/src/Python-3.8.3/Objects/floatobject.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* Float object implementation */ |
2 | | |
3 | | /* XXX There should be overflow checks here, but it's hard to check |
4 | | for any kind of float exception without losing portability. */ |
5 | | |
6 | | #include "Python.h" |
7 | | |
8 | | #include <ctype.h> |
9 | | #include <float.h> |
10 | | |
11 | | /*[clinic input] |
12 | | class float "PyObject *" "&PyFloat_Type" |
13 | | [clinic start generated code]*/ |
14 | | /*[clinic end generated code: output=da39a3ee5e6b4b0d input=dd0003f68f144284]*/ |
15 | | |
16 | | #include "clinic/floatobject.c.h" |
17 | | |
18 | | /* Special free list |
19 | | free_list is a singly-linked list of available PyFloatObjects, linked |
20 | | via abuse of their ob_type members. |
21 | | */ |
22 | | |
23 | | #ifndef PyFloat_MAXFREELIST |
24 | 2.60k | #define PyFloat_MAXFREELIST 100 |
25 | | #endif |
26 | | static int numfree = 0; |
27 | | static PyFloatObject *free_list = NULL; |
28 | | |
29 | | double |
30 | | PyFloat_GetMax(void) |
31 | 0 | { |
32 | 0 | return DBL_MAX; |
33 | 0 | } |
34 | | |
35 | | double |
36 | | PyFloat_GetMin(void) |
37 | 0 | { |
38 | 0 | return DBL_MIN; |
39 | 0 | } |
40 | | |
41 | | static PyTypeObject FloatInfoType; |
42 | | |
43 | | PyDoc_STRVAR(floatinfo__doc__, |
44 | | "sys.float_info\n\ |
45 | | \n\ |
46 | | A named tuple holding information about the float type. It contains low level\n\ |
47 | | information about the precision and internal representation. Please study\n\ |
48 | | your system's :file:`float.h` for more information."); |
49 | | |
50 | | static PyStructSequence_Field floatinfo_fields[] = { |
51 | | {"max", "DBL_MAX -- maximum representable finite float"}, |
52 | | {"max_exp", "DBL_MAX_EXP -- maximum int e such that radix**(e-1) " |
53 | | "is representable"}, |
54 | | {"max_10_exp", "DBL_MAX_10_EXP -- maximum int e such that 10**e " |
55 | | "is representable"}, |
56 | | {"min", "DBL_MIN -- Minimum positive normalized float"}, |
57 | | {"min_exp", "DBL_MIN_EXP -- minimum int e such that radix**(e-1) " |
58 | | "is a normalized float"}, |
59 | | {"min_10_exp", "DBL_MIN_10_EXP -- minimum int e such that 10**e is " |
60 | | "a normalized"}, |
61 | | {"dig", "DBL_DIG -- digits"}, |
62 | | {"mant_dig", "DBL_MANT_DIG -- mantissa digits"}, |
63 | | {"epsilon", "DBL_EPSILON -- Difference between 1 and the next " |
64 | | "representable float"}, |
65 | | {"radix", "FLT_RADIX -- radix of exponent"}, |
66 | | {"rounds", "FLT_ROUNDS -- rounding mode"}, |
67 | | {0} |
68 | | }; |
69 | | |
70 | | static PyStructSequence_Desc floatinfo_desc = { |
71 | | "sys.float_info", /* name */ |
72 | | floatinfo__doc__, /* doc */ |
73 | | floatinfo_fields, /* fields */ |
74 | | 11 |
75 | | }; |
76 | | |
77 | | PyObject * |
78 | | PyFloat_GetInfo(void) |
79 | 14 | { |
80 | 14 | PyObject* floatinfo; |
81 | 14 | int pos = 0; |
82 | | |
83 | 14 | floatinfo = PyStructSequence_New(&FloatInfoType); |
84 | 14 | if (floatinfo == NULL) { |
85 | 0 | return NULL; |
86 | 0 | } |
87 | | |
88 | 14 | #define SetIntFlag(flag) \ |
89 | 112 | PyStructSequence_SET_ITEM(floatinfo, pos++, PyLong_FromLong(flag)) |
90 | 14 | #define SetDblFlag(flag) \ |
91 | 42 | PyStructSequence_SET_ITEM(floatinfo, pos++, PyFloat_FromDouble(flag)) |
92 | | |
93 | 14 | SetDblFlag(DBL_MAX); |
94 | 14 | SetIntFlag(DBL_MAX_EXP); |
95 | 14 | SetIntFlag(DBL_MAX_10_EXP); |
96 | 14 | SetDblFlag(DBL_MIN); |
97 | 14 | SetIntFlag(DBL_MIN_EXP); |
98 | 14 | SetIntFlag(DBL_MIN_10_EXP); |
99 | 14 | SetIntFlag(DBL_DIG); |
100 | 14 | SetIntFlag(DBL_MANT_DIG); |
101 | 14 | SetDblFlag(DBL_EPSILON); |
102 | 14 | SetIntFlag(FLT_RADIX); |
103 | 14 | SetIntFlag(FLT_ROUNDS); |
104 | 14 | #undef SetIntFlag |
105 | 14 | #undef SetDblFlag |
106 | | |
107 | 14 | if (PyErr_Occurred()) { |
108 | 0 | Py_CLEAR(floatinfo); |
109 | 0 | return NULL; |
110 | 0 | } |
111 | 14 | return floatinfo; |
112 | 14 | } |
113 | | |
114 | | PyObject * |
115 | | PyFloat_FromDouble(double fval) |
116 | 2.69k | { |
117 | 2.69k | PyFloatObject *op = free_list; |
118 | 2.69k | if (op != NULL) { |
119 | 2.54k | free_list = (PyFloatObject *) Py_TYPE(op); |
120 | 2.54k | numfree--; |
121 | 2.54k | } else { |
122 | 145 | op = (PyFloatObject*) PyObject_MALLOC(sizeof(PyFloatObject)); |
123 | 145 | if (!op) |
124 | 0 | return PyErr_NoMemory(); |
125 | 145 | } |
126 | | /* Inline PyObject_New */ |
127 | 2.69k | (void)PyObject_INIT(op, &PyFloat_Type); |
128 | 2.69k | op->ob_fval = fval; |
129 | 2.69k | return (PyObject *) op; |
130 | 2.69k | } |
131 | | |
132 | | static PyObject * |
133 | | float_from_string_inner(const char *s, Py_ssize_t len, void *obj) |
134 | 0 | { |
135 | 0 | double x; |
136 | 0 | const char *end; |
137 | 0 | const char *last = s + len; |
138 | | /* strip space */ |
139 | 0 | while (s < last && Py_ISSPACE(*s)) { |
140 | 0 | s++; |
141 | 0 | } |
142 | |
|
143 | 0 | while (s < last - 1 && Py_ISSPACE(last[-1])) { |
144 | 0 | last--; |
145 | 0 | } |
146 | | |
147 | | /* We don't care about overflow or underflow. If the platform |
148 | | * supports them, infinities and signed zeroes (on underflow) are |
149 | | * fine. */ |
150 | 0 | x = PyOS_string_to_double(s, (char **)&end, NULL); |
151 | 0 | if (end != last) { |
152 | 0 | PyErr_Format(PyExc_ValueError, |
153 | 0 | "could not convert string to float: " |
154 | 0 | "%R", obj); |
155 | 0 | return NULL; |
156 | 0 | } |
157 | 0 | else if (x == -1.0 && PyErr_Occurred()) { |
158 | 0 | return NULL; |
159 | 0 | } |
160 | 0 | else { |
161 | 0 | return PyFloat_FromDouble(x); |
162 | 0 | } |
163 | 0 | } |
164 | | |
165 | | PyObject * |
166 | | PyFloat_FromString(PyObject *v) |
167 | 0 | { |
168 | 0 | const char *s; |
169 | 0 | PyObject *s_buffer = NULL; |
170 | 0 | Py_ssize_t len; |
171 | 0 | Py_buffer view = {NULL, NULL}; |
172 | 0 | PyObject *result = NULL; |
173 | |
|
174 | 0 | if (PyUnicode_Check(v)) { |
175 | 0 | s_buffer = _PyUnicode_TransformDecimalAndSpaceToASCII(v); |
176 | 0 | if (s_buffer == NULL) |
177 | 0 | return NULL; |
178 | 0 | assert(PyUnicode_IS_ASCII(s_buffer)); |
179 | | /* Simply get a pointer to existing ASCII characters. */ |
180 | 0 | s = PyUnicode_AsUTF8AndSize(s_buffer, &len); |
181 | 0 | assert(s != NULL); |
182 | 0 | } |
183 | 0 | else if (PyBytes_Check(v)) { |
184 | 0 | s = PyBytes_AS_STRING(v); |
185 | 0 | len = PyBytes_GET_SIZE(v); |
186 | 0 | } |
187 | 0 | else if (PyByteArray_Check(v)) { |
188 | 0 | s = PyByteArray_AS_STRING(v); |
189 | 0 | len = PyByteArray_GET_SIZE(v); |
190 | 0 | } |
191 | 0 | else if (PyObject_GetBuffer(v, &view, PyBUF_SIMPLE) == 0) { |
192 | 0 | s = (const char *)view.buf; |
193 | 0 | len = view.len; |
194 | | /* Copy to NUL-terminated buffer. */ |
195 | 0 | s_buffer = PyBytes_FromStringAndSize(s, len); |
196 | 0 | if (s_buffer == NULL) { |
197 | 0 | PyBuffer_Release(&view); |
198 | 0 | return NULL; |
199 | 0 | } |
200 | 0 | s = PyBytes_AS_STRING(s_buffer); |
201 | 0 | } |
202 | 0 | else { |
203 | 0 | PyErr_Format(PyExc_TypeError, |
204 | 0 | "float() argument must be a string or a number, not '%.200s'", |
205 | 0 | Py_TYPE(v)->tp_name); |
206 | 0 | return NULL; |
207 | 0 | } |
208 | 0 | result = _Py_string_to_number_with_underscores(s, len, "float", v, v, |
209 | 0 | float_from_string_inner); |
210 | 0 | PyBuffer_Release(&view); |
211 | 0 | Py_XDECREF(s_buffer); |
212 | 0 | return result; |
213 | 0 | } |
214 | | |
215 | | static void |
216 | | float_dealloc(PyFloatObject *op) |
217 | 2.60k | { |
218 | 2.60k | if (PyFloat_CheckExact(op)) { |
219 | 2.60k | if (numfree >= PyFloat_MAXFREELIST) { |
220 | 0 | PyObject_FREE(op); |
221 | 0 | return; |
222 | 0 | } |
223 | 2.60k | numfree++; |
224 | 2.60k | Py_TYPE(op) = (struct _typeobject *)free_list; |
225 | 2.60k | free_list = op; |
226 | 2.60k | } |
227 | 0 | else |
228 | 0 | Py_TYPE(op)->tp_free((PyObject *)op); |
229 | 2.60k | } |
230 | | |
231 | | double |
232 | | PyFloat_AsDouble(PyObject *op) |
233 | 249 | { |
234 | 249 | PyNumberMethods *nb; |
235 | 249 | PyObject *res; |
236 | 249 | double val; |
237 | | |
238 | 249 | if (op == NULL) { |
239 | 0 | PyErr_BadArgument(); |
240 | 0 | return -1; |
241 | 0 | } |
242 | | |
243 | 249 | if (PyFloat_Check(op)) { |
244 | 249 | return PyFloat_AS_DOUBLE(op); |
245 | 249 | } |
246 | | |
247 | 0 | nb = Py_TYPE(op)->tp_as_number; |
248 | 0 | if (nb == NULL || nb->nb_float == NULL) { |
249 | 0 | if (nb && nb->nb_index) { |
250 | 0 | PyObject *res = PyNumber_Index(op); |
251 | 0 | if (!res) { |
252 | 0 | return -1; |
253 | 0 | } |
254 | 0 | double val = PyLong_AsDouble(res); |
255 | 0 | Py_DECREF(res); |
256 | 0 | return val; |
257 | 0 | } |
258 | 0 | PyErr_Format(PyExc_TypeError, "must be real number, not %.50s", |
259 | 0 | op->ob_type->tp_name); |
260 | 0 | return -1; |
261 | 0 | } |
262 | | |
263 | 0 | res = (*nb->nb_float) (op); |
264 | 0 | if (res == NULL) { |
265 | 0 | return -1; |
266 | 0 | } |
267 | 0 | if (!PyFloat_CheckExact(res)) { |
268 | 0 | if (!PyFloat_Check(res)) { |
269 | 0 | PyErr_Format(PyExc_TypeError, |
270 | 0 | "%.50s.__float__ returned non-float (type %.50s)", |
271 | 0 | op->ob_type->tp_name, res->ob_type->tp_name); |
272 | 0 | Py_DECREF(res); |
273 | 0 | return -1; |
274 | 0 | } |
275 | 0 | if (PyErr_WarnFormat(PyExc_DeprecationWarning, 1, |
276 | 0 | "%.50s.__float__ returned non-float (type %.50s). " |
277 | 0 | "The ability to return an instance of a strict subclass of float " |
278 | 0 | "is deprecated, and may be removed in a future version of Python.", |
279 | 0 | op->ob_type->tp_name, res->ob_type->tp_name)) { |
280 | 0 | Py_DECREF(res); |
281 | 0 | return -1; |
282 | 0 | } |
283 | 0 | } |
284 | | |
285 | 0 | val = PyFloat_AS_DOUBLE(res); |
286 | 0 | Py_DECREF(res); |
287 | 0 | return val; |
288 | 0 | } |
289 | | |
290 | | /* Macro and helper that convert PyObject obj to a C double and store |
291 | | the value in dbl. If conversion to double raises an exception, obj is |
292 | | set to NULL, and the function invoking this macro returns NULL. If |
293 | | obj is not of float or int type, Py_NotImplemented is incref'ed, |
294 | | stored in obj, and returned from the function invoking this macro. |
295 | | */ |
296 | | #define CONVERT_TO_DOUBLE(obj, dbl) \ |
297 | 112 | if (PyFloat_Check(obj)) \ |
298 | 112 | dbl = PyFloat_AS_DOUBLE(obj); \ |
299 | 112 | else if (convert_to_double(&(obj), &(dbl)) < 0) \ |
300 | 42 | return obj; |
301 | | |
302 | | /* Methods */ |
303 | | |
304 | | static int |
305 | | convert_to_double(PyObject **v, double *dbl) |
306 | 42 | { |
307 | 42 | PyObject *obj = *v; |
308 | | |
309 | 42 | if (PyLong_Check(obj)) { |
310 | 42 | *dbl = PyLong_AsDouble(obj); |
311 | 42 | if (*dbl == -1.0 && PyErr_Occurred()) { |
312 | 0 | *v = NULL; |
313 | 0 | return -1; |
314 | 0 | } |
315 | 42 | } |
316 | 0 | else { |
