/src/mbedtls/library/aesni.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * AES-NI support functions |
3 | | * |
4 | | * Copyright The Mbed TLS Contributors |
5 | | * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later |
6 | | */ |
7 | | |
8 | | /* |
9 | | * [AES-WP] https://www.intel.com/content/www/us/en/developer/articles/tool/intel-advanced-encryption-standard-aes-instructions-set.html |
10 | | * [CLMUL-WP] https://www.intel.com/content/www/us/en/develop/download/intel-carry-less-multiplication-instruction-and-its-usage-for-computing-the-gcm-mode.html |
11 | | */ |
12 | | |
13 | | #include "common.h" |
14 | | |
15 | | #if defined(MBEDTLS_AESNI_C) |
16 | | |
17 | | #include "aesni.h" |
18 | | |
19 | | #include <string.h> |
20 | | |
21 | | #if defined(MBEDTLS_AESNI_HAVE_CODE) |
22 | | |
23 | | #if MBEDTLS_AESNI_HAVE_CODE == 2 |
24 | | #if defined(__GNUC__) |
25 | | #include <cpuid.h> |
26 | | #elif defined(_MSC_VER) |
27 | | #include <intrin.h> |
28 | | #else |
29 | | #error "`__cpuid` required by MBEDTLS_AESNI_C is not supported by the compiler" |
30 | | #endif |
31 | | #include <immintrin.h> |
32 | | #endif |
33 | | |
34 | | #if defined(MBEDTLS_ARCH_IS_X86) |
35 | | #if defined(MBEDTLS_COMPILER_IS_GCC) |
36 | | #pragma GCC push_options |
37 | | #pragma GCC target ("pclmul,sse2,aes") |
38 | | #define MBEDTLS_POP_TARGET_PRAGMA |
39 | | #elif defined(__clang__) && (__clang_major__ >= 5) |
40 | | #pragma clang attribute push (__attribute__((target("pclmul,sse2,aes"))), apply_to=function) |
41 | | #define MBEDTLS_POP_TARGET_PRAGMA |
42 | | #endif |
43 | | #endif |
44 | | |
45 | | #if !defined(MBEDTLS_AES_USE_HARDWARE_ONLY) |
46 | | /* |
47 | | * AES-NI support detection routine |
48 | | */ |
49 | | int mbedtls_aesni_has_support(unsigned int what) |
50 | 678k | { |
51 | | /* To avoid a race condition, tell the compiler that the assignment |
52 | | * `done = 1` and the assignment to `c` may not be reordered. |
53 | | * https://github.com/Mbed-TLS/mbedtls/issues/9840 |
54 | | * |
55 | | * Note that we may also be worried about memory access reordering, |
56 | | * but fortunately the x86 memory model is not too wild: stores |
57 | | * from the same thread are observed consistently by other threads. |
58 | | * (See example 8-1 in Sewell et al., "x86-TSO: A Rigorous and Usable |
59 | | * Programmer’s Model for x86 Multiprocessors", CACM, 2010, |
60 | | * https://www.cl.cam.ac.uk/~pes20/weakmemory/cacm.pdf) |
61 | | */ |
62 | 678k | static volatile int done = 0; |
63 | 678k | static volatile unsigned int c = 0; |
64 | | |
65 | 678k | if (!done) { |
66 | | #if MBEDTLS_AESNI_HAVE_CODE == 2 |
67 | | static int info[4] = { 0, 0, 0, 0 }; |
68 | | #if defined(_MSC_VER) |
69 | | __cpuid(info, 1); |
70 | | #else |
71 | | __cpuid(1, info[0], info[1], info[2], info[3]); |
72 | | #endif |
73 | | c = info[2]; |
74 | | #else /* AESNI using asm */ |
75 | 14 | asm ("movl $1, %%eax \n\t" |
76 | 14 | "cpuid \n\t" |
77 | 14 | : "=c" (c) |
78 | 14 | : |
79 | 14 | : "eax", "ebx", "edx"); |
80 | 14 | #endif /* MBEDTLS_AESNI_HAVE_CODE */ |
81 | 14 | done = 1; |
82 | 14 | } |
83 | | |
84 | 678k | return (c & what) != 0; |
85 | 678k | } |
86 | | #endif /* !MBEDTLS_AES_USE_HARDWARE_ONLY */ |
87 | | |
88 | | #if MBEDTLS_AESNI_HAVE_CODE == 2 |
89 | | |
90 | | /* |
91 | | * AES-NI AES-ECB block en(de)cryption |
92 | | */ |
93 | | int mbedtls_aesni_crypt_ecb(mbedtls_aes_context *ctx, |
94 | | int mode, |
95 | | const unsigned char input[16], |
96 | | unsigned char output[16]) |
97 | | { |
98 | | const __m128i *rk = (const __m128i *) (ctx->buf + ctx->rk_offset); |
99 | | unsigned nr = ctx->nr; // Number of remaining rounds |
100 | | |
101 | | // Load round key 0 |
102 | | __m128i state; |
103 | | memcpy(&state, input, 16); |
104 | | state = _mm_xor_si128(state, rk[0]); // state ^= *rk; |
105 | | ++rk; |
106 | | --nr; |
107 | | |
108 | | #if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT) |
109 | | if (mode == MBEDTLS_AES_DECRYPT) { |
110 | | while (nr != 0) { |
111 | | state = _mm_aesdec_si128(state, *rk); |
112 | | ++rk; |
113 | | --nr; |
114 | | } |
115 | | state = _mm_aesdeclast_si128(state, *rk); |
116 | | } else |
117 | | #else |
118 | | (void) mode; |
119 | | #endif |
120 | | { |
121 | | while (nr != 0) { |
122 | | state = _mm_aesenc_si128(state, *rk); |
123 | | ++rk; |
124 | | --nr; |
125 | | } |
126 | | state = _mm_aesenclast_si128(state, *rk); |
127 | | } |
128 | | |
129 | | memcpy(output, &state, 16); |
