Coverage Report

Created: 2025-11-16 06:46

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/mbedtls/library/ecp.c
Line
Count
Source
1
/*
2
 *  Elliptic curves over GF(p): generic functions
3
 *
4
 *  Copyright The Mbed TLS Contributors
5
 *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
6
 */
7
8
/*
9
 * References:
10
 *
11
 * SEC1 https://www.secg.org/sec1-v2.pdf
12
 * GECC = Guide to Elliptic Curve Cryptography - Hankerson, Menezes, Vanstone
13
 * FIPS 186-3 http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
14
 * RFC 4492 for the related TLS structures and constants
15
 * - https://www.rfc-editor.org/rfc/rfc4492
16
 * RFC 7748 for the Curve448 and Curve25519 curve definitions
17
 * - https://www.rfc-editor.org/rfc/rfc7748
18
 *
19
 * [Curve25519] https://cr.yp.to/ecdh/curve25519-20060209.pdf
20
 *
21
 * [2] CORON, Jean-S'ebastien. Resistance against differential power analysis
22
 *     for elliptic curve cryptosystems. In : Cryptographic Hardware and
23
 *     Embedded Systems. Springer Berlin Heidelberg, 1999. p. 292-302.
24
 *     <http://link.springer.com/chapter/10.1007/3-540-48059-5_25>
25
 *
26
 * [3] HEDABOU, Mustapha, PINEL, Pierre, et B'EN'ETEAU, Lucien. A comb method to
27
 *     render ECC resistant against Side Channel Attacks. IACR Cryptology
28
 *     ePrint Archive, 2004, vol. 2004, p. 342.
29
 *     <http://eprint.iacr.org/2004/342.pdf>
30
 */
31
32
#include "common.h"
33
34
/**
35
 * \brief Function level alternative implementation.
36
 *
37
 * The MBEDTLS_ECP_INTERNAL_ALT macro enables alternative implementations to
38
 * replace certain functions in this module. The alternative implementations are
39
 * typically hardware accelerators and need to activate the hardware before the
40
 * computation starts and deactivate it after it finishes. The
41
 * mbedtls_internal_ecp_init() and mbedtls_internal_ecp_free() functions serve
42
 * this purpose.
43
 *
44
 * To preserve the correct functionality the following conditions must hold:
45
 *
46
 * - The alternative implementation must be activated by
47
 *   mbedtls_internal_ecp_init() before any of the replaceable functions is
48
 *   called.
49
 * - mbedtls_internal_ecp_free() must \b only be called when the alternative
50
 *   implementation is activated.
51
 * - mbedtls_internal_ecp_init() must \b not be called when the alternative
52
 *   implementation is activated.
53
 * - Public functions must not return while the alternative implementation is
54
 *   activated.
55
 * - Replaceable functions are guarded by \c MBEDTLS_ECP_XXX_ALT macros and
56
 *   before calling them an \code if( mbedtls_internal_ecp_grp_capable( grp ) )
57
 *   \endcode ensures that the alternative implementation supports the current
58
 *   group.
59
 */
60
#if defined(MBEDTLS_ECP_INTERNAL_ALT)
61
#endif
62
63
#if defined(MBEDTLS_ECP_LIGHT)
64
65
#include "mbedtls/ecp.h"
66
#include "mbedtls/threading.h"
67
#include "mbedtls/platform_util.h"
68
#include "mbedtls/error.h"
69
70
#include "bn_mul.h"
71
#include "bignum_internal.h"
72
#include "ecp_invasive.h"
73
74
#include <string.h>
75
76
#if !defined(MBEDTLS_ECP_ALT)
77
78
#include "mbedtls/platform.h"
79
80
#include "ecp_internal_alt.h"
81
82
#if defined(MBEDTLS_SELF_TEST)
83
/*
84
 * Counts of point addition and doubling, and field multiplications.
85
 * Used to test resistance of point multiplication to simple timing attacks.
86
 */
87
#if defined(MBEDTLS_ECP_C)
88
static unsigned long add_count, dbl_count;
89
#endif /* MBEDTLS_ECP_C */
90
static unsigned long mul_count;
91
#endif
92
93
#if defined(MBEDTLS_ECP_RESTARTABLE)
94
/*
95
 * Maximum number of "basic operations" to be done in a row.
96
 *
97
 * Default value 0 means that ECC operations will not yield.
98
 * Note that regardless of the value of ecp_max_ops, always at
99
 * least one step is performed before yielding.
100
 *
101
 * Setting ecp_max_ops=1 can be suitable for testing purposes
102
 * as it will interrupt computation at all possible points.
103
 */
104
static unsigned ecp_max_ops = 0;
105
106
/*
107
 * Set ecp_max_ops
108
 */
109
void mbedtls_ecp_set_max_ops(unsigned max_ops)
110
0
{
111
0
    ecp_max_ops = max_ops;
112
0
}
113
114
/*
115
 * Check if restart is enabled
116
 */
117
int mbedtls_ecp_restart_is_enabled(void)
118
2.41k
{
119
2.41k
    return ecp_max_ops != 0;
120
2.41k
}
121
122
/*
123
 * Restart sub-context for ecp_mul_comb()
124
 */
125
struct mbedtls_ecp_restart_mul {
126
    mbedtls_ecp_point R;    /* current intermediate result                  */
127
    size_t i;               /* current index in various loops, 0 outside    */
128
    mbedtls_ecp_point *T;   /* table for precomputed points                 */
129
    unsigned char T_size;   /* number of points in table T                  */
130
    enum {                  /* what were we doing last time we returned?    */
131
        ecp_rsm_init = 0,       /* nothing so far, dummy initial state      */
132
        ecp_rsm_pre_dbl,        /* precompute 2^n multiples                 */
133
        ecp_rsm_pre_norm_dbl,   /* normalize precomputed 2^n multiples      */
134
        ecp_rsm_pre_add,        /* precompute remaining points by adding    */
135
        ecp_rsm_pre_norm_add,   /* normalize all precomputed points         */
136
        ecp_rsm_comb_core,      /* ecp_mul_comb_core()                      */
137
        ecp_rsm_final_norm,     /* do the final normalization               */
138
    } state;
139
};
140
141
/*
142
 * Init restart_mul sub-context
143
 */
144
static void ecp_restart_rsm_init(mbedtls_ecp_restart_mul_ctx *ctx)
145
0
{
146
0
    mbedtls_ecp_point_init(&ctx->R);
147
0
    ctx->i = 0;
148
0
    ctx->T = NULL;
149
0
    ctx->T_size = 0;
150
0
    ctx->state = ecp_rsm_init;
151
0
}
152
153
/*
154
 * Free the components of a restart_mul sub-context
155
 */
156
static void ecp_restart_rsm_free(mbedtls_ecp_restart_mul_ctx *ctx)
157
9.57k
{
158
9.57k
    unsigned char i;
159
160
9.57k
    if (ctx == NULL) {
161
9.57k
        return;
162
9.57k
    }
163
164
0
    mbedtls_ecp_point_free(&ctx->R);
165
166
0
    if (ctx->T != NULL) {
167
0
        for (i = 0; i < ctx->T_size; i++) {
168
0
            mbedtls_ecp_point_free(ctx->T + i);
169
0
        }
170
0
        mbedtls_free(ctx->T);
171
0
    }
172
173
0
    ecp_restart_rsm_init(ctx);
174
0
}
175
176
/*
177
 * Restart context for ecp_muladd()
178
 */
179
struct mbedtls_ecp_restart_muladd {
180
    mbedtls_ecp_point mP;       /* mP value                             */
181
    mbedtls_ecp_point R;        /* R intermediate result                */
182
    enum {                      /* what should we do next?              */
183
        ecp_rsma_mul1 = 0,      /* first multiplication                 */
184
        ecp_rsma_mul2,          /* second multiplication                */
185
        ecp_rsma_add,           /* addition                             */
186
        ecp_rsma_norm,          /* normalization                        */
187
    } state;
188
};
189
190
/*
191
 * Init restart_muladd sub-context
192
 */
193
static void ecp_restart_ma_init(mbedtls_ecp_restart_muladd_ctx *ctx)
194
0
{
195
0
    mbedtls_ecp_point_init(&ctx->mP);
196
0
    mbedtls_ecp_point_init(&ctx->R);
197
0
    ctx->state = ecp_rsma_mul1;
198
0
}
199
200
/*
201
 * Free the components of a restart_muladd sub-context
202
 */
203
static void ecp_restart_ma_free(mbedtls_ecp_restart_muladd_ctx *ctx)
204
9.57k
{
205
9.57k
    if (ctx == NULL) {
206
9.57k
        return;
207
9.57k
    }
208
209
0
    mbedtls_ecp_point_free(&ctx->mP);
210
0
    mbedtls_ecp_point_free(&ctx->R);
211
212
0
    ecp_restart_ma_init(ctx);
213
0
}
214
215
/*
216
 * Initialize a restart context
217
 */
218
void mbedtls_ecp_restart_init(mbedtls_ecp_restart_ctx *ctx)
219
19.1k
{
220
19.1k
    ctx->ops_done = 0;
221
19.1k
    ctx->depth = 0;
222
19.1k
    ctx->rsm = NULL;
223
19.1k
    ctx->ma = NULL;
224
19.1k
}
225
226
/*
227
 * Free the components of a restart context
228
 */
229
void mbedtls_ecp_restart_free(mbedtls_ecp_restart_ctx *ctx)
230
9.57k
{
231
9.57k
    if (ctx == NULL) {
232
0
        return;
233
0
    }
234
235
9.57k
    ecp_restart_rsm_free(ctx->rsm);
236
9.57k
    mbedtls_free(ctx->rsm);
237
238
9.57k
    ecp_restart_ma_free(ctx->ma);
239
9.57k
    mbedtls_free(ctx->ma);
240
241
9.57k
    mbedtls_ecp_restart_init(ctx);
242
9.57k
}
243
244
/*
245
 * Check if we can do the next step
246
 */
247
int mbedtls_ecp_check_budget(const mbedtls_ecp_group *grp,
248
                             mbedtls_ecp_restart_ctx *rs_ctx,
249
                             unsigned ops)
250
235k
{
251
235k
    if (rs_ctx != NULL && ecp_max_ops != 0) {
252
        /* scale depending on curve size: the chosen reference is 256-bit,
253
         * and multiplication is quadratic. Round to the closest integer. */
254
0
        if (grp->pbits >= 512) {
255
0
            ops *= 4;
256
0
        } else if (grp->pbits >= 384) {
257
0
            ops *= 2;
258
0
        }
259
260
        /* Avoid infinite loops: always allow first step.
261
         * Because of that, however, it's not generally true
262
         * that ops_done <= ecp_max_ops, so the check
263
         * ops_done > ecp_max_ops below is mandatory. */
264
0
        if ((rs_ctx->ops_done != 0) &&
265
0
            (rs_ctx->ops_done > ecp_max_ops ||
266
0
             ops > ecp_max_ops - rs_ctx->ops_done)) {
267
0
            return MBEDTLS_ERR_ECP_IN_PROGRESS;
268
0
        }
269
270
        /* update running count */
271
0
        rs_ctx->ops_done += ops;
272
0
    }
273
274
235k
    return 0;
275
235k
}
276
277
/* Call this when entering a function that needs its own sub-context */
278
2.00k
#define ECP_RS_ENTER(SUB)   do {                                      \
279
2.00k
        /* reset ops count for this call if top-level */                    \
280
2.00k
        if (rs_ctx != NULL && rs_ctx->depth++ == 0)                        \
281
2.00k
        rs_ctx->ops_done = 0;                                           \
282
2.00k
                                                                        \
283
2.00k
        /* set up our own sub-context if needed */                          \
284
2.00k
        if (mbedtls_ecp_restart_is_enabled() &&                             \
285
2.00k
            rs_ctx != NULL && rs_ctx->SUB == NULL)                         \
286
2.00k
        {                                                                   \
287
0
            rs_ctx->SUB = mbedtls_calloc(1, sizeof(*rs_ctx->SUB));      \
288
0
            if (rs_ctx->SUB == NULL)                                       \
289
0
            return MBEDTLS_ERR_ECP_ALLOC_FAILED;                     \
290
0
                                                                      \
291
0
            ecp_restart_## SUB ##_init(rs_ctx->SUB);                      \
292
0
        }                                                                   \
293
2.00k
} while (0)
294
295
/* Call this when leaving a function that needs its own sub-context */
296
2.00k
#define ECP_RS_LEAVE(SUB)   do {                                      \
297
2.00k
        /* clear our sub-context when not in progress (done or error) */    \
298
2.00k
        if (rs_ctx != NULL && rs_ctx->SUB != NULL &&                        \
299
2.00k
            ret != MBEDTLS_ERR_ECP_IN_PROGRESS)                            \
300
2.00k
        {                                                                   \
301
0
            ecp_restart_## SUB ##_free(rs_ctx->SUB);                      \
302
0
            mbedtls_free(rs_ctx->SUB);                                    \
303
0
            rs_ctx->SUB = NULL;                                             \
304
0
        }                                                                   \
305
2.00k
                                                                        \
306
2.00k
        if (rs_ctx != NULL)                                                \
307
2.00k
        rs_ctx->depth--;                                                \
308
2.00k
} while (0)
309
310
#else /* MBEDTLS_ECP_RESTARTABLE */
311
312
#define ECP_RS_ENTER(sub)     (void) rs_ctx;
313
#define ECP_RS_LEAVE(sub)     (void) rs_ctx;
314
315
#endif /* MBEDTLS_ECP_RESTARTABLE */
316
317
#if defined(MBEDTLS_ECP_C)
318
static void mpi_init_many(mbedtls_mpi *arr, size_t size)
319
3.62k
{
320
19.1k
    while (size--) {
321
15.5k
        mbedtls_mpi_init(arr++);
322
15.5k
    }
323
3.62k
}
324
325
static void mpi_free_many(mbedtls_mpi *arr, size_t size)
326
3.62k
{
327
19.1k
    while (size--) {
328
15.5k
        mbedtls_mpi_free(arr++);
329
15.5k
    }
330
3.62k
}
331
#endif /* MBEDTLS_ECP_C */
332
333
/*
334
 * List of supported curves:
335
 *  - internal ID
336
 *  - TLS NamedCurve ID (RFC 4492 sec. 5.1.1, RFC 7071 sec. 2, RFC 8446 sec. 4.2.7)
337
 *  - size in bits
338
 *  - readable name
339
 *
340
 * Curves are listed in order: largest curves first, and for a given size,
341
 * fastest curves first.
342
 *
343
 * Reminder: update profiles in x509_crt.c and ssl_tls.c when adding a new curve!
344
 */
345
static const mbedtls_ecp_curve_info ecp_supported_curves[] =
346
{
347
#if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
348
    { MBEDTLS_ECP_DP_SECP521R1,    25,     521,    "secp521r1"         },
349
#endif
350
#if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)
351
    { MBEDTLS_ECP_DP_BP512R1,      28,     512,    "brainpoolP512r1"   },
352
#endif
353
#if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
354
    { MBEDTLS_ECP_DP_SECP384R1,    24,     384,    "secp384r1"         },
355
#endif
356
#if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)
357
    { MBEDTLS_ECP_DP_BP384R1,      27,     384,    "brainpoolP384r1"   },
358
#endif
359
#if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
360
    { MBEDTLS_ECP_DP_SECP256R1,    23,     256,    "secp256r1"         },
361
#endif
362
#if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
363
    { MBEDTLS_ECP_DP_SECP256K1,    22,     256,    "secp256k1"         },
364
#endif
365
#if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)
366
    { MBEDTLS_ECP_DP_BP256R1,      26,     256,    "brainpoolP256r1"   },
367
#endif
368
#if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
369
    { MBEDTLS_ECP_DP_SECP224R1,    21,     224,    "secp224r1"         },
370
#endif
371
#if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
372
    { MBEDTLS_ECP_DP_SECP224K1,    20,     224,    "secp224k1"         },
373
#endif
374
#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
375
    { MBEDTLS_ECP_DP_SECP192R1,    19,     192,    "secp192r1"         },
376
#endif
377
#if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
378
    { MBEDTLS_ECP_DP_SECP192K1,    18,     192,    "secp192k1"         },
379
#endif
380
#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
381
    { MBEDTLS_ECP_DP_CURVE25519,   29,     256,    "x25519"            },
382
#endif
383
#if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
384
    { MBEDTLS_ECP_DP_CURVE448,     30,     448,    "x448"              },
385
#endif
386
    { MBEDTLS_ECP_DP_NONE,          0,     0,      NULL                },
387
};
388
389
#define ECP_NB_CURVES   sizeof(ecp_supported_curves) /    \
390
    sizeof(ecp_supported_curves[0])
391
392
static mbedtls_ecp_group_id ecp_supported_grp_id[ECP_NB_CURVES];
393
394
/*
395
 * List of supported curves and associated info
396
 */
397
const mbedtls_ecp_curve_info *mbedtls_ecp_curve_list(void)
398
2.56k
{
399
2.56k
    return ecp_supported_curves;
400
2.56k
}
401
402
/*
403
 * List of supported curves, group ID only
404
 */
405
const mbedtls_ecp_group_id *mbedtls_ecp_grp_id_list(void)
406
45
{
407
45
    static int init_done = 0;
408
409
45
    if (!init_done) {
410
3
        size_t i = 0;
411
3
        const mbedtls_ecp_curve_info *curve_info;
412
413
3
        for (curve_info = mbedtls_ecp_curve_list();
414
42
             curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
415
39
             curve_info++) {
416
39
            ecp_supported_grp_id[i++] = curve_info->grp_id;
417
39
        }
418
3
        ecp_supported_grp_id[i] = MBEDTLS_ECP_DP_NONE;
419
420
3
        init_done = 1;
421
3
    }
422
423
45
    return ecp_supported_grp_id;
424
45
}
425
426
/*
427
 * Get the curve info for the internal identifier
428
 */
429
const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_grp_id(mbedtls_ecp_group_id grp_id)
430
2.00k
{
431
2.00k
    const mbedtls_ecp_curve_info *curve_info;
432
433
2.00k
    for (curve_info = mbedtls_ecp_curve_list();
434
12.2k
         curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
435
12.2k
         curve_info++) {
436
12.2k
        if (curve_info->grp_id == grp_id) {
437
2.00k
            return curve_info;
438
2.00k
        }
439
12.2k
    }
440
441
0
    return NULL;
442
2.00k
}
443
444
/*
445
 * Get the curve info from the TLS identifier
446
 */
447
const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_tls_id(uint16_t tls_id)
448
562
{
449
562
    const mbedtls_ecp_curve_info *curve_info;
450
451
562
    for (curve_info = mbedtls_ecp_curve_list();
452
4.73k
         curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
453
4.73k
         curve_info++) {
454
4.73k
        if (curve_info->tls_id == tls_id) {
455
561
            return curve_info;
456
561
        }
457
4.73k
    }
458
459
1
    return NULL;
460
562
}
461
462
/*
463
 * Get the curve info from the name
464
 */
465
const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_name(const char *name)
466
0
{
467
0
    const mbedtls_ecp_curve_info *curve_info;
468
469
0
    if (name == NULL) {
470
0
        return NULL;
471
0
    }
472
473
0
    for (curve_info = mbedtls_ecp_curve_list();
474
0
         curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
475
0
         curve_info++) {
476
0
        if (strcmp(curve_info->name, name) == 0) {
477
0
            return curve_info;
478
0
        }
479
0
    }
480
481
0
    return NULL;
482
0
}
483
484
/*
485
 * Get the type of a curve
486
 */
487
mbedtls_ecp_curve_type mbedtls_ecp_get_type(const mbedtls_ecp_group *grp)
488
111k
{
489
111k
    if (grp->G.X.p == NULL) {
490
172
        return MBEDTLS_ECP_TYPE_NONE;
491
172
    }
492
493
111k
    if (grp->G.Y.p == NULL) {
494
2.63k
        return MBEDTLS_ECP_TYPE_MONTGOMERY;
495
109k
    } else {
496
109k
        return MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS;
497
109k
    }
498
111k
}
499
500
/*
501
 * Initialize (the components of) a point
502
 */
503
void mbedtls_ecp_point_init(mbedtls_ecp_point *pt)
504
194k
{
505
194k
    mbedtls_mpi_init(&pt->X);
506
194k
    mbedtls_mpi_init(&pt->Y);
507
194k
    mbedtls_mpi_init(&pt->Z);
508
194k
}
509
510
/*
511
 * Initialize (the components of) a group
512
 */
513
void mbedtls_ecp_group_init(mbedtls_ecp_group *grp)
514
74.6k
{
515
74.6k
    grp->id = MBEDTLS_ECP_DP_NONE;
516
74.6k
    mbedtls_mpi_init(&grp->P);
517
74.6k
    mbedtls_mpi_init(&grp->A);
518
74.6k
    mbedtls_mpi_init(&grp->B);
519
74.6k
    mbedtls_ecp_point_init(&grp->G);
520
74.6k
    mbedtls_mpi_init(&grp->N);
521
74.6k
    grp->pbits = 0;
522
74.6k
    grp->nbits = 0;
523
74.6k
    grp->h = 0;
524
74.6k
    grp->modp = NULL;
525
74.6k
    grp->t_pre = NULL;
526
74.6k
    grp->t_post = NULL;
527
74.6k
    grp->t_data = NULL;
528
74.6k
    grp->T = NULL;
529
74.6k
    grp->T_size = 0;
530
74.6k
}
531
532
/*
533
 * Initialize (the components of) a key pair
534
 */
535
void mbedtls_ecp_keypair_init(mbedtls_ecp_keypair *key)
536
26.5k
{
537
26.5k
    mbedtls_ecp_group_init(&key->grp);
538
26.5k
    mbedtls_mpi_init(&key->d);
539
26.5k
    mbedtls_ecp_point_init(&key->Q);
540
26.5k
}
541
542
/*
543
 * Unallocate (the components of) a point
544
 */
545
void mbedtls_ecp_point_free(mbedtls_ecp_point *pt)
546
167k
{
547
167k
    if (pt == NULL) {
548
0
        return;
549
0
    }
550
551
167k
    mbedtls_mpi_free(&(pt->X));
552
167k
    mbedtls_mpi_free(&(pt->Y));
553
167k
    mbedtls_mpi_free(&(pt->Z));
554
167k
}
555
556
/*
557
 * Check that the comb table (grp->T) is static initialized.
