Coverage Report

Created: 2025-03-01 06:26

/src/mbedtls/library/bignum.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 *  Multi-precision integer library
3
 *
4
 *  Copyright The Mbed TLS Contributors
5
 *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
6
 */
7
8
/*
9
 *  The following sources were referenced in the design of this Multi-precision
10
 *  Integer library:
11
 *
12
 *  [1] Handbook of Applied Cryptography - 1997
13
 *      Menezes, van Oorschot and Vanstone
14
 *
15
 *  [2] Multi-Precision Math
16
 *      Tom St Denis
17
 *      https://github.com/libtom/libtommath/blob/develop/tommath.pdf
18
 *
19
 *  [3] GNU Multi-Precision Arithmetic Library
20
 *      https://gmplib.org/manual/index.html
21
 *
22
 */
23
24
#include "common.h"
25
26
#if defined(MBEDTLS_BIGNUM_C)
27
28
#include "mbedtls/bignum.h"
29
#include "bignum_core.h"
30
#include "bignum_internal.h"
31
#include "bn_mul.h"
32
#include "mbedtls/platform_util.h"
33
#include "mbedtls/error.h"
34
#include "constant_time_internal.h"
35
36
#include <limits.h>
37
#include <string.h>
38
39
#include "mbedtls/platform.h"
40
41
42
43
/*
44
 * Conditionally select an MPI sign in constant time.
45
 * (MPI sign is the field s in mbedtls_mpi. It is unsigned short and only 1 and -1 are valid
46
 * values.)
47
 */
48
static inline signed short mbedtls_ct_mpi_sign_if(mbedtls_ct_condition_t cond,
49
                                                  signed short sign1, signed short sign2)
50
0
{
51
0
    return (signed short) mbedtls_ct_uint_if(cond, sign1 + 1, sign2 + 1) - 1;
52
0
}
53
54
/*
55
 * Compare signed values in constant time
56
 */
57
int mbedtls_mpi_lt_mpi_ct(const mbedtls_mpi *X,
58
                          const mbedtls_mpi *Y,
59
                          unsigned *ret)
60
0
{
61
0
    mbedtls_ct_condition_t different_sign, X_is_negative, Y_is_negative, result;
62
63
0
    if (X->n != Y->n) {
64
0
        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
65
0
    }
66
67
    /*
68
     * Set N_is_negative to MBEDTLS_CT_FALSE if N >= 0, MBEDTLS_CT_TRUE if N < 0.
69
     * We know that N->s == 1 if N >= 0 and N->s == -1 if N < 0.
70
     */
71
0
    X_is_negative = mbedtls_ct_bool((X->s & 2) >> 1);
72
0
    Y_is_negative = mbedtls_ct_bool((Y->s & 2) >> 1);
73
74
    /*
75
     * If the signs are different, then the positive operand is the bigger.
76
     * That is if X is negative (X_is_negative == 1), then X < Y is true and it
77
     * is false if X is positive (X_is_negative == 0).
78
     */
79
0
    different_sign = mbedtls_ct_bool_ne(X_is_negative, Y_is_negative); // true if different sign
80
0
    result = mbedtls_ct_bool_and(different_sign, X_is_negative);
81
82
    /*
83
     * Assuming signs are the same, compare X and Y. We switch the comparison
84
     * order if they are negative so that we get the right result, regardles of
85
     * sign.
86
     */
87
88
    /* This array is used to conditionally swap the pointers in const time */
89
0
    void * const p[2] = { X->p, Y->p };
90
0
    size_t i = mbedtls_ct_size_if_else_0(X_is_negative, 1);
91
0
    mbedtls_ct_condition_t lt = mbedtls_mpi_core_lt_ct(p[i], p[i ^ 1], X->n);
92
93
    /*
94
     * Store in result iff the signs are the same (i.e., iff different_sign == false). If
95
     * the signs differ, result has already been set, so we don't change it.
96
     */
97
0
    result = mbedtls_ct_bool_or(result,
98
0
                                mbedtls_ct_bool_and(mbedtls_ct_bool_not(different_sign), lt));
99
100
0
    *ret = mbedtls_ct_uint_if_else_0(result, 1);
101
102
0
    return 0;
103
0
}
104
105
/*
106
 * Conditionally assign X = Y, without leaking information
107
 * about whether the assignment was made or not.
108
 * (Leaking information about the respective sizes of X and Y is ok however.)
109
 */
110
#if defined(_MSC_VER) && defined(MBEDTLS_PLATFORM_IS_WINDOWS_ON_ARM64) && \
111
    (_MSC_FULL_VER < 193131103)
112
/*
113
 * MSVC miscompiles this function if it's inlined prior to Visual Studio 2022 version 17.1. See:
114
 * https://developercommunity.visualstudio.com/t/c-compiler-miscompiles-part-of-mbedtls-library-on/1646989
115
 */
116
__declspec(noinline)
117
#endif
118
int mbedtls_mpi_safe_cond_assign(mbedtls_mpi *X,
119
                                 const mbedtls_mpi *Y,
120
                                 unsigned char assign)
121
0
{
122
0
    int ret = 0;
123
124
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, Y->n));
125
126
0
    {
127
0
        mbedtls_ct_condition_t do_assign = mbedtls_ct_bool(assign);
128
129
0
        X->s = mbedtls_ct_mpi_sign_if(do_assign, Y->s, X->s);
130
131
0
        mbedtls_mpi_core_cond_assign(X->p, Y->p, Y->n, do_assign);
132
133
0
        mbedtls_ct_condition_t do_not_assign = mbedtls_ct_bool_not(do_assign);
134
0
        for (size_t i = Y->n; i < X->n; i++) {
135
0
            X->p[i] = mbedtls_ct_mpi_uint_if_else_0(do_not_assign, X->p[i]);
136
0
        }
137
0
    }
138
139
0
cleanup:
140
0
    return ret;
141
0
}
142
143
/*
144
 * Conditionally swap X and Y, without leaking information
145
 * about whether the swap was made or not.
146
 * Here it is not ok to simply swap the pointers, which would lead to
147
 * different memory access patterns when X and Y are used afterwards.
148
 */
149
int mbedtls_mpi_safe_cond_swap(mbedtls_mpi *X,
150
                               mbedtls_mpi *Y,
151
                               unsigned char swap)
152
0
{
153
0
    int ret = 0;
154
0
    int s;
155
156
0
    if (X == Y) {
157
0
        return 0;
158
0
    }
159
160
0
    mbedtls_ct_condition_t do_swap = mbedtls_ct_bool(swap);
161
162
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, Y->n));
163
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(Y, X->n));
164
165
0
    s = X->s;
166
0
    X->s = mbedtls_ct_mpi_sign_if(do_swap, Y->s, X->s);
167
0
    Y->s = mbedtls_ct_mpi_sign_if(do_swap, s, Y->s);
168
169
0
    mbedtls_mpi_core_cond_swap(X->p, Y->p, X->n, do_swap);
170
171
0
cleanup:
172
0
    return ret;
173
0
}
174
175
/* Implementation that should never be optimized out by the compiler */
176
5
#define mbedtls_mpi_zeroize_and_free(v, n) mbedtls_zeroize_and_free(v, ciL * (n))
177
178
/*
179
 * Initialize one MPI
180
 */
181
void mbedtls_mpi_init(mbedtls_mpi *X)
182
26
{
183
26
    X->s = 1;
184
26
    X->n = 0;
185
26
    X->p = NULL;
186
26
}
187
188
/*
189
 * Unallocate one MPI
190
 */
191
void mbedtls_mpi_free(mbedtls_mpi *X)
192
25
{
193
25
    if (X == NULL) {
194
0
        return;
195
0
    }
196
197
25
    if (X->p != NULL) {
198
3
        mbedtls_mpi_zeroize_and_free(X->p, X->n);
199
3
    }
200
201
25
    X->s = 1;
202
25
    X->n = 0;
203
25
    X->p = NULL;
204
25
}
205
206
/*
207
 * Enlarge to the specified number of limbs
208
 */
209
int mbedtls_mpi_grow(mbedtls_mpi *X, size_t nblimbs)
210
23
{
211
23
    mbedtls_mpi_uint *p;
212
213
23
    if (nblimbs > MBEDTLS_MPI_MAX_LIMBS) {
214
0
        return MBEDTLS_ERR_MPI_ALLOC_FAILED;
215
0
    }
216
217
23
    if (X->n < nblimbs) {
218
12
        if ((p = (mbedtls_mpi_uint *) mbedtls_calloc(nblimbs, ciL)) == NULL) {
219
0
            return MBEDTLS_ERR_MPI_ALLOC_FAILED;
220
0
        }
221
222
12
        if (X->p != NULL) {
223
2
            memcpy(p, X->p, X->n * ciL);
224
2
            mbedtls_mpi_zeroize_and_free(X->p, X->n);
225
2
        }
226
227
        /* nblimbs fits in n because we ensure that MBEDTLS_MPI_MAX_LIMBS
228
         * fits, and we've checked that nblimbs <= MBEDTLS_MPI_MAX_LIMBS. */
229
12
        X->n = (unsigned short) nblimbs;
230
12
        X->p = p;
231
12
    }
232
233
23
    return 0;
234
23
}
235
236
/*
237
 * Resize down as much as possible,
238
 * while keeping at least the specified number of limbs
239
 */
240
int mbedtls_mpi_shrink(mbedtls_mpi *X, size_t nblimbs)
241
0
{
242
0
    mbedtls_mpi_uint *p;
243
0
    size_t i;
244
245
0
    if (nblimbs > MBEDTLS_MPI_MAX_LIMBS) {
246
0
        return MBEDTLS_ERR_MPI_ALLOC_FAILED;
247
0
    }
248
249
    /* Actually resize up if there are currently fewer than nblimbs limbs. */
250
0
    if (X->n <= nblimbs) {
251
0
        return mbedtls_mpi_grow(X, nblimbs);
252
0
    }
253
    /* After this point, then X->n > nblimbs and in particular X->n > 0. */
254
255
0
    for (i = X->n - 1; i > 0; i--) {
256
0
        if (X->p[i] != 0) {
257
0
            break;
258
0
        }
259
0
    }
260
0
    i++;
261
262
0
    if (i < nblimbs) {
263
0
        i = nblimbs;
264
0
    }
265
266
0
    if ((p = (mbedtls_mpi_uint *) mbedtls_calloc(i, ciL)) == NULL) {
267
0
        return MBEDTLS_ERR_MPI_ALLOC_FAILED;
268
0
    }
269
270
0
    if (X->p != NULL) {
271
0
        memcpy(p, X->p, i * ciL);
272
0
        mbedtls_mpi_zeroize_and_free(X->p, X->n);
273
0
    }
274
275
    /* i fits in n because we ensure that MBEDTLS_MPI_MAX_LIMBS
276
     * fits, and we've checked that i <= nblimbs <= MBEDTLS_MPI_MAX_LIMBS. */
277
0
    X->n = (unsigned short) i;
278
0
    X->p = p;
279
280
0
    return 0;
281
0
}
282
283
/* Resize X to have exactly n limbs and set it to 0. */
284
static int mbedtls_mpi_resize_clear(mbedtls_mpi *X, size_t limbs)
285
6
{
286
6
    if (limbs == 0) {
287
0
        mbedtls_mpi_free(X);
288
0
        return 0;
289
6
    } else if (X->n == limbs) {
290
0
        memset(X->p, 0, limbs * ciL);
291
0
        X->s = 1;
292
0
        return 0;
293
6
    } else {
294
6
        mbedtls_mpi_free(X);
295
6
        return mbedtls_mpi_grow(X, limbs);
296
6
    }
297
6
}
298
299
/*
300
 * Copy the contents of Y into X.
301
 *
302
 * This function is not constant-time. Leading zeros in Y may be removed.
303
 *
304
 * Ensure that X does not shrink. This is not guaranteed by the public API,
305
 * but some code in the bignum module might still rely on this property.