130 | | return 0; |
131 | | } |
132 | | |
133 | | /* |
134 | | * GCM multiplication: c = a times b in GF(2^128) |
135 | | * Based on [CLMUL-WP] algorithms 1 (with equation 27) and 5. |
136 | | */ |
137 | | |
138 | | static void gcm_clmul(const __m128i aa, const __m128i bb, |
139 | | __m128i *cc, __m128i *dd) |
140 | | { |
141 | | /* |
142 | | * Caryless multiplication dd:cc = aa * bb |
143 | | * using [CLMUL-WP] algorithm 1 (p. 12). |
144 | | */ |
145 | | *cc = _mm_clmulepi64_si128(aa, bb, 0x00); // a0*b0 = c1:c0 |
146 | | *dd = _mm_clmulepi64_si128(aa, bb, 0x11); // a1*b1 = d1:d0 |
147 | | __m128i ee = _mm_clmulepi64_si128(aa, bb, 0x10); // a0*b1 = e1:e0 |
148 | | __m128i ff = _mm_clmulepi64_si128(aa, bb, 0x01); // a1*b0 = f1:f0 |
149 | | ff = _mm_xor_si128(ff, ee); // e1+f1:e0+f0 |
150 | | ee = ff; // e1+f1:e0+f0 |
151 | | ff = _mm_srli_si128(ff, 8); // 0:e1+f1 |
152 | | ee = _mm_slli_si128(ee, 8); // e0+f0:0 |
153 | | *dd = _mm_xor_si128(*dd, ff); // d1:d0+e1+f1 |
154 | | *cc = _mm_xor_si128(*cc, ee); // c1+e0+f0:c0 |
155 | | } |
156 | | |
157 | | static void gcm_shift(__m128i *cc, __m128i *dd) |
158 | | { |
159 | | /* [CMUCL-WP] Algorithm 5 Step 1: shift cc:dd one bit to the left, |
160 | | * taking advantage of [CLMUL-WP] eq 27 (p. 18). */ |
161 | | // // *cc = r1:r0 |
162 | | // // *dd = r3:r2 |
163 | | __m128i cc_lo = _mm_slli_epi64(*cc, 1); // r1<<1:r0<<1 |
164 | | __m128i dd_lo = _mm_slli_epi64(*dd, 1); // r3<<1:r2<<1 |
165 | | __m128i cc_hi = _mm_srli_epi64(*cc, 63); // r1>>63:r0>>63 |
166 | | __m128i dd_hi = _mm_srli_epi64(*dd, 63); // r3>>63:r2>>63 |
167 | | __m128i xmm5 = _mm_srli_si128(cc_hi, 8); // 0:r1>>63 |
168 | | cc_hi = _mm_slli_si128(cc_hi, 8); // r0>>63:0 |
169 | | dd_hi = _mm_slli_si128(dd_hi, 8); // 0:r1>>63 |
170 | | |
171 | | *cc = _mm_or_si128(cc_lo, cc_hi); // r1<<1|r0>>63:r0<<1 |
172 | | *dd = _mm_or_si128(_mm_or_si128(dd_lo, dd_hi), xmm5); // r3<<1|r2>>62:r2<<1|r1>>63 |
173 | | } |
174 | | |
175 | | static __m128i gcm_reduce(__m128i xx) |
176 | | { |
177 | | // // xx = x1:x0 |
178 | | /* [CLMUL-WP] Algorithm 5 Step 2 */ |
179 | | __m128i aa = _mm_slli_epi64(xx, 63); // x1<<63:x0<<63 = stuff:a |
180 | | __m128i bb = _mm_slli_epi64(xx, 62); // x1<<62:x0<<62 = stuff:b |
181 | | __m128i cc = _mm_slli_epi64(xx, 57); // x1<<57:x0<<57 = stuff:c |
182 | | __m128i dd = _mm_slli_si128(_mm_xor_si128(_mm_xor_si128(aa, bb), cc), 8); // a+b+c:0 |
183 | | return _mm_xor_si128(dd, xx); // x1+a+b+c:x0 = d:x0 |
184 | | } |
185 | | |
186 | | static __m128i gcm_mix(__m128i dx) |
187 | | { |
188 | | /* [CLMUL-WP] Algorithm 5 Steps 3 and 4 */ |
189 | | __m128i ee = _mm_srli_epi64(dx, 1); // e1:x0>>1 = e1:e0' |
190 | | __m128i ff = _mm_srli_epi64(dx, 2); // f1:x0>>2 = f1:f0' |
191 | | __m128i gg = _mm_srli_epi64(dx, 7); // g1:x0>>7 = g1:g0' |
192 | | |
193 | | // e0'+f0'+g0' is almost e0+f0+g0, except for some missing |
194 | | // bits carried from d. Now get those bits back in. |
195 | | __m128i eh = _mm_slli_epi64(dx, 63); // d<<63:stuff |
196 | | __m128i fh = _mm_slli_epi64(dx, 62); // d<<62:stuff |
197 | | __m128i gh = _mm_slli_epi64(dx, 57); // d<<57:stuff |
198 | | __m128i hh = _mm_srli_si128(_mm_xor_si128(_mm_xor_si128(eh, fh), gh), 8); // 0:missing bits of d |
199 | | |
200 | | return _mm_xor_si128(_mm_xor_si128(_mm_xor_si128(_mm_xor_si128(ee, ff), gg), hh), dx); |
201 | | } |
202 | | |
203 | | void mbedtls_aesni_gcm_mult(unsigned char c[16], |
204 | | const unsigned char a[16], |
205 | | const unsigned char b[16]) |
206 | | { |
207 | | __m128i aa = { 0 }, bb = { 0 }, cc, dd; |
208 | | |
209 | | /* The inputs are in big-endian order, so byte-reverse them */ |
210 | | for (size_t i = 0; i < 16; i++) { |
211 | | ((uint8_t *) &aa)[i] = a[15 - i]; |
212 | | ((uint8_t *) &bb)[i] = b[15 - i]; |
213 | | } |
214 | | |
215 | | gcm_clmul(aa, bb, &cc, &dd); |
216 | | gcm_shift(&cc, &dd); |
217 | | /* |
218 | | * Now reduce modulo the GCM polynomial x^128 + x^7 + x^2 + x + 1 |
219 | | * using [CLMUL-WP] algorithm 5 (p. 18). |
220 | | * Currently dd:cc holds x3:x2:x1:x0 (already shifted). |
221 | | */ |
222 | | __m128i dx = gcm_reduce(cc); |
223 | | __m128i xh = gcm_mix(dx); |
224 | | cc = _mm_xor_si128(xh, dd); // x3+h1:x2+h0 |
225 | | |
226 | | /* Now byte-reverse the outputs */ |
227 | | for (size_t i = 0; i < 16; i++) { |
228 | | c[i] = ((uint8_t *) &cc)[15 - i]; |
229 | | } |
230 | | |
231 | | return; |
232 | | } |
233 | | |
234 | | /* |
235 | | * Compute decryption round keys from encryption round keys |