558
 */
559
static int ecp_group_is_static_comb_table(const mbedtls_ecp_group *grp)
560
75.5k
{
561
75.5k
#if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
562
75.5k
    return grp->T != NULL && grp->T_size == 0;
563
#else
564
    (void) grp;
565
    return 0;
566
#endif
567
75.5k
}
568
569
/*
570
 * Unallocate (the components of) a group
571
 */
572
void mbedtls_ecp_group_free(mbedtls_ecp_group *grp)
573
74.2k
{
574
74.2k
    size_t i;
575
576
74.2k
    if (grp == NULL) {
577
0
        return;
578
0
    }
579
580
74.2k
    if (grp->h != 1) {
581
47.4k
        mbedtls_mpi_free(&grp->A);
582
47.4k
        mbedtls_mpi_free(&grp->B);
583
47.4k
        mbedtls_ecp_point_free(&grp->G);
584
585
47.4k
#if !defined(MBEDTLS_ECP_WITH_MPI_UINT)
586
47.4k
        mbedtls_mpi_free(&grp->N);
587
47.4k
        mbedtls_mpi_free(&grp->P);
588
47.4k
#endif
589
47.4k
    }
590
591
74.2k
    if (!ecp_group_is_static_comb_table(grp) && grp->T != NULL) {
592
0
        for (i = 0; i < grp->T_size; i++) {
593
0
            mbedtls_ecp_point_free(&grp->T[i]);
594
0
        }
595
0
        mbedtls_free(grp->T);
596
0
    }
597
598
74.2k
    mbedtls_platform_zeroize(grp, sizeof(mbedtls_ecp_group));
599
74.2k
}
600
601
/*
602
 * Unallocate (the components of) a key pair
603
 */
604
void mbedtls_ecp_keypair_free(mbedtls_ecp_keypair *key)
605
26.5k
{
606
26.5k
    if (key == NULL) {
607
0
        return;
608
0
    }
609
610
26.5k
    mbedtls_ecp_group_free(&key->grp);
611
26.5k
    mbedtls_mpi_free(&key->d);
612
26.5k
    mbedtls_ecp_point_free(&key->Q);
613
26.5k
}
614
615
/*
616
 * Copy the contents of a point
617
 */
618
int mbedtls_ecp_copy(mbedtls_ecp_point *P, const mbedtls_ecp_point *Q)
619
2.54k
{
620
2.54k
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
621
2.54k
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&P->X, &Q->X));
622
2.54k
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&P->Y, &Q->Y));
623
2.54k
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&P->Z, &Q->Z));
624
625
2.54k
cleanup:
626
2.54k
    return ret;
627
2.54k
}
628
629
/*
630
 * Copy the contents of a group object
631
 */
632
int mbedtls_ecp_group_copy(mbedtls_ecp_group *dst, const mbedtls_ecp_group *src)
633
0
{
634
0
    return mbedtls_ecp_group_load(dst, src->id);
635
0
}
636
637
/*
638
 * Set point to zero
639
 */
640
int mbedtls_ecp_set_zero(mbedtls_ecp_point *pt)
641
270
{
642
270
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
643
270
    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->X, 1));
644
270
    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->Y, 1));
645
270
    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->Z, 0));
646
647
270
cleanup:
648
270
    return ret;
649
270
}
650
651
/*
652
 * Tell if a point is zero
653
 */
654
int mbedtls_ecp_is_zero(mbedtls_ecp_point *pt)
655
559
{
656
559
    return mbedtls_mpi_cmp_int(&pt->Z, 0) == 0;
657
559
}
658
659
/*
660
 * Compare two points lazily
661
 */
662
int mbedtls_ecp_point_cmp(const mbedtls_ecp_point *P,
663
                          const mbedtls_ecp_point *Q)
664
0
{
665
0
    if (mbedtls_mpi_cmp_mpi(&P->X, &Q->X) == 0 &&
666
0
        mbedtls_mpi_cmp_mpi(&P->Y, &Q->Y) == 0 &&
667
0
        mbedtls_mpi_cmp_mpi(&P->Z, &Q->Z) == 0) {
668
0
        return 0;
669
0
    }
670
671
0
    return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
672
0
}
673
674
/*
675
 * Import a non-zero point from ASCII strings
676
 */
677
int mbedtls_ecp_point_read_string(mbedtls_ecp_point *P, int radix,
678
                                  const char *x, const char *y)
679
0
{
680
0
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
681
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&P->X, radix, x));
682
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&P->Y, radix, y));
683
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&P->Z, 1));
684
685
0
cleanup:
686
0
    return ret;
687
0
}
688
689
/*
690
 * Export a point into unsigned binary data (SEC1 2.3.3 and RFC7748)
691
 */
692
int mbedtls_ecp_point_write_binary(const mbedtls_ecp_group *grp,
693
                                   const mbedtls_ecp_point *P,
694
                                   int format, size_t *olen,
695
                                   unsigned char *buf, size_t buflen)
696
418
{
697
418
    int ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
698
418
    size_t plen;
699
418
    if (format != MBEDTLS_ECP_PF_UNCOMPRESSED &&
700
67
        format != MBEDTLS_ECP_PF_COMPRESSED) {
701
0
        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
702
0
    }
703
704
418
    plen = mbedtls_mpi_size(&grp->P);
705
706
418
#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
707
418
    (void) format; /* Montgomery curves always use the same point format */
708
418
    if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
709
12
        *olen = plen;
710
12
        if (buflen < *olen) {
711
0
            return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
712
0
        }
713
714
12
        MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary_le(&P->X, buf, plen));
715
12
    }
716
418
#endif
717
418
#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
718
418
    if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
719
        /*
720
         * Common case: P == 0
721
         */
722
406
        if (mbedtls_mpi_cmp_int(&P->Z, 0) == 0) {
723
0
            if (buflen < 1) {
724
0
                return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
725
0
            }
726
727
0
            buf[0] = 0x00;
728
0
            *olen = 1;
729
730
0
            return 0;
731
0
        }
732
733
406
        if (format == MBEDTLS_ECP_PF_UNCOMPRESSED) {
734
341
            *olen = 2 * plen + 1;
735
736
341
            if (buflen < *olen) {
737
0
                return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
738
0
            }
739
740
341
            buf[0] = 0x04;
741
341
            MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&P->X, buf + 1, plen));
742
341
            MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&P->Y, buf + 1 + plen, plen));
743
341
        } else if (format == MBEDTLS_ECP_PF_COMPRESSED) {
744
65
            *olen = plen + 1;
745
746
65
            if (buflen < *olen) {
747
0
                return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
748
0
            }
749
750
65
            buf[0] = 0x02 + mbedtls_mpi_get_bit(&P->Y, 0);
751
65
            MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&P->X, buf + 1, plen));
752
65
        }
753
406
    }
754
418
#endif
755
756
418
cleanup:
757
418
    return ret;
758
418
}
759
760
#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
761
static int mbedtls_ecp_sw_derive_y(const mbedtls_ecp_group *grp,
762
                                   const mbedtls_mpi *X,
763
                                   mbedtls_mpi *Y,
764
                                   int parity_bit);
765
#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
766
767
/*
768
 * Import a point from unsigned binary data (SEC1 2.3.4 and RFC7748)
769
 */
770
int mbedtls_ecp_point_read_binary(const mbedtls_ecp_group *grp,
771
                                  mbedtls_ecp_point *pt,
772
                                  const unsigned char *buf, size_t ilen)
773
24.0k
{
774
24.0k
    int ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
775
24.0k
    size_t plen;
776
24.0k
    if (ilen < 1) {
777
208
        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
778
208
    }
779
780
23.8k
    plen = mbedtls_mpi_size(&grp->P);
781
782
23.8k
#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
783
23.8k
    if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
784
931
        if (plen != ilen) {
785
27
            return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
786
27
        }
787
788
904
        MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary_le(&pt->X, buf, plen));
789
904
        mbedtls_mpi_free(&pt->Y);
790
791
904
        if (grp->id == MBEDTLS_ECP_DP_CURVE25519) {
792
            /* Set most significant bit to 0 as prescribed in RFC7748 §5 */
793
900
            MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&pt->X, plen * 8 - 1, 0));
794
900
        }
795
796
904
        MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->Z, 1));
797
904
    }
798
23.8k
#endif
799
23.8k
#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
800
23.8k
    if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
801
22.8k
        if (buf[0] == 0x00) {
802
409
            if (ilen == 1) {
803
270
                return mbedtls_ecp_set_zero(pt);
804
270
            } else {
805
139
                return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
806
139
            }
807
409
        }
808
809
22.4k
        if (ilen < 1 + plen) {
810
235
            return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
811
235
        }
812
813
22.1k
        MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&pt->X, buf + 1, plen));
814
22.1k
        MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->Z, 1));
815
816
22.1k
        if (buf[0] == 0x04) {
817
            /* format == MBEDTLS_ECP_PF_UNCOMPRESSED */
818
17.7k
            if (ilen != 1 + plen * 2) {
819
424
                return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
820
424
            }
821
17.3k
            return mbedtls_mpi_read_binary(&pt->Y, buf + 1 + plen, plen);
822
17.7k
        } else if (buf[0] == 0x02 || buf[0] == 0x03) {
823
            /* format == MBEDTLS_ECP_PF_COMPRESSED */
824
4.17k
            if (ilen != 1 + plen) {
825
280
                return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
826
280
            }
827
3.89k
            return mbedtls_ecp_sw_derive_y(grp, &pt->X, &pt->Y,
828
3.89k
                                           (buf[0] & 1));
829
4.17k
        } else {
830
256
            return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
831
256
        }
832
22.1k
    }
833
990
#endif
834
835
990
cleanup:
836
990
    return ret;
837
23.8k
}
838
839
/*
840
 * Import a point from a TLS ECPoint record (RFC 4492)
841
 *      struct {
842
 *          opaque point <1..2^8-1>;
843
 *      } ECPoint;
844
 */
845
int mbedtls_ecp_tls_read_point(const mbedtls_ecp_group *grp,
846
                               mbedtls_ecp_point *pt,
847
                               const unsigned char **buf, size_t buf_len)
848
561
{
849
561
    unsigned char data_len;
850
561
    const unsigned char *buf_start;
851
    /*
852
     * We must have at least two bytes (1 for length, at least one for data)
853
     */
854
561
    if (buf_len < 2) {
855
1
        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
856
1
    }
857
858
560
    data_len = *(*buf)++;
859
560
    if (data_len < 1 || data_len > buf_len - 1) {
860
6
        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
861
6
    }
862
863
    /*
864
     * Save buffer start for read_binary and update buf
865
     */
866
554
    buf_start = *buf;
867
554
    *buf += data_len;
868
869
554
    return mbedtls_ecp_point_read_binary(grp, pt, buf_start, data_len);
870
560
}
871
872
/*
873
 * Export a point as a TLS ECPoint record (RFC 4492)
874
 *      struct {
875
 *          opaque point <1..2^8-1>;
876
 *      } ECPoint;
877
 */
878
int mbedtls_ecp_tls_write_point(const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt,
879
                                int format, size_t *olen,
880
                                unsigned char *buf, size_t blen)
881
418
{
882
418
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
883
418
    if (format != MBEDTLS_ECP_PF_UNCOMPRESSED &&
884
67
        format != MBEDTLS_ECP_PF_COMPRESSED) {
885
0
        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
886
0
    }
887
888
    /*
889
     * buffer length must be at least one, for our length byte
890
     */
891
418
    if (blen < 1) {
892
0
        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
893
0
    }
894
895
418
    if ((ret = mbedtls_ecp_point_write_binary(grp, pt, format,
896
418
                                              olen, buf + 1, blen - 1)) != 0) {
897
0
        return ret;
898
0
    }
899
900
    /*
901
     * write length to the first byte and update total length
902
     */
903
418
    buf[0] = (unsigned char) *olen;
904
418
    ++*olen;
905
906
418
    return 0;
907
418
}
908
909
/*
910
 * Set a group from an ECParameters record (RFC 4492)
911
 */
912
int mbedtls_ecp_tls_read_group(mbedtls_ecp_group *grp,
913
                               const unsigned char **buf, size_t len)
914
0
{
915
0
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
916
0
    mbedtls_ecp_group_id grp_id;
917
0
    if ((ret = mbedtls_ecp_tls_read_group_id(&grp_id, buf, len)) != 0) {
918
0
        return ret;
919
0
    }
920
921
0
    return mbedtls_ecp_group_load(grp, grp_id);
922
0
}
923
924
/*
925
 * Read a group id from an ECParameters record (RFC 4492) and convert it to
926
 * mbedtls_ecp_group_id.
927
 */
928
int mbedtls_ecp_tls_read_group_id(mbedtls_ecp_group_id *grp,
929
                                  const unsigned char **buf, size_t len)
930
572
{
931
572
    uint16_t tls_id;
932
572
    const mbedtls_ecp_curve_info *curve_info;
933
    /*
934
     * We expect at least three bytes (see below)
935
     */
936
572
    if (len < 3) {
937
3
        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
938
3
    }
939
940
    /*
941
     * First byte is curve_type; only named_curve is handled
942
     */
943
569
    if (*(*buf)++ != MBEDTLS_ECP_TLS_NAMED_CURVE) {
944
7
        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
945
7
    }
946
947
    /*
948
     * Next two bytes are the namedcurve value
949
     */
950
562
    tls_id = MBEDTLS_GET_UINT16_BE(*buf, 0);
951
562
    *buf += 2;
952
953
562
    if ((curve_info = mbedtls_ecp_curve_info_from_tls_id(tls_id)) == NULL) {
954
1
        return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
955
1
    }
956
957
561
    *grp = curve_info->grp_id;
958
959
561
    return 0;
960
562
}
961
962
/*
963
 * Write the ECParameters record corresponding to a group (RFC 4492)
964
 */
965
int mbedtls_ecp_tls_write_group(const mbedtls_ecp_group *grp, size_t *olen,
966
                                unsigned char *buf, size_t blen)
967
52
{
968
52
    const mbedtls_ecp_curve_info *curve_info;
969
52
    if ((curve_info = mbedtls_ecp_curve_info_from_grp_id(grp->id)) == NULL) {
970
0
        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
971
0
    }
972
973
    /*
974
     * We are going to write 3 bytes (see below)
975
     */
976
52
    *olen = 3;
977
52
    if (blen < *olen) {
978
0
        return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
979
0
    }
980
981
    /*
982
     * First byte is curve_type, always named_curve
983
     */
984
52
    *buf++ = MBEDTLS_ECP_TLS_NAMED_CURVE;
985
986
    /*
987
     * Next two bytes are the namedcurve value
988
     */
989
52
    MBEDTLS_PUT_UINT16_BE(curve_info->tls_id, buf, 0);
990
991
52
    return 0;
992
52
}
993
994
/*
995
 * Wrapper around fast quasi-modp functions, with fall-back to mbedtls_mpi_mod_mpi.
996
 * See the documentation of struct mbedtls_ecp_group.
997
 *
998
 * This function is in the critial loop for mbedtls_ecp_mul, so pay attention to perf.
999
 */
1000
static int ecp_modp(mbedtls_mpi *N, const mbedtls_ecp_group *grp)
1001
3.33M
{
1002
3.33M
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1003
1004
3.33M
    if (grp->modp == NULL) {
1005
112k
        return mbedtls_mpi_mod_mpi(N, N, &grp->P);
1006
112k
    }
1007
1008
    /* N->s < 0 is a much faster test, which fails only if N is 0 */
1009
3.22M
    if ((N->s < 0 && mbedtls_mpi_cmp_int(N, 0) != 0) ||
1010
3.22M
        mbedtls_mpi_bitlen(N) > 2 * grp->pbits) {
1011
4
        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
1012
4
    }
1013
1014
3.22M
    MBEDTLS_MPI_CHK(grp->modp(N));
1015
1016
    /* N->s < 0 is a much faster test, which fails only if N is 0 */
1017
4.90M
    while (N->s < 0 && mbedtls_mpi_cmp_int(N, 0) != 0) {
1018
1.68M
        MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(N, N, &grp->P));
1019
1.68M
    }
1020
1021
4.35M
    while (mbedtls_mpi_cmp_mpi(N, &grp->P) >= 0) {
1022
        /* we known P, N and the result are positive */
1023
1.13M
        MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(N, N, &grp->P));
1024
1.13M
    }
1025
1026
3.22M
cleanup:
1027
3.22M
    return ret;
1028
3.22M
}
1029
1030
/*
1031
 * Fast mod-p functions expect their argument to be in the 0..p^2 range.
1032
 *
1033
 * In order to guarantee that, we need to ensure that operands of
1034
 * mbedtls_mpi_mul_mpi are in the 0..p range. So, after each operation we will
1035
 * bring the result back to this range.
1036
 *
1037
 * The following macros are shortcuts for doing that.