306
 */
307
int mbedtls_mpi_copy(mbedtls_mpi *X, const mbedtls_mpi *Y)
308
1
{
309
1
    int ret = 0;
310
1
    size_t i;
311
312
1
    if (X == Y) {
313
0
        return 0;
314
0
    }
315
316
1
    if (Y->n == 0) {
317
0
        if (X->n != 0) {
318
0
            X->s = 1;
319
0
            memset(X->p, 0, X->n * ciL);
320
0
        }
321
0
        return 0;
322
0
    }
323
324
8
    for (i = Y->n - 1; i > 0; i--) {
325
8
        if (Y->p[i] != 0) {
326
1
            break;
327
1
        }
328
8
    }
329
1
    i++;
330
331
1
    X->s = Y->s;
332
333
1
    if (X->n < i) {
334
1
        MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, i));
335
1
    } else {
336
0
        memset(X->p + i, 0, (X->n - i) * ciL);
337
0
    }
338
339
1
    memcpy(X->p, Y->p, i * ciL);
340
341
1
cleanup:
342
343
1
    return ret;
344
1
}
345
346
/*
347
 * Swap the contents of X and Y
348
 */
349
void mbedtls_mpi_swap(mbedtls_mpi *X, mbedtls_mpi *Y)
350
0
{
351
0
    mbedtls_mpi T;
352
353
0
    memcpy(&T,  X, sizeof(mbedtls_mpi));
354
0
    memcpy(X,  Y, sizeof(mbedtls_mpi));
355
0
    memcpy(Y, &T, sizeof(mbedtls_mpi));
356
0
}
357
358
static inline mbedtls_mpi_uint mpi_sint_abs(mbedtls_mpi_sint z)
359
27
{
360
27
    if (z >= 0) {
361
27
        return z;
362
27
    }
363
    /* Take care to handle the most negative value (-2^(biL-1)) correctly.
364
     * A naive -z would have undefined behavior.
365
     * Write this in a way that makes popular compilers happy (GCC, Clang,
366
     * MSVC). */
367
0
    return (mbedtls_mpi_uint) 0 - (mbedtls_mpi_uint) z;
368
27
}
369
370
/* Convert x to a sign, i.e. to 1, if x is positive, or -1, if x is negative.
371
 * This looks awkward but generates smaller code than (x < 0 ? -1 : 1) */
372
27
#define TO_SIGN(x) ((mbedtls_mpi_sint) (((mbedtls_mpi_uint) x) >> (biL - 1)) * -2 + 1)
373
374
/*
375
 * Set value from integer
376
 */
377
int mbedtls_mpi_lset(mbedtls_mpi *X, mbedtls_mpi_sint z)
378
4
{
379
4
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
380
381
4
    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, 1));
382
4
    memset(X->p, 0, X->n * ciL);
383
384
4
    X->p[0] = mpi_sint_abs(z);
385
4
    X->s    = TO_SIGN(z);
386
387
4
cleanup:
388
389
4
    return ret;
390
4
}
391
392
/*
393
 * Get a specific bit
394
 */
395
int mbedtls_mpi_get_bit(const mbedtls_mpi *X, size_t pos)
396
6
{
397
6
    if (X->n * biL <= pos) {
398
0
        return 0;
399
0
    }
400
401
6
    return (X->p[pos / biL] >> (pos % biL)) & 0x01;
402
6
}
403
404
/*
405
 * Set a bit to a specific value of 0 or 1
406
 */
407
int mbedtls_mpi_set_bit(mbedtls_mpi *X, size_t pos, unsigned char val)
408
0
{
409
0
    int ret = 0;
410
0
    size_t off = pos / biL;
411
0
    size_t idx = pos % biL;
412
413
0
    if (val != 0 && val != 1) {
414
0
        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
415
0
    }
416
417
0
    if (X->n * biL <= pos) {
418
0
        if (val == 0) {
419
0
            return 0;
420
0
        }
421
422
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, off + 1));
423
0
    }
424
425
0
    X->p[off] &= ~((mbedtls_mpi_uint) 0x01 << idx);
426
0
    X->p[off] |= (mbedtls_mpi_uint) val << idx;
427
428
0
cleanup:
429
430
0
    return ret;
431
0
}
432
433
/*
434
 * Return the number of less significant zero-bits
435
 */
436
size_t mbedtls_mpi_lsb(const mbedtls_mpi *X)
437
0
{
438
0
    size_t i;
439
440
0
#if defined(__has_builtin)
441
#if (MBEDTLS_MPI_UINT_MAX == UINT_MAX) && __has_builtin(__builtin_ctz)
442
    #define mbedtls_mpi_uint_ctz __builtin_ctz
443
#elif (MBEDTLS_MPI_UINT_MAX == ULONG_MAX) && __has_builtin(__builtin_ctzl)
444
0
    #define mbedtls_mpi_uint_ctz __builtin_ctzl
445
#elif (MBEDTLS_MPI_UINT_MAX == ULLONG_MAX) && __has_builtin(__builtin_ctzll)
446
    #define mbedtls_mpi_uint_ctz __builtin_ctzll
447
#endif
448
0
#endif
449
450
0
#if defined(mbedtls_mpi_uint_ctz)
451
0
    for (i = 0; i < X->n; i++) {
452
0
        if (X->p[i] != 0) {
453
0
            return i * biL + mbedtls_mpi_uint_ctz(X->p[i]);
454
0
        }
455
0
    }
456
#else
457
    size_t count = 0;
458
    for (i = 0; i < X->n; i++) {
459
        for (size_t j = 0; j < biL; j++, count++) {
460
            if (((X->p[i] >> j) & 1) != 0) {
461
                return count;
462
            }
463
        }
464
    }
465
#endif
466
467
0
    return 0;
468
0
}
469
470
/*
471
 * Return the number of bits
472
 */
473
size_t mbedtls_mpi_bitlen(const mbedtls_mpi *X)
474
16
{
475
16
    return mbedtls_mpi_core_bitlen(X->p, X->n);
476
16
}
477
478
/*
479
 * Return the total size in bytes
480
 */
481
size_t mbedtls_mpi_size(const mbedtls_mpi *X)
482
7
{
483
7
    return (mbedtls_mpi_bitlen(X) + 7) >> 3;
484
7
}
485
486
/*
487
 * Convert an ASCII character to digit value
488
 */
489
static int mpi_get_digit(mbedtls_mpi_uint *d, int radix, char c)
490
0
{
491
0
    *d = 255;
492
493
0
    if (c >= 0x30 && c <= 0x39) {
494
0
        *d = c - 0x30;
495
0
    }
496
0
    if (c >= 0x41 && c <= 0x46) {
497
0
        *d = c - 0x37;
498
0
    }
499
0
    if (c >= 0x61 && c <= 0x66) {
500
0
        *d = c - 0x57;
501
0
    }
502
503
0
    if (*d >= (mbedtls_mpi_uint) radix) {
504
0
        return MBEDTLS_ERR_MPI_INVALID_CHARACTER;
505
0
    }
506
507
0
    return 0;
508
0
}
509
510
/*
511
 * Import from an ASCII string
512
 */
513
int mbedtls_mpi_read_string(mbedtls_mpi *X, int radix, const char *s)
514
0
{
515
0
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
516
0
    size_t i, j, slen, n;
517
0
    int sign = 1;
518
0
    mbedtls_mpi_uint d;
519
0
    mbedtls_mpi T;
520
521
0
    if (radix < 2 || radix > 16) {
522
0
        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
523
0
    }
524
525
0
    mbedtls_mpi_init(&T);
526
527
0
    if (s[0] == 0) {
528
0
        mbedtls_mpi_free(X);
529
0
        return 0;
530
0
    }
531
532
0
    if (s[0] == '-') {
533
0
        ++s;
534
0
        sign = -1;
535
0
    }
536
537
0
    slen = strlen(s);
538
539
0
    if (radix == 16) {
540
0
        if (slen > SIZE_MAX >> 2) {
541
0
            return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
542
0
        }
543
544
0
        n = BITS_TO_LIMBS(slen << 2);
545
546
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, n));
547
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 0));
548
549
0
        for (i = slen, j = 0; i > 0; i--, j++) {
550
0
            MBEDTLS_MPI_CHK(mpi_get_digit(&d, radix, s[i - 1]));
551
0
            X->p[j / (2 * ciL)] |= d << ((j % (2 * ciL)) << 2);
552
0
        }
553
0
    } else {
554
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 0));
555
556
0
        for (i = 0; i < slen; i++) {
557
0
            MBEDTLS_MPI_CHK(mpi_get_digit(&d, radix, s[i]));
558
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&T, X, radix));
559
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, &T, d));
560
0
        }
561
0
    }
562
563
0
    if (sign < 0 && mbedtls_mpi_bitlen(X) != 0) {
564
0
        X->s = -1;
565
0
    }
566
567
0
cleanup:
568
569
0
    mbedtls_mpi_free(&T);
570
571
0
    return ret;
572
0
}
573
574
/*
575
 * Helper to write the digits high-order first.
576
 */
577
static int mpi_write_hlp(mbedtls_mpi *X, int radix,
578
                         char **p, const size_t buflen)
579
0
{
580
0
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
581
0
    mbedtls_mpi_uint r;
582
0
    size_t length = 0;
583
0
    char *p_end = *p + buflen;
584
585
0
    do {
586
0
        if (length >= buflen) {
587
0
            return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
588
0
        }
589
590
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_mod_int(&r, X, radix));
591
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_div_int(X, NULL, X, radix));
592
        /*
593
         * Write the residue in the current position, as an ASCII character.