236 | | */ |
237 | | #if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT) |
238 | | void mbedtls_aesni_inverse_key(unsigned char *invkey, |
239 | | const unsigned char *fwdkey, int nr) |
240 | | { |
241 | | __m128i *ik = (__m128i *) invkey; |
242 | | const __m128i *fk = (const __m128i *) fwdkey + nr; |
243 | | |
244 | | *ik = *fk; |
245 | | for (--fk, ++ik; fk > (const __m128i *) fwdkey; --fk, ++ik) { |
246 | | *ik = _mm_aesimc_si128(*fk); |
247 | | } |
248 | | *ik = *fk; |
249 | | } |
250 | | #endif |
251 | | |
252 | | /* |
253 | | * Key expansion, 128-bit case |
254 | | */ |
255 | | static __m128i aesni_set_rk_128(__m128i state, __m128i xword) |
256 | | { |
257 | | /* |
258 | | * Finish generating the next round key. |
259 | | * |
260 | | * On entry state is r3:r2:r1:r0 and xword is X:stuff:stuff:stuff |
261 | | * with X = rot( sub( r3 ) ) ^ RCON (obtained with AESKEYGENASSIST). |
262 | | * |
263 | | * On exit, xword is r7:r6:r5:r4 |
264 | | * with r4 = X + r0, r5 = r4 + r1, r6 = r5 + r2, r7 = r6 + r3 |
265 | | * and this is returned, to be written to the round key buffer. |
266 | | */ |
267 | | xword = _mm_shuffle_epi32(xword, 0xff); // X:X:X:X |
268 | | xword = _mm_xor_si128(xword, state); // X+r3:X+r2:X+r1:r4 |
269 | | state = _mm_slli_si128(state, 4); // r2:r1:r0:0 |
270 | | xword = _mm_xor_si128(xword, state); // X+r3+r2:X+r2+r1:r5:r4 |
271 | | state = _mm_slli_si128(state, 4); // r1:r0:0:0 |
272 | | xword = _mm_xor_si128(xword, state); // X+r3+r2+r1:r6:r5:r4 |
273 | | state = _mm_slli_si128(state, 4); // r0:0:0:0 |
274 | | state = _mm_xor_si128(xword, state); // r7:r6:r5:r4 |
275 | | return state; |
276 | | } |
277 | | |
278 | | static void aesni_setkey_enc_128(unsigned char *rk_bytes, |
279 | | const unsigned char *key) |
280 | | { |
281 | | __m128i *rk = (__m128i *) rk_bytes; |
282 | | |
283 | | memcpy(&rk[0], key, 16); |
284 | | rk[1] = aesni_set_rk_128(rk[0], _mm_aeskeygenassist_si128(rk[0], 0x01)); |
285 | | rk[2] = aesni_set_rk_128(rk[1], _mm_aeskeygenassist_si128(rk[1], 0x02)); |
286 | | rk[3] = aesni_set_rk_128(rk[2], _mm_aeskeygenassist_si128(rk[2], 0x04)); |
287 | | rk[4] = aesni_set_rk_128(rk[3], _mm_aeskeygenassist_si128(rk[3], 0x08)); |
288 | | rk[5] = aesni_set_rk_128(rk[4], _mm_aeskeygenassist_si128(rk[4], 0x10)); |
289 | | rk[6] = aesni_set_rk_128(rk[5], _mm_aeskeygenassist_si128(rk[5], 0x20)); |
290 | | rk[7] = aesni_set_rk_128(rk[6], _mm_aeskeygenassist_si128(rk[6], 0x40)); |
291 | | rk[8] = aesni_set_rk_128(rk[7], _mm_aeskeygenassist_si128(rk[7], 0x80)); |
292 | | rk[9] = aesni_set_rk_128(rk[8], _mm_aeskeygenassist_si128(rk[8], 0x1B)); |
293 | | rk[10] = aesni_set_rk_128(rk[9], _mm_aeskeygenassist_si128(rk[9], 0x36)); |
294 | | } |
295 | | |
296 | | /* |
297 | | * Key expansion, 192-bit case |
298 | | */ |
299 | | #if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH) |
300 | | static void aesni_set_rk_192(__m128i *state0, __m128i *state1, __m128i xword, |
301 | | unsigned char *rk) |
302 | | { |
303 | | /* |
304 | | * Finish generating the next 6 quarter-keys. |
305 | | * |
306 | | * On entry state0 is r3:r2:r1:r0, state1 is stuff:stuff:r5:r4 |
307 | | * and xword is stuff:stuff:X:stuff with X = rot( sub( r3 ) ) ^ RCON |
308 | | * (obtained with AESKEYGENASSIST). |
309 | | * |
310 | | * On exit, state0 is r9:r8:r7:r6 and state1 is stuff:stuff:r11:r10 |
311 | | * and those are written to the round key buffer. |
312 | | */ |
313 | | xword = _mm_shuffle_epi32(xword, 0x55); // X:X:X:X |
314 | | xword = _mm_xor_si128(xword, *state0); // X+r3:X+r2:X+r1:X+r0 |
315 | | *state0 = _mm_slli_si128(*state0, 4); // r2:r1:r0:0 |
316 | | xword = _mm_xor_si128(xword, *state0); // X+r3+r2:X+r2+r1:X+r1+r0:X+r0 |
317 | | *state0 = _mm_slli_si128(*state0, 4); // r1:r0:0:0 |
318 | | xword = _mm_xor_si128(xword, *state0); // X+r3+r2+r1:X+r2+r1+r0:X+r1+r0:X+r0 |
319 | | *state0 = _mm_slli_si128(*state0, 4); // r0:0:0:0 |
320 | | xword = _mm_xor_si128(xword, *state0); // X+r3+r2+r1+r0:X+r2+r1+r0:X+r1+r0:X+r0 |
321 | | *state0 = xword; // = r9:r8:r7:r6 |
322 | | |
323 | | xword = _mm_shuffle_epi32(xword, 0xff); // r9:r9:r9:r9 |
324 | | xword = _mm_xor_si128(xword, *state1); // stuff:stuff:r9+r5:r9+r4 |
325 | | *state1 = _mm_slli_si128(*state1, 4); // stuff:stuff:r4:0 |
326 | | xword = _mm_xor_si128(xword, *state1); // stuff:stuff:r9+r5+r4:r9+r4 |
327 | | *state1 = xword; // = stuff:stuff:r11:r10 |
328 | | |
329 | | /* Store state0 and the low half of state1 into rk, which is conceptually |