317 | 0 | Py_INCREF(Py_NotImplemented); |
318 | 0 | *v = Py_NotImplemented; |
319 | 0 | return -1; |
320 | 0 | } |
321 | 42 | return 0; |
322 | 42 | } |
323 | | |
324 | | static PyObject * |
325 | | float_repr(PyFloatObject *v) |
326 | 0 | { |
327 | 0 | PyObject *result; |
328 | 0 | char *buf; |
329 | |
|
330 | 0 | buf = PyOS_double_to_string(PyFloat_AS_DOUBLE(v), |
331 | 0 | 'r', 0, |
332 | 0 | Py_DTSF_ADD_DOT_0, |
333 | 0 | NULL); |
334 | 0 | if (!buf) |
335 | 0 | return PyErr_NoMemory(); |
336 | 0 | result = _PyUnicode_FromASCII(buf, strlen(buf)); |
337 | 0 | PyMem_Free(buf); |
338 | 0 | return result; |
339 | 0 | } |
340 | | |
341 | | /* Comparison is pretty much a nightmare. When comparing float to float, |
342 | | * we do it as straightforwardly (and long-windedly) as conceivable, so |
343 | | * that, e.g., Python x == y delivers the same result as the platform |
344 | | * C x == y when x and/or y is a NaN. |
345 | | * When mixing float with an integer type, there's no good *uniform* approach. |
346 | | * Converting the double to an integer obviously doesn't work, since we |
347 | | * may lose info from fractional bits. Converting the integer to a double |
348 | | * also has two failure modes: (1) an int may trigger overflow (too |
349 | | * large to fit in the dynamic range of a C double); (2) even a C long may have |
350 | | * more bits than fit in a C double (e.g., on a 64-bit box long may have |
351 | | * 63 bits of precision, but a C double probably has only 53), and then |
352 | | * we can falsely claim equality when low-order integer bits are lost by |
353 | | * coercion to double. So this part is painful too. |
354 | | */ |
355 | | |
356 | | static PyObject* |
357 | | float_richcompare(PyObject *v, PyObject *w, int op) |
358 | 283 | { |
359 | 283 | double i, j; |
360 | 283 | int r = 0; |
361 | | |
362 | 283 | assert(PyFloat_Check(v)); |
363 | 283 | i = PyFloat_AS_DOUBLE(v); |
364 | | |
365 | | /* Switch on the type of w. Set i and j to doubles to be compared, |
366 | | * and op to the richcomp to use. |
367 | | */ |
368 | 283 | if (PyFloat_Check(w)) |
369 | 254 | j = PyFloat_AS_DOUBLE(w); |
370 | | |
371 | 29 | else if (!Py_IS_FINITE(i)) { |
372 | 0 | if (PyLong_Check(w)) |
373 | | /* If i is an infinity, its magnitude exceeds any |
374 | | * finite integer, so it doesn't matter which int we |
375 | | * compare i with. If i is a NaN, similarly. |
376 | | */ |
377 | 0 | j = 0.0; |
378 | 0 | else |
379 | 0 | goto Unimplemented; |
380 | 0 | } |
381 | | |
382 | 29 | else if (PyLong_Check(w)) { |
383 | 29 | int vsign = i == 0.0 ? 0 : i < 0.0 ? -1 : 1; |
384 | 29 | int wsign = _PyLong_Sign(w); |
385 | 29 | size_t nbits; |
386 | 29 | int exponent; |
387 | | |
388 | 29 | if (vsign != wsign) { |
389 | | /* Magnitudes are irrelevant -- the signs alone |
390 | | * determine the outcome. |
391 | | */ |
392 | 29 | i = (double)vsign; |
393 | 29 | j = (double)wsign; |
394 | 29 | goto Compare; |
395 | 29 | } |
396 | | /* The signs are the same. */ |
397 | | /* Convert w to a double if it fits. In particular, 0 fits. */ |
398 | 0 | nbits = _PyLong_NumBits(w); |
399 | 0 | if (nbits == (size_t)-1 && PyErr_Occurred()) { |
400 | | /* This long is so large that size_t isn't big enough |
401 | | * to hold the # of bits. Replace with little doubles |
402 | | * that give the same outcome -- w is so large that |
403 | | * its magnitude must exceed the magnitude of any |
404 | | * finite float. |
405 | | */ |
406 | 0 | PyErr_Clear(); |
407 | 0 | i = (double)vsign; |
408 | 0 | assert(wsign != 0); |
409 | 0 | j = wsign * 2.0; |
410 | 0 | goto Compare; |
411 | 0 | } |
412 | 0 | if (nbits <= 48) { |
413 | 0 | j = PyLong_AsDouble(w); |
414 | | /* It's impossible that <= 48 bits overflowed. */ |
415 | 0 | assert(j != -1.0 || ! PyErr_Occurred()); |
416 | 0 | goto Compare; |
417 | 0 | } |
418 | 0 | assert(wsign != 0); /* else nbits was 0 */ |
419 | 0 | assert(vsign != 0); /* if vsign were 0, then since wsign is |
420 | | * not 0, we would have taken the |
421 | | * vsign != wsign branch at the start */ |
422 | | /* We want to work with non-negative numbers. */ |
423 | 0 | if (vsign < 0) { |
424 | | /* "Multiply both sides" by -1; this also swaps the |
425 | | * comparator. |
426 | | */ |
427 | 0 | i = -i; |
428 | 0 | op = _Py_SwappedOp[op]; |
429 | 0 | } |
430 | 0 | assert(i > 0.0); |
431 | 0 | (void) frexp(i, &exponent); |
432 | | /* exponent is the # of bits in v before the radix point; |
433 | | * we know that nbits (the # of bits in w) > 48 at this point |
434 | | */ |
435 | 0 | if (exponent < 0 || (size_t)exponent < nbits) { |
436 | 0 | i = 1.0; |
437 | 0 | j = 2.0; |
438 | 0 | goto Compare; |
439 | 0 | } |
440 | 0 | if ((size_t)exponent > nbits) { |
441 | 0 | i = 2.0; |
442 | 0 | j = 1.0; |
443 | 0 | goto Compare; |
444 | 0 | } |
445 | | /* v and w have the same number of bits before the radix |
446 | | * point. Construct two ints that have the same comparison |
447 | | * outcome. |
448 | | */ |
449 | 0 | { |
450 | 0 | double fracpart; |
451 | 0 | double intpart; |
452 | 0 | PyObject *result = NULL; |
453 | 0 | PyObject *vv = NULL; |
454 | 0 | PyObject *ww = w; |
455 | |
|
456 | 0 | if (wsign < 0) { |
457 | 0 | ww = PyNumber_Negative(w); |
458 | 0 | if (ww == NULL) |
459 | 0 | goto Error; |
460 | 0 | } |
461 | 0 | else |
462 | 0 | Py_INCREF(ww); |
463 | | |
464 | 0 | fracpart = modf(i, &intpart); |
465 | 0 | vv = PyLong_FromDouble(intpart); |
466 | 0 | if (vv == NULL) |
467 | 0 | goto Error; |
468 | | |
469 | 0 | if (fracpart != 0.0) { |
470 | | /* Shift left, and or a 1 bit into vv |
471 | | * to represent the lost fraction. |
472 | | */ |
473 | 0 | PyObject *temp; |
474 | |
|
475 | 0 | temp = _PyLong_Lshift(ww, 1); |
476 | 0 | if (temp == NULL) |
477 | 0 | goto Error; |
478 | 0 | Py_DECREF(ww); |
479 | 0 | ww = temp; |
480 | |
|
481 | 0 | temp = _PyLong_Lshift(vv, 1); |
482 | 0 | if (temp == NULL) |
483 | 0 | goto Error; |
484 | 0 | Py_DECREF(vv); |
485 | 0 | vv = temp; |
486 | |
|
487 | 0 | temp = PyNumber_Or(vv, _PyLong_One); |
488 | 0 | if (temp == NULL) |
489 | 0 | goto Error; |
490 | 0 | Py_DECREF(vv); |
491 | 0 | vv = temp; |
492 | 0 | } |
493 | | |
494 | 0 | r = PyObject_RichCompareBool(vv, ww, op); |
495 | 0 | if (r < 0) |
496 | 0 | goto Error; |
497 | 0 | result = PyBool_FromLong(r); |
498 | 0 | Error: |
499 | 0 | Py_XDECREF(vv); |
500 | 0 | Py_XDECREF(ww); |
501 | 0 | return result; |
502 | 0 | } |
503 | 0 | } /* else if (PyLong_Check(w)) */ |
504 | | |
505 | 0 | else /* w isn't float or int */ |
506 | 0 | goto Unimplemented; |
507 | | |
508 | 283 | Compare: |
509 | 283 | PyFPE_START_PROTECT("richcompare", return NULL) |
510 | 283 | switch (op) { |
511 | 0 | case Py_EQ: |
512 | 0 | r = i == j; |
513 | 0 | break; |
514 | 283 | case Py_NE: |
515 | 283 | r = i != j; |
516 | 283 | break; |
517 | 0 | case Py_LE: |
518 | 0 | r = i <= j; |
519 | 0 | break; |
520 | 0 | case Py_GE: |
521 | 0 | r = i >= j; |
522 | 0 | break; |
523 | 0 | case Py_LT: |
524 | 0 | r = i < j; |
525 | 0 | break; |
526 | 0 | case Py_GT: |
527 | 0 | r = i > j; |
528 | 0 | break; |
529 | 283 | } |
530 | 283 | PyFPE_END_PROTECT(r) |
531 | 283 | return PyBool_FromLong(r); |
532 | | |
533 | 0 | Unimplemented: |
534 | 0 | Py_RETURN_NOTIMPLEMENTED; |
535 | 283 | } |
536 | | |
537 | | static Py_hash_t |
538 | | float_hash(PyFloatObject *v) |
539 | 10 | { |
540 | 10 | return _Py_HashDouble(v->ob_fval); |
541 | 10 | } |
542 | | |
543 | | static PyObject * |
544 | | float_add(PyObject *v, PyObject *w) |
545 | 0 | { |
546 | 0 | double a,b; |
547 | 0 | CONVERT_TO_DOUBLE(v, a); |
548 | 0 | CONVERT_TO_DOUBLE(w, b); |
549 | 0 | PyFPE_START_PROTECT("add", return 0) |
550 | 0 | a = a + b; |
551 | 0 | PyFPE_END_PROTECT(a) |
552 | 0 | return PyFloat_FromDouble(a); |
553 | 0 | } |
554 | | |
555 | | static PyObject * |
556 | | float_sub(PyObject *v, PyObject *w) |
557 | 28 | { |
558 | 28 | double a,b; |
559 | 28 | CONVERT_TO_DOUBLE(v, a); |
560 | 28 | CONVERT_TO_DOUBLE(w, b); |
561 | 28 | PyFPE_START_PROTECT("subtract", return 0) |
562 | 28 | a = a - b; |
563 | 28 | PyFPE_END_PROTECT(a) |
564 | 28 | return PyFloat_FromDouble(a); |
565 | 28 | } |
566 | | |
567 | | static PyObject * |
568 | | float_mul(PyObject *v, PyObject *w) |
569 | 28 | { |
570 | 28 | double a,b; |
571 | 28 | CONVERT_TO_DOUBLE(v, a); |
572 | 28 | CONVERT_TO_DOUBLE(w, b); |
573 | 28 | PyFPE_START_PROTECT("multiply", return 0) |
574 | 28 | a = a * b; |
575 | 28 | PyFPE_END_PROTECT(a) |
576 | 28 | return PyFloat_FromDouble(a); |
577 | 28 | } |
578 | | |
579 | | static PyObject * |
580 | | float_div(PyObject *v, PyObject *w) |
581 | 0 | { |
582 | 0 | double a,b; |
583 | 0 | CONVERT_TO_DOUBLE(v, a); |
584 | 0 | CONVERT_TO_DOUBLE(w, b); |
585 | 0 | if (b == 0.0) { |
586 | 0 | PyErr_SetString(PyExc_ZeroDivisionError, |
587 | 0 | "float division by zero"); |
588 | 0 | return NULL; |
589 | 0 | } |
590 | 0 | PyFPE_START_PROTECT("divide", return 0) |
591 | 0 | a = a / b; |
592 | 0 | PyFPE_END_PROTECT(a) |
593 | 0 | return PyFloat_FromDouble(a); |
594 | 0 | } |
595 | | |
596 | | static PyObject * |
597 | | float_rem(PyObject *v, PyObject *w) |
598 | 0 | { |
599 | 0 | double vx, wx; |
600 | 0 | double mod; |
601 | 0 | CONVERT_TO_DOUBLE(v, vx); |
602 | 0 | CONVERT_TO_DOUBLE(w, wx); |
603 | 0 | if (wx == 0.0) { |
604 | 0 | PyErr_SetString(PyExc_ZeroDivisionError, |
605 | 0 | "float modulo"); |
606 | 0 | return NULL; |
607 | 0 | } |
608 | 0 | PyFPE_START_PROTECT("modulo", return 0) |
609 | 0 | mod = fmod(vx, wx); |
610 | 0 | if (mod) { |
611 | | /* ensure the remainder has the same sign as the denominator */ |
612 | 0 | if ((wx < 0) != (mod < 0)) { |
613 | 0 | mod += wx; |
614 | 0 | } |
615 | 0 | } |
616 | 0 | else { |
617 | | /* the remainder is zero, and in the presence of signed zeroes |
618 | | fmod returns different results across platforms; ensure |
619 | | it has the same sign as the denominator. */ |
620 | 0 | mod = copysign(0.0, wx); |
621 | 0 | } |
622 | 0 | PyFPE_END_PROTECT(mod) |
623 | 0 | return PyFloat_FromDouble(mod); |
624 | 0 | } |
625 | | |
626 | | static PyObject * |
627 | | float_divmod(PyObject *v, PyObject *w) |
628 | 0 | { |
629 | 0 | double vx, wx; |
630 | 0 | double div, mod, floordiv; |
631 | 0 | CONVERT_TO_DOUBLE(v, vx); |
632 | 0 | CONVERT_TO_DOUBLE(w, wx); |
633 | 0 | if (wx == 0.0) { |
634 | 0 | PyErr_SetString(PyExc_ZeroDivisionError, "float divmod()"); |
635 | 0 | return NULL; |
636 | 0 | } |
637 | 0 | PyFPE_START_PROTECT("divmod", return 0) |
638 | 0 | mod = fmod(vx, wx); |
639 | | /* fmod is typically exact, so vx-mod is *mathematically* an |
640 | | exact multiple of wx. But this is fp arithmetic, and fp |
641 | | vx - mod is an approximation; the result is that div may |
642 | | not be an exact integral value after the division, although |