594
         */
595
0
        if (r < 0xA) {
596
0
            *(--p_end) = (char) ('0' + r);
597
0
        } else {
598
0
            *(--p_end) = (char) ('A' + (r - 0xA));
599
0
        }
600
601
0
        length++;
602
0
    } while (mbedtls_mpi_cmp_int(X, 0) != 0);
603
604
0
    memmove(*p, p_end, length);
605
0
    *p += length;
606
607
0
cleanup:
608
609
0
    return ret;
610
0
}
611
612
/*
613
 * Export into an ASCII string
614
 */
615
int mbedtls_mpi_write_string(const mbedtls_mpi *X, int radix,
616
                             char *buf, size_t buflen, size_t *olen)
617
0
{
618
0
    int ret = 0;
619
0
    size_t n;
620
0
    char *p;
621
0
    mbedtls_mpi T;
622
623
0
    if (radix < 2 || radix > 16) {
624
0
        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
625
0
    }
626
627
0
    n = mbedtls_mpi_bitlen(X);   /* Number of bits necessary to present `n`. */
628
0
    if (radix >=  4) {
629
0
        n >>= 1;                 /* Number of 4-adic digits necessary to present
630
                                  * `n`. If radix > 4, this might be a strict
631
                                  * overapproximation of the number of
632
                                  * radix-adic digits needed to present `n`. */
633
0
    }
634
0
    if (radix >= 16) {
635
0
        n >>= 1;                 /* Number of hexadecimal digits necessary to
636
                                  * present `n`. */
637
638
0
    }
639
0
    n += 1; /* Terminating null byte */
640
0
    n += 1; /* Compensate for the divisions above, which round down `n`
641
             * in case it's not even. */
642
0
    n += 1; /* Potential '-'-sign. */
643
0
    n += (n & 1);   /* Make n even to have enough space for hexadecimal writing,
644
                     * which always uses an even number of hex-digits. */
645
646
0
    if (buflen < n) {
647
0
        *olen = n;
648
0
        return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
649
0
    }
650
651
0
    p = buf;
652
0
    mbedtls_mpi_init(&T);
653
654
0
    if (X->s == -1) {
655
0
        *p++ = '-';
656
0
        buflen--;
657
0
    }
658
659
0
    if (radix == 16) {
660
0
        int c;
661
0
        size_t i, j, k;
662
663
0
        for (i = X->n, k = 0; i > 0; i--) {
664
0
            for (j = ciL; j > 0; j--) {
665
0
                c = (X->p[i - 1] >> ((j - 1) << 3)) & 0xFF;
666
667
0
                if (c == 0 && k == 0 && (i + j) != 2) {
668
0
                    continue;
669
0
                }
670
671
0
                *(p++) = "0123456789ABCDEF" [c / 16];
672
0
                *(p++) = "0123456789ABCDEF" [c % 16];
673
0
                k = 1;
674
0
            }
675
0
        }
676
0
    } else {
677
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&T, X));
678
679
0
        if (T.s == -1) {
680
0
            T.s = 1;
681
0
        }
682
683
0
        MBEDTLS_MPI_CHK(mpi_write_hlp(&T, radix, &p, buflen));
684
0
    }
685
686
0
    *p++ = '\0';
687
0
    *olen = (size_t) (p - buf);
688
689
0
cleanup:
690
691
0
    mbedtls_mpi_free(&T);
692
693
0
    return ret;
694
0
}
695
696
#if defined(MBEDTLS_FS_IO)
697
/*
698
 * Read X from an opened file
699
 */
700
int mbedtls_mpi_read_file(mbedtls_mpi *X, int radix, FILE *fin)
701
0
{
702
0
    mbedtls_mpi_uint d;
703
0
    size_t slen;
704
0
    char *p;
705
    /*
706
     * Buffer should have space for (short) label and decimal formatted MPI,
707
     * newline characters and '\0'
708
     */
709
0
    char s[MBEDTLS_MPI_RW_BUFFER_SIZE];
710
711
0
    if (radix < 2 || radix > 16) {
712
0
        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
713
0
    }
714
715
0
    memset(s, 0, sizeof(s));
716
0
    if (fgets(s, sizeof(s) - 1, fin) == NULL) {
717
0
        return MBEDTLS_ERR_MPI_FILE_IO_ERROR;
718
0
    }
719
720
0
    slen = strlen(s);
721
0
    if (slen == sizeof(s) - 2) {
722
0
        return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
723
0
    }
724
725
0
    if (slen > 0 && s[slen - 1] == '\n') {
726
0
        slen--; s[slen] = '\0';
727
0
    }
728
0
    if (slen > 0 && s[slen - 1] == '\r') {
729
0
        slen--; s[slen] = '\0';
730
0
    }
731
732
0
    p = s + slen;
733
0
    while (p-- > s) {
734
0
        if (mpi_get_digit(&d, radix, *p) != 0) {
735
0
            break;
736
0
        }
737
0
    }
738
739
0
    return mbedtls_mpi_read_string(X, radix, p + 1);
740
0
}
741
742
/*
743
 * Write X into an opened file (or stdout if fout == NULL)
744
 */
745
int mbedtls_mpi_write_file(const char *p, const mbedtls_mpi *X, int radix, FILE *fout)
746
0
{
747
0
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
748
0
    size_t n, slen, plen;
749
    /*
750
     * Buffer should have space for (short) label and decimal formatted MPI,
751
     * newline characters and '\0'
752
     */
753
0
    char s[MBEDTLS_MPI_RW_BUFFER_SIZE];
754
755
0
    if (radix < 2 || radix > 16) {
756
0
        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
757
0
    }
758
759
0
    memset(s, 0, sizeof(s));
760
761
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_write_string(X, radix, s, sizeof(s) - 2, &n));
762
763
0
    if (p == NULL) {
764
0
        p = "";
765
0
    }
766
767
0
    plen = strlen(p);
768
0
    slen = strlen(s);
769
0
    s[slen++] = '\r';
770
0
    s[slen++] = '\n';
771
772
0
    if (fout != NULL) {
773
0
        if (fwrite(p, 1, plen, fout) != plen ||
774
0
            fwrite(s, 1, slen, fout) != slen) {
775
0
            return MBEDTLS_ERR_MPI_FILE_IO_ERROR;
776
0
        }
777
0
    } else {
778
0
        mbedtls_printf("%s%s", p, s);
779
0
    }
780
781
0
cleanup:
782
783
0
    return ret;
784
0
}
785
#endif /* MBEDTLS_FS_IO */
786
787
/*
788
 * Import X from unsigned binary data, little endian
789
 *
790
 * This function is guaranteed to return an MPI with exactly the necessary
791
 * number of limbs (in particular, it does not skip 0s in the input).
792
 */
793
int mbedtls_mpi_read_binary_le(mbedtls_mpi *X,
794
                               const unsigned char *buf, size_t buflen)
795
0
{
796
0
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
797
0
    const size_t limbs = CHARS_TO_LIMBS(buflen);
798
799
    /* Ensure that target MPI has exactly the necessary number of limbs */
800
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_resize_clear(X, limbs));
801
802
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_core_read_le(X->p, X->n, buf, buflen));
803
804
0
cleanup:
805
806
    /*
807
     * This function is also used to import keys. However, wiping the buffers
808
     * upon failure is not necessary because failure only can happen before any
809
     * input is copied.
810
     */
811
0
    return ret;
812
0
}
813
814
/*
815
 * Import X from unsigned binary data, big endian
816
 *
817
 * This function is guaranteed to return an MPI with exactly the necessary
818
 * number of limbs (in particular, it does not skip 0s in the input).
819
 */
820
int mbedtls_mpi_read_binary(mbedtls_mpi *X, const unsigned char *buf, size_t buflen)
821
6
{
822
6
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
823
6
    const size_t limbs = CHARS_TO_LIMBS(buflen);
824
825
    /* Ensure that target MPI has exactly the necessary number of limbs */
826
6
    MBEDTLS_MPI_CHK(mbedtls_mpi_resize_clear(X, limbs));
827
828
6
    MBEDTLS_MPI_CHK(mbedtls_mpi_core_read_be(X->p, X->n, buf, buflen));
829
830
6
cleanup:
831
832
    /*
833
     * This function is also used to import keys. However, wiping the buffers
834
     * upon failure is not necessary because failure only can happen before any
835
     * input is copied.
836
     */
837
6
    return ret;
838
6
}
839
840
/*
841
 * Export X into unsigned binary data, little endian
842
 */
843
int mbedtls_mpi_write_binary_le(const mbedtls_mpi *X,
844
                                unsigned char *buf, size_t buflen)
845
0
{
846
0
    return mbedtls_mpi_core_write_le(X->p, X->n, buf, buflen);
847
0
}
848
849
/*
850
 * Export X into unsigned binary data, big endian
851
 */
852
int mbedtls_mpi_write_binary(const mbedtls_mpi *X,
853
                             unsigned char *buf, size_t buflen)
854
0
{
855
0
    return mbedtls_mpi_core_write_be(X->p, X->n, buf, buflen);
856
0
}
857
858
/*
859
 * Left-shift: X <<= count
860
 */
861
int mbedtls_mpi_shift_l(mbedtls_mpi *X, size_t count)
862
0
{
863
0
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
864
0
    size_t i;
865
866
0
    i = mbedtls_mpi_bitlen(X) + count;
867
868
0
    if (X->n * biL < i) {
869
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, BITS_TO_LIMBS(i)));
870
0
    }
871
872
0
    ret = 0;
873
874
0
    mbedtls_mpi_core_shift_l(X->p, X->n, count);
875
0
cleanup:
876
877
0
    return ret;
878
0
}
879
880
/*
881
 * Right-shift: X >>= count
882
 */
883
int mbedtls_mpi_shift_r(mbedtls_mpi *X, size_t count)
884
0
{
885
0
    if (X->n != 0) {
886
0
        mbedtls_mpi_core_shift_r(X->p, X->n, count);
887
0
    }
888
0
    return 0;
889
0
}
890
891
/*
892
 * Compare unsigned values
893
 */
894
int mbedtls_mpi_cmp_abs(const mbedtls_mpi *X, const mbedtls_mpi *Y)
895
2
{
896
2
    size_t i, j;
897
898
16
    for (i = X->n; i > 0; i--) {
899
16
        if (X->p[i - 1] != 0) {
900
2
            break;
901
2
        }
902
16
    }
903
904
2
    for (j = Y->n; j > 0; j--) {
905
2
        if (Y->p[j - 1] != 0) {
906
2
            break;
907
2
        }
908
2
    }
909
910
    /* If i == j == 0, i.e. abs(X) == abs(Y),
911
     * we end up returning 0 at the end of the function. */
912
913
2
    if (i > j) {
914
1
        return 1;
915
1
    }
916
1
    if (j > i) {
917
0
        return -1;
918
0
    }
919
920
1
    for (; i > 0; i--) {
921
1
        if (X->p[i - 1] > Y->p[i - 1]) {
922
0
            return 1;
923
0
        }
924
1
        if (X->p[i - 1] < Y->p[i - 1]) {
925
1
            return -1;
926
1
        }
927
1
    }
928
929
0
    return 0;
930
1
}
931
932
/*
933
 * Compare signed values
934
 */
935
int mbedtls_mpi_cmp_mpi(const mbedtls_mpi *X, const mbedtls_mpi *Y)
936
34
{
937
34
    size_t i, j;
938
939
100
    for (i = X->n; i > 0; i--) {
940
94
        if (X->p[i - 1] != 0) {
941
28
            break;
942
28
        }
943
94
    }
944
945
64
    for (j = Y->n; j > 0; j--) {
946
43
        if (Y->p[j - 1] != 0) {
947
13
            break;
948
13
        }
949
43
    }
950
951
34
    if (i == 0 && j == 0) {
952
6
        return 0;
953
6
    }
954
955
28
    if (i > j) {
956
18
        return X->s;
957
18
    }
958
10
    if (j > i) {
959
2
        return -Y->s;
960
2
    }
961
962
8
    if (X->s > 0 && Y->s < 0) {
963
0
        return 1;
964
0
    }
965
8
    if (Y->s > 0 && X->s < 0) {
966
0
        return -1;
967
0
    }
968
969
15
    for (; i > 0; i--) {
970
13
        if (X->p[i - 1] > Y->p[i - 1]) {
971
0
            return X->s;
972
0
        }
973
13
        if (X->p[i - 1] < Y->p[i - 1]) {
974
6
            return -X->s;
975
6
        }
976
13
    }
977
978
2
    return 0;
979
8
}
980
981
/*
982
 * Compare signed values
983
 */
984
int mbedtls_mpi_cmp_int(const mbedtls_mpi *X, mbedtls_mpi_sint z)
985
22
{
986
22
    mbedtls_mpi Y;
987
22
    mbedtls_mpi_uint p[1];
988
989
22
    *p  = mpi_sint_abs(z);
990
22
    Y.s = TO_SIGN(z);
991
22
    Y.n = 1;
992
22
    Y.p = p;
993
994
22
    return mbedtls_mpi_cmp_mpi(X, &Y);
995
22
}
996
997
/*
998
 * Unsigned addition: X = |A| + |B|  (HAC 14.7)
999
 */
1000
int mbedtls_mpi_add_abs(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
1001
1
{
1002
1
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1003
1
    size_t j;
1004
1
    mbedtls_mpi_uint *p;
1005
1
    mbedtls_mpi_uint c;
1006
1007
1
    if (X == B) {
1008
0
        const mbedtls_mpi *T = A; A = X; B = T;
1009
0
    }
1010
1011
1
    if (X != A) {
1012
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, A));
1013
0
    }
1014
1015
    /*
1016
     * X must always be positive as a result of unsigned additions.