330 | | * an array of 24-byte elements. Since 24 is not a multiple of 16, |
331 | | * rk is not necessarily aligned so just `*rk = *state0` doesn't work. */ |
332 | | memcpy(rk, state0, 16); |
333 | | memcpy(rk + 16, state1, 8); |
334 | | } |
335 | | |
336 | | static void aesni_setkey_enc_192(unsigned char *rk, |
337 | | const unsigned char *key) |
338 | | { |
339 | | /* First round: use original key */ |
340 | | memcpy(rk, key, 24); |
341 | | /* aes.c guarantees that rk is aligned on a 16-byte boundary. */ |
342 | | __m128i state0 = ((__m128i *) rk)[0]; |
343 | | __m128i state1 = _mm_loadl_epi64(((__m128i *) rk) + 1); |
344 | | |
345 | | aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x01), rk + 24 * 1); |
346 | | aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x02), rk + 24 * 2); |
347 | | aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x04), rk + 24 * 3); |
348 | | aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x08), rk + 24 * 4); |
349 | | aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x10), rk + 24 * 5); |
350 | | aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x20), rk + 24 * 6); |
351 | | aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x40), rk + 24 * 7); |
352 | | aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x80), rk + 24 * 8); |
353 | | } |
354 | | #endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */ |
355 | | |
356 | | /* |
357 | | * Key expansion, 256-bit case |
358 | | */ |
359 | | #if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH) |
360 | | static void aesni_set_rk_256(__m128i state0, __m128i state1, __m128i xword, |
361 | | __m128i *rk0, __m128i *rk1) |
362 | | { |
363 | | /* |
364 | | * Finish generating the next two round keys. |
365 | | * |
366 | | * On entry state0 is r3:r2:r1:r0, state1 is r7:r6:r5:r4 and |
367 | | * xword is X:stuff:stuff:stuff with X = rot( sub( r7 )) ^ RCON |
368 | | * (obtained with AESKEYGENASSIST). |
369 | | * |
370 | | * On exit, *rk0 is r11:r10:r9:r8 and *rk1 is r15:r14:r13:r12 |
371 | | */ |
372 | | xword = _mm_shuffle_epi32(xword, 0xff); |
373 | | xword = _mm_xor_si128(xword, state0); |
374 | | state0 = _mm_slli_si128(state0, 4); |
375 | | xword = _mm_xor_si128(xword, state0); |
376 | | state0 = _mm_slli_si128(state0, 4); |
377 | | xword = _mm_xor_si128(xword, state0); |
378 | | state0 = _mm_slli_si128(state0, 4); |
379 | | state0 = _mm_xor_si128(state0, xword); |
380 | | *rk0 = state0; |
381 | | |
382 | | /* Set xword to stuff:Y:stuff:stuff with Y = subword( r11 ) |
383 | | * and proceed to generate next round key from there */ |
384 | | xword = _mm_aeskeygenassist_si128(state0, 0x00); |
385 | | xword = _mm_shuffle_epi32(xword, 0xaa); |
386 | | xword = _mm_xor_si128(xword, state1); |
387 | | state1 = _mm_slli_si128(state1, 4); |
388 | | xword = _mm_xor_si128(xword, state1); |
389 | | state1 = _mm_slli_si128(state1, 4); |
390 | | xword = _mm_xor_si128(xword, state1); |
391 | | state1 = _mm_slli_si128(state1, 4); |
392 | | state1 = _mm_xor_si128(state1, xword); |
393 | | *rk1 = state1; |
394 | | } |
395 | | |
396 | | static void aesni_setkey_enc_256(unsigned char *rk_bytes, |
397 | | const unsigned char *key) |
398 | | { |
399 | | __m128i *rk = (__m128i *) rk_bytes; |
400 | | |
401 | | memcpy(&rk[0], key, 16); |
402 | | memcpy(&rk[1], key + 16, 16); |
403 | | |
404 | | /* |
405 | | * Main "loop" - Generating one more key than necessary, |
406 | | * see definition of mbedtls_aes_context.buf |
407 | | */ |
408 | | aesni_set_rk_256(rk[0], rk[1], _mm_aeskeygenassist_si128(rk[1], 0x01), &rk[2], &rk[3]); |
409 | | aesni_set_rk_256(rk[2], rk[3], _mm_aeskeygenassist_si128(rk[3], 0x02), &rk[4], &rk[5]); |
410 | | aesni_set_rk_256(rk[4], rk[5], _mm_aeskeygenassist_si128(rk[5], 0x04), &rk[6], &rk[7]); |
411 | | aesni_set_rk_256(rk[6], rk[7], _mm_aeskeygenassist_si128(rk[7], 0x08), &rk[8], &rk[9]); |
412 | | aesni_set_rk_256(rk[8], rk[9], _mm_aeskeygenassist_si128(rk[9], 0x10), &rk[10], &rk[11]); |
413 | | aesni_set_rk_256(rk[10], rk[11], _mm_aeskeygenassist_si128(rk[11], 0x20), &rk[12], &rk[13]); |
414 | | aesni_set_rk_256(rk[12], rk[13], _mm_aeskeygenassist_si128(rk[13], 0x40), &rk[14], &rk[15]); |
415 | | } |
416 | | #endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */ |
417 | | |
418 | | #if defined(MBEDTLS_POP_TARGET_PRAGMA) |
419 | | #if defined(__clang__) |
420 | | #pragma clang attribute pop |
421 | | #elif defined(__GNUC__) |
422 | | #pragma GCC pop_options |