1038
 */
1039
1040
/*
1041
 * Reduce a mbedtls_mpi mod p in-place, general case, to use after mbedtls_mpi_mul_mpi
1042
 */
1043
#if defined(MBEDTLS_SELF_TEST)
1044
3.33M
#define INC_MUL_COUNT   mul_count++;
1045
#else
1046
#define INC_MUL_COUNT
1047
#endif
1048
1049
#define MOD_MUL(N)                                                    \
1050
3.33M
    do                                                                  \
1051
3.33M
    {                                                                   \
1052
3.33M
        MBEDTLS_MPI_CHK(ecp_modp(&(N), grp));                       \
1053
3.33M
        INC_MUL_COUNT                                                   \
1054
3.33M
    } while (0)
1055
1056
static inline int mbedtls_mpi_mul_mod(const mbedtls_ecp_group *grp,
1057
                                      mbedtls_mpi *X,
1058
                                      const mbedtls_mpi *A,
1059
                                      const mbedtls_mpi *B)
1060
3.33M
{
1061
3.33M
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1062
3.33M
    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(X, A, B));
1063
3.33M
    MOD_MUL(*X);
1064
3.33M
cleanup:
1065
3.33M
    return ret;
1066
3.33M
}
1067
1068
/*
1069
 * Reduce a mbedtls_mpi mod p in-place, to use after mbedtls_mpi_sub_mpi
1070
 * N->s < 0 is a very fast test, which fails only if N is 0
1071
 */
1072
#define MOD_SUB(N)                                                          \
1073
1.89M
    do {                                                                      \
1074
2.83M
        while ((N)->s < 0 && mbedtls_mpi_cmp_int((N), 0) != 0)             \
1075
1.89M
        MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi((N), (N), &grp->P));      \
1076
1.89M
    } while (0)
1077
1078
MBEDTLS_MAYBE_UNUSED
1079
static inline int mbedtls_mpi_sub_mod(const mbedtls_ecp_group *grp,
1080
                                      mbedtls_mpi *X,
1081
                                      const mbedtls_mpi *A,
1082
                                      const mbedtls_mpi *B)
1083
1.87M
{
1084
1.87M
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1085
1.87M
    MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(X, A, B));
1086
1.87M
    MOD_SUB(X);
1087
1.87M
cleanup:
1088
1.87M
    return ret;
1089
1.87M
}
1090
1091
/*
1092
 * Reduce a mbedtls_mpi mod p in-place, to use after mbedtls_mpi_add_mpi and mbedtls_mpi_mul_int.
1093
 * We known P, N and the result are positive, so sub_abs is correct, and
1094
 * a bit faster.
1095
 */
1096
#define MOD_ADD(N)                                                   \
1097
2.43M
    while (mbedtls_mpi_cmp_mpi((N), &grp->P) >= 0)                  \
1098
1.55M
    MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs((N), (N), &grp->P))
1099
1100
static inline int mbedtls_mpi_add_mod(const mbedtls_ecp_group *grp,
1101
                                      mbedtls_mpi *X,
1102
                                      const mbedtls_mpi *A,
1103
                                      const mbedtls_mpi *B)
1104
286k
{
1105
286k
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1106
286k
    MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(X, A, B));
1107
286k
    MOD_ADD(X);
1108
286k
cleanup:
1109
286k
    return ret;
1110
286k
}
1111
1112
MBEDTLS_MAYBE_UNUSED
1113
static inline int mbedtls_mpi_mul_int_mod(const mbedtls_ecp_group *grp,
1114
                                          mbedtls_mpi *X,
1115
                                          const mbedtls_mpi *A,
1116
                                          mbedtls_mpi_uint c)
1117
230k
{
1118
230k
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1119
1120
230k
    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(X, A, c));
1121
230k
    MOD_ADD(X);
1122
230k
cleanup:
1123
230k
    return ret;
1124
230k
}
1125
1126
MBEDTLS_MAYBE_UNUSED
1127
static inline int mbedtls_mpi_sub_int_mod(const mbedtls_ecp_group *grp,
1128
                                          mbedtls_mpi *X,
1129
                                          const mbedtls_mpi *A,
1130
                                          mbedtls_mpi_uint c)
1131
23.1k
{
1132
23.1k
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1133
1134
23.1k
    MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(X, A, c));
1135
23.1k
    MOD_SUB(X);
1136
23.1k
cleanup:
1137
23.1k
    return ret;
1138
23.1k
}
1139
1140
#define MPI_ECP_SUB_INT(X, A, c)             \
1141
23.1k
    MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int_mod(grp, X, A, c))
1142
1143
MBEDTLS_MAYBE_UNUSED
1144
static inline int mbedtls_mpi_shift_l_mod(const mbedtls_ecp_group *grp,
1145
                                          mbedtls_mpi *X,
1146
                                          size_t count)
1147
1.03M
{
1148
1.03M
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1149
1.03M
    MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(X, count));
1150
1.03M
    MOD_ADD(X);
1151
1.03M
cleanup:
1152
1.03M
    return ret;
1153
1.03M
}
1154
1155
/*
1156
 * Macro wrappers around ECP modular arithmetic
1157
 *
1158
 * Currently, these wrappers are defined via the bignum module.
1159
 */
1160
1161
#define MPI_ECP_ADD(X, A, B)                                                  \
1162
286k
    MBEDTLS_MPI_CHK(mbedtls_mpi_add_mod(grp, X, A, B))
1163
1164
#define MPI_ECP_SUB(X, A, B)                                                  \
1165
1.87M
    MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mod(grp, X, A, B))
1166
1167
#define MPI_ECP_MUL(X, A, B)                                                  \
1168
1.96M
    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, X, A, B))
1169
1170
#define MPI_ECP_SQR(X, A)                                                     \
1171
1.36M
    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, X, A, A))
1172
1173
#define MPI_ECP_MUL_INT(X, A, c)                                              \
1174
230k
    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int_mod(grp, X, A, c))
1175
1176
#define MPI_ECP_INV(dst, src)                                                 \
1177
3.09k
    MBEDTLS_MPI_CHK(mbedtls_mpi_gcd_modinv_odd(NULL, (dst), (src), &grp->P))
1178
1179
#define MPI_ECP_MOV(X, A)                                                     \
1180
809k
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, A))
1181
1182
#define MPI_ECP_SHIFT_L(X, count)                                             \
1183
1.03M
    MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l_mod(grp, X, count))
1184
1185
#define MPI_ECP_LSET(X, c)                                                    \
1186
122k
    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, c))
1187
1188
#define MPI_ECP_CMP_INT(X, c)                                                 \
1189
477k
    mbedtls_mpi_cmp_int(X, c)
1190
1191
#define MPI_ECP_CMP(X, Y)                                                     \
1192
25.2k
    mbedtls_mpi_cmp_mpi(X, Y)
1193
1194
/* Needs f_rng, p_rng to be defined. */
1195
#define MPI_ECP_RAND(X)                                                       \
1196
1.47k
    MBEDTLS_MPI_CHK(mbedtls_mpi_random((X), 2, &grp->P, f_rng, p_rng))
1197
1198
/* Conditional negation
1199
 * Needs grp and a temporary MPI tmp to be defined. */
1200
#define MPI_ECP_COND_NEG(X, cond)                                        \
1201
116k
    do                                                                     \
1202
116k
    {                                                                      \
1203
116k
        unsigned char nonzero = mbedtls_mpi_cmp_int((X), 0) != 0;        \
1204
116k
        MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&tmp, &grp->P, (X)));      \
1205
116k
        MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_assign((X), &tmp,          \
1206
116k
                                                     nonzero & cond)); \
1207
116k
    } while (0)
1208
1209
0
#define MPI_ECP_NEG(X) MPI_ECP_COND_NEG((X), 1)
1210
1211
#define MPI_ECP_VALID(X)                      \
1212
117k
    ((X)->p != NULL)
1213
1214
#define MPI_ECP_COND_ASSIGN(X, Y, cond)       \
1215
4.11M
    MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_assign((X), (Y), (cond)))
1216
1217
#define MPI_ECP_COND_SWAP(X, Y, cond)       \
1218
28.6k
    MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_swap((X), (Y), (cond)))
1219
1220
#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
1221
1222
/*
1223
 * Computes the right-hand side of the Short Weierstrass equation
1224
 * RHS = X^3 + A X + B
1225
 */
1226
static int ecp_sw_rhs(const mbedtls_ecp_group *grp,
1227
                      mbedtls_mpi *rhs,
1228
                      const mbedtls_mpi *X)
1229
26.0k
{
1230
26.0k
    int ret;
1231
1232
    /* Compute X^3 + A X + B as X (X^2 + A) + B */
1233
26.0k
    MPI_ECP_SQR(rhs, X);
1234
1235
    /* Special case for A = -3 */
1236
26.0k
    if (mbedtls_ecp_group_a_is_minus_3(grp)) {
1237
23.1k
        MPI_ECP_SUB_INT(rhs, rhs, 3);
1238
23.1k
    } else {
1239
2.90k
        MPI_ECP_ADD(rhs, rhs, &grp->A);
1240
2.90k
    }
1241
1242
26.0k
    MPI_ECP_MUL(rhs, rhs, X);
1243
26.0k
    MPI_ECP_ADD(rhs, rhs, &grp->B);
1244
1245
26.0k
cleanup:
1246
26.0k
    return ret;
1247
26.0k
}
1248
1249
/*
1250
 * Derive Y from X and a parity bit
1251
 */
1252
static int mbedtls_ecp_sw_derive_y(const mbedtls_ecp_group *grp,
1253
                                   const mbedtls_mpi *X,
1254
                                   mbedtls_mpi *Y,
1255
                                   int parity_bit)
1256
3.89k
{
1257
    /* w = y^2 = x^3 + ax + b
1258
     * y = sqrt(w) = w^((p+1)/4) mod p   (for prime p where p = 3 mod 4)
1259
     *
1260
     * Note: this method for extracting square root does not validate that w
1261
     * was indeed a square so this function will return garbage in Y if X
1262
     * does not correspond to a point on the curve.
1263
     */
1264
1265
    /* Check prerequisite p = 3 mod 4 */
1266
3.89k
    if (mbedtls_mpi_get_bit(&grp->P, 0) != 1 ||
1267
3.89k
        mbedtls_mpi_get_bit(&grp->P, 1) != 1) {
1268
8
        return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
1269
8
    }
1270
1271
3.88k
    int ret;
1272
3.88k
    mbedtls_mpi exp;
1273
3.88k
    mbedtls_mpi_init(&exp);
1274
1275
    /* use Y to store intermediate result, actually w above */
1276
3.88k
    MBEDTLS_MPI_CHK(ecp_sw_rhs(grp, Y, X));
1277
1278
    /* w = y^2 */ /* Y contains y^2 intermediate result */
1279
    /* exp = ((p+1)/4) */
1280
3.88k
    MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&exp, &grp->P, 1));
1281
3.88k
    MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&exp, 2));
1282
    /* sqrt(w) = w^((p+1)/4) mod p   (for prime p where p = 3 mod 4) */
1283
3.88k
    MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(Y, Y /*y^2*/, &exp, &grp->P, NULL));
1284
1285
    /* check parity bit match or else invert Y */
1286
    /* This quick inversion implementation is valid because Y != 0 for all
1287
     * Short Weierstrass curves supported by mbedtls, as each supported curve
1288
     * has an order that is a large prime, so each supported curve does not
1289
     * have any point of order 2, and a point with Y == 0 would be of order 2 */
1290
3.88k
    if (mbedtls_mpi_get_bit(Y, 0) != parity_bit) {
1291
2.00k
        MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(Y, &grp->P, Y));
1292
2.00k
    }
1293
1294
3.88k
cleanup:
1295
1296
3.88k
    mbedtls_mpi_free(&exp);
1297
3.88k
    return ret;
1298
3.88k
}
1299
#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
1300
1301
#if defined(MBEDTLS_ECP_C)
1302
#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
1303
/*
1304
 * For curves in short Weierstrass form, we do all the internal operations in
1305
 * Jacobian coordinates.
1306
 *
1307
 * For multiplication, we'll use a comb method with countermeasures against
1308
 * SPA, hence timing attacks.
1309
 */
1310
1311
/*
1312
 * Normalize jacobian coordinates so that Z == 0 || Z == 1  (GECC 3.2.1)
1313
 * Cost: 1N := 1I + 3M + 1S
1314
 */
1315
static int ecp_normalize_jac(const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt)
1316
2.00k
{
1317
2.00k
    if (MPI_ECP_CMP_INT(&pt->Z, 0) == 0) {
1318
0
        return 0;
1319
0
    }
1320
1321
#if defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT)
1322
    if (mbedtls_internal_ecp_grp_capable(grp)) {
1323
        return mbedtls_internal_ecp_normalize_jac(grp, pt);
1324
    }
1325
#endif /* MBEDTLS_ECP_NORMALIZE_JAC_ALT */
1326
1327
#if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT)
1328
    return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
1329
#else
1330
2.00k
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1331
2.00k
    mbedtls_mpi T;
1332
2.00k
    mbedtls_mpi_init(&T);
1333
1334
2.00k
    MPI_ECP_INV(&T,       &pt->Z);            /* T   <-          1 / Z   */
1335
2.00k
    MPI_ECP_MUL(&pt->Y,   &pt->Y,     &T);    /* Y'  <- Y*T    = Y / Z   */
1336
2.00k
    MPI_ECP_SQR(&T,       &T);                /* T   <- T^2    = 1 / Z^2 */
1337
2.00k
    MPI_ECP_MUL(&pt->X,   &pt->X,     &T);    /* X   <- X  * T = X / Z^2 */
1338
2.00k
    MPI_ECP_MUL(&pt->Y,   &pt->Y,     &T);    /* Y'' <- Y' * T = Y / Z^3 */
1339
1340
2.00k
    MPI_ECP_LSET(&pt->Z, 1);
1341
1342
2.00k
cleanup:
1343
1344
2.00k
    mbedtls_mpi_free(&T);
1345
1346
2.00k
    return ret;
1347
2.00k
#endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT) */
1348
2.00k
}
1349
1350
/*
1351
 * Normalize jacobian coordinates of an array of (pointers to) points,
1352
 * using Montgomery's trick to perform only one inversion mod P.
1353
 * (See for example Cohen's "A Course in Computational Algebraic Number
1354
 * Theory", Algorithm 10.3.4.)
1355
 *
1356
 * Warning: fails (returning an error) if one of the points is zero!
1357
 * This should never happen, see choice of w in ecp_mul_comb().
1358
 *
1359
 * Cost: 1N(t) := 1I + (6t - 3)M + 1S
1360
 */
1361
static int ecp_normalize_jac_many(const mbedtls_ecp_group *grp,
1362
                                  mbedtls_ecp_point *T[], size_t T_size)
1363
1.06k
{
1364
1.06k
    if (T_size < 2) {
1365
0
        return ecp_normalize_jac(grp, *T);
1366
0
    }
1367
1368
#if defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT)
1369
    if (mbedtls_internal_ecp_grp_capable(grp)) {
1370
        return mbedtls_internal_ecp_normalize_jac_many(grp, T, T_size);
1371
    }
1372
#endif
1373
1374
#if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT)
1375
    return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
1376
#else
1377
1.06k
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1378
1.06k
    size_t i;
1379
1.06k
    mbedtls_mpi *c, t;
1380
1381
1.06k
    if ((c = mbedtls_calloc(T_size, sizeof(mbedtls_mpi))) == NULL) {
1382
0
        return MBEDTLS_ERR_ECP_ALLOC_FAILED;
1383
0
    }
1384
1385
1.06k
    mbedtls_mpi_init(&t);
1386
1387
1.06k
    mpi_init_many(c, T_size);
1388
    /*
1389
     * c[i] = Z_0 * ... * Z_i,   i = 0,..,n := T_size-1
1390
     */
1391
1.06k
    MPI_ECP_MOV(&c[0], &T[0]->Z);
1392
5.32k
    for (i = 1; i < T_size; i++) {
1393
4.25k
        MPI_ECP_MUL(&c[i], &c[i-1], &T[i]->Z);
1394
4.25k
    }
1395
1396
    /*
1397
     * c[n] = 1 / (Z_0 * ... * Z_n) mod P
1398
     */
1399
1.06k
    MPI_ECP_INV(&c[T_size-1], &c[T_size-1]);
1400
1401
5.32k
    for (i = T_size - 1;; i--) {
1402
        /* At the start of iteration i (note that i decrements), we have
1403
         * - c[j] = Z_0 * .... * Z_j        for j  < i,
1404
         * - c[j] = 1 / (Z_0 * .... * Z_j)  for j == i,
1405
         *
1406
         * This is maintained via
1407
         * - c[i-1] <- c[i] * Z_i
1408
         *
1409
         * We also derive 1/Z_i = c[i] * c[i-1] for i>0 and use that
1410
         * to do the actual normalization. For i==0, we already have
1411
         * c[0] = 1 / Z_0.
1412
         */
1413
1414
5.32k
        if (i > 0) {
1415
            /* Compute 1/Z_i and establish invariant for the next iteration. */
1416
4.25k
            MPI_ECP_MUL(&t,      &c[i], &c[i-1]);
1417
4.25k
            MPI_ECP_MUL(&c[i-1], &c[i], &T[i]->Z);
1418
4.25k
        } else {
1419
1.06k
            MPI_ECP_MOV(&t, &c[0]);
1420
1.06k
        }
1421
1422
        /* Now t holds 1 / Z_i; normalize as in ecp_normalize_jac() */
1423
5.32k
        MPI_ECP_MUL(&T[i]->Y, &T[i]->Y, &t);
1424
5.32k
        MPI_ECP_SQR(&t,       &t);
1425
5.32k
        MPI_ECP_MUL(&T[i]->X, &T[i]->X, &t);
1426
5.32k
        MPI_ECP_MUL(&T[i]->Y, &T[i]->Y, &t);
1427
1428
        /*
1429
         * Post-precessing: reclaim some memory by shrinking coordinates
1430
         * - not storing Z (always 1)
1431
         * - shrinking other coordinates, but still keeping the same number of
1432
         *   limbs as P, as otherwise it will too likely be regrown too fast.
1433
         */
1434
5.32k
        MBEDTLS_MPI_CHK(mbedtls_mpi_shrink(&T[i]->X, grp->P.n));
1435
5.32k
        MBEDTLS_MPI_CHK(mbedtls_mpi_shrink(&T[i]->Y, grp->P.n));
1436
1437
5.32k
        MPI_ECP_LSET(&T[i]->Z, 1);
1438
1439
5.32k
        if (i == 0) {
1440
1.06k
            break;
1441
1.06k
        }
1442
5.32k
    }
1443
1444
1.06k
cleanup:
1445
1446
1.06k
    mbedtls_mpi_free(&t);
1447
1.06k
    mpi_free_many(c, T_size);
1448
1.06k
    mbedtls_free(c);
1449
1450
1.06k
    return ret;
1451
1.06k
#endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT) */
1452
1.06k
}
1453
1454
/*
1455
 * Conditional point inversion: Q -> -Q = (Q.X, -Q.Y, Q.Z) without leak.
1456
 * "inv" must be 0 (don't invert) or 1 (invert) or the result will be invalid
1457
 */
1458
static int ecp_safe_invert_jac(const mbedtls_ecp_group *grp,
1459
                               mbedtls_ecp_point *Q,
1460
                               unsigned char inv)
1461
116k
{
1462
116k
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1463
116k
    mbedtls_mpi tmp;
1464
116k
    mbedtls_mpi_init(&tmp);
1465
1466
116k
    MPI_ECP_COND_NEG(&Q->Y, inv);
1467
1468
116k
cleanup:
1469
116k
    mbedtls_mpi_free(&tmp);
1470
116k
    return ret;
1471
116k
}
1472
1473
/*
1474
 * Point doubling R = 2 P, Jacobian coordinates
1475
 *
1476
 * Based on http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#doubling-dbl-1998-cmo-2 .
1477
 *
1478
 * We follow the variable naming fairly closely. The formula variations that trade a MUL for a SQR
1479
 * (plus a few ADDs) aren't useful as our bignum implementation doesn't distinguish squaring.
1480
 *
1481
 * Standard optimizations are applied when curve parameter A is one of { 0, -3 }.