1017
     */
1018
1
    X->s = 1;
1019
1020
1
    for (j = B->n; j > 0; j--) {
1021
1
        if (B->p[j - 1] != 0) {
1022
1
            break;
1023
1
        }
1024
1
    }
1025
1026
    /* Exit early to avoid undefined behavior on NULL+0 when X->n == 0
1027
     * and B is 0 (of any size). */
1028
1
    if (j == 0) {
1029
0
        return 0;
1030
0
    }
1031
1032
1
    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, j));
1033
1034
    /* j is the number of non-zero limbs of B. Add those to X. */
1035
1036
1
    p = X->p;
1037
1038
1
    c = mbedtls_mpi_core_add(p, p, B->p, j);
1039
1040
1
    p += j;
1041
1042
    /* Now propagate any carry */
1043
1044
2
    while (c != 0) {
1045
1
        if (j >= X->n) {
1046
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, j + 1));
1047
0
            p = X->p + j;
1048
0
        }
1049
1050
1
        *p += c; c = (*p < c); j++; p++;
1051
1
    }
1052
1053
1
cleanup:
1054
1055
1
    return ret;
1056
1
}
1057
1058
/*
1059
 * Unsigned subtraction: X = |A| - |B|  (HAC 14.9, 14.10)
1060
 */
1061
int mbedtls_mpi_sub_abs(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
1062
5
{
1063
5
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1064
5
    size_t n;
1065
5
    mbedtls_mpi_uint carry;
1066
1067
12
    for (n = B->n; n > 0; n--) {
1068
12
        if (B->p[n - 1] != 0) {
1069
5
            break;
1070
5
        }
1071
12
    }
1072
5
    if (n > A->n) {
1073
        /* B >= (2^ciL)^n > A */
1074
0
        ret = MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
1075
0
        goto cleanup;
1076
0
    }
1077
1078
5
    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, A->n));
1079
1080
    /* Set the high limbs of X to match A. Don't touch the lower limbs
1081
     * because X might be aliased to B, and we must not overwrite the
1082
     * significant digits of B. */
1083
5
    if (A->n > n && A != X) {
1084
0
        memcpy(X->p + n, A->p + n, (A->n - n) * ciL);
1085
0
    }
1086
5
    if (X->n > A->n) {
1087
1
        memset(X->p + A->n, 0, (X->n - A->n) * ciL);
1088
1
    }
1089
1090
5
    carry = mbedtls_mpi_core_sub(X->p, A->p, B->p, n);
1091
5
    if (carry != 0) {
1092
        /* Propagate the carry through the rest of X. */
1093
3
        carry = mbedtls_mpi_core_sub_int(X->p + n, X->p + n, carry, X->n - n);
1094
1095
        /* If we have further carry/borrow, the result is negative. */
1096
3
        if (carry != 0) {
1097
0
            ret = MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
1098
0
            goto cleanup;
1099
0
        }
1100
3
    }
1101
1102
    /* X should always be positive as a result of unsigned subtractions. */
1103
5
    X->s = 1;
1104
1105
5
cleanup:
1106
5
    return ret;
1107
5
}
1108
1109
/* Common function for signed addition and subtraction.
1110
 * Calculate A + B * flip_B where flip_B is 1 or -1.
1111
 */
1112
static int add_sub_mpi(mbedtls_mpi *X,
1113
                       const mbedtls_mpi *A, const mbedtls_mpi *B,
1114
                       int flip_B)
1115
3
{
1116
3
    int ret, s;
1117
1118
3
    s = A->s;
1119
3
    if (A->s * B->s * flip_B < 0) {
1120
2
        int cmp = mbedtls_mpi_cmp_abs(A, B);
1121
2
        if (cmp >= 0) {
1122
1
            MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(X, A, B));
1123
            /* If |A| = |B|, the result is 0 and we must set the sign bit
1124
             * to +1 regardless of which of A or B was negative. Otherwise,
1125
             * since |A| > |B|, the sign is the sign of A. */
1126
1
            X->s = cmp == 0 ? 1 : s;
1127
1
        } else {
1128
1
            MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(X, B, A));
1129
            /* Since |A| < |B|, the sign is the opposite of A. */
1130
1
            X->s = -s;
1131
1
        }
1132
2
    } else {
1133
1
        MBEDTLS_MPI_CHK(mbedtls_mpi_add_abs(X, A, B));
1134
1
        X->s = s;
1135
1
    }
1136
1137
3
cleanup:
1138
1139
3
    return ret;
1140
3
}
1141
1142
/*
1143
 * Signed addition: X = A + B
1144
 */
1145
int mbedtls_mpi_add_mpi(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
1146
2
{
1147
2
    return add_sub_mpi(X, A, B, 1);
1148
2
}
1149
1150
/*
1151
 * Signed subtraction: X = A - B
1152
 */
1153
int mbedtls_mpi_sub_mpi(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
1154
1
{
1155
1
    return add_sub_mpi(X, A, B, -1);
1156
1
}
1157
1158
/*
1159
 * Signed addition: X = A + b
1160
 */
1161
int mbedtls_mpi_add_int(mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b)
1162
0
{
1163
0
    mbedtls_mpi B;
1164
0
    mbedtls_mpi_uint p[1];
1165
1166
0
    p[0] = mpi_sint_abs(b);
1167
0
    B.s = TO_SIGN(b);
1168
0
    B.n = 1;
1169
0
    B.p = p;
1170
1171
0
    return mbedtls_mpi_add_mpi(X, A, &B);
1172
0
}
1173
1174
/*
1175
 * Signed subtraction: X = A - b
1176
 */
1177
int mbedtls_mpi_sub_int(mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b)
1178
1
{
1179
1
    mbedtls_mpi B;
1180
1
    mbedtls_mpi_uint p[1];
1181
1182
1
    p[0] = mpi_sint_abs(b);
1183
1
    B.s = TO_SIGN(b);
1184
1
    B.n = 1;
1185
1
    B.p = p;
1186
1187
1
    return mbedtls_mpi_sub_mpi(X, A, &B);
1188
1
}
1189
1190
/*
1191
 * Baseline multiplication: X = A * B  (HAC 14.12)
1192
 */
1193
int mbedtls_mpi_mul_mpi(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
1194
3
{
1195
3
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1196
3
    size_t i, j;
1197
3
    mbedtls_mpi TA, TB;
1198
3
    int result_is_zero = 0;
1199
1200
3
    mbedtls_mpi_init(&TA);
1201
3
    mbedtls_mpi_init(&TB);
1202
1203
3
    if (X == A) {
1204
1
        MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TA, A)); A = &TA;
1205
1
    }
1206
3
    if (X == B) {
1207
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TB, B)); B = &TB;
1208
0
    }
1209
1210
3
    for (i = A->n; i > 0; i--) {
1211
3
        if (A->p[i - 1] != 0) {
1212
3
            break;
1213
3
        }
1214
3
    }
1215
3
    if (i == 0) {
1216
0
        result_is_zero = 1;
1217
0
    }
1218
1219
3
    for (j = B->n; j > 0; j--) {
1220
3
        if (B->p[j - 1] != 0) {
1221
3
            break;
1222
3
        }
1223
3
    }
1224
3
    if (j == 0) {
1225
0
        result_is_zero = 1;
1226
0
    }
1227
1228
3
    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, i + j));
1229
3
    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 0));
1230
1231
3
    mbedtls_mpi_core_mul(X->p, A->p, i, B->p, j);
1232
1233
    /* If the result is 0, we don't shortcut the operation, which reduces
1234
     * but does not eliminate side channels leaking the zero-ness. We do
1235
     * need to take care to set the sign bit properly since the library does
1236
     * not fully support an MPI object with a value of 0 and s == -1. */
1237
3
    if (result_is_zero) {
1238
0
        X->s = 1;
1239
3
    } else {
1240
3
        X->s = A->s * B->s;
1241
3
    }
1242
1243
3
cleanup:
1244
1245
3
    mbedtls_mpi_free(&TB); mbedtls_mpi_free(&TA);
1246
1247
3
    return ret;
1248
3
}
1249
1250
/*
1251
 * Baseline multiplication: X = A * b
1252
 */
1253
int mbedtls_mpi_mul_int(mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_uint b)
1254
0
{
1255
0
    size_t n = A->n;
1256
0
    while (n > 0 && A->p[n - 1] == 0) {
1257
0
        --n;
1258
0
    }
1259
1260
    /* The general method below doesn't work if b==0. */
1261
0
    if (b == 0 || n == 0) {
1262
0
        return mbedtls_mpi_lset(X, 0);
1263
0
    }
1264
1265
    /* Calculate A*b as A + A*(b-1) to take advantage of mbedtls_mpi_core_mla */
1266
0
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1267
    /* In general, A * b requires 1 limb more than b. If
1268
     * A->p[n - 1] * b / b == A->p[n - 1], then A * b fits in the same
1269
     * number of limbs as A and the call to grow() is not required since
1270
     * copy() will take care of the growth if needed. However, experimentally,
1271
     * making the call to grow() unconditional causes slightly fewer
1272
     * calls to calloc() in ECP code, presumably because it reuses the
1273
     * same mpi for a while and this way the mpi is more likely to directly
1274
     * grow to its final size.
1275
     *
1276
     * Note that calculating A*b as 0 + A*b doesn't work as-is because
1277
     * A,X can be the same. */
1278
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, n + 1));
1279
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, A));
1280
0
    mbedtls_mpi_core_mla(X->p, X->n, A->p, n, b - 1);
1281
1282
0
cleanup:
1283
0
    return ret;
1284
0
}
1285
1286
/*
1287
 * Unsigned integer divide - double mbedtls_mpi_uint dividend, u1/u0, and
1288
 * mbedtls_mpi_uint divisor, d
1289
 */
1290
static mbedtls_mpi_uint mbedtls_int_div_int(mbedtls_mpi_uint u1,
1291
                                            mbedtls_mpi_uint u0,
1292
                                            mbedtls_mpi_uint d,
1293
                                            mbedtls_mpi_uint *r)
1294
0
{
1295
0
#if defined(MBEDTLS_HAVE_UDBL)
1296
0
    mbedtls_t_udbl dividend, quotient;
1297
#else
1298
    const mbedtls_mpi_uint radix = (mbedtls_mpi_uint) 1 << biH;
1299
    const mbedtls_mpi_uint uint_halfword_mask = ((mbedtls_mpi_uint) 1 << biH) - 1;
1300
    mbedtls_mpi_uint d0, d1, q0, q1, rAX, r0, quotient;
1301
    mbedtls_mpi_uint u0_msw, u0_lsw;
1302
    size_t s;
1303
#endif
1304
1305
    /*
1306
     * Check for overflow
1307
     */
1308
0
    if (0 == d || u1 >= d) {
1309
0
        if (r != NULL) {
1310
0
            *r = ~(mbedtls_mpi_uint) 0u;
1311
0
        }
1312
1313
0
        return ~(mbedtls_mpi_uint) 0u;
1314
0
    }
1315
1316
0
#if defined(MBEDTLS_HAVE_UDBL)
1317
0
    dividend  = (mbedtls_t_udbl) u1 << biL;
1318
0
    dividend |= (mbedtls_t_udbl) u0;
1319
0
    quotient = dividend / d;
1320
0
    if (quotient > ((mbedtls_t_udbl) 1 << biL) - 1) {
1321
0
        quotient = ((mbedtls_t_udbl) 1 << biL) - 1;
1322
0
    }
1323
1324
0
    if (r != NULL) {
1325
0
        *r = (mbedtls_mpi_uint) (dividend - (quotient * d));
1326
0
    }
1327
1328
0
    return (mbedtls_mpi_uint) quotient;
1329
#else
1330
1331
    /*
1332
     * Algorithm D, Section 4.3.1 - The Art of Computer Programming
1333
     *   Vol. 2 - Seminumerical Algorithms, Knuth
1334
     */
1335
1336
    /*
1337
     * Normalize the divisor, d, and dividend, u0, u1
1338
     */
1339
    s = mbedtls_mpi_core_clz(d);
1340
    d = d << s;
1341
1342
    u1 = u1 << s;
1343
    u1 |= (u0 >> (biL - s)) & (-(mbedtls_mpi_sint) s >> (biL - 1));
1344
    u0 =  u0 << s;
1345
1346
    d1 = d >> biH;
1347
    d0 = d & uint_halfword_mask;
1348
1349
    u0_msw = u0 >> biH;
1350
    u0_lsw = u0 & uint_halfword_mask;
1351
1352
    /*
1353
     * Find the first quotient and remainder
1354
     */
1355
    q1 = u1 / d1;
1356
    r0 = u1 - d1 * q1;
1357
1358
    while (q1 >= radix || (q1 * d0 > radix * r0 + u0_msw)) {
1359
        q1 -= 1;
1360
        r0 += d1;
1361
1362
        if (r0 >= radix) {
1363
            break;
1364
        }
1365
    }
1366
1367
    rAX = (u1 * radix) + (u0_msw - q1 * d);
1368
    q0 = rAX / d1;
1369
    r0 = rAX - q0 * d1;
1370
1371
    while (q0 >= radix || (q0 * d0 > radix * r0 + u0_lsw)) {
1372
        q0 -= 1;
1373
        r0 += d1;
1374
1375
        if (r0 >= radix) {
1376
            break;
1377
        }
1378
    }
1379
1380
    if (r != NULL) {
1381
        *r = (rAX * radix + u0_lsw - q0 * d) >> s;
1382
    }
1383
1384
    quotient = q1 * radix + q0;
1385
1386
    return quotient;
1387
#endif
1388
0
}
1389
1390
/*
1391
 * Division by mbedtls_mpi: A = Q * B + R  (HAC 14.20)
1392
 */
1393
int mbedtls_mpi_div_mpi(mbedtls_mpi *Q, mbedtls_mpi *R, const mbedtls_mpi *A,
1394
                        const mbedtls_mpi *B)
1395
0
{
1396
0
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1397
0
    size_t i, n, t, k;
1398
0
    mbedtls_mpi X, Y, Z, T1, T2;
1399
0
    mbedtls_mpi_uint TP2[3];
1400
1401
0
    if (mbedtls_mpi_cmp_int(B, 0) == 0) {
1402
0
        return MBEDTLS_ERR_MPI_DIVISION_BY_ZERO;
1403
0
    }
1404
1405
0
    mbedtls_mpi_init(&X); mbedtls_mpi_init(&Y); mbedtls_mpi_init(&Z);
1406
0
    mbedtls_mpi_init(&T1);
1407
    /*
1408
     * Avoid dynamic memory allocations for constant-size T2.