423 | | #endif |
424 | | #undef MBEDTLS_POP_TARGET_PRAGMA |
425 | | #endif |
426 | | |
427 | | #else /* MBEDTLS_AESNI_HAVE_CODE == 1 */ |
428 | | |
429 | | #if defined(__has_feature) |
430 | | #if __has_feature(memory_sanitizer) |
431 | | #warning \ |
432 | | "MBEDTLS_AESNI_C is known to cause spurious error reports with some memory sanitizers as they do not understand the assembly code." |
433 | | #endif |
434 | | #endif |
435 | | |
436 | | /* |
437 | | * Binutils needs to be at least 2.19 to support AES-NI instructions. |
438 | | * Unfortunately, a lot of users have a lower version now (2014-04). |
439 | | * Emit bytecode directly in order to support "old" version of gas. |
440 | | * |
441 | | * Opcodes from the Intel architecture reference manual, vol. 3. |
442 | | * We always use registers, so we don't need prefixes for memory operands. |
443 | | * Operand macros are in gas order (src, dst) as opposed to Intel order |
444 | | * (dst, src) in order to blend better into the surrounding assembly code. |
445 | | */ |
446 | | #define AESDEC(regs) ".byte 0x66,0x0F,0x38,0xDE," regs "\n\t" |
447 | | #define AESDECLAST(regs) ".byte 0x66,0x0F,0x38,0xDF," regs "\n\t" |
448 | | #define AESENC(regs) ".byte 0x66,0x0F,0x38,0xDC," regs "\n\t" |
449 | | #define AESENCLAST(regs) ".byte 0x66,0x0F,0x38,0xDD," regs "\n\t" |
450 | | #define AESIMC(regs) ".byte 0x66,0x0F,0x38,0xDB," regs "\n\t" |
451 | | #define AESKEYGENA(regs, imm) ".byte 0x66,0x0F,0x3A,0xDF," regs "," imm "\n\t" |
452 | | #define PCLMULQDQ(regs, imm) ".byte 0x66,0x0F,0x3A,0x44," regs "," imm "\n\t" |
453 | | |
454 | | #define xmm0_xmm0 "0xC0" |
455 | | #define xmm0_xmm1 "0xC8" |
456 | | #define xmm0_xmm2 "0xD0" |
457 | | #define xmm0_xmm3 "0xD8" |
458 | | #define xmm0_xmm4 "0xE0" |
459 | | #define xmm1_xmm0 "0xC1" |
460 | | #define xmm1_xmm2 "0xD1" |
461 | | |
462 | | /* |
463 | | * AES-NI AES-ECB block en(de)cryption |
464 | | */ |
465 | | int mbedtls_aesni_crypt_ecb(mbedtls_aes_context *ctx, |
466 | | int mode, |
467 | | const unsigned char input[16], |
468 | | unsigned char output[16]) |
469 | 566k | { |
470 | 566k | asm ("movdqu (%3), %%xmm0 \n\t" // load input |
471 | 566k | "movdqu (%1), %%xmm1 \n\t" // load round key 0 |
472 | 566k | "pxor %%xmm1, %%xmm0 \n\t" // round 0 |
473 | 566k | "add $16, %1 \n\t" // point to next round key |
474 | 566k | "subl $1, %0 \n\t" // normal rounds = nr - 1 |
475 | 566k | "test %2, %2 \n\t" // mode? |
476 | 566k | "jz 2f \n\t" // 0 = decrypt |
477 | | |
478 | 566k | "1: \n\t" // encryption loop |
479 | 566k | "movdqu (%1), %%xmm1 \n\t" // load round key |
480 | | AESENC(xmm1_xmm0) // do round |
481 | 566k | "add $16, %1 \n\t" // point to next round key |
482 | 566k | "subl $1, %0 \n\t" // loop |
483 | 566k | "jnz 1b \n\t" |
484 | 566k | "movdqu (%1), %%xmm1 \n\t" // load round key |
485 | | AESENCLAST(xmm1_xmm0) // last round |
486 | 566k | #if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT) |
487 | 566k | "jmp 3f \n\t" |
488 | | |
489 | 566k | "2: \n\t" // decryption loop |
490 | 566k | "movdqu (%1), %%xmm1 \n\t" |
491 | | AESDEC(xmm1_xmm0) // do round |
492 | 566k | "add $16, %1 \n\t" |
493 | 566k | "subl $1, %0 \n\t" |
494 | 566k | "jnz 2b \n\t" |
495 | 566k | "movdqu (%1), %%xmm1 \n\t" // load round key |
496 | | AESDECLAST(xmm1_xmm0) // last round |
497 | 566k | #endif |
498 | | |
499 | 566k | "3: \n\t" |
500 | 566k | "movdqu %%xmm0, (%4) \n\t" // export output |
501 | 566k | : |
502 | 566k | : "r" (ctx->nr), "r" (ctx->buf + ctx->rk_offset), "r" (mode), "r" (input), "r" (output) |
503 | 566k | : "memory", "cc", "xmm0", "xmm1", "0", "1"); |
504 | | |
505 | | |
506 | 566k | return 0; |
507 | 566k | } |
508 | | |
509 | | /* |
510 | | * GCM multiplication: c = a times b in GF(2^128) |
511 | | * Based on [CLMUL-WP] algorithms 1 (with equation 27) and 5. |
512 | | */ |
513 | | void mbedtls_aesni_gcm_mult(unsigned char c[16], |
514 | | const unsigned char a[16], |
515 | | const unsigned char b[16]) |
516 | 19.7k | { |
517 | 19.7k | unsigned char aa[16], bb[16], cc[16]; |
518 | 19.7k | size_t i; |
519 | | |
520 | | /* The inputs are in big-endian order, so byte-reverse them */ |
521 | 335k | for (i = 0; i < 16; i++) { |
522 | 315k | aa[i] = a[15 - i]; |
523 | 315k | bb[i] = b[15 - i]; |
524 | 315k | } |
525 | | |
526 | 19.7k | asm ("movdqu (%0), %%xmm0 \n\t" // a1:a0 |
527 | 19.7k | "movdqu (%1), %%xmm1 \n\t" // b1:b0 |
528 | | |
529 | | /* |
530 | | * Caryless multiplication xmm2:xmm1 = xmm0 * xmm1 |