1482
 *
1483
 * Cost: 1D := 3M + 4S          (A ==  0)
1484
 *             4M + 4S          (A == -3)
1485
 *             3M + 6S + 1a     otherwise
1486
 */
1487
static int ecp_double_jac(const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
1488
                          const mbedtls_ecp_point *P,
1489
                          mbedtls_mpi tmp[4])
1490
230k
{
1491
230k
#if defined(MBEDTLS_SELF_TEST)
1492
230k
    dbl_count++;
1493
230k
#endif
1494
1495
#if defined(MBEDTLS_ECP_DOUBLE_JAC_ALT)
1496
    if (mbedtls_internal_ecp_grp_capable(grp)) {
1497
        return mbedtls_internal_ecp_double_jac(grp, R, P);
1498
    }
1499
#endif /* MBEDTLS_ECP_DOUBLE_JAC_ALT */
1500
1501
#if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_DOUBLE_JAC_ALT)
1502
    return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
1503
#else
1504
230k
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1505
1506
    /* Special case for A = -3 */
1507
230k
    if (mbedtls_ecp_group_a_is_minus_3(grp)) {
1508
        /* tmp[0] <- M = 3(X + Z^2)(X - Z^2) */
1509
223k
        MPI_ECP_SQR(&tmp[1],  &P->Z);
1510
223k
        MPI_ECP_ADD(&tmp[2],  &P->X,  &tmp[1]);
1511
223k
        MPI_ECP_SUB(&tmp[3],  &P->X,  &tmp[1]);
1512
223k
        MPI_ECP_MUL(&tmp[1],  &tmp[2],     &tmp[3]);
1513
223k
        MPI_ECP_MUL_INT(&tmp[0],  &tmp[1],     3);
1514
223k
    } else {
1515
        /* tmp[0] <- M = 3.X^2 + A.Z^4 */
1516
6.58k
        MPI_ECP_SQR(&tmp[1],  &P->X);
1517
6.58k
        MPI_ECP_MUL_INT(&tmp[0],  &tmp[1],  3);
1518
1519
        /* Optimize away for "koblitz" curves with A = 0 */
1520
6.58k
        if (MPI_ECP_CMP_INT(&grp->A, 0) != 0) {
1521
            /* M += A.Z^4 */
1522
5.19k
            MPI_ECP_SQR(&tmp[1],  &P->Z);
1523
5.19k
            MPI_ECP_SQR(&tmp[2],  &tmp[1]);
1524
5.19k
            MPI_ECP_MUL(&tmp[1],  &tmp[2],     &grp->A);
1525
5.19k
            MPI_ECP_ADD(&tmp[0],  &tmp[0],     &tmp[1]);
1526
5.19k
        }
1527
6.58k
    }
1528
1529
    /* tmp[1] <- S = 4.X.Y^2 */
1530
230k
    MPI_ECP_SQR(&tmp[2],  &P->Y);
1531
230k
    MPI_ECP_SHIFT_L(&tmp[2],  1);
1532
230k
    MPI_ECP_MUL(&tmp[1],  &P->X, &tmp[2]);
1533
230k
    MPI_ECP_SHIFT_L(&tmp[1],  1);
1534
1535
    /* tmp[3] <- U = 8.Y^4 */
1536
230k
    MPI_ECP_SQR(&tmp[3],  &tmp[2]);
1537
230k
    MPI_ECP_SHIFT_L(&tmp[3],  1);
1538
1539
    /* tmp[2] <- T = M^2 - 2.S */
1540
230k
    MPI_ECP_SQR(&tmp[2],  &tmp[0]);
1541
230k
    MPI_ECP_SUB(&tmp[2],  &tmp[2], &tmp[1]);
1542
230k
    MPI_ECP_SUB(&tmp[2],  &tmp[2], &tmp[1]);
1543
1544
    /* tmp[1] <- S = M(S - T) - U */
1545
230k
    MPI_ECP_SUB(&tmp[1],  &tmp[1],     &tmp[2]);
1546
230k
    MPI_ECP_MUL(&tmp[1],  &tmp[1],     &tmp[0]);
1547
230k
    MPI_ECP_SUB(&tmp[1],  &tmp[1],     &tmp[3]);
1548
1549
    /* tmp[3] <- U = 2.Y.Z */
1550
230k
    MPI_ECP_MUL(&tmp[3],  &P->Y,  &P->Z);
1551
230k
    MPI_ECP_SHIFT_L(&tmp[3],  1);
1552
1553
    /* Store results */
1554
230k
    MPI_ECP_MOV(&R->X, &tmp[2]);
1555
230k
    MPI_ECP_MOV(&R->Y, &tmp[1]);
1556
230k
    MPI_ECP_MOV(&R->Z, &tmp[3]);
1557
1558
230k
cleanup:
1559
1560
230k
    return ret;
1561
230k
#endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_DOUBLE_JAC_ALT) */
1562
230k
}
1563
1564
/*
1565
 * Addition: R = P + Q, mixed affine-Jacobian coordinates (GECC 3.22)
1566
 *
1567
 * The coordinates of Q must be normalized (= affine),
1568
 * but those of P don't need to. R is not normalized.
1569
 *
1570
 * P,Q,R may alias, but only at the level of EC points: they must be either
1571
 * equal as pointers, or disjoint (including the coordinate data buffers).
1572
 * Fine-grained aliasing at the level of coordinates is not supported.
1573
 *
1574
 * Special cases: (1) P or Q is zero, (2) R is zero, (3) P == Q.
1575
 * None of these cases can happen as intermediate step in ecp_mul_comb():
1576
 * - at each step, P, Q and R are multiples of the base point, the factor
1577
 *   being less than its order, so none of them is zero;
1578
 * - Q is an odd multiple of the base point, P an even multiple,
1579
 *   due to the choice of precomputed points in the modified comb method.
1580
 * So branches for these cases do not leak secret information.
1581
 *
1582
 * Cost: 1A := 8M + 3S
1583
 */
1584
static int ecp_add_mixed(const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
1585
                         const mbedtls_ecp_point *P, const mbedtls_ecp_point *Q,
1586
                         mbedtls_mpi tmp[4])
1587
117k
{
1588
117k
#if defined(MBEDTLS_SELF_TEST)
1589
117k
    add_count++;
1590
117k
#endif
1591
1592
#if defined(MBEDTLS_ECP_ADD_MIXED_ALT)
1593
    if (mbedtls_internal_ecp_grp_capable(grp)) {
1594
        return mbedtls_internal_ecp_add_mixed(grp, R, P, Q);
1595
    }
1596
#endif /* MBEDTLS_ECP_ADD_MIXED_ALT */
1597
1598
#if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_ADD_MIXED_ALT)
1599
    return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
1600
#else
1601
117k
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1602
1603
    /* NOTE: Aliasing between input and output is allowed, so one has to make
1604
     *       sure that at the point X,Y,Z are written, {P,Q}->{X,Y,Z} are no
1605
     *       longer read from. */
1606
117k
    mbedtls_mpi * const X = &R->X;
1607
117k
    mbedtls_mpi * const Y = &R->Y;
1608
117k
    mbedtls_mpi * const Z = &R->Z;
1609
1610
117k
    if (!MPI_ECP_VALID(&Q->Z)) {
1611
0
        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
1612
0
    }
1613
1614
    /*
1615
     * Trivial cases: P == 0 or Q == 0 (case 1)
1616
     */
1617
117k
    if (MPI_ECP_CMP_INT(&P->Z, 0) == 0) {
1618
0
        return mbedtls_ecp_copy(R, Q);
1619
0
    }
1620
1621
117k
    if (MPI_ECP_CMP_INT(&Q->Z, 0) == 0) {
1622
0
        return mbedtls_ecp_copy(R, P);
1623
0
    }
1624
1625
    /*
1626
     * Make sure Q coordinates are normalized
1627
     */
1628
117k
    if (MPI_ECP_CMP_INT(&Q->Z, 1) != 0) {
1629
0
        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
1630
0
    }
1631
1632
117k
    MPI_ECP_SQR(&tmp[0], &P->Z);
1633
117k
    MPI_ECP_MUL(&tmp[1], &tmp[0], &P->Z);
1634
117k
    MPI_ECP_MUL(&tmp[0], &tmp[0], &Q->X);
1635
117k
    MPI_ECP_MUL(&tmp[1], &tmp[1], &Q->Y);
1636
117k
    MPI_ECP_SUB(&tmp[0], &tmp[0], &P->X);
1637
117k
    MPI_ECP_SUB(&tmp[1], &tmp[1], &P->Y);
1638
1639
    /* Special cases (2) and (3) */
1640
117k
    if (MPI_ECP_CMP_INT(&tmp[0], 0) == 0) {
1641
1
        if (MPI_ECP_CMP_INT(&tmp[1], 0) == 0) {
1642
1
            ret = ecp_double_jac(grp, R, P, tmp);
1643
1
            goto cleanup;
1644
1
        } else {
1645
0
            ret = mbedtls_ecp_set_zero(R);
1646
0
            goto cleanup;
1647
0
        }
1648
1
    }
1649
1650
    /* {P,Q}->Z no longer used, so OK to write to Z even if there's aliasing. */
1651
117k
    MPI_ECP_MUL(Z,        &P->Z,    &tmp[0]);
1652
117k
    MPI_ECP_SQR(&tmp[2],  &tmp[0]);
1653
117k
    MPI_ECP_MUL(&tmp[3],  &tmp[2],  &tmp[0]);
1654
117k
    MPI_ECP_MUL(&tmp[2],  &tmp[2],  &P->X);
1655
1656
117k
    MPI_ECP_MOV(&tmp[0], &tmp[2]);
1657
117k
    MPI_ECP_SHIFT_L(&tmp[0], 1);
1658
1659
    /* {P,Q}->X no longer used, so OK to write to X even if there's aliasing. */
1660
117k
    MPI_ECP_SQR(X,        &tmp[1]);
1661
117k
    MPI_ECP_SUB(X,        X,        &tmp[0]);
1662
117k
    MPI_ECP_SUB(X,        X,        &tmp[3]);
1663
117k
    MPI_ECP_SUB(&tmp[2],  &tmp[2],  X);
1664
117k
    MPI_ECP_MUL(&tmp[2],  &tmp[2],  &tmp[1]);
1665
117k
    MPI_ECP_MUL(&tmp[3],  &tmp[3],  &P->Y);
1666
    /* {P,Q}->Y no longer used, so OK to write to Y even if there's aliasing. */
1667
117k
    MPI_ECP_SUB(Y,     &tmp[2],     &tmp[3]);
1668
1669
117k
cleanup:
1670
1671
117k
    return ret;
1672
117k
#endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_ADD_MIXED_ALT) */
1673
117k
}
1674
1675
/*
1676
 * Randomize jacobian coordinates:
1677
 * (X, Y, Z) -> (l^2 X, l^3 Y, l Z) for random l
1678
 * This is sort of the reverse operation of ecp_normalize_jac().
1679
 *
1680
 * This countermeasure was first suggested in [2].
1681
 */
1682
static int ecp_randomize_jac(const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt,
1683
                             int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
1684
1.45k
{
1685
#if defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT)
1686
    if (mbedtls_internal_ecp_grp_capable(grp)) {
1687
        return mbedtls_internal_ecp_randomize_jac(grp, pt, f_rng, p_rng);
1688
    }
1689
#endif /* MBEDTLS_ECP_RANDOMIZE_JAC_ALT */
1690
1691
#if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT)
1692
    return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
1693
#else
1694
1.45k
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1695
1.45k
    mbedtls_mpi l;
1696
1697
1.45k
    mbedtls_mpi_init(&l);
1698
1699
    /* Generate l such that 1 < l < p */
1700
1.45k
    MPI_ECP_RAND(&l);
1701
1702
    /* Z' = l * Z */
1703
1.45k
    MPI_ECP_MUL(&pt->Z,   &pt->Z,     &l);
1704
1705
    /* Y' = l * Y */
1706
1.45k
    MPI_ECP_MUL(&pt->Y,   &pt->Y,     &l);
1707
1708
    /* X' = l^2 * X */
1709
1.45k
    MPI_ECP_SQR(&l,       &l);
1710
1.45k
    MPI_ECP_MUL(&pt->X,   &pt->X,     &l);
1711
1712
    /* Y'' = l^2 * Y' = l^3 * Y */
1713
1.45k
    MPI_ECP_MUL(&pt->Y,   &pt->Y,     &l);
1714
1715
1.45k
cleanup:
1716
1.45k
    mbedtls_mpi_free(&l);
1717
1718
1.45k
    if (ret == MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) {
1719
0
        ret = MBEDTLS_ERR_ECP_RANDOM_FAILED;
1720
0
    }
1721
1.45k
    return ret;
1722
1.45k
#endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT) */
1723
1.45k
}
1724
1725
/*
1726
 * Check and define parameters used by the comb method (see below for details)
1727
 */
1728
#if MBEDTLS_ECP_WINDOW_SIZE < 2 || MBEDTLS_ECP_WINDOW_SIZE > 7
1729
#error "MBEDTLS_ECP_WINDOW_SIZE out of bounds"
1730
#endif
1731
1732
/* d = ceil( n / w ) */
1733
#define COMB_MAX_D      (MBEDTLS_ECP_MAX_BITS + 1) / 2
1734
1735
/* number of precomputed points */
1736
#define COMB_MAX_PRE    (1 << (MBEDTLS_ECP_WINDOW_SIZE - 1))
1737
1738
/*
1739
 * Compute the representation of m that will be used with our comb method.
1740
 *
1741
 * The basic comb method is described in GECC 3.44 for example. We use a
1742
 * modified version that provides resistance to SPA by avoiding zero
1743
 * digits in the representation as in [3]. We modify the method further by
1744
 * requiring that all K_i be odd, which has the small cost that our
1745
 * representation uses one more K_i, due to carries, but saves on the size of
1746
 * the precomputed table.
1747
 *
1748
 * Summary of the comb method and its modifications:
1749
 *
1750
 * - The goal is to compute m*P for some w*d-bit integer m.
1751
 *
1752
 * - The basic comb method splits m into the w-bit integers
1753
 *   x[0] .. x[d-1] where x[i] consists of the bits in m whose
1754
 *   index has residue i modulo d, and computes m * P as
1755
 *   S[x[0]] + 2 * S[x[1]] + .. + 2^(d-1) S[x[d-1]], where
1756
 *   S[i_{w-1} .. i_0] := i_{w-1} 2^{(w-1)d} P + ... + i_1 2^d P + i_0 P.
1757
 *
1758
 * - If it happens that, say, x[i+1]=0 (=> S[x[i+1]]=0), one can replace the sum by
1759
 *    .. + 2^{i-1} S[x[i-1]] - 2^i S[x[i]] + 2^{i+1} S[x[i]] + 2^{i+2} S[x[i+2]] ..,
1760
 *   thereby successively converting it into a form where all summands
1761
 *   are nonzero, at the cost of negative summands. This is the basic idea of [3].
1762
 *
1763
 * - More generally, even if x[i+1] != 0, we can first transform the sum as
1764
 *   .. - 2^i S[x[i]] + 2^{i+1} ( S[x[i]] + S[x[i+1]] ) + 2^{i+2} S[x[i+2]] ..,
1765
 *   and then replace S[x[i]] + S[x[i+1]] = S[x[i] ^ x[i+1]] + 2 S[x[i] & x[i+1]].
1766
 *   Performing and iterating this procedure for those x[i] that are even
1767
 *   (keeping track of carry), we can transform the original sum into one of the form
1768
 *   S[x'[0]] +- 2 S[x'[1]] +- .. +- 2^{d-1} S[x'[d-1]] + 2^d S[x'[d]]
1769
 *   with all x'[i] odd. It is therefore only necessary to know S at odd indices,
1770
 *   which is why we are only computing half of it in the first place in
1771
 *   ecp_precompute_comb and accessing it with index abs(i) / 2 in ecp_select_comb.
1772
 *
1773
 * - For the sake of compactness, only the seven low-order bits of x[i]
1774
 *   are used to represent its absolute value (K_i in the paper), and the msb
1775
 *   of x[i] encodes the sign (s_i in the paper): it is set if and only if
1776
 *   if s_i == -1;
1777
 *
1778
 * Calling conventions:
1779
 * - x is an array of size d + 1
1780
 * - w is the size, ie number of teeth, of the comb, and must be between
1781
 *   2 and 7 (in practice, between 2 and MBEDTLS_ECP_WINDOW_SIZE)
1782
 * - m is the MPI, expected to be odd and such that bitlength(m) <= w * d
1783
 *   (the result will be incorrect if these assumptions are not satisfied)
1784
 */
1785
static void ecp_comb_recode_core(unsigned char x[], size_t d,
1786
                                 unsigned char w, const mbedtls_mpi *m)
1787
1.81k
{
1788
1.81k
    size_t i, j;
1789
1.81k
    unsigned char c, cc, adjust;
1790
1791
1.81k
    memset(x, 0, d+1);
1792
1793
    /* First get the classical comb values (except for x_d = 0) */
1794
115k
    for (i = 0; i < d; i++) {
1795
673k
        for (j = 0; j < w; j++) {
1796
560k
            x[i] |= mbedtls_mpi_get_bit(m, i + d * j) << j;
1797
560k
        }
1798
113k
    }
1799
1800
    /* Now make sure x_1 .. x_d are odd */
1801
1.81k
    c = 0;
1802
115k
    for (i = 1; i <= d; i++) {
1803
        /* Add carry and update it */
1804
113k
        cc   = x[i] & c;
1805
113k
        x[i] = x[i] ^ c;
1806
113k
        c = cc;
1807
1808
        /* Adjust if needed, avoiding branches */
1809
113k
        adjust = 1 - (x[i] & 0x01);
1810
113k
        c   |= x[i] & (x[i-1] * adjust);
1811
113k
        x[i] = x[i] ^ (x[i-1] * adjust);
1812
113k
        x[i-1] |= adjust << 7;
1813
113k
    }
1814
1.81k
}
1815
1816
/*
1817
 * Precompute points for the adapted comb method
1818
 *
1819
 * Assumption: T must be able to hold 2^{w - 1} elements.
1820
 *
1821
 * Operation: If i = i_{w-1} ... i_1 is the binary representation of i,
1822
 *            sets T[i] = i_{w-1} 2^{(w-1)d} P + ... + i_1 2^d P + P.
1823
 *
1824
 * Cost: d(w-1) D + (2^{w-1} - 1) A + 1 N(w-1) + 1 N(2^{w-1} - 1)
1825
 *
1826
 * Note: Even comb values (those where P would be omitted from the
1827
 *       sum defining T[i] above) are not needed in our adaption
1828
 *       the comb method. See ecp_comb_recode_core().
1829
 *
1830
 * This function currently works in four steps:
1831
 * (1) [dbl]      Computation of intermediate T[i] for 2-power values of i
1832
 * (2) [norm_dbl] Normalization of coordinates of these T[i]
1833
 * (3) [add]      Computation of all T[i]
1834
 * (4) [norm_add] Normalization of all T[i]
1835
 *
1836
 * Step 1 can be interrupted but not the others; together with the final
1837
 * coordinate normalization they are the largest steps done at once, depending
1838
 * on the window size. Here are operation counts for P-256:
1839
 *
1840
 * step     (2)     (3)     (4)
1841
 * w = 5    142     165     208
1842
 * w = 4    136      77     160
1843
 * w = 3    130      33     136
1844
 * w = 2    124      11     124
1845
 *
1846
 * So if ECC operations are blocking for too long even with a low max_ops
1847
 * value, it's useful to set MBEDTLS_ECP_WINDOW_SIZE to a lower value in order
1848
 * to minimize maximum blocking time.