643 | | it will always be very close to one. |
644 | | */ |
645 | 0 | div = (vx - mod) / wx; |
646 | 0 | if (mod) { |
647 | | /* ensure the remainder has the same sign as the denominator */ |
648 | 0 | if ((wx < 0) != (mod < 0)) { |
649 | 0 | mod += wx; |
650 | 0 | div -= 1.0; |
651 | 0 | } |
652 | 0 | } |
653 | 0 | else { |
654 | | /* the remainder is zero, and in the presence of signed zeroes |
655 | | fmod returns different results across platforms; ensure |
656 | | it has the same sign as the denominator. */ |
657 | 0 | mod = copysign(0.0, wx); |
658 | 0 | } |
659 | | /* snap quotient to nearest integral value */ |
660 | 0 | if (div) { |
661 | 0 | floordiv = floor(div); |
662 | 0 | if (div - floordiv > 0.5) |
663 | 0 | floordiv += 1.0; |
664 | 0 | } |
665 | 0 | else { |
666 | | /* div is zero - get the same sign as the true quotient */ |
667 | 0 | floordiv = copysign(0.0, vx / wx); /* zero w/ sign of vx/wx */ |
668 | 0 | } |
669 | 0 | PyFPE_END_PROTECT(floordiv) |
670 | 0 | return Py_BuildValue("(dd)", floordiv, mod); |
671 | 0 | } |
672 | | |
673 | | static PyObject * |
674 | | float_floor_div(PyObject *v, PyObject *w) |
675 | 0 | { |
676 | 0 | PyObject *t, *r; |
677 | |
|
678 | 0 | t = float_divmod(v, w); |
679 | 0 | if (t == NULL || t == Py_NotImplemented) |
680 | 0 | return t; |
681 | 0 | assert(PyTuple_CheckExact(t)); |
682 | 0 | r = PyTuple_GET_ITEM(t, 0); |
683 | 0 | Py_INCREF(r); |
684 | 0 | Py_DECREF(t); |
685 | 0 | return r; |
686 | 0 | } |
687 | | |
688 | | /* determine whether x is an odd integer or not; assumes that |
689 | | x is not an infinity or nan. */ |
690 | 0 | #define DOUBLE_IS_ODD_INTEGER(x) (fmod(fabs(x), 2.0) == 1.0) |
691 | | |
692 | | static PyObject * |
693 | | float_pow(PyObject *v, PyObject *w, PyObject *z) |
694 | 0 | { |
695 | 0 | double iv, iw, ix; |
696 | 0 | int negate_result = 0; |
697 | |
|
698 | 0 | if ((PyObject *)z != Py_None) { |
699 | 0 | PyErr_SetString(PyExc_TypeError, "pow() 3rd argument not " |
700 | 0 | "allowed unless all arguments are integers"); |
701 | 0 | return NULL; |
702 | 0 | } |
703 | | |
704 | 0 | CONVERT_TO_DOUBLE(v, iv); |
705 | 0 | CONVERT_TO_DOUBLE(w, iw); |
706 | | |
707 | | /* Sort out special cases here instead of relying on pow() */ |
708 | 0 | if (iw == 0) { /* v**0 is 1, even 0**0 */ |
709 | 0 | return PyFloat_FromDouble(1.0); |
710 | 0 | } |
711 | 0 | if (Py_IS_NAN(iv)) { /* nan**w = nan, unless w == 0 */ |
712 | 0 | return PyFloat_FromDouble(iv); |
713 | 0 | } |
714 | 0 | if (Py_IS_NAN(iw)) { /* v**nan = nan, unless v == 1; 1**nan = 1 */ |
715 | 0 | return PyFloat_FromDouble(iv == 1.0 ? 1.0 : iw); |
716 | 0 | } |
717 | 0 | if (Py_IS_INFINITY(iw)) { |
718 | | /* v**inf is: 0.0 if abs(v) < 1; 1.0 if abs(v) == 1; inf if |
719 | | * abs(v) > 1 (including case where v infinite) |
720 | | * |
721 | | * v**-inf is: inf if abs(v) < 1; 1.0 if abs(v) == 1; 0.0 if |
722 | | * abs(v) > 1 (including case where v infinite) |
723 | | */ |
724 | 0 | iv = fabs(iv); |
725 | 0 | if (iv == 1.0) |
726 | 0 | return PyFloat_FromDouble(1.0); |
727 | 0 | else if ((iw > 0.0) == (iv > 1.0)) |
728 | 0 | return PyFloat_FromDouble(fabs(iw)); /* return inf */ |
729 | 0 | else |
730 | 0 | return PyFloat_FromDouble(0.0); |
731 | 0 | } |
732 | 0 | if (Py_IS_INFINITY(iv)) { |
733 | | /* (+-inf)**w is: inf for w positive, 0 for w negative; in |
734 | | * both cases, we need to add the appropriate sign if w is |
735 | | * an odd integer. |
736 | | */ |
737 | 0 | int iw_is_odd = DOUBLE_IS_ODD_INTEGER(iw); |
738 | 0 | if (iw > 0.0) |
739 | 0 | return PyFloat_FromDouble(iw_is_odd ? iv : fabs(iv)); |
740 | 0 | else |
741 | 0 | return PyFloat_FromDouble(iw_is_odd ? |
742 | 0 | copysign(0.0, iv) : 0.0); |
743 | 0 | } |
744 | 0 | if (iv == 0.0) { /* 0**w is: 0 for w positive, 1 for w zero |
745 | | (already dealt with above), and an error |
746 | | if w is negative. */ |
747 | 0 | int iw_is_odd = DOUBLE_IS_ODD_INTEGER(iw); |
748 | 0 | if (iw < 0.0) { |
749 | 0 | PyErr_SetString(PyExc_ZeroDivisionError, |
750 | 0 | "0.0 cannot be raised to a " |
751 | 0 | "negative power"); |
752 | 0 | return NULL; |
753 | 0 | } |
754 | | /* use correct sign if iw is odd */ |
755 | 0 | return PyFloat_FromDouble(iw_is_odd ? iv : 0.0); |
756 | 0 | } |
757 | | |
758 | 0 | if (iv < 0.0) { |
759 | | /* Whether this is an error is a mess, and bumps into libm |
760 | | * bugs so we have to figure it out ourselves. |
761 | | */ |
762 | 0 | if (iw != floor(iw)) { |
763 | | /* Negative numbers raised to fractional powers |
764 | | * become complex. |
765 | | */ |
766 | 0 | return PyComplex_Type.tp_as_number->nb_power(v, w, z); |
767 | 0 | } |
768 | | /* iw is an exact integer, albeit perhaps a very large |
769 | | * one. Replace iv by its absolute value and remember |
770 | | * to negate the pow result if iw is odd. |
771 | | */ |
772 | 0 | iv = -iv; |
773 | 0 | negate_result = DOUBLE_IS_ODD_INTEGER(iw); |
774 | 0 | } |
775 | | |
776 | 0 | if (iv == 1.0) { /* 1**w is 1, even 1**inf and 1**nan */ |
777 | | /* (-1) ** large_integer also ends up here. Here's an |
778 | | * extract from the comments for the previous |
779 | | * implementation explaining why this special case is |
780 | | * necessary: |
781 | | * |
782 | | * -1 raised to an exact integer should never be exceptional. |
783 | | * Alas, some libms (chiefly glibc as of early 2003) return |
784 | | * NaN and set EDOM on pow(-1, large_int) if the int doesn't |
785 | | * happen to be representable in a *C* integer. That's a |
786 | | * bug. |
787 | | */ |
788 | 0 | return PyFloat_FromDouble(negate_result ? -1.0 : 1.0); |
789 | 0 | } |
790 | | |
791 | | /* Now iv and iw are finite, iw is nonzero, and iv is |
792 | | * positive and not equal to 1.0. We finally allow |
793 | | * the platform pow to step in and do the rest. |
794 | | */ |
795 | 0 | errno = 0; |
796 | 0 | PyFPE_START_PROTECT("pow", return NULL) |
797 | 0 | ix = pow(iv, iw); |
798 | 0 | PyFPE_END_PROTECT(ix) |
799 | 0 | Py_ADJUST_ERANGE1(ix); |
800 | 0 | if (negate_result) |
801 | 0 | ix = -ix; |
802 | |
|
803 | 0 | if (errno != 0) { |
804 | | /* We don't expect any errno value other than ERANGE, but |
805 | | * the range of libm bugs appears unbounded. |
806 | | */ |
807 | 0 | PyErr_SetFromErrno(errno == ERANGE ? PyExc_OverflowError : |
808 | 0 | PyExc_ValueError); |
809 | 0 | return NULL; |
810 | 0 | } |
811 | 0 | return PyFloat_FromDouble(ix); |
812 | 0 | } |
813 | | |
814 | | #undef DOUBLE_IS_ODD_INTEGER |
815 | | |
816 | | static PyObject * |
817 | | float_neg(PyFloatObject *v) |
818 | 0 | { |
819 | 0 | return PyFloat_FromDouble(-v->ob_fval); |
820 | 0 | } |
821 | | |
822 | | static PyObject * |
823 | | float_abs(PyFloatObject *v) |
824 | 0 | { |
825 | 0 | return PyFloat_FromDouble(fabs(v->ob_fval)); |
826 | 0 | } |
827 | | |
828 | | static int |
829 | | float_bool(PyFloatObject *v) |
830 | 0 | { |
831 | 0 | return v->ob_fval != 0.0; |
832 | 0 | } |
833 | | |
834 | | /*[clinic input] |
835 | | float.is_integer |
836 | | |
837 | | Return True if the float is an integer. |
838 | | [clinic start generated code]*/ |
839 | | |
840 | | static PyObject * |
841 | | float_is_integer_impl(PyObject *self) |
842 | | /*[clinic end generated code: output=7112acf95a4d31ea input=311810d3f777e10d]*/ |
843 | 0 | { |
844 | 0 | double x = PyFloat_AsDouble(self); |
845 | 0 | PyObject *o; |
846 | |
|
847 | 0 | if (x == -1.0 && PyErr_Occurred()) |
848 | 0 | return NULL; |
849 | 0 | if (!Py_IS_FINITE(x)) |
850 | 0 | Py_RETURN_FALSE; |
851 | 0 | errno = 0; |
852 | 0 | PyFPE_START_PROTECT("is_integer", return NULL) |
853 | 0 | o = (floor(x) == x) ? Py_True : Py_False; |
854 | 0 | PyFPE_END_PROTECT(x) |
855 | 0 | if (errno != 0) { |
856 | 0 | PyErr_SetFromErrno(errno == ERANGE ? PyExc_OverflowError : |
857 | 0 | PyExc_ValueError); |
858 | 0 | return NULL; |
859 | 0 | } |
860 | 0 | Py_INCREF(o); |
861 | 0 | return o; |
862 | 0 | } |
863 | | |
864 | | /*[clinic input] |
865 | | float.__trunc__ |
866 | | |
867 | | Return the Integral closest to x between 0 and x. |
868 | | [clinic start generated code]*/ |
869 | | |
870 | | static PyObject * |
871 | | float___trunc___impl(PyObject *self) |
872 | | /*[clinic end generated code: output=dd3e289dd4c6b538 input=591b9ba0d650fdff]*/ |
873 | 249 | { |
874 | 249 | double x = PyFloat_AsDouble(self); |
875 | 249 | double wholepart; /* integral portion of x, rounded toward 0 */ |
876 | | |
877 | 249 | (void)modf(x, &wholepart); |
878 | | /* Try to get out cheap if this fits in a Python int. The attempt |
879 | | * to cast to long must be protected, as C doesn't define what |
880 | | * happens if the double is too big to fit in a long. Some rare |
881 | | * systems raise an exception then (RISCOS was mentioned as one, |
882 | | * and someone using a non-default option on Sun also bumped into |
883 | | * that). Note that checking for >= and <= LONG_{MIN,MAX} would |
884 | | * still be vulnerable: if a long has more bits of precision than |
885 | | * a double, casting MIN/MAX to double may yield an approximation, |
886 | | * and if that's rounded up, then, e.g., wholepart=LONG_MAX+1 would |
887 | | * yield true from the C expression wholepart<=LONG_MAX, despite |
888 | | * that wholepart is actually greater than LONG_MAX. |
889 | | */ |
890 | 249 | if (LONG_MIN < wholepart && wholepart < LONG_MAX) { |
891 | 249 | const long aslong = (long)wholepart; |
892 | 249 | return PyLong_FromLong(aslong); |
893 | 249 | } |
894 | 0 | return PyLong_FromDouble(wholepart); |
895 | 249 | } |
896 | | |
897 | | /* double_round: rounds a finite double to the closest multiple of |
898 | | 10**-ndigits; here ndigits is within reasonable bounds (typically, -308 <= |
899 | | ndigits <= 323). Returns a Python float, or sets a Python error and |
900 | | returns NULL on failure (OverflowError and memory errors are possible). */ |
901 | | |
902 | | #ifndef PY_NO_SHORT_FLOAT_REPR |
903 | | /* version of double_round that uses the correctly-rounded string<->double |
904 | | conversions from Python/dtoa.c */ |
905 | | |
906 | | static PyObject * |
907 | 0 | double_round(double x, int ndigits) { |
908 | |
|
909 | 0 | double rounded; |
910 | 0 | Py_ssize_t buflen, mybuflen=100; |
911 | 0 | char *buf, *buf_end, shortbuf[100], *mybuf=shortbuf; |
912 | 0 | int decpt, sign; |
913 | 0 | PyObject *result = NULL; |
914 | 0 | _Py_SET_53BIT_PRECISION_HEADER; |
915 | | |
916 | | /* round to a decimal string */ |
917 | 0 | _Py_SET_53BIT_PRECISION_START; |
918 | 0 | buf = _Py_dg_dtoa(x, 3, ndigits, &decpt, &sign, &buf_end); |
919 | 0 | _Py_SET_53BIT_PRECISION_END; |
920 | 0 | if (buf == NULL) { |
921 | 0 | PyErr_NoMemory(); |
922 | 0 | return NULL; |
923 | 0 | } |
924 | | |
925 | | /* Get new buffer if shortbuf is too small. Space needed <= buf_end - |
926 | | buf + 8: (1 extra for '0', 1 for sign, 5 for exp, 1 for '\0'). */ |