531 | | * using [CLMUL-WP] algorithm 1 (p. 12). |
532 | | */ |
533 | 19.7k | "movdqa %%xmm1, %%xmm2 \n\t" // copy of b1:b0 |
534 | 19.7k | "movdqa %%xmm1, %%xmm3 \n\t" // same |
535 | 19.7k | "movdqa %%xmm1, %%xmm4 \n\t" // same |
536 | | PCLMULQDQ(xmm0_xmm1, "0x00") // a0*b0 = c1:c0 |
537 | | PCLMULQDQ(xmm0_xmm2, "0x11") // a1*b1 = d1:d0 |
538 | | PCLMULQDQ(xmm0_xmm3, "0x10") // a0*b1 = e1:e0 |
539 | | PCLMULQDQ(xmm0_xmm4, "0x01") // a1*b0 = f1:f0 |
540 | 19.7k | "pxor %%xmm3, %%xmm4 \n\t" // e1+f1:e0+f0 |
541 | 19.7k | "movdqa %%xmm4, %%xmm3 \n\t" // same |
542 | 19.7k | "psrldq $8, %%xmm4 \n\t" // 0:e1+f1 |
543 | 19.7k | "pslldq $8, %%xmm3 \n\t" // e0+f0:0 |
544 | 19.7k | "pxor %%xmm4, %%xmm2 \n\t" // d1:d0+e1+f1 |
545 | 19.7k | "pxor %%xmm3, %%xmm1 \n\t" // c1+e0+f1:c0 |
546 | | |
547 | | /* |
548 | | * Now shift the result one bit to the left, |
549 | | * taking advantage of [CLMUL-WP] eq 27 (p. 18) |
550 | | */ |
551 | 19.7k | "movdqa %%xmm1, %%xmm3 \n\t" // r1:r0 |
552 | 19.7k | "movdqa %%xmm2, %%xmm4 \n\t" // r3:r2 |
553 | 19.7k | "psllq $1, %%xmm1 \n\t" // r1<<1:r0<<1 |
554 | 19.7k | "psllq $1, %%xmm2 \n\t" // r3<<1:r2<<1 |
555 | 19.7k | "psrlq $63, %%xmm3 \n\t" // r1>>63:r0>>63 |
556 | 19.7k | "psrlq $63, %%xmm4 \n\t" // r3>>63:r2>>63 |
557 | 19.7k | "movdqa %%xmm3, %%xmm5 \n\t" // r1>>63:r0>>63 |
558 | 19.7k | "pslldq $8, %%xmm3 \n\t" // r0>>63:0 |
559 | 19.7k | "pslldq $8, %%xmm4 \n\t" // r2>>63:0 |
560 | 19.7k | "psrldq $8, %%xmm5 \n\t" // 0:r1>>63 |
561 | 19.7k | "por %%xmm3, %%xmm1 \n\t" // r1<<1|r0>>63:r0<<1 |
562 | 19.7k | "por %%xmm4, %%xmm2 \n\t" // r3<<1|r2>>62:r2<<1 |
563 | 19.7k | "por %%xmm5, %%xmm2 \n\t" // r3<<1|r2>>62:r2<<1|r1>>63 |
564 | | |
565 | | /* |
566 | | * Now reduce modulo the GCM polynomial x^128 + x^7 + x^2 + x + 1 |
567 | | * using [CLMUL-WP] algorithm 5 (p. 18). |
568 | | * Currently xmm2:xmm1 holds x3:x2:x1:x0 (already shifted). |
569 | | */ |
570 | | /* Step 2 (1) */ |
571 | 19.7k | "movdqa %%xmm1, %%xmm3 \n\t" // x1:x0 |
572 | 19.7k | "movdqa %%xmm1, %%xmm4 \n\t" // same |
573 | 19.7k | "movdqa %%xmm1, %%xmm5 \n\t" // same |
574 | 19.7k | "psllq $63, %%xmm3 \n\t" // x1<<63:x0<<63 = stuff:a |
575 | 19.7k | "psllq $62, %%xmm4 \n\t" // x1<<62:x0<<62 = stuff:b |
576 | 19.7k | "psllq $57, %%xmm5 \n\t" // x1<<57:x0<<57 = stuff:c |
577 | | |
578 | | /* Step 2 (2) */ |
579 | 19.7k | "pxor %%xmm4, %%xmm3 \n\t" // stuff:a+b |
580 | 19.7k | "pxor %%xmm5, %%xmm3 \n\t" // stuff:a+b+c |
581 | 19.7k | "pslldq $8, %%xmm3 \n\t" // a+b+c:0 |
582 | 19.7k | "pxor %%xmm3, %%xmm1 \n\t" // x1+a+b+c:x0 = d:x0 |
583 | | |
584 | | /* Steps 3 and 4 */ |
585 | 19.7k | "movdqa %%xmm1,%%xmm0 \n\t" // d:x0 |
586 | 19.7k | "movdqa %%xmm1,%%xmm4 \n\t" // same |
587 | 19.7k | "movdqa %%xmm1,%%xmm5 \n\t" // same |
588 | 19.7k | "psrlq $1, %%xmm0 \n\t" // e1:x0>>1 = e1:e0' |
589 | 19.7k | "psrlq $2, %%xmm4 \n\t" // f1:x0>>2 = f1:f0' |
590 | 19.7k | "psrlq $7, %%xmm5 \n\t" // g1:x0>>7 = g1:g0' |
591 | 19.7k | "pxor %%xmm4, %%xmm0 \n\t" // e1+f1:e0'+f0' |
592 | 19.7k | "pxor %%xmm5, %%xmm0 \n\t" // e1+f1+g1:e0'+f0'+g0' |
593 | | // e0'+f0'+g0' is almost e0+f0+g0, ex\tcept for some missing |
594 | | // bits carried from d. Now get those\t bits back in. |
595 | 19.7k | "movdqa %%xmm1,%%xmm3 \n\t" // d:x0 |
596 | 19.7k | "movdqa %%xmm1,%%xmm4 \n\t" // same |
597 | 19.7k | "movdqa %%xmm1,%%xmm5 \n\t" // same |
598 | 19.7k | "psllq $63, %%xmm3 \n\t" // d<<63:stuff |
599 | 19.7k | "psllq $62, %%xmm4 \n\t" // d<<62:stuff |
600 | 19.7k | "psllq $57, %%xmm5 \n\t" // d<<57:stuff |
601 | 19.7k | "pxor %%xmm4, %%xmm3 \n\t" // d<<63+d<<62:stuff |
602 | 19.7k | "pxor %%xmm5, %%xmm3 \n\t" // missing bits of d:stuff |
603 | 19.7k | "psrldq $8, %%xmm3 \n\t" // 0:missing bits of d |
604 | 19.7k | "pxor %%xmm3, %%xmm0 \n\t" // e1+f1+g1:e0+f0+g0 |
605 | 19.7k | "pxor %%xmm1, %%xmm0 \n\t" // h1:h0 |
606 | 19.7k | "pxor %%xmm2, %%xmm0 \n\t" // x3+h1:x2+h0 |
607 | | |
608 | 19.7k | "movdqu %%xmm0, (%2) \n\t" // done |
609 | 19.7k | : |
610 | 19.7k | : "r" (aa), "r" (bb), "r" (cc) |
611 | 19.7k | : "memory", "cc", "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5"); |
612 | | |
613 | | /* Now byte-reverse the outputs */ |
614 | 335k | for (i = 0; i < 16; i++) { |
615 | 315k | c[i] = cc[15 - i]; |
616 | 315k | } |
617 | | |
618 | 19.7k | return; |
619 | 19.7k | } |
620 | | |
621 | | /* |
622 | | * Compute decryption round keys from encryption round keys |
623 | | */ |
624 | | #if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT) |