1409
     *
1410
     * T2 is used for comparison only and the 3 limbs are assigned explicitly,
1411
     * so nobody increase the size of the MPI and we're safe to use an on-stack
1412
     * buffer.
1413
     */
1414
0
    T2.s = 1;
1415
0
    T2.n = sizeof(TP2) / sizeof(*TP2);
1416
0
    T2.p = TP2;
1417
1418
0
    if (mbedtls_mpi_cmp_abs(A, B) < 0) {
1419
0
        if (Q != NULL) {
1420
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_lset(Q, 0));
1421
0
        }
1422
0
        if (R != NULL) {
1423
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_copy(R, A));
1424
0
        }
1425
0
        return 0;
1426
0
    }
1427
1428
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&X, A));
1429
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&Y, B));
1430
0
    X.s = Y.s = 1;
1431
1432
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&Z, A->n + 2));
1433
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&Z,  0));
1434
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&T1, A->n + 2));
1435
1436
0
    k = mbedtls_mpi_bitlen(&Y) % biL;
1437
0
    if (k < biL - 1) {
1438
0
        k = biL - 1 - k;
1439
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&X, k));
1440
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&Y, k));
1441
0
    } else {
1442
0
        k = 0;
1443
0
    }
1444
1445
0
    n = X.n - 1;
1446
0
    t = Y.n - 1;
1447
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&Y, biL * (n - t)));
1448
1449
0
    while (mbedtls_mpi_cmp_mpi(&X, &Y) >= 0) {
1450
0
        Z.p[n - t]++;
1451
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&X, &X, &Y));
1452
0
    }
1453
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&Y, biL * (n - t)));
1454
1455
0
    for (i = n; i > t; i--) {
1456
0
        if (X.p[i] >= Y.p[t]) {
1457
0
            Z.p[i - t - 1] = ~(mbedtls_mpi_uint) 0u;
1458
0
        } else {
1459
0
            Z.p[i - t - 1] = mbedtls_int_div_int(X.p[i], X.p[i - 1],
1460
0
                                                 Y.p[t], NULL);
1461
0
        }
1462
1463
0
        T2.p[0] = (i < 2) ? 0 : X.p[i - 2];
1464
0
        T2.p[1] = (i < 1) ? 0 : X.p[i - 1];
1465
0
        T2.p[2] = X.p[i];
1466
1467
0
        Z.p[i - t - 1]++;
1468
0
        do {
1469
0
            Z.p[i - t - 1]--;
1470
1471
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&T1, 0));
1472
0
            T1.p[0] = (t < 1) ? 0 : Y.p[t - 1];
1473
0
            T1.p[1] = Y.p[t];
1474
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&T1, &T1, Z.p[i - t - 1]));
1475
0
        } while (mbedtls_mpi_cmp_mpi(&T1, &T2) > 0);
1476
1477
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&T1, &Y, Z.p[i - t - 1]));
1478
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&T1,  biL * (i - t - 1)));
1479
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&X, &X, &T1));
1480
1481
0
        if (mbedtls_mpi_cmp_int(&X, 0) < 0) {
1482
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&T1, &Y));
1483
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&T1, biL * (i - t - 1)));
1484
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&X, &X, &T1));
1485
0
            Z.p[i - t - 1]--;
1486
0
        }
1487
0
    }
1488
1489
0
    if (Q != NULL) {
1490
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_copy(Q, &Z));
1491
0
        Q->s = A->s * B->s;
1492
0
    }
1493
1494
0
    if (R != NULL) {
1495
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&X, k));
1496
0
        X.s = A->s;
1497
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_copy(R, &X));
1498
1499
0
        if (mbedtls_mpi_cmp_int(R, 0) == 0) {
1500
0
            R->s = 1;
1501
0
        }
1502
0
    }
1503
1504
0
cleanup:
1505
1506
0
    mbedtls_mpi_free(&X); mbedtls_mpi_free(&Y); mbedtls_mpi_free(&Z);
1507
0
    mbedtls_mpi_free(&T1);
1508
0
    mbedtls_platform_zeroize(TP2, sizeof(TP2));
1509
1510
0
    return ret;
1511
0
}
1512
1513
/*
1514
 * Division by int: A = Q * b + R
1515
 */
1516
int mbedtls_mpi_div_int(mbedtls_mpi *Q, mbedtls_mpi *R,
1517
                        const mbedtls_mpi *A,
1518
                        mbedtls_mpi_sint b)
1519
0
{
1520
0
    mbedtls_mpi B;
1521
0
    mbedtls_mpi_uint p[1];
1522
1523
0
    p[0] = mpi_sint_abs(b);
1524
0
    B.s = TO_SIGN(b);
1525
0
    B.n = 1;
1526
0
    B.p = p;
1527
1528
0
    return mbedtls_mpi_div_mpi(Q, R, A, &B);
1529
0
}
1530
1531
/*
1532
 * Modulo: R = A mod B
1533
 */
1534
int mbedtls_mpi_mod_mpi(mbedtls_mpi *R, const mbedtls_mpi *A, const mbedtls_mpi *B)
1535
0
{
1536
0
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1537
1538
0
    if (mbedtls_mpi_cmp_int(B, 0) < 0) {
1539
0
        return MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
1540
0
    }
1541
1542
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_div_mpi(NULL, R, A, B));
1543
1544
0
    while (mbedtls_mpi_cmp_int(R, 0) < 0) {
1545
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(R, R, B));
1546
0
    }
1547
1548
0
    while (mbedtls_mpi_cmp_mpi(R, B) >= 0) {
1549
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(R, R, B));
1550
0
    }
1551
1552
0
cleanup:
1553
1554
0
    return ret;
1555
0
}
1556
1557
/*
1558
 * Modulo: r = A mod b
1559
 */
1560
int mbedtls_mpi_mod_int(mbedtls_mpi_uint *r, const mbedtls_mpi *A, mbedtls_mpi_sint b)
1561
0
{
1562
0
    size_t i;
1563
0
    mbedtls_mpi_uint x, y, z;
1564
1565
0
    if (b == 0) {
1566
0
        return MBEDTLS_ERR_MPI_DIVISION_BY_ZERO;
1567
0
    }
1568
1569
0
    if (b < 0) {
1570
0
        return MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
1571
0
    }
1572
1573
    /*
1574
     * handle trivial cases
1575
     */
1576
0
    if (b == 1 || A->n == 0) {
1577
0
        *r = 0;
1578
0
        return 0;
1579
0
    }
1580
1581
0
    if (b == 2) {
1582
0
        *r = A->p[0] & 1;
1583
0
        return 0;
1584
0
    }
1585
1586
    /*
1587
     * general case
1588
     */
1589
0
    for (i = A->n, y = 0; i > 0; i--) {
1590
0
        x  = A->p[i - 1];
1591
0
        y  = (y << biH) | (x >> biH);
1592
0
        z  = y / b;
1593
0
        y -= z * b;
1594
1595
0
        x <<= biH;
1596
0
        y  = (y << biH) | (x >> biH);
1597
0
        z  = y / b;
1598
0
        y -= z * b;
1599
0
    }
1600
1601
    /*
1602
     * If A is negative, then the current y represents a negative value.
1603
     * Flipping it to the positive side.
1604
     */
1605
0
    if (A->s < 0 && y != 0) {
1606
0
        y = b - y;
1607
0
    }
1608
1609
0
    *r = y;
1610
1611
0
    return 0;
1612
0
}
1613
1614
/*
1615
 * Warning! If the parameter E_public has MBEDTLS_MPI_IS_PUBLIC as its value,
1616
 * this function is not constant time with respect to the exponent (parameter E).
1617
 */
1618
static int mbedtls_mpi_exp_mod_optionally_safe(mbedtls_mpi *X, const mbedtls_mpi *A,
1619
                                               const mbedtls_mpi *E, int E_public,
1620
                                               const mbedtls_mpi *N, mbedtls_mpi *prec_RR)
1621
0
{
1622
0
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1623
1624
0
    if (mbedtls_mpi_cmp_int(N, 0) <= 0 || (N->p[0] & 1) == 0) {
1625
0
        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
1626
0
    }
1627
1628
0
    if (mbedtls_mpi_cmp_int(E, 0) < 0) {
1629
0
        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
1630
0
    }
1631
1632
0
    if (mbedtls_mpi_bitlen(E) > MBEDTLS_MPI_MAX_BITS ||
1633
0
        mbedtls_mpi_bitlen(N) > MBEDTLS_MPI_MAX_BITS) {
1634
0
        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
1635
0
    }
1636
1637
    /*
1638
     * Ensure that the exponent that we are passing to the core is not NULL.
1639
     */
1640
0
    if (E->n == 0) {
1641
0
        ret = mbedtls_mpi_lset(X, 1);
1642
0
        return ret;
1643
0
    }
1644
1645
    /*
1646
     * Allocate working memory for mbedtls_mpi_core_exp_mod()
1647
     */
1648
0
    size_t T_limbs = mbedtls_mpi_core_exp_mod_working_limbs(N->n, E->n);
1649
0
    mbedtls_mpi_uint *T = (mbedtls_mpi_uint *) mbedtls_calloc(T_limbs, sizeof(mbedtls_mpi_uint));
1650
0
    if (T == NULL) {
1651
0
        return MBEDTLS_ERR_MPI_ALLOC_FAILED;
1652
0
    }
1653
1654
0
    mbedtls_mpi RR;
1655
0
    mbedtls_mpi_init(&RR);
1656
1657
    /*
1658
     * If 1st call, pre-compute R^2 mod N
1659
     */
1660
0
    if (prec_RR == NULL || prec_RR->p == NULL) {
1661
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_core_get_mont_r2_unsafe(&RR, N));
1662
1663
0
        if (prec_RR != NULL) {
1664
0
            *prec_RR = RR;
1665
0
        }
1666
0
    } else {
1667
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_grow(prec_RR, N->n));
1668
0
        RR = *prec_RR;
1669
0
    }
1670
1671
    /*
1672
     * To preserve constness we need to make a copy of A. Using X for this to
1673
     * save memory.
