp.G,  | 
3429  | 0  |                            f_rng, p_rng);  | 
3430  | 0  | }  | 
3431  |  | #endif /* MBEDTLS_ECP_C */  | 
3432  |  |  | 
3433  |  | mbedtls_ecp_group_id mbedtls_ecp_keypair_get_group_id(  | 
3434  |  |     const mbedtls_ecp_keypair *key)  | 
3435  | 0  | { | 
3436  | 0  |     return key->grp.id;  | 
3437  | 0  | }  | 
3438  |  |  | 
3439  |  | /*  | 
3440  |  |  * Export generic key-pair parameters.  | 
3441  |  |  */  | 
3442  |  | int mbedtls_ecp_export(const mbedtls_ecp_keypair *key, mbedtls_ecp_group *grp,  | 
3443  |  |                        mbedtls_mpi *d, mbedtls_ecp_point *Q)  | 
3444  | 0  | { | 
3445  | 0  |     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;  | 
3446  |  | 
  | 
3447  | 0  |     if (grp != NULL && (ret = mbedtls_ecp_group_copy(grp, &key->grp)) != 0) { | 
3448  | 0  |         return ret;  | 
3449  | 0  |     }  | 
3450  |  |  | 
3451  | 0  |     if (d != NULL && (ret = mbedtls_mpi_copy(d, &key->d)) != 0) { | 
3452  | 0  |         return ret;  | 
3453  | 0  |     }  | 
3454  |  |  | 
3455  | 0  |     if (Q != NULL && (ret = mbedtls_ecp_copy(Q, &key->Q)) != 0) { | 
3456  | 0  |         return ret;  | 
3457  | 0  |     }  | 
3458  |  |  | 
3459  | 0  |     return 0;  | 
3460  | 0  | }  | 
3461  |  |  | 
3462  |  | #if defined(MBEDTLS_SELF_TEST)  | 
3463  |  |  | 
3464  |  | #if defined(MBEDTLS_ECP_C)  | 
3465  |  | /*  | 
3466  |  |  * PRNG for test - !!!INSECURE NEVER USE IN PRODUCTION!!!  | 
3467  |  |  *  | 
3468  |  |  * This is the linear congruential generator from numerical recipes,  | 
3469  |  |  * except we only use the low byte as the output. See  | 
3470  |  |  * https://en.wikipedia.org/wiki/Linear_congruential_generator#Parameters_in_common_use  | 
3471  |  |  */  | 
3472  |  | static int self_test_rng(void *ctx, unsigned char *out, size_t len)  | 
3473  | 0  | { | 
3474  | 0  |     static uint32_t state = 42;  | 
3475  |  | 
  | 
3476  | 0  |     (void) ctx;  | 
3477  |  | 
  | 
3478  | 0  |     for (size_t i = 0; i < len; i++) { | 
3479  | 0  |         state = state * 1664525u + 1013904223u;  | 
3480  | 0  |         out[i] = (unsigned char) state;  | 
3481  | 0  |     }  | 
3482  |  | 
  | 
3483  | 0  |     return 0;  | 
3484  | 0  | }  | 
3485  |  |  | 
3486  |  | /* Adjust the exponent to be a valid private point for the specified curve.  | 
3487  |  |  * This is sometimes necessary because we use a single set of exponents  | 
3488  |  |  * for all curves but the validity of values depends on the curve. */  | 
3489  |  | static int self_test_adjust_exponent(const mbedtls_ecp_group *grp,  | 
3490  |  |                                      mbedtls_mpi *m)  | 
3491  | 0  | { | 
3492  | 0  |     int ret = 0;  | 
3493  | 0  |     switch (grp->id) { | 
3494  |  |     /* If Curve25519 is available, then that's what we use for the  | 
3495  |  |      * Montgomery test, so we don't need the adjustment code. */  | 
3496  |  | #if !defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)  | 
3497  |  | #if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)  | 
3498  |  |         case MBEDTLS_ECP_DP_CURVE448:  | 
3499  |  |             /* Move highest bit from 254 to N-1. Setting bit N-1 is  | 
3500  |  |              * necessary to enforce the highest-bit-set constraint. */  | 
3501  |  |             MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(m, 254, 0));  | 