927 | 0 | buflen = buf_end - buf; |
928 | 0 | if (buflen + 8 > mybuflen) { |
929 | 0 | mybuflen = buflen+8; |
930 | 0 | mybuf = (char *)PyMem_Malloc(mybuflen); |
931 | 0 | if (mybuf == NULL) { |
932 | 0 | PyErr_NoMemory(); |
933 | 0 | goto exit; |
934 | 0 | } |
935 | 0 | } |
936 | | /* copy buf to mybuf, adding exponent, sign and leading 0 */ |
937 | 0 | PyOS_snprintf(mybuf, mybuflen, "%s0%se%d", (sign ? "-" : ""), |
938 | 0 | buf, decpt - (int)buflen); |
939 | | |
940 | | /* and convert the resulting string back to a double */ |
941 | 0 | errno = 0; |
942 | 0 | _Py_SET_53BIT_PRECISION_START; |
943 | 0 | rounded = _Py_dg_strtod(mybuf, NULL); |
944 | 0 | _Py_SET_53BIT_PRECISION_END; |
945 | 0 | if (errno == ERANGE && fabs(rounded) >= 1.) |
946 | 0 | PyErr_SetString(PyExc_OverflowError, |
947 | 0 | "rounded value too large to represent"); |
948 | 0 | else |
949 | 0 | result = PyFloat_FromDouble(rounded); |
950 | | |
951 | | /* done computing value; now clean up */ |
952 | 0 | if (mybuf != shortbuf) |
953 | 0 | PyMem_Free(mybuf); |
954 | 0 | exit: |
955 | 0 | _Py_dg_freedtoa(buf); |
956 | 0 | return result; |
957 | 0 | } |
958 | | |
959 | | #else /* PY_NO_SHORT_FLOAT_REPR */ |
960 | | |
961 | | /* fallback version, to be used when correctly rounded binary<->decimal |
962 | | conversions aren't available */ |
963 | | |
964 | | static PyObject * |
965 | | double_round(double x, int ndigits) { |
966 | | double pow1, pow2, y, z; |
967 | | if (ndigits >= 0) { |
968 | | if (ndigits > 22) { |
969 | | /* pow1 and pow2 are each safe from overflow, but |
970 | | pow1*pow2 ~= pow(10.0, ndigits) might overflow */ |
971 | | pow1 = pow(10.0, (double)(ndigits-22)); |
972 | | pow2 = 1e22; |
973 | | } |
974 | | else { |
975 | | pow1 = pow(10.0, (double)ndigits); |
976 | | pow2 = 1.0; |
977 | | } |
978 | | y = (x*pow1)*pow2; |
979 | | /* if y overflows, then rounded value is exactly x */ |
980 | | if (!Py_IS_FINITE(y)) |
981 | | return PyFloat_FromDouble(x); |
982 | | } |
983 | | else { |
984 | | pow1 = pow(10.0, (double)-ndigits); |
985 | | pow2 = 1.0; /* unused; silences a gcc compiler warning */ |
986 | | y = x / pow1; |
987 | | } |
988 | | |
989 | | z = round(y); |
990 | | if (fabs(y-z) == 0.5) |
991 | | /* halfway between two integers; use round-half-even */ |
992 | | z = 2.0*round(y/2.0); |
993 | | |
994 | | if (ndigits >= 0) |
995 | | z = (z / pow2) / pow1; |
996 | | else |
997 | | z *= pow1; |
998 | | |
999 | | /* if computation resulted in overflow, raise OverflowError */ |
1000 | | if (!Py_IS_FINITE(z)) { |
1001 | | PyErr_SetString(PyExc_OverflowError, |
1002 | | "overflow occurred during round"); |
1003 | | return NULL; |
1004 | | } |
1005 | | |
1006 | | return PyFloat_FromDouble(z); |
1007 | | } |
1008 | | |
1009 | | #endif /* PY_NO_SHORT_FLOAT_REPR */ |
1010 | | |
1011 | | /* round a Python float v to the closest multiple of 10**-ndigits */ |
1012 | | |
1013 | | /*[clinic input] |
1014 | | float.__round__ |
1015 | | |
1016 | | ndigits as o_ndigits: object = None |
1017 | | / |
1018 | | |
1019 | | Return the Integral closest to x, rounding half toward even. |
1020 | | |
1021 | | When an argument is passed, work like built-in round(x, ndigits). |
1022 | | [clinic start generated code]*/ |
1023 | | |
1024 | | static PyObject * |
1025 | | float___round___impl(PyObject *self, PyObject *o_ndigits) |
1026 | | /*[clinic end generated code: output=374c36aaa0f13980 input=fc0fe25924fbc9ed]*/ |
1027 | 0 | { |
1028 | 0 | double x, rounded; |
1029 | 0 | Py_ssize_t ndigits; |
1030 | |
|
1031 | 0 | x = PyFloat_AsDouble(self); |
1032 | 0 | if (o_ndigits == Py_None) { |
1033 | | /* single-argument round or with None ndigits: |
1034 | | * round to nearest integer */ |
1035 | 0 | rounded = round(x); |
1036 | 0 | if (fabs(x-rounded) == 0.5) |
1037 | | /* halfway case: round to even */ |
1038 | 0 | rounded = 2.0*round(x/2.0); |
1039 | 0 | return PyLong_FromDouble(rounded); |
1040 | 0 | } |
1041 | | |
1042 | | /* interpret second argument as a Py_ssize_t; clips on overflow */ |
1043 | 0 | ndigits = PyNumber_AsSsize_t(o_ndigits, NULL); |
1044 | 0 | if (ndigits == -1 && PyErr_Occurred()) |
1045 | 0 | return NULL; |
1046 | | |
1047 | | /* nans and infinities round to themselves */ |
1048 | 0 | if (!Py_IS_FINITE(x)) |
1049 | 0 | return PyFloat_FromDouble(x); |
1050 | | |
1051 | | /* Deal with extreme values for ndigits. For ndigits > NDIGITS_MAX, x |
1052 | | always rounds to itself. For ndigits < NDIGITS_MIN, x always |
1053 | | rounds to +-0.0. Here 0.30103 is an upper bound for log10(2). */ |
1054 | 0 | #define NDIGITS_MAX ((int)((DBL_MANT_DIG-DBL_MIN_EXP) * 0.30103)) |
1055 | 0 | #define NDIGITS_MIN (-(int)((DBL_MAX_EXP + 1) * 0.30103)) |
1056 | 0 | if (ndigits > NDIGITS_MAX) |
1057 | | /* return x */ |
1058 | 0 | return PyFloat_FromDouble(x); |
1059 | 0 | else if (ndigits < NDIGITS_MIN) |
1060 | | /* return 0.0, but with sign of x */ |
1061 | 0 | return PyFloat_FromDouble(0.0*x); |
1062 | 0 | else |
1063 | | /* finite x, and ndigits is not unreasonably large */ |
1064 | 0 | return double_round(x, (int)ndigits); |
1065 | 0 | #undef NDIGITS_MAX |
1066 | 0 | #undef NDIGITS_MIN |
1067 | 0 | } |
1068 | | |
1069 | | static PyObject * |
1070 | | float_float(PyObject *v) |
1071 | 0 | { |
1072 | 0 | if (PyFloat_CheckExact(v)) |
1073 | 0 | Py_INCREF(v); |
1074 | 0 | else |
1075 | 0 | v = PyFloat_FromDouble(((PyFloatObject *)v)->ob_fval); |
1076 | 0 | return v; |
1077 | 0 | } |
1078 | | |
1079 | | /*[clinic input] |
1080 | | float.conjugate |
1081 | | |
1082 | | Return self, the complex conjugate of any float. |
1083 | | [clinic start generated code]*/ |
1084 | | |
1085 | | static PyObject * |
1086 | | float_conjugate_impl(PyObject *self) |
1087 | | /*[clinic end generated code: output=8ca292c2479194af input=82ba6f37a9ff91dd]*/ |
1088 | 0 | { |
1089 | 0 | return float_float(self); |
1090 | 0 | } |
1091 | | |
1092 | | /* turn ASCII hex characters into integer values and vice versa */ |
1093 | | |
1094 | | static char |
1095 | | char_from_hex(int x) |
1096 | 0 | { |
1097 | 0 | assert(0 <= x && x < 16); |
1098 | 0 | return Py_hexdigits[x]; |
1099 | 0 | } |
1100 | | |
1101 | | static int |
1102 | 0 | hex_from_char(char c) { |
1103 | 0 | int x; |
1104 | 0 | switch(c) { |
1105 | 0 | case '0': |
1106 | 0 | x = 0; |
1107 | 0 | break; |
1108 | 0 | case '1': |
1109 | 0 | x = 1; |
1110 | 0 | break; |
1111 | 0 | case '2': |
1112 | 0 | x = 2; |
1113 | 0 | break; |
1114 | 0 | case '3': |
1115 | 0 | x = 3; |
1116 | 0 | break; |
1117 | 0 | case '4': |
1118 | 0 | x = 4; |
1119 | 0 | break; |
1120 | 0 | case '5': |
1121 | 0 | x = 5; |
1122 | 0 | break; |
1123 | 0 | case '6': |
1124 | 0 | x = 6; |
1125 | 0 | break; |
1126 | 0 | case '7': |
1127 | 0 | x = 7; |
1128 | 0 | break; |
1129 | 0 | case '8': |
1130 | 0 | x = 8; |
1131 | 0 | break; |
1132 | 0 | case '9': |
1133 | 0 | x = 9; |
1134 | 0 | break; |
1135 | 0 | case 'a': |
1136 | 0 | case 'A': |
1137 | 0 | x = 10; |
1138 | 0 | break; |
1139 | 0 | case 'b': |
1140 | 0 | case 'B': |
1141 | 0 | x = 11; |
1142 | 0 | break; |
1143 | 0 | case 'c': |
1144 | 0 | case 'C': |
1145 | 0 | x = 12; |
1146 | 0 | break; |
1147 | 0 | case 'd': |
1148 | 0 | case 'D': |
1149 | 0 | x = 13; |
1150 | 0 | break; |
1151 | 0 | case 'e': |
1152 | 0 | case 'E': |
1153 | 0 | x = 14; |
1154 | 0 | break; |
1155 | 0 | case 'f': |
1156 | 0 | case 'F': |
1157 | 0 | x = 15; |
1158 | 0 | break; |
1159 | 0 | default: |
1160 | 0 | x = -1; |
1161 | 0 | break; |
1162 | 0 | } |
1163 | 0 | return x; |
1164 | 0 | } |
1165 | | |
1166 | | /* convert a float to a hexadecimal string */ |
1167 | | |
1168 | | /* TOHEX_NBITS is DBL_MANT_DIG rounded up to the next integer |
1169 | | of the form 4k+1. */ |
1170 | 0 | #define TOHEX_NBITS DBL_MANT_DIG + 3 - (DBL_MANT_DIG+2)%4 |
1171 | | |
1172 | | /*[clinic input] |
1173 | | float.hex |
1174 | | |
1175 | | Return a hexadecimal representation of a floating-point number. |
1176 | | |
1177 | | >>> (-0.1).hex() |
1178 | | '-0x1.999999999999ap-4' |
1179 | | >>> 3.14159.hex() |
1180 | | '0x1.921f9f01b866ep+1' |
1181 | | [clinic start generated code]*/ |
1182 | | |
1183 | | static PyObject * |
1184 | | float_hex_impl(PyObject *self) |
1185 | | /*[clinic end generated code: output=0ebc9836e4d302d4 input=bec1271a33d47e67]*/ |
1186 | 0 | { |
1187 | 0 | double x, m; |
1188 | 0 | int e, shift, i, si, esign; |
1189 | | /* Space for 1+(TOHEX_NBITS-1)/4 digits, a decimal point, and the |
1190 | | trailing NUL byte. */ |
1191 | 0 | char s[(TOHEX_NBITS-1)/4+3]; |
1192 | |
|
1193 | 0 | CONVERT_TO_DOUBLE(self, x); |
1194 | |
|
1195 | 0 | if (Py_IS_NAN(x) || Py_IS_INFINITY(x)) |
1196 | 0 | return float_repr((PyFloatObject *)self); |
1197 | | |
1198 | 0 | if (x == 0.0) { |
1199 | 0 | if (copysign(1.0, x) == -1.0) |
1200 | 0 | return PyUnicode_FromString("-0x0.0p+0"); |
1201 | 0 | else |
1202 | 0 | return PyUnicode_FromString("0x0.0p+0"); |
1203 | 0 | } |
1204 | | |
1205 | 0 | m = frexp(fabs(x), &e); |
1206 | 0 | shift = 1 - Py_MAX(DBL_MIN_EXP - e, 0); |
1207 | 0 | m = ldexp(m, shift); |
1208 | 0 | e -= shift; |
1209 | |
|
1210 | 0 | si = 0; |
1211 | 0 | s[si] = char_from_hex((int)m); |
1212 | 0 | si++; |
1213 | 0 | m -= (int)m; |
1214 | 0 | s[si] = '.'; |
1215 | 0 | si++; |
1216 | 0 | for (i=0; i < (TOHEX_NBITS-1)/4; i++) { |
1217 | 0 | m *= 16.0; |
1218 | 0 | s[si] = char_from_hex((int)m); |
1219 | 0 | si++; |
1220 | 0 | m -= (int)m; |
1221 | 0 | } |
1222 | 0 | s[si] = '\0'; |
1223 | |
|
1224 | 0 | if (e < 0) { |
1225 | 0 | esign = (int)'-'; |
1226 | 0 | e = -e; |
1227 | 0 | } |
1228 | 0 | else |
1229 | 0 | esign = (int)'+'; |
1230 | |
|
1231 | 0 | if (x < 0.0) |
1232 | 0 | return PyUnicode_FromFormat("-0x%sp%c%d", s, esign, e); |
1233 | 0 | else |
1234 | 0 | return PyUnicode_FromFormat("0x%sp%c%d", s, esign, e); |
1235 | 0 | } |
1236 | | |
1237 | | /* Convert a hexadecimal string to a float. */ |
1238 | | |
1239 | | /*[clinic input] |
1240 | | @classmethod |
1241 | | float.fromhex |
1242 | | |
1243 | | string: object |
1244 | | / |
1245 | | |
1246 | | Create a floating-point number from a hexadecimal string. |
1247 | | |
1248 | | >>> float.fromhex('0x1.ffffp10') |
1249 | | 2047.984375 |
1250 | | >>> float.fromhex('-0x1p-1074') |
1251 | | -5e-324 |
1252 | | [clinic start generated code]*/ |
1253 | | |
1254 | | static PyObject * |
1255 | | float_fromhex(PyTypeObject *type, PyObject *string) |
1256 | | /*[clinic end generated code: output=46c0274d22b78e82 input=0407bebd354bca89]*/ |
1257 | 0 | { |
1258 | 0 | PyObject *result; |
1259 | 0 | double x; |
1260 | 0 | long exp, top_exp, lsb, key_digit; |
1261 | 0 | const char *s, *coeff_start, *s_store, *coeff_end, *exp_start, *s_end; |
1262 | 0 | int half_eps, digit, round_up, negate=0; |
1263 | 0 | Py_ssize_t length, ndigits, fdigits, i; |
1264 | | |
1265 | | /* |