625 | | void mbedtls_aesni_inverse_key(unsigned char *invkey, |
626 | | const unsigned char *fwdkey, int nr) |
627 | 120 | { |
628 | 120 | unsigned char *ik = invkey; |
629 | 120 | const unsigned char *fk = fwdkey + 16 * nr; |
630 | | |
631 | 120 | memcpy(ik, fk, 16); |
632 | | |
633 | 1.48k | for (fk -= 16, ik += 16; fk > fwdkey; fk -= 16, ik += 16) { |
634 | 1.36k | asm ("movdqu (%0), %%xmm0 \n\t" |
635 | 1.36k | AESIMC(xmm0_xmm0) |
636 | 1.36k | "movdqu %%xmm0, (%1) \n\t" |
637 | 1.36k | : |
638 | 1.36k | : "r" (fk), "r" (ik) |
639 | 1.36k | : "memory", "xmm0"); |
640 | 1.36k | } |
641 | | |
642 | 120 | memcpy(ik, fk, 16); |
643 | 120 | } |
644 | | #endif |
645 | | |
646 | | /* |
647 | | * Key expansion, 128-bit case |
648 | | */ |
649 | | static void aesni_setkey_enc_128(unsigned char *rk, |
650 | | const unsigned char *key) |
651 | 168 | { |
652 | 168 | asm ("movdqu (%1), %%xmm0 \n\t" // copy the original key |
653 | 168 | "movdqu %%xmm0, (%0) \n\t" // as round key 0 |
654 | 168 | "jmp 2f \n\t" // skip auxiliary routine |
655 | | |
656 | | /* |
657 | | * Finish generating the next round key. |
658 | | * |
659 | | * On entry xmm0 is r3:r2:r1:r0 and xmm1 is X:stuff:stuff:stuff |
660 | | * with X = rot( sub( r3 ) ) ^ RCON. |
661 | | * |
662 | | * On exit, xmm0 is r7:r6:r5:r4 |
663 | | * with r4 = X + r0, r5 = r4 + r1, r6 = r5 + r2, r7 = r6 + r3 |
664 | | * and those are written to the round key buffer. |
665 | | */ |
666 | 168 | "1: \n\t" |
667 | 168 | "pshufd $0xff, %%xmm1, %%xmm1 \n\t" // X:X:X:X |
668 | 168 | "pxor %%xmm0, %%xmm1 \n\t" // X+r3:X+r2:X+r1:r4 |
669 | 168 | "pslldq $4, %%xmm0 \n\t" // r2:r1:r0:0 |
670 | 168 | "pxor %%xmm0, %%xmm1 \n\t" // X+r3+r2:X+r2+r1:r5:r4 |
671 | 168 | "pslldq $4, %%xmm0 \n\t" // etc |
672 | 168 | "pxor %%xmm0, %%xmm1 \n\t" |
673 | 168 | "pslldq $4, %%xmm0 \n\t" |
674 | 168 | "pxor %%xmm1, %%xmm0 \n\t" // update xmm0 for next time! |
675 | 168 | "add $16, %0 \n\t" // point to next round key |
676 | 168 | "movdqu %%xmm0, (%0) \n\t" // write it |
677 | 168 | "ret \n\t" |
678 | | |
679 | | /* Main "loop" */ |
680 | 168 | "2: \n\t" |
681 | 168 | AESKEYGENA(xmm0_xmm1, "0x01") "call 1b \n\t" |
682 | 168 | AESKEYGENA(xmm0_xmm1, "0x02") "call 1b \n\t" |
683 | 168 | AESKEYGENA(xmm0_xmm1, "0x04") "call 1b \n\t" |
684 | 168 | AESKEYGENA(xmm0_xmm1, "0x08") "call 1b \n\t" |
685 | 168 | AESKEYGENA(xmm0_xmm1, "0x10") "call 1b \n\t" |
686 | 168 | AESKEYGENA(xmm0_xmm1, "0x20") "call 1b \n\t" |
687 | 168 | AESKEYGENA(xmm0_xmm1, "0x40") "call 1b \n\t" |
688 | 168 | AESKEYGENA(xmm0_xmm1, "0x80") "call 1b \n\t" |
689 | 168 | AESKEYGENA(xmm0_xmm1, "0x1B") "call 1b \n\t" |
690 | 168 | AESKEYGENA(xmm0_xmm1, "0x36") "call 1b \n\t" |
691 | 168 | : |
692 | 168 | : "r" (rk), "r" (key) |
693 | 168 | : "memory", "cc", "xmm0", "xmm1", "0"); |
694 | 168 | } |
695 | | |
696 | | /* |
697 | | * Key expansion, 192-bit case |
698 | | */ |
699 | | #if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH) |
700 | | static void aesni_setkey_enc_192(unsigned char *rk, |
701 | | const unsigned char *key) |
702 | 0 | { |
703 | 0 | asm ("movdqu (%1), %%xmm0 \n\t" // copy original round key |
704 | 0 | "movdqu %%xmm0, (%0) \n\t" |
705 | 0 | "add $16, %0 \n\t" |
706 | 0 | "movq 16(%1), %%xmm1 \n\t" |
707 | 0 | "movq %%xmm1, (%0) \n\t" |
708 | 0 | "add $8, %0 \n\t" |
709 | 0 | "jmp 2f \n\t" // skip auxiliary routine |
710 | | |
711 | | /* |
712 | | * Finish generating the next 6 quarter-keys. |
713 | | * |
714 | | * On entry xmm0 is r3:r2:r1:r0, xmm1 is stuff:stuff:r5:r4 |
715 | | * and xmm2 is stuff:stuff:X:stuff with X = rot( sub( r3 ) ) ^ RCON. |
716 | | * |
717 | | * On exit, xmm0 is r9:r8:r7:r6 and xmm1 is stuff:stuff:r11:r10 |
718 | | * and those are written to the round key buffer. |
719 | | */ |
720 | 0 | "1: \n\t" |
721 | 0 | "pshufd $0x55, %%xmm2, %%xmm2 \n\t" // X:X:X:X |
722 | 0 | "pxor %%xmm0, %%xmm2 \n\t" // X+r3:X+r2:X+r1:r4 |
723 | 0 | "pslldq $4, %%xmm0 \n\t" // etc |
724 | 0 | "pxor %%xmm0, %%xmm2 \n\t" |
725 | 0 | "pslldq $4, %%xmm0 \n\t" |
726 | 0 | "pxor %%xmm0, %%xmm2 \n\t" |
727 | 0 | "pslldq $4, %%xmm0 \n\t" |
728 | 0 | "pxor %%xmm2, %%xmm0 \n\t" // update xmm0 = r9:r8:r7:r6 |
729 | 0 | "movdqu %%xmm0, (%0) \n\t" |
730 | 0 | "add $16, %0 \n\t" |
731 | 0 | "pshufd $0xff, %%xmm0, %%xmm2 \n\t" // r9:r9:r9:r9 |
732 | 0 | "pxor %%xmm1, %%xmm2 \n\t" // stuff:stuff:r9+r5:r10 |
733 | 0 | "pslldq $4, %%xmm1 \n\t" // r2:r1:r0:0 |