3502  |  |             MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(m, grp->nbits, 1));  | 
3503  |  |             /* Copy second-highest bit from 253 to N-2. This is not  | 
3504  |  |              * necessary but improves the test variety a bit. */  | 
3505  |  |             MBEDTLS_MPI_CHK(  | 
3506  |  |                 mbedtls_mpi_set_bit(m, grp->nbits - 1,  | 
3507  |  |                                     mbedtls_mpi_get_bit(m, 253)));  | 
3508  |  |             break;  | 
3509  |  | #endif  | 
3510  |  | #endif /* ! defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED) */  | 
3511  | 0  |         default:  | 
3512  |  |             /* Non-Montgomery curves and Curve25519 need no adjustment. */  | 
3513  | 0  |             (void) grp;  | 
3514  | 0  |             (void) m;  | 
3515  | 0  |             goto cleanup;  | 
3516  | 0  |     }  | 
3517  | 0  | cleanup:  | 
3518  | 0  |     return ret;  | 
3519  | 0  | }  | 
3520  |  |  | 
3521  |  | /* Calculate R = m.P for each m in exponents. Check that the number of  | 
3522  |  |  * basic operations doesn't depend on the value of m. */  | 
3523  |  | static int self_test_point(int verbose,  | 
3524  |  |                            mbedtls_ecp_group *grp,  | 
3525  |  |                            mbedtls_ecp_point *R,  | 
3526  |  |                            mbedtls_mpi *m,  | 
3527  |  |                            const mbedtls_ecp_point *P,  | 
3528  |  |                            const char *const *exponents,  | 
3529  |  |                            size_t n_exponents)  | 
3530  | 0  | { | 
3531  | 0  |     int ret = 0;  | 
3532  | 0  |     size_t i = 0;  | 
3533  | 0  |     unsigned long add_c_prev, dbl_c_prev, mul_c_prev;  | 
3534  | 0  |     add_count = 0;  | 
3535  | 0  |     dbl_count = 0;  | 
3536  | 0  |     mul_count = 0;  | 
3537  |  | 
  | 
3538  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(m, 16, exponents[0]));  | 
3539  | 0  |     MBEDTLS_MPI_CHK(self_test_adjust_exponent(grp, m));  | 
3540  | 0  |     MBEDTLS_MPI_CHK(mbedtls_ecp_mul(grp, R, m, P, self_test_rng, NULL));  | 
3541  |  |  | 
3542  | 0  |     for (i = 1; i < n_exponents; i++) { | 
3543  | 0  |         add_c_prev = add_count;  | 
3544  | 0  |         dbl_c_prev = dbl_count;  | 
3545  | 0  |         mul_c_prev = mul_count;  | 
3546  | 0  |         add_count = 0;  | 
3547  | 0  |         dbl_count = 0;  | 
3548  | 0  |         mul_count = 0;  | 
3549  |  | 
  | 
3550  | 0  |         MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(m, 16, exponents[i]));  | 
3551  | 0  |         MBEDTLS_MPI_CHK(self_test_adjust_exponent(grp, m));  | 
3552  | 0  |         MBEDTLS_MPI_CHK(mbedtls_ecp_mul(grp, R, m, P, self_test_rng, NULL));  | 
3553  |  |  | 
3554  | 0  |         if (add_count != add_c_prev ||  | 
3555  | 0  |             dbl_count != dbl_c_prev ||  | 
3556  | 0  |             mul_count != mul_c_prev) { | 
3557  | 0  |             ret = 1;  | 
3558  | 0  |             break;  | 
3559  | 0  |         }  | 
3560  | 0  |     }  | 
3561  |  |  | 
3562  | 0  | cleanup:  | 
3563  | 0  |     if (verbose != 0) { | 
3564  | 0  |         if (ret != 0) { | 
3565  | 0  |             mbedtls_printf("failed (%u)\n", (unsigned int) i); | 
3566  | 0  |         } else { | 
3567  | 0  |             mbedtls_printf("passed\n"); | 
3568  | 0  |         }  | 
3569  | 0  |     }  | 
3570  | 0  |     return ret;  | 
3571  | 0  | }  | 
3572  |  | #endif /* MBEDTLS_ECP_C */  | 