1266 | | * For the sake of simplicity and correctness, we impose an artificial |
1267 | | * limit on ndigits, the total number of hex digits in the coefficient |
1268 | | * The limit is chosen to ensure that, writing exp for the exponent, |
1269 | | * |
1270 | | * (1) if exp > LONG_MAX/2 then the value of the hex string is |
1271 | | * guaranteed to overflow (provided it's nonzero) |
1272 | | * |
1273 | | * (2) if exp < LONG_MIN/2 then the value of the hex string is |
1274 | | * guaranteed to underflow to 0. |
1275 | | * |
1276 | | * (3) if LONG_MIN/2 <= exp <= LONG_MAX/2 then there's no danger of |
1277 | | * overflow in the calculation of exp and top_exp below. |
1278 | | * |
1279 | | * More specifically, ndigits is assumed to satisfy the following |
1280 | | * inequalities: |
1281 | | * |
1282 | | * 4*ndigits <= DBL_MIN_EXP - DBL_MANT_DIG - LONG_MIN/2 |
1283 | | * 4*ndigits <= LONG_MAX/2 + 1 - DBL_MAX_EXP |
1284 | | * |
1285 | | * If either of these inequalities is not satisfied, a ValueError is |
1286 | | * raised. Otherwise, write x for the value of the hex string, and |
1287 | | * assume x is nonzero. Then |
1288 | | * |
1289 | | * 2**(exp-4*ndigits) <= |x| < 2**(exp+4*ndigits). |
1290 | | * |
1291 | | * Now if exp > LONG_MAX/2 then: |
1292 | | * |
1293 | | * exp - 4*ndigits >= LONG_MAX/2 + 1 - (LONG_MAX/2 + 1 - DBL_MAX_EXP) |
1294 | | * = DBL_MAX_EXP |
1295 | | * |
1296 | | * so |x| >= 2**DBL_MAX_EXP, which is too large to be stored in C |
1297 | | * double, so overflows. If exp < LONG_MIN/2, then |
1298 | | * |
1299 | | * exp + 4*ndigits <= LONG_MIN/2 - 1 + ( |
1300 | | * DBL_MIN_EXP - DBL_MANT_DIG - LONG_MIN/2) |
1301 | | * = DBL_MIN_EXP - DBL_MANT_DIG - 1 |
1302 | | * |
1303 | | * and so |x| < 2**(DBL_MIN_EXP-DBL_MANT_DIG-1), hence underflows to 0 |
1304 | | * when converted to a C double. |
1305 | | * |
1306 | | * It's easy to show that if LONG_MIN/2 <= exp <= LONG_MAX/2 then both |
1307 | | * exp+4*ndigits and exp-4*ndigits are within the range of a long. |
1308 | | */ |
1309 | |
|
1310 | 0 | s = PyUnicode_AsUTF8AndSize(string, &length); |
1311 | 0 | if (s == NULL) |
1312 | 0 | return NULL; |
1313 | 0 | s_end = s + length; |
1314 | | |
1315 | | /******************** |
1316 | | * Parse the string * |
1317 | | ********************/ |
1318 | | |
1319 | | /* leading whitespace */ |
1320 | 0 | while (Py_ISSPACE(*s)) |
1321 | 0 | s++; |
1322 | | |
1323 | | /* infinities and nans */ |
1324 | 0 | x = _Py_parse_inf_or_nan(s, (char **)&coeff_end); |
1325 | 0 | if (coeff_end != s) { |
1326 | 0 | s = coeff_end; |
1327 | 0 | goto finished; |
1328 | 0 | } |
1329 | | |
1330 | | /* optional sign */ |
1331 | 0 | if (*s == '-') { |
1332 | 0 | s++; |
1333 | 0 | negate = 1; |
1334 | 0 | } |
1335 | 0 | else if (*s == '+') |
1336 | 0 | s++; |
1337 | | |
1338 | | /* [0x] */ |
1339 | 0 | s_store = s; |
1340 | 0 | if (*s == '0') { |
1341 | 0 | s++; |
1342 | 0 | if (*s == 'x' || *s == 'X') |
1343 | 0 | s++; |
1344 | 0 | else |
1345 | 0 | s = s_store; |
1346 | 0 | } |
1347 | | |
1348 | | /* coefficient: <integer> [. <fraction>] */ |
1349 | 0 | coeff_start = s; |
1350 | 0 | while (hex_from_char(*s) >= 0) |
1351 | 0 | s++; |
1352 | 0 | s_store = s; |
1353 | 0 | if (*s == '.') { |
1354 | 0 | s++; |
1355 | 0 | while (hex_from_char(*s) >= 0) |
1356 | 0 | s++; |
1357 | 0 | coeff_end = s-1; |
1358 | 0 | } |
1359 | 0 | else |
1360 | 0 | coeff_end = s; |
1361 | | |
1362 | | /* ndigits = total # of hex digits; fdigits = # after point */ |
1363 | 0 | ndigits = coeff_end - coeff_start; |
1364 | 0 | fdigits = coeff_end - s_store; |
1365 | 0 | if (ndigits == 0) |
1366 | 0 | goto parse_error; |
1367 | 0 | if (ndigits > Py_MIN(DBL_MIN_EXP - DBL_MANT_DIG - LONG_MIN/2, |
1368 | 0 | LONG_MAX/2 + 1 - DBL_MAX_EXP)/4) |
1369 | 0 | goto insane_length_error; |
1370 | | |
1371 | | /* [p <exponent>] */ |
1372 | 0 | if (*s == 'p' || *s == 'P') { |
1373 | 0 | s++; |
1374 | 0 | exp_start = s; |
1375 | 0 | if (*s == '-' || *s == '+') |
1376 | 0 | s++; |
1377 | 0 | if (!('0' <= *s && *s <= '9')) |
1378 | 0 | goto parse_error; |
1379 | 0 | s++; |
1380 | 0 | while ('0' <= *s && *s <= '9') |
1381 | 0 | s++; |
1382 | 0 | exp = strtol(exp_start, NULL, 10); |
1383 | 0 | } |
1384 | 0 | else |
1385 | 0 | exp = 0; |
1386 | | |
1387 | | /* for 0 <= j < ndigits, HEX_DIGIT(j) gives the jth most significant digit */ |
1388 | 0 | #define HEX_DIGIT(j) hex_from_char(*((j) < fdigits ? \ |
1389 | 0 | coeff_end-(j) : \ |
1390 | 0 | coeff_end-1-(j))) |
1391 | | |
1392 | | /******************************************* |
1393 | | * Compute rounded value of the hex string * |
1394 | | *******************************************/ |
1395 | | |
1396 | | /* Discard leading zeros, and catch extreme overflow and underflow */ |
1397 | 0 | while (ndigits > 0 && HEX_DIGIT(ndigits-1) == 0) |
1398 | 0 | ndigits--; |
1399 | 0 | if (ndigits == 0 || exp < LONG_MIN/2) { |
1400 | 0 | x = 0.0; |
1401 | 0 | goto finished; |
1402 | 0 | } |
1403 | 0 | if (exp > LONG_MAX/2) |
1404 | 0 | goto overflow_error; |
1405 | | |
1406 | | /* Adjust exponent for fractional part. */ |
1407 | 0 | exp = exp - 4*((long)fdigits); |
1408 | | |
1409 | | /* top_exp = 1 more than exponent of most sig. bit of coefficient */ |
1410 | 0 | top_exp = exp + 4*((long)ndigits - 1); |
1411 | 0 | for (digit = HEX_DIGIT(ndigits-1); digit != 0; digit /= 2) |
1412 | 0 | top_exp++; |
1413 | | |
1414 | | /* catch almost all nonextreme cases of overflow and underflow here */ |
1415 | 0 | if (top_exp < DBL_MIN_EXP - DBL_MANT_DIG) { |
1416 | 0 | x = 0.0; |
1417 | 0 | goto finished; |
1418 | 0 | } |
1419 | 0 | if (top_exp > DBL_MAX_EXP) |
1420 | 0 | goto overflow_error; |
1421 | | |
1422 | | /* lsb = exponent of least significant bit of the *rounded* value. |
1423 | | This is top_exp - DBL_MANT_DIG unless result is subnormal. */ |
1424 | 0 | lsb = Py_MAX(top_exp, (long)DBL_MIN_EXP) - DBL_MANT_DIG; |
1425 | |
|
1426 | 0 | x = 0.0; |
1427 | 0 | if (exp >= lsb) { |
1428 | | /* no rounding required */ |
1429 | 0 | for (i = ndigits-1; i >= 0; i--) |
1430 | 0 | x = 16.0*x + HEX_DIGIT(i); |
1431 | 0 | x = ldexp(x, (int)(exp)); |
1432 | 0 | goto finished; |
1433 | 0 | } |
1434 | | /* rounding required. key_digit is the index of the hex digit |
1435 | | containing the first bit to be rounded away. */ |
1436 | 0 | half_eps = 1 << (int)((lsb - exp - 1) % 4); |
1437 | 0 | key_digit = (lsb - exp - 1) / 4; |
1438 | 0 | for (i = ndigits-1; i > key_digit; i--) |
1439 | 0 | x = 16.0*x + HEX_DIGIT(i); |
1440 | 0 | digit = HEX_DIGIT(key_digit); |
1441 | 0 | x = 16.0*x + (double)(digit & (16-2*half_eps)); |
1442 | | |
1443 | | /* round-half-even: round up if bit lsb-1 is 1 and at least one of |
1444 | | bits lsb, lsb-2, lsb-3, lsb-4, ... is 1. */ |
1445 | 0 | if ((digit & half_eps) != 0) { |
1446 | 0 | round_up = 0; |
1447 | 0 | if ((digit & (3*half_eps-1)) != 0 || |
1448 | 0 | (half_eps == 8 && (HEX_DIGIT(key_digit+1) & 1) != 0)) |
1449 | 0 | round_up = 1; |
1450 | 0 | else |
1451 | 0 | for (i = key_digit-1; i >= 0; i--) |
1452 | 0 | if (HEX_DIGIT(i) != 0) { |
1453 | 0 | round_up = 1; |
1454 | 0 | break; |
1455 | 0 | } |
1456 | 0 | if (round_up) { |
1457 | 0 | x += 2*half_eps; |
1458 | 0 | if (top_exp == DBL_MAX_EXP && |
1459 | 0 | x == ldexp((double)(2*half_eps), DBL_MANT_DIG)) |
1460 | | /* overflow corner case: pre-rounded value < |
1461 | | 2**DBL_MAX_EXP; rounded=2**DBL_MAX_EXP. */ |
1462 | 0 | goto overflow_error; |
1463 | 0 | } |
1464 | 0 | } |
1465 | 0 | x = ldexp(x, (int)(exp+4*key_digit)); |
1466 | |
|
1467 | 0 | finished: |
1468 | | /* optional trailing whitespace leading to the end of the string */ |
1469 | 0 | while (Py_ISSPACE(*s)) |
1470 | 0 | s++; |
1471 | 0 | if (s != s_end) |
1472 | 0 | goto parse_error; |
1473 | 0 | result = PyFloat_FromDouble(negate ? -x : x); |
1474 | 0 | if (type != &PyFloat_Type && result != NULL) { |
1475 | 0 | Py_SETREF(result, PyObject_CallFunctionObjArgs((PyObject *)type, result, NULL)); |
1476 | 0 | } |
1477 | 0 | return result; |
1478 | | |
1479 | 0 | overflow_error: |
1480 | 0 | PyErr_SetString(PyExc_OverflowError, |
1481 | 0 | "hexadecimal value too large to represent as a float"); |
1482 | 0 | return NULL; |
1483 | | |
1484 | 0 | parse_error: |
1485 | 0 | PyErr_SetString(PyExc_ValueError, |
1486 | 0 | "invalid hexadecimal floating-point string"); |
1487 | 0 | return NULL; |
1488 | | |
1489 | 0 | insane_length_error: |
1490 | 0 | PyErr_SetString(PyExc_ValueError, |
1491 | 0 | "hexadecimal string too long to convert"); |
1492 | 0 | return NULL; |
1493 | 0 | } |
1494 | | |
1495 | | /*[clinic input] |
1496 | | float.as_integer_ratio |
1497 | | |
1498 | | Return integer ratio. |
1499 | | |
1500 | | Return a pair of integers, whose ratio is exactly equal to the original float |
1501 | | and with a positive denominator. |
1502 | | |
1503 | | Raise OverflowError on infinities and a ValueError on NaNs. |
1504 | | |
1505 | | >>> (10.0).as_integer_ratio() |
1506 | | (10, 1) |
1507 | | >>> (0.0).as_integer_ratio() |
1508 | | (0, 1) |
1509 | | >>> (-.25).as_integer_ratio() |
1510 | | (-1, 4) |
1511 | | [clinic start generated code]*/ |
1512 | | |
1513 | | static PyObject * |
1514 | | float_as_integer_ratio_impl(PyObject *self) |
1515 | | /*[clinic end generated code: output=65f25f0d8d30a712 input=e21d08b4630c2e44]*/ |
1516 | 0 | { |
1517 | 0 | double self_double; |
1518 | 0 | double float_part; |
1519 | 0 | int exponent; |
1520 | 0 | int i; |
1521 | |
|
1522 | 0 | PyObject *py_exponent = NULL; |
1523 | 0 | PyObject *numerator = NULL; |
1524 | 0 | PyObject *denominator = NULL; |
1525 | 0 | PyObject *result_pair = NULL; |
1526 | 0 | PyNumberMethods *long_methods = PyLong_Type.tp_as_number; |
1527 | |
|
1528 | 0 | CONVERT_TO_DOUBLE(self, self_double); |
1529 | |
|
1530 | 0 | if (Py_IS_INFINITY(self_double)) { |
1531 | 0 | PyErr_SetString(PyExc_OverflowError, |
1532 | 0 | "cannot convert Infinity to integer ratio"); |
1533 | 0 | return NULL; |
1534 | 0 | } |
1535 | 0 | if (Py_IS_NAN(self_double)) { |
1536 | 0 | PyErr_SetString(PyExc_ValueError, |
1537 | 0 | "cannot convert NaN to integer ratio"); |
1538 | 0 | return NULL; |
1539 | 0 | } |
1540 | | |
1541 | 0 | PyFPE_START_PROTECT("as_integer_ratio", goto error); |
1542 | 0 | float_part = frexp(self_double, &exponent); /* self_double == float_part * 2**exponent exactly */ |
1543 | 0 | PyFPE_END_PROTECT(float_part); |
1544 | |
|
1545 | 0 | for (i=0; i<300 && float_part != floor(float_part) ; i++) { |
1546 | 0 | float_part *= 2.0; |
1547 | 0 | exponent--; |
1548 | 0 | } |
1549 | | /* self == float_part * 2**exponent exactly and float_part is integral. |
1550 | | If FLT_RADIX != 2, the 300 steps may leave a tiny fractional part |
1551 | | to be truncated by PyLong_FromDouble(). */ |
1552 | |
|
1553 | 0 | numerator = PyLong_FromDouble(float_part); |
1554 | 0 | if (numerator == NULL) |