1674
     */
1675
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, A));
1676
1677
    /*
1678
     * Compensate for negative A (and correct at the end).
1679
     */
1680
0
    X->s = 1;
1681
1682
    /*
1683
     * Make sure that X is in a form that is safe for consumption by
1684
     * the core functions.
1685
     *
1686
     * - The core functions will not touch the limbs of X above N->n. The
1687
     *   result will be correct if those limbs are 0, which the mod call
1688
     *   ensures.
1689
     * - Also, X must have at least as many limbs as N for the calls to the
1690
     *   core functions.
1691
     */
1692
0
    if (mbedtls_mpi_cmp_mpi(X, N) >= 0) {
1693
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(X, X, N));
1694
0
    }
1695
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, N->n));
1696
1697
    /*
1698
     * Convert to and from Montgomery around mbedtls_mpi_core_exp_mod().
1699
     */
1700
0
    {
1701
0
        mbedtls_mpi_uint mm = mbedtls_mpi_core_montmul_init(N->p);
1702
0
        mbedtls_mpi_core_to_mont_rep(X->p, X->p, N->p, N->n, mm, RR.p, T);
1703
0
        if (E_public == MBEDTLS_MPI_IS_PUBLIC) {
1704
0
            mbedtls_mpi_core_exp_mod_unsafe(X->p, X->p, N->p, N->n, E->p, E->n, RR.p, T);
1705
0
        } else {
1706
0
            mbedtls_mpi_core_exp_mod(X->p, X->p, N->p, N->n, E->p, E->n, RR.p, T);
1707
0
        }
1708
0
        mbedtls_mpi_core_from_mont_rep(X->p, X->p, N->p, N->n, mm, T);
1709
0
    }
1710
1711
    /*
1712
     * Correct for negative A.
1713
     */
1714
0
    if (A->s == -1 && (E->p[0] & 1) != 0) {
1715
0
        mbedtls_ct_condition_t is_x_non_zero = mbedtls_mpi_core_check_zero_ct(X->p, X->n);
1716
0
        X->s = mbedtls_ct_mpi_sign_if(is_x_non_zero, -1, 1);
1717
1718
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(X, N, X));
1719
0
    }
1720
1721
0
cleanup:
1722
1723
0
    mbedtls_mpi_zeroize_and_free(T, T_limbs);
1724
1725
0
    if (prec_RR == NULL || prec_RR->p == NULL) {
1726
0
        mbedtls_mpi_free(&RR);
1727
0
    }
1728
1729
0
    return ret;
1730
0
}
1731
1732
int mbedtls_mpi_exp_mod(mbedtls_mpi *X, const mbedtls_mpi *A,
1733
                        const mbedtls_mpi *E, const mbedtls_mpi *N,
1734
                        mbedtls_mpi *prec_RR)
1735
0
{
1736
0
    return mbedtls_mpi_exp_mod_optionally_safe(X, A, E, MBEDTLS_MPI_IS_SECRET, N, prec_RR);
1737
0
}
1738
1739
int mbedtls_mpi_exp_mod_unsafe(mbedtls_mpi *X, const mbedtls_mpi *A,
1740
                               const mbedtls_mpi *E, const mbedtls_mpi *N,
1741
                               mbedtls_mpi *prec_RR)
1742
0
{
1743
0
    return mbedtls_mpi_exp_mod_optionally_safe(X, A, E, MBEDTLS_MPI_IS_PUBLIC, N, prec_RR);
1744
0
}
1745
1746
/*
1747
 * Greatest common divisor: G = gcd(A, B)  (HAC 14.54)
1748
 */
1749
int mbedtls_mpi_gcd(mbedtls_mpi *G, const mbedtls_mpi *A, const mbedtls_mpi *B)
1750
0
{
1751
0
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1752
0
    size_t lz, lzt;
1753
0
    mbedtls_mpi TA, TB;
1754
1755
0
    mbedtls_mpi_init(&TA); mbedtls_mpi_init(&TB);
1756
1757
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TA, A));
1758
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TB, B));
1759
1760
0
    lz = mbedtls_mpi_lsb(&TA);
1761
0
    lzt = mbedtls_mpi_lsb(&TB);
1762
1763
    /* The loop below gives the correct result when A==0 but not when B==0.
1764
     * So have a special case for B==0. Leverage the fact that we just
1765
     * calculated the lsb and lsb(B)==0 iff B is odd or 0 to make the test
1766
     * slightly more efficient than cmp_int(). */
1767
0
    if (lzt == 0 && mbedtls_mpi_get_bit(&TB, 0) == 0) {
1768
0
        ret = mbedtls_mpi_copy(G, A);
1769
0
        goto cleanup;
1770
0
    }
1771
1772
0
    if (lzt < lz) {
1773
0
        lz = lzt;
1774
0
    }
1775
1776
0
    TA.s = TB.s = 1;
1777
1778
    /* We mostly follow the procedure described in HAC 14.54, but with some
1779
     * minor differences:
1780
     * - Sequences of multiplications or divisions by 2 are grouped into a
1781
     *   single shift operation.
1782
     * - The procedure in HAC assumes that 0 < TB <= TA.
1783
     *     - The condition TB <= TA is not actually necessary for correctness.
1784
     *       TA and TB have symmetric roles except for the loop termination
1785
     *       condition, and the shifts at the beginning of the loop body
1786
     *       remove any significance from the ordering of TA vs TB before
1787
     *       the shifts.
1788
     *     - If TA = 0, the loop goes through 0 iterations and the result is
1789
     *       correctly TB.
1790
     *     - The case TB = 0 was short-circuited above.
1791
     *
1792
     * For the correctness proof below, decompose the original values of
1793
     * A and B as
1794
     *   A = sa * 2^a * A' with A'=0 or A' odd, and sa = +-1
1795
     *   B = sb * 2^b * B' with B'=0 or B' odd, and sb = +-1
1796
     * Then gcd(A, B) = 2^{min(a,b)} * gcd(A',B'),
1797
     * and gcd(A',B') is odd or 0.
1798
     *
1799
     * At the beginning, we have TA = |A| and TB = |B| so gcd(A,B) = gcd(TA,TB).
1800
     * The code maintains the following invariant:
1801
     *     gcd(A,B) = 2^k * gcd(TA,TB) for some k   (I)
1802
     */
1803
1804
    /* Proof that the loop terminates:
1805
     * At each iteration, either the right-shift by 1 is made on a nonzero
1806
     * value and the nonnegative integer bitlen(TA) + bitlen(TB) decreases
1807
     * by at least 1, or the right-shift by 1 is made on zero and then
1808
     * TA becomes 0 which ends the loop (TB cannot be 0 if it is right-shifted
1809
     * since in that case TB is calculated from TB-TA with the condition TB>TA).
1810
     */
1811
0
    while (mbedtls_mpi_cmp_int(&TA, 0) != 0) {
1812
        /* Divisions by 2 preserve the invariant (I). */
1813
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TA, mbedtls_mpi_lsb(&TA)));
1814
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TB, mbedtls_mpi_lsb(&TB)));
1815
1816
        /* Set either TA or TB to |TA-TB|/2. Since TA and TB are both odd,
1817
         * TA-TB is even so the division by 2 has an integer result.
1818
         * Invariant (I) is preserved since any odd divisor of both TA and TB
1819
         * also divides |TA-TB|/2, and any odd divisor of both TA and |TA-TB|/2
1820
         * also divides TB, and any odd divisor of both TB and |TA-TB|/2 also
1821
         * divides TA.
1822
         */
1823
0
        if (mbedtls_mpi_cmp_mpi(&TA, &TB) >= 0) {
1824
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(&TA, &TA, &TB));
1825
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TA, 1));
1826
0
        } else {
1827
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(&TB, &TB, &TA));
1828
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TB, 1));
1829
0
        }
1830
        /* Note that one of TA or TB is still odd. */
1831
0
    }
1832
1833
    /* By invariant (I), gcd(A,B) = 2^k * gcd(TA,TB) for some k.
1834
     * At the loop exit, TA = 0, so gcd(TA,TB) = TB.
1835
     * - If there was at least one loop iteration, then one of TA or TB is odd,
1836
     *   and TA = 0, so TB is odd and gcd(TA,TB) = gcd(A',B'). In this case,
1837
     *   lz = min(a,b) so gcd(A,B) = 2^lz * TB.
1838
     * - If there was no loop iteration, then A was 0, and gcd(A,B) = B.
1839
     *   In this case, lz = 0 and B = TB so gcd(A,B) = B = 2^lz * TB as well.
1840
     */
1841
1842
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&TB, lz));
1843
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(G, &TB));
1844
1845
0
cleanup:
1846
1847
0
    mbedtls_mpi_free(&TA); mbedtls_mpi_free(&TB);
1848
1849
0
    return ret;
1850
0
}
1851
1852
/*
1853
 * Fill X with size bytes of random.
1854
 * The bytes returned from the RNG are used in a specific order which
1855
 * is suitable for deterministic ECDSA (see the specification of
1856
 * mbedtls_mpi_random() and the implementation in mbedtls_mpi_fill_random()).
1857
 */
1858
int mbedtls_mpi_fill_random(mbedtls_mpi *X, size_t size,
1859
                            int (*f_rng)(void *, unsigned char *, size_t),
1860
                            void *p_rng)
1861
0
{
1862
0
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1863
0
    const size_t limbs = CHARS_TO_LIMBS(size);
1864
1865
    /* Ensure that target MPI has exactly the necessary number of limbs */
1866
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_resize_clear(X, limbs));
1867
0
    if (size == 0) {
1868
0
        return 0;
1869
0
    }
1870
1871
0
    ret = mbedtls_mpi_core_fill_random(X->p, X->n, size, f_rng, p_rng);
1872
1873
0
cleanup:
1874
0
    return ret;
1875
0
}
1876
1877
int mbedtls_mpi_random(mbedtls_mpi *X,
1878
                       mbedtls_mpi_sint min,
1879
                       const mbedtls_mpi *N,
1880
                       int (*f_rng)(void *, unsigned char *, size_t),
1881
                       void *p_rng)
1882
0
{
1883
0
    if (min < 0) {
1884
0
        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
1885
0
    }
1886
0
    if (mbedtls_mpi_cmp_int(N, min) <= 0) {
1887
0
        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
1888
0
    }
1889
1890
    /* Ensure that target MPI has exactly the same number of limbs
1891
     * as the upper bound, even if the upper bound has leading zeros.