1849
 */
1850
static int ecp_precompute_comb(const mbedtls_ecp_group *grp,
1851
                               mbedtls_ecp_point T[], const mbedtls_ecp_point *P,
1852
                               unsigned char w, size_t d,
1853
                               mbedtls_ecp_restart_ctx *rs_ctx)
1854
532
{
1855
532
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1856
532
    unsigned char i;
1857
532
    size_t j = 0;
1858
532
    const unsigned char T_size = 1U << (w - 1);
1859
532
    mbedtls_ecp_point *cur, *TT[COMB_MAX_PRE - 1] = { NULL };
1860
1861
532
    mbedtls_mpi tmp[4];
1862
1863
532
    mpi_init_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
1864
1865
532
#if defined(MBEDTLS_ECP_RESTARTABLE)
1866
532
    if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
1867
0
        if (rs_ctx->rsm->state == ecp_rsm_pre_dbl) {
1868
0
            goto dbl;
1869
0
        }
1870
0
        if (rs_ctx->rsm->state == ecp_rsm_pre_norm_dbl) {
1871
0
            goto norm_dbl;
1872
0
        }
1873
0
        if (rs_ctx->rsm->state == ecp_rsm_pre_add) {
1874
0
            goto add;
1875
0
        }
1876
0
        if (rs_ctx->rsm->state == ecp_rsm_pre_norm_add) {
1877
0
            goto norm_add;
1878
0
        }
1879
0
    }
1880
#else
1881
    (void) rs_ctx;
1882
#endif
1883
1884
532
#if defined(MBEDTLS_ECP_RESTARTABLE)
1885
532
    if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
1886
0
        rs_ctx->rsm->state = ecp_rsm_pre_dbl;
1887
1888
        /* initial state for the loop */
1889
0
        rs_ctx->rsm->i = 0;
1890
0
    }
1891
1892
532
dbl:
1893
532
#endif
1894
    /*
1895
     * Set T[0] = P and
1896
     * T[2^{l-1}] = 2^{dl} P for l = 1 .. w-1 (this is not the final value)
1897
     */
1898
532
    MBEDTLS_MPI_CHK(mbedtls_ecp_copy(&T[0], P));
1899
1900
532
#if defined(MBEDTLS_ECP_RESTARTABLE)
1901
532
    if (rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->i != 0) {
1902
0
        j = rs_ctx->rsm->i;
1903
0
    } else
1904
532
#endif
1905
532
    j = 0;
1906
1907
117k
    for (; j < d * (w - 1); j++) {
1908
116k
        MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_DBL);
1909
1910
116k
        i = 1U << (j / d);
1911
116k
        cur = T + i;
1912
1913
116k
        if (j % d == 0) {
1914
1.59k
            MBEDTLS_MPI_CHK(mbedtls_ecp_copy(cur, T + (i >> 1)));
1915
1.59k
        }
1916
1917
116k
        MBEDTLS_MPI_CHK(ecp_double_jac(grp, cur, cur, tmp));
1918
116k
    }
1919
1920
532
#if defined(MBEDTLS_ECP_RESTARTABLE)
1921
532
    if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
1922
0
        rs_ctx->rsm->state = ecp_rsm_pre_norm_dbl;
1923
0
    }
1924
1925
532
norm_dbl:
1926
532
#endif
1927
    /*
1928
     * Normalize current elements in T to allow them to be used in
1929
     * ecp_add_mixed() below, which requires one normalized input.
1930
     *
1931
     * As T has holes, use an auxiliary array of pointers to elements in T.
1932
     *
1933
     */
1934
532
    j = 0;
1935
2.12k
    for (i = 1; i < T_size; i <<= 1) {
1936
1.59k
        TT[j++] = T + i;
1937
1.59k
    }
1938
1939
532
    MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_INV + 6 * j - 2);
1940
1941
532
    MBEDTLS_MPI_CHK(ecp_normalize_jac_many(grp, TT, j));
1942
1943
532
#if defined(MBEDTLS_ECP_RESTARTABLE)
1944
532
    if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
1945
0
        rs_ctx->rsm->state = ecp_rsm_pre_add;
1946
0
    }
1947
1948
532
add:
1949
532
#endif
1950
    /*
1951
     * Compute the remaining ones using the minimal number of additions
1952
     * Be careful to update T[2^l] only after using it!
1953
     */
1954
532
    MBEDTLS_ECP_BUDGET((T_size - 1) * MBEDTLS_ECP_OPS_ADD);
1955
1956
2.12k
    for (i = 1; i < T_size; i <<= 1) {
1957
1.59k
        j = i;
1958
5.32k
        while (j--) {
1959
3.72k
            MBEDTLS_MPI_CHK(ecp_add_mixed(grp, &T[i + j], &T[j], &T[i], tmp));
1960
3.72k
        }
1961
1.59k
    }
1962
1963
532
#if defined(MBEDTLS_ECP_RESTARTABLE)
1964
532
    if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
1965
0
        rs_ctx->rsm->state = ecp_rsm_pre_norm_add;
1966
0
    }
1967
1968
532
norm_add:
1969
532
#endif
1970
    /*
1971
     * Normalize final elements in T. Even though there are no holes now, we
1972
     * still need the auxiliary array for homogeneity with the previous
1973
     * call. Also, skip T[0] which is already normalised, being a copy of P.
1974
     */
1975
4.25k
    for (j = 0; j + 1 < T_size; j++) {
1976
3.72k
        TT[j] = T + j + 1;
1977
3.72k
    }
1978
1979
532
    MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_INV + 6 * j - 2);
1980
1981
532
    MBEDTLS_MPI_CHK(ecp_normalize_jac_many(grp, TT, j));
1982
1983
    /* Free Z coordinate (=1 after normalization) to save RAM.
1984
     * This makes T[i] invalid as mbedtls_ecp_points, but this is OK
1985
     * since from this point onwards, they are only accessed indirectly
1986
     * via the getter function ecp_select_comb() which does set the
1987
     * target's Z coordinate to 1. */
1988
4.78k
    for (i = 0; i < T_size; i++) {
1989
4.25k
        mbedtls_mpi_free(&T[i].Z);
1990
4.25k
    }
1991
1992
532
cleanup:
1993
1994
532
    mpi_free_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
1995
1996
532
#if defined(MBEDTLS_ECP_RESTARTABLE)
1997
532
    if (rs_ctx != NULL && rs_ctx->rsm != NULL &&
1998
0
        ret == MBEDTLS_ERR_ECP_IN_PROGRESS) {
1999
0
        if (rs_ctx->rsm->state == ecp_rsm_pre_dbl) {
2000
0
            rs_ctx->rsm->i = j;
2001
0
        }
2002
0
    }
2003
532
#endif
2004
2005
532
    return ret;
2006
532
}
2007
2008
/*
2009
 * Select precomputed point: R = sign(i) * T[ abs(i) / 2 ]
2010
 *
2011
 * See ecp_comb_recode_core() for background
2012
 */
2013
static int ecp_select_comb(const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2014
                           const mbedtls_ecp_point T[], unsigned char T_size,
2015
                           unsigned char i)
2016
115k
{
2017
115k
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2018
115k
    unsigned char ii, j;
2019
2020
    /* Ignore the "sign" bit and scale down */
2021
115k
    ii =  (i & 0x7Fu) >> 1;
2022
2023
    /* Read the whole table to thwart cache-based timing attacks */
2024
2.17M
    for (j = 0; j < T_size; j++) {
2025
2.05M
        MPI_ECP_COND_ASSIGN(&R->X, &T[j].X, j == ii);
2026
2.05M
        MPI_ECP_COND_ASSIGN(&R->Y, &T[j].Y, j == ii);
2027
2.05M
    }
2028
2029
    /* Safely invert result if i is "negative" */
2030
115k
    MBEDTLS_MPI_CHK(ecp_safe_invert_jac(grp, R, i >> 7));
2031
2032
115k
    MPI_ECP_LSET(&R->Z, 1);
2033
2034
115k
cleanup:
2035
115k
    return ret;
2036
115k
}
2037
2038
/*
2039
 * Core multiplication algorithm for the (modified) comb method.
2040
 * This part is actually common with the basic comb method (GECC 3.44)
2041
 *
2042
 * Cost: d A + d D + 1 R
2043
 */
2044
static int ecp_mul_comb_core(const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2045
                             const mbedtls_ecp_point T[], unsigned char T_size,
2046
                             const unsigned char x[], size_t d,
2047
                             int (*f_rng)(void *, unsigned char *, size_t),
2048
                             void *p_rng,
2049
                             mbedtls_ecp_restart_ctx *rs_ctx)
2050
1.81k
{
2051
1.81k
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2052
1.81k
    mbedtls_ecp_point Txi;
2053
1.81k
    mbedtls_mpi tmp[4];
2054
1.81k
    size_t i;
2055
2056
1.81k
    mbedtls_ecp_point_init(&Txi);
2057
1.81k
    mpi_init_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
2058
2059
#if !defined(MBEDTLS_ECP_RESTARTABLE)
2060
    (void) rs_ctx;
2061
#endif
2062
2063
1.81k
#if defined(MBEDTLS_ECP_RESTARTABLE)
2064
1.81k
    if (rs_ctx != NULL && rs_ctx->rsm != NULL &&
2065
0
        rs_ctx->rsm->state != ecp_rsm_comb_core) {
2066
0
        rs_ctx->rsm->i = 0;
2067
0
        rs_ctx->rsm->state = ecp_rsm_comb_core;
2068
0
    }
2069
2070
    /* new 'if' instead of nested for the sake of the 'else' branch */
2071
1.81k
    if (rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->i != 0) {
2072
        /* restore current index (R already pointing to rs_ctx->rsm->R) */
2073
0
        i = rs_ctx->rsm->i;
2074
0
    } else
2075
1.81k
#endif
2076
1.81k
    {
2077
        /* Start with a non-zero point and randomize its coordinates */
2078
1.81k
        i = d;
2079
1.81k
        MBEDTLS_MPI_CHK(ecp_select_comb(grp, R, T, T_size, x[i]));
2080
1.81k
        if (f_rng != 0) {
2081
1.45k
            MBEDTLS_MPI_CHK(ecp_randomize_jac(grp, R, f_rng, p_rng));
2082
1.45k
        }
2083
1.81k
    }
2084
2085
115k
    while (i != 0) {
2086
113k
        MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_DBL + MBEDTLS_ECP_OPS_ADD);
2087
113k
        --i;
2088
2089
113k
        MBEDTLS_MPI_CHK(ecp_double_jac(grp, R, R, tmp));
2090
113k
        MBEDTLS_MPI_CHK(ecp_select_comb(grp, &Txi, T, T_size, x[i]));
2091
113k
        MBEDTLS_MPI_CHK(ecp_add_mixed(grp, R, R, &Txi, tmp));
2092
113k
    }
2093
2094
1.81k
cleanup:
2095
2096
1.81k
    mbedtls_ecp_point_free(&Txi);
2097
1.81k
    mpi_free_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
2098
2099
1.81k
#if defined(MBEDTLS_ECP_RESTARTABLE)
2100
1.81k
    if (rs_ctx != NULL && rs_ctx->rsm != NULL &&
2101
0
        ret == MBEDTLS_ERR_ECP_IN_PROGRESS) {
2102
0
        rs_ctx->rsm->i = i;
2103
        /* no need to save R, already pointing to rs_ctx->rsm->R */
2104
0
    }
2105
1.81k
#endif
2106
2107
1.81k
    return ret;
2108
1.81k
}
2109
2110
/*
2111
 * Recode the scalar to get constant-time comb multiplication
2112
 *
2113
 * As the actual scalar recoding needs an odd scalar as a starting point,
2114
 * this wrapper ensures that by replacing m by N - m if necessary, and
2115
 * informs the caller that the result of multiplication will be negated.
2116
 *
2117
 * This works because we only support large prime order for Short Weierstrass
2118
 * curves, so N is always odd hence either m or N - m is.
2119
 *
2120
 * See ecp_comb_recode_core() for background.
2121
 */
2122
static int ecp_comb_recode_scalar(const mbedtls_ecp_group *grp,
2123
                                  const mbedtls_mpi *m,
2124
                                  unsigned char k[COMB_MAX_D + 1],
2125
                                  size_t d,
2126
                                  unsigned char w,
2127
                                  unsigned char *parity_trick)
2128
1.81k
{
2129
1.81k
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2130
1.81k
    mbedtls_mpi M, mm;
2131
2132
1.81k
    mbedtls_mpi_init(&M);
2133
1.81k
    mbedtls_mpi_init(&mm);
2134
2135
    /* N is always odd (see above), just make extra sure */
2136
1.81k
    if (mbedtls_mpi_get_bit(&grp->N, 0) != 1) {
2137
0
        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
2138
0
    }
2139
2140
    /* do we need the parity trick? */
2141
1.81k
    *parity_trick = (mbedtls_mpi_get_bit(m, 0) == 0);
2142
2143
    /* execute parity fix in constant time */
2144
1.81k
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&M, m));
2145
1.81k
    MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&mm, &grp->N, m));
2146
1.81k
    MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_assign(&M, &mm, *parity_trick));
2147
2148
    /* actual scalar recoding */
2149
1.81k
    ecp_comb_recode_core(k, d, w, &M);
2150
2151
1.81k
cleanup:
2152
1.81k
    mbedtls_mpi_free(&mm);
2153
1.81k
    mbedtls_mpi_free(&M);
2154
2155
1.81k
    return ret;
2156
1.81k
}
2157
2158
/*
2159
 * Perform comb multiplication (for short Weierstrass curves)
2160
 * once the auxiliary table has been pre-computed.
2161
 *
2162
 * Scalar recoding may use a parity trick that makes us compute -m * P,
2163
 * if that is the case we'll need to recover m * P at the end.
2164
 */
2165
static int ecp_mul_comb_after_precomp(const mbedtls_ecp_group *grp,
2166
                                      mbedtls_ecp_point *R,
2167
                                      const mbedtls_mpi *m,
2168
                                      const mbedtls_ecp_point *T,
2169
                                      unsigned char T_size,
2170
                                      unsigned char w,
2171
                                      size_t d,
2172
                                      int (*f_rng)(void *, unsigned char *, size_t),
2173
                                      void *p_rng,
2174
                                      mbedtls_ecp_restart_ctx *rs_ctx)
2175
1.81k
{
2176
1.81k
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2177
1.81k
    unsigned char parity_trick;
2178
1.81k
    unsigned char k[COMB_MAX_D + 1];
2179
1.81k
    mbedtls_ecp_point *RR = R;
2180
2181
1.81k
#if defined(MBEDTLS_ECP_RESTARTABLE)
2182
1.81k
    if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
2183
0
        RR = &rs_ctx->rsm->R;
2184
2185
0
        if (rs_ctx->rsm->state == ecp_rsm_final_norm) {
2186
0
            goto final_norm;
2187
0
        }
2188
0
    }
2189
1.81k
#endif
2190
2191
1.81k
    MBEDTLS_MPI_CHK(ecp_comb_recode_scalar(grp, m, k, d, w,
2192
1.81k
                                           &parity_trick));
2193
1.81k
    MBEDTLS_MPI_CHK(ecp_mul_comb_core(grp, RR, T, T_size, k, d,
2194
1.81k
                                      f_rng, p_rng, rs_ctx));
2195
1.81k
    MBEDTLS_MPI_CHK(ecp_safe_invert_jac(grp, RR, parity_trick));
2196
2197
1.81k
#if defined(MBEDTLS_ECP_RESTARTABLE)
2198
1.81k
    if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
2199
0
        rs_ctx->rsm->state = ecp_rsm_final_norm;
2200
0
    }
2201
2202
1.81k
final_norm:
2203
1.81k
    MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_INV);
2204
1.81k
#endif
2205
1.81k
    MBEDTLS_MPI_CHK(ecp_normalize_jac(grp, RR));
2206
2207
1.81k
#if defined(MBEDTLS_ECP_RESTARTABLE)
2208
1.81k
    if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
2209
0
        MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, RR));
2210
0
    }
2211
1.81k
#endif
2212
2213
1.81k
cleanup:
2214
1.81k
    return ret;
2215
1.81k
}
2216
2217
/*
2218
 * Pick window size based on curve size and whether we optimize for base point
2219
 */
2220
static unsigned char ecp_pick_window_size(const mbedtls_ecp_group *grp,
2221
                                          unsigned char p_eq_g)
2222
1.81k
{
2223
1.81k
    unsigned char w;
2224
2225
    /*
2226
     * Minimize the number of multiplications, that is minimize
2227
     * 10 * d * w + 18 * 2^(w-1) + 11 * d + 7 * w, with d = ceil( nbits / w )
2228
     * (see costs of the various parts, with 1S = 1M)
2229
     */
2230
1.81k
    w = grp->nbits >= 384 ? 5 : 4;
2231
2232
    /*
2233
     * If P == G, pre-compute a bit more, since this may be re-used later.
2234
     * Just adding one avoids upping the cost of the first mul too much,
2235
     * and the memory cost too.
2236
     */
2237
1.81k
    if (p_eq_g) {
2238
1.28k
        w++;
2239
1.28k
    }
2240
2241
    /*
2242
     * If static comb table may not be used (!p_eq_g) or static comb table does
2243
     * not exists, make sure w is within bounds.
2244
     * (The last test is useful only for very small curves in the test suite.)
2245
     *
2246
     * The user reduces MBEDTLS_ECP_WINDOW_SIZE does not changes the size of
2247
     * static comb table, because the size of static comb table is fixed when
2248
     * it is generated.
2249
     */
2250
1.81k
#if (MBEDTLS_ECP_WINDOW_SIZE < 6)
2251
1.81k
    if ((!p_eq_g || !ecp_group_is_static_comb_table(grp)) && w > MBEDTLS_ECP_WINDOW_SIZE) {
2252
86
        w = MBEDTLS_ECP_WINDOW_SIZE;
2253
86
    }
2254
1.81k
#endif
2255
1.81k
    if (w >= grp->nbits) {
2256
0
        w = 2;
2257
0
    }
2258
2259
1.81k
    return w;
2260
1.81k
}
2261
2262
/*
2263
 * Multiplication using the comb method - for curves in short Weierstrass form
2264
 *
2265
 * This function is mainly responsible for administrative work:
2266
 * - managing the restart context if enabled
2267
 * - managing the table of precomputed points (passed between the below two
2268
 *   functions): allocation, computation, ownership transfer, freeing.
2269
 *
2270
 * It delegates the actual arithmetic work to:
2271
 *      ecp_precompute_comb() and ecp_mul_comb_with_precomp()
2272
 *
2273
 * See comments on ecp_comb_recode_core() regarding the computation strategy.
2274
 */
2275
static int ecp_mul_comb(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2276
                        const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2277
                        int (*f_rng)(void *, unsigned char *, size_t),
2278
                        void *p_rng,
2279
                        mbedtls_ecp_restart_ctx *rs_ctx)
2280
1.81k
{
2281
1.81k
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2282
1.81k
    unsigned char w, p_eq_g, i;
2283
1.81k
    size_t d;
2284
1.81k
    unsigned char T_size = 0, T_ok = 0;
2285
1.81k
    mbedtls_ecp_point *T = NULL;
2286
2287
1.81k
    ECP_RS_ENTER(rsm);
2288
2289
    /* Is P the base point ? */
2290
1.81k
#if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
2291
1.81k
    p_eq_g = (MPI_ECP_CMP(&P->Y, &grp->G.Y) == 0 &&
2292
1.28k
              MPI_ECP_CMP(&P->X, &grp->G.X) == 0);
2293
#else
2294
    p_eq_g = 0;
2295
#endif
2296
2297
    /* Pick window size and deduce related sizes */
2298
1.81k
    w = ecp_pick_window_size(grp, p_eq_g);
2299
1.81k
    T_size = 1U << (w - 1);
2300
1.81k
    d = (grp->nbits + w - 1) / w;
2301
2302
    /* Pre-computed table: do we have it already for the base point? */
2303
1.81k
    if (p_eq_g && grp->T != NULL) {
2304
        /* second pointer to the same table, will be deleted on exit */
2305
1.28k
        T = grp->T;
2306
1.28k
        T_ok = 1;
2307
1.28k
    } else
2308
532
#if defined(MBEDTLS_ECP_RESTARTABLE)
2309
    /* Pre-computed table: do we have one in progress? complete? */
2310
532
    if (rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->T != NULL) {
2311
        /* transfer ownership of T from rsm to local function */
2312
0
        T = rs_ctx->rsm->T;
2313
0
        rs_ctx->rsm->T = NULL;
2314
0
        rs_ctx->rsm->T_size = 0;
2315
2316
        /* This effectively jumps to the call to mul_comb_after_precomp() */
2317
0
        T_ok = rs_ctx->rsm->state >= ecp_rsm_comb_core;
2318
0
    } else
2319
532
#endif
2320
    /* Allocate table if we didn't have any */
2321
532
    {
2322
532
        T = mbedtls_calloc(T_size, sizeof(mbedtls_ecp_point));
2323
532
        if (T == NULL) {
2324
0
            ret = MBEDTLS_ERR_ECP_ALLOC_FAILED;
2325
0
            goto cleanup;
2326
0
        }
2327
2328
4.78k
        for (i = 0; i < T_size; i++) {
2329
4.25k
            mbedtls_ecp_point_init(&T[i]);
2330
4.25k
        }
2331
2332
532
        T_ok = 0;
2333
532
    }
2334
2335
    /* Compute table (or finish computing it) if not done already */
2336
1.81k
    if (!T_ok) {
2337
532
        MBEDTLS_MPI_CHK(ecp_precompute_comb(grp, T, P, w, d, rs_ctx));
2338
2339
532
        if (p_eq_g) {
2340
            /* almost transfer ownership of T to the group, but keep a copy of
2341
             * the pointer to use for calling the next function more easily */
2342
0
            grp->T = T;
2343
0
            grp->T_size = T_size;
2344
0
        }
2345
532
    }
2346
2347
    /* Actual comb multiplication using precomputed points */
2348
1.81k
    MBEDTLS_MPI_CHK(ecp_mul_comb_after_precomp(grp, R, m,
2349
1.81k
                                               T, T_size, w, d,
2350
1.81k
                                               f_rng, p_rng, rs_ctx));
2351
2352
1.81k
cleanup:
2353
2354
    /* does T belong to the group? */
2355
1.81k
    if (T == grp->T) {
2356
1.28k
        T = NULL;
2357
1.28k
    }
2358
2359
    /* does T belong to the restart context? */
2360
1.81k
#if defined(MBEDTLS_ECP_RESTARTABLE)
2361
1.81k
    if (rs_ctx != NULL && rs_ctx->rsm != NULL && ret == MBEDTLS_ERR_ECP_IN_PROGRESS && T != NULL) {
2362
        /* transfer ownership of T from local function to rsm */
2363
0
        rs_ctx->rsm->T_size = T_size;
2364
0
        rs_ctx->rsm->T = T;
2365
0
        T = NULL;
2366
0
    }
2367
1.81k
#endif
2368
2369
    /* did T belong to us? then let's destroy it! */
2370
1.81k
    if (T != NULL) {
2371
4.78k
        for (i = 0; i < T_size; i++) {
2372
4.25k
            mbedtls_ecp_point_free(&T[i]);
2373
4.25k
        }
2374
532
        mbedtls_free(T);
2375
532
    }
2376
2377
    /* prevent caller from using invalid value */
2378
1.81k
    int should_free_R = (ret != 0);
2379
1.81k
#if defined(MBEDTLS_ECP_RESTARTABLE)
2380
    /* don't free R while in progress in case R == P */
2381
1.81k
    if (ret == MBEDTLS_ERR_ECP_IN_PROGRESS) {
2382
0
        should_free_R = 0;
2383
0
    }
2384
1.81k
#endif
2385
1.81k
    if (should_free_R) {
2386
0
        mbedtls_ecp_point_free(R);
2387
0
    }
2388
2389
1.81k
    ECP_RS_LEAVE(rsm);
2390
2391
1.81k
    return ret;
2392
1.81k
}
2393
2394
#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
2395
2396
#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
2397
/*
2398
 * For Montgomery curves, we do all the internal arithmetic in projective
2399
 * coordinates. Import/export of points uses only the x coordinates, which is
2400
 * internally represented as X / Z.