1555 | 0 | goto error; |
1556 | 0 | denominator = PyLong_FromLong(1); |
1557 | 0 | if (denominator == NULL) |
1558 | 0 | goto error; |
1559 | 0 | py_exponent = PyLong_FromLong(Py_ABS(exponent)); |
1560 | 0 | if (py_exponent == NULL) |
1561 | 0 | goto error; |
1562 | | |
1563 | | /* fold in 2**exponent */ |
1564 | 0 | if (exponent > 0) { |
1565 | 0 | Py_SETREF(numerator, |
1566 | 0 | long_methods->nb_lshift(numerator, py_exponent)); |
1567 | 0 | if (numerator == NULL) |
1568 | 0 | goto error; |
1569 | 0 | } |
1570 | 0 | else { |
1571 | 0 | Py_SETREF(denominator, |
1572 | 0 | long_methods->nb_lshift(denominator, py_exponent)); |
1573 | 0 | if (denominator == NULL) |
1574 | 0 | goto error; |
1575 | 0 | } |
1576 | | |
1577 | 0 | result_pair = PyTuple_Pack(2, numerator, denominator); |
1578 | |
|
1579 | 0 | error: |
1580 | 0 | Py_XDECREF(py_exponent); |
1581 | 0 | Py_XDECREF(denominator); |
1582 | 0 | Py_XDECREF(numerator); |
1583 | 0 | return result_pair; |
1584 | 0 | } |
1585 | | |
1586 | | static PyObject * |
1587 | | float_subtype_new(PyTypeObject *type, PyObject *x); |
1588 | | |
1589 | | /*[clinic input] |
1590 | | @classmethod |
1591 | | float.__new__ as float_new |
1592 | | x: object(c_default="_PyLong_Zero") = 0 |
1593 | | / |
1594 | | |
1595 | | Convert a string or number to a floating point number, if possible. |
1596 | | [clinic start generated code]*/ |
1597 | | |
1598 | | static PyObject * |
1599 | | float_new_impl(PyTypeObject *type, PyObject *x) |
1600 | | /*[clinic end generated code: output=ccf1e8dc460ba6ba input=540ee77c204ff87a]*/ |
1601 | 0 | { |
1602 | 0 | if (type != &PyFloat_Type) |
1603 | 0 | return float_subtype_new(type, x); /* Wimp out */ |
1604 | | /* If it's a string, but not a string subclass, use |
1605 | | PyFloat_FromString. */ |
1606 | 0 | if (PyUnicode_CheckExact(x)) |
1607 | 0 | return PyFloat_FromString(x); |
1608 | 0 | return PyNumber_Float(x); |
1609 | 0 | } |
1610 | | |
1611 | | /* Wimpy, slow approach to tp_new calls for subtypes of float: |
1612 | | first create a regular float from whatever arguments we got, |
1613 | | then allocate a subtype instance and initialize its ob_fval |
1614 | | from the regular float. The regular float is then thrown away. |
1615 | | */ |
1616 | | static PyObject * |
1617 | | float_subtype_new(PyTypeObject *type, PyObject *x) |
1618 | 0 | { |
1619 | 0 | PyObject *tmp, *newobj; |
1620 | |
|
1621 | 0 | assert(PyType_IsSubtype(type, &PyFloat_Type)); |
1622 | 0 | tmp = float_new_impl(&PyFloat_Type, x); |
1623 | 0 | if (tmp == NULL) |
1624 | 0 | return NULL; |
1625 | 0 | assert(PyFloat_Check(tmp)); |
1626 | 0 | newobj = type->tp_alloc(type, 0); |
1627 | 0 | if (newobj == NULL) { |
1628 | 0 | Py_DECREF(tmp); |
1629 | 0 | return NULL; |
1630 | 0 | } |
1631 | 0 | ((PyFloatObject *)newobj)->ob_fval = ((PyFloatObject *)tmp)->ob_fval; |
1632 | 0 | Py_DECREF(tmp); |
1633 | 0 | return newobj; |
1634 | 0 | } |
1635 | | |
1636 | | /*[clinic input] |
1637 | | float.__getnewargs__ |
1638 | | [clinic start generated code]*/ |
1639 | | |
1640 | | static PyObject * |
1641 | | float___getnewargs___impl(PyObject *self) |
1642 | | /*[clinic end generated code: output=873258c9d206b088 input=002279d1d77891e6]*/ |
1643 | 0 | { |
1644 | 0 | return Py_BuildValue("(d)", ((PyFloatObject *)self)->ob_fval); |
1645 | 0 | } |
1646 | | |
1647 | | /* this is for the benefit of the pack/unpack routines below */ |
1648 | | |
1649 | | typedef enum { |
1650 | | unknown_format, ieee_big_endian_format, ieee_little_endian_format |
1651 | | } float_format_type; |
1652 | | |
1653 | | static float_format_type double_format, float_format; |
1654 | | static float_format_type detected_double_format, detected_float_format; |
1655 | | |
1656 | | /*[clinic input] |
1657 | | @classmethod |
1658 | | float.__getformat__ |
1659 | | |
1660 | | typestr: str |
1661 | | Must be 'double' or 'float'. |
1662 | | / |
1663 | | |
1664 | | You probably don't want to use this function. |
1665 | | |
1666 | | It exists mainly to be used in Python's test suite. |
1667 | | |
1668 | | This function returns whichever of 'unknown', 'IEEE, big-endian' or 'IEEE, |
1669 | | little-endian' best describes the format of floating point numbers used by the |
1670 | | C type named by typestr. |
1671 | | [clinic start generated code]*/ |
1672 | | |
1673 | | static PyObject * |
1674 | | float___getformat___impl(PyTypeObject *type, const char *typestr) |
1675 | | /*[clinic end generated code: output=2bfb987228cc9628 input=d5a52600f835ad67]*/ |
1676 | 0 | { |
1677 | 0 | float_format_type r; |
1678 | |
|
1679 | 0 | if (strcmp(typestr, "double") == 0) { |
1680 | 0 | r = double_format; |
1681 | 0 | } |
1682 | 0 | else if (strcmp(typestr, "float") == 0) { |
1683 | 0 | r = float_format; |
1684 | 0 | } |
1685 | 0 | else { |
1686 | 0 | PyErr_SetString(PyExc_ValueError, |
1687 | 0 | "__getformat__() argument 1 must be " |
1688 | 0 | "'double' or 'float'"); |
1689 | 0 | return NULL; |
1690 | 0 | } |
1691 | | |
1692 | 0 | switch (r) { |
1693 | 0 | case unknown_format: |
1694 | 0 | return PyUnicode_FromString("unknown"); |
1695 | 0 | case ieee_little_endian_format: |
1696 | 0 | return PyUnicode_FromString("IEEE, little-endian"); |
1697 | 0 | case ieee_big_endian_format: |
1698 | 0 | return PyUnicode_FromString("IEEE, big-endian"); |
1699 | 0 | default: |
1700 | 0 | Py_FatalError("insane float_format or double_format"); |
1701 | 0 | return NULL; |
1702 | 0 | } |
1703 | 0 | } |
1704 | | |
1705 | | /*[clinic input] |
1706 | | @classmethod |
1707 | | float.__set_format__ |
1708 | | |
1709 | | typestr: str |
1710 | | Must be 'double' or 'float'. |
1711 | | fmt: str |
1712 | | Must be one of 'unknown', 'IEEE, big-endian' or 'IEEE, little-endian', |
1713 | | and in addition can only be one of the latter two if it appears to |
1714 | | match the underlying C reality. |
1715 | | / |
1716 | | |
1717 | | You probably don't want to use this function. |
1718 | | |
1719 | | It exists mainly to be used in Python's test suite. |
1720 | | |
1721 | | Override the automatic determination of C-level floating point type. |
1722 | | This affects how floats are converted to and from binary strings. |
1723 | | [clinic start generated code]*/ |
1724 | | |
1725 | | static PyObject * |
1726 | | float___set_format___impl(PyTypeObject *type, const char *typestr, |
1727 | | const char *fmt) |
1728 | | /*[clinic end generated code: output=504460f5dc85acbd input=5306fa2b81a997e4]*/ |
1729 | 0 | { |
1730 | 0 | float_format_type f; |
1731 | 0 | float_format_type detected; |
1732 | 0 | float_format_type *p; |
1733 | |
|
1734 | 0 | if (strcmp(typestr, "double") == 0) { |
1735 | 0 | p = &double_format; |
1736 | 0 | detected = detected_double_format; |
1737 | 0 | } |
1738 | 0 | else if (strcmp(typestr, "float") == 0) { |
1739 | 0 | p = &float_format; |
1740 | 0 | detected = detected_float_format; |
1741 | 0 | } |
1742 | 0 | else { |
1743 | 0 | PyErr_SetString(PyExc_ValueError, |
1744 | 0 | "__setformat__() argument 1 must " |
1745 | 0 | "be 'double' or 'float'"); |
1746 | 0 | return NULL; |
1747 | 0 | } |
1748 | | |
1749 | 0 | if (strcmp(fmt, "unknown") == 0) { |
1750 | 0 | f = unknown_format; |
1751 | 0 | } |
1752 | 0 | else if (strcmp(fmt, "IEEE, little-endian") == 0) { |
1753 | 0 | f = ieee_little_endian_format; |
1754 | 0 | } |
1755 | 0 | else if (strcmp(fmt, "IEEE, big-endian") == 0) { |
1756 | 0 | f = ieee_big_endian_format; |
1757 | 0 | } |
1758 | 0 | else { |
1759 | 0 | PyErr_SetString(PyExc_ValueError, |
1760 | 0 | "__setformat__() argument 2 must be " |
1761 | 0 | "'unknown', 'IEEE, little-endian' or " |
1762 | 0 | "'IEEE, big-endian'"); |
1763 | 0 | return NULL; |
1764 | |
|
1765 | 0 | } |
1766 | | |
1767 | 0 | if (f != unknown_format && f != detected) { |
1768 | 0 | PyErr_Format(PyExc_ValueError, |
1769 | 0 | "can only set %s format to 'unknown' or the " |
1770 | 0 | "detected platform value", typestr); |
1771 | 0 | return NULL; |
1772 | 0 | } |
1773 | | |
1774 | 0 | *p = f; |
1775 | 0 | Py_RETURN_NONE; |
1776 | 0 | } |
1777 | | |
1778 | | static PyObject * |
1779 | | float_getreal(PyObject *v, void *closure) |
1780 | 0 | { |
1781 | 0 | return float_float(v); |
1782 | 0 | } |
1783 | | |
1784 | | static PyObject * |
1785 | | float_getimag(PyObject *v, void *closure) |
1786 | 0 | { |
1787 | 0 | return PyFloat_FromDouble(0.0); |
1788 | 0 | } |
1789 | | |
1790 | | /*[clinic input] |
1791 | | float.__format__ |
1792 | | |
1793 | | format_spec: unicode |
1794 | | / |
1795 | | |
1796 | | Formats the float according to format_spec. |
1797 | | [clinic start generated code]*/ |
1798 | | |
1799 | | static PyObject * |
1800 | | float___format___impl(PyObject *self, PyObject *format_spec) |
1801 | | /*[clinic end generated code: output=b260e52a47eade56 input=2ece1052211fd0e6]*/ |
1802 | 0 | { |
1803 | 0 | _PyUnicodeWriter writer; |
1804 | 0 | int ret; |
1805 | |
|
1806 | 0 | _PyUnicodeWriter_Init(&writer); |
1807 | 0 | ret = _PyFloat_FormatAdvancedWriter( |
1808 | 0 | &writer, |
1809 | 0 | self, |
1810 | 0 | format_spec, 0, PyUnicode_GET_LENGTH(format_spec)); |
1811 | 0 | if (ret == -1) { |
1812 | 0 | _PyUnicodeWriter_Dealloc(&writer); |
1813 | 0 | return NULL; |
1814 | 0 | } |
1815 | 0 | return _PyUnicodeWriter_Finish(&writer); |
1816 | 0 | } |
1817 | | |
1818 | | static PyMethodDef float_methods[] = { |
1819 | | FLOAT_CONJUGATE_METHODDEF |
1820 | | FLOAT___TRUNC___METHODDEF |
1821 | | FLOAT___ROUND___METHODDEF |
1822 | | FLOAT_AS_INTEGER_RATIO_METHODDEF |
1823 | | FLOAT_FROMHEX_METHODDEF |
1824 | | FLOAT_HEX_METHODDEF |
1825 | | FLOAT_IS_INTEGER_METHODDEF |
1826 | | FLOAT___GETNEWARGS___METHODDEF |
1827 | | FLOAT___GETFORMAT___METHODDEF |
1828 | | FLOAT___SET_FORMAT___METHODDEF |
1829 | | FLOAT___FORMAT___METHODDEF |
1830 | | {NULL, NULL} /* sentinel */ |
1831 | | }; |
1832 | | |
1833 | | static PyGetSetDef float_getset[] = { |
1834 | | {"real", |
1835 | | float_getreal, (setter)NULL, |
1836 | | "the real part of a complex number", |
1837 | | NULL}, |
1838 | | {"imag", |
1839 | | float_getimag, (setter)NULL, |
1840 | | "the imaginary part of a complex number", |
1841 | | NULL}, |
1842 | | {NULL} /* Sentinel */ |
1843 | | }; |
1844 | | |
1845 | | |
1846 | | static PyNumberMethods float_as_number = { |
1847 | | float_add, /* nb_add */ |
1848 | | float_sub, /* nb_subtract */ |
1849 | | float_mul, /* nb_multiply */ |
1850 | | float_rem, /* nb_remainder */ |
1851 | | float_divmod, /* nb_divmod */ |
1852 | | float_pow, /* nb_power */ |
1853 | | (unaryfunc)float_neg, /* nb_negative */ |
1854 | | float_float, /* nb_positive */ |
1855 | | (unaryfunc)float_abs, /* nb_absolute */ |
1856 | | (inquiry)float_bool, /* nb_bool */ |
1857 | | 0, /* nb_invert */ |
1858 | | 0, /* nb_lshift */ |
1859 | | 0, /* nb_rshift */ |
1860 | | 0, /* nb_and */ |
1861 | | 0, /* nb_xor */ |