734 | 0 | "pxor %%xmm2, %%xmm1 \n\t" // xmm1 = stuff:stuff:r11:r10 |
735 | 0 | "movq %%xmm1, (%0) \n\t" |
736 | 0 | "add $8, %0 \n\t" |
737 | 0 | "ret \n\t" |
738 | |
|
739 | 0 | "2: \n\t" |
740 | 0 | AESKEYGENA(xmm1_xmm2, "0x01") "call 1b \n\t" |
741 | 0 | AESKEYGENA(xmm1_xmm2, "0x02") "call 1b \n\t" |
742 | 0 | AESKEYGENA(xmm1_xmm2, "0x04") "call 1b \n\t" |
743 | 0 | AESKEYGENA(xmm1_xmm2, "0x08") "call 1b \n\t" |
744 | 0 | AESKEYGENA(xmm1_xmm2, "0x10") "call 1b \n\t" |
745 | 0 | AESKEYGENA(xmm1_xmm2, "0x20") "call 1b \n\t" |
746 | 0 | AESKEYGENA(xmm1_xmm2, "0x40") "call 1b \n\t" |
747 | 0 | AESKEYGENA(xmm1_xmm2, "0x80") "call 1b \n\t" |
748 | |
|
749 | 0 | : |
750 | 0 | : "r" (rk), "r" (key) |
751 | 0 | : "memory", "cc", "xmm0", "xmm1", "xmm2", "0"); |
752 | 0 | } |
753 | | #endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */ |
754 | | |
755 | | /* |
756 | | * Key expansion, 256-bit case |
757 | | */ |
758 | | #if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH) |
759 | | static void aesni_setkey_enc_256(unsigned char *rk, |
760 | | const unsigned char *key) |
761 | 109k | { |
762 | 109k | asm ("movdqu (%1), %%xmm0 \n\t" |
763 | 109k | "movdqu %%xmm0, (%0) \n\t" |
764 | 109k | "add $16, %0 \n\t" |
765 | 109k | "movdqu 16(%1), %%xmm1 \n\t" |
766 | 109k | "movdqu %%xmm1, (%0) \n\t" |
767 | 109k | "jmp 2f \n\t" // skip auxiliary routine |
768 | | |
769 | | /* |
770 | | * Finish generating the next two round keys. |
771 | | * |
772 | | * On entry xmm0 is r3:r2:r1:r0, xmm1 is r7:r6:r5:r4 and |
773 | | * xmm2 is X:stuff:stuff:stuff with X = rot( sub( r7 )) ^ RCON |
774 | | * |
775 | | * On exit, xmm0 is r11:r10:r9:r8 and xmm1 is r15:r14:r13:r12 |
776 | | * and those have been written to the output buffer. |
777 | | */ |
778 | 109k | "1: \n\t" |
779 | 109k | "pshufd $0xff, %%xmm2, %%xmm2 \n\t" |
780 | 109k | "pxor %%xmm0, %%xmm2 \n\t" |
781 | 109k | "pslldq $4, %%xmm0 \n\t" |
782 | 109k | "pxor %%xmm0, %%xmm2 \n\t" |
783 | 109k | "pslldq $4, %%xmm0 \n\t" |
784 | 109k | "pxor %%xmm0, %%xmm2 \n\t" |
785 | 109k | "pslldq $4, %%xmm0 \n\t" |
786 | 109k | "pxor %%xmm2, %%xmm0 \n\t" |
787 | 109k | "add $16, %0 \n\t" |
788 | 109k | "movdqu %%xmm0, (%0) \n\t" |
789 | | |
790 | | /* Set xmm2 to stuff:Y:stuff:stuff with Y = subword( r11 ) |
791 | | * and proceed to generate next round key from there */ |
792 | 109k | AESKEYGENA(xmm0_xmm2, "0x00") |
793 | 109k | "pshufd $0xaa, %%xmm2, %%xmm2 \n\t" |
794 | 109k | "pxor %%xmm1, %%xmm2 \n\t" |
795 | 109k | "pslldq $4, %%xmm1 \n\t" |
796 | 109k | "pxor %%xmm1, %%xmm2 \n\t" |
797 | 109k | "pslldq $4, %%xmm1 \n\t" |
798 | 109k | "pxor %%xmm1, %%xmm2 \n\t" |
799 | 109k | "pslldq $4, %%xmm1 \n\t" |
800 | 109k | "pxor %%xmm2, %%xmm1 \n\t" |
801 | 109k | "add $16, %0 \n\t" |
802 | 109k | "movdqu %%xmm1, (%0) \n\t" |
803 | 109k | "ret \n\t" |
804 | | |
805 | | /* |
806 | | * Main "loop" - Generating one more key than necessary, |
807 | | * see definition of mbedtls_aes_context.buf |
808 | | */ |
809 | 109k | "2: \n\t" |
810 | 109k | AESKEYGENA(xmm1_xmm2, "0x01") "call 1b \n\t" |
811 | 109k | AESKEYGENA(xmm1_xmm2, "0x02") "call 1b \n\t" |
812 | 109k | AESKEYGENA(xmm1_xmm2, "0x04") "call 1b \n\t" |
813 | 109k | AESKEYGENA(xmm1_xmm2, "0x08") "call 1b \n\t" |
814 | 109k | AESKEYGENA(xmm1_xmm2, "0x10") "call 1b \n\t" |
815 | 109k | AESKEYGENA(xmm1_xmm2, "0x20") "call 1b \n\t" |
816 | 109k | AESKEYGENA(xmm1_xmm2, "0x40") "call 1b \n\t" |
817 | 109k | : |
818 | 109k | : "r" (rk), "r" (key) |
819 | 109k | : "memory", "cc", "xmm0", "xmm1", "xmm2", "0"); |
820 | 109k | } |
821 | | #endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */ |
822 | | |
823 | | #endif /* MBEDTLS_AESNI_HAVE_CODE */ |
824 | | |
825 | | /* |
826 | | * Key expansion, wrapper |
827 | | */ |
828 | | int mbedtls_aesni_setkey_enc(unsigned char *rk, |
829 | | const unsigned char *key, |
830 | | size_t bits) |
831 | 109k | { |
832 | 109k | switch (bits) { |
833 | 168 | case 128: aesni_setkey_enc_128(rk, key); break; |
834 | 0 | #if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH) |
835 | 0 | case 192: aesni_setkey_enc_192(rk, key); break; |
836 | 109k | case 256: aesni_setkey_enc_256(rk, key); break; |
837 | 0 | #endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */ |
838 | 0 | default: return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH; |
839 | 109k | } |
840 | | |
841 | 109k | return 0; |
842 | 109k | } |
843 | | |
844 | | #endif /* MBEDTLS_AESNI_HAVE_CODE */ |
845 | | |
846 | | #endif /* MBEDTLS_AESNI_C */ |