2401
 *
2402
 * For scalar multiplication, we'll use a Montgomery ladder.
2403
 */
2404
2405
/*
2406
 * Normalize Montgomery x/z coordinates: X = X/Z, Z = 1
2407
 * Cost: 1M + 1I
2408
 */
2409
static int ecp_normalize_mxz(const mbedtls_ecp_group *grp, mbedtls_ecp_point *P)
2410
22
{
2411
#if defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT)
2412
    if (mbedtls_internal_ecp_grp_capable(grp)) {
2413
        return mbedtls_internal_ecp_normalize_mxz(grp, P);
2414
    }
2415
#endif /* MBEDTLS_ECP_NORMALIZE_MXZ_ALT */
2416
2417
#if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT)
2418
    return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
2419
#else
2420
22
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2421
22
    MPI_ECP_INV(&P->Z, &P->Z);
2422
22
    MPI_ECP_MUL(&P->X, &P->X, &P->Z);
2423
22
    MPI_ECP_LSET(&P->Z, 1);
2424
2425
22
cleanup:
2426
22
    return ret;
2427
22
#endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT) */
2428
22
}
2429
2430
/*
2431
 * Randomize projective x/z coordinates:
2432
 * (X, Z) -> (l X, l Z) for random l
2433
 * This is sort of the reverse operation of ecp_normalize_mxz().
2434
 *
2435
 * This countermeasure was first suggested in [2].
2436
 * Cost: 2M
2437
 */
2438
static int ecp_randomize_mxz(const mbedtls_ecp_group *grp, mbedtls_ecp_point *P,
2439
                             int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
2440
22
{
2441
#if defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT)
2442
    if (mbedtls_internal_ecp_grp_capable(grp)) {
2443
        return mbedtls_internal_ecp_randomize_mxz(grp, P, f_rng, p_rng);
2444
    }
2445
#endif /* MBEDTLS_ECP_RANDOMIZE_MXZ_ALT */
2446
2447
#if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT)
2448
    return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
2449
#else
2450
22
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2451
22
    mbedtls_mpi l;
2452
22
    mbedtls_mpi_init(&l);
2453
2454
    /* Generate l such that 1 < l < p */
2455
22
    MPI_ECP_RAND(&l);
2456
2457
22
    MPI_ECP_MUL(&P->X, &P->X, &l);
2458
22
    MPI_ECP_MUL(&P->Z, &P->Z, &l);
2459
2460
22
cleanup:
2461
22
    mbedtls_mpi_free(&l);
2462
2463
22
    if (ret == MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) {
2464
0
        ret = MBEDTLS_ERR_ECP_RANDOM_FAILED;
2465
0
    }
2466
22
    return ret;
2467
22
#endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT) */
2468
22
}
2469
2470
/*
2471
 * Double-and-add: R = 2P, S = P + Q, with d = X(P - Q),
2472
 * for Montgomery curves in x/z coordinates.
2473
 *
2474
 * http://www.hyperelliptic.org/EFD/g1p/auto-code/montgom/xz/ladder/mladd-1987-m.op3
2475
 * with
2476
 * d =  X1
2477
 * P = (X2, Z2)
2478
 * Q = (X3, Z3)
2479
 * R = (X4, Z4)
2480
 * S = (X5, Z5)
2481
 * and eliminating temporary variables tO, ..., t4.
2482
 *
2483
 * Cost: 5M + 4S
2484
 */
2485
static int ecp_double_add_mxz(const mbedtls_ecp_group *grp,
2486
                              mbedtls_ecp_point *R, mbedtls_ecp_point *S,
2487
                              const mbedtls_ecp_point *P, const mbedtls_ecp_point *Q,
2488
                              const mbedtls_mpi *d,
2489
                              mbedtls_mpi T[4])
2490
7.15k
{
2491
#if defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT)
2492
    if (mbedtls_internal_ecp_grp_capable(grp)) {
2493
        return mbedtls_internal_ecp_double_add_mxz(grp, R, S, P, Q, d);
2494
    }
2495
#endif /* MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT */
2496
2497
#if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT)
2498
    return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
2499
#else
2500
7.15k
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2501
2502
7.15k
    MPI_ECP_ADD(&T[0], &P->X,   &P->Z);   /* Pp := PX + PZ                    */
2503
7.15k
    MPI_ECP_SUB(&T[1], &P->X,   &P->Z);   /* Pm := PX - PZ                    */
2504
7.15k
    MPI_ECP_ADD(&T[2], &Q->X,   &Q->Z);   /* Qp := QX + XZ                    */
2505
7.15k
    MPI_ECP_SUB(&T[3], &Q->X,   &Q->Z);   /* Qm := QX - QZ                    */
2506
7.15k
    MPI_ECP_MUL(&T[3], &T[3],   &T[0]);   /* Qm * Pp                          */
2507
7.15k
    MPI_ECP_MUL(&T[2], &T[2],   &T[1]);   /* Qp * Pm                          */
2508
7.15k
    MPI_ECP_SQR(&T[0], &T[0]);            /* Pp^2                             */
2509
7.15k
    MPI_ECP_SQR(&T[1], &T[1]);            /* Pm^2                             */
2510
7.15k
    MPI_ECP_MUL(&R->X, &T[0],   &T[1]);   /* Pp^2 * Pm^2                      */
2511
7.15k
    MPI_ECP_SUB(&T[0], &T[0],   &T[1]);   /* Pp^2 - Pm^2                      */
2512
7.15k
    MPI_ECP_MUL(&R->Z, &grp->A, &T[0]);   /* A * (Pp^2 - Pm^2)                */
2513
7.15k
    MPI_ECP_ADD(&R->Z, &T[1],   &R->Z);   /* [ A * (Pp^2-Pm^2) ] + Pm^2       */
2514
7.15k
    MPI_ECP_ADD(&S->X, &T[3],   &T[2]);   /* Qm*Pp + Qp*Pm                    */
2515
7.15k
    MPI_ECP_SQR(&S->X, &S->X);            /* (Qm*Pp + Qp*Pm)^2                */
2516
7.15k
    MPI_ECP_SUB(&S->Z, &T[3],   &T[2]);   /* Qm*Pp - Qp*Pm                    */
2517
7.15k
    MPI_ECP_SQR(&S->Z, &S->Z);            /* (Qm*Pp - Qp*Pm)^2                */
2518
7.15k
    MPI_ECP_MUL(&S->Z, d,       &S->Z);   /* d * ( Qm*Pp - Qp*Pm )^2          */
2519
7.15k
    MPI_ECP_MUL(&R->Z, &T[0],   &R->Z);   /* [A*(Pp^2-Pm^2)+Pm^2]*(Pp^2-Pm^2) */
2520
2521
7.15k
cleanup:
2522
2523
7.15k
    return ret;
2524
7.15k
#endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT) */
2525
7.15k
}
2526
2527
/*
2528
 * Multiplication with Montgomery ladder in x/z coordinates,
2529
 * for curves in Montgomery form
2530
 */
2531
static int ecp_mul_mxz(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2532
                       const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2533
                       int (*f_rng)(void *, unsigned char *, size_t),
2534
                       void *p_rng)
2535
22
{
2536
22
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2537
22
    size_t i;
2538
22
    unsigned char b;
2539
22
    mbedtls_ecp_point RP;
2540
22
    mbedtls_mpi PX;
2541
22
    mbedtls_mpi tmp[4];
2542
22
    mbedtls_ecp_point_init(&RP); mbedtls_mpi_init(&PX);
2543
2544
22
    mpi_init_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
2545
2546
22
    if (f_rng == NULL) {
2547
0
        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
2548
0
    }
2549
2550
    /* Save PX and read from P before writing to R, in case P == R */
2551
22
    MPI_ECP_MOV(&PX, &P->X);
2552
22
    MBEDTLS_MPI_CHK(mbedtls_ecp_copy(&RP, P));
2553
2554
    /* Set R to zero in modified x/z coordinates */
2555
22
    MPI_ECP_LSET(&R->X, 1);
2556
22
    MPI_ECP_LSET(&R->Z, 0);
2557
22
    mbedtls_mpi_free(&R->Y);
2558
2559
    /* RP.X might be slightly larger than P, so reduce it */
2560
22
    MOD_ADD(&RP.X);
2561
2562
    /* Randomize coordinates of the starting point */
2563
22
    MBEDTLS_MPI_CHK(ecp_randomize_mxz(grp, &RP, f_rng, p_rng));
2564
2565
    /* Loop invariant: R = result so far, RP = R + P */
2566
22
    i = grp->nbits + 1; /* one past the (zero-based) required msb for private keys */
2567
7.17k
    while (i-- > 0) {
2568
7.15k
        b = mbedtls_mpi_get_bit(m, i);
2569
        /*
2570
         *  if (b) R = 2R + P else R = 2R,
2571
         * which is:
2572
         *  if (b) double_add( RP, R, RP, R )
2573
         *  else   double_add( R, RP, R, RP )
2574
         * but using safe conditional swaps to avoid leaks
2575
         */
2576
7.15k
        MPI_ECP_COND_SWAP(&R->X, &RP.X, b);
2577
7.15k
        MPI_ECP_COND_SWAP(&R->Z, &RP.Z, b);
2578
7.15k
        MBEDTLS_MPI_CHK(ecp_double_add_mxz(grp, R, &RP, R, &RP, &PX, tmp));
2579
7.15k
        MPI_ECP_COND_SWAP(&R->X, &RP.X, b);
2580
7.15k
        MPI_ECP_COND_SWAP(&R->Z, &RP.Z, b);
2581
7.15k
    }
2582
2583
22
    MBEDTLS_MPI_CHK(ecp_normalize_mxz(grp, R));
2584
2585
22
cleanup:
2586
22
    mbedtls_ecp_point_free(&RP); mbedtls_mpi_free(&PX);
2587
2588
22
    mpi_free_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
2589
22
    return ret;
2590
22
}
2591
2592
#endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
2593
2594
/*
2595
 * Restartable multiplication R = m * P
2596
 *
2597
 * This internal function can be called without an RNG in case where we know
2598
 * the inputs are not sensitive.
2599
 */
2600
static int ecp_mul_restartable_internal(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2601
                                        const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2602
                                        int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,
2603
                                        mbedtls_ecp_restart_ctx *rs_ctx)
2604
1.83k
{
2605
1.83k
    int ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
2606
#if defined(MBEDTLS_ECP_INTERNAL_ALT)
2607
    char is_grp_capable = 0;
2608
#endif
2609
2610
1.83k
#if defined(MBEDTLS_ECP_RESTARTABLE)
2611
    /* reset ops count for this call if top-level */
2612
1.83k
    if (rs_ctx != NULL && rs_ctx->depth++ == 0) {
2613
0
        rs_ctx->ops_done = 0;
2614
0
    }
2615
#else
2616
    (void) rs_ctx;
2617
#endif
2618
2619
#if defined(MBEDTLS_ECP_INTERNAL_ALT)
2620
    if ((is_grp_capable = mbedtls_internal_ecp_grp_capable(grp))) {
2621
        MBEDTLS_MPI_CHK(mbedtls_internal_ecp_init(grp));
2622
    }
2623
#endif /* MBEDTLS_ECP_INTERNAL_ALT */
2624
2625
1.83k
    int restarting = 0;
2626
1.83k
#if defined(MBEDTLS_ECP_RESTARTABLE)
2627
1.83k
    restarting = (rs_ctx != NULL && rs_ctx->rsm != NULL);
2628
1.83k
#endif
2629
    /* skip argument check when restarting */
2630
1.83k
    if (!restarting) {
2631
        /* check_privkey is free */
2632
1.83k
        MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_CHK);
2633
2634
        /* Common sanity checks */
2635
1.83k
        MBEDTLS_MPI_CHK(mbedtls_ecp_check_privkey(grp, m));
2636
1.83k
        MBEDTLS_MPI_CHK(mbedtls_ecp_check_pubkey(grp, P));
2637
1.83k
    }
2638
2639
1.83k
    ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
2640
1.83k
#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
2641
1.83k
    if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
2642
22
        MBEDTLS_MPI_CHK(ecp_mul_mxz(grp, R, m, P, f_rng, p_rng));
2643
22
    }
2644
1.83k
#endif
2645
1.83k
#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
2646
1.83k
    if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
2647
1.81k
        MBEDTLS_MPI_CHK(ecp_mul_comb(grp, R, m, P, f_rng, p_rng, rs_ctx));
2648
1.81k
    }
2649
1.83k
#endif
2650
2651
1.83k
cleanup:
2652
2653
#if defined(MBEDTLS_ECP_INTERNAL_ALT)
2654
    if (is_grp_capable) {
2655
        mbedtls_internal_ecp_free(grp);
2656
    }
2657
#endif /* MBEDTLS_ECP_INTERNAL_ALT */
2658
2659
1.83k
#if defined(MBEDTLS_ECP_RESTARTABLE)
2660
1.83k
    if (rs_ctx != NULL) {
2661
0
        rs_ctx->depth--;
2662
0
    }
2663
1.83k
#endif
2664
2665
1.83k
    return ret;
2666
1.83k
}
2667
2668
/*
2669
 * Restartable multiplication R = m * P
2670
 */
2671
int mbedtls_ecp_mul_restartable(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2672
                                const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2673
                                int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,
2674
                                mbedtls_ecp_restart_ctx *rs_ctx)
2675
1.47k
{
2676
1.47k
    if (f_rng == NULL) {
2677
0
        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
2678
0
    }
2679
2680
1.47k
    return ecp_mul_restartable_internal(grp, R, m, P, f_rng, p_rng, rs_ctx);
2681
1.47k
}
2682
2683
/*
2684
 * Multiplication R = m * P
2685
 */
2686
int mbedtls_ecp_mul(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2687
                    const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2688
                    int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
2689
695
{
2690
695
    return mbedtls_ecp_mul_restartable(grp, R, m, P, f_rng, p_rng, NULL);
2691
695
}
2692
#endif /* MBEDTLS_ECP_C */
2693
2694
#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
2695
/*
2696
 * Check that an affine point is valid as a public key,
2697
 * short weierstrass curves (SEC1 3.2.3.1)
2698
 */
2699
static int ecp_check_pubkey_sw(const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt)
2700
22.7k
{
2701
22.7k
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2702
22.7k
    mbedtls_mpi YY, RHS;
2703
2704
    /* pt coordinates must be normalized for our checks */
2705
22.7k
    if (mbedtls_mpi_cmp_int(&pt->X, 0) < 0 ||
2706
22.7k
        mbedtls_mpi_cmp_int(&pt->Y, 0) < 0 ||
2707
22.7k
        mbedtls_mpi_cmp_mpi(&pt->X, &grp->P) >= 0 ||
2708
22.3k
        mbedtls_mpi_cmp_mpi(&pt->Y, &grp->P) >= 0) {
2709
661
        return MBEDTLS_ERR_ECP_INVALID_KEY;
2710
661
    }
2711
2712
22.1k
    mbedtls_mpi_init(&YY); mbedtls_mpi_init(&RHS);
2713
2714
    /*
2715
     * YY = Y^2
2716
     * RHS = X^3 + A X + B
2717
     */
2718
22.1k
    MPI_ECP_SQR(&YY,  &pt->Y);
2719
22.1k
    MBEDTLS_MPI_CHK(ecp_sw_rhs(grp, &RHS, &pt->X));
2720
2721
22.1k
    if (MPI_ECP_CMP(&YY, &RHS) != 0) {
2722
8.25k
        ret = MBEDTLS_ERR_ECP_INVALID_KEY;
2723
8.25k
    }
2724
2725
22.1k
cleanup:
2726
2727
22.1k
    mbedtls_mpi_free(&YY); mbedtls_mpi_free(&RHS);
2728
2729
22.1k
    return ret;
2730
22.1k
}
2731
#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
2732
2733
#if defined(MBEDTLS_ECP_C)
2734
#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
2735
/*
2736
 * R = m * P with shortcuts for m == 0, m == 1 and m == -1
2737
 * NOT constant-time - ONLY for short Weierstrass!