1862 | | 0, /* nb_or */ |
1863 | | float___trunc___impl, /* nb_int */ |
1864 | | 0, /* nb_reserved */ |
1865 | | float_float, /* nb_float */ |
1866 | | 0, /* nb_inplace_add */ |
1867 | | 0, /* nb_inplace_subtract */ |
1868 | | 0, /* nb_inplace_multiply */ |
1869 | | 0, /* nb_inplace_remainder */ |
1870 | | 0, /* nb_inplace_power */ |
1871 | | 0, /* nb_inplace_lshift */ |
1872 | | 0, /* nb_inplace_rshift */ |
1873 | | 0, /* nb_inplace_and */ |
1874 | | 0, /* nb_inplace_xor */ |
1875 | | 0, /* nb_inplace_or */ |
1876 | | float_floor_div, /* nb_floor_divide */ |
1877 | | float_div, /* nb_true_divide */ |
1878 | | 0, /* nb_inplace_floor_divide */ |
1879 | | 0, /* nb_inplace_true_divide */ |
1880 | | }; |
1881 | | |
1882 | | PyTypeObject PyFloat_Type = { |
1883 | | PyVarObject_HEAD_INIT(&PyType_Type, 0) |
1884 | | "float", |
1885 | | sizeof(PyFloatObject), |
1886 | | 0, |
1887 | | (destructor)float_dealloc, /* tp_dealloc */ |
1888 | | 0, /* tp_vectorcall_offset */ |
1889 | | 0, /* tp_getattr */ |
1890 | | 0, /* tp_setattr */ |
1891 | | 0, /* tp_as_async */ |
1892 | | (reprfunc)float_repr, /* tp_repr */ |
1893 | | &float_as_number, /* tp_as_number */ |
1894 | | 0, /* tp_as_sequence */ |
1895 | | 0, /* tp_as_mapping */ |
1896 | | (hashfunc)float_hash, /* tp_hash */ |
1897 | | 0, /* tp_call */ |
1898 | | 0, /* tp_str */ |
1899 | | PyObject_GenericGetAttr, /* tp_getattro */ |
1900 | | 0, /* tp_setattro */ |
1901 | | 0, /* tp_as_buffer */ |
1902 | | Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */ |
1903 | | float_new__doc__, /* tp_doc */ |
1904 | | 0, /* tp_traverse */ |
1905 | | 0, /* tp_clear */ |
1906 | | float_richcompare, /* tp_richcompare */ |
1907 | | 0, /* tp_weaklistoffset */ |
1908 | | 0, /* tp_iter */ |
1909 | | 0, /* tp_iternext */ |
1910 | | float_methods, /* tp_methods */ |
1911 | | 0, /* tp_members */ |
1912 | | float_getset, /* tp_getset */ |
1913 | | 0, /* tp_base */ |
1914 | | 0, /* tp_dict */ |
1915 | | 0, /* tp_descr_get */ |
1916 | | 0, /* tp_descr_set */ |
1917 | | 0, /* tp_dictoffset */ |
1918 | | 0, /* tp_init */ |
1919 | | 0, /* tp_alloc */ |
1920 | | float_new, /* tp_new */ |
1921 | | }; |
1922 | | |
1923 | | int |
1924 | | _PyFloat_Init(void) |
1925 | 14 | { |
1926 | | /* We attempt to determine if this machine is using IEEE |
1927 | | floating point formats by peering at the bits of some |
1928 | | carefully chosen values. If it looks like we are on an |
1929 | | IEEE platform, the float packing/unpacking routines can |
1930 | | just copy bits, if not they resort to arithmetic & shifts |
1931 | | and masks. The shifts & masks approach works on all finite |
1932 | | values, but what happens to infinities, NaNs and signed |
1933 | | zeroes on packing is an accident, and attempting to unpack |
1934 | | a NaN or an infinity will raise an exception. |
1935 | | |
1936 | | Note that if we're on some whacked-out platform which uses |
1937 | | IEEE formats but isn't strictly little-endian or big- |
1938 | | endian, we will fall back to the portable shifts & masks |
1939 | | method. */ |
1940 | | |
1941 | 14 | #if SIZEOF_DOUBLE == 8 |
1942 | 14 | { |
1943 | 14 | double x = 9006104071832581.0; |
1944 | 14 | if (memcmp(&x, "\x43\x3f\xff\x01\x02\x03\x04\x05", 8) == 0) |
1945 | 0 | detected_double_format = ieee_big_endian_format; |
1946 | 14 | else if (memcmp(&x, "\x05\x04\x03\x02\x01\xff\x3f\x43", 8) == 0) |
1947 | 14 | detected_double_format = ieee_little_endian_format; |
1948 | 0 | else |
1949 | 0 | detected_double_format = unknown_format; |
1950 | 14 | } |
1951 | | #else |
1952 | | detected_double_format = unknown_format; |
1953 | | #endif |
1954 | | |
1955 | 14 | #if SIZEOF_FLOAT == 4 |
1956 | 14 | { |
1957 | 14 | float y = 16711938.0; |
1958 | 14 | if (memcmp(&y, "\x4b\x7f\x01\x02", 4) == 0) |
1959 | 0 | detected_float_format = ieee_big_endian_format; |
1960 | 14 | else if (memcmp(&y, "\x02\x01\x7f\x4b", 4) == 0) |
1961 | 14 | detected_float_format = ieee_little_endian_format; |
1962 | 0 | else |
1963 | 0 | detected_float_format = unknown_format; |
1964 | 14 | } |
1965 | | #else |
1966 | | detected_float_format = unknown_format; |
1967 | | #endif |
1968 | | |
1969 | 14 | double_format = detected_double_format; |
1970 | 14 | float_format = detected_float_format; |
1971 | | |
1972 | | /* Init float info */ |
1973 | 14 | if (FloatInfoType.tp_name == NULL) { |
1974 | 14 | if (PyStructSequence_InitType2(&FloatInfoType, &floatinfo_desc) < 0) { |
1975 | 0 | return 0; |
1976 | 0 | } |
1977 | 14 | } |
1978 | 14 | return 1; |
1979 | 14 | } |
1980 | | |
1981 | | int |
1982 | | PyFloat_ClearFreeList(void) |
1983 | 0 | { |
1984 | 0 | PyFloatObject *f = free_list, *next; |
1985 | 0 | int i = numfree; |
1986 | 0 | while (f) { |
1987 | 0 | next = (PyFloatObject*) Py_TYPE(f); |
1988 | 0 | PyObject_FREE(f); |
1989 | 0 | f = next; |
1990 | 0 | } |
1991 | 0 | free_list = NULL; |
1992 | 0 | numfree = 0; |
1993 | 0 | return i; |
1994 | 0 | } |
1995 | | |
1996 | | void |
1997 | | PyFloat_Fini(void) |
1998 | 0 | { |
1999 | 0 | (void)PyFloat_ClearFreeList(); |
2000 | 0 | } |
2001 | | |
2002 | | /* Print summary info about the state of the optimized allocator */ |
2003 | | void |
2004 | | _PyFloat_DebugMallocStats(FILE *out) |
2005 | 0 | { |
2006 | 0 | _PyDebugAllocatorStats(out, |
2007 | 0 | "free PyFloatObject", |
2008 | 0 | numfree, sizeof(PyFloatObject)); |
2009 | 0 | } |
2010 | | |
2011 | | |
2012 | | /*---------------------------------------------------------------------------- |
2013 | | * _PyFloat_{Pack,Unpack}{2,4,8}. See floatobject.h. |
2014 | | * To match the NPY_HALF_ROUND_TIES_TO_EVEN behavior in: |
2015 | | * https://github.com/numpy/numpy/blob/master/numpy/core/src/npymath/halffloat.c |
2016 | | * We use: |
2017 | | * bits = (unsigned short)f; Note the truncation |
2018 | | * if ((f - bits > 0.5) || (f - bits == 0.5 && bits % 2)) { |
2019 | | * bits++; |
2020 | | * } |
2021 | | */ |
2022 | | |
2023 | | int |
2024 | | _PyFloat_Pack2(double x, unsigned char *p, int le) |
2025 | 0 | { |
2026 | 0 | unsigned char sign; |
2027 | 0 | int e; |
2028 | 0 | double f; |
2029 | 0 | unsigned short bits; |
2030 | 0 | int incr = 1; |
2031 | |
|
2032 | 0 | if (x == 0.0) { |
2033 | 0 | sign = (copysign(1.0, x) == -1.0); |
2034 | 0 | e = 0; |
2035 | 0 | bits = 0; |
2036 | 0 | } |
2037 | 0 | else if (Py_IS_INFINITY(x)) { |
2038 | 0 | sign = (x < 0.0); |
2039 | 0 | e = 0x1f; |
2040 | 0 | bits = 0; |
2041 | 0 | } |
2042 | 0 | else if (Py_IS_NAN(x)) { |
2043 | | /* There are 2046 distinct half-precision NaNs (1022 signaling and |
2044 | | 1024 quiet), but there are only two quiet NaNs that don't arise by |
2045 | | quieting a signaling NaN; we get those by setting the topmost bit |
2046 | | of the fraction field and clearing all other fraction bits. We |
2047 | | choose the one with the appropriate sign. */ |
2048 | 0 | sign = (copysign(1.0, x) == -1.0); |
2049 | 0 | e = 0x1f; |
2050 | 0 | bits = 512; |
2051 | 0 | } |
2052 | 0 | else { |
2053 | 0 | sign = (x < 0.0); |
2054 | 0 | if (sign) { |
2055 | 0 | x = -x; |
2056 | 0 | } |
2057 | |
|
2058 | 0 | f = frexp(x, &e); |
2059 | 0 | if (f < 0.5 || f >= 1.0) { |
2060 | 0 | PyErr_SetString(PyExc_SystemError, |
2061 | 0 | "frexp() result out of range"); |
2062 | 0 | return -1; |
2063 | 0 | } |
2064 | | |
2065 | | /* Normalize f to be in the range [1.0, 2.0) */ |
2066 | 0 | f *= 2.0; |
2067 | 0 | e--; |
2068 | |
|
2069 | 0 | if (e >= 16) { |
2070 | 0 | goto Overflow; |
2071 | 0 | } |
2072 | 0 | else if (e < -25) { |
2073 | | /* |x| < 2**-25. Underflow to zero. */ |
2074 | 0 | f = 0.0; |
2075 | 0 | e = 0; |
2076 | 0 | } |
2077 | 0 | else if (e < -14) { |
2078 | | /* |x| < 2**-14. Gradual underflow */ |
2079 | 0 | f = ldexp(f, 14 + e); |
2080 | 0 | e = 0; |
2081 | 0 | } |
2082 | 0 | else /* if (!(e == 0 && f == 0.0)) */ { |
2083 | 0 | e += 15; |
2084 | 0 | f -= 1.0; /* Get rid of leading 1 */ |
2085 | 0 | } |
2086 | | |
2087 | 0 | f *= 1024.0; /* 2**10 */ |
2088 | | /* Round to even */ |
2089 | 0 | bits = (unsigned short)f; /* Note the truncation */ |
2090 | 0 | assert(bits < 1024); |
2091 | 0 | assert(e < 31); |
2092 | 0 | if ((f - bits > 0.5) || ((f - bits == 0.5) && (bits % 2 == 1))) { |
2093 | 0 | ++bits; |
2094 | 0 | if (bits == 1024) { |
2095 | | /* The carry propagated out of a string of 10 1 bits. */ |
2096 | 0 | bits = 0; |
2097 | 0 | ++e; |
2098 | 0 | if (e == 31) |
2099 | 0 | goto Overflow; |
2100 | 0 | } |
2101 | 0 | } |
2102 | 0 | } |
2103 | | |
2104 | 0 | bits |= (e << 10) | (sign << 15); |
2105 | | |
2106 | | /* Write out result. */ |
2107 | 0 | if (le) { |
2108 | 0 | p += 1; |
2109 | 0 | incr = -1; |
2110 | 0 | } |
2111 | | |
2112 | | /* First byte */ |
2113 | 0 | *p = (unsigned char)((bits >> 8) & 0xFF); |
2114 | 0 | p += incr; |
2115 | | |
2116 | | /* Second byte */ |
2117 | 0 | *p = (unsigned char)(bits & 0xFF); |
2118 | |
|
2119 | 0 | return 0; |
2120 | | |
2121 | 0 | Overflow: |
2122 | 0 | PyErr_SetString(PyExc_OverflowError, |
2123 | 0 | "float too large to pack with e format"); |
2124 | 0 | return -1; |
2125 | 0 | } |
2126 | | |
2127 | | int |
2128 | | _PyFloat_Pack4(double x, unsigned char *p, int le) |
2129 | 0 | { |
2130 | 0 | if (float_format == unknown_format) { |
2131 | 0 | unsigned char sign; |
2132 | 0 | int e; |
2133 | 0 | double f; |
2134 | 0 | unsigned int fbits; |
2135 | 0 | int incr = 1; |
2136 | |
|
2137 | 0 | if (le) { |
2138 | 0 | p += 3; |
2139 | 0 | incr = -1; |
2140 | 0 | } |
2141 | |
|
2142 | 0 | if (x < 0) { |
2143 | 0 | sign = 1; |
2144 | 0 | x = -x; |
2145 | 0 | } |
2146 | 0 | else |
2147 | 0 | sign = 0; |
2148 | |
|
2149 | 0 | f = frexp(x, &e); |
2150 | | |
2151 | | /* Normalize f to be in the range [1.0, 2.0) */ |
2152 | 0 | if (0.5 <= f && f < 1.0) { |
2153 | 0 | f *= 2.0; |
2154 | 0 | e--; |
2155 | 0 | } |
2156 | 0 | else if (f == 0.0) |
2157 | 0 | e = 0; |
2158 | 0 | else { |
2159 | 0 | PyErr_SetString(PyExc_SystemError, |
2160 | 0 | "frexp() result out of range"); |
2161 | 0 | return -1; |
2162 | 0 | } |
2163 | | |
2164 | 0 | if (e >= 128) |
2165 | 0 | goto Overflow; |
2166 | 0 | else if (e < -126) { |
2167 | | /* Gradual underflow */ |
2168 | 0 | f = ldexp(f, 126 + e); |
2169 | 0 | e = 0; |
2170 | 0 | } |
2171 | 0 | else if (!(e == 0 && f == 0.0)) { |
2172 | 0 | e += 127; |
2173 | 0 | f -= 1.0; /* Get rid of leading 1 */ |
2174 | 0 | } |
2175 | | |
2176 | 0 | f *= 8388608.0; /* 2**23 */ |
2177 | 0 | fbits = (unsigned int)(f + 0.5); /* Round */ |
2178 | 0 | assert(fbits <= 8388608); |
2179 | 0 | if (fbits >> 23) { |
2180 | | /* The carry propagated out of a string of 23 1 bits. */ |
2181 | 0 | fbits = 0; |
2182 | 0 | ++e; |
2183 | 0 | if (e >= 255) |
2184 | 0 | goto Overflow; |
2185 | 0 | } |
2186 | | |
2187 | | /* First byte */ |
2188 | 0 | *p = (sign << 7) | (e >> 1); |
2189 | 0 | p += incr; |
2190 | | |