1892
     * This is necessary for mbedtls_mpi_core_random. */
1893
0
    int ret = mbedtls_mpi_resize_clear(X, N->n);
1894
0
    if (ret != 0) {
1895
0
        return ret;
1896
0
    }
1897
1898
0
    return mbedtls_mpi_core_random(X->p, min, N->p, X->n, f_rng, p_rng);
1899
0
}
1900
1901
/*
1902
 * Modular inverse: X = A^-1 mod N  (HAC 14.61 / 14.64)
1903
 */
1904
int mbedtls_mpi_inv_mod(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *N)
1905
0
{
1906
0
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1907
0
    mbedtls_mpi G, TA, TU, U1, U2, TB, TV, V1, V2;
1908
1909
0
    if (mbedtls_mpi_cmp_int(N, 1) <= 0) {
1910
0
        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
1911
0
    }
1912
1913
0
    mbedtls_mpi_init(&TA); mbedtls_mpi_init(&TU); mbedtls_mpi_init(&U1); mbedtls_mpi_init(&U2);
1914
0
    mbedtls_mpi_init(&G); mbedtls_mpi_init(&TB); mbedtls_mpi_init(&TV);
1915
0
    mbedtls_mpi_init(&V1); mbedtls_mpi_init(&V2);
1916
1917
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(&G, A, N));
1918
1919
0
    if (mbedtls_mpi_cmp_int(&G, 1) != 0) {
1920
0
        ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
1921
0
        goto cleanup;
1922
0
    }
1923
1924
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&TA, A, N));
1925
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TU, &TA));
1926
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TB, N));
1927
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TV, N));
1928
1929
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&U1, 1));
1930
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&U2, 0));
1931
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&V1, 0));
1932
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&V2, 1));
1933
1934
0
    do {
1935
0
        while ((TU.p[0] & 1) == 0) {
1936
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TU, 1));
1937
1938
0
            if ((U1.p[0] & 1) != 0 || (U2.p[0] & 1) != 0) {
1939
0
                MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&U1, &U1, &TB));
1940
0
                MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&U2, &U2, &TA));
1941
0
            }
1942
1943
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&U1, 1));
1944
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&U2, 1));
1945
0
        }
1946
1947
0
        while ((TV.p[0] & 1) == 0) {
1948
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TV, 1));
1949
1950
0
            if ((V1.p[0] & 1) != 0 || (V2.p[0] & 1) != 0) {
1951
0
                MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&V1, &V1, &TB));
1952
0
                MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V2, &V2, &TA));
1953
0
            }
1954
1955
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&V1, 1));
1956
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&V2, 1));
1957
0
        }
1958
1959
0
        if (mbedtls_mpi_cmp_mpi(&TU, &TV) >= 0) {
1960
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&TU, &TU, &TV));
1961
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&U1, &U1, &V1));
1962
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&U2, &U2, &V2));
1963
0
        } else {
1964
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&TV, &TV, &TU));
1965
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V1, &V1, &U1));
1966
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V2, &V2, &U2));
1967
0
        }
1968
0
    } while (mbedtls_mpi_cmp_int(&TU, 0) != 0);
1969
1970
0
    while (mbedtls_mpi_cmp_int(&V1, 0) < 0) {
1971
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&V1, &V1, N));
1972
0
    }
1973
1974
0
    while (mbedtls_mpi_cmp_mpi(&V1, N) >= 0) {
1975
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V1, &V1, N));
1976
0
    }
1977
1978
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, &V1));
1979
1980
0
cleanup:
1981
1982
0
    mbedtls_mpi_free(&TA); mbedtls_mpi_free(&TU); mbedtls_mpi_free(&U1); mbedtls_mpi_free(&U2);
1983
0
    mbedtls_mpi_free(&G); mbedtls_mpi_free(&TB); mbedtls_mpi_free(&TV);
1984
0
    mbedtls_mpi_free(&V1); mbedtls_mpi_free(&V2);
1985
1986
0
    return ret;
1987
0
}
1988
1989
#if defined(MBEDTLS_GENPRIME)
1990
1991
/* Gaps between primes, starting at 3. https://oeis.org/A001223 */
1992
static const unsigned char small_prime_gaps[] = {
1993
    2, 2, 4, 2, 4, 2, 4, 6,
1994
    2, 6, 4, 2, 4, 6, 6, 2,
1995
    6, 4, 2, 6, 4, 6, 8, 4,
1996
    2, 4, 2, 4, 14, 4, 6, 2,
1997
    10, 2, 6, 6, 4, 6, 6, 2,
1998
    10, 2, 4, 2, 12, 12, 4, 2,
1999
    4, 6, 2, 10, 6, 6, 6, 2,
2000
    6, 4, 2, 10, 14, 4, 2, 4,
2001
    14, 6, 10, 2, 4, 6, 8, 6,
2002
    6, 4, 6, 8, 4, 8, 10, 2,
2003
    10, 2, 6, 4, 6, 8, 4, 2,
2004
    4, 12, 8, 4, 8, 4, 6, 12,
2005
    2, 18, 6, 10, 6, 6, 2, 6,
2006
    10, 6, 6, 2, 6, 6, 4, 2,
2007
    12, 10, 2, 4, 6, 6, 2, 12,
2008
    4, 6, 8, 10, 8, 10, 8, 6,
2009
    6, 4, 8, 6, 4, 8, 4, 14,
2010
    10, 12, 2, 10, 2, 4, 2, 10,
2011
    14, 4, 2, 4, 14, 4, 2, 4,
2012
    20, 4, 8, 10, 8, 4, 6, 6,
2013
    14, 4, 6, 6, 8, 6, /*reaches 997*/
2014
    0 /* the last entry is effectively unused */
2015
};
2016
2017
/*
2018
 * Small divisors test (X must be positive)
2019
 *
2020
 * Return values:
2021
 * 0: no small factor (possible prime, more tests needed)
2022
 * 1: certain prime
2023
 * MBEDTLS_ERR_MPI_NOT_ACCEPTABLE: certain non-prime
2024
 * other negative: error
2025
 */
2026
static int mpi_check_small_factors(const mbedtls_mpi *X)
2027
0
{
2028
0
    int ret = 0;
2029
0
    size_t i;
2030
0
    mbedtls_mpi_uint r;
2031
0
    unsigned p = 3; /* The first odd prime */
2032
2033
0
    if ((X->p[0] & 1) == 0) {
2034
0
        return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
2035
0
    }
2036
2037
0
    for (i = 0; i < sizeof(small_prime_gaps); p += small_prime_gaps[i], i++) {
2038
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_mod_int(&r, X, p));
2039
0
        if (r == 0) {
2040
0
            if (mbedtls_mpi_cmp_int(X, p) == 0) {
2041
0
                return 1;
2042
0
            } else {
2043
0
                return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
2044
0
            }
2045
0
        }
2046
0
    }
2047
2048
0
cleanup:
2049
0
    return ret;
2050
0
}
2051
2052
/*
2053
 * Miller-Rabin pseudo-primality test  (HAC 4.24)
2054
 */
2055
static int mpi_miller_rabin(const mbedtls_mpi *X, size_t rounds,
2056
                            int (*f_rng)(void *, unsigned char *, size_t),
2057
                            void *p_rng)
2058
0
{
2059
0
    int ret, count;
2060
0
    size_t i, j, k, s;
2061
0
    mbedtls_mpi W, R, T, A, RR;
2062
2063
0
    mbedtls_mpi_init(&W); mbedtls_mpi_init(&R);
2064
0
    mbedtls_mpi_init(&T); mbedtls_mpi_init(&A);
2065
0
    mbedtls_mpi_init(&RR);
2066
2067
    /*
2068
     * W = |X| - 1
2069
     * R = W >> lsb( W )
2070
     */
2071
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&W, X, 1));
2072
0
    s = mbedtls_mpi_lsb(&W);
2073
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&R, &W));
2074
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&R, s));
2075
2076
0
    for (i = 0; i < rounds; i++) {
2077
        /*
2078
         * pick a random A, 1 < A < |X| - 1
2079
         */
2080
0
        count = 0;
2081
0
        do {
2082
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(&A, X->n * ciL, f_rng, p_rng));
2083
2084
0
            j = mbedtls_mpi_bitlen(&A);
2085
0
            k = mbedtls_mpi_bitlen(&W);
2086
0
            if (j > k) {
2087
0
                A.p[A.n - 1] &= ((mbedtls_mpi_uint) 1 << (k - (A.n - 1) * biL - 1)) - 1;
2088
0
            }
2089
2090
0
            if (count++ > 30) {
2091
0
                ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
2092
0
                goto cleanup;
2093
0
            }
2094
2095
0
        } while (mbedtls_mpi_cmp_mpi(&A, &W) >= 0 ||
2096
0
                 mbedtls_mpi_cmp_int(&A, 1)  <= 0);
2097
2098
        /*
2099
         * A = A^R mod |X|
2100
         */
2101
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&A, &A, &R, X, &RR));
2102
2103
0
        if (mbedtls_mpi_cmp_mpi(&A, &W) == 0 ||
2104
0
            mbedtls_mpi_cmp_int(&A,  1) == 0) {
2105
0
            continue;
2106
0
        }
2107
2108
0
        j = 1;
2109
0
        while (j < s && mbedtls_mpi_cmp_mpi(&A, &W) != 0) {
2110
            /*
2111
             * A = A * A mod |X|
2112
             */
2113
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&T, &A, &A));
2114
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&A, &T, X));
2115
2116
0
            if (mbedtls_mpi_cmp_int(&A, 1) == 0) {
2117
0
                break;
2118
0
            }
2119
2120
0
            j++;
2121
0
        }
2122
2123
        /*
2124
         * not prime if A != |X| - 1 or A == 1
2125
         */
2126
0
        if (mbedtls_mpi_cmp_mpi(&A, &W) != 0 ||
2127
0
            mbedtls_mpi_cmp_int(&A,  1) == 0) {
2128
0
            ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
2129
0
            break;
2130
0
        }
2131
0
    }
2132
2133
0
cleanup:
2134
0
    mbedtls_mpi_free(&W); mbedtls_mpi_free(&R);
2135
0
    mbedtls_mpi_free(&T); mbedtls_mpi_free(&A);
2136
0
    mbedtls_mpi_free(&RR);
2137
2138
0
    return ret;
2139
0
}
2140
2141
/*
2142
 * Pseudo-primality test: small factors, then Miller-Rabin
2143
 */
2144
int mbedtls_mpi_is_prime_ext(const mbedtls_mpi *X, int rounds,
2145
                             int (*f_rng)(void *, unsigned char *, size_t),
2146
                             void *p_rng)
2147
0
{
2148
0
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2149
0
    mbedtls_mpi XX;
2150
2151
0
    XX.s = 1;
2152
0
    XX.n = X->n;
2153
0
    XX.p = X->p;
2154
2155
0
    if (mbedtls_mpi_cmp_int(&XX, 0) == 0 ||
2156
0
        mbedtls_mpi_cmp_int(&XX, 1) == 0) {
2157
0
        return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
2158
0
    }
2159
2160
0
    if (mbedtls_mpi_cmp_int(&XX, 2) == 0) {
2161
0
        return 0;
2162
0
    }
2163
2164
0
    if ((ret = mpi_check_small_factors(&XX)) != 0) {
2165
0
        if (ret == 1) {
2166
0
            return 0;
2167
0
        }
2168
2169
0
        return ret;
2170
0
    }
2171
2172
0
    return mpi_miller_rabin(&XX, rounds, f_rng, p_rng);
2173
0
}
2174
2175
/*
2176
 * Prime number generation
2177
 *
2178
 * To generate an RSA key in a way recommended by FIPS 186-4, both primes must
2179
 * be either 1024 bits or 1536 bits long, and flags must contain
2180
 * MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR.