2738
 */
2739
static int mbedtls_ecp_mul_shortcuts(mbedtls_ecp_group *grp,
2740
                                     mbedtls_ecp_point *R,
2741
                                     const mbedtls_mpi *m,
2742
                                     const mbedtls_ecp_point *P,
2743
                                     mbedtls_ecp_restart_ctx *rs_ctx)
2744
386
{
2745
386
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2746
386
    mbedtls_mpi tmp;
2747
386
    mbedtls_mpi_init(&tmp);
2748
2749
386
    if (mbedtls_mpi_cmp_int(m, 0) == 0) {
2750
0
        MBEDTLS_MPI_CHK(mbedtls_ecp_check_pubkey(grp, P));
2751
0
        MBEDTLS_MPI_CHK(mbedtls_ecp_set_zero(R));
2752
386
    } else if (mbedtls_mpi_cmp_int(m, 1) == 0) {
2753
27
        MBEDTLS_MPI_CHK(mbedtls_ecp_check_pubkey(grp, P));
2754
27
        MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, P));
2755
359
    } else if (mbedtls_mpi_cmp_int(m, -1) == 0) {
2756
0
        MBEDTLS_MPI_CHK(mbedtls_ecp_check_pubkey(grp, P));
2757
0
        MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, P));
2758
0
        MPI_ECP_NEG(&R->Y);
2759
359
    } else {
2760
359
        MBEDTLS_MPI_CHK(ecp_mul_restartable_internal(grp, R, m, P,
2761
359
                                                     NULL, NULL, rs_ctx));
2762
359
    }
2763
2764
386
cleanup:
2765
386
    mbedtls_mpi_free(&tmp);
2766
2767
386
    return ret;
2768
386
}
2769
2770
/*
2771
 * Restartable linear combination
2772
 * NOT constant-time
2773
 */
2774
int mbedtls_ecp_muladd_restartable(
2775
    mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2776
    const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2777
    const mbedtls_mpi *n, const mbedtls_ecp_point *Q,
2778
    mbedtls_ecp_restart_ctx *rs_ctx)
2779
193
{
2780
193
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2781
193
    mbedtls_ecp_point mP;
2782
193
    mbedtls_ecp_point *pmP = &mP;
2783
193
    mbedtls_ecp_point *pR = R;
2784
193
    mbedtls_mpi tmp[4];
2785
#if defined(MBEDTLS_ECP_INTERNAL_ALT)
2786
    char is_grp_capable = 0;
2787
#endif
2788
193
    if (mbedtls_ecp_get_type(grp) != MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
2789
0
        return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
2790
0
    }
2791
2792
193
    mbedtls_ecp_point_init(&mP);
2793
193
    mpi_init_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
2794
2795
193
    ECP_RS_ENTER(ma);
2796
2797
193
#if defined(MBEDTLS_ECP_RESTARTABLE)
2798
193
    if (rs_ctx != NULL && rs_ctx->ma != NULL) {
2799
        /* redirect intermediate results to restart context */
2800
0
        pmP = &rs_ctx->ma->mP;
2801
0
        pR  = &rs_ctx->ma->R;
2802
2803
        /* jump to next operation */
2804
0
        if (rs_ctx->ma->state == ecp_rsma_mul2) {
2805
0
            goto mul2;
2806
0
        }
2807
0
        if (rs_ctx->ma->state == ecp_rsma_add) {
2808
0
            goto add;
2809
0
        }
2810
0
        if (rs_ctx->ma->state == ecp_rsma_norm) {
2811
0
            goto norm;
2812
0
        }
2813
0
    }
2814
193
#endif /* MBEDTLS_ECP_RESTARTABLE */
2815
2816
193
    MBEDTLS_MPI_CHK(mbedtls_ecp_mul_shortcuts(grp, pmP, m, P, rs_ctx));
2817
193
#if defined(MBEDTLS_ECP_RESTARTABLE)
2818
193
    if (rs_ctx != NULL && rs_ctx->ma != NULL) {
2819
0
        rs_ctx->ma->state = ecp_rsma_mul2;
2820
0
    }
2821
2822
193
mul2:
2823
193
#endif
2824
193
    MBEDTLS_MPI_CHK(mbedtls_ecp_mul_shortcuts(grp, pR,  n, Q, rs_ctx));
2825
2826
#if defined(MBEDTLS_ECP_INTERNAL_ALT)
2827
    if ((is_grp_capable = mbedtls_internal_ecp_grp_capable(grp))) {
2828
        MBEDTLS_MPI_CHK(mbedtls_internal_ecp_init(grp));
2829
    }
2830
#endif /* MBEDTLS_ECP_INTERNAL_ALT */
2831
2832
193
#if defined(MBEDTLS_ECP_RESTARTABLE)
2833
193
    if (rs_ctx != NULL && rs_ctx->ma != NULL) {
2834
0
        rs_ctx->ma->state = ecp_rsma_add;
2835
0
    }
2836
2837
193
add:
2838
193
#endif
2839
193
    MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_ADD);
2840
193
    MBEDTLS_MPI_CHK(ecp_add_mixed(grp, pR, pmP, pR, tmp));
2841
193
#if defined(MBEDTLS_ECP_RESTARTABLE)
2842
193
    if (rs_ctx != NULL && rs_ctx->ma != NULL) {
2843
0
        rs_ctx->ma->state = ecp_rsma_norm;
2844
0
    }
2845
2846
193
norm:
2847
193
#endif
2848
193
    MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_INV);
2849
193
    MBEDTLS_MPI_CHK(ecp_normalize_jac(grp, pR));
2850
2851
193
#if defined(MBEDTLS_ECP_RESTARTABLE)
2852
193
    if (rs_ctx != NULL && rs_ctx->ma != NULL) {
2853
0
        MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, pR));
2854
0
    }
2855
193
#endif
2856
2857
193
cleanup:
2858
2859
193
    mpi_free_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
2860
2861
#if defined(MBEDTLS_ECP_INTERNAL_ALT)
2862
    if (is_grp_capable) {
2863
        mbedtls_internal_ecp_free(grp);
2864
    }
2865
#endif /* MBEDTLS_ECP_INTERNAL_ALT */
2866
2867
193
    mbedtls_ecp_point_free(&mP);
2868
2869
193
    ECP_RS_LEAVE(ma);
2870
2871
193
    return ret;
2872
193
}
2873
2874
/*
2875
 * Linear combination
2876
 * NOT constant-time
2877
 */
2878
int mbedtls_ecp_muladd(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2879
                       const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2880
                       const mbedtls_mpi *n, const mbedtls_ecp_point *Q)
2881
0
{
2882
0
    return mbedtls_ecp_muladd_restartable(grp, R, m, P, n, Q, NULL);
2883
0
}
2884
#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
2885
#endif /* MBEDTLS_ECP_C */
2886
2887
#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
2888
#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
2889
#define ECP_MPI_INIT(_p, _n) { .p = (mbedtls_mpi_uint *) (_p), .s = 1, .n = (_n) }
2890
#define ECP_MPI_INIT_ARRAY(x)   \
2891
    ECP_MPI_INIT(x, sizeof(x) / sizeof(mbedtls_mpi_uint))
2892
/*
2893
 * Constants for the two points other than 0, 1, -1 (mod p) in
2894
 * https://cr.yp.to/ecdh.html#validate
2895
 * See ecp_check_pubkey_x25519().
2896
 */
2897
static const mbedtls_mpi_uint x25519_bad_point_1[] = {
2898
    MBEDTLS_BYTES_TO_T_UINT_8(0xe0, 0xeb, 0x7a, 0x7c, 0x3b, 0x41, 0xb8, 0xae),
2899
    MBEDTLS_BYTES_TO_T_UINT_8(0x16, 0x56, 0xe3, 0xfa, 0xf1, 0x9f, 0xc4, 0x6a),
2900
    MBEDTLS_BYTES_TO_T_UINT_8(0xda, 0x09, 0x8d, 0xeb, 0x9c, 0x32, 0xb1, 0xfd),
2901
    MBEDTLS_BYTES_TO_T_UINT_8(0x86, 0x62, 0x05, 0x16, 0x5f, 0x49, 0xb8, 0x00),
2902
};
2903
static const mbedtls_mpi_uint x25519_bad_point_2[] = {
2904
    MBEDTLS_BYTES_TO_T_UINT_8(0x5f, 0x9c, 0x95, 0xbc, 0xa3, 0x50, 0x8c, 0x24),
2905
    MBEDTLS_BYTES_TO_T_UINT_8(0xb1, 0xd0, 0xb1, 0x55, 0x9c, 0x83, 0xef, 0x5b),
2906
    MBEDTLS_BYTES_TO_T_UINT_8(0x04, 0x44, 0x5c, 0xc4, 0x58, 0x1c, 0x8e, 0x86),
2907
    MBEDTLS_BYTES_TO_T_UINT_8(0xd8, 0x22, 0x4e, 0xdd, 0xd0, 0x9f, 0x11, 0x57),
2908
};
2909
static const mbedtls_mpi ecp_x25519_bad_point_1 = ECP_MPI_INIT_ARRAY(
2910
    x25519_bad_point_1);
2911
static const mbedtls_mpi ecp_x25519_bad_point_2 = ECP_MPI_INIT_ARRAY(
2912
    x25519_bad_point_2);
2913
#endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
2914
2915
/*
2916
 * Check that the input point is not one of the low-order points.
2917
 * This is recommended by the "May the Fourth" paper:
2918
 * https://eprint.iacr.org/2017/806.pdf
2919
 * Those points are never sent by an honest peer.
2920
 */
2921
static int ecp_check_bad_points_mx(const mbedtls_mpi *X, const mbedtls_mpi *P,
2922
                                   const mbedtls_ecp_group_id grp_id)
2923
657
{
2924
657
    int ret;
2925
657
    mbedtls_mpi XmP;
2926
2927
657
    mbedtls_mpi_init(&XmP);
2928
2929
    /* Reduce X mod P so that we only need to check values less than P.
2930
     * We know X < 2^256 so we can proceed by subtraction. */
2931
657
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&XmP, X));
2932
670
    while (mbedtls_mpi_cmp_mpi(&XmP, P) >= 0) {
2933
13
        MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&XmP, &XmP, P));
2934
13
    }
2935
2936
    /* Check against the known bad values that are less than P. For Curve448
2937
     * these are 0, 1 and -1. For Curve25519 we check the values less than P
2938
     * from the following list: https://cr.yp.to/ecdh.html#validate */
2939
657
    if (mbedtls_mpi_cmp_int(&XmP, 1) <= 0) {  /* takes care of 0 and 1 */
2940
8
        ret = MBEDTLS_ERR_ECP_INVALID_KEY;
2941
8
        goto cleanup;
2942
8
    }
2943
2944
649
#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
2945
649
    if (grp_id == MBEDTLS_ECP_DP_CURVE25519) {
2946
638
        if (mbedtls_mpi_cmp_mpi(&XmP, &ecp_x25519_bad_point_1) == 0) {
2947
0
            ret = MBEDTLS_ERR_ECP_INVALID_KEY;
2948
0
            goto cleanup;
2949
0
        }
2950
2951
638
        if (mbedtls_mpi_cmp_mpi(&XmP, &ecp_x25519_bad_point_2) == 0) {
2952
0
            ret = MBEDTLS_ERR_ECP_INVALID_KEY;
2953
0
            goto cleanup;
2954
0
        }
2955
638
    }
2956
#else
2957
    (void) grp_id;
2958
#endif
2959
2960
    /* Final check: check if XmP + 1 is P (final because it changes XmP!) */
2961
649
    MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&XmP, &XmP, 1));
2962
649
    if (mbedtls_mpi_cmp_mpi(&XmP, P) == 0) {
2963
2
        ret = MBEDTLS_ERR_ECP_INVALID_KEY;
2964
2
        goto cleanup;
2965
2
    }
2966
2967
647
    ret = 0;
2968
2969
657
cleanup:
2970
657
    mbedtls_mpi_free(&XmP);
2971
2972
657
    return ret;
2973
647
}
2974
2975
/*
2976
 * Check validity of a public key for Montgomery curves with x-only schemes
2977
 */
2978
static int ecp_check_pubkey_mx(const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt)
2979
657
{
2980
    /* [Curve25519 p. 5] Just check X is the correct number of bytes */
2981
    /* Allow any public value, if it's too big then we'll just reduce it mod p
2982
     * (RFC 7748 sec. 5 para. 3). */
2983
657
    if (mbedtls_mpi_size(&pt->X) > (grp->nbits + 7) / 8) {
2984
0
        return MBEDTLS_ERR_ECP_INVALID_KEY;
2985
0
    }
2986
2987
    /* Implicit in all standards (as they don't consider negative numbers):
2988
     * X must be non-negative. This is normally ensured by the way it's
2989
     * encoded for transmission, but let's be extra sure. */
2990
657
    if (mbedtls_mpi_cmp_int(&pt->X, 0) < 0) {
2991
0
        return MBEDTLS_ERR_ECP_INVALID_KEY;
2992
0
    }
2993
2994
657
    return ecp_check_bad_points_mx(&pt->X, &grp->P, grp->id);
2995
657
}
2996
#endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
2997
2998
/*
2999
 * Check that a point is valid as a public key
3000
 */
3001
int mbedtls_ecp_check_pubkey(const mbedtls_ecp_group *grp,
3002
                             const mbedtls_ecp_point *pt)
3003
23.7k
{
3004
    /* Must use affine coordinates */
3005
23.7k
    if (mbedtls_mpi_cmp_int(&pt->Z, 1) != 0) {
3006
260
        return MBEDTLS_ERR_ECP_INVALID_KEY;
3007
260
    }
3008
3009
23.4k
#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3010
23.4k
    if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
3011
657
        return ecp_check_pubkey_mx(grp, pt);
3012
657
    }
3013
22.7k
#endif
3014
22.7k
#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3015
22.7k
    if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
3016
22.7k
        return ecp_check_pubkey_sw(grp, pt);
3017
22.7k
    }
3018
0
#endif
3019
0
    return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3020
22.7k
}
3021
3022
/*
3023
 * Check that an mbedtls_mpi is valid as a private key
3024
 */
3025
int mbedtls_ecp_check_privkey(const mbedtls_ecp_group *grp,
3026
                              const mbedtls_mpi *d)
3027
3.95k
{
3028
3.95k
#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3029
3.95k
    if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
3030
        /* see RFC 7748 sec. 5 para. 5 */
3031
32
        if (mbedtls_mpi_get_bit(d, 0) != 0 ||
3032
32
            mbedtls_mpi_get_bit(d, 1) != 0 ||
3033
32
            mbedtls_mpi_bitlen(d) != grp->nbits + 1) {  /* mbedtls_mpi_bitlen is one-based! */
3034
0
            return MBEDTLS_ERR_ECP_INVALID_KEY;
3035
0
        }
3036
3037
        /* see [Curve25519] page 5 */
3038
32
        if (grp->nbits == 254 && mbedtls_mpi_get_bit(d, 2) != 0) {
3039
0
            return MBEDTLS_ERR_ECP_INVALID_KEY;
3040
0
        }
3041
3042
32
        return 0;
3043
32
    }
3044
3.92k
#endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
3045
3.92k
#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3046
3.92k
    if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
3047
        /* see SEC1 3.2 */
3048
3.92k
        if (mbedtls_mpi_cmp_int(d, 1) < 0 ||
3049
3.91k
            mbedtls_mpi_cmp_mpi(d, &grp->N) >= 0) {
3050
15
            return MBEDTLS_ERR_ECP_INVALID_KEY;
3051
3.90k
        } else {
3052
3.90k
            return 0;
3053
3.90k
        }
3054
3.92k
    }
3055
0
#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
3056
3057
0
    return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3058
3.92k
}
3059
3060
#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3061
MBEDTLS_STATIC_TESTABLE
3062
int mbedtls_ecp_gen_privkey_mx(size_t high_bit,
3063
                               mbedtls_mpi *d,
3064
                               int (*f_rng)(void *, unsigned char *, size_t),
3065
                               void *p_rng)
3066
12
{
3067
12
    int ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3068
12
    size_t n_random_bytes = high_bit / 8 + 1;
3069
3070
    /* [Curve25519] page 5 */
3071
    /* Generate a (high_bit+1)-bit random number by generating just enough
3072
     * random bytes, then shifting out extra bits from the top (necessary
3073
     * when (high_bit+1) is not a multiple of 8). */
3074
12
    MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(d, n_random_bytes,
3075
12
                                            f_rng, p_rng));
3076
12
    MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(d, 8 * n_random_bytes - high_bit - 1));
3077
3078
12
    MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(d, high_bit, 1));
3079
3080
    /* Make sure the last two bits are unset for Curve448, three bits for
3081
       Curve25519 */
3082
12
    MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(d, 0, 0));
3083
12
    MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(d, 1, 0));
3084
12
    if (high_bit == 254) {
3085
7
        MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(d, 2, 0));
3086
7
    }
3087
3088
12
cleanup:
3089
12
    return ret;
3090
12
}
3091
#endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
3092
3093
#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3094
static int mbedtls_ecp_gen_privkey_sw(
3095
    const mbedtls_mpi *N, mbedtls_mpi *d,
3096
    int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
3097
406
{
3098
406
    int ret = mbedtls_mpi_random(d, 1, N, f_rng, p_rng);
3099
406
    switch (ret) {
3100
0
        case MBEDTLS_ERR_MPI_NOT_ACCEPTABLE:
3101
0
            return MBEDTLS_ERR_ECP_RANDOM_FAILED;
3102
406
        default:
3103
406
            return ret;
3104
406
    }
3105
406
}
3106
#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
3107
3108
/*
3109
 * Generate a private key
3110
 */
3111
int mbedtls_ecp_gen_privkey(const mbedtls_ecp_group *grp,
3112
                            mbedtls_mpi *d,
3113
                            int (*f_rng)(void *, unsigned char *, size_t),
3114
                            void *p_rng)
3115
418
{
3116
418
#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3117
418
    if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
3118
12
        return mbedtls_ecp_gen_privkey_mx(grp->nbits, d, f_rng, p_rng);
3119
12
    }
3120
406
#endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
3121
3122
406
#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3123
406
    if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
3124
406
        return mbedtls_ecp_gen_privkey_sw(&grp->N, d, f_rng, p_rng);
3125
406
    }
3126
0
#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
3127
3128
0
    return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3129
406
}
3130
3131
#if defined(MBEDTLS_ECP_C)
3132
/*
3133
 * Generate a keypair with configurable base point
3134
 */
3135
int mbedtls_ecp_gen_keypair_base(mbedtls_ecp_group *grp,
3136
                                 const mbedtls_ecp_point *G,
3137
                                 mbedtls_mpi *d, mbedtls_ecp_point *Q,
3138
                                 int (*f_rng)(void *, unsigned char *, size_t),
3139
                                 void *p_rng)
3140
0
{
3141
0
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3142
0
    MBEDTLS_MPI_CHK(mbedtls_ecp_gen_privkey(grp, d, f_rng, p_rng));
3143
0
    MBEDTLS_MPI_CHK(mbedtls_ecp_mul(grp, Q, d, G, f_rng, p_rng));
3144
3145
0
cleanup:
3146
0
    return ret;
3147
0
}
3148
3149
/*
3150
 * Generate key pair, wrapper for conventional base point
3151
 */
3152
int mbedtls_ecp_gen_keypair(mbedtls_ecp_group *grp,
3153
                            mbedtls_mpi *d, mbedtls_ecp_point *Q,
3154
                            int (*f_rng)(void *, unsigned char *, size_t),
3155
                            void *p_rng)
3156
0
{
3157
0
    return mbedtls_ecp_gen_keypair_base(grp, &grp->G, d, Q, f_rng, p_rng);
3158
0
}
3159
3160
/*
3161
 * Generate a keypair, prettier wrapper
3162
 */
3163
int mbedtls_ecp_gen_key(mbedtls_ecp_group_id grp_id, mbedtls_ecp_keypair *key,
3164
                        int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
3165
0
{
3166
0
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3167
0
    if ((ret = mbedtls_ecp_group_load(&key->grp, grp_id)) != 0) {
3168
0
        return ret;
3169
0
    }
3170
3171
0
    return mbedtls_ecp_gen_keypair(&key->grp, &key->d, &key->Q, f_rng, p_rng);
3172
0
}
3173
#endif /* MBEDTLS_ECP_C */
3174
3175
int mbedtls_ecp_set_public_key(mbedtls_ecp_group_id grp_id,
3176
                               mbedtls_ecp_keypair *key,
3177
                               const mbedtls_ecp_point *Q)
3178
0
{
3179
0
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3180
3181
0
    if (key->grp.id == MBEDTLS_ECP_DP_NONE) {
3182
        /* Group not set yet */
3183
0
        if ((ret = mbedtls_ecp_group_load(&key->grp, grp_id)) != 0) {
3184
0
            return ret;
3185
0
        }
3186
0
    } else if (key->grp.id != grp_id) {
3187
        /* Group mismatch */
3188
0
        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3189
0
    }
3190
0
    return mbedtls_ecp_copy(&key->Q, Q);
3191
0
}
3192
3193
3194
12
#define ECP_CURVE25519_KEY_SIZE 32
3195
7
#define ECP_CURVE448_KEY_SIZE   56
3196
/*
3197
 * Read a private key.