3573  |  |  | 
3574  |  | /*  | 
3575  |  |  * Checkup routine  | 
3576  |  |  */  | 
3577  |  | int mbedtls_ecp_self_test(int verbose)  | 
3578  | 0  | { | 
3579  | 0  | #if defined(MBEDTLS_ECP_C)  | 
3580  | 0  |     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;  | 
3581  | 0  |     mbedtls_ecp_group grp;  | 
3582  | 0  |     mbedtls_ecp_point R, P;  | 
3583  | 0  |     mbedtls_mpi m;  | 
3584  |  | 
  | 
3585  | 0  | #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)  | 
3586  |  |     /* Exponents especially adapted for secp192k1, which has the lowest  | 
3587  |  |      * order n of all supported curves (secp192r1 is in a slightly larger  | 
3588  |  |      * field but the order of its base point is slightly smaller). */  | 
3589  | 0  |     const char *sw_exponents[] =  | 
3590  | 0  |     { | 
3591  | 0  |         "000000000000000000000000000000000000000000000001", /* one */  | 
3592  | 0  |         "FFFFFFFFFFFFFFFFFFFFFFFE26F2FC170F69466A74DEFD8C", /* n - 1 */  | 
3593  | 0  |         "5EA6F389A38B8BC81E767753B15AA5569E1782E30ABE7D25", /* random */  | 
3594  | 0  |         "400000000000000000000000000000000000000000000000", /* one and zeros */  | 
3595  | 0  |         "7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", /* all ones */  | 
3596  | 0  |         "555555555555555555555555555555555555555555555555", /* 101010... */  | 
3597  | 0  |     };  | 
3598  | 0  | #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */  | 
3599  | 0  | #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)  | 
3600  | 0  |     const char *m_exponents[] =  | 
3601  | 0  |     { | 
3602  |  |         /* Valid private values for Curve25519. In a build with Curve448  | 
3603  |  |          * but not Curve25519, they will be adjusted in  | 
3604  |  |          * self_test_adjust_exponent(). */  | 
3605  | 0  |         "4000000000000000000000000000000000000000000000000000000000000000",  | 
3606  | 0  |         "5C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C30",  | 
3607  | 0  |         "5715ECCE24583F7A7023C24164390586842E816D7280A49EF6DF4EAE6B280BF8",  | 
3608  | 0  |         "41A2B017516F6D254E1F002BCCBADD54BE30F8CEC737A0E912B4963B6BA74460",  | 
3609  | 0  |         "5555555555555555555555555555555555555555555555555555555555555550",  | 
3610  | 0  |         "7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF8",  | 
3611  | 0  |     };  | 
3612  | 0  | #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */  | 
3613  |  | 
  | 
3614  | 0  |     mbedtls_ecp_group_init(&grp);  | 
3615  | 0  |     mbedtls_ecp_point_init(&R);  | 
3616  | 0  |     mbedtls_ecp_point_init(&P);  | 
3617  | 0  |     mbedtls_mpi_init(&m);  | 
3618  |  | 
  | 
3619  | 0  | #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)  | 
3620  |  |     /* Use secp192r1 if available, or any available curve */  | 
3621  | 0  | #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)  | 
3622  | 0  |     MBEDTLS_MPI_CHK(mbedtls_ecp_group_load(&grp, MBEDTLS_ECP_DP_SECP192R1));  | 
3623  |  | #else  | 
3624  |  |     MBEDTLS_MPI_CHK(mbedtls_ecp_group_load(&grp, mbedtls_ecp_curve_list()->grp_id));  | 
3625  |  | #endif  | 
3626  |  |  | 
3627  | 0  |     if (verbose != 0) { | 
3628  | 0  |         mbedtls_printf("  ECP SW test #1 (constant op_count, base point G): "); | 
3629  | 0  |     }  | 
3630  |  |     /* Do a dummy multiplication first to trigger precomputation */  | 