2191 | | /* Second byte */ |
2192 | 0 | *p = (char) (((e & 1) << 7) | (fbits >> 16)); |
2193 | 0 | p += incr; |
2194 | | |
2195 | | /* Third byte */ |
2196 | 0 | *p = (fbits >> 8) & 0xFF; |
2197 | 0 | p += incr; |
2198 | | |
2199 | | /* Fourth byte */ |
2200 | 0 | *p = fbits & 0xFF; |
2201 | | |
2202 | | /* Done */ |
2203 | 0 | return 0; |
2204 | |
|
2205 | 0 | } |
2206 | 0 | else { |
2207 | 0 | float y = (float)x; |
2208 | 0 | int i, incr = 1; |
2209 | |
|
2210 | 0 | if (Py_IS_INFINITY(y) && !Py_IS_INFINITY(x)) |
2211 | 0 | goto Overflow; |
2212 | | |
2213 | 0 | unsigned char s[sizeof(float)]; |
2214 | 0 | memcpy(s, &y, sizeof(float)); |
2215 | |
|
2216 | 0 | if ((float_format == ieee_little_endian_format && !le) |
2217 | 0 | || (float_format == ieee_big_endian_format && le)) { |
2218 | 0 | p += 3; |
2219 | 0 | incr = -1; |
2220 | 0 | } |
2221 | |
|
2222 | 0 | for (i = 0; i < 4; i++) { |
2223 | 0 | *p = s[i]; |
2224 | 0 | p += incr; |
2225 | 0 | } |
2226 | 0 | return 0; |
2227 | 0 | } |
2228 | 0 | Overflow: |
2229 | 0 | PyErr_SetString(PyExc_OverflowError, |
2230 | 0 | "float too large to pack with f format"); |
2231 | 0 | return -1; |
2232 | 0 | } |
2233 | | |
2234 | | int |
2235 | | _PyFloat_Pack8(double x, unsigned char *p, int le) |
2236 | 0 | { |
2237 | 0 | if (double_format == unknown_format) { |
2238 | 0 | unsigned char sign; |
2239 | 0 | int e; |
2240 | 0 | double f; |
2241 | 0 | unsigned int fhi, flo; |
2242 | 0 | int incr = 1; |
2243 | |
|
2244 | 0 | if (le) { |
2245 | 0 | p += 7; |
2246 | 0 | incr = -1; |
2247 | 0 | } |
2248 | |
|
2249 | 0 | if (x < 0) { |
2250 | 0 | sign = 1; |
2251 | 0 | x = -x; |
2252 | 0 | } |
2253 | 0 | else |
2254 | 0 | sign = 0; |
2255 | |
|
2256 | 0 | f = frexp(x, &e); |
2257 | | |
2258 | | /* Normalize f to be in the range [1.0, 2.0) */ |
2259 | 0 | if (0.5 <= f && f < 1.0) { |
2260 | 0 | f *= 2.0; |
2261 | 0 | e--; |
2262 | 0 | } |
2263 | 0 | else if (f == 0.0) |
2264 | 0 | e = 0; |
2265 | 0 | else { |
2266 | 0 | PyErr_SetString(PyExc_SystemError, |
2267 | 0 | "frexp() result out of range"); |
2268 | 0 | return -1; |
2269 | 0 | } |
2270 | | |
2271 | 0 | if (e >= 1024) |
2272 | 0 | goto Overflow; |
2273 | 0 | else if (e < -1022) { |
2274 | | /* Gradual underflow */ |
2275 | 0 | f = ldexp(f, 1022 + e); |
2276 | 0 | e = 0; |
2277 | 0 | } |
2278 | 0 | else if (!(e == 0 && f == 0.0)) { |
2279 | 0 | e += 1023; |
2280 | 0 | f -= 1.0; /* Get rid of leading 1 */ |
2281 | 0 | } |
2282 | | |
2283 | | /* fhi receives the high 28 bits; flo the low 24 bits (== 52 bits) */ |
2284 | 0 | f *= 268435456.0; /* 2**28 */ |
2285 | 0 | fhi = (unsigned int)f; /* Truncate */ |
2286 | 0 | assert(fhi < 268435456); |
2287 | |
|
2288 | 0 | f -= (double)fhi; |
2289 | 0 | f *= 16777216.0; /* 2**24 */ |
2290 | 0 | flo = (unsigned int)(f + 0.5); /* Round */ |
2291 | 0 | assert(flo <= 16777216); |
2292 | 0 | if (flo >> 24) { |
2293 | | /* The carry propagated out of a string of 24 1 bits. */ |
2294 | 0 | flo = 0; |
2295 | 0 | ++fhi; |
2296 | 0 | if (fhi >> 28) { |
2297 | | /* And it also progagated out of the next 28 bits. */ |
2298 | 0 | fhi = 0; |
2299 | 0 | ++e; |
2300 | 0 | if (e >= 2047) |
2301 | 0 | goto Overflow; |
2302 | 0 | } |
2303 | 0 | } |
2304 | | |
2305 | | /* First byte */ |
2306 | 0 | *p = (sign << 7) | (e >> 4); |
2307 | 0 | p += incr; |
2308 | | |
2309 | | /* Second byte */ |
2310 | 0 | *p = (unsigned char) (((e & 0xF) << 4) | (fhi >> 24)); |
2311 | 0 | p += incr; |
2312 | | |
2313 | | /* Third byte */ |
2314 | 0 | *p = (fhi >> 16) & 0xFF; |
2315 | 0 | p += incr; |
2316 | | |
2317 | | /* Fourth byte */ |
2318 | 0 | *p = (fhi >> 8) & 0xFF; |
2319 | 0 | p += incr; |
2320 | | |
2321 | | /* Fifth byte */ |
2322 | 0 | *p = fhi & 0xFF; |
2323 | 0 | p += incr; |
2324 | | |
2325 | | /* Sixth byte */ |
2326 | 0 | *p = (flo >> 16) & 0xFF; |
2327 | 0 | p += incr; |
2328 | | |
2329 | | /* Seventh byte */ |
2330 | 0 | *p = (flo >> 8) & 0xFF; |
2331 | 0 | p += incr; |
2332 | | |
2333 | | /* Eighth byte */ |
2334 | 0 | *p = flo & 0xFF; |
2335 | | /* p += incr; */ |
2336 | | |
2337 | | /* Done */ |
2338 | 0 | return 0; |
2339 | | |
2340 | 0 | Overflow: |
2341 | 0 | PyErr_SetString(PyExc_OverflowError, |
2342 | 0 | "float too large to pack with d format"); |
2343 | 0 | return -1; |
2344 | 0 | } |
2345 | 0 | else { |
2346 | 0 | const unsigned char *s = (unsigned char*)&x; |
2347 | 0 | int i, incr = 1; |
2348 | |
|
2349 | 0 | if ((double_format == ieee_little_endian_format && !le) |
2350 | 0 | || (double_format == ieee_big_endian_format && le)) { |
2351 | 0 | p += 7; |
2352 | 0 | incr = -1; |
2353 | 0 | } |
2354 | |
|
2355 | 0 | for (i = 0; i < 8; i++) { |
2356 | 0 | *p = *s++; |
2357 | 0 | p += incr; |
2358 | 0 | } |
2359 | 0 | return 0; |
2360 | 0 | } |
2361 | 0 | } |
2362 | | |
2363 | | double |
2364 | | _PyFloat_Unpack2(const unsigned char *p, int le) |
2365 | 0 | { |
2366 | 0 | unsigned char sign; |
2367 | 0 | int e; |
2368 | 0 | unsigned int f; |
2369 | 0 | double x; |
2370 | 0 | int incr = 1; |
2371 | |
|
2372 | 0 | if (le) { |
2373 | 0 | p += 1; |
2374 | 0 | incr = -1; |
2375 | 0 | } |
2376 | | |
2377 | | /* First byte */ |
2378 | 0 | sign = (*p >> 7) & 1; |
2379 | 0 | e = (*p & 0x7C) >> 2; |
2380 | 0 | f = (*p & 0x03) << 8; |
2381 | 0 | p += incr; |
2382 | | |
2383 | | /* Second byte */ |
2384 | 0 | f |= *p; |
2385 | |
|
2386 | 0 | if (e == 0x1f) { |
2387 | | #ifdef PY_NO_SHORT_FLOAT_REPR |
2388 | | if (f == 0) { |
2389 | | /* Infinity */ |
2390 | | return sign ? -Py_HUGE_VAL : Py_HUGE_VAL; |
2391 | | } |
2392 | | else { |
2393 | | /* NaN */ |
2394 | | #ifdef Py_NAN |
2395 | | return sign ? -Py_NAN : Py_NAN; |
2396 | | #else |
2397 | | PyErr_SetString( |
2398 | | PyExc_ValueError, |
2399 | | "can't unpack IEEE 754 NaN " |
2400 | | "on platform that does not support NaNs"); |
2401 | | return -1; |
2402 | | #endif /* #ifdef Py_NAN */ |
2403 | | } |
2404 | | #else |
2405 | 0 | if (f == 0) { |
2406 | | /* Infinity */ |
2407 | 0 | return _Py_dg_infinity(sign); |
2408 | 0 | } |
2409 | 0 | else { |
2410 | | /* NaN */ |
2411 | 0 | return _Py_dg_stdnan(sign); |
2412 | 0 | } |
2413 | 0 | #endif /* #ifdef PY_NO_SHORT_FLOAT_REPR */ |
2414 | 0 | } |
2415 | | |
2416 | 0 | x = (double)f / 1024.0; |
2417 | |
|
2418 | 0 | if (e == 0) { |
2419 | 0 | e = -14; |
2420 | 0 | } |
2421 | 0 | else { |
2422 | 0 | x += 1.0; |
2423 | 0 | e -= 15; |
2424 | 0 | } |
2425 | 0 | x = ldexp(x, e); |
2426 | |
|
2427 | 0 | if (sign) |
2428 | 0 | x = -x; |
2429 | |
|
2430 | 0 | return x; |
2431 | 0 | } |
2432 | | |
2433 | | double |
2434 | | _PyFloat_Unpack4(const unsigned char *p, int le) |
2435 | 0 | { |
2436 | 0 | if (float_format == unknown_format) { |
2437 | 0 | unsigned char sign; |
2438 | 0 | int e; |
2439 | 0 | unsigned int f; |
2440 | 0 | double x; |
2441 | 0 | int incr = 1; |
2442 | |
|
2443 | 0 | if (le) { |
2444 | 0 | p += 3; |
2445 | 0 | incr = -1; |
2446 | 0 | } |
2447 | | |
2448 | | /* First byte */ |
2449 | 0 | sign = (*p >> 7) & 1; |
2450 | 0 | e = (*p & 0x7F) << 1; |
2451 | 0 | p += incr; |
2452 | | |
2453 | | /* Second byte */ |
2454 | 0 | e |= (*p >> 7) & 1; |
2455 | 0 | f = (*p & 0x7F) << 16; |
2456 | 0 | p += incr; |
2457 | |
|
2458 | 0 | if (e == 255) { |
2459 | 0 | PyErr_SetString( |
2460 | 0 | PyExc_ValueError, |
2461 | 0 | "can't unpack IEEE 754 special value " |
2462 | 0 | "on non-IEEE platform"); |
2463 | 0 | return -1; |
2464 | 0 | } |
2465 | | |
2466 | | /* Third byte */ |
2467 | 0 | f |= *p << 8; |
2468 | 0 | p += incr; |
2469 | | |
2470 | | /* Fourth byte */ |
2471 | 0 | f |= *p; |
2472 | |
|
2473 | 0 | x = (double)f / 8388608.0; |
2474 | | |
2475 | | /* XXX This sadly ignores Inf/NaN issues */ |
2476 | 0 | if (e == 0) |
2477 | 0 | e = -126; |
2478 | 0 | else { |
2479 | 0 | x += 1.0; |
2480 | 0 | e -= 127; |
2481 | 0 | } |
2482 | 0 | x = ldexp(x, e); |
2483 | |
|
2484 | 0 | if (sign) |
2485 | 0 | x = -x; |
2486 | |
|
2487 | 0 | return x; |
2488 | 0 | } |
2489 | 0 | else { |
2490 | 0 | float x; |
2491 | |
|
2492 | 0 | if ((float_format == ieee_little_endian_format && !le) |
2493 | 0 | || (float_format == ieee_big_endian_format && le)) { |
2494 | 0 | char buf[4]; |
2495 | 0 | char *d = &buf[3]; |
2496 | 0 | int i; |
2497 | |
|
2498 | 0 | for (i = 0; i < 4; i++) { |
2499 | 0 | *d-- = *p++; |
2500 | 0 | } |
2501 | 0 | memcpy(&x, buf, 4); |
2502 | 0 | } |
2503 | 0 | else { |
2504 | 0 | memcpy(&x, p, 4); |
2505 | 0 | } |
2506 | |
|
2507 | 0 | return x; |
2508 | 0 | } |
2509 | 0 | } |
2510 | | |
2511 | | double |
2512 | | _PyFloat_Unpack8(const unsigned char *p, int le) |
2513 | 0 | { |
2514 | 0 | if (double_format == unknown_format) { |
2515 | 0 | unsigned char sign; |
2516 | 0 | int e; |
2517 | 0 | unsigned int fhi, flo; |
2518 | 0 | double x; |
2519 | 0 | int incr = 1; |
2520 | |
|
2521 | 0 | if (le) { |
2522 | 0 | p += 7; |
2523 | 0 | incr = -1; |
2524 | 0 | } |
2525 | | |
2526 | | /* First byte */ |
2527 | 0 | sign = (*p >> 7) & 1; |
2528 | 0 | e = (*p & 0x7F) << 4; |
2529 | |
|
2530 | 0 | p += incr; |
2531 | | |
2532 | | /* Second byte */ |
2533 | 0 | e |= (*p >> 4) & 0xF; |
2534 | 0 | fhi = (*p & 0xF) << 24; |
2535 | 0 | p += incr; |
2536 | |
|
2537 | 0 | if (e == 2047) { |
2538 | 0 | PyErr_SetString( |
2539 | 0 | PyExc_ValueError, |
2540 | 0 | "can't unpack IEEE 754 special value " |
2541 | 0 | "on non-IEEE platform"); |
2542 | 0 | return -1.0; |
2543 | 0 | } |
2544 | | |
2545 | | /* Third byte */ |
2546 | 0 | fhi |= *p << 16; |
2547 | 0 | p += incr; |
2548 | | |
2549 | | /* Fourth byte */ |
2550 | 0 | fhi |= *p << 8; |
2551 | 0 | p += incr; |
2552 | | |
2553 | | /* Fifth byte */ |
2554 | 0 | fhi |= *p; |
2555 | 0 | p += incr; |
2556 | | |
2557 | | /* Sixth byte */ |
2558 | 0 | flo = *p << 16; |
2559 | 0 | p += incr; |
2560 | | |
2561 | | /* Seventh byte */ |
2562 | 0 | flo |= *p << 8; |
2563 | 0 | p += incr; |
2564 | | |
2565 | | /* Eighth byte */ |
2566 | 0 | flo |= *p; |
2567 | |
|
2568 | 0 | x = (double)fhi + (double)flo / 16777216.0; /* 2**24 */ |
2569 | 0 | x /= 268435456.0; /* 2**28 */ |
2570 | |
|
2571 | 0 | if (e == 0) |
2572 | 0 | e = -1022; |
2573 | 0 | else { |
2574 | 0 | x += 1.0; |
2575 | 0 | e -= 1023; |
2576 | 0 | } |
2577 | 0 | x = ldexp(x, e); |
2578 | |
|
2579 | 0 | if (sign) |
2580 | 0 | x = -x; |
2581 | |
|
2582 | 0 | return x; |
2583 | 0 | } |
2584 | 0 | else { |
2585 | 0 | double x; |
2586 | |
|
2587 | 0 | if ((double_format == ieee_little_endian_format && !le) |
2588 | 0 | || (double_format == ieee_big_endian_format && le)) { |
2589 | 0 | char buf[8]; |
2590 | 0 | char *d = &buf[7]; |
2591 | 0 | int i; |
2592 | |
|
2593 | 0 | for (i = 0; i < 8; i++) { |
2594 | 0 | *d-- = *p++; |
2595 | 0 | } |
2596 | 0 | memcpy(&x, buf, 8); |
2597 | 0 | } |
2598 | 0 | else { |
2599 | 0 | memcpy(&x, p, 8); |
2600 | 0 | } |
2601 | |
|
2602 | 0 | return x; |
2603 | 0 | } |
2604 | 0 | } |