3198
 */
3199
int mbedtls_ecp_read_key(mbedtls_ecp_group_id grp_id, mbedtls_ecp_keypair *key,
3200
                         const unsigned char *buf, size_t buflen)
3201
2.13k
{
3202
2.13k
    int ret = 0;
3203
3204
2.13k
    if ((ret = mbedtls_ecp_group_load(&key->grp, grp_id)) != 0) {
3205
5
        return ret;
3206
5
    }
3207
3208
2.12k
    ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
3209
3210
2.12k
#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3211
2.12k
    if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
3212
        /*
3213
         * Mask the key as mandated by RFC7748 for Curve25519 and Curve448.
3214
         */
3215
19
        if (grp_id == MBEDTLS_ECP_DP_CURVE25519) {
3216
12
            if (buflen != ECP_CURVE25519_KEY_SIZE) {
3217
5
                return MBEDTLS_ERR_ECP_INVALID_KEY;
3218
5
            }
3219
3220
7
            MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary_le(&key->d, buf, buflen));
3221
3222
            /* Set the three least significant bits to 0 */
3223
7
            MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 0, 0));
3224
7
            MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 1, 0));
3225
7
            MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 2, 0));
3226
3227
            /* Set the most significant bit to 0 */
3228
7
            MBEDTLS_MPI_CHK(
3229
7
                mbedtls_mpi_set_bit(&key->d,
3230
7
                                    ECP_CURVE25519_KEY_SIZE * 8 - 1, 0)
3231
7
                );
3232
3233
            /* Set the second most significant bit to 1 */
3234
7
            MBEDTLS_MPI_CHK(
3235
7
                mbedtls_mpi_set_bit(&key->d,
3236
7
                                    ECP_CURVE25519_KEY_SIZE * 8 - 2, 1)
3237
7
                );
3238
7
        } else if (grp_id == MBEDTLS_ECP_DP_CURVE448) {
3239
7
            if (buflen != ECP_CURVE448_KEY_SIZE) {
3240
4
                return MBEDTLS_ERR_ECP_INVALID_KEY;
3241
4
            }
3242
3243
3
            MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary_le(&key->d, buf, buflen));
3244
3245
            /* Set the two least significant bits to 0 */
3246
3
            MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 0, 0));
3247
3
            MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 1, 0));
3248
3249
            /* Set the most significant bit to 1 */
3250
3
            MBEDTLS_MPI_CHK(
3251
3
                mbedtls_mpi_set_bit(&key->d,
3252
3
                                    ECP_CURVE448_KEY_SIZE * 8 - 1, 1)
3253
3
                );
3254
3
        }
3255
19
    }
3256
2.11k
#endif
3257
2.11k
#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3258
2.11k
    if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
3259
2.10k
        MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&key->d, buf, buflen));
3260
2.10k
    }
3261
2.11k
#endif
3262
3263
2.11k
    if (ret == 0) {
3264
2.11k
        MBEDTLS_MPI_CHK(mbedtls_ecp_check_privkey(&key->grp, &key->d));
3265
2.11k
    }
3266
3267
2.11k
cleanup:
3268
3269
2.11k
    if (ret != 0) {
3270
15
        mbedtls_mpi_free(&key->d);
3271
15
    }
3272
3273
2.11k
    return ret;
3274
2.11k
}
3275
3276
/*
3277
 * Write a private key.
3278
 */
3279
#if !defined MBEDTLS_DEPRECATED_REMOVED
3280
int mbedtls_ecp_write_key(mbedtls_ecp_keypair *key,
3281
                          unsigned char *buf, size_t buflen)
3282
0
{
3283
0
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3284
3285
0
#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3286
0
    if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
3287
0
        if (key->grp.id == MBEDTLS_ECP_DP_CURVE25519) {
3288
0
            if (buflen < ECP_CURVE25519_KEY_SIZE) {
3289
0
                return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
3290
0
            }
3291
3292
0
        } else if (key->grp.id == MBEDTLS_ECP_DP_CURVE448) {
3293
0
            if (buflen < ECP_CURVE448_KEY_SIZE) {
3294
0
                return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
3295
0
            }
3296
0
        }
3297
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary_le(&key->d, buf, buflen));
3298
0
    }
3299
0
#endif
3300
0
#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3301
0
    if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
3302
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&key->d, buf, buflen));
3303
0
    }
3304
3305
0
#endif
3306
0
cleanup:
3307
3308
0
    return ret;
3309
0
}
3310
#endif /* MBEDTLS_DEPRECATED_REMOVED */
3311
3312
int mbedtls_ecp_write_key_ext(const mbedtls_ecp_keypair *key,
3313
                              size_t *olen, unsigned char *buf, size_t buflen)
3314
0
{
3315
0
    size_t len = (key->grp.nbits + 7) / 8;
3316
0
    if (len > buflen) {
3317
        /* For robustness, ensure *olen <= buflen even on error. */
3318
0
        *olen = 0;
3319
0
        return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
3320
0
    }
3321
0
    *olen = len;
3322
3323
    /* Private key not set */
3324
0
    if (key->d.n == 0) {
3325
0
        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3326
0
    }
3327
3328
0
#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3329
0
    if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
3330
0
        return mbedtls_mpi_write_binary_le(&key->d, buf, len);
3331
0
    }
3332
0
#endif
3333
3334
0
#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3335
0
    if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
3336
0
        return mbedtls_mpi_write_binary(&key->d, buf, len);
3337
0
    }
3338
0
#endif
3339
3340
    /* Private key set but no recognized curve type? This shouldn't happen. */
3341
0
    return MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3342
0
}
3343
3344
/*
3345
 * Write a public key.
3346
 */
3347
int mbedtls_ecp_write_public_key(const mbedtls_ecp_keypair *key,
3348
                                 int format, size_t *olen,
3349
                                 unsigned char *buf, size_t buflen)
3350
0
{
3351
0
    return mbedtls_ecp_point_write_binary(&key->grp, &key->Q,
3352
0
                                          format, olen, buf, buflen);
3353
0
}
3354
3355
3356
#if defined(MBEDTLS_ECP_C)
3357
/*
3358
 * Check a public-private key pair
3359
 */
3360
int mbedtls_ecp_check_pub_priv(
3361
    const mbedtls_ecp_keypair *pub, const mbedtls_ecp_keypair *prv,
3362
    int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
3363
0
{
3364
0
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3365
0
    mbedtls_ecp_point Q;
3366
0
    mbedtls_ecp_group grp;
3367
0
    if (pub->grp.id == MBEDTLS_ECP_DP_NONE ||
3368
0
        pub->grp.id != prv->grp.id ||
3369
0
        mbedtls_mpi_cmp_mpi(&pub->Q.X, &prv->Q.X) ||
3370
0
        mbedtls_mpi_cmp_mpi(&pub->Q.Y, &prv->Q.Y) ||
3371
0
        mbedtls_mpi_cmp_mpi(&pub->Q.Z, &prv->Q.Z)) {
3372
0
        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3373
0
    }
3374
3375
0
    mbedtls_ecp_point_init(&Q);
3376
0
    mbedtls_ecp_group_init(&grp);
3377
3378
    /* mbedtls_ecp_mul() needs a non-const group... */
3379
0
    mbedtls_ecp_group_copy(&grp, &prv->grp);
3380
3381
    /* Also checks d is valid */
3382
0
    MBEDTLS_MPI_CHK(mbedtls_ecp_mul(&grp, &Q, &prv->d, &prv->grp.G, f_rng, p_rng));
3383
3384
0
    if (mbedtls_mpi_cmp_mpi(&Q.X, &prv->Q.X) ||
3385
0
        mbedtls_mpi_cmp_mpi(&Q.Y, &prv->Q.Y) ||
3386
0
        mbedtls_mpi_cmp_mpi(&Q.Z, &prv->Q.Z)) {
3387
0
        ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3388
0
        goto cleanup;
3389
0
    }
3390
3391
0
cleanup:
3392
0
    mbedtls_ecp_point_free(&Q);
3393
0
    mbedtls_ecp_group_free(&grp);
3394
3395
0
    return ret;
3396
0
}
3397
3398
int mbedtls_ecp_keypair_calc_public(mbedtls_ecp_keypair *key,
3399
                                    int (*f_rng)(void *, unsigned char *, size_t),
3400
                                    void *p_rng)
3401
0
{
3402
0
    return mbedtls_ecp_mul(&key->grp, &key->Q, &key->d, &key->grp.G,
3403
0
                           f_rng, p_rng);
3404
0
}
3405
#endif /* MBEDTLS_ECP_C */
3406
3407
mbedtls_ecp_group_id mbedtls_ecp_keypair_get_group_id(
3408
    const mbedtls_ecp_keypair *key)
3409
1.95k
{
3410
1.95k
    return key->grp.id;
3411
1.95k
}
3412
3413
/*
3414
 * Export generic key-pair parameters.
3415
 */
3416
int mbedtls_ecp_export(const mbedtls_ecp_keypair *key, mbedtls_ecp_group *grp,
3417
                       mbedtls_mpi *d, mbedtls_ecp_point *Q)
3418
740
{
3419
740
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3420
3421
740
    if (grp != NULL && (ret = mbedtls_ecp_group_copy(grp, &key->grp)) != 0) {
3422
0
        return ret;
3423
0
    }
3424
3425
740
    if (d != NULL && (ret = mbedtls_mpi_copy(d, &key->d)) != 0) {
3426
0
        return ret;
3427
0
    }
3428
3429
740
    if (Q != NULL && (ret = mbedtls_ecp_copy(Q, &key->Q)) != 0) {
3430
0
        return ret;
3431
0
    }
3432
3433
740
    return 0;
3434
740
}
3435
3436
#if defined(MBEDTLS_SELF_TEST)
3437
3438
#if defined(MBEDTLS_ECP_C)
3439
/*
3440
 * PRNG for test - !!!INSECURE NEVER USE IN PRODUCTION!!!
3441
 *
3442
 * This is the linear congruential generator from numerical recipes,
3443
 * except we only use the low byte as the output. See
3444
 * https://en.wikipedia.org/wiki/Linear_congruential_generator#Parameters_in_common_use
3445
 */
3446
static int self_test_rng(void *ctx, unsigned char *out, size_t len)
3447
0
{
3448
0
    static uint32_t state = 42;
3449
3450
0
    (void) ctx;
3451
3452
0
    for (size_t i = 0; i < len; i++) {
3453
0
        state = state * 1664525u + 1013904223u;
3454
0
        out[i] = (unsigned char) state;
3455
0
    }
3456
3457
0
    return 0;
3458
0
}
3459
3460
/* Adjust the exponent to be a valid private point for the specified curve.
3461
 * This is sometimes necessary because we use a single set of exponents
3462
 * for all curves but the validity of values depends on the curve. */
3463
static int self_test_adjust_exponent(const mbedtls_ecp_group *grp,
3464
                                     mbedtls_mpi *m)
3465
0
{
3466
0
    int ret = 0;
3467
0
    switch (grp->id) {
3468
    /* If Curve25519 is available, then that's what we use for the
3469
     * Montgomery test, so we don't need the adjustment code. */
3470
#if !defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
3471
#if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
3472
        case MBEDTLS_ECP_DP_CURVE448:
3473
            /* Move highest bit from 254 to N-1. Setting bit N-1 is
3474
             * necessary to enforce the highest-bit-set constraint. */
3475
            MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(m, 254, 0));
3476
            MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(m, grp->nbits, 1));
3477
            /* Copy second-highest bit from 253 to N-2. This is not
3478
             * necessary but improves the test variety a bit. */
3479
            MBEDTLS_MPI_CHK(
3480
                mbedtls_mpi_set_bit(m, grp->nbits - 1,
3481
                                    mbedtls_mpi_get_bit(m, 253)));
3482
            break;
3483
#endif
3484
#endif /* ! defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED) */
3485
0
        default:
3486
            /* Non-Montgomery curves and Curve25519 need no adjustment. */
3487
0
            (void) grp;
3488
0
            (void) m;
3489
0
            goto cleanup;
3490
0
    }
3491
0
cleanup:
3492
0
    return ret;
3493
0
}
3494
3495
/* Calculate R = m.P for each m in exponents. Check that the number of
3496
 * basic operations doesn't depend on the value of m. */
3497
static int self_test_point(int verbose,
3498
                           mbedtls_ecp_group *grp,
3499
                           mbedtls_ecp_point *R,
3500
                           mbedtls_mpi *m,
3501
                           const mbedtls_ecp_point *P,
3502
                           const char *const *exponents,
3503
                           size_t n_exponents)
3504
0
{
3505
0
    int ret = 0;
3506
0
    size_t i = 0;
3507
0
    unsigned long add_c_prev, dbl_c_prev, mul_c_prev;
3508
0
    add_count = 0;
3509
0
    dbl_count = 0;
3510
0
    mul_count = 0;
3511
3512
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(m, 16, exponents[0]));
3513
0
    MBEDTLS_MPI_CHK(self_test_adjust_exponent(grp, m));
3514
0
    MBEDTLS_MPI_CHK(mbedtls_ecp_mul(grp, R, m, P, self_test_rng, NULL));
3515
3516
0
    for (i = 1; i < n_exponents; i++) {
3517
0
        add_c_prev = add_count;
3518
0
        dbl_c_prev = dbl_count;
3519
0
        mul_c_prev = mul_count;
3520
0
        add_count = 0;
3521
0
        dbl_count = 0;
3522
0
        mul_count = 0;
3523
3524
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(m, 16, exponents[i]));
3525
0
        MBEDTLS_MPI_CHK(self_test_adjust_exponent(grp, m));
3526
0
        MBEDTLS_MPI_CHK(mbedtls_ecp_mul(grp, R, m, P, self_test_rng, NULL));
3527
3528
0
        if (add_count != add_c_prev ||
3529
0
            dbl_count != dbl_c_prev ||
3530
0
            mul_count != mul_c_prev) {
3531
0
            ret = 1;
3532
0
            break;
3533
0
        }
3534
0
    }
3535
3536
0
cleanup:
3537
0
    if (verbose != 0) {
3538
0
        if (ret != 0) {
3539
0
            mbedtls_printf("failed (%u)\n", (unsigned int) i);
3540
0
        } else {
3541
0
            mbedtls_printf("passed\n");
3542
0
        }
3543
0
    }
3544
0
    return ret;
3545
0
}
3546
#endif /* MBEDTLS_ECP_C */
3547
3548
/*
3549
 * Checkup routine
3550
 */
3551
int mbedtls_ecp_self_test(int verbose)
3552
0
{
3553
0
#if defined(MBEDTLS_ECP_C)
3554
0
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3555
0
    mbedtls_ecp_group grp;
3556
0
    mbedtls_ecp_point R, P;
3557
0
    mbedtls_mpi m;
3558
3559
0
#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3560
    /* Exponents especially adapted for secp192k1, which has the lowest
3561
     * order n of all supported curves (secp192r1 is in a slightly larger
3562
     * field but the order of its base point is slightly smaller). */
3563
0
    const char *sw_exponents[] =
3564
0
    {
3565
0
        "000000000000000000000000000000000000000000000001", /* one */
3566
0
        "FFFFFFFFFFFFFFFFFFFFFFFE26F2FC170F69466A74DEFD8C", /* n - 1 */
3567
0
        "5EA6F389A38B8BC81E767753B15AA5569E1782E30ABE7D25", /* random */
3568
0
        "400000000000000000000000000000000000000000000000", /* one and zeros */
3569
0
        "7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", /* all ones */
3570
0
        "555555555555555555555555555555555555555555555555", /* 101010... */
3571
0
    };
3572
0
#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
3573
0
#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3574
0
    const char *m_exponents[] =
3575
0
    {
3576
        /* Valid private values for Curve25519. In a build with Curve448
3577
         * but not Curve25519, they will be adjusted in
3578
         * self_test_adjust_exponent(). */
3579
0
        "4000000000000000000000000000000000000000000000000000000000000000",
3580
0
        "5C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C30",
3581
0
        "5715ECCE24583F7A7023C24164390586842E816D7280A49EF6DF4EAE6B280BF8",
3582
0
        "41A2B017516F6D254E1F002BCCBADD54BE30F8CEC737A0E912B4963B6BA74460",
3583
0
        "5555555555555555555555555555555555555555555555555555555555555550",
3584
0
        "7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF8",
3585
0
    };
3586
0
#endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
3587
3588
0
    mbedtls_ecp_group_init(&grp);
3589
0
    mbedtls_ecp_point_init(&R);
3590
0
    mbedtls_ecp_point_init(&P);
3591
0
    mbedtls_mpi_init(&m);
3592
3593
0
#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3594
    /* Use secp192r1 if available, or any available curve */
3595
0
#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
3596
0
    MBEDTLS_MPI_CHK(mbedtls_ecp_group_load(&grp, MBEDTLS_ECP_DP_SECP192R1));
3597
#else
3598
    MBEDTLS_MPI_CHK(mbedtls_ecp_group_load(&grp, mbedtls_ecp_curve_list()->grp_id));
3599
#endif
3600
3601
0
    if (verbose != 0) {
3602
0
        mbedtls_printf("  ECP SW test #1 (constant op_count, base point G): ");
3603
0
    }
3604
    /* Do a dummy multiplication first to trigger precomputation */
3605
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&m, 2));
3606
0
    MBEDTLS_MPI_CHK(mbedtls_ecp_mul(&grp, &P, &m, &grp.G, self_test_rng, NULL));
3607
0
    ret = self_test_point(verbose,
3608
0
                          &grp, &R, &m, &grp.G,
3609
0
                          sw_exponents,
3610
0
                          sizeof(sw_exponents) / sizeof(sw_exponents[0]));
3611
0
    if (ret != 0) {
3612
0
        goto cleanup;
3613
0
    }
3614
3615
0
    if (verbose != 0) {
3616
0
        mbedtls_printf("  ECP SW test #2 (constant op_count, other point): ");
3617
0
    }
3618
    /* We computed P = 2G last time, use it */
3619
0
    ret = self_test_point(verbose,
3620
0
                          &grp, &R, &m, &P,
3621
0
                          sw_exponents,
3622
0
                          sizeof(sw_exponents) / sizeof(sw_exponents[0]));
3623
0
    if (ret != 0) {
3624
0
        goto cleanup;
3625
0
    }
3626
3627
0
    mbedtls_ecp_group_free(&grp);
3628
0
    mbedtls_ecp_point_free(&R);
3629
0
#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
3630
3631
0
#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3632
0
    if (verbose != 0) {
3633
0
        mbedtls_printf("  ECP Montgomery test (constant op_count): ");
3634
0
    }
3635
0
#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
3636
0
    MBEDTLS_MPI_CHK(mbedtls_ecp_group_load(&grp, MBEDTLS_ECP_DP_CURVE25519));
3637
#elif defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
3638
    MBEDTLS_MPI_CHK(mbedtls_ecp_group_load(&grp, MBEDTLS_ECP_DP_CURVE448));
3639
#else
3640
#error "MBEDTLS_ECP_MONTGOMERY_ENABLED is defined, but no curve is supported for self-test"
3641
#endif
3642
0
    ret = self_test_point(verbose,
3643
0
                          &grp, &R, &m, &grp.G,
3644
0
                          m_exponents,
3645
0
                          sizeof(m_exponents) / sizeof(m_exponents[0]));
3646
0
    if (ret != 0) {
3647
0
        goto cleanup;
3648
0
    }
3649
0
#endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
3650
3651
0
cleanup:
3652
3653
0
    if (ret < 0 && verbose != 0) {
3654
0
        mbedtls_printf("Unexpected error, return code = %08X\n", (unsigned int) ret);
3655
0
    }
3656
3657
0
    mbedtls_ecp_group_free(&grp);
3658
0
    mbedtls_ecp_point_free(&R);
3659
0
    mbedtls_ecp_point_free(&P);
3660
0
    mbedtls_mpi_free(&m);
3661
3662
0
    if (verbose != 0) {
3663
0
        mbedtls_printf("\n");
3664
0
    }
3665
3666
0
    return ret;
3667
#else /* MBEDTLS_ECP_C */
3668
    (void) verbose;
3669
    return 0;
3670
#endif /* MBEDTLS_ECP_C */
3671
0
}
3672
3673
#endif /* MBEDTLS_SELF_TEST */
3674
3675
#endif /* !MBEDTLS_ECP_ALT */
3676
3677
#endif /* MBEDTLS_ECP_LIGHT */