3631  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&m, 2));  | 
3632  | 0  |     MBEDTLS_MPI_CHK(mbedtls_ecp_mul(&grp, &P, &m, &grp.G, self_test_rng, NULL));  | 
3633  | 0  |     ret = self_test_point(verbose,  | 
3634  | 0  |                           &grp, &R, &m, &grp.G,  | 
3635  | 0  |                           sw_exponents,  | 
3636  | 0  |                           sizeof(sw_exponents) / sizeof(sw_exponents[0]));  | 
3637  | 0  |     if (ret != 0) { | 
3638  | 0  |         goto cleanup;  | 
3639  | 0  |     }  | 
3640  |  |  | 
3641  | 0  |     if (verbose != 0) { | 
3642  | 0  |         mbedtls_printf("  ECP SW test #2 (constant op_count, other point): "); | 
3643  | 0  |     }  | 
3644  |  |     /* We computed P = 2G last time, use it */  | 
3645  | 0  |     ret = self_test_point(verbose,  | 
3646  | 0  |                           &grp, &R, &m, &P,  | 
3647  | 0  |                           sw_exponents,  | 
3648  | 0  |                           sizeof(sw_exponents) / sizeof(sw_exponents[0]));  | 
3649  | 0  |     if (ret != 0) { | 
3650  | 0  |         goto cleanup;  | 
3651  | 0  |     }  | 
3652  |  |  | 
3653  | 0  |     mbedtls_ecp_group_free(&grp);  | 
3654  | 0  |     mbedtls_ecp_point_free(&R);  | 
3655  | 0  | #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */  | 
3656  |  | 
  | 
3657  | 0  | #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)  | 
3658  | 0  |     if (verbose != 0) { | 
3659  | 0  |         mbedtls_printf("  ECP Montgomery test (constant op_count): "); | 
3660  | 0  |     }  | 
3661  | 0  | #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)  | 
3662  | 0  |     MBEDTLS_MPI_CHK(mbedtls_ecp_group_load(&grp, MBEDTLS_ECP_DP_CURVE25519));  | 
3663  |  | #elif defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)  | 
3664  |  |     MBEDTLS_MPI_CHK(mbedtls_ecp_group_load(&grp, MBEDTLS_ECP_DP_CURVE448));  | 
3665  |  | #else  | 
3666  |  | #error "MBEDTLS_ECP_MONTGOMERY_ENABLED is defined, but no curve is supported for self-test"  | 
3667  |  | #endif  | 
3668  | 0  |     ret = self_test_point(verbose,  | 
3669  | 0  |                           &grp, &R, &m, &grp.G,  | 
3670  | 0  |                           m_exponents,  | 
3671  | 0  |                           sizeof(m_exponents) / sizeof(m_exponents[0]));  | 
3672  | 0  |     if (ret != 0) { | 
3673  | 0  |         goto cleanup;  | 
3674  | 0  |     }  | 
3675  | 0  | #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */  | 
3676  |  |  | 
3677  | 0  | cleanup:  | 
3678  |  | 
  | 
3679  | 0  |     if (ret < 0 && verbose != 0) { | 
3680  | 0  |         mbedtls_printf("Unexpected error, return code = %08X\n", (unsigned int) ret); | 
3681  | 0  |     }  | 
3682  |  | 
  | 
3683  | 0  |     mbedtls_ecp_group_free(&grp);  | 
3684  | 0  |     mbedtls_ecp_point_free(&R);  | 
3685  | 0  |     mbedtls_ecp_point_free(&P);  | 
3686  | 0  |     mbedtls_mpi_free(&m);  | 
3687  |  | 
  | 
3688  | 0  |     if (verbose != 0) { | 
3689  | 0  |         mbedtls_printf("\n"); | 
3690  | 0  |     }  | 
3691  |  | 
  | 
3692  | 0  |     return ret;  | 
3693  |  | #else /* MBEDTLS_ECP_C */  | 
3694  |  |     (void) verbose;  | 
3695  |  |     return 0;  | 
3696  |  | #endif /* MBEDTLS_ECP_C */  | 
3697  | 0  | }  | 
3698  |  |  | 
3699  |  | #endif /* MBEDTLS_SELF_TEST */  | 
3700  |  |  | 
3701  |  | #endif /* !MBEDTLS_ECP_ALT */  | 
3702  |  |  | 
3703  |  | #endif /* MBEDTLS_ECP_LIGHT */  |