2181
 */
2182
int mbedtls_mpi_gen_prime(mbedtls_mpi *X, size_t nbits, int flags,
2183
                          int (*f_rng)(void *, unsigned char *, size_t),
2184
                          void *p_rng)
2185
0
{
2186
0
#ifdef MBEDTLS_HAVE_INT64
2187
// ceil(2^63.5)
2188
0
#define CEIL_MAXUINT_DIV_SQRT2 0xb504f333f9de6485ULL
2189
#else
2190
// ceil(2^31.5)
2191
#define CEIL_MAXUINT_DIV_SQRT2 0xb504f334U
2192
#endif
2193
0
    int ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
2194
0
    size_t k, n;
2195
0
    int rounds;
2196
0
    mbedtls_mpi_uint r;
2197
0
    mbedtls_mpi Y;
2198
2199
0
    if (nbits < 3 || nbits > MBEDTLS_MPI_MAX_BITS) {
2200
0
        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
2201
0
    }
2202
2203
0
    mbedtls_mpi_init(&Y);
2204
2205
0
    n = BITS_TO_LIMBS(nbits);
2206
2207
0
    if ((flags & MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR) == 0) {
2208
        /*
2209
         * 2^-80 error probability, number of rounds chosen per HAC, table 4.4
2210
         */
2211
0
        rounds = ((nbits >= 1300) ?  2 : (nbits >=  850) ?  3 :
2212
0
                  (nbits >=  650) ?  4 : (nbits >=  350) ?  8 :
2213
0
                  (nbits >=  250) ? 12 : (nbits >=  150) ? 18 : 27);
2214
0
    } else {
2215
        /*
2216
         * 2^-100 error probability, number of rounds computed based on HAC,
2217
         * fact 4.48
2218
         */
2219
0
        rounds = ((nbits >= 1450) ?  4 : (nbits >=  1150) ?  5 :
2220
0
                  (nbits >= 1000) ?  6 : (nbits >=   850) ?  7 :
2221
0
                  (nbits >=  750) ?  8 : (nbits >=   500) ? 13 :
2222
0
                  (nbits >=  250) ? 28 : (nbits >=   150) ? 40 : 51);
2223
0
    }
2224
2225
0
    while (1) {
2226
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(X, n * ciL, f_rng, p_rng));
2227
        /* make sure generated number is at least (nbits-1)+0.5 bits (FIPS 186-4 §B.3.3 steps 4.4, 5.5) */
2228
0
        if (X->p[n-1] < CEIL_MAXUINT_DIV_SQRT2) {
2229
0
            continue;
2230
0
        }
2231
2232
0
        k = n * biL;
2233
0
        if (k > nbits) {
2234
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(X, k - nbits));
2235
0
        }
2236
0
        X->p[0] |= 1;
2237
2238
0
        if ((flags & MBEDTLS_MPI_GEN_PRIME_FLAG_DH) == 0) {
2239
0
            ret = mbedtls_mpi_is_prime_ext(X, rounds, f_rng, p_rng);
2240
2241
0
            if (ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) {
2242
0
                goto cleanup;
2243
0
            }
2244
0
        } else {
2245
            /*
2246
             * A necessary condition for Y and X = 2Y + 1 to be prime
2247
             * is X = 2 mod 3 (which is equivalent to Y = 2 mod 3).
2248
             * Make sure it is satisfied, while keeping X = 3 mod 4
2249
             */
2250
2251
0
            X->p[0] |= 2;
2252
2253
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_mod_int(&r, X, 3));
2254
0
            if (r == 0) {
2255
0
                MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, X, 8));
2256
0
            } else if (r == 1) {
2257
0
                MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, X, 4));
2258
0
            }
2259
2260
            /* Set Y = (X-1) / 2, which is X / 2 because X is odd */
2261
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&Y, X));
2262
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&Y, 1));
2263
2264
0
            while (1) {
2265
                /*
2266
                 * First, check small factors for X and Y
2267
                 * before doing Miller-Rabin on any of them
2268
                 */
2269
0
                if ((ret = mpi_check_small_factors(X)) == 0 &&
2270
0
                    (ret = mpi_check_small_factors(&Y)) == 0 &&
2271
0
                    (ret = mpi_miller_rabin(X, rounds, f_rng, p_rng))
2272
0
                    == 0 &&
2273
0
                    (ret = mpi_miller_rabin(&Y, rounds, f_rng, p_rng))
2274
0
                    == 0) {
2275
0
                    goto cleanup;
2276
0
                }
2277
2278
0
                if (ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) {
2279
0
                    goto cleanup;
2280
0
                }
2281
2282
                /*
2283
                 * Next candidates. We want to preserve Y = (X-1) / 2 and
2284
                 * Y = 1 mod 2 and Y = 2 mod 3 (eq X = 3 mod 4 and X = 2 mod 3)
2285
                 * so up Y by 6 and X by 12.
2286
                 */
2287
0
                MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X,  X, 12));
2288
0
                MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&Y, &Y, 6));
2289
0
            }
2290
0
        }
2291
0
    }
2292
2293
0
cleanup:
2294
2295
0
    mbedtls_mpi_free(&Y);
2296
2297
0
    return ret;
2298
0
}
2299
2300
#endif /* MBEDTLS_GENPRIME */
2301
2302
#if defined(MBEDTLS_SELF_TEST)
2303
2304
0
#define GCD_PAIR_COUNT  3
2305
2306
static const int gcd_pairs[GCD_PAIR_COUNT][3] =
2307
{
2308
    { 693, 609, 21 },
2309
    { 1764, 868, 28 },
2310
    { 768454923, 542167814, 1 }
2311
};
2312
2313
/*
2314
 * Checkup routine
2315
 */
2316
int mbedtls_mpi_self_test(int verbose)
2317
0
{
2318
0
    int ret, i;
2319
0
    mbedtls_mpi A, E, N, X, Y, U, V;
2320
2321
0
    mbedtls_mpi_init(&A); mbedtls_mpi_init(&E); mbedtls_mpi_init(&N); mbedtls_mpi_init(&X);
2322
0
    mbedtls_mpi_init(&Y); mbedtls_mpi_init(&U); mbedtls_mpi_init(&V);
2323
2324
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&A, 16,
2325
0
                                            "EFE021C2645FD1DC586E69184AF4A31E" \
2326
0
                                            "D5F53E93B5F123FA41680867BA110131" \
2327
0
                                            "944FE7952E2517337780CB0DB80E61AA" \
2328
0
                                            "E7C8DDC6C5C6AADEB34EB38A2F40D5E6"));
2329
2330
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&E, 16,
2331
0
                                            "B2E7EFD37075B9F03FF989C7C5051C20" \
2332
0
                                            "34D2A323810251127E7BF8625A4F49A5" \
2333
0
                                            "F3E27F4DA8BD59C47D6DAABA4C8127BD" \
2334
0
                                            "5B5C25763222FEFCCFC38B832366C29E"));
2335
2336
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&N, 16,
2337
0
                                            "0066A198186C18C10B2F5ED9B522752A" \
2338
0
                                            "9830B69916E535C8F047518A889A43A5" \
2339
0
                                            "94B6BED27A168D31D4A52F88925AA8F5"));
2340
2341
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&X, &A, &N));
2342
2343
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,
2344
0
                                            "602AB7ECA597A3D6B56FF9829A5E8B85" \
2345
0
                                            "9E857EA95A03512E2BAE7391688D264A" \
2346
0
                                            "A5663B0341DB9CCFD2C4C5F421FEC814" \
2347
0
                                            "8001B72E848A38CAE1C65F78E56ABDEF" \
2348
0
                                            "E12D3C039B8A02D6BE593F0BBBDA56F1" \
2349
0
                                            "ECF677152EF804370C1A305CAF3B5BF1" \
2350
0
                                            "30879B56C61DE584A0F53A2447A51E"));
2351
2352
0
    if (verbose != 0) {
2353
0
        mbedtls_printf("  MPI test #1 (mul_mpi): ");
2354
0
    }
2355
2356
0
    if (mbedtls_mpi_cmp_mpi(&X, &U) != 0) {
2357
0
        if (verbose != 0) {
2358
0
            mbedtls_printf("failed\n");
2359
0
        }
2360
2361
0
        ret = 1;
2362
0
        goto cleanup;
2363
0
    }
2364
2365
0
    if (verbose != 0) {
2366
0
        mbedtls_printf("passed\n");
2367
0
    }
2368
2369
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_div_mpi(&X, &Y, &A, &N));
2370
2371
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,
2372
0
                                            "256567336059E52CAE22925474705F39A94"));
2373
2374
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&V, 16,
2375
0
                                            "6613F26162223DF488E9CD48CC132C7A" \
2376
0
                                            "0AC93C701B001B092E4E5B9F73BCD27B" \
2377
0
                                            "9EE50D0657C77F374E903CDFA4C642"));
2378
2379
0
    if (verbose != 0) {
2380
0
        mbedtls_printf("  MPI test #2 (div_mpi): ");
2381
0
    }
2382
2383
0
    if (mbedtls_mpi_cmp_mpi(&X, &U) != 0 ||
2384
0
        mbedtls_mpi_cmp_mpi(&Y, &V) != 0) {
2385
0
        if (verbose != 0) {
2386
0
            mbedtls_printf("failed\n");
2387
0
        }
2388
2389
0
        ret = 1;
2390
0
        goto cleanup;
2391
0
    }
2392
2393
0
    if (verbose != 0) {
2394
0
        mbedtls_printf("passed\n");
2395
0
    }
2396
2397
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&X, &A, &E, &N, NULL));
2398
2399
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,
2400
0
                                            "36E139AEA55215609D2816998ED020BB" \
2401
0
                                            "BD96C37890F65171D948E9BC7CBAA4D9" \
2402
0
                                            "325D24D6A3C12710F10A09FA08AB87"));
2403
2404
0
    if (verbose != 0) {
2405
0
        mbedtls_printf("  MPI test #3 (exp_mod): ");
2406
0
    }
2407
2408
0
    if (mbedtls_mpi_cmp_mpi(&X, &U) != 0) {
2409
0
        if (verbose != 0) {
2410
0
            mbedtls_printf("failed\n");
2411
0
        }
2412
2413
0
        ret = 1;
2414
0
        goto cleanup;
2415
0
    }
2416
2417
0
    if (verbose != 0) {
2418
0
        mbedtls_printf("passed\n");
2419
0
    }
2420
2421
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod(&X, &A, &N));
2422
2423
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,
2424
0
                                            "003A0AAEDD7E784FC07D8F9EC6E3BFD5" \
2425
0
                                            "C3DBA76456363A10869622EAC2DD84EC" \
2426
0
                                            "C5B8A74DAC4D09E03B5E0BE779F2DF61"));
2427
2428
0
    if (verbose != 0) {
2429
0
        mbedtls_printf("  MPI test #4 (inv_mod): ");
2430
0
    }
2431
2432
0
    if (mbedtls_mpi_cmp_mpi(&X, &U) != 0) {
2433
0
        if (verbose != 0) {
2434
0
            mbedtls_printf("failed\n");
2435
0
        }
2436
2437
0
        ret = 1;
2438
0
        goto cleanup;
2439
0
    }
2440
2441
0
    if (verbose != 0) {
2442
0
        mbedtls_printf("passed\n");
2443
0
    }
2444
2445
0
    if (verbose != 0) {
2446
0
        mbedtls_printf("  MPI test #5 (simple gcd): ");
2447
0
    }
2448
2449
0
    for (i = 0; i < GCD_PAIR_COUNT; i++) {
2450
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&X, gcd_pairs[i][0]));
2451
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&Y, gcd_pairs[i][1]));
2452
2453
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(&A, &X, &Y));
2454
2455
0
        if (mbedtls_mpi_cmp_int(&A, gcd_pairs[i][2]) != 0) {
2456
0
            if (verbose != 0) {
2457
0
                mbedtls_printf("failed at %d\n", i);
2458
0
            }
2459
2460
0
            ret = 1;
2461
0
            goto cleanup;
2462
0
        }
2463
0
    }
2464
2465
0
    if (verbose != 0) {
2466
0
        mbedtls_printf("passed\n");
2467
0
    }
2468
2469
0
cleanup:
2470
2471
0
    if (ret != 0 && verbose != 0) {
2472
0
        mbedtls_printf("Unexpected error, return code = %08X\n", (unsigned int) ret);
2473
0
    }
2474
2475
0
    mbedtls_mpi_free(&A); mbedtls_mpi_free(&E); mbedtls_mpi_free(&N); mbedtls_mpi_free(&X);
2476
0
    mbedtls_mpi_free(&Y); mbedtls_mpi_free(&U); mbedtls_mpi_free(&V);
2477
2478
0
    if (verbose != 0) {
2479
0
        mbedtls_printf("\n");
2480
0
    }
2481
2482
0
    return ret;
2483
0
}
2484
2485
#endif /* MBEDTLS_SELF_TEST */
2486
2487
#endif /* MBEDTLS_BIGNUM_C */